Date of Award
Summer 8-2011
Degree Type
Thesis
Degree Name
M.S.
Degree Program
Engineering
Department
Electrical Engineering
Major Professor
Chen, Huimin
Second Advisor
Jilkov, Vesselin
Third Advisor
Li, X. Rong
Abstract
We consider the prediction algorithm and performance evaluation for prognostics and health management (PHM) problems, especially the prediction of remaining useful life (RUL) for the milling machine cutter and lithium ‐
ion battery. We modeled battery as a voltage source and internal resisters. By analyzing voltage change trend during discharge, we made the prediction of battery remain discharge time in one discharge cycle. By analyzing internal resistance change trend during multiple cycles, we were able to predict the battery remaining useful time during its life time. We showed that the battery rest profile is correlated with the RUL. Numerical results using the realistic battery aging data from NASA prognostics data repository yielded satisfactory performance for battery prognosis as measured by certain performance metrics. We built a battery test platform and simulated more usage pattern and verified the prediction algorithm. Prognostic performance metrics were used to compare different algorithms.
Recommended Citation
Liu, Gang, "A Study on Remaining Useful Life Prediction for Prognostic Applications" (2011). University of New Orleans Theses and Dissertations. 456.
https://scholarworks.uno.edu/td/456
Rights
The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.