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Abstract: Intracellular communication from the mitochondria to the nucleus is achieved 
via the retrograde response. In budding yeast, the retrograde response, also known as the 
RTG pathway, is regulated positively by Rtg1, Rtg2, Rtg3 and Grr1 and negatively by 
Mks1, Lst8 and two 14-3-3 proteins, Bmh1/2. Activation of retrograde signaling leads to 
activation of Rtg1/3, two basic helix-loop-helix leucine zipper transcription factors. Rtg1/3 
activation requires Rtg2, a cytoplasmic protein with an N-terminal adenosine triphosphate 
(ATP) binding domain belonging to the actin/Hsp70/sugar kinase superfamily. The critical 
regulatory step of the retrograde response is the interaction between Rtg2 and Mks1. Rtg2 
binds to and inactivates Mks1, allowing for activation of Rtg1/3 and the RTG pathway. 
When the pathway is inactive, Mks1 has dissociated from Rtg2 and bound to Bmh1/2, 
preventing activation of Rtg1/3. What signals association or disassociation of Mks1 and 
Rtg2 is unknown. Here, we show that ATP at physiological concentrations dissociates 
Mks1 from Rtg2 in a highly cooperative fashion. We report that ATP-mediated 
dissociation of Mks1 from Rtg2 is conserved in two other fungal species, K. lactis and  
K. waltii. Activation of Rtg1/3 upregulates expression of genes encoding enzymes 
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catalyzing the first three reactions of the Krebs cycle, which is coupled to ATP synthesis 
through oxidative phosphorylation. Therefore, we propose that the retrograde response is 
an ATP homeostasis pathway coupling ATP production with ATP-mediated repression of 
the retrograde response by releasing Mks1 from Rtg2. 

Keywords: retrograde response; mitochondria to nucleus signaling; Rtg2; Mks1; ATP 
sensing; Saccharomyces cerevisiae; K. lactis; K. waltii 

 

1. Introduction 

M energy 
currency in eukaryotic cells. Apart from their metabolic function, mitochondria participate in a 
diverse array of physiological processes, such as apoptosis, cancer, degenerative diseases and 
aging [1 4]. Due to the versatility of mitochondrial functions, it's critically important for cells to 
monitor the functional state of mitochondria and adjust nuclear gene expression accordingly to achieve 
functional homeostasis of mitochondrial activity. This is achieved via the coordination of 
mitochondria-to-nucleus signaling pathways, known as the retrograde response [5,6]. The retrograde 
response adapts cells to changes in the functional state of mitochondria, such as respiratory defects, by 
mediating an assortment of cellular processes that include metabolic reconfiguration, nutrient sensing, 
aging and stress response pathways [7 12]. Retrograde response pathways have been reported in many 
eukaryotic organisms, including fungi, plants and animals [5,6,13 16]. In the budding yeast, 
Saccharomyces cerevisiae, the retrograde response, also known as the RTG pathway, mediates 
expression of many genes encoding proteins that function in small molecule transport, anaplerotic 
pathways, pleotropic drug resistance, aging and peroxisomal biogenesis [7,17 22]. 

The prototypal target gene of the RTG pathway is CIT2, encoding the peroxisomal isoform of 
citrate synthase [23,24]. In cells with reduced mitochondrial respiratory functions, CIT2 expression is 
greatly induced, which requires three Rtg proteins, Rtg1, Rtg2 and Rtg3 [23,25]. Rtg1 and Rtg3 are 
two basic helix-loop-helix leucine zipper transcription factors that bind as a heterodimer to the 
promoter region of CIT2 and activate CIT2 expression [25]. Activation and nuclear translocation of 
Rtg1 and Rtg3 correlate with dephosphorylation of Rtg3 [26,27]. These processes require a novel 
cytoplasmic protein, Rtg2, which contains an N-terminal ATP binding domain of the 
Hsp70/acting/sugar kinase ATP binding domain superfamily [28 30]. The integrity of the ATP 
binding domain of Rtg2 is important for its interaction with Mks1 [28]. However, the underlying 
mechanism is still unknown. Activity of Rtg1 and Rtg3 can also be mediated by the target of the 
rapamycin (Tor) signaling pathway and the mitogen-activated protein kinase, Hog1, in the 
osmoregulatory signal transduction cascade, linking the retrograde response to other nutrient sensing 
and stress response pathways [28,31 34].  

One main function of the RTG pathway is the biosynthesis of glutamate in cells with compromised 
respiratory functions [6]. Transcriptional regulation of the Krebs cycle genes, CIT1, ACO1, IDH1 and 
IDH2, switches from the Hap2-5 complex to the Rtg1/3 complex in cells with respiratory 
deficiencies [18]. The products of these genes, as well as CIT2 promote the synthesis of  
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-ketoglutarate, a precursor of glutamate. Mutations in RTG genes lead to glutamate auxotrophy in 
respiratory-deficient cells, underlying the role of the RTG pathway in glutamate homeostasis [18]. As 
a feedback control mechanism, glutamate is a potent repressor of the RTG pathway. 

Activation of Rtg1 and Rtg3 by Rtg2 is indirect, and additional regulatory factors function between 
Rtg2 and Rtg1/3 [6]. These include a novel cytoplasmic protein, Mks1, Lst8 (a component of the Tor 
kinase complexes), Grr1 (a component of the SCFGrr1 E3 ubiquitin ligase) and two 14-3-3 proteins, 
Bmh1 and Bmh2 [28,32,33,35 41]. With the exception of Grr1, all of these factors are negative 
regulators of the RTG pathway. Among these proteins, Mks1 is a key regulatory component [6]. When 
active, Mks1 is dissociated from Rtg2, hyperphosphorylated and able to bind to Bmh1/2. Bmh1/2 
binding prevents the SCFGrr1 E3 ubiquitin ligase-mediated ubiquitination and degradation of 
Mks1 [38]. It has been reported that Mks1 interacts with Tor1 and Tor2 kinases [42]. Since both Mks1 
and Tor kinases are negative regulators of the RTG pathway, it is likely that the Mks1-Tor complex 
may directly phosphorylate and inactivate Rtg3. The role of Lst8 in the retrograde response pathway 
may also be linked to its role in the TOR kinase complexes. 

The positive regulatory role of Rtg2 in the retrograde response is to bind to and inactivate Mks1. 
We have previously proposed that the interaction between Rtg2 and Mks1 constitutes a binary switch 
that turns the RTG pathway on or off [6,38]. A major unanswered question remains: What is the 
signaling molecule that mediates the interaction between Rtg2 and Mks1? Here, we present evidence 
to suggest that ATP is that signaling molecule. At physiological concentrations, ATP has an  
all-or-none effect on the interaction between Rtg2 and Mks1. We further show that ATP-dependent 
regulation of this interaction is evolutionarily conserved. 

2. Experimental Section  

2.1. Strains, Plasmids and Growth Media and Growth Conditions  

Yeast strains and plasmids used in this study are listed in Tables 1 and 2, respectively. Yeast cells 
were grown in SD (0.67% yeast nitrogen base plus 2% dextrose), YNBcasD (SD medium plus 1% 
casamino acids) or YPD (1% yeast extract, 2% peptone, 2% dextrose) medium at 30 °C. When 
necessary, amino acids, adenine and/or uracil, were added to the growth medium at standard 
concentrations to cover auxotrophic requirements or at concentrations as indicated in the text and/or 
figure legends [43]. When needed, glutamate was added to the growth medium at the final 
concentration of 0.2% to inhibit the RTG pathway. 

Table 1. Strains used in this study. 

Strain Genotype Source Application 
RBY915 -52 leu2 lys2 RTG2-myc3 mks1::LEU2  [28] Figures 1 and 2 
TSY619 -52 leu2 lys2 mks1::LEU2  [38] Figure 1 
PSY142 -52 leu2 lys2 ura3::CIT2-lacZ  [41] Figures 3 and 4 
PSY142-rtg2 -52 leu2 lys2 ura3::CIT2-lacZ rtg2::ura3  [41] Figures 3 and 4 
ZLY145 -52 leu2 lys2 ura3::CIT2-lacZ rtg2::ura3 mks1::kanMX4 This study Figures 4 and 5 
ZLY028 -52 leu2 lys2 ura3::CIT2-lacZ mks1::kanMX4  [28] Figure 4 
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Table 2. Plasmids used in this study. 

Plasmid Description Source Application 
pZL1480 pRS416-MKS1p-MKS1-HA, expressing HA-tagged Mks1 from the  

MKS1 promoter. 
This 
study 

Figures 1,2 and 4 

pTS215 pRS416-MKS1, expressing MKS1 from its own promoter. [28] Figure 1 
pFZ142 pRS416-RTG2p-RTG2(Kla)-HA, expressing HA-tagged Rtg2 homolog from  

K. lactis from the RTG2 promoter of S. cerevisiae.  
This 
study 

Figure 3 

pFZ136 pRS416-RTG2p-RTG2(Kwa)-HA, expressing HA-tagged Rtg2 homolog from  
K. waltii from the RTG2 promoter of S. cerevisiae. 

This 
study 

Figure 3 

pZL927 pS416-MKS1, expressing Mks1 from the endogenous promoter.  [28] Figure 4 
pFZ138 pS416-MKS1p-MKS1(Kla), expressing the Mks1 homolog from K. lactis from 

the MKS1 promoter of S. cerevisiae. 
This 
study 

Figure 4 

pFZ144 pRS416-MKS1p-MKS1(Kwa), expressing the Mks1 homolog from K. waltii 
from the MKS1 promoter of S. cerevisiae. 

This 
study 

Figure 4 

pFZ134 pRS416-MKS1p-MKS1(Kla)-HA3, expressing HA-tagged Mks1 homolog from 
K. lactis from the MKS1 promoter of S. cerevisiae. 

This 
study 

Figure 4 

pFL150 pRS416-MKS1p-MKS1(Kwa)-HA3, expressing HA-tagged Mks1 homolog 
from K. waltii from the MKS1 promoter of S. cerevisiae. 

This 
study 

Figure 4 

pZL1951 pRS415-RTG2-myc, expressing myc-tagged Rtg2 from the RTG2 promoter. This 
study 

Figure 5 

pFZ140 pRS415-RTG2p-RTG2(Kla)-myc, expressing myc-tagged Rtg2 homolog from  
K. lactis from the RTG2 promoter of S. cerevisiae. 

This 
study 

Figure 5 

pFZ148 pRS415-RTG2p-RTG2(Kwa)-myc, expressing myc-tagged Rtg2 homolog from  
K. waltii from the RTG2 promoter of S. cerevisiae.  

This 
study 

Figure 5 

2.2. Cellular Extracts Preparation, Immunoprecipitation and Immunoblotting 

Total cellular protein extracts were prepared by using the NaOH- -mercaptoethanol method as 
described [44]. For interaction assays between Rtg2 and Mks1 in the presence of ATP or other 
nucleotides, cellular lysates were prepared in IP buffer (20 mM Hepes-KOH pH 7.6, 150 mM KCl,  
10 mM MgCl, 0.5% Triton X-100 and protease inhibitors). Cell extracts (~1.6 mg proteins) were 
incubated at 4 °C with ATP or other nucleotides as indicated for 1.5 h, after which 2 g anti-myc 
antibody (9E10, Roche) was added and incubated for 1.5 h. Forty microliters 50% slurry of protein  
G-Sepharose (Roche) was then added to each sample, and the samples were further incubated at 4 °C 
for 2 h. Immunoprecipitates were washed five times each with 1 ml IP buffer. Proteins bound to the 
Sepharose beads were released by boiling in 1X SDS-PAGE loading buffer. The released immune 
complexes were analyzed by SDS-PAGE and immunoblotting. myc and HA-tagged proteins were 
probed with anti-myc antibody 9E10 and anti-HA antibody 12CA5, respectively. To determine the 
effect of nucleotides on the dissociation of Rtg2 and Mks1, immunoprecipitates of Rtg2-myc and 
Mks1-HA were prepared using the procedure mentioned above, with the exception that ATP was not 
used. The immunopurified Rtg2-Mks1 complex was then incubated in the presence of various 
nucleotides at indicated concentrations for 5 minutes at 23 °C, after which the supernatant and pellet 
fractions were obtained by 2 min. of centrifugation. Rtg2-myc and Mks1-HA in the supernatant and 
pellet fractions were separated by SDS-PAGE and detected by immunoblotting.  
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2.3. Yeast Transformation and -Galactosidase Activity Assays 

Plasmids were transformed into yeast strains using the high-efficiency lithium acetate-PEG  
method [43]. -galactosidase assays were carried out as described [43]. For each plasmid and strain 
combination, assays were conducted in triplicate, and independent experiments were carried out two or 
three times. 

3. Results and Discussion 

3.1. ATP, but not ADP or AMP-PNP, at High Concentrations Disrupts the Interaction between Rtg2 
and Mks1 in Total Cellular Lysates 

Retrograde signaling is regulated by the dynamic interaction between Rtg2 and Mks1. When the 
RTG pathway is inactive, Mks1 is dissociated from Rtg2 and inhibits Rtg1/3. When the RTG pathway 
is active, Mks1 is sequestered by Rtg2. To understand the mechanism by which this interaction is 
regulated, we tested candidate molecules that may mediate the interaction between Rtg2 and Mks1. 
Since Rtg2 has an N-terminal ATP binding domain and ATP is produced by mitochondria through 
oxidative phosphorylation, one possible candidate signaling molecule is ATP. We hypothesized that 
ATP production from robust mitochondrial respiratory metabolism releases Mks1 from Rtg2 to inhibit 
the RTG pathway, which may explain why the RTG pathway is not active in cells with robust 
respiration. Accordingly, we tested whether ATP affects the interaction between Rtg2 and Mks1. We 
prepared cellular extracts from cells co-expressing functional myc-tagged Rtg2 and HA-tagged Mks1 
and incubated with different concentrations of ATP. We then immunoprecipitated Rtg2-myc with  
anti-myc anti-body immobilized on protein G Sepharose beads and determined the amount of  
Mks1-HA in the Rtg2-myc immunoprecipitates. Figure 1 shows that without the addition of exogenous 
ATP, Mks1-HA was efficiently pulled down with Rtg2-myc. Similarly, treatment with 1 and 2 mM 
ATP had little or no effect on the interaction between Rtg2 and Mks1. Interestingly, treatment with  
5 mM ATP greatly reduced the amount of Mks1-HA recovered in the Rtg2-myc immunoprecipitates. 
In contrast, treatment with 5 mM ADP had little effect on the interaction between Rtg2 and Mks1. We 
also treated total cellular extracts with 5 mM - -imido) triphosphate (AMP-PNP), 
which is a non-hydrolysable analogue of ATP, and found that it also had no effect on the interaction 
between Rtg2-myc and Mks1-HA, suggesting that ATP hydrolysis may be required for the release of 
Mks1 from Rtg2.  

3.2. ATP within a Small Range of Physiological Concentrations Releases Mks1 from an 
Immunopurified Rtg2-Mks1 Complex 

Rtg2 has a predicted N-terminal ATP binding domain, the integrity of which is important for the 
function of Rtg2 [28,29]. Data in Figure 1 suggest that ATP may directly bind to Rtg2, resulting in 
Mks1 release. Before testing this possibility, we considered that total cellular lysates contain several 
thousand proteins, potentially complicating interaction analysis between Mks1 and Rtg2. Therefore, 
using aliquots of an immunopurified complex, we tested the effect of ATP at various concentrations on 
the interaction between Rtg2 and Mks1. In preliminary experiments, we found that 5 mM ATP can 
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lead to maximum release of Mks1 from Rtg2, and a further increase to up to 10 mM did not result in 
the release of more Mks1 from Rtg2 (data not shown). Therefore, we treated the Rtg2-Mks1 complex 
with 0~6 mM ATP at 1 mM intervals. Figure 2A shows that while treatment with 1~3 mM ATP had 
little or no effect on the interaction between Rtg2 and Mks1, 5 and 6 mM ATP treatment efficiently 
released Mks1-HA from Rtg2-Mks1, and 4 mM ATP had an intermediate effect. Quantitative analysis 
of data in Figure 2A shows that ~50% Mks1 is released from Rtg2 in the presence of 5~6 mM ATP 
(Figure 2B). The appearance of Mks1 in the supernatant fraction was not due to the release of  
Rtg2-myc from anti-myc antibody immobilized on the protein G Sepharose beads, since Rtg2-myc was 
not detected in the supernatant fraction of samples treated with different concentrations of ATP. Next, 
we examined the effect of three other purine nucleotides, ADP, GTP and GDP, and two ATP analogs, 
AMP-PNP and 5'-O-(3-thio) triphosphate (ATP S), on the interaction between Rtg2 and Mks1. We 
found that at 5 mM concentration, ADP, GTP or GDP had no effect. At 10 mM concentration, the  
non-hydrolysable ATP analog, AMP-PNP, also had no effect. Interestingly, at 10 mM concentration, 
ATP S, a slowly hydrolysable ATP analog [45,46], could weakly dissociate Mks1 from Rtg2. Together, 
this data indicate that Mks1 release from Rtg2 by ATP is specific and that ATP hydrolysis is required for 
this process.  

Figure 1. Adenosine triphosphate (ATP) disrupts the interaction between Rtg2 and Mks1 
in total cellular lysates. Cellular lysates prepared from yeast cells expressing Rtg2-myc 
and/or Mks1-HA as indicated were analyzed for the effect of ATP, ADP and -

-imido) triphosphate (AMP-PNP) on the interaction between Rtg2 and Mks1 by 
immunoprecipitation, as described in the Experimental Section. Cellular lysates were 
treated with the nucleotides at indicated concentrations, and Rtg2-myc was 
immunoprecipitated using anti-myc anti-body and protein G Sepharose beads.  
Rtg2-myc and Mks1-HA in IP pellet fractions were detected by immunoblotting. 

 

We attempted to purify recombinant Rtg2 and Mks1 to determine whether these two proteins alone 
are sufficient to recapitulate the ATP effect observed with immunopurified complex. However, 
numerous attempts made to purify recombinant Rtg2 from bacterial, yeast and insect cells failed, due 
to its insolubility. Therefore, the possibility that other proteins in the immunopurified Rtg2-Mks1 
complex contribute to their interaction or dissociation upon ATP treatment cannot be ruled out. 

Intracellular ATP concentration is estimated to be in the range of 1 5 mM [47,48]. The data in 
Figure 2 present two striking observations: ATP has an all-or-none effect on the interaction between 
Rtg2 in Mks1; the concentration of ATP that dramatically changes the interaction between Rtg2 and 
Mks1 is within the physiological range. Since activation of the RTG pathway leads to increased 
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expression of genes encoding citrate synthase, aconitase and isocitrate dehydrogenase, increased 
activities of these enzymes are expected to lead to increased metabolic flux into the Krebs cycle and 
ATP production in mitochondria. Our data in Figure 2 shows that ATP dissociates Mks1 from Rtg2, 
which results in inhibition of the RTG pathway. Taken together, we propose that ATP is the 
mitochondria-derived signaling molecule that turns off the pathway to achieve ATP homeostasis. ATP 
is the universal energy currency in biological systems; therefore, if our hypothesis is correct, we expect 
to find that the interaction between Mks1 and Rtg2 homologs in other fungal species is similarly 
regulated by ATP. 

Figure 2. The effect of ATP titration on Mks1 release from Rtg2. (A) Immunopurified 
Rtg2-myc-Mks1-HA complex from RBY915 cells co-expressing Rtg2-myc and Mks1-HA 
was incubated with titrating levels of ATP, and the presence of Rtg2-myc and Mks1-HA in 
the pellet and supernatant (released) fractions were determined by Western-blotting.  
(B) Quantitative analysis of the amount of Mks1 released from Rtg2 in the presence of 
ATP. The result was the average of two independent experiments. (C) The effect of 5 mM 
ADP, GTP or GDP and 10 mM AMP-PNP or ATP S on the interaction between  
Rtg2 and Mks1. 

 

3.3. RTG2 Homologs from K. lactis and K. waltii Complement an rtg2  Mutation in S. cerevisiae 

Two fungal species, K. lactis and K. waltii, contain both Rtg2 and Mks1 homologs [49]. If the 
retrograde response pathway in budding yeast mediates ATP homeostasis, we expect the effect of ATP 
on the release of Mks1 from Rtg2 to be conserved in other fungal species. To test this possibility, we 
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first cloned the RTG2 homologs from K. lactis and K. waltii and determined whether they complement 
an rtg2  mutation in S. cerevisiae. 

The Rtg2 homolog in K. lactis and in K. waltii is a 587 and 583-residue protein, respectively. Both 
proteins show ~69% sequence identity to S. cerevisiae Rtg2 (data not shown). As reported previously, 
the RTG pathway is required for the biosynthesis of -ketoglutarate, the precursor to glutamate, and an 
rtg2  mutant strain is unable to grow on minimal SD medium without glutamate (Figure 3A) [18,23]. 
Expression of the Rtg2 homolog from both K. lactis and K. waltii under the control of the S. cerevisiae 
RTG2 promoter enabled rtg2  mutant cells to grow on SD medium without glutamate (Figure 3A). 
Expression of CIT2, encoding the peroxisomal isoform of citrate synthase, requires Rtg2 [23].  
Figure 3B shows that expression of Rtg2 homologs from K. lactis and K. waltii restored expression of 
CIT2-lacZ in rtg2  mutant cells to near wild-type levels. Together, these data suggest that the function 
of Rtg2 is conserved.  

Figure 3. The Rtg2 homologs from K. lactis and K. waltii are functional in S. cerevisiae. 
(A) RTG2 homologs complement glutamate auxotrophy phenotype of rtg2  in  
S. cerevisiae. Wild-type (WT, PSY142) and rtg2  (PSY142-rtg2) mutant cells carrying 
empty vector or centromeric plasmids encoding RTG2 genes from K. lactis (K.la) and  
K. waltii (K.wa) were grown on SD medium with or without glutamate at 30 °C for  
2 3 days. (B) Expression of RTG2 homologs restores expression of a CIT2-lacZ reporter to 
rtg2  mutant cells in S cerevisiae. Yeast strains described for panel (A) were grown in 
YNBcasD medium to mid-log phase, and -galactosidase assays were conducted as 
described in the Experimental Section.  
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3.4. MKS1 Homologs from K. lactis and K. waltii Complement an mks1  Mutation in S. cerevisiae 

The Mks1 homolog in K. lactis and K. waltii is a 638 and 588-residue protein, respectively. Unlike 
Rtg2 proteins, Mks1 proteins are much less conserved: S. cerevisiae Mks1 shares ~29% sequence 
identity with its homologs in K. lactis and K. waltii (data not shown). We tested whether Mks1 
homologs could complement an mks1  mutation in S. cerevisiae. Mks1 is a negative regulator of the 
RTG pathway, and an mks1  mutation bypasses the requirement of Rtg2 for cells to grow on medium 
without glutamate [33,35]. Therefore, we generated plasmids encoding MKS1 homologs under the 
control of the MKS1 promoter from S. cerevisiae and transformed them into rtg2  mks1  double 
mutant cells. Figure 4A shows that expression of the Mks1 homologs in rtg2  mks1  double mutant 
cells resulted in glutamate auxotrophy, indicating that Mks1 homologs from K. lactis and K. waltii are 
functional in S. cerevisiae. 

Mks1 is a phosphoprotein, whose phosphorylation correlates with its activity in cells: when it is 
bound to Rtg2 and inactive, Mks1 is hypophosphorylated; when the RTG pathway is inactive, Mks1 
becomes hyperphosphorylated [33,35]. We then determined whether the regulation of Mks1 is also 
conserved. Figure 4B shows that in the presence of glutamate, which inhibits the retrograde pathway, 
Mks1 proteins from S. cerevisiae, K. lactis and K. waltii, all became hyperphosphorylated. Mks1 
phosphorylation in S. cerevisiae is also dependent on the availability of Rtg2: in the absence of Rtg2, 
Mks1 becomes hyperphosphorylated (Figure 4C) [33,35]. We found that the Mks1 homologs from  
K. lactis and K. waltii were also hyperphosphorylated in rtg2  mutant cells (Figure 4C). Together, 
these data suggest that the function and regulation of Mks1 proteins are conserved.  

3.5. ATP at Physiological Concentrations Releases Mks1 Homologs from its Cognate Rtg2 Homologs 
from K. lactis and K. waltii  

After confirming that Rtg2 and Mks1 homologs from K. lactis and K. waltii are functional, we then 
looked at whether interactions between Rtg2 and Mks1 homologs are regulated by physiological 
concentrations of ATP. Figure 5A shows that when expressed in S. cerevisiae rtg2  mks1  double 
mutant cells, pairs of Mks1 and Rtg2 from S. cerevisiae, K. lactis and K waltii form a complex using 
co-immunoprecipitation. We then immunopurified K. lactis and K. waltii Rtg2-Mks1 complexes and 
treated them with ATP at different concentrations. Figure 5 B and C show that 1 3 mM ATP had little 
or no effect on Mks1 release from Rtg2. Treatment with 4 mM ATP resulted in maximal release of 
Mks1 from Rtg2. Similar effects of physiological levels of ATP on the interaction of Rtg2 and Mks1 in 
three different fungal species strongly suggest that the RTG pathway mediates ATP homeostasis.  

Cellular energy homeostasis has been proposed to be mediated by AMP-activated protein kinase 
(AMPK) in eukaryotes [50,51]. AMPK is activated by a rise in the AMP:ATP ratio. When cellular 
energy levels drop, AMP levels rise, which leads to the activation of AMPK. Once activated, AMPK 
turns on catabolic pathways that generate ATP and turns off processes that utilize ATP. The  
S. cerevisiae AMPK, Snf1, is required for cell growth on less preferred fermentable and  
non-fermentable carbon sources, conditions that often require robust mitochondrial respiratory 
function [52,53]. Since the RTG pathway is more active in respiratory deficient cells, we propose that 
the RTG pathway and AMPK may regulate energy homeostasis under different conditions. It is also 
possible that these two may work together to achieve finer control of cellular energy levels. 
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Figure 4. The function and regulation of Mks1 homologs from K. lactis and K. waltii are 
conserved. (A) MKS1 homologs from K. lactis (K.la) and K. waltii (K.wa) complement an 
mks1  mutation in S. cerevisiae (S.ce). Yeast strains as indicated were grown on SD 
medium with or without glutamate at 30 °C for 2 to 3 days. (B) Glutamate has similar 
effects on the phosphorylation of S. cerevisiae Mks1 and its homologs from K. lactis and 
K. waltii. mks1  mutant cells (ZLY028) carrying centromeric plasmids encoding MKS1 
genes from the indicated fungal species were grown in SD medium supplemented with or 
without glutamate. Total cellular proteins were prepared and separated by SDS-PAGE, and 
HA-tagged Mks1 was detected by Western-blotting. (C) The absence of RTG2 increases 
phosphorylation of Mks1. Cells expressing HA-tagged Mks1 from the indicated fungal 
species without (+ RTG2) or with an rtg2  mutation (  RTG2) were grown in YNBcasD 
medium, and phosphorylation of Mks1 was analyzed as described for panel (B). 

 

4. Conclusions  

The retrograde response senses changes in the functional state of mitochondria and adjusts nuclear 
gene expression accordingly. The signaling molecule linking the functional state of the mitochondria 
to the RTG pathway has been elusive. Here, we provide evidence that ATP may be this long  
sought-after signaling molecule. A key regulatory step of this pathway is the interaction between Rtg2 
and Mks1. We find that ATP has an all-or-none effect on releasing Mks1 from Rtg2 in three different 
fungal species. Furthermore, the concentration of ATP that elicits the all-or-none effect is within the 
physiological range of ATP. We report that Rtg2 and Mks1 homologs from two other fungal species, 
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respectively. Rtg2 and Mks1 homologs from K. lactis and K. waltii can form a complex, and their 
interaction is similarly regulated by ATP. Here, we propose that the retrograde response mediates ATP 
homeostasis by participating in a conserved negative feedback loop that responds to ATP levels to shut 
off ATP production when ATP is in excess: the RTG pathway regulates the expression of genes 
encoding the first three Krebs cycle enzymes, and activation of this pathway is expected to increase the 
metabolic flux into the Krebs cycle and ATP synthesis in mitochondria (Figure 6A). When the level of 
cellular ATP reaches a certain threshold (3 4.5 mM), ATP releases Mks1 from Rtg2 to turn off the 
RTG pathway (Figure 6B). Together, these two processes help achieve cellular ATP homeostasis.  

Figure 5. ATP releases Mks1 from Rtg2. (A) Rtg2 and Mks1 homologs from K. lactis and 
K. waltii form a complex. rtg2  mks1  double mutant cells (ZLY145) expressing pairs of 
epitope-tagged Rtg2 and Mks1 from indicated fungal species were analyzed for interaction 
between Rtg2 and Mks1 using co-immunoprecipitation. Rtg2-myc was precipitated using 
anti-myc anti-body. Rtg2-myc and Mks1-HA were detected by immunoblotting.  
(B and C) ATP at physiological concentrations has an all-or-none effect on releasing the 
Mks1 homolog from the Rtg2 homolog from K. lactis (B) and K. waltii (C). The effect of 
ATP on the release of Mks1 from immunopurified Rtg2-Mks1 complexes was analyzed as 
described for Figure 2.  
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Figure 6. A model for the role of ATP-mediated interaction between Rtg2 and Mks1 in 
ATP homeostasis. See text for details.  
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