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ABSTRACT 

 
Quantum dots (QDs) CdS and CdSe were synthesized in three different media including 

reverse micelles, aqueous solution, and trioctylphosphine oxide/trioctylphosphine (TOPO/TOP). 

Transmission electron microscope (TEM), X-ray diffraction (XRD), UV-VIS, fluorescence 

spectroscopy and microscopy were used to characterize the QDs and their nanoassemblies. CdS 

QDs synthesized in reverse micelles showed broad emission spectra. CdSe-CdS QDs with core 

shell structure synthesized in aqueous solution showed more than 30% emission quantum yield. 

CdSe-CdS QDs of different emission colors were prepared. CdSe and CdSe-ZnS QDs were also 

synthesized in TOPO/TOP media. This synthesis route produced highly luminescent CdSe QDs 

with over 50% emission quantum yield.  

 

The application of QDs as ions probes and methods to encapsulate QDs in nanospheres including 

micelles, glyconanospheres and silica nanospheres and the use of these nanospheres in bioassays 

are described. CdS QDs capped with different ligands such as thioglycerol, cysteine and 

polyphosphate showed different responses to biological relevant ions. The emission intensity of 

polyphosphate capped CdS QDs was affected by all the tested ions and did not show a selective 

response. On the other hand, the emission of thioglycerol capped CdS QDs was selectively 

quenched by copper ions while the emission of cysteine capped CdS QDs was selectively 

enhanced by zinc ions. Stern-Volmer equation was applied to correlate the emission intensity of 

the CdS QDs and the copper ion concentration. A Lagmuir isotherm binding equation was used 



 

 x 

to describe the relation between the emission intensity of cysteine capped CdS QDs and zinc ion 

concentration. The possible mechanism to explain the effects of capping ligands on CdS QDs 

responses to ions is also discussed. CdSe QDs synthesized in TOPO/TOP media were 

encapsulated in nanospheres for bioassay applications. The glyconanospheres contained a large 

number of glucose residues on their surface and showed high binding activity towards the 

lectinic protein Concanavalin A (Con A). Silica nanospheres containing hundreds of CdSe QDs 

were functionalized with thiol groups to enable the conjugation of streptavidin to the 

nanospheres. The streptavidin modified silica nanospheres were used as luminescent indicators 

in a sandwich immunoassay for the detection of antiprotein A antibody. The advantages and 

disadvantages of the nanospheres based bioassay are discussed. 
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CHAPTER ONE:  INTRODUCTION 

 

1.1  Nanomaterials  

Nanomaterials have attracted tremendous research interest in both academic institutions 

and industry. They have been used in clinical diagnostics (1-3), catalysis (4-9), drug delivery 

(10-13), and optical and mechanical devices (14-17). To develop these applications it is 

important to investigate how the optical, magnetic and mechanical properties of nanomaterials 

differ from that of bulk materials and molecules or atoms. As the particles’ size approaches 

nanometric dimensions, materials often show different properties that are only found in this size 

region. Although nanoscience and nanotechnology are a new scientific discipline, nanomaterials 

themselves are not new. For example Zinc and Cadmium sulfides and selenides were used to 

dope glasses to produce yellow, orange and red color glasses more than one hundred years ago. 

These colored glasses contained semiconductor nanoparticles (18).  In biological systems, 

proteins, DNA, chromosomes and most viruses are all in the nanometer scale (19). 

 

1.2 Quantum Dots (QDs) 

1.2.1 Size dependence of the band gap energy of QDs 

Semiconductor QDs are inorganic nanoparticles that contain hundreds to several thousands 

of atoms (20). When the size of semiconductor nanocrystals is smaller than the Bohr radius of 

the excited electron-hole pair, quantum confinement effect occurs and the band gap energy starts 

to increase with the decrease of particle size. For example, the Bohr radius of CdS QDs is about 
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3 nm ( ~3000 to ~ 4000 atoms). When the diameter of CdS nanocrystals is comparable or smaller 

than 6 nm, the band gap energy of CdS increases, which can be observed as a blue-shift in the 

absorption threshold (21). Figure 1.1 illustrates the quantum confinement effect on the band gap 

energy of QDs.                                

 

 

 

 

1.2.2 Optical properties of QDs 

Recent advances in the synthesis techniques enable researchers to prepare high crystallinity 

QDs with controlled size distribution. The size of CdSe QDs is tunable from 2 nm to 8 nm with a 

standard deviation less than 5% (22). When irradiating semiconductor QDs with visible light or 

UV light, the electrons in the valence band are excited to the conduction band. The relaxation of 

the excited electrons back to the ground state release the absorbed energy in the form of light. 

Therefore, semiconductor QDs are luminescent nanoparticles. The wavelength of emitted light is 

determined by the band gap energy. Since the band gap energy of the QDs is size dependent, the 

Fig. 1.1  Size dependence of the band gap of semiconductor QDs 

 Quantum confinement Band gap 

effect 

valance band 

conduction band 
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emission color of the QDs is also size dependent. Figure 1.2 shows the size dependent emission 

of CdSe QDs. CdSe QDs averaging 3 nm in diameter emit green light. On the other hand, 6 nm 

QDs have smaller band gap, and therefore emit red light. The tunable emission properties of QDs 

are unique. In contrast organic dyes do not show such tunability.  

 

 

 

 

 

 

In addition, QDs have a very broad absorption spectrum that enable the excitation of a 

mixture of QDs of different emission colors with a single excitation wavelength. In contrast, 

organic dyes’ absorption spectra are usually narrow. Therefore different excitation wavelengths 

are needed to excite each organic dye in a solution containing several dyes. Figure 1.3 A shows 

the absorption spectrum (curve a) and emission spectrum (curve b) of the organic dye 

fluorescein. Fluorescein shows a narrow absorption band and it can only be effectively excited at 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

400 450 500 550 600 650 700 750 800

Wavelength (nm)

a b 

Fig. 1. 2 Emission spectra of CdSe QDs when excited at 400 nm.  curve (a) 3 nm QDs;  curve 
(b)  6 nm QDs. 
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a wavelength around 470 nm. Figure 1.3 B shows the absorption spectrum (curve a) and 

emission spectrum (curve b) of CdSe QDs. CdSe QDs have a very broad absorption spectrum 

that extends from 350 nm to 470 nm. Figure 3 also reveals that the emission spectrum of QDs is 

sharp and symmetric while the emission spectrum of fluorescein is broad and has a tail extending 

to long wavelengths. The tail often causes problems when a sample is labeled with multiple 

organic dyes due to the overlap of emission peaks.  

 

 

 

 

1.3 Preparation of QDs 

       1.3.1 Synthesis of CdS and CdSe QDs. 

QDs have been synthesized in various media including aqueous solution, reverse micelles 

and TOPO/TOP. Aqueous solution provides a convinent medium for the synthesis of 
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Fig. 1.3 Comparison of the absorption and emission spectra of fluorescein and QDs.  (A) 
Fluorescein. Curve (a) shows the absorption spectrum; curve (b) shows the emission 
spectrum. (B) CdSe QDs synthesized in TOPO/TOP media. Curve (a) is the absorption 
spectrum. Curve (b) is the emission spectrum. 
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nanoparticles (23-27). In this system the precursors for CdS or CdSe QDs are injected directly 

into water in the presence of a stabilizer such as sodium polyphosphate or other polymer to 

restrict the growth of the QDs. Herron et al. synthesized CdS QDs using thiophenolate as 

stabilizer (28). They prepared three stock solutions by dissolving cadmium acetate in methanol 

(stock solution A), sodim sulfide in 1:1 water-methanol solution (stock solution B) and 

thiophenol in methanol (stock solution C). They first mixed stock solution B and C, then added 

stock solution A. The CdS QDs formed immediately following the addition of cadmium acetate 

solution. CdS QDs could be collected as stable solids and redispersed in solution. They found 

that the size of the CdS QDs was controlled through varying the molar ratio of sodium sulfide to 

thiophenol (S/SPh). For example, when S/SPh was 0.5, the resulting CdS QDs were smaller than 

1.5 nm in diameter. While when S/SPh was 4.5, the resulting CdS QDs were 3.5 nm in diameter. 

This is because thiophenol binds strongly to cadmium ions on the surface of the CdS QDs and 

limits their growth. Vossmeyer et al. (29) used 1-thioglycerol and sodium polyphosphate as 

stabilizers to synthesize CdS QDs. They first mixed Cd(ClO4)2 and the stabilzer in aqueous 

solution, then injected H2S gas to the solution. The CdS QDs capped with thioglycerol were 

smaller than 2 nm in diameter while the QDs capped with sodium polyphosphate were from 5.8 

nm to 9.6 nm in diameter as determined by X-ray diffractometry pattern. The high affinity of 

thioglycerol to surface cadmium ion of the CdS QDs led to smaller nanoparticles due to the 

inhibition of the CdS QDs growth. Swayambunathan et al. (30) developed a method to 

synthesize CdS QDs by radiolytic release of sulfide from thioglycerol in the presence of Cd2+ 

ions. In this study thioglycerol functioned as the S2- ion source as well as a growth moderator. 

They found that the formation rate of CdS nanoparticles was strongly pH dependent due to the 

pH effect on the stability of Cd2+/HS- complex. At pH values from 4.0 to 5.3, the growth of the 
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CdS nanoparticles was controlled by the competition of thiolate ions with HS- ions for the Cd2+ 

ions on the surface of the CdS nanoparticles. At neutral and basic solution, the growth of CdS 

nanoparticles was mainly due to the aggregation of cadmium-thiolate polynuclear complexes.  

 

Reverse micelles (31-37) are another widely applied medium to synthesize semiconductor QDs. 

Reverse micelles are a water-in-oil heterogeneous system.  Figure 1.4 is a sketch of the structure 

of reverse micelles used to synthesize CdS QDs.  

 

 

 

Water drops are stabilized in an organic phase by a surfactant with its hydrophilic head dissolved 

in the water pool and its hydrophobic tail in the oil phase. Towey et al (38) used a simple 

equation to correlate the water droplet size and wo : 

 

R/ nm =0.18 wo + 1.5                           (1) 

 

Fig. 1.4. The structure of reverse micelles containing S2- and Cd2+ and CdS QDs 
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R is the radius of the water droplet; wo is the molar ration of water to surfactant (wo = 

[Water]/[surfactant]). For a wo =10 reverse micelle solution, the diameter of water droplet is 

about 6.6 nm. Therefore the size of the water drops can be adjusted by simply changing the ratio 

of water to surfactant concentration wo. Generally, high wo means larger water pool, which leads 

to the formation of larger nanoparticles.  However, other processes such as Ostwald ripening and 

flocculation complicate the growth of nanoparticles in reverse micelles. Lianos et al. (39) used 

bis(2-ethylhexyl) sulfosuccinate sodium salt ( Aerosol OT, AOT) reverse micelle of wo = 5 and 

32 respectively to synthesize CdS QDs. The luminescence of CdS QDs synthesized in reverse 

micelle solution at wo = 5 had a peak at 470 nm. The emission spectrum of CdS QDs synthesized 

at wo = 32 had a peak at 650 nm due to large particle size.  This observation confirmed that high 

value of wo produced large particles. CdSe QDs were also prepared in AOT reverse micelles. 

Steigerwald et al.(40) prepared CdSe QDs by injecting bis(trimethylsilyl) selenium [Se(TMS)2], 

which was used as Se precursor to an AOT reverse micelle solution containing Cadmium ions. 

Do et al (41) found that the organometallic molecule Se(TMS)2 decomposes in aqueous solution 

and releases Se2- ions. Steigerwald et al. synthesized CdSe QDs in three reverse micelle solutions 

with wo = 5.4, 2.7, and near nero respectively. They found the absorption threshold of CdSe QDs 

shifted from 600 nm to 470 nm when the w0 changed from 5.4 to near zero. Based on the relation 

of absorption threshold and the QDs size (42), CdSe QDs synthesized in reverse micelle solution 

at w0=5.4 was larger than that synthesized at w0 near zero. Transmission electron microscope 

(TEM) images revealed that the size of CdSe synthesized in reverse micelles with w0 near 0 was 

about 1.7 nm in diameter while CdSe QDs prepared in reverse micelle solution with w0 = 5.4 

were 4.5 nm in diameter.  
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Thermolysis of organometallic precursors in TOP/TOPO media is one of the most 

extensively applied methods for the synthesis of CdS and CdSe QDs (43-47). In 1993, Murray et 

al. (48) developed a novel method to prepare CdS, CdSe and CdTe QDs by injecting Cd(CH3)2 

and SE(TMS)2 dissolved in TOP solution to hot TOPO media (SE= S, Se, and Te.). By varying 

the molar ratio of Cd(CH3)2 to Se(TMS)2, they were able to tune the sizes of CdSe QDs from 1.5 

nm to 10 nm in diameter with a standard deviation of less than 4%. CdSe QDs showed a 

quantum yield as high as 20% at room temperature. However, the organometallic precursor 

Cd(CH3)2 is highly toxic and sensitive to moisture and air. As a result, the synthesis of CdSe 

QDs needs to be conducted in a dry-box with high caution. To overcome this problem, Peng et 

al. developed a greener route to synthesize CdSe QDs (49-51). They found CdO, Cd(Ac)2 and 

CdCO3 could be used to replace Cd(CH3)2 as cadmium precursors. These compounds were stable 

and safe compared to the previously used organometallic precursors. Using these safe precursors, 

they were able to synthesize CdSe QDs ranging from about 1.5 nm to 25 nm in diameter. 

Without any size selective precipitation, the standard deviation in the diameter of QDs smaller 

than 15 nm was between 5 to 10%. The CdSe QDs synthesized by this greener route had up to 

80% emission quantum yield. This greener route provided a safe and simple method to 

synthesize high quality CdSe QDs. Recently Pradhan et al. (52) used a single precursor to 

prepare CdS QDs. They first prepared cadmium-alkylxanthates salt ( Cd-R-CH2-CH2-OCS2
-). 

This salt is air-stable. Heating this metal alkylxanthate salt in hexadecylamine (HAD) at 70˚C 

produced high quality, nearly monodisperse CdS QDs with a narrow emission peak at 450nm. 

The advantage of this synthesis technique is that the reaction was carried out in a test tube 

without any air sensitive techniques. The size of the CdS QDs was controlled by varying the 

heating temperature. For example, CdS QDs averaged 5.2 nm in diameter when the precursor 
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was heated at 90˚C while the size of CdS QDs was 3.5 nm when the single precursor was heated 

at 70˚C. Besides the methods introduced above, other media such as phospholipid vesicles (53-

54), polymer films (55-57), cavities of zeolites (58), interlayer spaces of clays (59), pulse 

radiolysis (60-61) and sol-gel systems(62)  have also been used to prepare QDs. In these media, 

the growth of QDs is restricted either by a stabilizer or by using a solid nanometric reactor. QDs 

synthesized in solid media such as polymer film, pores of zeolites, clays, and sol-gels were 

trapped in these media and were not available for further surface modification for use in solution 

based applications. In this dissertation, the first three media of aqueous solution, reverse micelles 

and TOPO/TOP were applied to synthesize CdS and CdSe QDs.  

 

1.3.2 Synthesis of core-shell QDs 

QDs contain hundreds to thousands of atoms. These atoms are mostly located on the 

surface of the QDs. For example, for a 1 nm QD nearly 100% of the atoms are surface atoms. 

The surface atoms are not fully coordinated and are highly reactive. They also form surface 

defects (63). Surface defects often decrease the emission efficiency of QDs. To remove such 

defects, organic molecules have been used to ‘cap’ QDs. QDs capped with organic molecule 

show near 10% emission quantum yield (64-65). This is attributed to the fact that organic ligands 

can only cap cationic or anionic surface sites, and the capping is never complete. Several 

research groups introduced methods to prepare core shell QDs where a shell material of a larger 

band gap energy coats the core particles. In core-shell QDs, the cores are separated from the 

environment and changes in QDs environment have only a minor effect on their optical 

properties. Sphanhel et al. (66) synthesized CdS QDs in aqueous solution using sodium 

hexametaphosphate as a stabilizer. The prepared CdS QDs had less than 1% emission efficiency 



 

 

10

and broad emission band extending from 500 and 700 nm. After formation of a Cd(OH)2 shell on 

the surface of CdS QDs by dropwisely addition of NaOH and Cd(ClO4)2 solution, the emission 

efficiency of CdS-Cd(OH)2 QDs increased dramatically to above 50%. The activated CdS QDs 

showed very narrow emission band between 460 nm and 530 nm. Hines et al. (67) developed a 

method to cap CdSe QDs with a ZnS shell by a two-step single flask method. The CdSe QDs 

were synthesized using the method reported by Murray et al. in TOPO/TOP media (64). Then the 

mixture of diethyl zinc and (TMS)2S was injected into the CdSe QDs-TOPO solution at 300ºC. 

