Date of Award

Fall 12-18-2015

Degree Type

Dissertation

Degree Name

Ph.D.

Degree Program

Engineering and Applied Science

Department

Physics

Major Professor

Weilie Zhou

Second Advisor

Kevin L. Stokes

Third Advisor

Ashok Puri

Fourth Advisor

Leszek Malkinski

Fifth Advisor

Paul J. Schilling

Abstract

Piezotronic and piezo-phototronic is a burgeoning field of study which emerges from the coupling of intrinsic materials properties exhibited by non-centrosymmetric semiconductors. In the past decade research efforts were mainly focused on the wurtzite family of 1D nanostructures, with major emphasis on ZnO nanowire nanogenerators, MS piezotronic transistors, LEDs and photodetectors mainly integrated on single nanowires. In view of previously known advantages of charge carrier separation in radial heterojunctions, particularly in type-II core/shell nanowires, it can be anticipated that the performance of photosensing devices can be largely enhanced by piezo-phototronic effect. Moreover, the performance metrics can be further improved in an array of nanowires where geometrical feature enabled multiple reflection can efficiently trap incident illumination. The crux of this dissertation lies in the development of 3D type-II core/shell nanowire array based piezo-phototronic device and also to investigate the effect of magnetic field on ZnO nanowire arrays based piezotronic and piezo-phototronic device for new class of sensors. In this regard, prototype piezo-phototronic broadband photodetectors integrated on two material systems, namely type-II CdSe/ZnTe 3D core/shell nanowire arrays and fully wide band gap type-II ZnO/ZnS 3D core/shell nanowire arrays have been developed where the photodetection performance of each device exhibits high sensitivity, fast response and large responsivity. The application of piezo-phototronic effect further improves the device performance by three to four orders of magnitude change numerically calculated from absolute responsivities at multiple wavelengths. A 3D ZnO nanowire array based new class of piezo-photo-magnetotronic sensor is also developed for detection of pressure, illumination and magnetic field suggesting multiple functionality of a single device where more than one effect can be coupled together to exhibit piezo-magnetotronic or piezo-photo-magnetotronic type of device behavior.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS