Date of Award

12-2010

Degree Type

Thesis-Restricted

Degree Name

M.S.

Degree Program

Engineering

Department

Electrical Engineering

Major Professor

Charalampidis, Dimitrios

Second Advisor

Jilkov, Vesselin

Third Advisor

Ioup, George

Abstract

Smoothing filters have been extensively used for noise removal and image restoration. Directional filters are widely used in computer vision and image processing tasks such as motion analysis, edge detection, line parameter estimation and texture analysis. It is practically impossible to tune the filters to all possible positions and orientations in real time due to huge computation requirement. The efficient way is to design a few basis filters, and express the output of a directional filter as a weighted sum of the basis filter outputs. Directional filters having these properties are called "Steerable Filters." This thesis work emphasis is on the implementation of proposed computationally efficient separable and steerable Gaussian smoothers on a Xilinx VirtexII Pro FPGA platform. FPGAs are Field Programmable Gate Arrays which consist of a collection of logic blocks including lookup tables, flip flops and some amount of Random Access Memory. All blocks are wired together using an array of interconnects. The proposed technique [2] is implemented on a FPGA hardware taking the advantage of parallelism and pipelining.

Rights

The University of New Orleans and its agents retain the non-exclusive license to archive and make accessible this dissertation or thesis in whole or in part in all forms of media, now or hereafter known. The author retains all other ownership rights to the copyright of the thesis or dissertation

Share

COinS