Date of Award

5-22-2006

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Engineering

Department

Mechanical Engineering

Major Professor

Verges, Melody

Second Advisor

Schilling, Paul

Third Advisor

Herrington, Paul D.

Abstract

The present study investigates microcracking and damage progression in IM7/977-2, IM7/5555, and IM7/5276-1 [0/90/90/0] laminates. For each material system, seven to eight small coupons were axially loaded in a tensile substage. At increments of around 50 MPa the surfaces of the specimens were inspected via optical microscopy so that a history of microcracking damage as a function of applied loading could be charted. In the IM7/977-2 laminates microcracks were found to initiate on average at around 1050MPa; microcracking initiation for the other two systems was around 850 to 900 MPa. Also, the IM7/977-2 system displayed a steeper increase in crack density as a function of applied loading than the other two systems. The IM7/5555 system was the only system that achieved a microcracking saturation density; the saturation density was found to be around 17 cracks per centimeter. While the IM7/977-2 and IM7/5276-1 systems typically broke into two pieces at failure, the IM7/5555 specimens shattered into pieces. In addition, delaminations were observed in a majority of the IM7/5555 specimens at loadings 250MPa under the failure loads.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS