Date of Award

12-2007

Degree Type

Dissertation

Degree Name

Ph.D.

Degree Program

Chemistry

Department

Chemistry

Major Professor

Wang, Guijun

Second Advisor

Trudell, Mark

Third Advisor

Jursic, Branko

Fourth Advisor

Cole, Richard B.

Abstract

Small chiral molecules are very important building blocks in the synthesis of biologically active compounds. These building blocks include nitrogen and oxygen-containing heterocycles such as 2-oxazolidinones, 1,3-oxazinan-2-ones, 2-oxazolines, oxazines, morpholine and morpholinones. Because of their interesting properties, chiral heterocycles have stirred great interest in the synthetic chemist community to develop useful and efficient strategies to these molecules. In this dissertation, the design and syntheses of various heterocyclic building blocks are presented, as well as the testing of their biological activities as antibacterial. Another very interesting family of heterocycle-containing molecules are the Aeruginosins. They are a family of marine natural products isolated from a blue-green algae, which display inhibitory activity against serine proteases such as thrombin, trypsin, and factor VIIa. Most aeruginosins contain an heterocyclic moiety called the 2-carboxy-6-hydroxyoctahydroindole (Choi) ring; this Choi moiety is a rigid bicyclic unnatural amino acid and is the core structure in the aeruginosins, indispensable to their biological activity. A synthesis of a ring-oxygenated variant of the Choi from D-mannose is reported in this dissertation. The ring-oxygenated variant of 2-carboxy-6-hydroxyoctahydroindole can potentially be used as a surrogate of Choi in the design and synthesis of aeruginosin-based thrombin inhibitors.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS