Date of Award
5-2006
Degree Type
Thesis
Degree Name
M.S.
Degree Program
Psychology
Department
Psychology
Major Professor
LaHoste, Gerald
Second Advisor
King, Bruce
Third Advisor
Daniel, Jill
Abstract
Most behavioral, physiological and cellular effects of theneurotransmitter dopamine require concomitant activation of both D1 and D2 receptors, a phenomenon referred to as D1/D2 synergism. Since D1 and D2 receptors are located mostly on separate neurons, and since D1/D2 synergism occurs in the absence of action potentials, we have suggested that electrotonic coupling via gap junctions plays an important role in this phenomenon. A major constituent of gap junctions is connexin36 (Cx36), a protein that is abundant in neurons. The role Cx36 in D1/D2 synergism, as manifested behaviorally, was studied here in mice genetically engineered to express normal, reduced, or undetectable amounts of this protein. The results show that D1/D2 synergism and its breakdown were not affected by the presence or absence of Cx36. Unexpectedly, it was observed that the absence of Cx36 leads to resistance to the cataleptic effects of reserpine in a gene dosage-dependent manner.
Recommended Citation
Nolan, Eileen, "The Role of Connexin36 in Dopamine D1/D2 Synergism and its Breakdown in Transgenic Mice" (2006). University of New Orleans Theses and Dissertations. 372.
https://scholarworks.uno.edu/td/372
Rights
The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.