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A PENALTY METHOD FOR APPROXIMATIONS OF THE

STATIONARY POWER-LAW STOKES PROBLEM

LEW LEFTON & DONGMING WEI

Abstract. We study approximations of the steady state Stokes problem gov-
erned by the power-law model for viscous incompressible non-Newtonian flow
using the penalty formulation. We establish convergence and find error esti-
mates.

1. Introduction

Let Ω be a convex bounded domain in Rd, d ≥ 2. We consider the steady state
flow of a fluid in Ω, where u(x) = (u1(x), . . . , ud(x)) denotes the velocity of a fluid
particle at x = (x1, . . . , xd) ∈ Ω. Let σ ∈ Rd × Rd denote the stress tensor for the
fluid. The momentum equations for an isothermal steady state flow are

ρ(u · ∇)u = ∇ · σ + f in Ω, (1.1)

where ρ is the density of the fluid, f = (f1, . . . , fd) the body force, and ∇ =

( ∂∂x1 , . . . ,
∂
∂xd
). The jth component of (u ·∇)u is

∑d
i=1 ui

∂uj
∂xi
and ∇·σ is obtained

by applying the divergence operator, defined by ∇ · u =
∑d
i=1

∂ui
∂xi
, to each row of

σ. We further assume that the fluid is incompressible so it satisfies the continuity
equation

∇ · u = 0 in Ω. (1.2)

The rate of deformation tensor D(u) ∈ Rd × Rd is the symmetric gradient of u

with components Dij(u) =
1
2

(
∂ui
∂xj
+
∂uj
∂xi

)
. For incompressible fluids, the second

invariant of D(u) denoted ΠD(u) satisfies

−2ΠD(u) = D(u) : D(u) =
d∑

i,j=1

Dij(u)
2 = |D(u)|2,

where | · | denotes the Euclidean matrix norm; that is for K, a d × d real matrix,

|K| = [
∑d
i,j=1(kij)

2]
1
2 . In the power-law model for non-Newtonian fluid flows, it is
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assumed that viscosity η varies as a power of the shear-strain rate, giving a stress
tensor σ of the form

σ = −pI+ η(ΠD(u))D(u), (1.3)

where p is the scalar pressure, I ∈ Rd × Rd is the d dimensional identity matrix,
and

η(z) = η0|z|
(r−2)/2, z ∈ R.

Here we assume 1 < r < +∞, and η0 > 0. Substituting (1.3) into (1.1), we obtain
the steady state power-law Navier-Stokes equation

−k∇ · (|D(u)|r−2D(u)) + ρ(u · ∇)u+∇p = f , (1.4)

where k = η0/2
r−2
2 .

The power-law Stokes equation is obtained by neglecting the inertial term (u·∇)u
in (1.4). This model of non-Newtonian flow is very popular in chemical engineering
[12] as well as in geophysics [42]. It has also been used in applications for the design
of extrusion dies [11], [33], and for the study of the lithosphere [18], [19], [20]. To
make the Stokes problem well posed, we assume that the solution satisfies the
continuity equation (1.2) and, for simplicity, a homogeneous boundary condition of
Dirichlet type. The resulting problem is

−k∇ · (|D(u)|r−2D(u)) +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(1.5)

where ∂Ω denotes the boundary of Ω.

Remark 1.1. If d ≥ 2 and the flow is unidirectional then u(x) = (u(x), 0, . . . , 0),
where u(x) is a scalar valued function and f = (f1(x), 0, . . . , 0). For u to sat-
isfy the continuity equation (1.2), we have ∂u

∂x1
= 0 which implies that u(x) =

u(x2, . . . , xd). Substituting u(x) into equation (1.5) and writing it as a system

shows that ( ∂p
∂x2
, . . . , ∂p

∂xn
) = 0 and f̃ ≡ f1(x) −

∂p
∂x1
is independent of x1. Thus,

we are left with a scalar quasilinear elliptic Dirichlet problem in the Rd−1 domain
Ω̃ = Ω ∩ {x1 = 0}

−k̃∆ru = f̃ in Ω̃, u = 0 on ∂Ω̃

where ∆ru = ∇ · (|∇u|r−2∇u) is the quasilinear generalization of the Laplacian
known as the r-Laplacian, and∇u = ( ∂u∂x2 , . . . ,

∂u
∂xd
). (We note that ∆p is frequently

called the p-Laplacian in the literature, but we are using p to denote fluid pressure
here.) There has been a great deal of analytical (e.g., [10], [17], [35]) and numerical
work (e.g., [9], [26], [34], [44]) devoted to problems involving ∆ru.

Remark 1.2. In our notation, the power-law index is the value n = r−1. We recall
that a fluid is considered to be Newtonian if it has power-law index n = 1, and
non-Newtonian if n 6= 1. The power-law equation (1.3) is also called the Ostwald-
deWaele equation. When 0 < n < 1, which corresponds to our parameter 1 < r < 2,
power-law fluids exhibit a decrease in viscosity with increasing shear stress and
they are known as pseudoplastic or shear-thinning fluids. When 1 < n < ∞,
corresponding to 2 < r <∞, power-law fluids exhibit an increase in viscosity with
increasing shear stress and they are known as dilatant or shear-thickening fluids
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[45]. For a specific example, we cite [30] where the value of n for a certain tomato
paste is given as n = 0.257.

One way of studying a stationary power-law Stokes flow is to consider the velocity
field u as the minimizer of an appropriate energy functional. In order to enforce the
constraint of a divergence free flow, we seek a minimizer u in the space of divergence
free vector fields, that is, we solve the problem:

Find the minimum of J(u) =
k

r

∫
Ω

|D(u)|r dx−

∫
Ω

f · u dx,

where u ∈ X =
{
u ∈W1,r

0 (Ω) : ∇ · u = 0
}
.

(1.6)

This is a minimization problem with a constraint and we refer to it as the vari-
ational formulation of power-law flow. The Euler equation corresponding to this
minimization problem describes a solution for the velocity field. Another common
way of studying power-law flow is to simultaneously find a pair (u, p) that satisfies
(1.5). This is called the mixed weak formulation and it is written down precisely in
(4.1) and (4.2). The connection bewteen these two formulations comes from a tech-
nical inf-sup condition (see Theorem 5.1-5.2 below) which is frequently called the
LBB condition named after Ladyzhenskaya, Brezzi, and Babǔska. This condition
can be stated as the following: ∃β > 0 such that

inf
q∈Lr

′
0 (Ω)

sup
v∈W1,r

0 (Ω)

〈∇ · v, q〉

‖q‖0,r′‖v‖0,r
≥ β. (1.7)

When this condition holds, the variational formulation and the mixed weak formu-
lation are equivalent in the sense that u is a solution of the variational formulation
if and only if (u, p) is a solution of the mixed weak formulation with p being solved
in terms of u using the inverse of the gradient operator. The pressure can then be
computed after the velocity is known provided that the LBB condition holds.
The LBB condition is well known to hold for the linear problem (r = 2) on

Lipschitz domains in any dimension [4], [13], [31]. Since any bounded convex domain
has a Lipschitz continuous boundary [27, Corollary 1.2.-2.3] we conclude that the
LBB condition holds for our Ω when r = 2. For the nonlinear problem 1 < r ≤ 2,
the LBB has been shown ([2], [5]) for smooth domains in dimension d = 2. This is
generalized in [3] where it is shown that the LBB condition holds for all dimensions
d > 1 and for the full range 1 < r < ∞ in Lipschitz domains. Thus, the mixed
weak formulation makes sense and it is equivalent to the variational formulation in
our setting in this work.
We note that, in the variational formulation, u is defined as the minimum of

a convex functional on a separable Banach space, thus (1.6) always has a unique
solution u for any 1 < r <∞, whether or not the LBB condition holds. However,
the pressure p is not necessarily well defined, so that results involving the pressure
function p typically require the additional assumption of an LBB condition and it
is not known if this condition holds in a nonconvex domain.
The two formulations discussed above for the power-law Stokes problem are both

