Creating a Multi-Campus Hazard Mitigation Plan for the Mississippi Gulf Coast Community College System

Caroline Cunningham
Atkins North America

Nathan Slaughter
Atkins North America

John Shows
Mississippi Gulf Coast Community College

Follow this and additional works at: https://scholarworks.uno.edu/dru2013

Recommended Citation

This Presentation is brought to you for free and open access by the Conferences and Workshops at ScholarWorks@UNO. It has been accepted for inclusion in DRU Workshop 2013 Presentations – Disaster Resistant University Workshop: Linking Mitigation and Resilience by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.
Mississippi Gulf Coast Community College Pre-Disaster Mitigation Plan

A case study for Multi-campus Planning

Disaster Resistant University Workshop 2013

Plan Design Enable
Overview

- Part 1:
 - Atkins
 - MGCCC
 - 6 campus mitigation plan
 - Planning Process, Planning Team, Campus Visits, Risk Assessment
 - Successes and Challenges
Atkins

● Multi-disciplinary Engineering Firm
 – Design, Engineering, Project Management Consultancy
 – Emergency Management, Environmental, Transportation, etc
 – www.AtkinsGlobal.com

● Disaster Resistant University (DRU) Planning Experience
 – Mississippi Gulf Coast Community College (MGCCC)
 – Florida International University (sub to URS)
 – University of South Carolina
 – University of Massachusetts Amherst (sub to Jamie Caplan Consulting)
MGCCC

- **Est. 1911**: Harrison County Agricultural High School
- **1925**: junior college courses offered
- **1962**: expanded to serve 4 county area
- **Today**:
 - 3 campuses
 - 1 non-traditional
 - 3 centers
 - 10,000 students
 - 2,000 graduates annually
- www.mgcc.edu
Participating Campuses
General Overview

- Gather Project Team
- Kick-off Meeting
- Campus Visits
- Reconvene Project Team/Mitigation Strategy
- Draft Plan Review
- State/FEMA approval
- Campus Adoption

Approximately a 12 month process
Internal Kick-off Meeting

- Immediate Planning Team
 - Via webinar
 - Explain:
 - Mitigation
 - Need for HMP
 - Role/Responsibilities
 - Planning Process and Schedule
 - Planning Team
 - Buy-in
Official Kick-off Meeting

- In-person
- What is Mitigation
- Importance of Hazard Mitigation Plan
- Mitigation Examples
- Upcoming Site Visits
- Project Schedule
- Role/Responsibilities
- Ice Breaker Exercise
Planning Team

- Representatives from each campus
 - Faculty
 - Staff
 - Broad base

- Local community
 - County Emergency Management offices
 - State EMA (MEMA)
 - Utilities
 - American Red Cross

- Possible due to small geographic area
 - Could utilize webinars
Campus Visits

- Visited each participating campus
- Walking tour

Purpose
- Identify Critical Facilities
- Identify Mitigation Actions

Consistency
- Process
 - Step 1: Interview
 - Step 2: Campus tour
- People
- Questions/survey
Attendees

● Atkins
 – Nathan Slaughter, Project Manager
 – Caroline Cunningham, Risk Assessment Specialist

● MGCCC
 – John Shows, Assc. VP
 – Campus Representatives
 ● Facilities
 ● IT
 ● Police
Campus Packets

- Critical Building Scoring Sheets
- List of all buildings/associated information
 - Insurance Dept.
- General questions
 - Previous hazard impacts
 - Known problem areas
 - Campus needs
 - Building questions
Critical Building Scoring Sheets

- Reviewed with MGCCC officials prior to visits
- Used to determine critical facilities
 - Building Function
 - EOC
 - Housing
 - IT HUB
 - Generator
 - Unique Collections
 - Research

