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Parallel-slab polarizing beam splitter and photopolarimeter

R. M. A. Azzam

A dielectric-slab polarizing beam splitter (PBS) is described that generates two parallel beams of orthogonal
p and s linear polarizations in reflection and functions as a diattenuator in transmission. The plane-parallel
slab, which is set at Brewster’s angle, is uncoated on one side and has an s-polarization antireflection coating
�s-ARC� on the other side. Analytical results are presented for a PBS that uses a high-index slab coated
with a low-index single-layer s-ARC, which is particularly suited for the IR. A novel multistage photopo-
larimeter that uses two such PBSs in series is described as being capable of sequential and simultaneous
measurement of all four Stokes parameters of light. © 2007 Optical Society of America

OCIS codes: 120.2130, 120.5410, 230.1360, 230.5440, 240.0310.

1. Introduction

Conventional polarizing beam splitters (PBSs) use
crystal optics1 or multilayer interference coatings2 to
divide an incident light beam into two (p and s) orthog-
onally linearly polarized beams that travel in different
directions. In contrast with these one-to-two PBSs, a
one-to-three, dielectric-slab BS is presented that pro-
duces two parallel beams of orthogonal p and s linear
polarizations in reflection and a third beam in trans-
mission. A multistage complete photopolarimeter that
uses two such PBSs in a series is described for the
sequential and simultaneous measurements of the
first, second, and third normalized Stokes parameters
of light using three pairs of detection channels. Previ-
ous designs of division-of-amplitude photopolarimeters
are briefly reviewed elsewhere.3

2. Parallel-Slab Polarizing Beam Splitter

Figure 1 shows the PBS as a plane-parallel dielectric
slab of thickness d2 and refractive index n2 whose
front surface is uncoated and reflects incident light in
air at the Brewster angle, �B � arctan�n2�. Therefore
the first reflected beam (beam 1) from the front sur-
face of the slab is purely s polarized. The back surface
has an antireflection coating for the s polarization
�s-ARC� at the Brewster angle. Consequently, the
light beam reflected from the backside of the slab is

purely p polarized and is totally refracted as it exits
the slab to air (beam 2) in a direction parallel to the
first-reflected beam. There are no higher-order re-
flected beams. The only transmitted beam (beam 3)
has both p- and s-polarized components that have
experienced different attenuations in propagating
through the slab.

From basic geometrical optics and the Brewster
condition, the lateral separation D between the two
parallel, orthogonally polarized, reflected beams is
given by

D � 2d2�n2�n2
2 � 1�1�2. (1)

The simplest s-ARC at the Brewster angle is a trans-
parent single layer of refractive index n1 and metric
thickness d1 given by

n1 � �2n2��n2
2 � 1�1�2, (2)

d1 � 0.3536���n1�, (3)

where � is the vacuum wavelength of light. The thin-
film s-ARC specified by Eqs. (2) and (3) was first
proposed in Ref. 4, and applied to selected areas on
the same (front) side of a dielectric substrate to pro-
duce any desired two-dimensional spatial binary po-
larization patterns in reflected light. A reflected beam
with periodic temporal binary polarization modula-
tion (between the p and s states) is also obtained
when the same coating (with thickness that alter-
nates between 0 and d1) is applied to the front surface
of a synchronously rotating disk.5 It is apparent that
a multilayer s-ARC can be applied on the backside of
the slab, but this is not considered here.
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At the Brewster angle, the intensity reflectances of
the front and back surfaces of the slab for s- and
p-polarized light, respectively, are given by4

Rfs � cos2�2�B� � ��n2
2 � 1���n2

2 � 1��2, (4)

Rbp � �Rfs��2 � Rfs��2. (5)

The corresponding intensity transmittances of the
transparent slab for the p and s polarizations are
given by

Tp � 1 � Rbp, Ts � 1 � Rfs. (6)

The average reflectance of the slab for incident
light with equal p and s components (i.e., light whose
first Stokes parameter s1 � 0) is given by

Rav � �Rfs � Rbp��2. (7)

From Eqs. (5) and (7), we obtain

Rav � �Rfs�2��Rfs
2 � Rfs � 4���Rfs

2 � 4Rfs � 4�. (8)

For incident linearly polarized light of azimuth
angle � from the plane of incidence (i.e., from the p
direction), the two reflected beams have equal power
when

tan � � �Rbp�Rfs�1�2 � �n2
4 � 1���n2

4 � 6n2
2 � 1�. (9)

The overall reflectance of the slab under the condition
given by Eq. (9) is

R � 2RfsRbp��Rfs � Rbp�,

R�1 � �1�2��Rfs
�1 � Rbp

�1�. (10)

As a specific example, for a Ge slab with refractive
index n2 � 4 in the IR, we obtain

�B � 75.964°, D � 0.1213d2,

n1 � 1.372, d1 � 0.2577�,

Rfs � 77.855%, Rbp � 40.627%,

Rav � 59.241%, R � 53.392%,

Ts � 22.145%, Tp � 59.373%,

� � 35.844°. (11)

The film refractive index n1 � 1.372 is close to that of
ThF4 �or BaF2� at the IR wavelength � � 10.6 �m.6

3. On Achieving a Given Average Reflectance Level

Suppose that we wish to have a PBS with a 50%
average reflectance. Substitution of Rav �

1
2 in Eq. (8)

gives the following cubic equation:

Rfs
3 � 4Rfs

2 � 8Rfs � 4 � 0. (12)

Equation (12) has one acceptable solution7:

Rfs � 0.704402. (13)

From Eq. (4), the required substrate refractive index
is obtained:

n2 � 3.383. (14)

This index is very close to that of Si over a broad
�� � 6–12 �m� IR spectral range.8 n2 � 3.383 is also
the refractive index of GaP at � � 0.580 �m in the
visible.9

For an average reflectance Rav �
1
3, a different cubic

equation,

3Rfs
3 � 11Rfs

2 � 20Rfs � 8 � 0, (15)

is obtained that yields Rfs � 0.533990 and n2 �
2.53534. The latter refractive index is that of ZnS at
the short wavelength end of the visible spectrum.10

4. Maximum Difference between Rfs and Rbp

It is interesting to consider the difference between Rfs
and Rbp. For simplicity, Rfs is denoted by x. It follows
from Eq. (5) that

�R � Rfs � Rbp � �x3 � 5x2 � 4x���2 � x�2. (16)

Equation (16) shows that �R � 0 in the limiting cases
of x � 0 and x � 1, hence �R must reach a maximum
at some value of x between 0 and 1. By setting the
derivative of Eq. (16) equal to 0, we obtain yet another
cubic equation,

x3 � 6x2 � 16x � 8 � 0. (17)

Fig. 1. Dielectric-slab PBS. A light beam incident on the slab at
the Brewster angle �B is split into two reflected beams 1 and 2 that
are purely s and p polarized, respectively, and a transmitted beam
3 that has both p- and s-polarized components. The front surface of
the slab is uncoated and the back surface has an s-ARC. d2 is the
thickness of the slab, and D is the separation of the parallel re-
flected beams with orthogonal polarizations.
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Equation (17) has one acceptable solution,

x � Rfs � 0.635344. (18)

The corresponding slab refractive index, calculated
from Eq. (4), is

n2 � 3.9844. (19)

This index is essentially the same as that of Ge in the
IR. The maximum reflectance difference is given by

�Rmax � 0.373354. (20)

5. Photopolarimeter Using Two Parallel-Slab Polarizing
Beam Splitters

Whereas a conventional PBS splits an incoming light
beam into two beams of orthogonal linear polariza-
tions, the parallel-slab PBS shown in Fig. 1 does the
same in reflection, and provides a third beam in trans-
mission. This makes this PBS particularly suited for
Stokes-parameter photopolarimetry.

Figure 2 shows a photopolarimeter that employs two
parallel-slab PBSs (PBS1 and PBS2) with a 45° optical
rotator (OR) in the middle. (Because of the diattenua-
tion introduced by the slab in transmission, a rotation
other than 45° may be optimum.) PBS1 generates re-
flected beams 1 and 2, and PBS2 produces reflected
beams 3 and 4. The 45° optical rotator OR can be a
quartz plate, whose optic axis is perpendicular to its
faces and parallel to the beam, a twisted-nematic
liquid-crystal cell, or a magneto-optic Faraday rotator.
Alternatively, one can do without this OR by rotating
the plane of incidence for light reflection at PBS2 by
45° with respect to the plane of incidence for light
reflection at PBS1. By use of the Mueller calculus,11 it
can readily be shown that detection of light beams 1
and 2 can be dedicated (and calibrated) to determining
the first normalized Stokes parameter s1. Likewise,
detection of light beams 3 and 4 can be dedicated to
determining the second normalized Stokes parame-
ter s2.

If the incoming light is totally polarized (which is
often the case in ellipsometry11), the remaining third
normalized Stokes parameter s3 is obtained by

s3 � 	�1 � s1
2 � s2

2�1�2. (21)

Therefore operation of this photopolarimeter is sim-
ilar to that of the widely used rotating-analyzer el-
lipsometer but with no moving parts.

To measure the third normalized Stokes parameter
s3 independently (which is essential if the input light
is generally partially polarized), a third stage is added
to the photopolarimeter as shown in Fig. 2. It consists
of a quarter-wave retarder (QWR) followed by a con-
ventional PBS PBS3. Detection of light beams 5 and
6 enables the measurement of s3, given that s1 and s2
are already determined by the first two stages of the
polarimeter. To the best of my knowledge, this is the
only division-of-amplitude photopolarimeter in which
the first, second, and third Stokes parameters are
determined separately and simultaneously.

6. Summary

A novel parallel-slab polarizing beam splitter is de-
scribed that splits an incoming light beam into two
reflected beams of orthogonal p and s linear polariza-
tions and a third transmitted beam that retains both
the p and s components. A detailed analysis of the
essential features of this design is presented. A novel
photopolarimeter that consists of two such beam
splitters in succession, plus a circular-polarization
detector, is realized in which the first, second, and
third normalized Stokes parameters of input light are
measured separately and simultaneously by three
dual channels of orthogonal polarizations.
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Fig. 2. Photopolarimeter that employs a cascade of two parallel-
slab PBSs (PBS1 and PBS2) with a 45° optical rotator OR in the
middle. PBS1 generates reflected beams 1 and 2, and PBS2 pro-
duces reflected beams 3 and 4. Detection of light in dual channels
1 and 2 and in dual channels 3 and 4 determines the first and
second normalized Stokes parameters, respectively. The last stage,
that consists of a quarter-wave retarder (QWR) followed by a con-
ventional PBS (PBS3), produces beams 5 and 6, whose detection
enables the determination of the third normalized Stokes param-
eter.
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