useful for the numerical analysis of the problem. A finite element analysis of the
power-law Stokes problem using the mixed weak formulation has been studied by
several authors, for example, in [5], [6], [7], [8]. Finite element analysis using the
direct variational formulation (1.6) requires one to solve a constrained minimiza-
tion problem and construct finite element spaces with approximately divergence
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free interpolation functions. Thus, the variational formulation and its associated
constrained minimization problem is more difficult for both analysis and numer-
ical approximation. A natural way to overcome this difficulty is to introduce a
penalty functional that eliminates the constraint. The first use of the penalty func-
tion method in conjuction with the finite element method is due to Babǔska [4].
The method was quickly adopted as a standard tool for the finite element anal-
ysis of viscous, incompressible fluid flows [47]. Extensive studies of the penalty
method applied to fluid flow problems, both experimentally and mathematically,
have appeared from the late seventies to the present day. Here we cite only sev-
eral important articles among them [21], [22], [23], [28], [29], [36], [37], [38], [39],
[40], and [47]. A very general mathematical analysis of the penalty method applied
to nonlinear problems including a class of non-Newtonian fluid flow problems was
presented by Oden [38]. His work provides some important convergence results. It
appears that when the penalty method is applied to the Newtonian Stokesian flow
problems, the resultant matrices are ill-conditioned. However, this deficiency can
be overcomed by the use of reduced integration techniques.
For a given penalty parameter ε > 0, the penalty formulation requires the un-

constrained minimization of the nonlinear convex functional

Jε(u) = J(u) +
1

rε

∫
Ω

|∇ · u|rdx

over the Sobolev spaceW1,r
0 (Ω). The corresponding pressure p

ε is defined in terms
of the minimizer uε. We prove that the penalty approximation uε of the uncon-
strained minimization problem min{Jε(u) : u ∈ W

1,r
0 (Ω)} converges to the true

solution u of min{J(u) : u ∈ X} as ε → 0 for any 1 < r < ∞ without as-
suming that the domain Ω is convex. This convergence result is only for the ve-
locity field since the pressure may be undefined. However, because of the more
general variational setting, this result establishes the validity of a penalty approx-
imation even when the LBB condition fails to hold. This is a convergence re-
sult, not an error estimate, but it doesn’t require the LBB condition (1.7). Here
we are writing (u, p) for the unique solution of the mixed formulation (4.2), and
uε the penalty solution. When the LBB condition holds, we obtain error esti-
mates for the velocity field ‖u − uε‖1,r = O(εg1(r)), where g1(r) =

1
(r−1)(3−r) for

1 < r ≤ 2, and g1(r) =
1

(r−1)2 for 2 ≤ r < ∞. Let φ(z) = |z|
r−2z, z ∈ R and

let pε = c − φ(∇ · uε), where c =
∫
Ω
φ(∇ · uε)dx. We also show error estimates

for the pressure ‖p − pε‖0,r′ = O(εg2(r)) where g2(r) =
1

(3−r) for 1 < r ≤ 2 and

g2(r) =
1

(r−1)2 for 2 ≤ r <∞. These rates of convergence reduce to known results

‖u− uε‖1,2 + ‖p− pε‖0,2 = O(ε) for the Newtonian case r = 2 as discussed in [25],
[36], [39], and [43].
This is an important feature of the unconstrained penalty minimization formu-

lation which makes it convenient for error analysis and numerical implementation.
In contrast, the mixed weak formulation requires the solution of a system of non-
linear equations and a discrete LBB condition. Thus, we provide a mathematical
analysis of the penalty method applied to the power-law Stokes problem in the
variational formulation. To our knowledge, this is a generalization of the analysis
available in the literature for Newtonian flows. Numerical experiments have been
performed on power-law flow problems using the penalty method in the engineering
literature [32], [33], [39], [41], and [47]. Since pressure must then be calculated from
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the computed velocity field, the accuracy of the pressure is lower than that of the
velocity as shown in our error estimates. It is interesting to note that the penalty
term 1

2ε

∫
Ω
|∇ · u|2dx was used in [41] to approximate power-law flows instead of

1
rε

∫
Ω
|∇ · u|rdx, which is used in this work and reasonable numerical results were

obtained without a mathematical analysis.

2. Preliminaries

We begin by establishing some notation. Let Lr(Ω) for 1 < r < ∞ be the

space of real scalar functions defined on Ω whose rth power is absolutely inte-
grable with respect to Lebesgue measure dx = dx1 . . . dxd. This is a Banach space
with the norm ‖u‖0,r = (

∫
Ω
|u(x)|r dx)1/r . The Sobolev space W k,r(Ω) is the

space of functions in Lr(Ω) with distributional derivatives up to order k also in
Lr(Ω). The norm for this space is ‖u‖k,r = (

∫
Ω

∑
|j|≤k |D

ju(x)|r dx)1/r , where

we use the standard multi-index notation. That is, for j = (j1 . . . jd) ∈ Nd,

where N is the set of natural numbers, define |j| =
d∑
i=1

ji and write the par-

tial derivative Dju(x) = ∂|j|u
∂j1x1...∂

jdxd
. The closure of C∞0 (Ω) in W

k,r(Ω) is de-

noted by W k,r0 (Ω). For systems of equations, we need the product spaces de-

fined by Lr(Ω) = [Lr(Ω)]d, Wk,r(Ω) = [W k,r(Ω)]d, and Wk,r
0 (Ω) = [W

k,r
0 (Ω)]

d.

The norm for v = (v1, . . . , vd) ∈ Lr(Ω) is ‖v‖0,r = (
∫
Ω

∑d
i=1 |vi|

r dx)1/r . For

v ∈ Wk,r(Ω) we have norm ‖v‖k,r = (
∫
Ω

∑d
i=1

∑
|j|≤k |D

jvi|r dx)1/r . It is well

known [1], that the seminorm |v|k,r = (
∫
Ω(
∑d
i=1

∑
|j|=k |D

jvi|r dx)1/r is equiva-

lent to ‖v‖k,r for v ∈ W
k,r
0 (Ω). In addition, by Korn’s inequality, see [1], the

norm ‖D(u)‖0,r = (
∫
Ω

∑d
i,j=1 |Dij(u)|

r dx)1/r is equivalent to ‖u‖1,r in W
1,r
0 (Ω).

For 1 < r < ∞ let r′ satisfy 1
r
+ 1
r′
= 1, which is equivalent to r′ = r

r−1 . Let

‖ · ‖−1,r′ denote the norm on W−1,r′(Ω) which is the dual space of W1,r
0 (Ω).

Let φ(x) = |x|r−2x, where x ∈ Rd. Note that φ−1(x) = |x|r
′−2x. Finally, let

Lr0(Ω) = {q ∈ L
r(Ω) :

∫
Ω
q dx = 0}.

The following inequalities hold for all x, y ∈ Rd; the constant C > 0 is indepen-
dent of x and y.

|x− y|2 ≤ C(φ(x) − φ(y)) · (x− y)(|x| + |y|)2−r ,

|φ(x) − φ(y)| ≤ C|x− y|r−1, for 1 < r < 2;
(2.1)

|x− y|r ≤ C (φ(x) − φ(y)) · (x− y),

|φ(x) − φ(y)| ≤ C|x− y|(|x| + |y|)r−2, for 2 ≤ r <∞.
(2.2)

They were proved for the case d = 2 in Glowinski and Marroco [26] and were
generalized by Barrett and Liu [8], see also [15]. A simple proof for general d
is shown in DiBenedetto [16]. Finally, for completeness, we quote some important
results from convex analysis and functional analysis which will apply to our problem.
See [14] or [24] for further details. Let X be a reflexive Banach space with dual
space X∗. Suppose the operator T : X → X∗. Let 〈u∗, u〉 denote the duality
pairing between u ∈ X and u∗ ∈ X∗. We say T is bounded if ∃C > 0 such that
‖Tu‖X∗ ≤ C‖u‖X for all u ∈ X . The operator T is monotone if 〈Tu−Tv, u−v〉 ≥ 0
for all u, v ∈ X . T is strictly monotone if the inequality is strict for all u, v ∈ X
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with u 6= v. A coercive operator T satisfies lim‖u‖→∞
〈Tu,u〉
‖u‖ =∞. Finally, we say

T is potential if ∃ a functional J : X → R such that J ′(u) = Tu for all u ∈ X (i.e.
〈J ′(u), v〉 = 〈T (u), v〉 for all u, v ∈ X).

Theorem 2.1. Let T : X → X∗ be a bounded, monotone, coercive, potential oper-
ator. Then TX = X∗. Thus, Tu = f has a solution for every f ∈ X∗. Moreover,
if T is strictly monotone, then Tu = f has a unique solution.