The emission quantum yield of ZnS capped CdSe QDs was as high as 50%. Using this method, 

Dabbousi and coworkers (68) investigated the influence of ZnS shell thickness on the emission 

efficiency of CdSe QDs. They prepared CdSe QDs with a ZnS shell of 0, 1.3, 2.6 and 5.3 

monolayers, they found 1.3 monolayer of ZnS shell provided the highest emission efficiency of 

50% while the bare CdSe QDs had only 15% emission efficiency. They ascribed the low 

emission efficiency of CdSe QDs with a thick ZnS shell to the formation of nonradiative 

recombination sites in thick ZnS shell. Li et al. (69)developed an epitaxial method to grow CdS 

shell on the surface of CdSe core through successive ion layer adsorption and reaction (SLIAR) 

method. The CdSe core was synthesized using the greener route as introduced above(49). CdO 

dissolved in oleic acid and 1-octadecene(ODE) and sulfur dissolved in ODE solution were used 

as precursors for the growth of CdS shell. These precursors were injected alternatively with tight 

quantity control to the CdSe core solution at 240ºC. They found that CdSe core maintained their 

narrow size distribution and sharp emission spectra after the formation of CdS shell of five 

monolayers. The emission quantum yield of CdSe-CdS core shell nanocrystals ranged from 20% 

to 40%. The CdSe-CdS QDs showed superior processibility to corresponding CdSe core. The 

CdSe-CdS QDs maintained their emission quantum yield after precipitation or extraction 
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purification procedures, while the bare luminescent CdSe QDs were almost extinguished after a 

similar precipitation procedure. Recently, Mekis et al. (70) developed a unique procedure to 

synthesize CdSe-CdS core-shell nanocrystals. The CdSe core was synthesized by injection the 

cadmium stock solution (Cd(Ac)2 dissolved in TOP) to hot TOPO solution containing Se-TOP at 

300ºC. They found that injection of H2S gas into CdSe core solution at 140Cº dramatically 

increased the emission quantum yield of CdSe QDs to 85%. The increase of emission quantum 

yield was attributed to the formation of a CdS shell on the surface of CdSe core. Since in CdSe 

core solution there was unreacted Cd(Ac)2, it reacted with H2S gas and formed a CdS shell. 

Pradhan et al. (52) used single precursor of cadmium hexadecyl xanthates (HDX) salt to prepare 

CdS QDs in hexadecylamine media at 70˚C. The CdS QDs were capped with a ZnS shell by 

heating zinc-HDX salt at the same temperature. The formation of a ZnS shell was manifested by 

a 7-fold increase of the quantum yield of the CdS QDs from about 2% to 13.9%. Malik et al. (71) 

prepared CdSe-CdS, CdSe-ZnS CdSe-ZnSe core shell QDs by heating a single source precursor 

of bis(hexyl(methyldithio-/selenocarbomato) cadmium/zinc in TOPO media at 250˚C . The 

synthesized core shell QDs showed band edge emission. However the emission spectra were 

relatively broader compared to the core shell CdSe-ZnS QDs synthesized by Hines et al.(67). 

 

1.3.3 Surface modification of QDs. 

CdSe QDs synthesized in TOPO/TOP media were capped with surfactant molecules and 

they were only dispersible in organic solvents. Hydrophilic ligands containing thiol group were 

used to exchange the surface bound surfactant and make the CdSe QDs water-soluble. Aldana et 

al. (72) successfully capped CdSe QDs with a series of ligands including mercaptoacetic acid, 

mercaptobenaoic acid, mercaptopropionic acid, 11-mercaptoundecanoic acid, dihydrolipoic acid, 
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and 1,4-dithio-D,L-threitol. The ligand exchange reaction was conducted by refluxing the 

mixture of CdSe QDs capped with TOPO and the ligands in methanol solution at 65ºC overnight. 

The ligand capped CdSe QDs were highly water-soluble. Merccaptoacetic acid capped CdSe 

QDs were negatively charged, they could interact with positively charged polymer through 

electrostatic interaction. Potapova et al. (73) demonstrated that an amphiphilic positively charged 

polymer ligands transferred mercaptoacetic acid capped CdSe QDs from aqueous solution to 

chloroform phase due to adsorption of polymer on their surfaces. Wang et al.(74) used a series of 

hydrophilic organic dentrons with thiol group at the focal point to modify the surface of CdSe 

QDs through refluxing the mixture of CdSe QDs capped with TOPO and dentron in methanol 

solution. Dentrons capped CdSe QDs showed higher photochemical stability (under UV 

radiation) compared to CdSe QDs capped with linear ligands.  Ligands capped water-soluble 

CdSe QDs could be used to conjugate biomolecules in bioanalysis applications. 

 

1.4 Applications of QDs  

QDs were used as luminescent biological labels. In 1998, Chan et al (75) modified CdSe-

ZnS QDs with a protein transferrin and used them to label HeLa cells through receptor-mediated 

endocytosis. Their results showed that the attached transferring molecules were still active and 

were recognized by the receptors on the cell surface. They also demonstrated that when QDs 

labeled with IgG incubated with bovine serum albumin (BSA) and a specific polyclonal 

antibody, the polyclonal antibody  recognized the Fab fragments of IgG and induced an 

extensive aggregation of CdSe-ZnS QDs. Weiss et al (76) used silica coated CdSe-ZnS QDs with 

green and red emission colors to label mouse fibroblasts. QDs covalently labeled with biotin was 

used to label fibroblasts, which were previously incubated in phalloidin-biotin and streptavidin. 
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The green and red labels were clearly spectrally resolved. Rosenthal et al (77) used ligands-

conjugated QDs to target cell surface receptors, ion channels and transporters. They showed that 

QDs labeled with the neurotransmitter serotonin interacted with antidepressant-sensitive, human 

and Drosophila serotonin transporters (hSERT, dSERT) that were expressed in HeLa and HEK-

293 cells. They found that serotonin labeled QDs dose-dependently inhibited the transport of 

radiolabeled serotonin, with an estimated half-maximal activity (EC50) of 33×10-6 M (dSERT) 

and 99×10-6 M (hSERT). Their results showed the possibility of using ligand-conjugated 

luminescent nanocrystals as versatile probes of cell membrane proteins in living cells. Akerman 

et al. (78) used peptide coated QDs as luminescent probes in vivo. QDs coated with peptides 

could specifically target mice’s lung, blood vessels and lymphatic vessels in tumors. QDs were 

also used in multiphoton fluorescence microscopy in living animals. Larson et al. (79) visualized 

QDs through the skin of living mice as deep as hundreds of micrometers.  To increase 

biocompatibility, Dubertret et al. (80) encapsulated single QDs in phospholipid block-copolymer 

micelles. These QDs doped micelles were used as luminescent labels in in vitro and in vivo 

studies. When injected into Xenopus embryos, the QDs containing micelles were stable, 

nontoxic, slow to photobleach and cell autonomous. Wu et al. (81) demonstrated the advantages 

of QDs as an alternative to organic dyes in biolabeling studies in vivo. In their study QDs were 

modified with IgG and streptavidin to label the breast cancer marker Her2 on the surface of both 

fixed and living cancer cells. They also demonstrated the use of luminescent QDs in targeting 

cellular organells. Their results showed that under the same irradiation conditions, QDs exhibited 

higher photostability than organic dyes.  
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Another active research area involving QDs is their application in quantitative bioanalysis. 

In protein and DNA chips, organic dyes have been widely used for drug screening and disease 

diagnostics. However, poor photostability and overlaps between emission peaks have been a 

problem. To overcome this shortcoming of organic dyes, QDs have been explored as alternative 

to organic fluorophores in immunoassays and DNA analysis. For example, Goldman et al. (82-

83) prepared QDs-antibody conjugates and used them in fluoroimmunoassays for the detection 

of protein toxin and TNT with detection limits of 10 ng/ml for the toxin and 2 ng/ml for TNT.  In 

another example, Han et al. (84) encapsulated CdSe-ZnS QDs into 1.2 µm porous polystyrene 

microbeads with different ratios of QDs of different emission colors and formed barcodes for 

DNA hybridization assays. They prepared QDs of six different emission colors and doped them 

into polymer beads with 10 different ratios of emission intensity. The QDs doped polymer beads 

could be used to analyze one million DNA samples in a single detection assay.  
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CHAPTER TWO:  SYNTHESIS AND CHARACTERIZATION OF QUANTUM 

DOTS 

 

This chapter describes the synthesis procedures for the preparation of luminescent 

semiconductor QDs in both aqueous solution and organic media. Synthesis procedures involve 

using aqueous solution, reverse micelles, and the surfactant trioctylphosphine oxide (TOPO) 

media are described. The advantages and disadvantages of these methods are discussed.  

 

2.1 Synthesis of Ligands Capped CdS QDs  

 The synthesis procedure was adapted from a method developed by Weller et al. (29). A 

0.2 mmol of Cd(NO3)2 and 0.2 mmol of ligands were dissolved in 200 mL of deionized water 

and purged with pure nitrogen gas for at least 60 min under magnetic stirring. The ligands 

include sodium polyphosphate, thioglycerol and cysteine. A 0.2-mmol portion of Na2S dissolved 

in 10 mL water was added to the solution using a syringe pump at a flow rate of 0.5 mL/minute. 

The ligands-capped CdS QDs solution was refluxed while boiling for 10 h under N2 atmosphere. 

The solution was then condensed by solvent evaporation to 20 mL. Ethanol was used to 

precipitate the CdS QDs. The capped CdS QDs precipitate was treated with three repeated cycles 

of precipitation by ethanol, washing, and redispersion to remove contaminants. The luminescent 

L-cysteine-capped CdS QDs were then resuspended in a 100-mL 0.05 M Tris-HCl buffer 

solution at pH 7.2. The concentration of particles was estimated to be 150 µM. Aliquot solutions 

were used for ion response measurements. 
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2.2 Synthesis of CdSe-CdS Core-Shell QDs in Aqueous Solution.  

The synthesis procedure was modified from a method reported by Tian et al. (85). The 

formation of CdSe core and CdS shell was conducted at room temperature under nitrogen flow. 

The growth of CdS capped CdSe was performed at 100°C through prolonged reflux under 

nitrogen atmosphere.  A typical proctol for the synthesis of CdS capped CdSe QDs is described 

below: 12.3mg Cd(NO3)2 and 24mg sodium polyphosphate were dissolved in 200ml deionized 

water in a 250ml three-neck flask equipped with septum. The pH was adjusted to 9.5 by 1M 

NaOH. After bubbling the solution with high purity nitrogen for 30 min, 100 µl freshly prepared 

0.058M NaHSe solution was added to the solution drop by drop through syringe under vigorous 

stirring. After 20 min, 8.2 mg Na2S in 10 ml deionized water was injected into the CdSe colloid 

solution slowly. The molar ratio of S to Se was 5.8. The colloid solution was reflux overnight at 

373K. 

 

2.3 Preparation of CdS QDs in Reverse Micelles 

The synthesis was modified from a method developed by Lianos et al. (39). Two reverse 

micelles solutions containing Cd ion and sulfide ions were prepared. Cd2+ containing micelles 

were prepared by mixing 0.2ml of 0.1M Cd(NO3)2 with 20 ml  heptane solution containing 0.1 

M bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT). S2- containing micelles were prepared by 

mixing 0.2 ml of 0.1 M Na2S with 20ml of heptane solution containing 0.1 M AOT. The 

mixtures were sonicated until forming transparent homogenous inverse micelles solutions.  The 

water to oil ratio (W/O) in the Cd2+ and S2- containing micellar solutions was about 5.5. Light 

green-yellow CdS QDs were formed immediately after mixing the two micellar solutions. To 

aggregate the QDs, a dithiol molecule that was used as cross-linking agent was added to the 
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reverse micelles solution to initiate the formation of quantum dots clusters. In 5 ml CdS QDs 

reverse micelles solution, 100 microliter 1,6-hexanedithiol was added dropwisely under vigorous 

magnetic stirring. A yellowish precipitate was formed immediately after the addition of dithiol. 

The yellowish clusters were collected by centrifugation at 2500 rpm for 10 minutes and washed 

with heptane three times to remove remnant surfactant and dithiol molecules. 

 

2.4 Synthesis of Water Soluble CdSe-ZnS QDs 

 2.4.1 Synthesis CdSe core in TOPO/TOP media 

The synthesis of CdSe was based a greener route reported by peng et al. (49).The 

experiment was conducted under inert atmosphere. In a 100 ml one neck flask, 12 mg CdO was 

dissolved in 150mg lauric acid at 150˚ C, the mixture was then cooled down to room 

temperature. After adding 3g trioctylphosphine oxide, the mixture was heated to 300˚C, 80mg Se 

dissolved in 2ml trioctylphosphine was injected into the flask under magnetic stirring. The color 

of the solution changed immediately after the addition of Se.  The solution was kept at this 

temperature for 3 minutes. Then the heating mantle was removed and the solution was cooled to 

30˚C. Anhydrous methanol was added to the 100 ml flask to precipitate the CdSe QDs. The QDs 

were collected by centrifugation at 3000 rpm for 5 minutes. The precipitated CdSe QDs were 

washed 3 times with anhydrous methanol to remove unbound surfactant.  

 

2.4.2 Synthesis of CdSe-ZnS core-shell QDs.  

The synthesis of ZnS shell was based a method developed by Hines et al. (67). The ZnS 

shell was grown on the surface of the CdSe core to improve the emission quantum yield. The 

synthesis procedure is described below: 30mg CdSe QDs were mixed with 3g TOPO in a 50ml 
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flask. The temperature was raised to 240ºC. Then 60µl (TMS)2S and 400µl (Et)2 Zn were 

injected into CdSe QDs solution. The temperature was set at 140ºC and kept constant for 3 

hours. Then cooled to room temperature. The CdSe-ZnS QDs were precipitated by anhydrous 

methanol and collected by centrifugation at 3000 rpm for 5 minutes. The product was washed 

three times with methanol to remove unreacted chemicals and surfactant. 

 

2.4.3 Synthesis of water soluble CdSe-ZnS QDs 

 Water soluble QDs was prepared based on a method reported by Alldana et al. (72). The 

QDs synthesized in TOPO media were capped with a surfactant. As a result they were 

hydrophobic and only dispersible in organic solvent, such as chloroform and hexane. For 

biological application, the QDs need to be water-soluble. A typical procedure for preparation 

water-soluble QDs are described below. 20 mg CdSe-ZnS QDs and 500µl thioglycerol in 50 ml 

methanol were placed in a 100 ml one neck flask. The pH of the solution was adjusted to about 

10. Then the solution was refluxed at 70ºC overnight. The solution was condensed to about 20 

ml following addition of ethyl ether to precipitate thioglycerol capped QDs. The QDs were 

collected by centrifugation at 3000 rpm for 5 minutes and washed three times with ether to 

remove free thioglycerol. The QDs were then dispersed in 5 ml deionized water for use. 

 

2.5 Characterization of Quantum Dots 

2.5.1 Absorption Spectra- Absorption spectra of free QDs in solution and their 

nanoassemblies were obtained using a Varian UV-VIS-NIR spectrophotometer system, 

model CARY 500 Scan. 
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2.5.2 Emission Spectra- Emission spectra of free QDs solution and their 

nanoassemblies were taken in a quartz cuvette using a PTI Quanta Master luminescence 

spectrometer equipped with a 75 W xenon short-arc lamp as a light source.  

2.5.3 Measurement of Quantum Yield- The quantum yield was measured using 

PTI Quanta Master luminescence spectrometer by comparing the integrated emission 

intensity of QDs with that of fluorescein. The absorbances of QDs and fluorescein at their 

excitation wavelengths were identical and below 0.1 to minimize self absorption. 

Quantum yield of fluorescein is 95%. 

2.5.4 Microscopy-Luminescence images of QDs aggregates and QDs 

nanoassemblies were obtained using a digital luminescence imaging microscopy system. 

The system consists of an inverted fluorescence microscope (Olympus IX70) equipped 

with a 100 W mercury lamp as a light source. The fluorescence images were collected 

using a 40× microscope objective with NA = 0.9. A filter cube containing a 330-385-nm 

band-pass excitation filter, a 400-nm dichroic mirror, and a 420-nm long-pass emission 

filter was used to ensure spectral imaging purity. A high-performance ICCD camera 

(Princeton Instruments, model BH2RFLT3) was employed for digital imaging of the CdS 

QDs. A PC microcomputer was employed for data acquisition. The Roper Scientific 

software WinView/32 was used for image analysis. 

2.5.5 Transmission Electron Microscopy- The size and morphology of free QDs 

and their nanoassemblies were characterized using a JEOL 2010 electron microscope.  

2.5.6 X-ray diffraction measurement- The XRD pattern of QDs was obtained 

using a Philips X’pert diffractometer using Cu Kα=154.056pm as radiation source. 

 



 

 

20

CHAPTER THREE:    RESULTS 

 

3.1 Synthesis of QDs  

3.1.1 CdSe-CdS QDs 

Emission of CdSe-CdS QDs- The QDs synthesized at room temperature showed very 

broad and weak emission as shown in figure 3.1a. After a prolonged reflux, the 

photoluminescent efficiency of the CdS capped CdSe QDs was significantly increased with  

 

 

Fig.3.1 (a) Emission spectra of CdS coated CdSe QDs. (1) before reflux; (2) after reflux
under atmosphere for 7 hrs. λem=601nm. The quantum yield was about 37%. (b) Shows
reflux time has little influence on the emission band of the QDs. (1) 3.5 hrs. (2) 6 hrs. (3)
10 hrs. (c) The strong band-gap emission of CdS capped CdSe QDs shows the surface
defects have been removed through prolonged reflux. 
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quantum yield as high as 37% compared to fluorescein. Without any size-selective precipitation 

process, the emission spectra of the QDs were very sharp with full width at half maximum 

(fwhm) less than 45nm. Reflux was critical in this synthesis procedure in order to obtain highly 

luminescent QDs. Figure 3.1a shows the great difference of the emission intensity before and 

after reflux. Before reflux, the emission spectrum of CdSe-CdS solution was very broad and 

weak, however the emission spectrum became very sharp and the emission increased after 12 

hours reflux at 100°C. Reflux time has little effect on the emission band of CdS capped CdSe 

QDs; Figure 3.1b demonstrates the emission band red-shift a few nanometers after reflux. The 

red tails showed in figure 3.1b curve 1 and 2 were caused by surface defects (86) The surface 

defects are often attributed to the dangling bonds that can form an additional energy level besides 

the band gap energy level of the QDs. This additional energy level complicates the relationship 

between the size of QDs and their emission band position. To overcome this problem a shell with 

a high band gap energy, such as CdS or ZnS, is usually coated on the surface of CdSe QDs to 

form a core shell structure. This shell can diminish the surface defects and thus eliminate the red 

tail. In this case, the red tail was completely removed due to the formation of CdS shell after 10 

hours reflux. 

 

Transmission electron microscope image- The size and morphology of the CdS capped 

CdSe QDs were characterized by JEOL 2010 transmission electron microscope (TEM). The 

synthesized CdSe-CdS QDs were mostly spherical in shape and had a diameter ranging from 3 to 

6 nm depending on the synthetic condition. Figure 3.2 shows a representative TEM image of 4 

nm CdSe-CdS QDs. An enlarged TEM image of one single QDs was inserted in figure 3.2. It 

shows clearly the lattice structure of the CdS capped CdSe nanoparticles. However the CdS shell 
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can’t be clearly seen because the contrast between CdS and CdSe is low due to the similar 

electron densities of CdS and CdSe.  

 

 

 

 

 

 

X-ray diffraction of CdSe-CdS QDs- A powder X-ray diffraction pattern of CdSe-CdS  

QDs is shown in figure 3.3. The CdS capped CdSe nanoparticles have well developed 

crystallinity. The diffraction peaks are broad compared to that of bulk CdSe semiconductor. This 

is a characteristic of X-ray diffraction pattern of nanocrystals. The 2θ of the XRD peaks are at 

26, 43 and 51 degrees. These were assigned to the (111), (220) and (311) lattice planes of the 

Wurzite, hexagonal structure of the CdSe core. The slight shift of the diffraction peaks to higher 

angle is attributed to the CdS-CdSe core shell structure (71,87). Although CdS and CdSe share 

the same Wurzite structure, the XRD peaks of CdS QDs were located at larger angles. The CdS 

Fig. 3.2 TEM of the CdSe-CdS QDs taken on a JEOL 2010 . Inset is HR-TEM of
a selected single QDs, the lattice planes are clearly discernable 
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shell induced a shift of the XRD peaks of the CdSe-CdS core shell nanocrystals to higher angles. 

Other facts such as various defects in the nanocrystals also affect the diffraction line shape and 

position. The diameter of the CdS capped CdSe QDs was calculated based on the (111) peak 

using the Debye-Scherrer formula: 

 

d=4L/3, L= 0.9λ/(βcos2θ)………(1) 

 

where λ is the wavelength of scanning radiation, β is the full width at half-maximum (FWHM) of 

the (111) peak, and θ is the angle at which the peak is centered. The diameter of QDs was found 

to be 4.1nm, which was in agreement with the estimated diameter based on TEM measurements. 
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Fig. 3. 3  A powder X-ray diffraction pattern of CdS coated CdSe QDs taken on 
Philips X’pert diffractometer using Cu Kα=154.056pm radiation.  
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Synthesis of QDs of different emission colors- By changing the concentration of CdSe 

cores, the emission band of CdS capped CdSe QDs was tunable from 560nm to 625nm. 

Generally, the lower CdSe core concentration leads to shorter emission wavelength due to the 

formation of smaller QDs. Figure 3. 4 shows the series of emission of CdS capped CdSe QDs 

synthesized through this procedure. 

 

 

 

 

Summary- A simple method without using highly toxic, air-sensitive and expensive 

organometallic chemicals to synthesize highly luminescent monodispersed CdS capped CdSe 

QDs in aqueous solution was developed. The quantum yield of CdS capped CdSe QDs was as 

high as 37%. The emission spectra of ‘as prepared’ CdS capped CdSe were very sharp with 

Fig. 3. 4 A series of photoluminescent emission spectra of CdS capped CdSe QDs. (1)
λem=560nm; (2) λem=589nm; (3) λem=604nm; (4) λem=625nm 
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fwhm <45nm without the need of any size-selective precipitation. The emission bands were 

tunable from 560nm to 625 nm for CdS capped CdSe QDs . 

 

 

3.1.2.  CdS QDs synthesized in reverse micelles  

 Optical properties- The optical properties of the CdS QDs were characterized by UV-

VIS absorption spectrometry using a Varian UV-VIS-NIR spectrometer and by fluorescence 

spectroscopy using a PTI fluorescence spectrometer.  The absorption and emission spectra of a 

solution containing CdS QDs is shown in the figure 3.5. The broad absorption spectrum enabled 

the excitation of the CdS QDs at wavelengths ranging from 300 nm to 450 nm. The broad  
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Fig. 3.5 Uv-VIS absorption (curve a) and emission spectra (curve b) of ‘as-prepared’ CdS
QDs in AOT reverse micelles solution.  
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excitation spectrum provides the flexibility in choosing a suitable wavelength to excite the 

QDs and minimized the interference from the background emission. A 400 nm light was used for 

excitation.  An emission maximum was observed at 600nm. The red shift of the emission 

spectrum from the band-edge emission was typical for CdS QDs synthesized at low temperature. 

The emission of CdS QDs was originated mainly from the surface trapped energy states.  

 

Dithiol initiated aggregation of CdS QDs- 1,6-hexanedithiol contains two thiol groups, 

one on each end of the carbon chain. Thiol groups have high affinity towards surface cadmium 

ions. Thus, the dithiol molecules act as cross-linking agents that bridge CdS QDs together to 

form three-dimensional composites containing CdS QDs. These composites are highly 

luminescent since many CdS QDs are covalently linked in a single cluster. Figure 3.6 shows the 

fluorescence images of such CdS QDs aggregates. These luminescent composite materials may 

find application in light emitting devices.  

 

 
Fig. 3.6. Fluorescence Images of dithiol Initiated CdS QDs Clusters 
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Summary- Reverse micelles are effective nanoscale reactors for the synthesis of 

semiconductor nanoparticles. CdS QDs were successfully synthesized in reverse micelles. 

However the QDs synthesized in this system usually showed low crystalline quality and low 

emission efficiency. Surface defects on the QDs form intra band gap energy levels that red shift 

the emission of the CdS QDs from the band-edge emission. The surface defects also increase the 

rate of non-radiative relaxation of the excited electrons. The non-radiative relaxation decreases 

the emission efficiency (88-89). CdS QDs in reverse micelles could be precipitated by dithiols as 

previously mentioned.  

 

3.1.3 Synthesis of luminescent CdSe-ZnS QDs through CdO-TOPO route 

CdSe QDs synthesized in TOPO media showed strong band-edge emission. The emission 

spectra were sharp with a FWHM about 30nm. Figure 3.7 shows the band-edge emission of 

CdSe QDs. 
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Fig.3.7 Band edge emission of CdSe QDs. (a) absorption spectrum of CdSe QDs. (b)
emission spectrum of CdSe QDs.  
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After coating a ZnS shell on the surface of CdSe QDs, the emission peak usually red-shift 10-20 

nm due to the growth of the CdSe QDs core. The emission color of the QDs was tunable by 

controlling the experimental conditions. Generally, high temperature and long heating time 

facilitated the preparation of large CdSe QDs. We synthesized a series of QDs of different 

emission colors including green, yellow and red. The emission spectra are shown in figure 3.8 

(A).  Figure 3.8 (B) shows photographs of CdSe QDs of different size. The upper row is the 

image of the QDs when irradiated with room light. The lower photograph shows the emission 

colors of the QDs when irradiated with UV light. The CdSe-ZnS QDs were brightly luminescent, 

which is important in biological labeling applications. 

 

 

 

 

 

Fig.3.8 (A) a Series of emission spectra of CdSe QDs synthesized through CdO-TOPO route. (B)
Images of CdSe QDs at room light (upper row) and under UV lamp irradiation (lower row) 
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Transmission electron microscope image- QDs synthesized in TOPO media showed 

high crystallinity. Figure 3.9 shows TEM images of green and red emission QDs. The green 

emission QDs are about 3 nm and the red emission QDs are about 6 nm in diameter. 

 

 

 

 

 

Summary- CdSe QDs synthesized in TOPO media were highly crystalline and their 

emission was size-dependent. By controlling the experimental conditions, green, yellow and red 

emission QDs were synthesized. The quantum yield was as high as 70% for green emission QDs 

and 50% for red emission QDs compared to Rhodamine 6G. By capping the CdSe core with a 

layer of high energy band gap ZnS shell, the stability of CdSe QDs towards the environment was 

improved. The QDs kept their strong emission after stored at room temperature for more than 

one year. The CdSe and CdSe-ZnS QDs synthesized in TOP/TOPO media were capped by the 

surfactant TOPO. Therefore they were only soluble in organic solvents like hexane and 

chloroform. To apply these high quality QDs in biological systems, they must be transferred 

Fig. 3.9. TEM images of CdSe QDs synthesized in TOPO media. (A) green emission QDs
, the scale bar is 10 nm.  (B) red emission QDs, the scale bar is 20 nm. 

A 
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from organic media to aqueous solution. Several methods to prepare water miscible QDs were 

reported. One method was based on coating the QDs surface with a thin silica layer. The silica 

layer provided the water compatibility of the QDs and also offered binding sites for further 

functionalization (90). This method was used to prepare highly stabe water soluble QDs. Another 

method was based on binding ligands containing thiol groups, such as mercaptoacetic acid or 

thioglycerol, onto the surface of CdSe-ZnS QDs in chloroform. An aqueous phosphate buffer 

saline (PBS) solution(pH 7.4) was added to this reaction mixture to extract the ligand capped 

QDs (72). This method was simpler than the first procedure, however the stability of water 

soluble QDs was poor. The QDs precipitated in one week due to hydrolysis or oxidation of the 

capping ligand. Peng et al. (49) developed a method to transfer the QDs to aqueous solution by 

refluxing the QDs with 11-Mercaptoundecanoic acid in methanol solution. The water soluble 

QDs prepared through this method were stable for months without significant aggregation(91). 

In our laboratory, the QDs were transferred to aqueous solution by capping the surface of QDs 

with thioglycerol. After transferring to aqueous solution, the QDs were still highly luminescent. 

Other thiol group containing molecules, such as mercaptoacetic acid and mercaptosuccinic acid 

could also be grafted on the surface of the QDs based on the same procedure. The surface bound 

carboxylic groups could be used  for subsequent conjugation of biomolecules to the QDs.  

 

 

3.2 Luminescent Semiconductor CdS QDs as Selective Ion Probes 

 3.2.1 Introduction. Semiconductor QDs have generated great research interest in the past two 

decades. Many studies in this area focus on the development of new techniques to synthesize 

high-quality QDs with high-luminescence quantum yield and to measure their photophysical 
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properties in organic and aqueous media (92-96) . The effect of ionic species on the 

luminescence of QDs was also studied. For example, Henglein et al. (66)  showed that cadmium 

ions increase the luminescence quantum yield of CdS nanoparticles by about 50% in basic 

solution. This effect was attributed to the formation of a Cd(OH)2 shell on the CdS core, which 

effectively eliminates the nonradiation recombination of charge carriers. A similar activation 

effect was also observed when zinc and manganese ions were added to basic CdS or ZnS colloid 

solutions(97-98). Weller et al. (99) showed that the emission quantum yield of CdTe 

nanocrystals stabilized by thioglycolic acid increases with decreasing pH levels. Another study 

by Kotov et al. (100) showed that binding MoS4- to the surface of CdS nanoparticles induces a 

red-shift of their excitonic absorption and emission bands as a result of electronic interaction 

between the anions and CdS nanoparticles. Besides the activation effect mentioned above, some 

species quench the luminescence of semiconductor nanoparticles. I- (101) dications of methyl 

viologen (MV2+), tungsten phosphoric heteropolyacid (PW12) (102), and some of neutral organic 

molecules, such as butylamine (103-104), and benzyl alcohol (105) effectively quench the 

emission of CdS or CdSe QDs. Copper ions quench the emission of CdS QDs by forming either 

CuxS (x = 1,2) precipitate on the surface of CdS QDs or isolated Cu+ on CdS QDs, as proposed 

by Isarov et al. (106-107). These studies reveal that the luminescence of QDs is sensitive to their 

surface states. For particles only 1 nm or less in diameter, nearly 100% of the atoms are surface 

atoms, and no core atoms exist. Thus, it is reasonable to expect that ionic interactions with the 

surface of luminescent QDs would change their photophysical properties (108).  

In the current study, we were able to alter the selectivity of luminescent QDs to certain 

ions by changing the capping layer of the QDs. The selectivity of luminescent CdS QDs was 

switched between zinc and copper ions, depending on their capping layer. Although various 
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fluorescence sensors for copper ions based on organic dyes were previously developed (109-

114), these sensors respond to some degree to other divalent cations, particularly zinc ions. This 

chapter discusses the analytical properties of the luminescent-QDs-based probes and points to 

future directions in their further development and application in ion analysis in volume-limited 

biological samples and single cells. The effect of pH, concentration of oxygen and temperature 

on the emission of thioglycerol capped CdS QDs are also investigated. 

 

3.2.2 Specific experimental details 

Materials and reagents. L-Cysteine, cadmium acetate hydrate, cadmium nitrate 

tetrahydrate, sodium polyphosphate, sodium sulfide nonanhydrate, 1-thioglycerol, N,N-dimethyl 

formamide, copper nitrate, zinc sulfate heptahydrate, iron (III) nitrate nonahydrate, sodium 

chloride, potassium chloride, calcium chloride dihydrate, magnesium sulfate, magnesium 

chloride hexahydrate, manganese (II) chloride tetrahydrate, and cobalt (II) nitrate hexahydrate 

were purchased from Aldrich and used as received without further purification. Phen Green FL, 

N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ) were obtained from Molecular Probes.  

Synthesis of polyphosphate capped CdS QDs- Polyphosphate-capped CdS QDs were 

synthesized as follows: 0.2 mmol of Cd(NO3)2 and 0.4 mmol of sodium polyphosphate were 

dissolved in 200 mL of deionized water in a 250-mL three-neck flask. The pH was adjusted to 

9.0 with a 1.0 M NaOH solution. A 0.2-mmol portion of Na2S dissolved in 10 mL water was 

added into the Cd2+ solution through a syringe pump at a flow rate of 0.5 mL/min. The reaction 

mixture was refluxed while boiling under nitrogen atmosphere for 10 h to obtain bright yellow 

CdS QDs. The CdS QDs colloid solution was condensed to ~20 mL by solvent evaporation and 
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then dialyzed against deionized water with a membrane (MWCO 1000) for 4 h. Dialysis was 

used to purify the polyphosphate-capped CdS QDs rather then precipitation and subsequent 

washings that are frequently used to purify quantum dots due to difficulties in redispersing 

precipitated polyphosphate-capped CdS QDs in aqueous solution following precipitation. The 

dialyzed CdS QDs were diluted in a 100-mL 0.05 M Tris-HCl buffer solution at pH 7.2. The 

concentration of particles was calculated on the basis of an estimated molar absorption 

coefficient of 2 × 104 M-1 cm-1(29). The final concentration of polyphosphate-capped CdS QDs 

was ~150 × 10–6 M. This solution was used as a stock solution. Aliquot solutions were used for 

ion response measurements.  