<table>
<thead>
<tr>
<th>MGCCC Critical Building Scoring Worksheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus: ________________________________</td>
</tr>
<tr>
<td>Facility Name: _________________________</td>
</tr>
<tr>
<td>Score</td>
</tr>
<tr>
<td>Does the facility serve as the campus Emergency Operations Center (EOC)?</td>
</tr>
<tr>
<td>Yes, Primary EOC = 9 pts</td>
</tr>
<tr>
<td>Yes, Secondary EOC = 3 pts</td>
</tr>
<tr>
<td>No = 0 pts</td>
</tr>
<tr>
<td>Does the facility house functions essential to campus operations?</td>
</tr>
<tr>
<td>Main Telecommunication Center = 3 pts</td>
</tr>
<tr>
<td>Computer Network Hub = 3 pts</td>
</tr>
<tr>
<td>Administrative Operations = 1pts</td>
</tr>
<tr>
<td>Maintenance = 1 pt</td>
</tr>
<tr>
<td>Public Safety = 1 pt</td>
</tr>
<tr>
<td>Is the facility equipped with a generator or hook-ups?</td>
</tr>
<tr>
<td>Generator = 3 pts</td>
</tr>
<tr>
<td>Hook-ups = 1pt</td>
</tr>
<tr>
<td>Neither = 0pts</td>
</tr>
<tr>
<td>Does the facility serve as storage for rare or unique collections (art, artifacts, letters, etc..)?</td>
</tr>
<tr>
<td>Yes = 3 pts</td>
</tr>
<tr>
<td>No = 0 pts</td>
</tr>
<tr>
<td>Does the facility serve as a pre or post disaster shelter?</td>
</tr>
<tr>
<td>Both pre and post disaster shelter = 6 pts</td>
</tr>
<tr>
<td>Either pre or post disaster shelter = 3 pts</td>
</tr>
<tr>
<td>Neither = 0 pts</td>
</tr>
<tr>
<td>Does the facility provide services essential to sheltering?</td>
</tr>
<tr>
<td>Resident Housing = 1pt</td>
</tr>
<tr>
<td>Assembly Space = 1pt</td>
</tr>
<tr>
<td>Shower Facilities = 1pt</td>
</tr>
<tr>
<td>Food Preparation Facility = 1 pt</td>
</tr>
<tr>
<td>Does the facility provide chilled water distribution?</td>
</tr>
<tr>
<td>Yes = 3 pts</td>
</tr>
<tr>
<td>No = 0 pts</td>
</tr>
</tbody>
</table>
Campus Visit Schedule

<table>
<thead>
<tr>
<th>Campus</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>George County Campus Center</td>
<td>June 14</td>
<td>8:00 AM – 9:30 AM</td>
</tr>
<tr>
<td>Perkinston Campus</td>
<td>June 14</td>
<td>1:00 PM – 4:30PM</td>
</tr>
<tr>
<td>Jefferson Davis</td>
<td>June 15</td>
<td>8:00 AM – 11:00 AM</td>
</tr>
<tr>
<td>AMT Center</td>
<td>June 15</td>
<td>11:30 AM – 12:30 PM</td>
</tr>
<tr>
<td>West Harrison Campus Center</td>
<td>June 15</td>
<td>1:00 PM – 3:00 PM</td>
</tr>
<tr>
<td>Jackson County Campus</td>
<td>June 16</td>
<td>8:00 AM – 11:30AM</td>
</tr>
</tbody>
</table>
Perkinston Campus

PERKINSON CAMPUS MAP KEY
1. HUFF HALL
2. JACKSON HALL
3. FIES HALL
4. FINCH HALL
5. EDGERTON HALL
6. HARRISON HALL
7. HESSTEDT WINTZ HALL
8. GYMNASIUM
9. FINK HALL
10. MAULDE HALL
11. VISUAL ART CENTER
12. ALUMNI HOUSE
13. LEARNING RESOURCES CENTER
14. CHAPEL
15. HEDBERG HALL - CAFETERIA
16. MILLINGTON STUDENT CENTER
17. BICKSTON
18. MCDIFFETT HALL
19. LARSON
20. WATERS HALL
21. MILLER FILLMORE
22. LOCK TOWER
23. SOFTBALL FIELD
24. SOCCER FIELD
25. BASEBALL FIELD
26. BASEBALL/SOFTBALL COMPLEX
27. DISTRICT PRINCIPAL
28. GROWING/ROSES
29. GOLF/TURF BUILDING
30. PRACTICE FOOTBALL FIELD
31. MAINTENANCE, TRANSPORTATION, AND SUPPORT SERVICES CENTER
32. CAMPUS POLICE
33. ANDREWS HALL
34. MORGAN HALL
35. OWEN HALL
36. HUTCHINSON HALL
37. WOMEN'S GYM
38. GEORGE HALL
39. BEYRNE HALL
40. BARTY HALL
41. SAM F. JONES BAND HALL
42. BURR HALL
43. ATHLETIC PERFORMANCE FACILITY
44. BAND FIELD STORAGE

MGCCC
Mississippi Gulf Coast Community College

ATKINS

Mississippi Gulf Coast Community College
Perkinston Campus
MGCCC Centers

George County Center

West Harrison County Center
MGCCC Centers

George County Center

West Harrison County Center
Jefferson Davis Campus
Jefferson Davis Campus
AMTC – campus without walls
AMTC – campus without walls
Jackson County Campus
Jackson County Campus
Risk Assessment