Theorem 2.2. Let J be a functional defined on X such that lim
‖u‖→∞

J(u) =∞. If

J is either (i) continuous and convex on X or (ii) weakly lower semicontinuous
on X then infu∈X J(u) > −∞ and there exists at least one u0 ∈ X such that
J(u0) = infu∈X J(u). Moreover, if J is continuous and strictly convex on X then
there is precisely one such u0.

Theorem 2.3. Let J : X → R be a functional with a local extremum at u0 ∈ X.
If 〈J ′(u0), v〉 exists for some v ∈ X then 〈J ′(u0), v〉 = 0.

3. The Variational Formulation (VF) of the Stokes Problem

In order to apply the penalty method, we first consider the variational formu-
lation of (1.5) given in (1.6). The Euler-Lagrange equation associated to problem
(1.6) is

〈A(u),v〉 = 〈f ,v〉 ∀ v ∈ X (3.1)

where A :W1,r
0 (Ω)→W

−1,r′(Ω) is defined by

〈A(u),v〉 = k

∫
Ω

|D(u)|r−2D(u) : D(v)dx ∀v ∈W1,r
0 (Ω).

We use 〈·, ·〉 to denote the duality pairing betweenW1,r
0 (Ω) andW

−1,r′(Ω) as well

as between Lr(Ω) and Lr
′
(Ω). In particular, we only need to assume f ∈W−1,r′(Ω)

for this formulation.
By using (2.1) and (2.2), we obtain the following where C > 0 denotes a generic

constant independent of u and v.

‖u− v‖21,r ≤ C〈A(u) −A(v),u − v〉(‖u‖1,r + ‖v‖1,r)
2−r,

‖A(u)−A(v)‖−1,r′ ≤ C‖u− v‖
r−1
1,r , for 1 < r ≤ 2;

(3.2)

‖u− v‖r1,r ≤ C〈A(u) −A(v),u − v〉,

‖A(u)−A(v)‖−1,r′ ≤ C‖u− v‖1,r(‖u‖1,r + ‖v‖1,r)
r−2, for 2 ≤ r <∞.

(3.3)

From (3.2) and (3.3), A can be shown to be a bounded, monotone, coercive, po-

tential operator on X = {u ∈W1,r
0 (Ω) : ∇ · u = 0}. We conclude using Theorem

2.1 that (3.1) has a unique solution u. It follows that J : X → R is a continuous,
strictly convex functional on X and

lim
‖u‖1,r→∞

J(u) =∞.

Thus, by Theorem 2.2 problem (1.6) has one and only one solution u and hence
(3.1) and (1.6) are equivalent. Note that in this formulation, the pressure function
p does not appear.
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4. The Mixed Weak Formulation (MWF) of the Stokes Problem

For the mixed weak formulation of the Stokes problem (1.5), we suppose f ∈
W−1,r′(Ω). The problem is then to simultaneously find u ∈ W1,r

0 (Ω) and p ∈
Lr

′

0 (Ω), such that

k

∫
Ω

|D(u)|r−2D(u) : D(v) dx −

∫
Ω

p∇ · v dx =

∫
Ω

f · v dx ∀v ∈W1,r
0 (Ω)∫

Ω

q∇ · u dx = 0 ∀q ∈ Lr
′

0 (Ω).

(4.1)

If we let b(p,v) be the bilinear form defined on Lr
′

0 (Ω) ×W
1,r
0 (Ω) by b(p,v) =∫

Ω
p∇ · v dx, then the weak formulation (4.1) can be rewritten as the problem of

finding (u, p) ∈W1,r
0 (Ω)× L

r′

0 (Ω) such that

〈A(u),v〉 − b(p,v) = 〈f ,v〉 ∀ v ∈W1,r
0 (Ω),

b(q,u) = 0 ∀ q ∈ Lr
′

0 (Ω).
(4.2)

The existence and uniqueness of solutions of (4.1) and (4.2) was studied by J. Ba-
ranger and Najib [5] and J. W. Barrett and W. B. Liu [8].

This mixed weak formulation requires the pressure p ∈ Lr
′

0 (Ω) and the LBB

condition is a sufficient condition to guarantee p ∈ Lr
′

0 (Ω). It is possible that the

velocity field is well defined withinW1,r
0 (Ω), but the mixed weak formulation is not

well-posed when, e.g., when the domain is nonconvex and the LBB condition fails
to hold. In this case, good approximations of the pressure from the velocity field
are not expected from the penalty method.

5. The LBB Condition and Equivalence of (VF) and (MWF)

Baranger and Najib prove in [5] that (4.2) is equivalent to (3.1) (and hence (1.6))
for any 1 < r < ∞ provided Ω is 2-dimensional and ∂Ω is smooth. They actually
prove the following.

Theorem 5.1. Suppose Ω ⊂ R2 has a smooth boundary. Let 1 < r <∞. Problem
(4.2) has a unique solution if and only if (3.1) has a solution and the divergence
operator B = ∇· is surjective and satisfies the following condition

0 < α ≤ inf
q∈Lr

′
0 (Ω)

sup
v∈W1,r

0 (Ω)

〈Bv, q〉

‖q‖0,r′‖v‖1,r
. (5.1)

The same result is also stated in [8]. The inequality in Theorem 5.1 is often
referred to as the LBB condition for the continuous model. Amrouche and Girault
stated [3] the following generalization.

Theorem 5.2. Let Ω be a bounded, connected, Lipschitz-continuous domain in Rd

and let r be any real number with 1 < r <∞, and r′ its conjugate. There exists a
constant β > 0 such that

0 < β ≤ inf
q∈Lr

′
0 (Ω)

sup
v∈W1,r

0 (Ω)

〈Bv, q〉

‖q‖0,r′‖v‖1,r
. (5.2)

This allows us to conclude the equivalence of (3.1) and (4.2) in our more general
setting.
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6. An A Priori Bound

Using Theorems 5.1 and 5.2, we conclude, (4.2) has an unique solution (u, p) in
which u is the unique solution of (1.6). See, e.g, [5] and [25].

Lemma 6.1. Let u be the solution of (1.6), then ‖u‖1,r ≤ C. Suppose further
that (5.2) holds, and let (u, p) be the solution of (4.2). Then ‖u‖1,r ≤ C and
‖p‖0,r′ ≤ C. These constants C > 0 depend only on r, Ω and f .

Proof. In (3.1), let v = u. Then 〈A(u),u〉 = 〈f ,u〉. We have, by (3.2), ‖u‖r1,r ≤
C〈A(u),u〉 = C〈f ,u〉 ≤ C‖f‖−1,r′‖u‖1,r which implies

‖u‖1,r ≤ C‖f‖
1

(r−1)

−1,r′ , (6.1)

for 2 ≤ r ≤ ∞. Similarly, by (3.3), we have ‖u‖21,r ≤ C〈A(u),u〉‖u‖
2−r
1,r =

C〈f ,u〉‖u‖2−r1,r which gives (6.1) for 1 < r ≤ 2. By (5.2) and (4.2)

‖p‖0,r′ ≤ C sup
v∈W1,r

0 (Ω)

〈∇ · v, p〉

‖v‖1,r

= C sup
v∈W1,r

0 (Ω)

〈A(u),v〉 − 〈f ,v〉

‖v‖1,r
(6.2)

≤ C(‖A(u)‖−1,r′ + ‖f‖−1,r′).

Upon applying (3.2) and (3.3) to the right hand side of (6.2) and using (6.1) we
conclude that ‖p‖0,r′ ≤ C for 1 < r <∞.

7. The Penalty Formulation for the Stokes Problem

Let ε be a positive number and consider the following functional

Jε(u) = J(u) +
1

rε

∫
Ω

|∇ · u|r dx,

where J(u) is defined in (1.6). The minimizer u of Jε(u) overW
1,r
0 (Ω) satisfies the

Euler-Lagrange equation

〈A(u),v〉 +
1

ε
〈φ(∇ · u),∇ · v〉 = 〈f ,v〉 ∀ v ∈W1,r

0 (Ω). (7.1)

Note that Jε(u) is strictly convex and the operator Tε : W
1,r
0 (Ω) → W

−1,r′(Ω)
defined by Tε(u) = J

′
ε(u) is a bounded, coercive, and strictly monotone operator

onW1,r
0 (Ω), since φ satisfies (2.1) and (2.2). Therefore, by Theorem 2.1, (7.1) has

a solution uε which is the unique solution of

min
u∈W1,r

0 (Ω)
Jε(u). (7.2)

We now prove two main results related to the penalty approximations uε of solutions
u of (1.6). The first is a general convergence result, and the second is a more precise
error estimate which holds provided the LBB condition also holds.

Theorem 7.1. Let ε > 0 be given and suppose that u is the solution of (1.6) and

uε is the solution of (7.2). Then uε converges strongly to u in W1,r
0 (Ω) as ε → 0.

Furthermore, ∃ C independent of ε such that ‖uε‖1,r ≤ C and ‖∇ · uε‖0,r ≤ Cε
1
r .

Therefore, it follows that ∇ · uε → 0 in Lr(Ω) as ε→ 0.
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Proof. The proof that uε converges strongly to u inW1,r
0 (Ω) as ε→ 0 follows along

the lines of [46, Theorem 46.D. and Corollary 46.7]. We only need to check that

the functional G(v) = ‖∇ · v‖0,r is weakly sequentially continuous inW
1,r
0 (Ω). To

this end, let vn ⇀ v in W
1,r
0 (Ω). Then 〈∇ · vn, η〉 → 〈∇ · v, η〉 as n → ∞ for any

η ∈ Lr
′
(Ω). Indeed, C∞(Ω) is dense in Lr

′
(Ω) and

〈∇ · vn, η〉 = −〈vn,∇η〉 → −〈v,∇η〉 = 〈∇ · v, η〉, ∀η ∈ C
∞(Ω).

Therefore, ∇·vn ⇀ ∇·v in Lr(Ω). It is well known that the norm ‖ · ‖0,r is weakly
sequentially continuous in Lr(Ω). We conclude that limn→∞ ‖∇·vn‖0,r = ‖∇·v‖0,r
and hence uε → u inW1,r

0 (Ω) because of [46, Theorem 46.D. and Corollary 46.7].
To complete the proof, let u = v = uε in (7.1). We have

‖uε‖r1,r +
1

ε
‖∇ · uε‖r0,r ≤ C‖f‖−1,r′‖u

ε‖1,r

which implies ‖uε‖r−11,r ≤ C‖f‖−1,r′ and ‖∇ · u
ε‖r0,r ≤ εC‖f‖

r′

−1,r′. Therefore

‖uε‖1,r ≤ C and ∇ · uε → 0 in Lr(Ω) as ε→ 0.

Note that when r = 2, Theorem 7.1 is a well-known result [43]. A generalized
version of it for convergence in higher order derivative norms can be found in [3].

Lemma 7.2. For each ε > 0, let uε denote the unique minimizer of (7.2) and let
pε = c − 1

εφ(∇ · u
ε), where c = 1

ε|Ω|

∫
Ωφ(∇ · u

ε)dx. If (5.2) holds (which is the

LBB condition), then there exists C > 0 which depends only on r, Ω and f such

that ‖∇ · uε‖0,r ≤ Cε
1
r−1 and ‖pε‖0,r′ ≤ C.

Proof. The pair (uε, pε) satisfies

〈A(uε),v〉 − b(pε,v) = 〈f ,v〉, ∀v ∈W1,r
0 (Ω), (7.3)

since uε satisfies (7.1) and
∫
Ω
c∇ · vdx = c

∫
∂Ω
v · nds = 0 by Gauss’ Theorem.

Moreover, pε ∈ Lr
′

0 (Ω), and by (5.2) and (7.3)

‖pε‖0,r′ ≤ C sup
v∈W1,r

0 (Ω)

〈∇ · v, pε〉

‖v‖1,r
= C sup

v∈W1,r
0 (Ω)

b(pε,v)

‖v‖1,r

= C sup
v∈W1,r

0 (Ω)

〈A(uε),v〉 − 〈f ,v〉

‖v‖1,r

≤ C(‖A(uε)‖−1,r′ + ‖f‖−1,r′).

Using (3.2) and (3.3) we conclude ‖pε‖0,r′ ≤ C(‖uε‖
r−1
1,r + ‖f‖−1,r′), therefore by

Theorem 7.1

‖pε‖0,r′ ≤ C‖f‖−1,r′.

