Date of Award

5-2003

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Engineering

Department

Electrical Engineering

Major Professor

Li, Xiao-Rong

Second Advisor

Chen, Humin

Third Advisor

Jilkov, Vesselin

Abstract

Nonlinear filtering is certainly very important in estimation since most real-world problems are nonlinear. Recently a considerable progress in the nonlinear filtering theory has been made in the area of the sampling-based methods, including both random (Monte Carlo) and deterministic (quasi-Monte Carlo) sampling, and their combination. This work considers the problem of tracking a maneuvering target in a multisensor environment. A novel scheme for distributed tracking is employed that utilizes a nonlinear target model and estimates from local (sensor-based) estimators. The resulting estimation problem is highly nonlinear and thus quite challenging. In order to evaluate the performance capabilities of the architecture considered, advanced sampling-based nonlinear filters are implemented: particle filter (PF), unscented Kalman filter (UKF), and unscented particle filter (UPF). Results from extensive Monte Carlo simulations using different configurations of these algorithms are obtained to compare their effectiveness for solving the distributed target tracking problem.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS