
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

12-19-2003

Best Linear Unbiased Estimation Fusion with Constraints Best Linear Unbiased Estimation Fusion with Constraints

Keshu Zhang
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Zhang, Keshu, "Best Linear Unbiased Estimation Fusion with Constraints" (2003). University of New
Orleans Theses and Dissertations. 69.
https://scholarworks.uno.edu/td/69

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/69?utm_source=scholarworks.uno.edu%2Ftd%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

BEST LINEAR UNBIASED ESTIMATION FUSION

WITH CONSTRAINTS

A Dissertation

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirement for the degree of

Doctor of Philosophy

in

The Department of Electrical Engineering

by

Keshu Zhang

B.S., Sichuan University, 1998

M.S., University of New Orleans, 2001

Ph.D., Sichuan University, 2002

December 2003

Acknowledgment

I would like to express sincere gratitude to my major advisor, Dr. X. Rong Li, for

his invaluable inspiration and guidance, which made it possible for me to complete the

Ph.D. dissertation in the Department of Electrical Engineering. Discussions with him were

always very delightful, and I gained considerable knowledge and insights into problems and

techniques in information fusion, estimation and decision theory, signal processing , etc. I

am also indebted to my second major advisor, Professor Yunmin Zhu, for his many fruitful

discussions and guidance.

I wish to thank the members in my thesis committee, Dr. X. Rong Li (chair), Dr. Vesselin

Jilkov, Dr. Huimin Chen, Dr. Tumulesh K.S. Solanky and Dr. Zhide Fang for their pertinent

discussions and comments and helpful suggestions.

I would also like to acknowledge the profitable discussions with the members of the

information and systems laboratory at the University of New Orleans, with whom I had the

pleasure of carrying out research in an excellent environment. In particular, the discussions

with Jifeng Ru, Ming Yang, Peng Zhang, Zhanlue Zhao, Trang Minh Nguyen and Ryan Pitre

were very inspiring.

Finally, I can hardly find the suitable words but simply express my deep appreciation to

my husband, Haifeng Li, for his love and understanding, and to my parents for their support.

ii

Contents

1 Introduction and Preliminaries 1

1.1 Estimation Fusion . 2

1.1.1 Basic Estimation Fusion Architectures 2

1.1.2 Estimation Fusion Rules . 4

1.2 BLUE Fusion . 5

1.2.1 Fusion by BLUE with Prior . 6

1.2.2 Fusion by BLUE without Prior . 6

1.2.3 Effect of Prior Information . 7

1.2.4 Recursive BLUE Estimation . 10

1.3 Optimality and Efficiency of the Optimal Distributed Fusion 11

1.4 Background and Motivation . 12

2 Previous Works 14

2.1 Data Compression . 15

2.1.1 Dimension Reduction . 15

2.1.2 Vector Quantization . 21

2.2 Out-of-Sequence Measurement Update . 28

iii

2.2.1 Single-Lag OOSM Update . 29

2.2.2 Multi-Lag OOSM Update . 30

2.2.3 OOSM Update in Clutter . 31

3 Optimal Sensor Data Dimension Reduction for BLUE Fusion 32

3.1 Problem Formulation . 34

3.2 Optimal Compression of a Single-Sensor Data for Estimation 37

3.3 Optimal Data Compression for Estimation Fusion 44

3.3.1 Uncorrelated sensors . 44

3.3.2 Linear sensor observation model with uncoupled noises 45

3.3.3 Sensor dimensional requirement larger than rank of C ′
xzCxzC

+
z 47

3.3.4 Arbitrary sensor dimensional requirement 48

3.4 Simulation . 54

3.4.1 Single Sensor . 56

3.4.2 Multi-Sensor Fusion System . 57

3.5 Summary . 59

4 Optimal Sensor Data Quantization for BLUE Fusion 61

4.1 Introduction . 61

4.2 Problem Formulation . 63

4.3 Optimal Quantizer Design for BLUE Fusion 64

4.4 Dynamic Processing for State Estimation Update 69

4.4.1 General Dynamic System . 70

4.4.2 Linear Gaussian Dynamic System . 72

iv

4.5 Simulation Results . 75

4.5.1 Estimation Fusion for Static Case . 76

4.5.2 State Estimation Fusion for Dynamic System 79

4.6 Summary . 81

5 Optimal Update with Out-of-Sequence Measurements 82

5.1 Introduction . 82

5.2 Problem Formulation . 84

5.3 Optimal Update with Available Information 85

5.4 Optimal Update Algorithms . 87

5.4.1 Algorithm I — Globally Optimal Update 87

5.4.2 Comparison of Globally Optimal Update Algorithms 97

5.4.3 Algorithm II — Constrained Optimal Update 99

5.4.4 Update with Arbitrarily Delayed OOSMs 109

5.5 OOSMs Update for Linear Gaussian Systems under Nonsingularity Conditions 115

5.5.1 Algorithm I — Globally Optimal Update (ALG-I) 115

5.5.2 Algorithm II — Constrained Optimal Update (ALG-II) 118

5.5.3 Update with Arbitrarily Delayed OOSMs 120

5.6 Numerical Examples . 121

5.6.1 Nonsingular Fk,d . 122

5.6.2 Singular Fk,d . 125

5.7 Summary . 128

v

6 Multi-Sensor Multi-Target Tracking with OOSMs 129

6.1 Introduction . 129

6.2 Problem Formulation . 131

6.3 OOSM Update in Clutter . 133

6.3.1 OOSM Update: PDA with ALG-I . 133

6.3.2 OOSM Update: PDA with ALG-II 134

6.3.3 OOSM Update: Multiple Target Case 137

6.4 Simulations . 138

6.4.1 Scenario . 138

6.4.2 Results for OOSMs with Good Accuracy 140

6.4.3 Results for OOSMs with Moderate Accuracy 141

6.5 Summary . 141

7 Conclusions and Future Work 144

Bibliography 147

Vita 159

vi

Abstract

Estimation fusion, or data fusion for estimation, is the problem of how to best utilize

useful information contained in multiple data sets for the purpose of estimating an unknown

quantity — a parameter or a process. Estimation fusion with constraints gives rise to

challenging theoretical problems given the observations from multiple geometrically dispersed

sensors:

• Under dimensionality constraints, how to preprocess data at each local sensor to achieve

the best estimation accuracy at the fusion center?

• Under communication bandwidth constraints, how to quantize local sensor data to

minimize the estimation error at the fusion center?

• Under constraints on storage, how to optimally update state estimates at the fusion

center with out-of-sequence measurements?

• Under constraints on storage, how to apply the out-of-sequence measurements (OOSM)

update algorithm to multi-sensor multi-target tracking in clutter?

The present work is devoted to the above topics by applying the best linear unbiased

estimation (BLUE) fusion. We propose optimal data compression by reducing sensor data

from a higher dimension to a lower dimension with minimal or no performance loss at the

fusion center. For single-sensor and some particular multiple-sensor systems, we obtain the

explicit optimal compression rule. For a multisensor system with a general dimensionality

requirement, we propose the Gauss-Seidel iterative algorithm to search for the optimal com-

pression rule. Another way to accomplish sensor data compression is to find an optimal

vii

sensor quantizer. Using BLUE fusion rules, we develop optimal sensor data quantization

schemes according to the bit rate constraints in communication between each sensor and the

fusion center. For a dynamic system, how to perform the state estimation and sensor quan-

tization update simultaneously is also established, along with a closed form of a recursion

for a linear system with additive white Gaussian noise. A globally optimal OOSM update

algorithm and a constrained optimal update algorithm are derived to solve one-lag as well

as multi-lag OOSM update problems. In order to extend the OOSM update algorithms to

multisensor multitarget tracking in clutter, we also study the performance of OOSM update

associated with the Probabilistic Data Association (PDA) algorithm.

viii

1

Chapter 1

Introduction and Preliminaries

Data fusion is the collective name given to techniques that are used to combine the mea-

surements from more than one sensor into a single quantity. The motivation behind using

multiple sensors is often two-fold: either to reduce error and uncertainty in the measurement,

or to obtain the estimate using the measured quantity from multiple sensors that would not

be accessible using a single sensor. Data fusion builds on many years of experiences in the

established techniques. These techniques are incorporated into a framework by transforming

the data into a common format, producing verdicts on the correctness of the various sources,

and allowing reliable estimation of the parameters or states of a problem. Data fusion is

an emerging technology. Numerous techniques have been promoted and adopted. In recent

years, the applications of data fusion or information fusion techniques have significantly

increased, such as in target tracking, image processing, economic data analysis.

Roughly, data fusion studies the optimal information processing in distributed environ-

ments through intelligent integration of the data from multiple sensors. As a specialized

branch of data fusion, estimation fusion focuses on estimating the parameters or states from

2

the multisource measurements. The task is to improve the estimation accuracy. Estimation

fusion is an exciting area of endeavor in the field of estimation theory. There are numerous

publications and conferences devoted to this area.

1.1 Estimation Fusion

Estimation fusion, or data fusion for estimation, is the problem of how to best utilize useful

information contained in multiple sets of data for the purpose of estimating an unknown

quantity — a parameter or process. These observations may be of different types or include

conflicting information. The multiple sets of observations are usually but not necessarily

obtained from multiple sources (e.g., multiple sensors). Even if the observations coming from

single source, we can artificially treat these observations coming from different locations and

view it as the fusion problem. In this sense, estimation itself is fusion by fusing the prior and

posterior information, and filtering is fusion by fusing the prediction and current observation.

Estimation fusion is important in many application areas, such as target tracking, sensor

informatics, etc.

1.1.1 Basic Estimation Fusion Architectures

There are two basic estimation fusion architectures: centralized and decentralized / dis-

tributed (also referred to as measurement fusion and track fusion in target tracking, respec-

tively), depending on whether the raw measurements are sent to the fusion center or not.

For centralized fusion, all raw measurements are sent to the fusion center. For distributed

fusion, each sensor only sends the processed data to the fusion center. These two approaches

3

S
1

S
2

S
n

.

.

.

x(z
1
,z

2
,...z

n
)

y
1
 = z

1

y
2
 = z

2

y
n
 = z

n

Measurement (Centralized) Fusion

S
1

S
2

S
n

.

.

.

y
1
 = x(z

1
)

y
2
 = x(z

2
)

y
n
 = x(z

n
)

x(y
1
,y

2
,...,y

n
)

Standard Distributed Fusion

have pros and cons in terms of survivability, autonomy, communication requirements, etc.

Centralized fusion is nothing but a conventional estimation problem with distributed data.

Distributed fusion is more challenging and has been a focal point of fusion research for many

years.

4

S
1

S
2

S
n

.

.

.

y
1
 = g

1
(z

1
)

y
2
 = g

2
(z

2
)

y
n
 = g

n
(z

n
)

x(y
1
,y

2
,...,y

n
)

General (Distributed) Fusion

1.1.2 Estimation Fusion Rules

Estimation fusion is to perform estimation by satisfying certain optimality criterion at the

fusion center based on information available from multiple sensors. There are two basic

classes of estimation fusion rules: linear and nonlinear rules. For the class of nonlinear fusion

rules, we generally focus on the minimum mean square error estimation (MMSE) fusion

rule, maximum posterior estimation (MAP) fusion rule, maximum likelihood estimation

(MLE) fusion rules. For linear rules, we mainly focus on optimal (linear) weighted least

squares (WLS) fusion rules and the best linear unbiased estimation (BLUE) fusion rules. The

latter is also known as the linear minimum mean-square error estimation (LMMSE) fusion

rules, linear minimum variance (LMS) fusion rules, or linear unbiased minimum variance

(LUMS) estimation fusion rules. Among all these estimation fusion rules, the commonly

used optimality criterion is to minimize the mean square errors (MSE). Within the unbiased

estimation fusion, MMSE fusion rule is to minimize the MSE over all estimators, and the

BLUE fusion rule is to minimize MSE within the linear class.

This dissertation is based largely on the best linear unbiased estimation fusion. In the

5

Fusion Rule

Nonlinear Estimation Fusion Rule Linear Estimation Fusion Rule

MMSE MAP MLE LMMSE (BLUE) WLS

Estimation Fusion Rule

following, we present the BLUE fusion in a general, systematic, and unified setting, largely

following [40].

1.2 BLUE Fusion

Under the Gaussian case, the BLUE fusion is identical to the MMSE fusion. Under a non-

Gaussian case, BLUE fusion is optimal within the linear class. This framework is flexible.

There is no additional assumption made on the correlation of sensor observation errors or

local estimation errors. It does not require a common local observation model and synchro-

nization of sensor observations. The BLUE fusion rule does not impose any constraint on

the network topology or information pattern.

Denote by y the available information at the fusion center and x the estimatee (i.e.,

quantity to be estimated). For the observation model, by prior information, we mean the

first and second order moments related to the estimatee: x – x̄ = E(x), Cx =var(x) and

Cxy =cov(x, y); with complete prior information we mean that x̄, Cx and Cxy are known

exactly; without prior information we mean none of x̄, Cx and Cxy are known or exist.

6

1.2.1 Fusion by BLUE with Prior

The BLUE with prior is given by

x̂ = arg min
x̂=A+By

E[(x − x̂)(x − x̂)′|y] = E∗(x|y) = x̄ + CxyC
−1
y (y − ȳ)

P = cov(x − x̂) = Cx − CxyC
−1
y C ′

xy

where A and B are matrices to be chosen such that the MSE of x̂ is minimized. If the inverse

C−1
y does not exist, it can be simply replaced with the unique Moore-Penrose pseudoinverse

(MP inverse in short) C+
y . The BLUE fusion is the linear estimation fusion rule that only

requires the knowledge of the first two order of statistics related to the estimatee.

1.2.2 Fusion by BLUE without Prior

For a linear observation model

y = Hx + v (1.1)

where for the centralized fusion, y, H, and v are the stacked observations, the measure-

ment matrix, and observation noise, respectively; for (standard) distributed fusion, they

are the stacked local estimates [x̂′
1, . . . , x̂

′
n]′, [I, . . . , I]′, and stacked local estimation errors,

respectively from all sensors.

Without knowledge of the prior mean x̄ and covariance Cx of the estimatee x, the linear

unbiased estimator based on the available information y exists if and only if H has full

column rank (i.e., H+ = (H ′H)−1H). If exists, it is unique (almost surely) and called the

7

BLUE without prior which is given by [53]

x̂ = K̃(y − v̄)

P = cov(x − x̂) = K̃RK̃ ′

where R =cov(v), K̃ = H+[I − R(TRT)+], T = I − HH+.

1.2.3 Effect of Prior Information

What is the relationship between BLUE fusion with and without prior? Can one be converted

to the other one? These two questions are answered in [49].

For the linear data model (1) with known v̄ and R, the BLUE with complete prior

information x̄, Cx, and Cxv can always be converted to the BLUE without prior information

by treating the prior mean x̄ as extra data in the linear model: x̄ = x + (x̄ − x). More

specifically, BLUE with complete prior information (x̄, Cx, and Cxv) for the linear data

model (1) with known v̄ and R always coincides (almost surely) with BLUE without prior

information for the linear data model ỹ = H̃x + ṽ with

ỹ =









x̄

y









, H̃ =









I

H









E[ṽ] =









0

v̄









, R̃ =









Cx −Cxv

−C ′
xv R









which is given by

x̂ = K̃(ỹ − E[ṽ]), P = K̃R̃K̃ ′, K̃ = [I − KH,K]

where K is the gain matrix of the BLUE fuser with complete prior.

8

It shows that the prior information can always be completely embedded into the linear

data model with prior mean as data. This is the foundation of the optimal linear update with

out-of-sequence measurements. In the following, we will also show that the BLUE without

prior can be converted to BLUE with complete prior.

For the same linear data model, the BLUE fuser without prior clearly can never have a

smaller MSE matrix than the BLUE fuser with complete prior information. The questions

left to be answered are: (a) how much worse? (b) can the MSE be the same? Clearly, the

MSEs of the two fusers are the same if and only if the prior information is redundant given

the data for the problem. The following results answer these questions.

Lemma 1: (Redundancy Condition of Prior for BLUE) [49] Let x̂1 and x̂2 = K2(y− v̄)

be BLUE with complete prior and without prior information, respectively, using the same

data y with known mean of error v̄. Then a necessary and sufficient condition for x̂1 = x̂2

almost surely is K2Cy = Cxy, where Cy =cov(y) and Cxy =cov(x, y). ¤

Note that this theorem is valid regardless if y is linear or nonlinear in the estimatee x

provided the BLUE without prior has the form x̂2 = K2(y − v̄). For linear data, we have

the following stronger results.

Theorem 1: (Redundancy Conditions of Prior for BLUE) [49] Consider the linear

data model (1) with known v̄ and C. Let x̂1 and x̂2 be BLUE with complete prior and

without prior information, respectively, using the same data y. Then the following statements

are equivalent. (a) x̂1 = x̂2 almost surely (i.e., prior information is redundant for the

BLUE) (b) The gain matrix K2 of x̂2 satisfies K2Cy = Cxy. (c) The gain matrix K2 of x̂2

satisfies K2Cvy = 0. (d) (I −CvyC
+
vy)H has full column rank; that is, [(I −CvyC

+
vy)H]+[(I −

CvyC
+
vy)H] = I where C+

vy is the MP inverse of Cvy =cov(v, y). (e) The following condition

9

holds

[I − CxyC
+
y H][I − CxyC

+
y H]+[I − CxyC

+
y H] = [I − CxyC

+
y H]

¤

Note that the BLUE without prior exists if and only if H has full column rank. The

redundancy conditions are general — they hold whenever the BLUE without prior exists for

the model (1) with known v̄ and R. With additional assumptions, we have stronger results,

as stated by the following corollaries.

Corollary 1: (Sufficient Condition for Redundancy of Prior for BLUE) [49] Consider

linear data model (1) with known v̄ and R. Then prior information is redundant for BLUE

if rank[CY , H]=rank(Cy) and I − CxyC
+
y H = 0. ¤

Corollary 2: (Contribution of Prior to BLUE) [49] Consider the linear data model (1)

with known v̄ and R. Then the contribution of the prior information (x̄, Cx, and Cxv) to

BLUE fusion in the sense of Fisher information matrix is given by

P−1
1 − P−1

2 = (I + CxvR
−1H)′(Cx − CxvC

−1C ′
xv)

−1(I + CxvC
−1H)

where P1 and P2 are the MSE matrices of BLUE fusers with complete and without prior

information, respectively. In particular, the prior information is redundant for BLUE fusion

- BLUE fuser with complete prior information is (almost surely) identical to BLUE fuser

without prior information - if and only if

I + CxvR
−1H = 0

¤

Corollary 3: Consider the linear data model (1.1) with known v̄ and R. Assume

R > 0, Cx > 0, and Cxv = 0. Then the prior information (x̄, Cx) is useful for BLUE

10

fusion - BLUE fuser with complete prior information has a smaller MSE matrix than the

BLUE fuser without prior information - and the contribution of the prior information is

P−1
1 − P−1

2 = C−1
x . ¤

This corollary indicates that in the usual case (C > 0, Cx > 0, and Cxv = 0), the optimal

use of the prior mean and covariance does improve the performance of the BLUE fusion; the

prior information and the data information are additive because they are uncorrelated.

1.2.4 Recursive BLUE Estimation

Recursive forms of the BLUE estimation are of major importance in practice for their com-

putational efficiency. The BLUE estimator using y = [y′
1, y

′
2]

′ with two observations y1 and

y2 always has the following quasi-recursive forms [53]:

E∗[x|y1,y2] = E∗[x|ỹ1] + E∗[x − x̄|ỹ2|1] = x̂1 + Cxỹ2|1
C+

ỹ2|1
ỹ2|1

Px̃ = Cx̃1 − Cxỹ2|1
C+

ỹ2|1
C ′

xỹ2|1

where x̃1 = x − x̂1 = x − E∗[x|y1] has zero mean and the innovation ỹ2|1 = y2 − E∗[y2|y1],

and Cx̃1 =cov(x̃1) = Cx − Cxy1C
+
y1

C ′
xy1

, Cỹ2|1
=cov(ỹ2|1) = Cy2 − Cy2y1C

+
y1

C ′
y2y1

, Cxỹ2|1
=

Cxy2 − Cxy1C
+
y1

C ′
y2y1

.

When

E∗[x|x̂1, ŷ2|1] = E∗[x|x̂1, y2]

the quasi-recursive BLUE becomes truly recursive. We call it the BLUE filter. The famous

Kalman filter is a special case of the recursive BLUE filtering under the corresponding

assumption.

11

1.3 Optimality and Efficiency of the Optimal Distributed

Fusion

Distributed fusion has certain advantages over centralized fusion in terms of survivability,

autonomy, communication requirements, etc.

An important issue in distributed fusion is its performance relative to that of the cen-

tralized fusion using the same data. It is well known that under linear-Gaussian assumption

(i.e., linear measurements with additive white Gaussian noise), optimal distributed fusion

is equivalent to the centralized fusion. However, in many applications, this is not the case.

When there exists some correlation across sensors, what is the performance of the distributed

fusion? In general, distributed fusion can never outperform the optimal measurement fusion.

So, two natural questions arise:

• Under what conditions do they perform the same?

• How much performance degradation does the distributed fusion suffer?

Centralized and distributed estimation fusion architectures can be considered as a general

framework. As a basis, the BLUE, optimal WLS, and optimal generalized WLS fusion rules

for an arbitrary number of sensors have been presented.

The optimal centralized and distributed fusers are algebraically equivalent when the ob-

servation noises are uncorrelated across sensors. When the observation noises are correlated

across sensors, they have different performance in general. Thus there should exist necessary

and sufficient conditions for the optimal centralized and distributed fusers to have the same

performance. In my master thesis [48], several necessary and sufficient conditions for the

12

optimal distributed and centralized BLUE (or WLS) fusion and the optimal WLS fusion to

have identical performance were obtained, which can be easily verified. Several measures of

efficiency of distributed fusion relative to centralized fusion were proposed, which include the

ratio of the mean-square errors (MSER) and generalized error variance ratio (GEVR) of cen-

tralized fusion and distributed fusion. These measures quantify the performance degradation

of the distributed fusion to the optimal centralized fusion.

1.4 Background and Motivation

Since there is information loss in terms of MSE for most general distributed fusion systems,

without any constraints, all raw measurements from each local sensor may directly be sent

to the fusion center for a multisensor fusion system in order to achieve the best performance.

However, for multisensor systems, measurements are conveyed through the communication

with limited capacity, and the processing power at the fusion center is also limited. Thus,

certain constraints need to be considered.

The work is motivated by the applications of practical target tracking and sensor fusion

systems. The discussion in this dissertation deals with multi-sensor distributed estimation

fusion under various constraints. How do we optimally utilize local information at the

sensor level in order to have the best estimation accuracy at the fusion center? The problem

can be formulated in terms of constrained optimization. For different constrains, we try

to find the corresponding optimal solutions. Under the dimensionality constraint, we will

address the problem of how to compress the local sensor data in order to achieve the optimal

BLUE fusion at the center. Under communication bandwidth constraint, we try to build the

13

BLUE estimation scheme based on the limited sensor data quantization levels. Under the

information storage constraint, we will present the optimal out-of-sequence update, together

with its applications to multi-sensor multi-target tracking under the measurement origin

uncertainty.

The main topics in the dissertation are estimation fusion under different constraints,

such as the dimensionality constraint, the communication bandwidth constraint, and the

information storage constraint. These constraints have been studied in some other areas. In

the next chapter, we will give a brief survey of previous works related with the dissertation

to show that our problems in estimation fusion need special treatments.

The dissertation is organized as follows. We start in Chapter 1 with an introduction to the

basic structure of estimation fusion, several fusion rules, and properties of the BLUE fusion

rule. Chapter 2 gives a concise description of the previous works on data compression and

estimation fusion related to the dissertation. Optimal sensor data dimension reduction for

linear estimation fusion is described in Chapter 3. Specific issues in the optimal estimation

fusion with limited communication bandwidth, resulting in an estimation fusion scheme

based on sensor data quantization accuracy, and both estimation and quantization update

in a dynamic system along with a closed form of a recursion for a linear dynamic system

with white Gaussian noise, are studied in some detail in Chapter 4. Optimal update with

out-of-sequence measurements and its application to multi-sensor multi-target tracking in

clutter are described in Chapters 5 and 6 respectively, along with numerical results obtained

using target tracking scenarios. Finally, Chapter 7 summarizes the work and presents a few

future directions.

14

Chapter 2

Previous Works

Estimation fusion has been investigated for more than two decades. Target Tracking and

Motion Analysis demand practical fusion systems for both military and non-military ap-

plications. Most of research efforts on estimation fusion focus on the optimal fusion rule

[4, 16, 54, 53, 50, 48, 49, 85] at the fusion center. With the advances of modern sensor

technology such as the wireless network connecting the MEMS microsensors, a lot of new

issues in estimation fusion area arise. In general, estimation fusion can occur at any level

when the data processor has access to measurements from multiple sensors regarding the

same target state. Therefore it is very natural to consider communication, computation

and power constraints in the fusion system. In a real situation, both the optimal sensor

data processing and the optimal fusion rule need to be taken into consideration since the

information is shared by the whole fusion system with various constraints.

With the communication constraints between each sensor and the fusion center, in this

dissertation, we will mainly consider how to compress data at the sensor level to achieve the

best estimation accuracy at the fusion center. Out-of-sequence measurement update problem

15

is a special topic in target tracking area. Recently, a lot of research effort is focused on how

to build optimal update algorithms. Many approaches have been proposed. In the following,

we give a survey for the existing data compression and OOSM update techniques. In Chapter

3, 4, 5 and 6, we consider each problems in more detail in the data fusion framework.

2.1 Data Compression

Data compression is an old and important problem, which has been the subject of a large

volume of literature ranging from estimation, detection, information theory to statistical pat-

tern recognition and data mining. Most methods proposed only concern the data compres-

sion within each local sensor. There is little research on data compression with distributed

estimation fusion. The popular techniques in these areas do not capture the relationship

between the local sensors and the fusion center. That is why we need to investigate new

data compression techniques particularly useful for fusion systems. Dimension reduction and

quantization are two popular techniques to perform data compression in the pattern recog-

nition and communication areas. Sensor data compression for estimation fusion can also be

formulated as sensor data dimension reduction and the sensor quantization problems. In the

following, we give a brief description on the existing data compression methods.

2.1.1 Dimension Reduction

In pattern recognition, the input data is usually represented by a set of d features or measure-

ments, called a d-dimensional feature vector. In most intelligent data analysis, the dimension

of the measurement space is usually very large in order for the measurements to carry as

16

much information as possible about the physical objects of interest. This high-dimensionality

is a major cause of the practical limitations of many sophisticated techniques because the

complexity of many algorithms increases very fast with the dimension.

Besides, it has been observed that using a large number of features may actually degrade

the performance of classifiers if the number of the input data is small relative to the number

of features [30, 69, 70]. This fact, referred to as the “peaking phenomenon”, is caused by

the “curse of dimensionality” [7]. Actually, the number of parameters in a d-dimensional

distribution usually grows much faster than O(d) unless one makes a strong assumption that

the features are independent [10]. For instance, given that the features are not independent,

the normal distributions have O(d2) parameters and the binary distributions have O(2d)

parameters. In other words, the complexity of a distribution increases rapidly when the

dimension increases.

Therefore, dimension reduction is essential to many engineering applications. In the

past several decades, many dimension reduction techniques have been proposed, see [31] for

a complete survey. There is a tradeoff between the complexity of classifiers and that of

dimension reduction techniques. Thus, linear dimension reduction methods are usually used

in most practical applications. The most well-known linear dimension reduction methods are

probably Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

Principal Component Analysis

PCA (also known as the Karhunen-Loève transformation in communication theory) [20, 32]

is possibly the dimension reduction technique most widely used in practice, perhaps due

to its conceptual simplicity and to the fact that relatively efficient algorithms exist for its

17

computation. PCA is a linear dimension reduction technique based on the mean squared

error (MSE) criterion:

W = arg min
W

E
[

(z − Wz∗) (z − Wz∗)′
]

(2.1)

where z denotes a D -dimensional pattern represented by a lower d-dimensional random

vector z∗ = W ′z. The PCA method computes the largest eigenvectors of the covariance

matrix S = E{(z − z̄)(z − z̄)′} (or correlation matrix R) of n samples. The eigenvectors

are called the principal components. These first d largest principal components contain the

most of the variance of data. By expanding data on these orthogonal principal components,

we have the minimal reconstruction error on the original data z.

Geometrically, the hyperplane spanned by the first d principal components is the regres-

sion hyperplane that minimizes the orthogonal distances to the data. In this sense, PCA is

a symmetric regression approach, as opposed to standard linear regression, which points one

component as response variable and the rest as predictors.

The key property of principal component analysis is that it attains the best linear map

z ∈ RD 7→ z∗ ∈ Rd in the senses of:

• Least squared sum of errors of the reconstructed data.

• Maximum mutual information (assuming the data vector z distributed normally) be-

tween the original vector z and its projection z∗: I(z; z∗) = 1
2
ln((2πe)dλ1, . . . , λd) are

the first d largest eigenvalues of the covariance matrix.

Certainly, for estimation fusion, we can still rely on PCA to perform sensor data di-

mension deduction. At the fusion center, the optimal estimation fusion rule can be applied

18

based on the compressed measurements and certain accuracy can be achieved. But the

decorrelation and high measure of statistical significance provided by the first few principal

components of the sensor observation cannot guarantee to reveal the necessary information

for the estimation at the fusion center. The estimation accuracy could suffer significantly.

That is why we need to consider a more fundamental formulation for the problem. The

sensor data dimension reduction in linear estimation fusion can be formulated as

W = arg min
W

E{(x − x̂(W ′z))(x − x̂(W ′z))′} (2.2)

where x is the state to be estimated; with BLUE fusion rule, the linear estimator is x̂(W ′z) =

KW ′z . Although the optimality criteria for (2.1) and (2.2) are both MSE, they have different

bases: PCA is in the observation space while the optimal sensor data dimension reduction

for linear estimation fusion is in the parameter (state) space. The major differences between

our problem with PCA are: The goal of sensor data dimension reduction in a fusion system

is to provide a good estimate of the state or process at the fusion center, rather than to use a

lower dimensional data to represent the sensor measurements; even if we use linear dimension

reduction technique, the transformation matrix W for all measurements at the fusion system

is a block diagonal matrix with each block corresponding to the transformation at each local

sensor. How to get the optimal W with this structural constraint is much harder than solving

the full unconstrained matrix W in the pattern recognition area. With our research results,

for state estimation fusion in static case, we achieved the optimal linear sensor data dimension

reduction based on BLUE fusion rule [80], and its generalization to state estimation fusion

in dynamic system [17] .

19

Linear Discriminant Analysis

Linear discriminant analysis (also called Fisher’s Linear Discriminant) is another popular

linear dimension reduction method. In many applications, LDA has proven to be very

powerful. Fisher originally introduced LDA for two classes [22], and Rao generalized LDA

to handle multi-class cases [68]. LDA is given by a linear transformation matrix W ∈ RD×d

maximizing the so-called Fisher criterion (a kind of Rayleigh coefficient)

J(W) = tr[W ′SbW (W ′SwW)−1] (2.3)

where Sb =
∑c

i=1 pi(mi − m)(mi−m)T is the between-class scatter matrix; Sw =
∑c

i=1 piSi

is the within-class scatter matrix; c is the number of classes; mi and pi are the mean vector

and a priori probability of class i, respectively; m =
∑c

i=1 pimi is the overall mean vector;

Si is the scatter matrix of class i; D and d are the dimensions of the data before and after

the transformation, respectively. To maximize (2.3), the transformation matrix W must

be constituted by the largest eigenvectors of S−1
w Sb. The purpose of LDA is to maximize

the between-class scatter while simultaneously minimizing the within-class scatter. The

two-class LDA has a close connection to optimal linear Bayes classifiers. In the two-class

case, the transformation matrix W is just a vector, which is in the same direction as the

discriminant in the corresponding optimal Bayes classifier. However, it has been shown that

LDA is suboptimal for multi-class problems [57].

A major drawback of LDA is that it cannot be applied when Sw is singular due to the

small sample size problem [24]. The small sample size problem arises whenever the number

of samples is smaller than the dimension of samples. For example, a 64× 64 image in a face

recognition system has 4096 dimensions, which requires more than 4096 training data to

20

ensure that Sw is nonsingular. So, LDA is not a stable method in practice when the training

data are scarce. In recent years, many researchers have noticed this problem and tried to

overcome the computational difficulty with LDA. Tian et al. [77] used the pseudo-inverse

matrix S+
w instead of the inverse matrix S−1

w . For the same purpose, Hong and Yang [29]

tried to add a singular value perturbation to Sw to make it nonsingular. Neither of these

methods are theoretically sound because Fisher’s criterion is not valid when Sw is singular.

When Sw is singular, any positive Sb makes Fisher’s criterion infinitely large. Thus, these

naive attempts to calculate the (pseudo or approximate) inverse of Sw may lead to arbitrary

(meaningless) results. Besides, it is also known that an eigenvector could be very sensitive

to small perturbation if its corresponding eigenvalue is close to another eigenvalue of the

same matrix [75]. In 1992, Liu et al. [55] modified Fisher’s criterion by using the total

scatter matrix St = Sb + Sw as the denominator instead of Sw. It has been proven that the

modified criterion is exactly equivalent to Fisher’s criterion. However, when Sw is singular,

the modified criterion reaches the maximum value (i.e., 1) no matter what the transformation

W is. Such an arbitrary transformation cannot guarantee the maximum class separability

unless WTSbW is maximized. In 2000, Chen et al. [18] proposed the LDA+PCA method.

When Sw is of full rank, the LDA+PCA method just calculates the maximum eigenvectors

of S−1
t Sb to form the transformation matrix. Otherwise, a two-stage procedure is employed.

First, the data are transformed into the null space V0 of Sw. Second, it tries to maximize

the between-class scatter in V0, which is accomplished by performing principal component

analysis (PCA) on the between-class scatter matrix in V0. Although this method solves the

small sample size problem, it is obviously suboptimal because it maximizes the between-class

scatter in the null space of Sw instead of the original input space.

21

While solving the optimal sensor data dimension reduction problem under BLUE fusion

rule, (2.2) can be written as

W = arg min{Cx − CxzW (W ′CzW)−1W ′C ′
xz} (2.4)

= arg max{W ′C ′
xzCxzW (W ′CzW)−1}

If we treat C ′
xzCxz = Sb and Cz = Sw, when Cz is nonsingular, the optimal W without block

diagonal structure constraint can be directly borrow the solution from LDA. However, we

derived a more general solution for (2.4) which can handle the case that Cz is singular, also

W could be block diagonal. Our results provide a direct solution for the small sample size

problem in pattern recognition area by applying LDA with singular Sw. The full analysis

and results are submitted for publication.

2.1.2 Vector Quantization

Vector quantization (VQ) (or block or multidimensional quantization) is a technique that

exploits the underlying structure of input vectors for the purpose of data compression. Specif-

ically, an input space is divided into a number of distinct subsets, and for each subset, a

reconstruction vector is defined. When the quantizer is presented as a new input vector, the

region in which the vector lies is first determined, and then represented by the reproduction

vector for that subset. Thus, by using an encoded version of this reproduction vector for

storage or transmission in place of the original input vector, considerable savings in storage

or transmission bandwidth can be realized, at the expense of some distortion. The collection

of possible reproduction vectors is called the code book of the quantizer, and its members

are called code words.

22

Measurement Quantization

More generally, we can define a quantizer as consisting of a set of cells S = {Si; i ∈ I},

where the index set I is ordinarily a collection of consecutive integers beginning with 0 or

1, together with a set of reproduction values or points or levels C = {yi; i ∈ I}, so that the

overall quantizer q is defined by q(z) = yi for z ∈ Si, which can be expressed concisely as

q(z) =
∑

i

yi1si
(z)

where the indicator function 1s(z) is 1 if z ∈ S and 0 otherwise.

The quality of a quantizer can be measured by the goodness of the resulting reproduction

in comparison to the original. One way of accomplishing this is to define a distortion measure

d(z, ẑ) that quantifies cost or distortion resulting from reproducing z as ẑ and to consider the

average distortion as a measure of the quality of a system, with smaller average distortion

meaning higher quality. The most common distortion measure is the squared error d(z, ẑ) =

||z − ẑ||2. In practice, the average will be a sample average when the quantizer is applied

to a sequence of real data, but the theory views the data as sharing a common probability

density function (pdf) f(z) corresponding to a generic random variable x and the average

distortion becomes an expectation

D(q) = E[d(z, q(z))] =
∑

i

∫

Si

d(z, yi)f(z)dz

If a distortion is measured by squared error, D(q) becomes the MSE.

It is desirable to have the average distortion as small as possible. There is a cost in terms

of the number of bits required to describe the quantizer output to a decoder, however, and

arbitrarily reliable reproduction will not be possible for digital storage and communication

23

media with finite capacity. A simple method for quantifying the cost for communications or

storage is to assume that the quantizer “codes” an input z into a binary representation. If

there are N possible levels and all of the binary representations or binary codewords have

equal length, the binary vectors will need logN components or bits. Thus one definition of

the rate of the code in bits per input sample is

R(q) = log N

In summary, the goal of quantization is to encode the data from a source, characterized

by its probability density function, into as few bits as possible (i.e., with low rate) in such

a way that a reproduction may be recovered from the bits with as high quality as possible

(i.e., with small average distortion). Clearly, there is a tradeoff between the two primary

performance measures: average distortion and rate. There are also many alternative quan-

tization techniques that permit a better tradeoff of distortion and rate; e.g., less distortion

for the same rate, or vice versa.

The history of the theory and practice of quantization dates back to 1948. Two comple-

mentary approaches dominate the history and present state of the theory: Rate-distortion

theory — Shannon’s information - theoretic approach to source coding providing the founda-

tions of information theory [72, 73]; high resolution (or high-rate or asymptotic) quantization

theory [65, 8, 67]. In contrast to these two asymptotic theories, there is also a small but

important collection of results that are not asymptotic in nature. The most important

nonasymptotic results, however, are the basic optimality conditions and iterative-descent

algorithms for quantizer design, by considering the problem with a squared-error distortion

24

measure:

∑

i

∫

Si

m(z)||z − yi||
2dz (2.5)

where m(z) is a density function defined on Euclidean space. What partition S and collection

of vector C minimizes (2.5), the sum of the moments of inertia of the cells about the asso-

ciated vectors? The solution is first derived by Steinhaus (1956) [74], then by Lloyd (1957),

and later popularized by Max (1960) [56]. What we now consider to be the Lloyd-Max

optimality conditions (centroid and nearest neighbor mapping) from fundamental principles

(without variational techniques), proved the existence of a solution, and described the it-

erative descent algorithm for finding a good partition and vector collection. A complete

survey [26] provides a historical tour of the development of the theory and practice of quan-

tization over the past fifty year, a period encompassing almost the entire literature on the

subject. Many of the efforts are described in a general way as “data-compression”, “redun-

dancy reduction”, and “bandwidth-compression”, and most of them rely on quantization

and subsequent reconstruction of data.

Estimation with Quantized Measurement

Estimation with quantized measurements is of prime interest to designers of digital commu-

nication systems. In most problems in estimation theory, the implicit assumption is that the

estimator has direct access to a sequence of possibly noise-corrupted measurements. How-

ever, in certain situations there is a constraint on the amount of information available to the

estimator. In particular, if the estimator is not at the same location as the measurement

sensor and receives information via a digital communication channel with finite capacity,

then the measurement must be mapped to a finite set of symbols before transmission to the

25

estimator, i.e., the vector quantization is performed for the sensor measurements. The task

is to have the efficient estimation on quantizated measurements. The results from classical

estimation theory need to be extended to this case.

Given two random variables, x as the state to be estimated, and z as the measurement,

the joint probability-density function is px,z(ξ, ζ). Given that z lies in a region denoted by

A, then

px,z|z∈A(ξ, ζ) =















0,

px,z(ξ,ζ)

P (z∈A)

ζ /∈ A

ζ ∈ A

where P (z ∈ A) =
∫

A
dζ

∫

dξpx,z(ξ, ζ). The classical estimation is based on the probability-

density function px,z(ξ, ζ), while the estimation with quantized measurement will be based

on px,z|z∈A(ξ, ζ).

For Bayesian estimation, Curry [19] derived the result that for some function f(x)

E[f(x)|z ∈ A] = E{E[f(x)|z]|z ∈ A}

This indicates that the estimation problem with quantized measurements may now be con-

sidered to consist of two operations: finding E[f(x)|z], the conditional mean of f(x) given a

measurement (this function of z is the usual goal of the estimation problem without quan-

tized measurements), and averaging this function of z conditioned on z ∈ A. This solution

to the estimation problem is most beneficial in the sense that E[x|z] is the MMSE estima-

tor which has been computed for a wide variety of problems. All that remains, then, is to

average this function over z ∈ A when the measurements are quantized.

The natural questions to ask for estimation with quantized measurement are, what is the

best way to perform the quantization so as to minimize the estimation error, and how much

26

capacity is needed to achieve a specified estimation accuracy. The goal of quantization in this

case is to provide a good estimation accuracy, rather than to reconstruct the measurements.

There are some existing results solving the state estimation problem with the quantized

measurements, such as Curry’s MMSE estimator with quantized measurement [19], Zhang’s

research on how the unbiased estimator depends on the communication rates [83] and Wong’s

analysis on the performance of estimation algorithms with the data rate [78]. Also, for

quantizer design, there are some works given by Ephraim and Gray [21], by Ayanoglu [1],

and by Nair [64] on coding and estimating scheme for a Gauss-Markov process, etc.

Estimation Fusion with Communication Constraints

Mutlisensor estimation fusion is more complicated than classical estimation theory. It in-

volves choosing the optimal estimation criteria at the fusion center, considering data process-

ing at each local sensor and characterizing communication. Estimation fusion with commu-

nication constraints can be considered the case where the communication from each sensor to

the fusion center is constrained to within certain bits. There are major research directions:

• Determine an optimal estimation fusion scheme which can achieve a pre-set estimation

accuracy with the smallest number of sensors;

• Determine the sensor quantization and center estimation fusion scheme given a fixed

fusion system structure.

The most recent research work given by Luo [58] belongs to the first direction which ad-

dresses the decentralized estimation in a bandwidth constrained sensor network. He studied

27

the parameter estimation problem with a linear sensor observation model

zk = x + vk k = 1, . . . , N

where noise terms are i.i.d., zero mean, and bounded to, say, [−U,U] with a probability

density function f(x). Consider the case where the communication from each sensor to the

fusion center is constrained to one binary bit. A linear estimator was considered

x̂ =
N

∑

k=1

αk1S(zk)

His main results show that whether the noise pdf is known or unknown, O(U2

ε
) sensors are

necessary and sufficient in order for the sensors and the fusion center to jointly estimate the

unknown parameter with MSE(x̂)≤ ε. This asymptotic result provides a good theoretical

foundation for fusion system design.

Following the second research direction, multi-sensor quantization for estimation fusion

has been studied by Lam and Reibman [33] and Gubner [27]. In [33], the MMSE and

the maximum-a-posteriori probability (MAP) were considered as theoretical foundation for

design of quantizers. Given h(q1(z1), . . . , qN(zN)) as the estimation function at the fusion

center, where qk(zk) =
∑

i

yki1ski
(zk), the distortion function corresponding to the MMSE

criterion is given by

d[x, h(q1(z1), . . . , qN(zN))] = [x − h(q1(z1), . . . , qN(zN))]2

And the distortion function corresponding to the MAP criterion is given by

d[x, h(q1(z1), . . . , qN(zN))] =















0

1

if x = h(q1(z1), . . . , qN(zN))

if x 6= h(q1(z1), . . . , qN(zN))

28

Comparing the optimal designs using the MMSE and MAP criterion, the computation for

the MAP fusion center is more difficult than computing the optimal MSE fusion center. On

the other hand, computing the optimal partition regions for the local quantizers is simpler for

the MAP criterion than the MMSE criterion. Therefore, it claimed that the choice of the two

criteria depends mainly on the nature of the problem. Lam’s quantizer design and estimation

requires the knowledge of the entire joint distribution of state and all sensor observations.

However, [27] proposed an linear estimation fusion, i.e., h(q1(z1), . . . , qN(zN)) =
N
∑

k=1

qk(zk),

where sensor quantization uses only bivariate probability distributions. But the algorithm

itself involves solving several multi-variable equations to get yki.

All of above results are mainly confined to the estimation in a scalar case. In our research,

based on BLUE fusion rule, we build the general state estimation fusion scheme by optimal

quantizing the local sensor observations (Chapter 4).

2.2 Out-of-Sequence Measurement Update

In multisensor target tracking systems, measurements from the same target can arrive out

of sequence. Such “out-of-sequence” measurement (OOSM) arrivals can occur even in the

absence of communication time delays. The resulting problem — how to update the current

state estimate with an “older” measurement — is a nonstandard estimation problem. Al-

though OOSM update is a small problem from theoretical point of view, solving this problem

has a significant impact in target tracking and many other engineering applications.

Suppose there is no constraint. Then the OOSM update problem can be simply solved

by rerun the Kalman filter with all data from the OOSM occurrence time to its arrival time.

29

But we do have limited storage, how do we perform an efficient OOSM update with limited

storage?

Many OOSM update algorithms have been proposed. They can be classified into two

classes in terms of the delayed time of this OOSM: single-lag and multi-lag. Suppose the

delayed measurement is zd, where the sampling time is td (tk−l < td < tk). When l = 1, zd

is a one-step delayed (single-lag) OOSM; when l > 1, zd is a multi-step delayed (multi-lag)

OOSM.

2.2.1 Single-Lag OOSM Update

For the one-step delayed OOSM update problem, the initial work of [28, 9] presented an

approximate solution to the OOSM problem. The proposed update algorithm only uses the

information with the current state estimate x̂k|k = E∗(xk|zk) and the delayed measurement

zd. According to the BLUE fusion theory, this solution for OOSM update is

x̂k|k,d = E∗(xk|x̂k|k, zd)

An optimal OOSM update algorithm for one-step delay problem is first derived in [2]

where the information used includes x̂k|k, zd and the state prediction x̂k|k−1. This a global

optimal algorithm in the sense that the state estimation update can achieve the same per-

formance as that of using all measurements from beginning up to now. Also, according to

BLUE fusion theory, this update can be viewed as

x̂k|k,d = E∗(xk|z
k, zd)

where zk = [z1, z2, . . . , zk]
′.

30

2.2.2 Multi-Lag OOSM Update

The OOSM update for multi-step delayed problem is much harder than the one-step delay

case. The main reason is that we have limited information storage. For one step globally

optimal update, the information of zk can be characterized through x̂k|k and x̂k|k−1, so we can

have an OOSM update algorithm having equivalent performance with in-sequence update

using the information x̂k|k−1, zd, zk. By generalizing to the multi-step delayed OOSM update

problem, we can not based only on current information such as x̂k|k and x̂k|k−1 to characterize

all observations from OOSM occurrence time to its arrival time. There is a tradeoff in terms

of optimality and storage requirement. Several techniques have been proposed. “Algorithm

Al1” and “Algorithm Bl1” proposed in [2] give up optimality by doing certain approximation

in the algorithm and try to show that the performance does not suffer a lot for tracking

scenarios. [14, 15, 12] presented multi-step OOSM update using augmented state smoothing.

This is, let

Xk =

















xk−l+1

...

xk

















be the new state vector. Then the OOSM zd in terms of this new state Xk becomes the in-

sequence measurement. The update can be handled directly by the state augmented Kalman

filter. The idea has merit, but the computation and storage are intensive which limited the

implementation of the algorithms. The suboptimal OOSM update of [59] gives an algorithm

that can achieve

x̂k|k,d = E∗(xk|x̂k|k, zd)

31

2.2.3 OOSM Update in Clutter

The previous results for OOSM update are formulated for a Kalman filter to update the

state. In this problem, the measurement at each sampling time is assumed to be target

originated and no clutter or interference from other targets is considered. However, in real

world multi-sensor multi-target tracking problem, measurements received at the fusion center

can originate from targets or clutter, i.e., false alarms. The filter handles the measurement

origin uncertainty via the so-called data association.

Considering solving the multi-sensor OOSM update problem in a cluttered environment,

[60, 66, 14, 13] discussed several issues by applying their OOSM update algorithms in the case

of measurement origin uncertainty. The existing optimality criterion for the OOSM update

within the Kalman filter framework is no longer valid for the target tracking problem with

measurement origin uncertainty. So, the optimality criterion for OOSM update in clutter

is complicated. Most existing works are to study the performance of their OOSM update

algorithm combined with certain data association algorithms.

Filtering is a special case of fusion. So our research for this OOSM update problem is

based on the theoretical foundation of BLUE fusion with and without prior information. We

formulate the OOSM update problem as a constrained estimation fusion problem. Based

on different storage constraints, we develop a optimal OOSM updates [81, 61]. We also

extend our results for OOSM update in a cluttered environment [79] and mainly study the

performance of our algorithms combined with data association algorithms.

32

Chapter 3

Optimal Sensor Data Dimension

Reduction for BLUE Fusion

Estimation fusion has been investigated for more than two decades. Most of existing results

focus on building the optimal fusion rules for distributed fusion. In target tracking, the

most commonly used distributed architecture, standard distributed fusion [53], only allows

local estimates to be available at the fusion center. However, for much wider applications,

distributed fusion has more general architecture than this configuration. In most standard

distributed fusion, each local sensor provides linearly or nonlinearly processed measurements

to the fusion center. How to define these local mappings is still an open problem. The reason

is that in the fusion center, the fusion rule can be easily defined by optimizing certain crite-

rion. For example, MMSE, BLUE, and WLS fusion rules are to minimize MSE covariance

matrix, MSE covariance within the class of linear rules, and the weighted data fitting error,

respectively. However, within a single local sensor, there is no concrete criterion to define

the best mapping for processing the sensor observations because our final goal is to achieve

33

the optimal estimation at the fusion center rather than at the local sensor. For the standard

estimation fusion architecture, local sensor uses the same optimality criterion as the fusion

center and obtains the rule that maps local observations to the optimal local estimate. The

benefit of this fusion structure is that local sensor can also have their own local optimal

estimate. Limitations of this local sensor rule are obvious. The local sensor measurement

mapping does not

• optimize estimates at the fusion center.

• consider the communication capacity between the local sensors and the fusion center.

• consider the processing ability at the fusion center.

An optimal sensor compression rule should yield the optimal fusion at the center with

the constraint on the communication bandwidth between the fusion center and the local

sensors, and the processing capability of the fusion center. The problem of data compression

is thus a constrained optimization problem. Without constraints, the problem is trivial: the

local sensors’ observations can be directly sent to the fusion center, and then in the fusion

center, a globally optimal solution is guaranteed. Note that the size of the raw data is often

large, which has a high demand on communication bandwidth and the fusion center must

have good computation capability and large memory. For example, if we consider a uniform

quantization for every dimension of the data, the larger the data size, the more bits we

need to send. Thus it is crucial to consider data compression when creating the local sensor

rule. In this paper, we consider the BLUE fusion as the fusion rule. In the Gaussian case,

BLUE is equivalent with MMSE. Without loss of generality, we assume the dimension of

34

each single observation is fixed. We consider compressing the local raw measurement to a

lower dimension. Since it is very difficult to discuss general nonlinear transformations, our

discussion is limited to linear rules. A linear rule is optimal if the fusion center achieves the

optimal estimation under the constraints.

3.1 Problem Formulation

Consider a distributed system with a fusion center and n sensors (local stations), each

connected to the fusion center.

Source n

Source 2

Source 1

¡
¡

¡
¡

¡µ

-

HHHHHHj¶
µ

³
´fusion center

A
′

nzn

A
′

2z2

A
′

1z1

-
estimate x̂

Figure 3.1: framework of estimation fusion

Denote by zi (an ni - dimensional vector) the observations of the ith sensor of the estima-

tee (i.e., the quantity to be estimated) x. For a distributed fusion system, only data-processed

observations are sent to the fusion center, that is, a non-trivial mapping gi (i = 1, . . . , n) is

applied on local sensor measurements:

gi : zi → yi

After sensor data processing, the available data at the fusion center is y = {y1, . . . , yn}. If

35

yi = zi, it is known as the centralized fusion, central-level fusion, or measurement fusion. If

yi = x̂i, that is, only local estimates (based on zi) and its MSE matrix Pi are available at

the fusion center, it is the standard distributed fusion. In general, the sensor rule gi(.) could

be any linear or nonlinear mapping. In this chapter, only linear rules are considered, that is,

gi : gi(zi) = A′
izi : Rni → Rdi

where di ≤ ni and di is less than or equal to the dimensional requirement for the ith sensor

due to communication or processing constraints of the system. After data processing, sensor

i sends yi to the fusion center, which has a reduced dimension. Since the original data size is

reduced with the local processing, in the sequel, we call this linear transformation the local

sensor data compression.

At the fusion center, only linear unbiased estimation fusion is considered; that is, we con-

sider the most commonly used linear estimation method. With our sensor data compression,

estimation fusion in center can only base on the compressed data y = {y1, . . . , yn}, which is

y = A′z

where

A = diag[A1, . . . , An]

z = [z1, · · · , zn]′

Note that Cxy = CxzA and Cy = A′CzA, and then

x̂ = x̄ + CxzA(A′CzA)−1A′(z − z̄) (3.1)

MSE(x̂) = Cx − CxzA(A′CzA)−1A′C ′
xz

36

where

Cxz = cov(x, z) = [Cxz1 , · · · , Cxzn
]′

Cz = cov(z) =

























Cz1 Cz1z2 · · · Cz1zn

Cz2z1 Cz2 Cz2zn

...
. . .

...

Cznz1 Czn

























Then optimal sensor data compression, i.e., finding the optimal matrix Ã which satisfies

the dimensional requirement, is to solve the following constrained optimization problem:

A = arg min{MSE(x̂)}

= arg min{Cx − CxzA(A′CzA)−1A′C ′
xz}

= arg min{tr[Cx − CxzA(A′CzA)−1A′C ′
xz]} (3.2)

= arg max
A

J(A)

s.t. A = diag[A1, . . . , An] and dim(Ai) = ni × di

where

J(A) = tr[CxzA(A′CzA)−1A′C ′
xz] (3.3)

The last two equality of (3.2) holds because of the uniqueness of optimal estimation x̂

corresponding to the optimal Ã (We will clearly see this in the following section). If A = I,

y = {z1, z2, . . . , zn}, raw data are sent to the fusion center. This is the centralized fusion and

the estimation is globally optimal based on all measurements observed from local sensors.

Generally

J(A) ≤ J(I) = tr[CxzC
+
z C ′

xz] (3.4)

37

The equality (3.4) holds when the sensor data compression has no performance loss for BLUE

fusion.

3.2 Optimal Compression of a Single-Sensor Data for

Estimation

Assume that estimation is only based on the compressed data from a single sensor. In this

system, the local sensor collects the observations and processes the data. The compressed

data are sent to the center for estimation. We first discuss this case because it is a good

starting point to derive the optimal solution.

In this case, n = 1, z = z1 and A′ = A′
1 and thus y = y1 = A′

1z1 compresses the data from

dimension n1 to d1 (d1 < n1). According to (3.2), the optimal compression is the solution

of the following constrained optimization problem

A = arg max
A

J(A) = arg max
A

tr[CxzA(A′CzA)−1A′C ′
xz] (3.5)

s.t. dim(A1) = n1 × d1

As before, (A′CzA)−1 can be replaced with the MP inverse (A′CzA)+ if the inverse does

not exist. In general, however, we can always find some A such that A′CzA is nonsingular.

Because when A′CzA is not invertible, we can always find a new Ā with a lower dimension

such that Ā′CzĀ becomes nonsingular as show next.

Lemma 2: If A′CzA is singular, we can find a lower dimensional matrix Ā such that

Ā′Cz1Ā is invertible and satisfies

J(Ā) = J(A)

38

¤

Proof. Because A′CzA is a positive semi-definite matrix, suppose the rank of A′CzA is

N . There exists a unitary matrix S (S ′ = S−1) such that

S ′A′CzAS =









Λ 0

0 0









where Λ =diag[λ1, . . . , λn], λi (i = 1, . . . , N) are the non-zero eigenvalues of A′CzA. Now

with D = [IN , 0],

D′S ′A′CzASD = Λ

Let Ā = ASD. Then Ā has a lower dimension and Ā′CzĀ = Λ is nonsingular. Also,

J(Ā) = tr[CxzĀ(Ā′CzĀ)−1Ā′C ′
xz]

= tr[CxzĀΛ−1Ā′C ′
xz]

= tr[Ā′C ′
xzCxzĀΛ−1]

= tr[D′S ′A′C ′
xzCxzASDΛ−1]

= tr[(S ′A′C ′
xzCxzAS)(DΛ−1D′)]

= tr[(S ′A′C ′
xzCxzAS)









Λ−1 0

0 0









]

According to the property of the MP inverse: (PAQ)+ = Q′A+P ′ for unitary matrices P

39

and Q,

J(SA) = tr[CxzAS(S ′A′CzAS)+S ′A′C ′
xz]

= tr[CxzASS ′(A′CzA)+SS ′A′C ′
xz]

= tr[CxzA(A′CzA)+A′C ′
xz]

= J(A)

On the other hand,

J(SA) = tr[CxzAS(









Λ 0

0 0









)+S ′A′C ′
xz]

= tr[CxzAS









Λ−1 0

0 0









S ′A′C ′
xz]

= tr[(S ′A′C ′
xzCxzAS)









Λ−1 0

0 0









]

Thus

J(A) = J(SA) = J(Ā)

Lemma 3: For any nonsingular matrix D, we have

J(A) = J(AD)

¤

Proof. Based on Lemma 2, since A′CzA is invertible,

(D′A′CzAD)−1 = D−1(A′CzA)−1(D′)−1

40

and thus

J(AD) = tr[CxzAD(D′A′CzAD)−1D′A′C ′
xz]

= tr[CxzADD−1(A′CzA)−1(D′)−1D′A′C ′
xz]

= tr[CxzA(A′CzA)−1A′C ′
xz]

= J(A)

According to Lemma 2, in the following, we only consider the case that A′CzA is invert-

ible.

Theorem 2: The optimal solution Ã of (3.5) is

Ã = C+
z K̄ (3.6)

where the column vectors of K̄ are the eigenvectors corresponding to the d1 largest eigen-

values of (C ′
xzCxzC

+
z), and J is the sum of these d1 eigenvalues. ¤

Proof. This proof follows from the one in [24]. Since J(A) is a continuous function, the

maximum point of J(A) should satisfy

d

dA
[J(A)] = 0

i.e.

d

dA
tr[CxzA(A′CzA)−1A′C ′

xz]

=
d

dA
tr[A′C ′

xzCxzA(A′CzA)−1]

= −2CzA(A′CzA)−1(A′C ′
xzCxzA)(A′CzA)−1 + 2C ′

xzCxzA(A′CzA)−1

= 0

41

So

C ′
xzCxzA = CzA(A′CzA)−1(AT C ′

xzCxzA)

Two symmetric matrices (A′CT
xzCxzA) and (A′CzA > 0) can be diagonalize simultaneously

into Λm =diag[λ1, . . . , λm] and Im:

B′(A′C ′
xzCxzA)B = Λm

B′(A′CzA)B = Im

where B is an m × m nonsingular square matrix and B−1 exists. It can be shown that

CzA(A′CzA)−1(A′CT
xzCxzA)

= CzA[(B−1)′B−1]−1[(B−1)′ΛmB−1]

= CzABΛmB−1

So

C ′
xzCxzA = CzABΛmB−1

C ′
xzCxzAB = CzABΛm

and because of the identity CxzC
+
z Cz = Cxz, we have

C ′
xzCxzC

+
z CzAB = CzABΛm (3.7)

Let

K̄ = CzAB

Then (3.7) can be expressed as

(C ′
xzCxzC

+
z)K̄ = K̄Λm

42

This is the eigen equations for (C ′
xzCxzC

+
z). Thus the components of Λm and the column

vectors of K̄ are the m eigenvalues and eigenvectors of (C ′
xzCxzC

+
z). Note that

J(A) = J(AB)

= tr[B′A′C ′
xzCxzAB(B′A′CzAB)−1]

= tr[ΛmI−1
m]

= λ1 + λ2 + · · · + λm1

where λi are also the eigenvalues of C ′
xzCxzC

+
z . Thus, we can maximize J(A) by selecting

the largest m eigenvalues. The transformation is by projecting z onto these m eigenvector.

We can form an m- dimensional subspace which is spanned by these m eigenvectors. Then,

J is the summation of the corresponding m eigenvalues. Further application of any m × m

nonsingular linear transformation could not change the value of J , i.e. J(A) = J(AD) for

any nonsingular matrix D. Also J(C+
z CzA) = J(A), because

J(C+
z CzA)

= tr[CxzC
+
z CzA(A′CzC

+
z CzC

+
z CzA)+A′CzC

+
z C ′

xz]

= tr[CxzA(A′CzA)+A′C ′
xz] = J(A)

Since

C+
z K̄ = C+

z CzAB

The optimal solution of Ã is

Ã = C+
z K̄

43

From Lemma 3, the optimal solution of (3.5) is not unique [24], because if Ã is an optimal

solution, ÃD is another optimal solution for any nonsingular matrix D. However different

optimal solutions Ã and ÃD correspond to the same estimator (3.5):

E∗(x|Ãz) = E∗(x|ÃDz) (3.8)

This can be shown easily from the definition of BLUE estimator (3.1). As shown in the

proof of Theorem 2, the optimal solution set Ω contains all elements A ∈ Ω with the relation

A = ÃB for any nonsingular matrix B. So (3.8) verifies the uniqueness of the optimal

estimator x̂ corresponding to Ω.

Suppose rank(C ′
xzCxzC

+
z) = m, m ≤min{n, nx}, where n is the dimension of observation

z and nx is the dimension of the estimatee x. So C ′
xzCxzC

+
z has only m nonzero eigenvalues.

This means that if the sensor is allowed to send a vector of a dimension larger than m, we

can always project the observation into a subspace of the lower dimension m, in that we can

choose the optimal A such that d1 = m. It should be realized that there is no information

loss with this data compression. Also, m = n1 means the observation dimension is low, not

larger than the dimension of the estimatee. Since J(A) is the sum of d-largest eigenvalues,

and J(I) is the sum of all nonzero n eigenvalues of (C ′
xzCxzC

+
z). It indicates that if we

compress the observations with d < n, then J(A) < J(I). In this situation, we can not get

the data compressed observation without information loss (performance deterioration). If

d < m, there is information loss even for the optimal compression y = A′z, that is, the fusion

center can not achieve the globally optimal estimation using the optimally compressed data:

J(A) < J(I)

44

With the optimal sensor data compression, we compress the raw measurements and

extract the most important information for estimating x at the fusion center.

3.3 Optimal Data Compression for Estimation Fusion

For multiple-sensor estimation fusion (n > 1), z = [z1, z2, . . . , zn]′ and A =diag[A1, . . . , An]

which build the linear mapping y = A′z compressing each local sensor measurement from

higher dimension ni to di (di < ni), i = 1, . . . , n. In this section, we first discuss three special

cases which have simple optimal solutions for multiple sensor data compression. The most

general and difficult case is discussed last.

3.3.1 Uncorrelated sensors

In this case, Czizj
= 0 for any i 6= j where i, j = 1, . . . , n. Since Cz and A are all block

diagonal matrices,

A′CzA = diag[A′
1Cz1A1, . . . , A

′
nCzn

An]

so

(A′CzA)−1 = diag[(A′
1Cz1A1)

−1, . . . , (A′
nCzn

An)−1]

also

A′C ′
xzCxzA =

















A′
1C

′
xz1

Cxz1A1 · · · A′
1C

′
xz1

Cxzn
An

...
. . .

...

A′
nC

′
xzn

Cxz1A1 · · · A′
nC ′

xzn
Cxzn

An

















45

according to the property of trace, the objective function (3.3) can be rewritten as

J(A) = tr[A′C ′
xzCxzA(A′CzA)−1]

=
n

∑

i=1

tr[A′
iC

′
xzi

Cxzi
Ai(A

′
iCzi

Ai)
−1]

=
n

∑

i=1

Ji(Ai)

where

Ji(Ai) = tr[A′
iC

′
xzi

Cxzi
Ai(A

′
iCzi

Ai)
−1]

Now the constrained optimization problem (3.2) concerning J(A) can be divided into the

following n individual constrained optimization problems

Ai = arg max
Ai

Ji(Ai), i = 1, 2, . . . , n (3.9)

s.t. dim(Ai) = ni × di

For each Ai, the optimization problem is the same as the single sensor case, so we have

the optimal solution Ãi = C+
zi
K̄i, where the column vectors of K̄i are the eigenvectors

corresponding to the di largest eigenvalues of C ′
xzi

Cxzi
C+

zi
or ÃD with any nonsingular matrix

D, and Ji is the sum of the di eigenvalues.

3.3.2 Linear sensor observation model with uncoupled noises

All sensor observation model are linear, that is

zi = Hix + vi i = 1, . . . , n

46

where Cvi
= Ri and Cvivj

= 0 for any i 6= j where i, j = 1, . . . , n. Let

H = [H ′
1, H

′
2, . . . , H

′
n]′

v = [v′
1, v

′
2, . . . , v

′
n]′

then

z = Hx + v

and

Cz = HCxH
′ + R

Cxz = CxH
′

With sensor data compression, the available information at fusion center is y = A′z, the

estimation error covariance at fusion center will be

MSE(x̂) = Cx − CxzA(A′CzA)−1A′C ′
xz

= Cx − CxH
′A(A′HCxH

′A + A′RA)−1A′HCx

= [C−1
x + H ′A(A′RA)−1A′H]−1

So the optimal A is the solution of following problem

A = arg min{MSE(x̂)}

= arg min{[C−1
x + H ′A(A′RA)−1A′H]−1}

= arg max{C−1
x + H ′A(A′RA)−1A′H}

= arg max{tr[H ′A(A′RA)−1A′H]}

47

since

tr[H ′A(A′RA)−1A′H] =
n

∑

i=1

tr[A′
iHiH

′
iAi(A

′
iRiAi)

−1] =
n

∑

i=1

Ji(Ai)

thus

Ai = arg max
Ai

Ji(Ai), i = 1, 2, . . . , n (3.10)

s.t. dim(Ai) = ni × di

Now for each Ai, the optimization problem is the same as the single sensor case, so we have

the optimal solution Ãi, where the column vectors of Ãi are the eigenvectors corresponding

to the di largest eigenvalues of R−1
i HiH

′
i or ÃiD with any nonsingular matrix D, and Ji is

the sum of the di eigenvalues.

3.3.3 Sensor dimensional requirement larger than rank of C
′
xzCxzC

+

z

When the dimensional requirement for each sensor is larger than m =rank(C ′
xzCxzC

+
z), we

can simply create the sensor data compression yi = A′
izi such that di = m (i = 1, . . . , n). By

concerning the estimation in fusion center, we will see there is no information loss for the

estimation fusion in center with this local sensor data compression.

Since all Ai have the same number of columns, we can define

Anew = [A′
1, A

′
2, . . . , A

′
n]

′

Then the objective function (3.3) is equivalent to

J(Anew) = tr[A′
newC ′

xzCxzAnew(A′
newCzAnew)−1]

Now the constrained optimization problem for this case is the same as that of the single

48

sensor case, that is,

Anew = arg max
A

J(Anew)

s.t. dim(Anew) = (
n

∑

i=1

ni) × m

Then the optimal solution is Ãnew = C+
z K̄, where the m column vectors of K̄ are the

eigenvectors corresponding to the m nonzero eigenvalues of C ′
xzCxzC

+
z or ÃD with any non-

singular matrix D, and J is the sum of the m eigenvalues. Obviously J(Anew) =tr(C ′
xzCxzC

+
z) =

J(I), so there is no information loss with this sensor data compression.

Observations may have a higher dimension than that of the estimatee. So there is no

estimation accuracy degradation if all sensors compress their observations to the same di-

mension as estimatee. However this data compression needs to consider correlation between

sensors. This means that if a sensor compresses its observations by only considering its local

information, generally, there is information loss. This is related to the fact that the standard

distributed fusion can not achieve the same performance as the centralized fusion in many

cases.

3.3.4 Arbitrary sensor dimensional requirement

An arbitrary sensor dimensional requirement for a distributed system is the general case.

Each sensor has different dimensional requirement according to the system restriction, and

some of sensors have a demanding dimensional requirement of di < m =rank(C ′
xzCxzC

+
z).

So we can not construct the same sensor data compression as above, and data compression

generally has information loss.

According to (3.2), the optimal sensor compression is the solution of the following con-

49

strained optimization problem:

A = arg max
A

J(A)

A = diag[A1, . . . , An] and dim(Ai) = ni × di

where

J(A) = tr[CxzA(A′CzA)−1A′C ′
xz]

Although the objective function J(A) has the same form as the single-sensor case, we can

not directly borrow the solution there, because there is one more constraint for the matrix

A which requires A to be block diagonal. In the single-sensor case, if we treat the objective

function J(A1) as a single variable function of A1, the objective function J(A1, A2, . . . , An)

for the n-sensor case should be a function of multiple variables. Now the problem become

a multivariable optimization problem. It is almost impossible to directly get an explicit

solution of this particular problem . In the following, we present an algorithm based on the

Gauss-Seidel iteration to search for the optimal solution.

For each i = 1, . . . , n, we denote

y(i) = [y1, . . . , yi−1, yi+1, . . . , yn]′

z(i) = [z1, . . . , zi−1, zi+1, . . . , zn]′

A(i) = diag[A1, . . . , Ai−1, Ai, . . . , An]

At the fusion center, based on the BLUE fusion and the recursive BLUE, we have

x̂BLUE = E∗(x|y) = E∗(x|y(i), yi)

= E∗(x|y(i)) + Cxỹi|y(i)
C−1

ỹi|y(i)
ỹi|y(i)

MSE(x̂BLUE) = Cx|y(i)
− Cxỹi|y(i)

C−1
ỹi|y(i)

C ′
xỹi|y(i)

50

where with ỹ(i) = y(i) − ȳ(i) and z̃(i) = z(i) − z̄(i)

ỹi|y(i)
= yi − E∗(yi|y(i))

= yi − ȳi − Cyiy(i)
C−1

y(i)
ỹ(i)

= A′
i(zi − z̄i) − A′

iCziz(i)
A(i)(A

′
(i)Cz(i)

A(i))
−1A′

(i)z̃(i)

So

MSE(x̂BLUE) = Cx|y(i)
− Cxz̃i|y(i)

Ai[A
′
iCz̃i|y(i)

Ai]
−1A′

iC
′
xz̃i|y(i)

where

Cx|y(i)
= Cx − Cxz(i)

A(i)(A
′
(i)Cz(i)

A(i))
−1A′

(i)C
′
xz(i)

Cxz̃i|y(i)
= Cxzi

− Cxz(i)
A(i)(A

′
(i)Cz(i)

A(i))
−1A′

(i)C
′
ziz(i)

Cz̃i|y(i)
= Czi

− Cziz(i)
A(i)(A

′
(i)Cz(i)

A(i))
−1A′

(i)C
′
ziz(i)

Denote

Ji(Ai) = tr[Cxz̃i|y(i)
Ai(A

′
iCz̃i|y(i)

Ai)
−1A′

iC
′
xz̃i|y(i)

]

Then

J(A) = J(A(i), Ai)

= tr[Cxz(i)
A(i)(A

′
(i)Cz(i)

A(i))
−1A′

(i)C
′
xz(i)

] + Ji(Ai)

The objective function J is a multivariable function of A1, . . . , An. According to the nec-

essary condition for multi-variable extreme point, Ai should be the optimal solution of the

following optimization problem

Ai = arg max
Ai

Ji(Ai)

s.t. dim(Ai) = ni × di

51

Now it becomes the same problem as optimal sensor data compression for the single-sensor

case. Then the optimal solution is

Ãi = C+
z̃i|y(i)

K̄i

where the column vector of K̄i is the di eigenvectors corresponding to the di largest eigen-

values of C ′
xz̃i|y(i)

Cxz̃i|y(i)
C+

z̃i|y(i)
. Note, however, that the optimal solution Ãi depends on the

value of A(i) through z̃i|y(i)
. It is not easy to give an explicit solution for each Ai. In the

following, we give an iterative algorithm to search for the optimal Ã.

Define the operator Γ = (Γ1, . . . , Γn), for i = 1, . . . , n

Γi(A1, . . . , Ai−1, Ai+1, . . . , An) = C+
z̃i|y(i)

K̄i

Then we can construct a Gauss-Seidel iteration to search for the optimal solution (A1, . . . , An).

Suppose the nonzero initial value is (A
(0)
1 , . . . , A

(0)
n), at each iteration k = 1, 2, . . .

A
(k+1)
1 = Γ1(A

(k)
2 , . . . , A(k)

n)

A
(k+1)
2 = Γ2(A

(k+1)
1 , A

(k)
3 , . . . , A(k)

n) (3.11)

...

A(k+1)
n = Γn(A

(k+1)
1 , . . . , A

(k+1)
n−1)

After each iteration (3.11), we have

A(k) = diag[A
(k)
1 , . . . , A(k)

n]

The iteration stops once the objective function J(A) satisfies

J(A(k+1)) − J(A(k)) < ε

52

where ε is some predetermined small number.

As shown in Theorem 2, in the Gauss-Seidel iteration, for each i = 1, . . . , n, it is obvious

that

J(A
(k+1)
1 , . . . , A

(k+1)
i , A

(k)
i+1, . . . , A

(k)
n)

≥ J(A
(k+1)
1 , . . . , A

(k+1)
i−1 , A

(k)
i , . . . , A(k)

n)

i.e.,

J(A(k)) ≥ J(A(k−1))

The equality holds if and only if A
(k+1)
i = A

(k)
i Di, where Di is any nonsingular matrix. Thus

the series {J(A(k))} is monotonically nondecreasing.

Theorem 3: Function J(A) has an upper bound. ¤

Proof. Because

CxzA(A′CzA)−1A′C ′
xz

= C ′
xzC

+
z C

1
2
z C

1
2
z A(A′C

1
2
z C

1
2
z A)−1A′C

1
2
z C

1
2
z C+

z Cxz

= [(A′C
1
2
z)(C

1
2
z C+

z Cxz)]
′[(A′C

1
2
z)(A′C

1
2
z)′]−1[(A′C

1
2
z)(C

1
2
z C+

z Cxz)]

according to Cauchy-Schwarz inequality:

CxzA(A′CzA)−1A′C ′
xz ≤ (C

1
2
z C+

z Cxz)
′(C

1
2
z C+

z Cxz)

= C ′
xzC

+
z Cxz

so

J(A) = tr[CxzA(A′CzA)−1A′C ′
xz] ≤ tr[C ′

xzC
+
z Cxz]

therefore the theory holds.

53

According to Theorem 3, series {J(A(k))} is the monotonically increasing and has an

upper bound, and so it has a limit ζ:

lim
k→∞

J(A(k)) = ζ

Combined with the continuity of function J(A(k)), there exists Ã such that

lim
k→∞

J(A(k)) = J(Ã)

So Ã is a limit of series {A(k)}.

Theorem 4: The limit point Ã in Theorem 3 is a stationary point of the objective

function, i.e., ∂
∂Ai

J(A)|A=Ã = 0 for i = 1, . . . , n. ¤

Proof.

J(A(k)) = J(A(k−1))

means

J(A
(k)
1 , . . . , A

(k)
i , A

(k−1)
i+1 , . . . , A(k−1)

n)

= J(A
(k)
1 , . . . , A

(k)
i−1, A

(k−1)
i , . . . , A(k−1)

n), i = 1, . . . n

i.e.

Ji(A
(k)
i) = Ji(A

(k−1)
i), i = 1, . . . n

Thus A
(k)
i and A

(k−1)
i should be in the same eigen-space, and there exists a nonsingular

matrix Bi such that

A
(k)
i = BiA

(k−1)
i

Also because

J ′
Ai

(A
(k)
1 , . . . , A

(k)
i , A

(k−1)
i+1 , . . . , A(k−1)

n) = 0

54

for i = 1, . . . n, we have

J ′
Ai

(B1A
(k−1)
1 , . . . , BiA

(k−1)
i , A

(k−1)
i+1 , . . . , A(k−1)

n) = 0

It is easy to get that

J ′
Ai

(B1A
(k−1)
1 , . . . , BiA

(k−1)
i , A

(k−1)
i+1 , . . . , A(k−1)

n)

= J ′
Ai

(A(k−1)) = 0 i = 1, . . . n

So Ã = A(k−1) is the stationary point.

Theorem 4 is important. It implies that when the iteration ends, the solution is a critical

point of the objective function J . It may be a maximizer because extreme points are also

critical points. Unfortunately we are not able to provide further theoretical results concerning

the convergence of {A(k)} to the globally optimal solution at this stage, because the objective

function J(A) is too complex to analysis for block diagonal matrix A. However, we found

from simulation that almost often we achieve the globally optimal solution, which means

starting from different initial points, the iteration will end with the same value of J and the

same estimator x̂.

3.4 Simulation

Several simple numerical examples are given in this section to verify formulas presented and

the optimality of our Gauss-Seidel iteration based search solutions. All examples are for the

following multi-sensor target tracking system:

We consider a constant-velocity moving target in 2 dimensional x−y space. The estimatee

x(t) is the state process, consisting of position and velocity components: x = [x, ẋ, y, ẏ]′. We

55

set up 6 observation stations Si, i = 1, ..., 6, with 3 different types. The first two stations

have a linear observation model: zi(t) = Hx(t) + vi(t), where H = I4. The third and fourth

stations have the same linear observation model but with H =









1 0 0 0

0 0 1 0









, that is, they

only observe position of the target. The last 2 stations have a nonlinear observation model:

zi(t) =









√

x(t)2 + y(t)2

tan−1(x(t)
y(t)

)









+ vi(t)

vi(t) is zero-mean white noise with covariance Ri =cov(vi(t)), i = 1, .., 6.

R1 = 10

























1000 20 10 5

20 100 5 10

10 5 4000 50

5 10 50 300

























,

R2 = 1000

























40 2 0 0

2 6 0 0

0 0 10 1

0 0 1 5

























R3 = 1000









20 1

1 30









, R4 = 1000









15 4

4 10









R5 =









0.004 0

0 90000









, R6 =









1 0

0 1.6 × 108









In this setting, the estimatee is the 4-dimensional state and the observations of the six

sensors at each sampling interval Ti (i = 1, . . . , 6) have the dimensions 4, 4, 2, 2, 2, 2,

56

respectively. It is not realistic that each sensor’s data transmitting rate is the same as

sampling rate according to the channel capability. The most often case is that each sensor

transmits information to the fusion center every Ni sampling intervals. Then the stacked

observations sent by each sensor have dimensions 4N1, 4N2, 2N3, 2N4, 2N5, 2N6, respectively

[50]. We use Monte Calro method to calculate the covariance matrices Cxz and Cz in order

to approach a more realistic scenario, since we use nonlinear observation models for last two

sensors. In the following, we try to get the optimal compression y = A′z for several fusion

systems and compare the mean-square error mse(x̂(y)) =tr(Cx−CxzA(A′CzA)−1A′C ′
xz) with

the minimum possible mse(x̂(z)) =tr(Cx − CxzC
−1
z C ′

xz), in order to test if the compression

loss information or not.

3.4.1 Single Sensor

In this case, we only use sensor 1, 3 or 5. Here N1 = N3 = N5 = 10, which means every 10

observations are stacked in each sensor to be compressed. At the fusion center, we use the

compressed data to estimate the state. By (5.19) we can get the optimal compression for

each system with different data dimensional requirement d. In Table 3.1, we compare the

mse for all cases: The estimation accuracy increases if data of a higher dimension are allowed

to be sent. Since rank(C ′
xzCxzC

−1
z) = 4, our analysis states that mse(x̂(y)) =mse(x̂(z)) if

and only if d ≥ 4. This is verified by Table 3.1.

57

Table 3.1: mse of estimation using compressed data from a single sensor

mse(x̂(y)) with S1 with S3 with S5

d = 1 506.1702 511.8113 603.4013

d = 2 483.3577 498.4204 596.2738

d = 3 483.3381 498.4161 596.2643

d = 4 483.3308 498.4141 596.2609

mse(x̂(z)) 483.3308 498.4141 596.2609

3.4.2 Multi-Sensor Fusion System

In this case, we construct the fusion system by using any combination of the 6 sensors.

Vector (d1, d2, d3, d4, d5, d6) denote dimensional requirement for the sensors. So di = 0

means sensor i does not send out any information, i.e., sensor i has no action in the fusion

system. Here Ni = 10, that is each sensor stacks 10 observations. The Gauss-Seidel iteration

was used to get the optimal solution. In Table 3.2, we compare the mse for all cases, where

x̂(z) denotes the centralized fusion by using all observations from all active sensors. We also

label the required iteration steps for searching for the optimal solution with the proposed

Gauss-Seidel algorithm to reach ε ≤ 0.0001.

For the case with (d1,d2,d3,d4,d5,d6)=(1,2,3,4,1,3), in Fig. 2, we use ratio= mse(x̂(z))
mse(x̂(y))

,

which is the ratio of the mean-square error of the centralized fusion to that of the distributed

fusion, for each search iteration k to show the convergence rate and optimality of the search

method. It is in the interval of (0, 1]. The larger the ratio is, the better the solution is. The

three lines are for three different initializations A(0).

58

Table 3.2: mse for multi-sensor system

(d1, d2, d3, d4, d5, d6)
Gauss-Seidel

Solution:mse(x̂(y))

mse(x̂(z))

(1, 1, 1, 1, 0, 0) 369.6550 (step=11) 291.1871

(2, 2, 2, 2, 0, 0) 291.2524 (step=9) 291.1871

(3, 3, 3, 3, 0, 0) 291.2082 (step=9) 291.1871

(1, 2, 3, 4, 0, 0) 308.1658 (step=9) 291.1871

(4, 4, 4, 4, 0, 0) 291.1871 (step=8) 291.1871

(1, 1, 1, 1, 1, 1) 348.9785 (step=12) 265.0382

(2, 2, 2, 2, 2, 2) 265.1296 (step=13) 265.0382

(3, 3, 3, 3, 3, 3) 265.0646 (step=13) 265.0382

(1, 2, 3, 4, 1, 3) 289.2232 (step=12) 265.0382

(4, 4, 4, 4, 4, 4) 265.0382 (step=12) 265.0382

From Table 3.2 and Figure 3.2, we see that the Gaussian-Seidel iteration for searching for

the optimal local sensor data compression is efficient and yields the optimal solution, because

it always converges to the same estimator for any initialization A(0), and the convergence

rate is high.

59

0 2 4 6 8 10 12
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

Iteration Number

ra
tio

initial 1
initial 2
initial 3

Figure 3.2: ratio for different initialization A(0)

3.5 Summary

In this Chapter, we propose that in a multi-sensor distributed estimation fusion system, the

local sensor measurements processing should based on the fusion rule used in center and

the communication channel capability between sensors and fusion center and the processing

capability of the fusion center. We formulate the system restriction as the local sensor data

dimensional requirement. Based on BLUE fusion, we present the sensor compression within

the class of the linear transform which reduces the local data size. The explicit solution for

local sensor data compression is given for single sensor system and some particular multiple

sensor system. An algorithm with Gauss-Seidel iteration is provided for searching the optimal

sensor data compression for most general multiple sensor system with demanding sensor

dimensional requirement.

Theoretically, we analysis that there is no estimation accuracy degradation if the dimen-

sional requirement for optimal sensor data compression is larger than the dimension of the

estimatee. But the BLUE fusion given by standard estimation fusion system generally will

suffer its accuracy when local sensors are correlated. Because the sensor data compression

in standard estimation fusion system is not optimal since it does not use the correlation

60

between each sensors.

It is shown in simulation results that the algorithm for searching the optimal sensor com-

pression rule for most general multiple sensor system with Gauss-Seidel iteration is efficient.

In future work, we would like to provide further theoretical support for the optimality of the

searching algorithm.

61

Chapter 4

Optimal Sensor Data Quantization for

BLUE Fusion

4.1 Introduction

Dimension reduction is one way to accomplish sensor data compression in fusion system. It

provides a linear data compression rule and is not adequate for some problems. Vector quan-

tization is a nonlinear data compression technique which is very popular in communication

area. How to design the sensor data quantizer is the focus of this chapter.

In both centralized fusion and distributed fusion, the fusion center is generally not at the

same location as the local sensors, and the information sent from the sensors needs to pass

via digital communication channels with finite bit rate. Then observations from the sensor

need to be quantized into certain levels before transmission to the fusion center in order to

satisfy the communication constrains. The estimation at the fusion center can only be based

on quantized measurements which can be treated as the compressed measurements from the

62

local sensors. The goal of sensor quantization in a distributed fusion system is to provide

a good estimate of the state, rather than to reconstruct the sensor measurements [23]. A

natural question is how to quantize local sensor data so as to minimize the estimation error

at the fusion center.

In this chapter, based on the BLUE fusion rule, we build a general state estimation

fusion scheme with optimal quantizing the local sensor measurements. The state to be

estimated can be a scalar as well as a vector. For state estimation in a dynamic system with

communication constraints, the update of sensor quantization needs to be considered. We

update sensor quantization by quantizing the measurement residual. When the system is

linear Gaussian, we have an explicit formula for the state estimation and sensor quantization

update. A new filter with communication bandwidth constraint is then established.

The rest of the chapter is organized as follows. Section 4.2 presents distributed BLUE

estimation fusion with limited channel capacity requirements. Given the communication

constraints, the problem is formulated as finding partitions of the observation space and

representative values for each sensor with fixed quantization levels. A systematic solution

for optimal sensor quantization in distributed fusion system is established in Section 4.3.

Section 4.4 presents the generalized results for the state estimation in a dynamic system

under the communication constraints. A new algorithm for both state estimation and sensor

quantization update is developed for linear Gaussian dynamic system. Simulation results and

discussions are given in Section 4.5. Section 4.6 provides a summary and briefly discussion

about the future work.

63

4.2 Problem Formulation

Source n

Source 2

Source 1

¡
¡

¡
¡

¡µ

-

HHHHHHj¶
µ

³
´fusion center

yn

y2

y1

-
estimate x̂

Figure 4.1: framework of distributed estimation fusion

Figure 4.1 shows the framework of distributed estimation fusion where n distributed

sensors send measurements to a fusion center. Random observation vectors zi (i = 1, . . . , n)

are collected by the sensors. x is the state to be estimated (or estimatee). Suppose the fusion

center is at a distant location connected to the sensors by digital channels with a capacity of

ri (i = 1, . . . , n) bits without error. Hence the sensor observations can be vector quantized

into mi = 2ri levels. The sensor i quantizes observation zi (i = 1, . . . , n) by mapping it into

a discrete vector yi (i = 1, . . . , n) which is transmitted to the fusion center. For sensor k, let

Ωk1, . . ., Ωkmk
be a partition of the observation space, and yk1, . . ., ykmk

be the representative

values of the partition. Then

yk ,

mk
∑

i=1

ykiIΩki
(zk)

where IΩ(z) denotes the indicator function, i.e., IΩ(z) = 1 if z ∈ Ω and IΩ(z) = 0 otherwise.

The fusion center then makes an estimate x̂ for x based on yi (i = 1, . . . , n).

At the fusion center, only the linear unbiased estimation fusion is considered; that is, we

consider the most commonly used linear estimation method: best linear unbiased estimation.

64

With our sensor data quantization, estimation fusion at the center can only be based on the

compressed data y = [y′
1, . . . , y

′
n]′.

The problem of optimal sensor data quantization, i.e., finding the optimal partition

{Ωk1, . . . , Ωkmk
} (k = 1, . . . , n) of the sensor observation space and the corresponding repre-

sentative values {yk1, . . . , ykmk
} (k = 1, . . . , n), is to solve the following optimization problem:

({Ωk1, . . . , Ωkmk
}, {yk1, . . . , ykmk

})k=1,...,n

= arg min{MSE(x̂)} (4.1)

= arg min{Cx − Cxy(Cy)
−1C ′

xy}

yk ,

mk
∑

i=1

ykiIΩki
(zk)

4.3 Optimal Quantizer Design for BLUE Fusion

The optimal quantizer is designed by solving optimization problem (4.1). For each k =

1, . . . , n, we denote

y(k) =
[

y′
1, . . . , y

′
k−1, y

′
k+1, . . . , y

′
n

]′

z(k) =
[

z′1, . . . , z
′
k−1, z

′
k+1, . . . , z

′
n

]′

At the fusion center, based on the BLUE fusion and the recursive BLUE [53], we have

x̂ = E∗(x|y) = E∗(x|y(k), yk) (4.2)

= E∗(x|y(k)) + Cxỹk|y(k)
C+

ỹk|y(k)
ỹk|y(k)

MSE(x̂) = Cx̂y(k)
− Cxỹk|y(k)

C+
ỹk|y(k)

C ′
xỹk|y(k)

(4.3)

65

where ỹ(k) = y(k) − ȳ(k), ỹk = yk − ȳk with ȳ(k) = E[y(k)], ȳk = E[yk], and

ỹk|y(k)
= yk − E∗(yk|y(k)) = ỹk − Cyky(k)

C+
y(k)

ỹ(k)

The covariance matrices in (4.2) and (4.3) are

Cỹk|y(k)
= Cyk

− Cyky(k)
C+

y(k)
C ′

yky(k)
(4.4)

Cxỹk|y(k)
= Cxyk

− Cxy(k)
C+

y(k)
C ′

yky(k)
(4.5)

Cy(k)
=

[

Cyiyj

]

i6=k, j 6=k

As defined above, yk ,
mk
∑

i=1

ykiIΩki
(zk), so

ȳk =

mk
∑

i=1

ykiP (zk ∈ Ωki)

Cyk
=

mk
∑

i=1

[yki − ȳk][yki − ȳk]
′P (zk ∈ Ωki)

Cykyl
=

mk
∑

i=1

ml
∑

j=1

[yki − ȳk][ylj − ȳl]
′P (zk ∈ Ωki, zl ∈ Ωlj)

=

mk
∑

i=1

[yki − ȳk]P (zk ∈ Ωki)

(

ml
∑

j=1

[ylj − ȳl]
′P (zl ∈ Ωlj|zk ∈ Ωki)

)

=

mk
∑

i=1

[yki − ȳk]E(yl − ȳl|zk ∈ Ωki)P (zk ∈ Ωki)

Cxyk
=

mk
∑

i=1

E[(x − x̄)(yk − ȳk)
′]

=

mk
∑

i=1

E[(x − x̄)(yk − ȳk)
′|yk = yki]P (yk = yki)

=

mk
∑

i=1

[E(x|zk ∈ Ωki) − x̄][yki − ȳk]
′P (zk ∈ Ωki)

66

We use following notation to simplify the expressions.

Dk = [Dk1, . . . , Dkmk
]′

Ak = [Ak1, . . . , Akmk
]′

Bk,l = [Bk,l(1), . . . , Bk,l(mk)]
′

and the vectors Dki, Aki and Bk,l(i) are given by

Dki = [yki − ȳk]
√

P (zk ∈ Ωki)

Aki = [E(x|zk ∈ Ωki) − x̄]
√

P (zk ∈ Ωki)

Bk,l(i) = E(yl − ȳl|zk ∈ Ωki)
√

P (zk ∈ Ωki)

Now

Cyk
= (Dk)

′Dk

Cykyl
= (Dk)

′Bk,l

Cxyk
= (Ak)

′Dk

Let

B(k) = [Bk,1, . . . , Bk,k−1, Bk,k+1, . . . , Bk,n]′

D(k) = diag[D1, . . . , Dk−1, Dk+1, . . . , Dn]

A(k) = [(Ak)
′, . . . , (Ak−1)

′, (Ak+1)
′, . . . , (An)′]′

The matrices Cyky(k)
and Cxy(k)

have

Cyky(k)
= Dk

′B′
(k)

Cxy(k)
= A′

(k)D(k)

67

Then (4.4) and (4.5) can be written as

Cỹk|y(k)
= Dk

′Dk − Dk
′B′

(k)C
+
y(k)

B(k)Dk

Cxỹk|y(k)
= A′

kDk − A′
(k)D(k)C

+
y(k)

B(k)Dk

and the MSE matrix (4.3) is

MSE(x̂) = Cx̂y(k)
− ΛkDk[Dk

′ΣkDk]
+D′

kΛ
′
k (4.6)

where

Λk = A′
k − A′

(k)D(k)C
+
y(k)

B(k)

Σk = I − B′
(k)C

+
y(k)

B(k)

According to the derivation in Chapter 3, we can choose Dk = I such that there is no

information loss regarding the MSE (4.6) at the fusion center. Thus, we have

(yki − ȳk)
√

P (zk ∈ Ωki) = ei

where ei is the unitary vector with ei(l) = δl−i. By now, we finish the procedure of finding

representative values for the partition members of the measurement space for sensor k, i.e.,

yki − ȳk =
ei

√

P (zk ∈ Ωki)
(4.7)

We now discuss how to find the best partition {Ωki}
mk

i=1 for sensor k based on fixed {Ωli}
ml

i=1

for l 6= k. According to (4.7), obviously, Dk and D(k) are mk × mk and (
∑

i6=k

mi) × (
∑

i6=k

mi)

identity matrices respectively. Also matrix Bk,l has components

Bk,l(i, j) =
P (zk ∈ Ωki, zl ∈ Ωil)

√

P (zk ∈ Ωki)
√

P (zl ∈ Ωlj)

68

and

Cỹk|y(k)
= I − B′

(k)C
+
y(k)

B(k)

Cxỹk|y(k)
= A′

k − A′
(k)C

+
y(k)

B(k)

It is natural to ask how the best partition is characterized. For this purpose, we fix k =

1, . . . , n, and write

MSE(x̂) = E[(x̃y(k)
− Kỹk)(x̃y(k)

− Kỹk)
′] (4.8)

= E(x̃y(k)
x̃′

y(k)
) − E(x̃y(k)

ỹ′
k)K

′ − KE(ỹkx̃
′
y(k)

) + KE(ỹkỹ
′
k)K

′

where

K = Cxỹk|y(k)
C+

ỹk|y(k)
= (A′

k − A′
(k)C

+
y(k)

B(k))(I − B′
(k)C

+
y(k)

B(k))
+

x̃y(k)
= x − x̂y(k)

= x̃ − A′
(k)C

+
y(k)

ỹ(k)

(4.8) can then be written as

MSE(x̂) = Jk + E(x̃y(k)
x̃′

y(k)
) − E[E(x̃y(k)

|zk)E(x̃y(k)
|zk)

′]

where

Jk =

mk
∑

i=1

∫

Ωki

[E(x̃y(k)
|zk) − K(yki − ȳk)][E(x̃y(k)

|zk) − K(yki − ȳk)]
′p(zk)dzk

Now the best partition for sensor k should satisfy

{Ωki}
mk

i=1 = arg min MSE(x̂)

= arg min Jk(Ωk1, . . . , Ωkmk
)

69

Denote by

rk(zk) = E(x̃y(k)
|zk) = E(x̃|zk) − A′

(k)C
+
y(k)

E(ỹ(k)|zk)

cki = K(yki − ȳk) =
Kek

√

P (zk ∈ Ωki)

Thus

Ωki = {zk : (rk(zk) − cki)(rk(zk) − cki)
′ ≤ (rk(zk) − ckj)(rk(zk) − ckj)

′ ∀j 6= i} (4.9)

The inequality “≤” in terms of matrix may not always meaningful, so in real implementation,

we use

Ωki = {zk : (rk(zk) − cki)
′(rk(zk) − cki) ≤ (rk(zk) − ckj)

′(rk(zk) − ckj) ∀j 6= i}

which is the trace on both sides of inequality in (4.9). Note that the best partition satisfies

the nearest neighbor rule in the transformed space of zk with center cki (i = 1, . . . ,mk).