Let v = u− uε in (4.2) and (7.3) and then subtract (7.3) from (4.2) to get

〈A(u)−A(uε),u− uε〉 = b(p− pε,u− uε). (7.4)

Since ∇ · u = 0 and
∫
Ω
∇ · uε dx = 0, the above equation gives

〈A(u) −A(uε),u− uε〉+
1

ε
〈φ(∇ · uε),∇ · uε〉 = −b(p,uε).

Since 〈A(u) −A(uε),u− uε〉 ≥ 0 and |b(p,uε)| ≤ ‖p‖0,r′‖∇ · uε‖0,r we have

1

ε
‖∇ · uε‖r0,r =

1

ε
〈φ(∇ · uε),∇ · uε〉 ≤ ‖p‖0,r′‖∇ · u

ε‖0,r,
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which gives ‖∇ · uε‖0,r ≤ Cε
1
r−1 by using Lemma 6.1 to bound ‖p‖0,r′.

Theorem 7.3. Suppose (5.2) (the LBB condition) holds. Let (u, p) be the unique
solution of (4.2) and uε be a solution of (7.2). Let pε = c − 1

ε
φ(∇ · uε), where

c = 1
ε|Ω|

∫
Ωφ(∇ · u

ε)dx. Then there exists C > 0 which depends only on r, Ω, and

f such that

‖u− uε‖1,r ≤ Cε
1

(r−1)(3−r) for 1 < r ≤ 2

and ‖u− uε‖1,r ≤ Cε
1

(r−1)2 for 2 ≤ r <∞.

Furthermore,

‖p− pε‖0,r′ ≤ Cε
1

(3−r) for 1 < r ≤ 2

and ‖p− pε‖0,r′ ≤ Cε
1

(r−1)2 for 2 ≤ r <∞.

Proof. By (5.2), we have

‖p− pε‖0,r′ ≤ C sup
v∈W1,r

0 (Ω)

b(p− pε,v)

‖v‖1,r
. (7.5)

Subtracting (7.3) from (4.2) gives

b(p− pε,v) = 〈A(u),v〉 − 〈A(uε),v〉. (7.6)

Using (7.5) and (7.6) we get

‖p− pε‖0,r′ ≤ C‖A(u)−A(u
ε)‖−1,r′. (7.7)

By (7.7), (3.2), Lemma 6.1 and Theorem 7.1, we have

‖p− pε‖0,r′ ≤ C‖u− u
ε‖1,r (‖u‖1,r + ‖u

ε‖1,r)
r−2 ≤ C‖u− uε‖1,r (7.8)

for 2 ≤ r <∞. Similarly, using (7.7) and (3.3) we get for 1 < r ≤ 2

‖p− pε‖0,r′ ≤ C‖u− u
ε‖r−11,r . (7.9)

Since (u, p) solves (4.2) we have ∇ · u = 0 and hence by (7.4)

〈A(u) −A(uε),u− uε〉 = −b(p− pε,uε).

Therefore, for 1 < r ≤ 2, by (3.3), (7.4), and the uniform bounds on ‖u‖1,r and
‖uε‖1,r in Lemma 6.1 and Theorem 7.1 we have

‖u− uε‖21,r ≤ C〈A(u) −A(u
ε),u− uε〉(‖u‖1,r + ‖u

ε‖1,r)
2−r ≤ C|b(p− pε,uε)|.

Similarly, for 2 ≤ r <∞

‖u− uε‖r1,r ≤ C〈A(u) −A(u
ε),u− uε〉 ≤ C|b(p− pε,uε)|.

Applying Lemma 7.2 and the bounds in (7.8), (7.9) we have for 2 ≤ r <∞

‖u− uε‖r−11,r ≤ Cε
1
r−1 , (7.10)

and for 1 < r ≤ 2

‖u− uε‖3−r1,r ≤ Cε
1
r−1 . (7.11)

This gives the desired estimates for ‖u−uε‖1,r. Using (7.8), (7.9) and (7.10), (7.11)
we have the error estimates for ‖p− pε‖0,r′.
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no. 90025, Université Pierre et Marie Curie (1990).

3. C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes
problem in arbitrary dimension, Czech. Math. J. 44, (1994), 109-140.
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