Synthesis of L-cysteine capped CdS QDs- A 0.2 mmol portion of Cd(NO3)2 and 0.2 

mmol of L-cysteine (0.2 mmol) were dissolved in 200 mL of deionized water and purged with 

pure nitrogen gas for at least 60 min under magnetic stirring. A 0.2-mmol portion of Na2S 

dissolved in 10 mL water was added to the solution using a syringe pump at a flow rate of 0.5 

mL/minute. The L-cysteine-capped CdS QDs solution was refluxed while boiling for 10 h under 

N2 atmosphere. The solution was then condensed by solvent evaporation to 20 mL. Ethanol was 

used to precipitate the CdS QDs. The cysteine-capped CdS QDs precipitate was treated with 

three repeated cycles of precipitation by ethanol, washing, and redispersion to remove 

contaminants. The luminescent L-cysteine-capped CdS QDs were then resuspended in a 100-mL 

0.05 M Tris-HCl buffer solution at pH 7.2. The concentration of particles was estimated to be 

150 µM. Aliquot solutions were used for ion response measurements.  

Synthesis of thioglycerol capped CdS QDs- Thioglycerol-capped CdS QDs were 

synthesized following a method suggested by Vossmeyer et al. (29) with slight modifications. A 

0.2-mmol portion of cadmium acetate hydrate and 0.5 mmol of 1-thioglycerol were dissolved in 



 

 

34

50 mL of N,N-dimethylformamide in a 100-mL three-neck flask. After stirring the solution under 

N2 atmosphere for 60 min, 0.3 mmol of sodium sulfide dissolved in 8 mL of deionized water was 

added to the flask using a syringe pump at a flow rate of 0.5 mL/min. Subsequently, the solution 

was heated to boiling and kept under reflux for 10 h under N2 atmosphere. The refluxed solution 

was condensed to ~20 mL, and absolute ethanol was added to precipitate the thioglycerol-capped 

CdS QDs. The thioglycerol-capped CdS QDs precipitate was treated with three repeated cycles 

of precipitation by ethanol, washing, and redispersion to remove contaminants. The luminescent 

thioglycerol-capped CdS QDs were finally resuspended in 100 mL of 0.05 M Tris-HCl buffer 

solution at pH 7.2. The concentration of CdS QDs was estimated to be 150 µM. Aliquot 

solutions were used for ion response measurements.  

Photostability measurements- Photostability studies of L-cysteine and thioglycerol-

capped CdS QDs and the organic dyes N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ) 

(zinc ion-sensitive) and Phen Green FL (copper ion-sensitive) were conducted in a Suntest CPS 

box (Atlas Material Testing Solutions). The irradiation wavelength range was 300-800 nm, and 

the lamp power was set to 400 W/m2. Stock solutions (20 mL) of L-cysteine and thioglycerol-

capped CdS QDs in a 0.05 M Tris-HCl buffer (pH = 7.2), 20 mL of 2 µM TSQ ethanol solution, 

and 20 mL of 2 µM Phen Green FL aqueous solution were placed in the chamber for light 

irradiation. Aliquot solutions were taken periodically for emission intensity measurements.  

 

3.2.3 Results 

Synthesis and characterization of CdS QDs- The emission spectra of CdS QDs capped 

with L-cysteine, thioglycerol, and polyphosphate are shown in Figure 3.10. The emission  
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maxim of L-cysteine, thioglycerol, and polyphosphate-capped CdS QDs are observed at 

460, 560, and 650 nm, respectively. The strong red-shift of polyphosphate-capped CdS QDs was 

previously observed by Lakowicz et al.(101) who discussed the potential of these particles as red 

luminescent probes in biological samples. Henglein et al. previously established the relation 

between the absorption threshold of luminescent quantum dots and their diameters (66). 

Typically, the emission maximum is shifted to longer wavelengths with increasing particle 

diameter. On the basis of the empirical dependence proposed by Hengelein, the diameter of our 

L-cysteine, thioglycerol, and polyphosphate-capped CdS QDs are 3, 3.5, and 5 nm, respectively. 

These results are in agreement with previous studies that showed that the final size of the grown 

luminescent QDs depends largely on the ligand used to define the boundaries of the nanometric 

volume used for crystal growth (115). Although the emission peak wavelength depends largely 

Fig. 3.10 Emission spectra of L-cysteine (a), thioglycerol(b) and polyphosphate(c) 
capped CdS QDs. The   excitation wavelength is 400nm 
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on the diameter of the particles, it is also affected by their surface states. Surface defects often 

deteriorate the relation between the band-gap emission and the particle size. Particles with a 

large number of surface defects show broad and weak emissions, and their emission peaks are 

often red-shifted. To enhance the band-gap emission, a shell with higher band-gap energy is 

usually used to coat the surface of the luminescent QDs. For example, ZnS capping has been 

used frequently to enhance the luminescence of CdS and CdSe QDs. When compared to the 

emission spectra of QDs synthesized in trioctylphosphine oxide (TOPO) at an elevated 

temperature, QDs synthesized in aqueous solution generally show wider emission peaks. This 

suggests that the particles contain a larger number of surface defects. It can be seen that the full 

width at half-maximum (fwhm) of the particles we synthesize in aqueous solution is ~100 nm, 

which is 3-4 times wider than the emission peaks of luminescent QDs synthesized in TOPO at 

elevated temperature. Although transmission electron microscopy (TEM) images of our QDs are 

in general agreement with the diameter estimated from the emission spectra, the images (not 

shown) show a variation of up to 50% in the diameter of the particles. This is very typical of 

QDs obtained through synthetic routes in aqueous media. It should be mentioned that although 

sharper emission spectra are important in applications involving a multiple number of emission 

peaks of QDs, they are not imperative for ion response studies that are based on single emission 

peaks.  

Effect of capping ligands on the luminescence response of CdS QDs to metal cations- 

The effect of the capping ligands polyphosphate, L-cysteine, and thioglycerol on the response of 

the CdS QDs to 100µ M levels of zinc and copper ions is shown in Figure 3.2 A (polyphosphate 

capping), B (L-cysteine capping), and C (thioglycerol capping). Figure 3.2 A shows that the 

luminescence intensity of polyphosphate-capped CdS QDs decreases by 40 and 25% in solutions 



 

 

37

containing 100 µM of copper and zinc ions, as compared to the emission of these QDs in an ion-

free solution. Figure 3.11 B shows that the luminescence intensity of L-cysteine-capped QDs 

increases by 2-fold in a solution containing 100-µM zinc ions. These same QDs show a minimal 

response to the same level of copper ions in the analyte sample. Figure 3.2 C shows that the 

luminescence intensity of thioglycerol-capped CdS QDs remains unchanged in a 100 µM zinc 

ion solution. The luminescence of these QDs is quenched by 30% in a solution containing 100 

µM copper ions. To better understand the selectivity of L-cysteine- and thioglycerol-capped CdS 

QDs toward zinc and copper ions, we compared their corresponding ion response with their 

response to other biologically relevant ionic species. The response of L-cysteine- and 

thioglycerol-capped CdS QDs to 1 mM levels of biologically relevant ions is shown in Figure 

3.12 A and B, respectively. The  

 

Fig. 3.11. Effects of 100 µM of zinc ions and copper ions on the luminescence of CdS
QDs capped with different ligands. (A) Polyphosphate-capped CdS QDs showing no
selectivity to copper and zinc ions: (a) ion-free sample; (b) 100 µM zinc ions; and (c)
100 µM copper ions. (B) L-Cysteine-capped CdS QDs showing selective response to
zinc ions: (a) 100 µM zinc ions; (b) ion-free sample; and (c) 100 µM copper ions. (C)
Thioglycerol-capped CdS QDs showing selective response to copper ions: (a) ion-free
sample; (b) 100 µM zinc ions; and (c) 100µ M copper ions. 
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luminescence intensity of L-cysteine capped CdS QDs is minimally affected by copper, 

calcium, and magnesium ions. The luminescence of these QDs increases by ~2-fold in a 1 mM 

zinc ion solution. It should be noted that Zn(OH)2 is not formed when mixing Tris-HCl (pH = 

7.2) buffer solution with zinc ions, even at millimolar concentrations. Thus, we believe that the 

activation of the QDs is not due to the formation of Zn(OH)2 on their surface. The luminescence 

increase is rather attributed to the formation of a zinc-cysteine complex on the surface of the 

QDs. A digital luminescence image of a 100 µM L-cysteine-capped CdS QDs in a 100 µM zinc 

ion solution is shown in Figure 3.13. Aggregates of CdS QDs formed after 10 min of mixing are 

clearly observed. These aggregates are formed at relatively high zinc ion and QDs concentrations 

by zinc ions that bridge between L-cysteine-capped CdS QDs to form a three-dimensional CdS 

QDs network. Other bivalent cations, such as calcium and magnesium ions, do not initiate such 

aggregate formation. Zinc ions do not induce aggregation of thioglycerol- or polyphosphate-

capped CdS QDs. In addition, the aggregation of the L-cysteine-capped CdS QDS does not take 

Fig. 3. 12 Effect of 1 mM biologically relevant ions on the luminescence of (A) L-cysteine and 
(B) thioglycerol-capped CdS QDs. 
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place in a zinc ion-free solution. These observations support our claim that the interaction 

between zinc ions and the L-cysteine capping of the QDs is the basis for the selectivity of L-

cysteine-capped QDs toward zinc ions.  

 

 

 

 

 

 

 

 

Figure 3.12 B shows that the luminescence intensity of thioglycerol-capped CdS QDs is 

insensitive to zinc and other cations at a level of 1 mM. Only copper and iron ions quench the 

luminescence of these QDs. The effective quenching and red-shift of the luminescence of 

thioglycerol-capped CdS QDs in response to copper ions is attributed to effective electron 

transfer from the thioglycerol to the copper ions. The reduction of Cu2+ to Cu+ by thioglycerol 

forms CdS+-Cu+ species on the surface of the QDs. Isarov et al. (106) demonstrated that CdS+-

Cu+ has a lower energy level than pure CdS QDs. This new energy state is responsible for the 

red-shift of the luminescence of CdS QDs from 560 to 610 nm in our experiments. Moreover, 

Cu+ effectively quenches the luminescence of thioglycerol-capped CdS QDs by facilitating 

Fig 3.13. Luminescence image of 100 µM L-cysteine-capped CdS QDs clusters mediated by a
15-min exposure of the QDs to a solution containing 100 µM zinc ions. The scale bar is 20 µM.
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nonradiative recombination of excited electrons (e-) in the conduction band and holes (h+) in the 

valence band. The unique ability of thioglycerol to reduce copper ions may explain the selective 

response of thioglycerol-capped CdS QDs toward copper ions. The quenching effect of Fe3+ on 

the luminescence of L-cysteine and thioglycerol-capped CdS QDs is attributed to an inner filter 

resulting from the strong absorption of the excitation wavelength by Fe3+. The transmission of a 

Tris-HCl pH 7.2 buffer solution containing 1 mM of Fe3+ at 400 nm (the excitation wavelength 

of our QDs) is only ~10%. Forming the colorless complex FeF6
3- by adding fluoride ion to the 

solution eliminates this inner filter effect. Figure 3.14 Showed in the presence of 1 mM of F- 

ions, the inner filter effect was effectively eliminated. The emission of thioglycerol capped CdS 

QDs did not quench by iron ions. 

 

Fig. 3.14 After formation of colorless FeF6
3- complex, Fe3+ ions have no inner filter

effect to the excitation irradiation. The emission of thioglycerol capped CdS QDs is
insensitive to FeF6

3-. [Fe3+] = 0,100µM, 500µM. 
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Ion analysis properties of L-cysteine and thioglycerol capped CdS QDs- The zinc ion 

concentration dependence of the luminescence intensity of L-cysteine-capped CdS QDs is shown 

in Figure 3.15. Curve 3.15 A shows that the emission intensity of L-cysteine-capped CdS QDs 

increases sharply in response to zinc ions. The dynamic range is up to 20 µM, and the detection 

limit is ~0.8 µM. The estimated standard deviation for five replicate measurements of a solution 

containing 10 µM zinc ions is 0.18. Therefore the luminescent intensity of individual 

measurement at 10 µM of zinc ions was within I ± 3×0.18 with  99% confidence level (where I 

was the average luminescent intensity). The errors were labeled on the figures as error bars. The 

concentration dependence of the luminescence intensity follows the binding of zinc ions to the 

surface of the L-cysteine-capped CdS QDs and is effectively described by a Langmuir-type  

 

 

 

 

Fig. 3.15 (A). Effects of zinc ion concentration on the luminescence of L-cysteine-capped
CdS QDs showing increasing emission with increasing zinc ion concentrations. (B)
Langmuir binding isotherm description of the data showing a linear fit throughout the zinc
ion concentration range, with a binding constant of 0.89 and a correlation coefficient
>0.99. 
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binding isotherm (116). The luminescence intensity increases with increasing zinc ion 

concentrations, but then levels off with the decreasing availability of binding sites. According to 

Langmuir, the surface of the quantum dots consists of a finite number of binding sites. Each of 

the binding sites could absorb one ion from the solution. The fraction of occupied sites is defined 

as θ. The rate of binding of ions to the surface is proportional to the ion concentration C in the 

analyte solution and to the fraction of available binding sites 1 -θ. The rate of binding, Rb, of ions 

to the surface is expressed as 

 

Rb = KbC(1 – θ)                    (1) 

 

The rate of desorption of bound ions from the surface depends only on the fraction of occupied 

binding sites and is expressed as 

 

Rd = Kd  θ                           (2) 

 

The rate of binding is equal to the rate of desorption at equilibrium 

 

Kd θ = Kb C (1- θ)                  (3) 

 

The equation can be solved for θ as a function of the ratio B = Kb/Kd. 

 

θ = (BC) / (1 + BC)              (4) 
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The fraction of occupied binding sites, θ, is related to the ratio between the signal obtained at a 

given ion concentration I and the maximum intensity Imax.  

 

θ = I / Imax                                 (5) 

 

Therefore an expression that relates the ion concentration, C, to the signal intensity can be 

written as 

I/Imax = (BC)/ (1+ BC)                (6) 

 

This equation could be linearized to take the form  

 

C/I = (1/BImax) + (1/Imax) C          (7) 

 

Accordingly, if the Langmuir description of the binding of zinc ions on the surface of the L-

cysteine-capped CdS QDs is correct, a plot of C/I as a function of C should be linear. The 

dependence of C/I as function of C, where C is the zinc ion concentration and I is the 

luminescence intensity of the L-cysteine-capped CdS QDs at given zinc ion concentrations, is 

shown in Figure 3.6 (B). Based on the principle of propagation of error, the estimated standard 

deviation of C/I (assuming C was a constant) was: 

 

SC/I =C / I2 * SI                           (8) 

 



 

 

44

where SC/I was the standard deviation of C/I; SI was the standard deviation of the intensity at zinc 

concentration of C. When zinc concentration C = 20 µM, the standard deviation of C/I was 

calculated to be 0.035. A very high linearity is observed throughout the entire range of zinc ion 

concentration. The binding constant B is found to be 0.89, and the correlation coefficient of the 

linear fit is higher than 0.99. The remarkable Langmuirian fit suggests that the probability of 

binding more than one ion to the surface of an individual QDs, which is imperative for 

aggregation or a non-Langmuir binding isotherm due to island formation, is negligible under our 

experimental conditions. It should be mentioned that the luminescence of the cysteine-capped 

CdS QDs was measured a few seconds after adding the zinc ions to the sample. As previously 

described, zinc ions induce aggregation of the QDs in a slow process that takes over 10 min and 

requires high concentrations of zinc ions and L-cysteine-capped CdS QDs to complete. 

Deviations from the Langmuir behavior could occur as a result of aggregation or islanding of the 

QDs during ion exposure. The submicromolar zinc ion sensitivity realized in our L-cysteine-

capped QDs might not be sufficient for quantitative zinc ion release measurements and 

intracellular analysis of zinc ions in single cells (117). It is, however, sufficient to follow in real 

time the kinetics of the release of zinc ions from zinc ion-containing neuronal vesicles. These 

vesicles contain up to millimolar levels of zinc ions (118). 

