Date of Award

8-7-2008

Degree Type

Thesis

Degree Name

M.S.

Degree Program

Computer Science

Department

Computer Science

Major Professor

Winters-Hilt, Stephen

Second Advisor

Summa, Christopher

Third Advisor

Zhu, Dongxiao

Abstract

Support Vector Machines (SVMs) are used for a growing number of applications. A fundamental constraint on SVM learning is the management of the training set. This is because the order of computations goes as the square of the size of the training set. Typically, training sets of 1000 (500 positives and 500 negatives, for example) can be managed on a PC without hard-drive thrashing. Training sets of 10,000 however, simply cannot be managed with PC-based resources. For this reason most SVM implementations must contend with some kind of chunking process to train parts of the data at a time (10 chunks of 1000, for example, to learn the 10,000). Sequential and multi-threaded chunking methods provide a way to run the SVM on large datasets while retaining accuracy. The multi-threaded distributed SVM described in this thesis is implemented using Java RMI, and has been developed to run on a network of multi-core/multi-processor computers.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS