Date of Award

12-19-2008

Degree Type

Dissertation

Degree Name

Ph.D.

Degree Program

Engineering and Applied Science

Department

Mathematics

Major Professor

Saxton, Ralph

Second Advisor

Wei, Dongming

Third Advisor

Santanilla, Jairo

Fourth Advisor

Chin-Bing, Stan

Fifth Advisor

Hui, David

Abstract

In this work we study the Generalized Lane-Emden equation and the interplay between the exponents involved and their consequences on the existence and non existence of radial solutions on a unit ball in n dimensions. We extend the analysis to the phase plane for a clear understanding of the behavior of solutions and the relationship between their existence and the growth of nonlinear terms, where we investigate the critical exponent p and a sub-critical exponent, which we refer to as ^p. We discover a structural change of solutions due the existence of this sub-critical exponent which we relate to the same change in behavior of the Lane- Emden equation solutions, for ; = 0; andp = 2, due to the same sub-critical exponent. We hypothesize that this sub-critical exponent may be related to a weighted trace embedding.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation.

Share

COinS