 

Figure 3.16 (A) describes the copper ion concentration dependence of the luminescence 

intensity of thioglycerol-capped CdS QDs. It can be seen that the luminescence intensity 

decreases with increasing copper ion concentration. Furthermore, a red-shift of ~50 nm is 

observed with increasing copper ion concentration. As previously mentioned, this red-shift 

indicates the formation of CuS+ on the surface of the QDs. The luminescence intensity of the 
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thioglycerol-capped CdS QDs in a 1.6 mM copper ion solution at 560 nm is 7 times lower than 

their luminescence intensity in a copper ion-free solution. The estimated standard deviation for 

five replicate measurements of a solution containing 1 µM copper ions was 0.054. The real value 

of the measurement was within I ± 3× 0.054 with 99% confidence level (I was the average 

intensity at 1 µM of copper ion). The response time of the thioglycerol-capped CdS QDs to 25 

µM Cu2+ was <1 s. An attempt to fit a Langmuir-type binding model to describe the copper ion 

concentration dependence of the luminescence intensity of the thioglycerol-capped CdS QDs has 

failed. We found that copper ions quench the luminescence of the QDs in a concentration 

dependence that is best described by a Stern-Volmer-type equation: 

 

Imax / I = 1 + Ksv[Q]                         (9) 

 

I and Imax are the luminescence intensities of the thioglycerol-capped CdS QDs at a given copper 

ion concentration and in a copper ion-free solution. Q is the copper ion concentration. Figure 3.7 

B shows a Stern-Volmer quenching curve describing Imax/I as a function of copper ion 

concentration. Ksv is found to be 2800 M - 1. Since the estimated standard deviation of five 

replicate measurement at 1 µM copper ion concentration was 0.048, based on propagation of 

error, the estimated standard deviation of Y= Imax/I could be calculated using the equation:  

 

Sy
2 =(Smax

2/I2 + Imax *SI
2 /I4)                  (10) 

 

where Sy was estimated standard deviation of  Imax/I ; Smax and SI were the estimated standard 

deviation of Imax and I.   
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When copper ion concentration was 500 µM, the estimated standard error of Imax/I was 

calculated to be 0.047. However, conversely to typical Stern-Volmer quenching behavior, which 

is driven by collisions between quencher and luminescent molecules, the quenching of the 

luminescence of the QDs is attributed to ion binding followed by a redox reaction on the surface 

of the QDs. This results in a nonreversible luminescence quenching similar to the one observed 

when antibodies against fluorescence dyes such as fluorescein, rhodamine, and Texas Red bind 

to their corresponding antigens (119). Since the response of the CdS QDs to copper ions is not 

reversible, they cannot be used for real-time monitoring of large ion waves. Nevertheless the 

large dynamic range enables multiple determinations of copper ion concentrations in diluted 

copper ion solutions.  
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Figure 3.16 (A) Effect of copper ion concentration on the luminescence of thioglycerol-
capped CdS QDs showing that copper ions quench the emission of the thioglycerol-
capped CdS QDs. (B) A Stern-Volmer plot effectively describes the copper ion
concentration dependence of the luminescence intensity of the thioglycerol-capped CdS
QDs with a Stern-Volmer constant Ksv = 2800 M-1. 
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Photostability of L-cysteine and thioglycerol capped CdS QDs- Similarly to organic 

fluorophors, the luminescence of L-cysteine and thioglycerol-capped CdS QDs decreases when 

continuously irradiated by light with a wavelength from 300 to 800 nm (400 W/cm2). However, 

they are still more photostable than organic dyes commonly used for zinc and copper ion 

fluorescence detection. Figure 3.17 (A) shows a comparison between the photostability of L-

cysteine-capped CdS QDs and 2 µM N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ), a 

commonly used zinc ion indicator. The QDs solution was diluted to obtain an emission intensity 

similar to that of the 2 µM TSQ solution. The luminescence of the TSQ ethanol solution 

decreased by about 90% when irradiated for 60 min. Conversely, the emission of L-cysteine-

capped CdS QDs decreased by only 30% under similar illumination conditions. Figure 3.8 (B) 

describes the luminescence intensity of thioglycerol-capped CdS QDs and 2 µM Phen Green FL, 

a commonly used copper ion  
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Fig. 3.17 Photodecomposition rate of L-cysteine- and thioglycerol-capped CdS QDs and
fluorescence dyes: A) photodecomposition curves of L-cysteine-capped CdS QDs and the
zinc-sensitive organic dye TSQ, and (B) photodecomposition curves of thioglycerol-capped
CdS QDs and the copper ion-sensitive dye Phen Green FL 
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fluorescence indicator. Again, the QDs solution was diluted to obtain an emission intensity 

similar to that of the 2 µM Phen Green FL solution. The luminescence intensity of the 

thioglycerol-capped CdS QDs decreased by ~20%, whereas the fluorescence intensity of Phen 

Green FL decreased by nearly 80% following 20 min of irradiation. Peng and co-workers 

recently attributed the photochemical relative instability of thiol-coated CdSe nanocrystals to 

photocatalytic oxidation of the thiol ligands on the surface of their surface (72). It is probable 

that the limited photodecomposition of our thioglycerol-capped CdS QDs was caused by a 

similar oxidation process.  

 

Effect of pH, O2 and temperature on thioglycerol capped CdS QDs - The effect of the 

pH on the emission intensity of thioglycerol capped CdS QDs is shown in figure 3. 18(A). The 

emission of thioglycerol capped CdS QDs in a solution of pH 7.2 is 34% higher than the 

luminescence of the same solution at pH 8.0. Molecular oxygen is an effective quencher of the 

fluorescence of organic dyes. As shown in figure 3.19 (B), it also quenches the emission of 

thioglycerol capped CdS QDs. The emission intensity of a nitrogen saturated thioglycerol capped 

CdS QDs solution is 20% higher than the emission intensity of thioglycerol capped CdS QDs in 

an air-saturated solution and 70% higher than the emission intensity of thioglycerol capped CdS 

QDs in a oxygen saturated solution. Similarly to quenching of organic fluorophors by oxygen the 

quenching of thioglycerol capped CdS QDs is also reversible. The emission intensity is restored 

to its air saturated level when N2 or O2 saturated solutions are exposed to air for about 10 

minutes. The luminescence of the thioglycerol capped CdS QDs is also temperature dependent. 

Figure 3.19 shows that the emission intensity decreases with increasing temperature.  Bavykin et 

al. (105) recently attributed this effect to increasing efficiency of nonradiative deactivation 
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processes with increasing temperature. To eliminate the effect of pH, O2 and temperature on the 

luminescence of thioglycerol capped CdS QDs, our Cu2+ measurements were conducted in a 

Tris-HCl buffer solution at pH 7.2 at room temperature and ambient atmosphere. 
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Fig. 3.18.  (A) Influence of pH and O2 on the luminescence of thioglycerol capped CdS
QDs. (a) pH=3.0, (b) pH=7.2, (c) pH = 8.0.  Influence of O2 on the luminescence of
thioglycerol capped CdS QDs. (B) (a) N2 saturated (b) air saturated and (c) O2 saturated. O2
has a significant quenching effect on the luminescence of thioglycerol capped CdS QDs 

Fig.3.19.  Influence of temperature on the luminescence of thioglycerol capped CdS QDs.
(a) 277 K, (b) room temperature, (c) 323 K. The luminescence is weak at higher
temperature, and the intensity change is reversible 
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3.2.4 Summary  

Luminescent semiconductor QDs have been used as luminescent labels in cellular biology 

applications. These luminescent nanocrystals are an attractive alternative to fluorescent particles 

containing organic fluorophors because of their higher photo- and chemical stability in biological 

systems, narrow spectral bandwidth, and wide range of emission colors. To date, luminescent 

QDs have been applied in biological systems only as luminescent labels. This paper describes for 

the first time the quantitative application of luminescent semiconductor QDs in ion analysis. The 

effect of three different ligands on the luminescence response of CdS QDs to biologically 

important ions was investigated. L-Cysteine-capped CdS QDs show a selective response to zinc 

ions and have minimal or no response to other cations. A Langmuir-type binding model is highly 

effective in describing the zinc ion concentration dependence of the luminescence intensity of 

the L-cysteine-capped CdS QDs. Thioglycerol-capped CdS QDs show high sensitivity and high 

selectivity toward copper ions. Other cations do not interfere with copper ion analysis. A Stern-

Volmer equation effectively describes the copper ion concentration dependence of the 

luminescence intensity of the thioglycerol-capped CdS QDs. The insensitivity of the 

thioglycerol-capped CdS QDs to zinc ions is of particular importance, since zinc and copper ions 

elucidate an interfering response from fluorescent organic indicators. One should also be aware 

of inter filter effects that may interfere with zinc or copper ion analysis. For example, iron (III) 

interferes strongly with zinc and copper ion analysis due to the large absorption coefficient in the 

excitation wavelength range used in our measurements (~400 nm). Adding F- ions to the sample 

to form the colorless complex FeF6
3- eliminates this inner filter effect. The selectivity, sensitivity 

and limit of the detection of the L-cysteine and thioglycerol-capped CdS QDs enable the 

measurement of zinc and copper ion concentrations in biological samples. However, several 
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problems still need to be solved before luminescent QDs can be employed to analyze ion levels 

in biological samples and single cells. Because of the large number of possible interfering agents, 

there is a clear need to coat the luminescent QDs with a protective layer that would not only be 

permeable to the analyte of interest but would also protect the QDs core from interfering 

substances. The signal-to-noise ratio in microscopy measurements needs to be improved to 

facilitate ion binding measurements at the individual QD level. The use of laser-based 

microscopy systems may enable such measurements. Another possibility is to create organized 

nanometric clusters of QDs to yield larger emission signals. Since QDs tend to aggregate in 

solutions containing high salt levels, there is also a need to ensure that the capping ligands of the 

QDs can prevent their aggregation in physiological buffers. Current studies in our laboratory are 

focused on eliminating interference by blood components that largely absorb light at 400 nm. We 

are now preparing ligand-capped CdSe QDs with an excitation wavelength of about 480 nm, 

which is more suitable for blood analysis. We are also developing QDs with increased sensitivity 

toward zinc ions. In the new QDs, the L-cysteine capping ligand is replaced with a zinc ion 

binding peptide to increase the binding constant between zinc ions and the CdSe QDs. This may 

enable the use of the zinc ion-sensitive QDs for real-time zinc ion release measurements in single 

neuron cells.  

 

3.2 Quantum Dots Nanoassemblies and Their Application as Bioprobes 

This section describes three novel methods to encapsulate CdSe QDs in nanospheres 

including glyconanospheres, micelles and silica nanospheres and their application as bioprobes 

in immunoassay. 

3.3.1 Stabilized luminescent CdS-ZnS QDs encapsulated glyconanospheres 
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3.3.1.1  Introduction 

Incorporation of luminescent semiconductor QDs into nanospheres has been explored as a 

way to prepare bright biological labels and functional composite luminescent materials. For 

example, Barbara-Guillem (120) successfully encapsulated luminescent CdSe QDs and other 

metal oxide nanocrystals in nanometric liposomes for potential biological labeling applications. 

Rogach et al. (121) encapsulated CdSe QDs in 40-80 nm silica nanospheres and proposed to use 

them as building blocks to form 3D colloid crystal microstructures. Moffitt et al. (122) 

encapsulated CdS QDs in water-soluble block copolymers to form large compound micelles 

(LCM) that averaged 65 nm in diameter.  In another study, Han et al. (84) doped 1.2 µm 

polystyrene microspheres with ZnS-coated CdSe QDs of several emission colors. The particles 

were used for multiplex optical coding in DNA hybridization assays. The encapsulated QDs 

showed even narrower emission spectra compared to free QDs. While QD-doped polymer 

particles of micrometric dimensions have found use in various bioanalytical applications there is 

still a need for composite nanometric structures of QDs. For example, spheres of nanometric 

dimensions would be more suitable for cytoplasmic intracellular measurements because 

nanometric particles could escape endocytosis with higher efficiency. Furthermore, composite 

materials of nanometric dimensions would provide higher spatial resolution and could be 

directed to volume-limited samples such as dendrites of neuron cells. Common disadvantages of 

these structures have been their lack of surface functional groups that are suitable for further 

bioconjugation and limited chemical stability and biocompatibility. Here, we describe for the 

first time the development of CdSe-ZnS QD incorporated luminescent glyconanospheres that are 

suitable for bimolecular conjugation while maintaining the high emission quantum yield of the 

QDs. The glyconanospheres contain dextran molecules on their surface that interact strongly 
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with carbohydrate binding proteins (CBP). These novel glyconanospheres could be used for real-

time monitoring of protein carbohydrate interactions.  

The basis for the preparation of the glyconanospheres is electrostatic interaction. 

Electrostatic interactions of polyelectrolytes have been widely applied in layer-by-layer 

procedures to prepare thin films since Decher et al. introduced this unique technique in the early 

1990s (123-124). Using this technique, Anai et al. (125) successfully incorporated the highly 

charged protein avidin into a thin film and used it to immobilize biotinylated molecules. Caruso 

et al. (126) immobilized enzymes on the surface of polystyrene microspheres to fabricate 

micrometric biocatalyst carriers using the same layer-by-layer approach. Goldman et al. (83) 

prepared bioinorganic conjugates by using negatively charged CdSe-ZnS QDs and positively 

charged avidin. They used these new particles for luminescence immunoassay applications. In 

their study, the concentrations of QDs and avidin were limited to minimize aggregation due to 

electrostatic attractions. In the current study we use electrostatic interactions to incorporate 

negatively charged CdSe-ZnS QDs into luminescent nanospheres that contain polysaccharides on 

their surface. While DNA and protein molecules were already conjugated to luminescent 

semiconductor QDs (127-128). we demonstrate for the first time the synthesis of QD-

polysaccharide nanocomposites. 

 

3.3.1.2 Specific experimental details.  

Materials- mercaptosuccinic acid, trioctylphosphine oxide, trioctylphosphine, dextran, 

chloroacetic acid, cadmium oxide, lauric acid, diethyl zinc (0.1M solution in heptane), 
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hexamethyldisilanthiane were purchased from Aldrich and used as received without further 

purification. 

 Synthesis water soluble CdSe-ZnS QDs- Water soluble mercaptosuccinic acid capped 

CdSe-ZnS QDs were synthesized based on the procedure described in chapter two. 

Synthesis of carboxymethyldextran (CM-dextran)- Carboxymethyldextran (CM-

dextran) was prepared by mixing 100 mg dextran with a molecular weight of 10 000 Da with 200 

mg chloroacetic acid in a 6N NaOH alkaline solution at 60 C for 1 h following a procedure 

first suggested by Rebizak et al.(129). The CM-dextran solution was neutralized by titrating HCl 

following dialysis in pure water overnight. 

Preparation of the luminescent glyconanospheres- 300 µL aqueous solution of 500 µM 

CM-dextran was mixed with 120 µL aqueous solution of 0.19 µM mercaptosuccinic acid 

modified CdSe-ZnS QDs. The concentration of the CdSe-ZnS QDs was calculated using 

molecular extinction coefficients previously reported by Striolo et al. of 1.1 × 106 M-1 cm-1 for 3 

nm sized CdSe-ZnS QDs and 1.22 × 106 M-1 cm-1 for 6 nm sized CdSe-ZnS QDs (130). Then, 

120 µL of 10 µM polylysine in a pH 7.0 phosphate buffer solution was added to the CM-dextran 

and QD containing solution. The reaction mixture was incubated at room temperature for 30 min. 

The newly formed glyconanospheres were washed three times using centrifugation at 4500 rpm 

for 15 min to remove unreacted QDs and CM-dextran. 
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3.3.1.3 Results  

Choose of the precursors- Three precursors are used to prepare the QDs doped  

 

 

 

 

glyconanospheres. Their structures are shown in figure 3.20. The CdSe-ZnS QDs are 

capped by mercaptosuccinic acid in this study. Each mercaptosuccinic acid molecule contains 

two carboxylic groups, these groups make the QDs highly water soluble. Carboxylic groups also 

provide high density negative charge on the surfaces of QDs. Dextran is a highly branched 

polysaccharide that has no net charge. Each dextran molecule contains many α-D-glucose 

residues. To incorporate dextran in QDs containing nanospheres, electric charges are needed. In 

this study, carboxylic groups are grafted onto dextran molecules. The average number of 

carboxylic group per glucose residue is 0.5 (129). Due to high molecular weight of dextran used 

in this study (MW=10,000), each dextran molecule contains about 30 carboxylic group (the 

glucose residues are calculated to be about 60 in each dextran molecule). Therefore the 

carboxylic groups make the dextran highly negatively charged. Polylysine is well known for its 
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Fig. 3.20 Molecular structures of three precursors 
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high density of positive charge. It has been used widely to immobilize cells on glass slide due to 

its high affinity towards negatively charged glass slide. Polylysine is used to precipitate both 

QDs and CM-dextran through electrostatic interaction. 

TEM imaging of glyconanospheres- Figure 3.21(A) shows a representative TEM image 

of as-prepared luminescent glyconanospheres. The spherical nanospheres average 190 nm in 

diameter. Figure 3.21 (B) shows a high-resolution TEM image focusing on a single 

glyconanosphere. The nanometric CdSe-ZnS QDs are clearly seen as darker dots  

 

 

 

 

 

 

 

 

 

in this image. Figure 3.21 (C) shows the size distribution of the luminescent glyconanospheres. 

Nearly 70% of the glyconanospheres are between 150 and 200 nm in diameter.  

Fig. 3.21 TEM images of as-prepared luminescent glyconanospheres. (A) 15 000× image of
CdSe-ZnS QDs incorporated in luminescent glyconanospheres. The scale bar is 500 nm. (B) 150
000× high-resolution image of a single luminescent glyconanosphere showing that the 
glyconanosphere contains many CdSe-ZnS QDs. The scale bar is 50 nm. TEM images are taken 
using a JEOL 2010 transmission electron microscope. (C) Histogram describing the size 
distribution of the luminescent glyconanospheres.  
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Since this preparation method is based on electrostatic interactions, the size of the QDs 

should not affect the formation of the nanospheres. Indeed, QDs of different diameter and 

different emission color were incorporated into the luminescent glyconanospheres. Figures 3.22 

(A) and 3.22 (B) show digital luminescence microscopy images of green and red emission QDs 

containing glyconanospheres. The glyconanospheres are highly luminescent with a signal-to-

noise ratio (S/N) of over 100. Figures 3.22 (C) and 3.22 (D) compare between the emission 

Fig. 3.22 (A) Luminescence image of negatively charged green emission CdSe-ZnS
QDs incorporated glyconanospheres. (B) Luminescence image of negatively charged
red emission CdSe-ZnS QD incorporated glyconanospheres. (C) Emission spectra of
free green emission QDs (curve a) and glyconanospheres containing green emission
QDs (curve b). (D) Emission spectra of free red emission QDs (curve a) and
glyconanospheres containing red emission QDs (curve b). The luminescence images
were taken using a digital fluorescence imaging microscopy system equipped with an
intensified charge coupled device camera (ICCD). The excitation wavelength was 470
nm and the magnification of the microscope was 40×. Emission spectra were taken
using a Quanta Master PTI fluorometer.  
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spectra of solutions containing green and red emission CdSe-ZnS QDs and the spectra of 

solutions of glyconanospheres incorporating CdSe-ZnS QDs. The emission band of the 

incorporated QDs is similar to the emission band of free QDs but still shows a 4 nm red shift. 

This minor red shift may be attributed to a change of surface charge states of the QDs. The 

intensity differences result from different concentrations of emitting particles and not from a 

decreased emission quantum yield.  

 

 

 

 

 

 

 

 

 

 

 

The dextran molecules play an important role in forming the spherical nanospheres and 

preventing their aggregation. To prove that dextran molecules are indeed incorporated into the 

Fig. 3.23 Luminescence images of Oregon green and CdSe-ZnS containing
glyconanospheres. The upper half of the image (A) is dominated by the green emission
of Oregon Green. The lower half of the image (B) shows the image of the red emission
of the glyconanospheres following 3 min irradiation at 470 nm, which effectively
bleaches the Oregon Green molecules. 
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nanospheres, we prepared glyconanospheres with Oregon Green labeled dextran molecules. 

Oregon-Green is a highly luminescent green dye with fluorescein-like emission properties (λex = 

470 nm, λem = 525 nm). It also provides one negative charge for each dye molecule that is 

attached to the dextran polymeric chain. When excited at 470 nm, the glyconanospheres showed 

bright green emission due to the emission of Oregon green (Figure 3.23 A). Following 

illumination of the sample for about 3 min, the emission of the glyconanospheres turned red (the 

emission color of the QDs) due to rapid photobleaching of the Oregon green molecules (Figure 

3.23 B). These experiments confirmed that the dextran molecules are indeed integrated with 

CdSe-ZnS QDs in the same glyconanospheres.  

Unlike the strong attraction of polyelectrolytes often observed in thin films formed on a 

flat surface using the layer-by-layer deposition technique, we found that electrostatic interactions 

solely are not strong enough to stabilize the luminescent glyconanospheres.   Fluorescence 

microscopy measurements revealed that these luminescent glyconanospheres dissociated in 

about 10 h when stored in aqueous solution at room temperature. The relative instability of the 

electrostatically held glyconanospheres could be attributed to their large surface-to-volume ratio. 

The interactions of solution ions with surface charges weaken the electrostatic attraction between 

the positively charged polylysine and the negatively charged CM-dextran, and the 

mercaptosuccinic acid modified CdSe QDs. To further stabilize the luminescent 

glyconanospheres, we introduced the standard water-soluble bioconjugate coupling agent 1-

ethyl-3-(3)-dimethylaminopropyl carbodiimide (EDC) to initiate the formation of covalent bonds 

between the carboxylic groups on the surface of the mercaptosuccinic acid modified CdSe QDs 

and in the CM-dextran chains and the amino groups of the polylysine chains. Figure 3.24 shows 

the formation pf amide bonds. The concentration of EDC was 500 mM. The reaction mixture 
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was incubated at room temperature for 2 hours. The sketch shows the formation of cross-linking 

amide bonds. The formation of amide bonds between the carboxylic and amino groups in the 

glyconanospheres greatly increased their chemical stability. Luminescence microscopy 

measurements revealed that the covalently and electro statically held glyconanospheres remained 

stable for over two months when stored in aqueous solution at room temperature.  

 

 

 

 

 

 Fig. 3.25. Models of surfaces bound glucose residues and the protein Con A.  
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Fig. 3.24.  Formation of amide bonds among CM-dextran, poly-L-lysine and succinic 
capped CdSe-ZnS QDs. The carboxylic groups were activated by EDC. 
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CM-dextran provides the glyconanospheres with high surface density of glucosylic 

residues. Thus, the carbohydrate binding protein concanavalin A (Con A) can recognize the 

surface bound dextran. The molecular models are shown in figure 3.25. Con A is a lectinic 

protein that selectively binds to the terminal residues of α-D-glucose and α-D-mannose. Each 

Con A molecule contains four binding sites for carbohydrates(131). These polyvalent binding 

sites have been often used in cell agglutination and separation of glycoproteins in affinity 

chromatography (132). To demonstrate the binding interactions of the surface-bound dextran and 

Con A, we mixed a solution of 200 µL 0.04 µM (based on the concentration of CdSe-ZnS QDs) 

glyconanospheres with 2 mL 0.05M HEPES buffer solution (pH 7.2) containing 0.25 mg/mL 

Con A, 0.1 mM Mn2+, and 0.1 mM Ca2+. The solution was incubated at room temperature for 2 

h. As a control, free glucose was added to the solution along with Con A. The aggregation of 

glyco-nanospheres was prevented by the addition of 15 mg free -D-glucose. Since glucose 

molecules effectively competed with the glyconanospheres for the binding sites of Con A. Figure 

3.26 (A) shows the fluorescence image of glyconanospheres in the presence of glucose. Figure 

3.26 (B) shows the luminescence images of the glyconanospheres following the addition of Con 

A. Aggregation of the glyconanospheres due to multiple binding with Con A molecules is clearly 

seen. The aggregation rate depended on the Con A and glyco-nanospheres concentrations.  
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3.3.1.4 Summary 

 We have developed a novel method to assemble highly luminescent semiconductor CdSe-

ZnS QDs into glyconanospheres through electrostatic interactions and covalent stabilization. The 

emission properties of the QDs containing glyconanospheres were similar to the emission 

properties of individual QDs. Assembling hundreds of QDs in single glyco-nanospheres created 

bright and photostable particles that could be easily observed using conventional fluorescence 

microscopy instrumentation. This could make luminescent QDs more accessible to fluorescence 

microscopy studies of biological samples. For example, the luminescent glyconanospheres 

A B 

Fig. 3.26 Lectin Con A initiated aggregation of dextran bound CdSe-ZnS QD incorporated
luminescent glyconanospheres. (A) Luminescence image of the glyconanospheres in the
presence of Con A and free α-D-glucose. The α-D-glucose molecules compete with the
glyconanospheres on the Con A binding sites and prevent aggregation. (B) Luminescence image
of aggregated glyconanospheres in the presence of Con A.  
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showed high affinity to Con A, a glucose specific lectin. As demonstrated in this work, these 

glyconanospheres could be used to study carbohydrate-protein interactions.  

 

3.3.2 Preparation of Luminescent Semiconductor CdSe-ZnS QDs Doped Stabilized 

Micelles. 

3.3.2.1 Introduction  

Surfactant molecules with hydrophobic tails and hydrophilic head groups spontaneously 

form micelles, lamellar phase or cylindrical rod structures in water when the surfactant 

concentration is higher than its critical micelle concentration (CMC). The structure, property and 

concentration of the surfactant molecules determine their morphology when they are dispersed in 

aqueous solution. A cylindrical rod can further assemble to form a hexagonal structure that has 

been intensively used as a template to synthesize various mesoporous materials (133-134). This 

chapter focuses on the application of micelles as carrier for hydrophobic QDs. The hydrophobic 

core of micelles is a medium that is well-known to solubilize organic dyes according to the "like 

dissolves like" principle(135-136). Recently, Gao et al. reported using diacyllipid-polymer 

micelles as nanocarriers to deliver poorly soluble anticancer drugs into cells(137).  

However, because surfactant micelles are dynamic species, they undergo dissociation and 

reformation in the millisecond time scale(138). To overcome this stability problem hydrophilic 

polymers and organosiloxane shells have been used to stabilize micelles, vesicles, and 

liposomes(139-140). For example, Katagiri et al. recently synthesized organosilane-

functionalized lipid and prepared hybrid organo-inorganic liposomes named cerasomes that 

averaged 200 nm in diameter. Hydrolysis followed by condensation of the organosilane head 
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groups of the functionalized lipids led to the formation of a silica layer on the surface of the 

cerasomes and greatly increased their physical and chemical stability. The cerasomes were used 

to prepare lipid multilayers using a layer-by-layer assembly technique(141-143). Using a similar 

principle we developed a novel method to encapsulate lipophilic CdSe QDs in organosilane 

functionalized surfactant micelles.  

 

 

 

 

 

 

 

 

A special siloxane surfactant dimethyloctadecyl [3-(trimethoxysilyl) propyl ammonium 

chloride (C16H33-N
+(Me)2-CH2CH2CH2-Si(OMe)3 Cl-) was used to encapsulate lipophilic CdSe 

QDs. It is a quaternary ammonium surfactant with an organosilane head group (see Figure 3.27). 

The silane head groups were water sensitive and undergo slow hydrolysis in aqueous solution. 

The hydrolyzed silane head groups could form cross linking silica shell on the surfaces of 

Fig. 3.27.  Molecular structure of silane surfactant used in our experiments and
the chemical structure of luminescent QDs doped surfactant micelles with a silica
layer 
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micelles.  This chapter describes the synthesis and characterization of the structural, optical and 

chemical properties of these unique stabilized micelles.  

 

3.3.2.2 Specific experimental details 

Materials- cadmium oxide, TOP, TOPO, selenium, diethyl zinc (0.1M solution in 

heptane), hexamethyldisilanthiane, dimethyloctadecyl [3-(trimethoxysilyl) propyl ammonium 

chloride, were purchased from Aldrich and used without further purification. 

Preparation of green and red emission CdSe QDs- Luminescent CdSe QDs of green 

emission and red emission colors were synthesized based on a method developed by Peng et al., 

with minor modifications(49). To prepare green emission QDs, 12 mg CdO and 150 mg lauric 

acid were loaded in a 100 ml flask, then used septum cap to seal the flask. The flask was flowed 

with nitrogen for 30 minutes. Then heated to 250 ºC until the red CdO completely dissolved. The 

solution was cooled to room temperature and loaded 1.5g TOPO and 1.5 g 1-hexadecylamine 

into the flask. The flask was flowed with nitrogen for another 30 minute. The mixture was heated 

to 280ºC, then injected 2 ml TOPO solution containing 80 mg Se powder into the hit solution 

quickly. Then removed the heating mantel and let the solution cooled to 40ºC. The CdSe QDs 

were precipitated by methanol and collected by centrifuge at 2000 rpm for 5 minutes. Red 

emission QDs were prepared by using similar procedure except the mixture of Cd-lauric, TOPO 

and hexadecylamine was heated to 320ºC instead of 280ºC and the heating time was 3 minutes 

after the injection of Se-TOP solution to facilitate growth of larger nanoparticles.  

Preparation of micelles doped with CdSe QDs- To prepare QD-doped micelles, 1 mg 

CdSe QDs was mixed with a chloroform solution containing the siloxane surfactant 
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dimethyloctadecyl [3-(trimethoxysilyl) propyl ammonium chloride (C16H33-N
+(Me)2-

CH2CH2CH2-Si(OMe)3 Cl-). The mixture was then injected drop-by-drop into 10 mL water at 75 

C under magnetic stirring. The elevated temperature was required to evaporate the chloroform. 

The final concentration of the surfactant in water was as high as 15 mM to ensure the formation 

of micelles. CdSe QDs were entrapped in the hydrophobic regions of the formed micelles. The 

formed micelles containing QDs were collected by centrifuge at 3500 rpm for 10 minutes and 

redispersed in aqueous solution 50 ml deionized water. The pH of the micelle solution was then 

adjusted to 9.0. The silane head groups were hydrolyzed to form a silica layer on the surface of 

micelles under these conditions. The micelles solution was then heated to 80˚C for 10 minutes 

for the condensation of silanol groups to form cross linking silica shell on the surfaces of 

micelles. 

 

3.3.2.3 Results  

Characterization of QDs and micelles doped with QDs- To demonstrate the capability 

of incorporate different sizes (i.g different emission colors) of QDs in these unique siloxane 

surfactant micelles. Two different emission colors of green and red QDs were prepared. The QDs 

were highly luminescent with quantum yield over 50%. The emission maxima of the green and 

red dots were obtained at 525 nm and 650 nm. Figure 3.28 A and B show transmission electron 

microscope (TEM) images of green and red emission QDs averaging 3 and 6 nm in diameter, 

respectively. The particles appear spherical and no aggregation is observed. The image clarity of 

larger particles is higher due to increased electron density. Trioctylphosphine oxide (TOPO) 
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ligands on the surface of the CdSe QDs increase their lipophilicity and miscibility in chloroform 

solutions containing siloxane surfactant.  

 

 

 

 

 

 

 

Figure 3.29 A shows a TEM image of the CdSe QD-doped micelles. The diameter of the 

micelles ranges from 50 to 130 nm. The wide size distribution is a characteristic of solvent 

evaporation methods commonly used to prepare micelles or liposomes. Similarly to liposomes, 

the size distribution could be further narrowed using extrusion techniques. Most of the micelle 

nanospheres appear to be spherical in shape. However, a small percentage of the micelles appear 

to have elliptical or irregular shapes. This could be the result of silanol-silanol cross-linking 

between adjacent micelles. The entrapped QDs make the micelles easily visible in the electron 

micrographs in contrast to ordinary surfactant micelles that require negative staining for 

Fig. 3.28  TEM images of free green emission and red emission of QDs in
chloroform solution taken on a JOEL 2010 transmission electron microscope.
(A) Green emission CdSe QDs averaging 3 nm in diameter. (B) Red emission
CdSe QDs averaging 6 nm in diameter. The scale bar is 10 nm. 
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visualization. A high-resolution TEM image of a CdSe QD-doped micelle is shown in Figure 

3.29 B. There are about 300 QDs in this 100 nm micelle.  

The lattice structure of the trapped CdSe QDs cannot be defined due to the presence of the 

surfactant. Most of the encapsulated CdSe QDs are located in the core of the micelle. High-

resolution TEM images also reveal that some QD-doped micelles are capped with a silica layer 

as thick as 12 nm. Because a single layer of cross-linked silica is much thinner than 12 nm, it is 

reasonable to conclude that multiple layers of surfactant molecules form this thick layer.  

 

 

 

 

 

 

 

 

 

Spectroscopy and microscopy- Because quantum dots were encapsulated in the 

hydrophobic core of the micelle nanospheres, it was reasonable to expect that the optical 

properties of the entrapped CdSe QDs would be similar to the optical properties of free CdSe 

Fig. 3.29. TEM images of CdSe QD-doped micelles. (A) TEM image of QDs doped
surfactant micelles ranging from 50 to 130 nm in diameter. The scale bar is 200 nm.
(B) HRTEM image of micelles shows that the encapsulated QDs are distributed in the
hydrophobic interior of the surfactant micelles. The scale bar is 20 nm 

A B 
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QDs in chloroform. Figure 3.30 (A) and (B) shows the emission of free QDs in chloroform and 

encapsulated QDs in our silica capped micelles. The sharp emission spectra and the emission 

band of both the green emission dots and red emission dots were well preserved following their 

encapsulation in the micelles. The encapsulated QDs also have similar absorption properties with 

free QDs in chloroform solution as shown in figure 3.31 (A) and (B). Free QDs of both green 

and red emission have clear absorption peak at 510 nm and 630 nm respectively. Encapsulated 

QDs also have absorption peak at these positions. However the absorption peaks of trapped QDs 

are not sharp due to the influence of surfactant and the scattering of the nanospheres. 
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Fig. 3.30 Comparison of emission spectra of free QDs in chloroform solution and
encapsulated QDs in micelles. (A) Emission spectra of green emission QDs: (a) free QDs,
(b) encapsulated QDs. (B) Emission spectra of red emission QDs: (a) free QDs, (b)
encapsulated QDs. Emission spectra were taken with a Quanta Master PTI fluorometer. 
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Figure 3.32 shows a luminescence image of QD-doped micelles taken using a digital 

fluorescence imaging microscopy system consisting of an inverted fluorescence microscope 

equipped with a high performance intensified charge coupled device camera (ICCD). The 

micelles appear as bright red or green spherical spheres with a signal-to-noise ratio of about 100. 

By controlling the diameter of the CdSe QDs, we were able to prepare micelles that emit blue, 

green, yellow, orange, and red light.  

Ordinary surfactant molecules such as Areol-OT and CTAB can also be used to 

encapsulate CdSe QDs to form bright red or green nanospheres in aqueous solution (images not 

shown). However, these micelles are not stable and are easily destroyed by Alcohol or Triton X-

100. The use of the siloxane surfactant facilitates the formation of stabilized micelles due to their 

capping with a silica layer. In addition to stabilizing the QD-doped micelles, the silica layer 

provides a large number of chemical derivation sites for conjugation of biomolecules 

 

 

 

A B

Fig. 3.31  Absorption spectra of free QDs and encapsulated QDs. (A) green
emission QDs. curve (a) is free QDs in chloroform solution. curve (b) is
encapsulated QDs. (B) red emission QDs. curve (a) is free QDs and curve (b) is
encapsulated QDs. 
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3.3.2.4 Summary - a novel method was developed to prepare luminescent CdSe QD-doped 

micelles coated with a stabilizing silica layer. This method is a general preparation approach that 

can be used to encapsulate other lipophilic molecules, such as lipophilic organic fluorescent dyes 

in the micelle nanospheres. The encapsulated QDs maintain their high quantum yield and sharp 

emission spectra. The silica layer increases the stability of the luminescent micelles compared to 

micelles formed with AOT and CTAB. The silica layer also makes the surface of micelles 

accessible to further derivation using standard silane chemistry. These newly developed stable 

Fig. 3.32. Fluorescence image of QDs doped micelles taken using a digital
fluorescence imaging microscopy system equipped with an intensified charge
coupled device camera (ICCD). The excitation wavelength was 470 nm and the
magnification of the microscope is 40×. The scale bar in the right corner is 400 nm. 
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luminescent micelles could be used as bright fluorescent labels in biological applications 

involving the conjugation of biomolecules such as enzymes, antibodies, and DNA molecules to 

the micelles. The advantage of combining multiple QDs in micelles is quite clear. The 

luminescence intensity of single QDs is low and cannot be observed with sufficient signal-to-

background ratio using an ordinary fluorescence microscope. A laser is generally needed to 

excite the quantum dots. However, the intense laser beam required for excitation of the 

individual QDs is likely to damage biological samples. The collective emission intensity of a 

micelle containing hundreds of QDs increases the signal and the signal-to-background ratio 

considerably without significantly affecting the spatial resolution in the image, as the nanometric 

size of the micelle is well below the optical limit of diffraction. Doping polymeric particles with 

luminescent QDs could also lead to similar results obtained by assembling QDs in micelles. 

Indeed, micrometric polystyrene beads that contain luminescent QDs were successfully 

developed for multiplex biocoding applications. However, our attempts to prepare nanometric 

polymer beads doped with luminescent QDs encountered experimental difficulties. 

Encapsulation of the QDs in nanometric polymer beads affects their morphology. Swelling of the 

polymer beads in aqueous solution leads to leaking of the QDs into the solution. Additionally, 

the emission of the QDs is quenched by the polymer and the enhancement in the signal-to-

background ratio is not as significant as in QD-doped micelles. The relatively large size 

distribution of the QD-doped micelles is still a concern. We are currently developing extrusion 

techniques to narrow the size distribution.  
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3.3.3 Synthesis and application of Semiconductor CdSe-ZnS QDs Doped Silica   

Nanospheres (QDSNs) in Bioassay 

 

3.3.3.1 Introduction- Silica based materials are of great interest in preparing nano-composite 

materials due to their inert chemical properties and optical transparency. Additionally, the 

chemistry of derivatizing silica nanoparticles on surfaces with a variety of functional groups, 

such as amino groups (–NH2), and thiol groups (-SH) for conjugation of biomolecules is well 

established (144-155). Silica has been used to coat different kinds of nanoparticles including 

gold (146) and magnetic nanoparticles (147). Silica nanospheres were also applied to encapsulate 

organic dyes for bioanalysis applications (148). Chang et al. (149-150) prepared silica coated 

CdS QDs with different nanoscale complex morphologies by using a microemulsion based 

synthetic method. They showed that the CdS QDs could be homogeneously dispersed in silica 

nanospheres, could be a large inclusion, could be a surface cap or a core of a silica sphere. Kotov 

et al. (151) used mercptopropyltrimethylsilane derived CdTe QDs as seeds to synthesize CdTe 

QDs doped silica nanospheres that were about 100nm in diameter. These CdTe QDs doped 

uniform silica nanospheres could form 3-D colloid crystals for photonic applications.  

 

Although CdS and CdTe QDs have been successfully incorporated into silica nanospheres, 

these QDSNs only contained a small number of luminescent nanocrystals. Moreover, both CdS 

and CdTe QDs were synthesized in water pools of a microemulsion or in aqueous solution at 

room temperature. It was clearly demonstrated that the quantum yield and crystal quality of QDs 

synthesized in aqueous solution were inferior to that of QDs synthesized in trioctylphosphine 
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oxide (TOPO) media at elevated temperature. As a result, the QDSNs were not suitable for 

luminescent biological labeling applications where bright emission is disirable.  

 

This section describes a novel method to incorporate hundreds of highly luminescent 

CdSe-ZnS QDs inside each individual silica nanosphere. CdSe-ZnS QDs used in our experiment 

were synthesized in trioctylphosphine oxide (TOPO) media at elevated temperature. The CdSe-

ZnS QDs had 50% quantum yield, which is much higher than the quantum yield of QDs 

synthesized in aqueous solution. The QDSNs were functionalized with the protein streptavidin 

for conjugation of biotin labeled biomolecules. As an example, biotin labeled protein A was 

bound to the streptavidin modified QDSNs. These protein A modified QDSNs were used as 

luminescent indicator in the detection of antiprotein A antibody in a ‘sandwich’ immunoassay. 

The detection of antibody was based on counting the number of QDSNs instead of measuring the 

emission intensity as conducted in conventional fluoroimmunoassays.  

 

3.3.3.2 Specific experimental details 

Materials- sodium silicate, oleic acid, thioglycerol, AOT, heptane, streptavidin-maleimide, 

protein-biotin, anti-protein A, 3-mercaptopropyltrimethoxysilane, 3-

aminopropyltrimethoxysilane, N-hydroxysuccinimido-biotin (NHS-biotin), bis(2-ethylhexyl) 

sulfosuccinate sodium salt (AOT) were obtained from Aldrich and used as received without 

purification. 

 Preparation of water soluble CdSe-ZnS QDs- CdSe-ZnS QDs were modified with 

thioglycerol to transfer the QDs to aqueous solution. The detailed synthesis procedure was 

described in chapter two. 
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 Preparation of CdSe-ZnS QDs doped silica nanospheres- To prepare QDs doped silica 

nanospheres, 100 µl 10% sodium silicate and 50 µl 0.2 µM water-soluble QDs were dispersed in 

20 ml 0.1 M AOT/heptane solution following sonication in a water bath sonicator until a clear 

reverse micelles solution was obtained.. 60 µl oleic acid diluted in 2 ml heptane solution was 

added to the reverse micelle solution to neutralize sodium hydroxide. The solution was stirred for 

1 hour. The formed quantum dots doped silica nanospheres were collected by centrifugation at 

3000 rpm for 5 minutes, the product was washed 3 times with 10 ml heptane to remove 

unbounded AOT surfactant.  

Functionalization of the luminescent silica nanospheres with thiol groups- The surface 

of the silica was then functionalized with thiol groups by mixing QDs doped silica nanospheres 

with 40 µl 3-mercaptopropyltrimethoxysilane in 20 ml 95% ethanol containing 10 µl of 29% 

ammonia. The solution was stirred at room temperature for 8 hours. The solution was then 

heated to 70˚C for 5 minutes. The thiol groups modified quantum dots doped silica nanospheres 

were collected by centrifugation at 3000 rpm for 5 minutes. The silica nanospheres were washed 

3 times with ethanol to remove free 3-mercapto-propyltrimethoxysilane.  

Synthesis of streptavidin modified QDs doped silica nanospheres- The washed thiol 

group modified silica nanospheres were dispersed in pH 7.0 phosphate buffer solution following 

addition of 0.5 mg streptavidin-maleimide. The mixture was incubated at 4˚C for 12 hrs. The 

streptavidin modified QDs doped silica nanospheres were collected by centrifugation and 

washed three times with a pH 7.0 phosphate buffer solution. The washed streptavidin 

functionalized silica nanospheres were dispersed in 2ml phosphate buffer solution and stored at 

4˚C. 
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Binding protein A on the surface of streptavidin modified silica nanospheres- 0.5 mg 

biotin labeled protein A dissolved in 1ml pH 7.0 phosphate buffer was mixed with 2ml 

streptavidin modified luminescent silica nanospheres solution for 1 hour at room temperature. 

Unbounded protein A was removed by centrifugation and wash with pH 7.0 phosphate buffer 3 

times. The washed protein A modified luminescent silica nanospheres were dispersed in 3ml pH 

7.0 phosphate buffer solution and stored at 4˚C.  

Modification of the surface of glass slides with amino groups- glass slides were first 

cleaned using a ‘Piranha’ solution which consists of 70% concentrated sulfuric acid and 30% 

concentrated hydrogen peroxide for 2 hour at 70°C.( caution: ‘Piranha’ solution is erosive and 

reacts violently with organic species). The cleaned glass slide was then immersed in a 1% 3-

aminopropyltrimethyltrimethylsilciane (APTMS) alcoholic solution overnight to immobilize 

amino groups on the glass. The amino group functionalized glass slide was rinsed with ethanol 

solution and annealed at 115°C for 1 hour.  

 

Preparation of protein A modified glass slides- An amino modified glass slide was 

immersed in a 10 ml of pH7.0 phosphate buffer solution. 20mg N-hydroxylsuccinic biotin (NHS-

biotin) was first dissolved in 200 µl DMSO then added to the buffer solution and incubated for 2 

hours at room temperature. The slide was rinsed with phosphate buffer sufficiently to remove 

unreacted biotin. It was then immersed in 10ml pH7.0 phosphate buffer solution that contained 

0.4 mg streptavidin. The reaction continued for 1 hour at room temperature. The slide was 

washed with a pH 7.0 phosphate buffer solution to remove unbound streptavidin. It was then 

immersed in 10 ml pH 7.0 phosphate buffer solution that contained 0.5mg biotin labeled protein 
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A for 1 hour. The slides were washed with pH7.0 phosphate buffer solution and stored at 4°C 

until use. 

 

Detection of anti-protein A- Anti-protein A solution was placed on the surface of a 

protein A modified glass slide and incubated for two hours at room temperature. Unbound anti-

protein A was rinsed with a pH 7.0 phosphate buffer solution. Protein A modified QDs doped 

silica nanospheres were then added to the glass slide and incubated for two hours at room 

temperature following rinsing with buffer solution to remove free silica nanospheres. The 

presence of luminescent silica nanospheres indicated the presence of anti-protein A.  

Microscopy and spectroscopy- Fluorescence microscopy images were taken using a 

digital microscopy system containing a inverted microscope, high performance CCD camera. 

The image analysis software VinView 3.2 was used for image acquisition and analysis. A JEOL 

2010 transmission electron microscope was used to characterize the size and morphology of 

silica nanospheres doped with QDs.  

 

3.3.3.3 Results  

Synthesis of silica nanospheres containing CdSe-ZnS QDs- Reverse micelles were 

chosen as nanometric reactors to prepare QDs doped silica nanospheres. Reverse micelles are a 

water-in-oil bi-phase system where nanometer sized water pools (water phase) are dispersed in 

an organic solvent (oil phase). The water pools are stabilized by surfactant molecules whose 

hydrophilic head groups point to the water phase and their hydrophobic tail is dissolved in the oil 

phase. Although CdS and CdTe QDs were successfully encapsulated in silica nanospheres (150-

151), the prepared CdS, CdTe QDs doped silica nanospheres were weakly luminescent due to the 
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low emission efficiency of the encapsulated QDs and the small number of QDs in each silica 

nanosphere. Inspired by these studies, we used reverse micelles to prepare highly luminescent 

CdSe-ZnS QDs doped silica nanospheres. The QDs used in our study were CdSe-ZnS QDs with 

a core shell structure. They were first prepared in TOPO media at elevated temperature; then 

transferred to aqueous solution.  

 

Previously, Stober et al. (152) developed a novel method to prepare monodisperse silica 

nanoparticles through the hydrolysis of tetraethyl orthosilicate(TEOS) in alkaline alcohol 

solution. Since then TEOS has become a silica precursor of choice. Although TEOS was 

successfully used to synthesize dye doped silica nanospheres in a non-ionic reverse micelles 

system, we failed to prepare QDs doped silica nanospheres using this method. We therefore 

replaced TEOS with sodium silicate as silica source in the preparation of the silica nanospheres. 

Sodium silicate was less expensive than TEOS. It was easily miscible with the water soluble 

luminescent CdSe-ZnS QDs. Sodium silicate is sensitive to pH. At low pH, the silicate 

molecules were condensed to silica. We used oleic acid to initiate the formation of silica 

nanospheres in reverse micelles. Oleic acid itself is an anionic surfactant. Oleic acid neutralized 

the hydroxylic ions (-OH) in the water phase and caused the condensation of the silicate. Since  
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Fig. 3.33 The formation of QDs doped silica nanospheres in the water pool
of reverse micelles. The black spots represent water soluble CdSe-ZnS QDs.
Addition of oleic acid initiated the condensation of sodium silicate and
formed silica cross-linking network where QDs were trapped. 
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luminescent CdSe-ZnS QDs were mixed with silicate molecules, condensation of silicate trapped 

the QDs in the silica nanospheres. Figure 3.33 illustrates the trapping of QDs in the silica cross-

linked network. 

 

 

 

 

 

 

 

 

 

 

 

 

The morphology of the QDs doped silica nanospheres was characterized by TEM as shown 

in figure 3.34 (a). QDs doped silica nanospheres were not homogeneous in size. Since the size of 

the water pools in the reverse micelles was not uniform. TEM images revealed that the silica 

nanospheres were about 180nm in diameter. Figure 3.34 (b) is an enlarged TEM image of a 

single silica nanosphere doped with QDs. The QDs have higher electron density than silica, thus 

they appeared to be darker black dots in the sphere. Energy dispersive analysis of X-ray (EDAX) 

Fig. 3.34 (a) Transmission electron microscope image of CdSe-ZnS QD doped
silica nanospheres. The scale bar is 500nm. (b) Enlarged TEM image of a
single silica nanospheres doped with QDs. The sale bar is 50 nm. There are
hundreds of QDs trapped in the silica nanospheres. 

a
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pattern showed in figure 3.35.  The presence of Si, O, Cd, Se, Zn, and S in a QDs doped silica 

nanosphere confirms that the silica nanospheres contain QDs. 

 

 

 

 

 

 

 

 

When mixing QDs of different emission colors with silicate solution, the QDSNs could be 

green, yellow and red under irradiation. Figure 3.36 shows a representative image of silica 

nanospheres that were doped with green, yellow and red emission CdSe-ZnS QDs. As stated 

earlier, the QDs were synthesized in TOPO media at elevated temperature, thus the silica 

nanoparticles containing QDs were brightly luminescent under irradiation. The capability to 

prepare silica nanospheres of multiple emission colors is critical for their successful application 

in biological samples. Autofluorescence of biological samples often interfere with the analysis. 