- Written portion concurrent with campus visits
- Consulted Local, state, federal sources
- Campus-level assessment
 - Hazards
 - Historical occurrences
 - Hazard location
 - Severity
 - Vulnerability & impact
- Building-specific analysis with Hazus-MH
Hazus-MH

- Utilized to get building specific results for critical facilities
 - Earthquake
 - Flood
 - Hurricane

- Comprehensive Data Management System (CDMS)
 - Input campus buildings (EFS2)
 - Insurance data from campus officials
Flooding
FEMA Digital Flood Insurance Rate Maps

All Campuses
Special Flood Hazard Areas
A
AE
AH
0.2-percent annual chance
VE

MGCCC Overview

Jackson County Campus

Buildings with 500 year Flood Risk:
- Admissions, Counseling & Career Center
- Automotive, Marine & Machine Tool
- Business & Office Technology
- Boating, Design & Public Safety
- Business Analytics Center
- Green House
- Leadership Ropes Challenge Course
- Math & Computer Science
- Nursing & Allied Health Programs
- Outdoor Pavilion
- Student Center, Bookstore & Cafeteria

Flood Hazard (FEMA DFIRM)
- 100 year floodplains
- 500 year floodplains

0.2-percent annual chance
VE
Mobile HAZMAT Incident
Reconvene Planning Team

• Mitigation Strategy Meeting
 – Held at MGCCC Jefferson Davis Campus

• Present Risk Assessment Results
 – By campus
 – Consider audience

• Transition to Mitigation Strategy
 – Discussed problems identified
 – Recommended additional mitigation actions
Mitigation Strategy

- Broke into groups by campus
- Brainstormed Mitigation Actions
- Shared with entire group
- Result was a campus-specific mitigation action plan
Draft Plan to Adoption

- **DRAFT**
 - Submitted to planning team for review
 - Publicized on campus website
 - Atkins incorporated comments before submission to state

- **SUBMISSION** to State/FEMA

- **ADOPTION** by MGCCC following approval
 - Single adoption for all campuses
Next steps

● Working on projects
● Pursue grants
● Monitor
● Evaluate
Successes/Challenges

● Successes
 – Defined planning process
 – Campus visits
 – Planning Team
 – Involvement from each campus & community
 ● Small geographic area
 – Consistent Team
 – Recent Disasters

● Challenges
 – Limited time on the ground
 – Use of engineer on visits
Questions?

Contact:
Caroline Cunningham
Caroline.Cunningham@AtkinsGlobal.com
General Overview of Hazus and CDMS for Universities

Getting Beyond the Box
What is Hazus?

- A free software put out by FEMA to estimate losses for Flood, Hurricane Wind, Earthquake, and Storm Surge
- An **ESTIMATION** Tool
- A **PLANNING** Tool
- A Population **ASSESSMENT** Tool
- Run on ArcGIS platform
 - Spatial analyst extension needed for flood modeling
Hazus History

- Program initiated in 1992
- Earthquake in 1997
- Hurricane Wind and Flood in 1998
- Hurricane Storm Surge in 2011
- Tsunami coming soon…

Hazus Study Region
Who Uses Hazus? Where?

- Lots of People!
 - Governments
 - Consultants
 - Federal Agencies
 - Education Entities
 - International Arena

- Where
 - Universities
 - Locally (state, county, region)
 - Hazard Dependent
 - Internationally
How Does Hazus Work?

Loss Estimation Process

Earthquake
- Describe the hazard
- Determine what is at risk
- Understand the environment
- Analyze the impact
- Describe the impact

Flood
- Describe the hazard
- Determine what is at risk
- Understand the environment
- Analyze the impact
- Describe the impact

Hurricane
- Describe the hazard
- Determine what is at risk
- Understand the environment
- Analyze the impact
- Describe the impact
Inventory

- Hazus-provides (“out of the box”) inventory
- Two Types of Data:
 - Aggregate Data
 - General Building Types/Number
 - Demographics
 - Site Specific
 - Essential Facilities (universities)
- Powerful capability to ADD and ENHANCE data via CDMS
What is CDMS?

- Comprehensive Data Management Systems
- “The CDMS is a complimentary tool to Hazus-MH that provides users with the capability to update and manage statewide datasets, which are currently used to support analysis in Hazus-MH. “ –source: FEMA
- A tool used to integrate data into Hazus for enhanced inventory and results
CDMS Overview

What is CDMS?

External Data Sources
- Excel 2003
- Access 2003
- Shapefile
- Personal GDB

Field Mapping and Validation

CDMS

Repository

Hazus-MH Statewide Databases
- Bndrygbs.mdb
- EF.mdb
- Trn.mdb
- Util.mdb
- Hplf.mdb
- flAG.mdb
- flVeh.mdb
- Msh.mdb

Source: FEMA
Why Do We Use CDMS?

- To Get Beyond the Box of Default Data!
- Update data:
 - Residential Building Counts: Census 2000
 - Non-Residential Counts and Data: Dun & Bradstreet, 2006
 - Demographics: Census 2000
 - Essential Facilities
 - Schools (including universities)
- Better input = Better results
- Better identify risk and prepare
Determining What’s in Hazus

● Many avenues
 – Investigate the state dataset on CD/local drive
 – Create a study region and view inventory
 – Query state dataset in CDMS

● Result
 – Colleges are a Single Point in Hazus (EFS2)

● In actuality, an entire campus of many buildings
Add Existing Data for Visual Reference

Hazus Study Region
University of South Carolina, Beaufort Campus
Export EF School Data

- Use CDMS to Query Dataset for schools
- Export Data
- CDMS-ready template
Template

- Updates down outside of CDMS
- Import New data into CDMS
- Cannot make changes in CDMS
What are the required inputs?

- Hazus ID
- Essential Facility Type
- Spatial Location
- First Floor Occupied Height (flood)
- Foundation Type (flood)
- Damage Function ID (flood)
- Contents Function ID (flood)
- Building Type (flood, earthquake)
- Design Level (flood, earthquake)
- Landslide Susceptibility (earthquake)
- Liquefaction Susceptibility (earthquake)
- Soil Type (earthquake)
What are the *additional* inputs?

- Back-up Power
- Contact Information
- Kitchen
- Shelter Capacity
- Comments
- Number of Stories
- Number of Students
- Replacement Cost
- Content Costs
- School District
- Year Built
- EQ soil Type
- EQ Water Depth
CDMS Data Dictionary

- Data Dictionary
 - http://www.fema.gov/library/viewRecord.do?id=5120
 - In Hazus>CDMS Program Files after installation

- Explains all data requirements

- Indicates requirements for each field
 - Text (40), double, currency, etc
Data Dictionary (con’t)

Schools Facilities

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
<th>Required</th>
<th>Type</th>
<th>Units</th>
<th>Domain</th>
<th>Default</th>
<th>Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address</td>
<td>FALSE</td>
<td>Text(40)</td>
<td></td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Area</td>
<td>Area</td>
<td>FALSE</td>
<td>Single</td>
<td></td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>BackupPower</td>
<td>Back-up Power Yes(1) or No(0)</td>
<td>FALSE</td>
<td>Yes/No</td>
<td></td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>BldgDamageFnld</td>
<td>Structure Damage Function Id</td>
<td>TRUE</td>
<td>Text(10)</td>
<td>643</td>
<td>FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BldgType</td>
<td>Flood Building Type</td>
<td>TRUE</td>
<td>Text(15)</td>
<td>Table C.1</td>
<td>Masonry</td>
<td></td>
<td>FL</td>
</tr>
<tr>
<td>City</td>
<td>City</td>
<td>FALSE</td>
<td>Text(40)</td>
<td></td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Comment</td>
<td>Misc. Comments</td>
<td>FALSE</td>
<td>Text(40)</td>
<td></td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Contact</td>
<td>Contact Person</td>
<td>FALSE</td>
<td>Text(40)</td>
<td></td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>ContDamageFnld</td>
<td>Contents Damage Function</td>
<td>TRUE</td>
<td>Text(20)</td>
<td>480</td>
<td>FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>Replacement Cost (thous. $)</td>
<td>FALSE</td>
<td>Currency</td>
<td>Thous. $</td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>DesignLevel</td>
<td>Flood Pre/Post FIRM Design Level</td>
<td>TRUE</td>
<td>Text(1)</td>
<td>Table C.2</td>
<td>0</td>
<td></td>
<td>FL</td>
</tr>
<tr>
<td>DesignLevel</td>
<td>Design Level</td>
<td>TRUE</td>
<td>Text(2)</td>
<td>Table B.6</td>
<td>LC</td>
<td>EQ</td>
<td></td>
</tr>
<tr>
<td>District</td>
<td>School District</td>
<td>FALSE</td>
<td>Text(30)</td>
<td></td>
<td></td>
<td></td>
<td>All</td>
</tr>
<tr>
<td>EfClass</td>
<td>Facility Class</td>
<td>TRUE</td>
<td>Text(5)</td>
<td>Table A.2</td>
<td>SDFLT</td>
<td></td>
<td>All</td>
</tr>
</tbody>
</table>
Understand Inputs and Outputs

- Use the CDMS Data Dictionary
 - Replacement Cost: not a required input
 - Losses not shown for all models
 - Perhaps better to use defaults after verification
 - Soil maps, Landslide maps, professors

- Understand What Drives Losses (technical manuals)
 - Location: verify!
 - Flood: location, foundation, elevation
 - Hurricane: location, EF Class
 - Earthquake: location, building type, soils, etc

- Site Visits are Helpful for Data Collection
 - Google Maps, Bing, etc also utilized
 - Number of buildings
Data Collection Site Visits: Foundation Type
-School Default: Slab on Grade

<table>
<thead>
<tr>
<th>Hazus Foundation Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile</td>
</tr>
<tr>
<td>Pier</td>
</tr>
<tr>
<td>Solid Wall</td>
</tr>
<tr>
<td>Basement/Yard</td>
</tr>
<tr>
<td>Crawl Space</td>
</tr>
<tr>
<td>Fill</td>
</tr>
<tr>
<td>Slab on Grade</td>
</tr>
</tbody>
</table>

- Can tell most from a picture or site visit, but not all.
- If an expert isn’t collecting it, put together a guide.
Data Collection Site Visits: Building Type

- **School Default: Masonry**

General Building Types

<table>
<thead>
<tr>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>Wood frame construction</td>
</tr>
<tr>
<td>Masonry</td>
<td>Reinforced or unreinforced masonry</td>
</tr>
<tr>
<td>Steel</td>
<td>Steel frame construction</td>
</tr>
<tr>
<td>Concrete</td>
<td>Cast-in-place or pre-cast reinforced concrete</td>
</tr>
<tr>
<td>Manufactured homes</td>
<td>Factory-built residential constructions</td>
</tr>
</tbody>
</table>

Model SPECIFIC Building Types – Earthquake and Flood

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>Reinforced masonry</td>
</tr>
<tr>
<td>URM</td>
<td>Unreinforced masonry</td>
</tr>
</tbody>
</table>
Hurricane Essential Facility Class

- Hurricane Model Now using EF Building Class
 - Greater Focus on Building envelope
 - Considers construction of building/openings/etc
 - Formerly the construction material
- Cannot Update in CDMS
 - Small School: 45,000 square feet
 - Medium School: 90,000 square feet
 - Large School: 135,000 square feet
Add New Data into CDMS

- Import into CDMS
- Updates Study Region and state database
 - Any new study regions will have the updates
What is getting updated?

- State database
 - Any newly created study region will reflect data updates
- Study Region
 - Can add updates to existing study region
- ON LOCAL MACHINE
Ensure New Dataset is Updated

Run in Hazus!
Results for Essential Facilities (universities)

- **Flood Model**
 - Probability of Damage (by damage state)
 - Functionality
 - Dollar losses
 - Contents
 - Inventory

- **Hurricane Model**
 - Probability of Damage (by damage state)
 - Functionality

- **Earthquake Model**
 - Probability of Damage
 - Functionality
Essential Facilities Update Lessons Learned

- Must update inventory for university buildings
- Building Site Visits are Helpful
 - Data Collection
- Know your inputs and outputs
 - Saves Resources:
 - Make assumptions if necessary (use defaults)
 - Understand models and requirements
- Number of Buildings may dictate process
CDMS Limitations

- Cannot Update Hurricane-related data
 - Must update in study region (building class: small, medium, large) for each building

- Data cannot be “fixed” in CDMS
 - No way to change field classification (making field text to numeric, for example)
 - Use Excel set to general as a work-around

- When entering data, must know spatial location
 - By Lat/long
 - Decimal Degrees

- Limited to type of files to be updated
 - Excel, access, shapefile, person geodatabase
CDMS FYI’s

- Export Data for Template
- Can be temperamental
- Use excel
 - Work around for many of the requirements
- Office 2003
- No commas
- Delete empty rows and columns
- Projection for shapefile: GCS NAD 83
- First Floor Height (Elevation) – Feet above the ground
- Consult resources!
Hazus Resources

- Hazus HUGS
 - Likely one in your area
 - Attend others!
- Official FEMA Hazus site
- Data Dictionary
 - http://www.fema.gov/library/viewRecord.do?id=5120
 - In Hazus>CDMS Program Files after installation
- UseHazus.com
- Technical Manuals/User Manuals
- Emergency Management Institute

Source: FEMA.gov
Questions?

Contact:
Caroline Cunningham
Caroline.Cunningham@AtkinsGlobal.com