Fig 3.35. An Energy dispersive analysis of X-ray (EDAX) pattern of QDSNs. The
elements zinc, cadmium, sulfur and selenium originated from the QDs. The elements
silicon and oxygen originated from the silica nanospheres. 
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To eliminate the interference of emission from the sample, it could be possible to choose QDSNs 

that have a different emission color from that of the analysized biological sample. 

 

 

 

 

 

 

 

 

 

 

 

 

Functionalizing QDs doped silica nanospheres with thiol groups- The QDSNs had no 

functional groups on the surface. As a result, they could not be conjugated to biological 

molecules. To overcome this problem, the surface of the QDSNs was grafted with thiol groups 

through hydrolysis and condensation of 3-mercaptopropyltrimethoxysilane (MPTMS) in a 

ethanol-ammonia solution. The availability of thiol groups for conjugation of biomolecules was 

confirmed by monobromobiane (mbbr). mbbr is an organic dye that is weakly fluorescent is 

solution. When reacting with free thiol groups, the emission intensity of mbbr is greatly 

Fig. 3.36 Luminescent image of green, yellow and red emission QDs doped silica
nanospheres. The image was taken using a fluorescence microscope with 40X
objective.   λ ex = 475 nm. 
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increased. Figure 3.37 shows the fluorescence spectra of mbbr when excited at 380 nm. Curve a 

is the spectrum of red emission QDSNs without thiol groups. The QDSNs were weakly emission 

at this region. Curve b was the emission spectrum of mbbr in chloroform solution. Mbbr had low 

emission at 490nm. After reacting with thiol groups modified QDSNs, the emission intensity of 

mbbr increased about 4 times (shown in curve c). This result showed clearly that thiol groups 

were successfully grafted on the surface of QDSNs. Moreover, they were chemically reactive.  

 

 

 

 

0

2 10
5

4 10
5

6 10
5

8 10
5

1 10
6

1.2 10
6

1.4 10
6

400 450 500 550 600 650

c

b

a

Wavelength ( nm) 

Fig.3.37  Reaction of mbbr and thiol groups modified QDSNs. (a) emission spectrum of 
thiol modified QDSNs. (b) emission spectrum of mbbr in methanol. (c) emission spectrum 
of mixture of thiol modified QDSNs and mbbr. 
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The thiol group was useful in conjugating maleimide labeled streptavidin to QDSNs. Since 

maleimide could selectively react with thiol groups with high efficiency. The conjugation of 

streptavidin  was illustrated in figure3.38. Streptavidin is a protein that shows specific binding 

ability to biotin (e.g. vitamin H) through non-covalent bond. The binding constant of streptavidin 

to biotin is as high as 1015 M-1 (153). The interaction of streptavidin-biotin has found wide 

application in analytical chemistry. 

 

 

 

 

To confirm that streptavidin was conjugated on the surface of QDSNs, glass slide modified 

with biotin was prepared.  The procedure to immobilize biotin is shown in figure 3.39. The 

biotinylated glass slide was then immersed in the streptavidin modified QDSNs solution for 1 

hour and rinsed with a pH 7.0 phosphate buffer solution. The glass slide was checked using a 

fluorescence microscope. Figure 3.40 is the fluorescence image of the glass slide. The presence 

of many luminescent QDSNs on the glass slide confirmed the success of conjugation of 

Fig. 3.38 Grafting thiol groups on the surfaces of QDSNs and subsequently
conjugating with streptavidin.  
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streptavidin. As a control, QDSNs that were not modified with streptavidin did not show high 

binding ability to biotin modified glass slide. 

 

 

 

 

 

 

 

 

 

 

 

 

OH    
OH    

OH    

APTMS    
NH2    

NH2     
NH2   

biotin 

biotin    
biotin   

biotin    

glass slide    

glass slide   

Fig. 3.40 Image of QDSNs doped with QDs on biotinylated glass slide through streptavidin
and biotin interaction. The presence of QDSNs confirmed that  streptavidin have been
successfully bound on the QDSNs. The image was taken using a 40X objective with a
excitation wavelength of 475 nm. 

Fig. 3.39  modification of glass slides with biotin. 
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Detection of anti-protein A- To use the streptavidin functionalized QDSNs in bioassay,  

 

 

 

 

biotin labeled protein A was conjugated to the QDSNs through avidin-biotin interaction. 

The protein A modified luminescent QDSNs were used as an indicator to detect anti-protein A in 

a ‘sandwich type’ immunoassay. In conventional fluoroimmunoassay, the quantification of an 

analyte was usually based on the measurement of the emission intensity of an organic dye (154-

155). In this study, a novel  detection strategy was developed to quantify an analyte. As stated 

previously, the QDSNs was about 180nm in diameter and they were highly luminescent when 

irradiated with light. Therefore the QDSNs were visible under ordinary fluorescence microscope. 

The new detection strategy  was based on counting the number of the QDSNs that were retained 

Fig 3.41. Detection of anti-protein A using a ‘sandwich type’ immunoassay.
QDSNs were used to indicate the presence of anti-protein A. 
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on glass slide through immunocomplex. Figure 3.41 showed the principle for the detection of a 

antibody anti-protein A in ‘sandwich’ immunoassay  using QDSNs as a luminescent indicator.  

Figure 3.42 are the luminescent images of luminescent QDSNs bound on glass slide at 

different concentration of anti-protein A. When the solution did not contain anti-protein A, there 

are a small number of  luminescent QDSNs bound on protein A modified glass slide(figure 3.42 

a) due to the nonspecific binding that included electrostatic interaction, and hydrophobic 

interaction. Figure 3.42 (b) and figure 3.42 (c) show the luminescence images of QDSNs when 

the protein A modified glass slide was immersed in the solution containing antiprotein A 

antibody at the concentration of 0.01µg/ml and 1µg/ml respectively. These images clearly 

showed that when immersed in the solution containing different concentration of antibody, the  
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Fig. 3.42 Detection of anti-protein A in a ‘sandwich’ immunoassay system using QDSNs
as indicator. (A) Image of protein A modified QDSNs in the absence of anti-protein A.
The presence of a few of protein A-modified QDSNs is due to the non-specific interaction.
(B) Image of protein A modified QDSNs at the concentration of 0.01µg/ml anti-protein A.
(c) Image of protein A modified QDSNs at the concentration of 1µg/ml anti-protein A
antibody.  
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protein A modified glass slide could retain different number of QDSNs. Higher concentration of 

antibody retained more luminescent QDSNs. Therefore the antibody concentration of a sample 

could be determined by counting the number of retained luminescent QDSNs instead of 

measurement of the emission intensity. Under optimum experimental conditions, this unique 

immunoassay could reach single molecule detection limit. The presence of one single anti 

protein A molecule on the glass slide is possible to be detected by QDSNs.  

 

3.3.3.4 Summary- A novel method was developed to assemble highly luminescent 

semiconductor CdSe-ZnS QDs in silica nanospheres using a reverse micelles system. This 

synthetic method could be extended for the preparation of silica nanospheres containing other 

water-soluble nanoparticles. The emission properties of the encapsulated QDs were similar to 

that of free CdSe-ZnS QDs in aqueous solution. Assembling hundreds of QDs in single 

nanospheres created bright and photostable particles that were easily observed using ordinary 

fluorescence microscopy instrumentation. By encapsulating QDs of different emission colors in 

the silica nanospheres, we prepared green, yellow and red emission QDSNs. These novel QDSNs 

were modified with streptavidin through a multi-step reaction. Streptavidin provides useful 

binding sites for conjugation other biotinylated biomolecules through avidin-biotin interaction. 

As an example, biotin labeled protein A was bound to QDSNs and subsequently they were 

successfully applied as an indicator to detect anti-protein A. The detection of antiprotein A is 

based on counting the number of luminescent QDSNs on the glass slide. The detection limit and 

dection dynamic range will be studied in continuing investigations.  These unique highly 

luminescent QDSNs may find applications in the detection of DNA, protein, bacteria and 

viruses. 
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CHAPTER FOUR:  SUMMARY AND DISSCUSSION 

Luminescent semiconductor QDs have several advantages over organic dyes. For example, 

sharp and symmetric emission spectra, broad excitation spectra and high photostability. These 

unique optical properties of QDs attracted great interest. QDs were explored as biological labels 

and sensors. In this Ph.D study, luminescent semiconductor QDs were successfully synthesized 

in three different media and Their surface was modified their surfaces with different ligands for 

ion sensing applications. Three methods were developed to encapsulate both hydrophobic and 

hydrophilic CdSe QDs into nanospheres including micelles, glyconanospheres and silica 

nanospheres. The incorporated QDs showed similar optical properties to free QDs in chloroform 

solution. The glyconanospheres showed binding affinity to a protein Concanavalin A (Con A). 

Streptavidin modified QDSNs were applied as bright luminescent indicators in an immunoassay 

for the detection of anti-protein A antibody.  

 

Chapter two includes an overview of the synthetic approaches I used to prepare 

luminescent semiconductor QDs. The synthesis methods of using reverse micelles, aqueous 

solution and CdO/TOPO route are discussed. Reverse micelles and aqueous solution routes were 

simple and easy to handle. However, the quality of QDs prepared using these techniques was 

generally poor with respect to emission quantum yield and process ability. Although CdSe-CdS 

QDs synthesized in aqueous solution have 37% emission quantum yield, they did not maintain 

their optical properties upon surface modification. For example, Modification of the surface of 

CdSe-CdS QDs with thioglycerol degraded their emission properties. Thioglycerol broadened 
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emission spectra of QDs. This was attributed to an incomplete CdS shell on the surface of the 

CdSe cores. Binding of thioglycerol molecules deteriorated the CdS shell and formed many 

surface defects on the CdSe cores. On the other hand, the CdO/TOPO route produced high 

quality nanocrystals with over 50% emission quantum yield. Different sizes (i.e different 

emission colors) of CdSe QDs were synthesized using this method. The growth of a ZnS shell on 

the surface of CdSe QDs provided the QDs with high stability toward their environment and high 

process ability. They could endure surface modification without deterioration of their optical 

properties.  

 

Chapter three discusses the use of QDs as selective ion probes and the methods to 

encapsulate QDs in nanospheres. The preparation of QDs-based ion selective probes was 

describe for the first time unique. CdS QDs capped with thioglycerol, cysteine and 

polyphosphate, the luminescence of CdS QDs responded differently to metal ions. The 

luminescence of thioglycerol capped QDs was quenched by copper ions while zinc ions and 

other bivalent metal ions such as calcium, magnesium, cobalt and manganese had only minor 

effect on the emission of these CdS QDs. On the other hand, the emission of amino acid cysteine 

capped CdS QDs increased by zinc ions, copper ions and other metal ions had minor effect on 

the emission of QDs. The emission of polyphosphate capped CdS QDs were easily affected by 

all tested ions. The reasons for the different response of QDs when exposed to the metal ions are 

not clearly understood at the present time. Additional experimental information is needed to fully 

understand this phenomenon. It is clear that metal ions have different abilities to form complexes 

with certain ligands, such as cysteine. Amino acids usually have higher affinity to zinc ions than 

to other ions. In this study it was found that zinc ions can cause the aggregation of cysteins 
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capped CdS QDs through the formation of cysteine-zinc complex. Other ions do not initiate 

aggregation of CdS QDs. The formation of a complex between cysteine and zinc ions could 

enhance the emission of CdS QDs through elimination of photo induced electron transfer from 

the amino group to the valance band of CdS QDs. Elimination of photo induced electron transfer 

process is the main reason that many organic dyes increase their emission intensities when bind 

to metal ions. Another possible reason is that some metal ions could undergo a  redox reaction 

with CdS QDs upon irradiation. EPR experiments confirmed that copper ion are reduced by CdS 

QDs under irradiation. Other ions studied in our experiments such as zinc ions do not have the 

ability to accept the excited electrons from the conduction bands of CdS QDs. The different 

chelating ability of surface bound ligands and different redox potentials may cause CdS QDs 

respond to ions in different ways. However, this is still an active research area, some other 

groups investigated the use of CdS QDs as sensors for organic molecules and gases. With more 

information coming out, the understanding of this phenomena will be deepened.  

 

In chapter three a novel and simple route to ensemble hydrophilic CdSe-ZnS QDs into 

glyconanospheres was also discussed. When CdSe-ZnS QDs modified by mercaptosuccinic acid 

were mixed with polyelectrolyte polylysine and carboxymethyldextran(CM-dextran), the 

attraction between positive charges and negative charges led to the formation of luminescent 

nanospheres that averaged 190nm in diameter. Moreover, the surface bound dextran still kept its 

biological activity, it could interact with a glucose binding protein Concanavalin A(Con A). This 

unique luminescent glyco-nanospheres provide luminescent markers for investigation of 

carbohydrate-protein interactions that are a critical step in bacterial and viral infection by using 

fluorescence microscopy. Different from layer by layer deposition of polyelectrolytes on flat 
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surfaces, the stability of glyconanospheres was low and they dissociated within 10 hours after 

formation. The low stability was due to the high surface to volume ratio of glyconanospheres that 

enhanced their interaction with solution ionic species. Introduction of covalent amide bonds 

between the charged precursors improved their stability significantly. 

Another novel method was developed to encapsulate lipophilic QDs into micelles. 

Luminescent semiconductor CdSe QDs that emit light from 520nm(green QDs) to 650nm(red 

QDs) were trapped into micelles that averaged 150nm in diameter. The encapsulated QDs 

showed their luminescent properties similar to free QD in chloroform solution. QDs doped 

micelles showed higher stability than ordinary micelles in which CTAB and AOT are often used 

as surfactants. The cross-linked silica shell on the surface of our QDs-doped micelles greatly 

increased their stability. Despite the failure of modifying their surfaces with functional groups, 

these unique bright luminescent micelles may find application in light emitting devices.  

In the last section of chapter three a unique immunoassay sensing method based on 

QDSNs that were prepared in AOT reverse micelles is described. The sizes of QDSNs averaged 

200 nm in diameter. Silica nanospheres usually are synthesized by slow hydrolysis of lipophilic 

TEOS in reverse micelles or alcoholic solution. The hydrolysis and condensation of TEOS 

usually takes more than 24 hours. In this study the water-soluble sodium silicate was used as a 

silica precursor. The formation of silica solid nanospheres in AOT reverse micelles is initiated by 

oleic acid and completed in minutes. By encapsulating QDs of different sizes, green, yellow and 

red emission QDSNs were prepared. These QDSNs were highly luminescent and were easily 

observed with an ordinary fluorescence microscope. Therefore they were suitable for use as 

luminescent indictors in bioassays. To apply these unique QDSNs in bioassays, their surface was 

further functionalized with thiol (-SH) groups to enable the conjugation of streptavidin-
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maleimide. Streptavidin is a protein that has high binding affinity and high specificity to biotin. 

As an example, biotinylated protein A was bound on the surface of QDSNs for detecting of 

antiprotein A antibody in an ‘sandwich’ type immunoassay. Different from conventional 

immunoassay, the detection of anti-protein A antibody was based on counting the number of 

absorbed luminescent QDSNs on protein A-anti-protein A immunoplex bound glass slide. Under 

optimum condition, this detection method can reach single molecule detection limit. These 

unique highly luminescent QDSNs may be used as biomarkers in protein and DNA assay.  

The application of QDs is affected by the lack of synthetic methods that can produce QDs 

with consistent size and optical properties. QDs prepared using currently available synthesis 

procedures showed large variation in size and emission bands from batch to  batch. A procedure 

that can repeatedly produce the same size and optical property is valuable for quantitative 

analysis. More precise control on the surface modification of QDs as well as other nanoparticles 

needs to be learned. Although a variety of biomolecules have been successfully conjugated on 

the surface of QDs and other nanomaterials, the accurate number of such biomolecules that were 

bound on the surface is not clearly known. This limitation prevents such biomolecules modified 

QDs to provide more quantitative information.  
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APPENDIX 

 

Glossary of Terms 

 

QDs: Quantum Dots. 

TOP: Trioctylphosphine 

TOPO: Trioctylphosphine Oxide 

(TMS)2S: Hexamethyldisilanthiane 

MUA: 11-Mercaptoundecanoic acid 

Zn(Et)2: Diethyl Zinc  

TSQ: N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide  

Con A: Concanavalin A 

CM-Dextran: Carboxymethyl Dextran 

EDC:1-ethyl-3-(3)-dimethylaminopropyl carbodiimide  

AOT: Bis(2-ethylhexyl) sulfosuccinate sodium salt 

CTAB: Hexadecyltrimethylammonium bromide 

APTMS: 3-Aminopropyltriethoxysilane 

MPTMS: 3-Mercaptopropyltrimethoxysilane 

TEOS: Tetraethyl Orthosilicate 

Mbbr: Monobromobiane  

XRD: X-ray diffraction 
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TEM: Transmission electron microscope. 
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