When the state x is a scalar, if we assume that ck1 < · · · < ckmk
, then (4.9) is reduces to

Ωki = {zk :
ck,i−1 + cki

2
< rk(zk) ≤

cki + ck,i+1

2
} (4.10)

(The choice of < and ≤ is arbitrary and is made so that the {Ωki}
mk

i=1 are disjoint.) Generally,

Ωki in (4.10) is not an interval, but the inverse image of an interval. It is also important to

note that to compute rk(zk) and cki (i = 1, . . . ,mk) we only require knowledge of the pairwise

joint distributions p(x, zk) and p(zk, zl) for all l = 1, . . . , n instead of the joint distribution

p(x, z1, . . . , zn). So if the number of sensor increases, the computation load increases linearly.

4.4 Dynamic Processing for State Estimation Update

In the previous section, we have discussed a static estimation problem where the state is a

random variable. In this section, we will consider a dynamic system where the state is a

70

random process. In this case, when the system dynamics and the measurement model are

linear with additive Gaussian noise, the Kalman filter for update of the state estimation

is optimal in the MMSE sense if all raw measurements can directly be sent to the fusion

center. With the communication constraints, the fusion center can not directly access all

raw measurements from all sensors. The measurements need to be quantized and the state

update can only use the quantized measurements. In order to have the best performance at

the fusion center, we need to consider the update of the state and the update of the sensor

quantizer simultaneously.

4.4.1 General Dynamic System

In order to achieve the globally optimal update, the best sensor quantization at time k should

use the joint distribution p(x, zk) and p(zk, zl) for all l = 1, . . . , k − 1. The reason is given

below:

x̂k|k = E∗(xk|y1, . . . , yk) = x̂k|k−1 + Cx̃k|k−1yk
C+

ỹk|k−1
ỹk|k−1 (4.11)

Pk|k = MSE(x̂k|k) = Pk|k−1 − Cx̃k|k−1yk
C+

ỹk|k−1
C ′

x̃k|k−1yk
(4.12)

where yi (i = 1, . . . , k) is the quantized version of the measurement z̃i|i−1 = zi−E∗(zi|y1, . . . , yi−1)

and

x̂k|k−1 = E∗(xk|y1, . . . , yk−1)

ỹk|k−1 = yk − E∗(yk|y1, . . . , yk−1)

According to the BLUE, the measurement residual z̃k|k−1 is orthogonal to y1, · · · , yk−1. How-

ever the quantized measurement yk does not have such a nice property any more, e.g.,

71

E∗(yk|y1, . . . , yk−1) 6= ȳk, because quantization itself is not a linear transform. In order to

have a recursive formula for quantization update, in the following, we assume

E∗(yk|y1, . . . , yk−1) = ȳk

Then (4.11) and (4.12) can be rewritten as

x̂k|k = E∗(xk|y1, . . . , yk) = x̂k|k−1 + Cx̃k|k−1yk
C+

yk
ỹk

Pk|k = MSE(x̂k|k) = Pk|k−1 − Cx̃k|k−1yk
C+

yk
C ′

x̃k|k−1yk

Now

ȳk =

mk
∑

j=1

ykjP (z̃k|k−1 ∈ Ωkj)

Cyk
=

mk
∑

j=1

[ykj − ȳk][ykj − ȳk]
′P (z̃k|k−1 ∈ Ωkj) = (Dk)

′Dk

Cx̃k|k−1yk
=

mk
∑

j=1

[E(x̃k|k−1|z̃k|k−1 ∈ Ωkj)][ykj − ȳk]
′P (z̃k|k−1 ∈ Ωkj) = (Ak)

′Dk

where

Dkj = [ykj − ȳk]
√

P (z̃k|k−1 ∈ Ωkj)

Dk = [Dk1, . . . , Dkmk
]′

Akj = [E(x̃k|k−1|z̃k|k−1 ∈ Ωkj)]
√

P (z̃k|k−1 ∈ Ωkj)

Ak = [Ak1, . . . , Akmk
]′

Therefore

Cx̃k|k−1yk
C+

yk
C ′

x̃k|k−1yk
= A′

kDk(D
′
kDk)

+D′
kAk

72

Following the derivation the same as Section 4.3, to minimize the MSE, the best represen-

tative values and partition are

yki − ȳk =
ei

√

P (z̃k|k−1 ∈ Ωki)
(4.13)

and

Ωki = {zk : (rk(zk) − cki)(rk(zk) − cki)
′ ≤ (rk(zk) − ckj)(rk(zk) − ckj)

′ for all j 6= i} (4.14)

where














rk(zk) = E(x̃k|k−1|z̃k|k−1)

cki = E(x̃k|k−1|z̃k|k−1 ∈ Ωki)

When the state x is a scalar, if we assume that ck1 < · · · < ckmk
, then (4.14) reduces to

Ωki = {zk :
ck,i−1 + cki

2
< rk(zk) ≤

cki + ck,i+1

2
}

Now the update of the sate at the fusion center with the communication constraint is

x̂k|k = x̂k|k−1 + E(x̃k|k−1|z̃k|k−1 ∈ Ωkj) if z̃k|k−1 ∈ Ωkj

Pk|k = Pk|k−1 − (Ak)
′(Ak)

(4.15)

4.4.2 Linear Gaussian Dynamic System

In the following, we limit our discussion to the linear Gaussian dynamic systems. The state

and measurement equations are

xk = Fk,k−1xk−1 + wk,k−1

zk = Hkxk + vk

where the process noise wk,k−1 from time k − 1 to k, and measurement noise vk are white

Gaussian sequence with covariance Qk,k−1 and Rk respectively.

73

Update for Sensor Quantization

For the sensor quantization update, the main quantities need to be evaluated are

E(x̃k+1|k|z̃k+1|k) =

∫ ∞

−∞
x̃k+1|kp(z̃k+1|k|x̃k+1|k)p(x̃k+1|k)dx̃k+1|k

∫ ∞

−∞
p(z̃k+1|k|x̃k+1|k)p(x̃k+1|k)dx̃k+1|k

(4.16)

E(x̃k+1|k|z̃k+1|k ∈ Ωk+1,j) =

∫ ∞

−∞

∫

z̃k+1|k∈Ωk+1,j
x̃k+1|kp(z̃k+1|k|x̃k+1|k)p(x̃k+1|k)dz̃k+1|kdx̃k+1|k

∫ ∞

−∞

∫

z̃k+1|k∈Ωk+1,j
p(z̃k+1|k|x̃k+1|k)p(x̃k+1|k)dz̃k+1|kdx̃k+1|k

(4.17)

In both (4.16) and (4.17), probability density functions p(z̃k+1|k|x̃k+1|k) and p(x̃k+1|k) are

needed. Based on the Gaussian assumption:

z̃k+1|k − Hk+1x̃k+1|k ∼ N(0, Rk)

p(z̃k+1|k|x̃k+1|k) is Gaussian distributed. Note that p(x̃k+1|k) can be obtained from p(x̃k|k)

which can be calculated by

p(x̃k|k) =

mk
∑

j=1

p(x̃k|k|ỹk = ykj − ȳk)p(ỹk = ykj − ȳk)

=

mk
∑

j=1

p(x̃k|k|z̃k|k−1 ∈ Ωkj)p(z̃k|k−1 ∈ Ωkj)

where the density function p(x̃k|k|z̃k|k−1 ∈ Ωkj) can be obtained directly, because x̃k|k −

E(x̃k|k−1|z̃k|k−1 ∈ Ωkj) has the distribution as p(x̃k|k−1). Now we can see that even if the

initial point has a Gaussian distribution, p(x̃k+1|k) is a Gaussian mixture. In some cases, if we

want to have a simplified results for sensor quantization update, we can use a single Gaussian

distribution to approximate the Gaussian mixture for p(x̃k+1|k), i.e., x̃k+1|k ∼ N(0, Pk+1|k).

With this approximation, we have z̃k+1|k ∼ N(0, Sk+1) and

rk(zk) = E(x̃k+1|k|z̃k+1|k) = Kk+1z̃k+1|k

74

and with [19]

ckj = E(E(x̃k+1|k|z̃k+1|k)|z̃k+1|k ∈ Ωk+1j)

= Kk+1E(z̃k+1|k|z̃k+1|k ∈ Ωk+1j)

(4.18)

Now it is easy to apply (4.14) and update the sensor quantization. Note that

Kk+1z̃k+1|k ∼ N(0, Kk+1Sk+1K
′
k+1)

Then Uk = (Kk+1Sk+1K
′
k+1)

− 1
2 Kk+1z̃k+1|k will have

Uk ∼ N(0, I) (4.19)

Given the number of quantization levels mk for time k, we can use the Lloyd-Max [56] quan-

tizer for the standard Gaussian distribution, i.e., the partition {Ω01, . . . , Ω0mk
} for standard

Gaussian distribution. The rest is to map z̃k+1|k into Uk+1 to find the region it belongs to.

Now, we do not need to search for the best partition at each time; the quantization update

becomes very simple. What we need is only the communication for the state prediction

x̂k+1|k from the center to each sensor.

State Estimation Update

According to (4.18) and (4.19), the update for state estimation (4.15) has an explicit

formula as follows:

Initialization x̂0|0 = x̄0, P0|0 = P0

75

Uk = (KkSkK
′
k)

− 1
2 Kkz̃k+1|k

Pk =
mk
∑

j=1

E(Uk|Uk ∈ Ω0j)E(Uk|Uk ∈ Ω0j)
′P (Uk ∈ Ω0j)

x̂k|k = x̂k|k−1 + (KkSkK
′
k)

1
2 E(Uk|Uk ∈ Ω0j) if Uk ∈ Ω0j

Pk|k = Pk|k−1 − (KkSkK
′
k)

1
2 Pk(KkSkK

′
k)

1
2

x̂k+1|k = Fk+1,kx̂k|k

Pk+1|k = Fk+1,kPk|kF
′
k+1,k + Qk,k−1

z̃k+1|k = zk+1 − Hk+1x̂k+1|k

Sk+1 = cov(z̃k+1|k) = Hk+1Pk+1|kH
′
k+1 + Rk+1

Kk+1 = Pk|k−1H
′
kS

−1
k+1

with the probability-density function p(x0). It is nice that the new filter is the same as

Kalman filter except that the state and estimation error covariance update parts are slightly

different.

In the next section, we will study the estimation performance of the update scheme for

a linear Gaussian system.

4.5 Simulation Results

Several simple numerical examples are given in this section to verify formulas presented in

the previous subsection and the sensor quantization update for a linear Gaussian dynamic

system.

76

4.5.1 Estimation Fusion for Static Case

Consider a 2-sensor estimation fusion problem. The observation model for each sensor i is

zi,k = x + wi,k i = 1, 2

where x, wi,k are statistically independent. Let x have density [27]

p(x) =















d
b
[5
4
− cos(3πx

2b
)]

0

|x| ≤ b

otherwise

where d ≈ 0.3419 is a normalization constant and b = 2. Consider w1k, and w2k having

the same density except that b = 1. The sensor quantization requirement is mi = 8 (3-bit

quantization).

One Dimensional Observation

In this case, each sensor has one dimensional observation. The Lloyd-Max partitions in

quantizer design for the random variables yi, i = 1, 2, are identical and given by

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

z
1

Initial Partition

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

z
2

Initial Partition

Fig 4.2 Initial Partition

After three iterations, the change of MSE for estimator is less than ε = 0.005, and the

partitions are In Table 4.1., we compare the MSE of MMSE, BLUE results for centralized

77

−3 −2 −1 0 1 2 3
1

2

3

4

5

6

7

8

z
1

Partition for z
1

−3 −2 −1 0 1 2 3
1

2

3

4

5

6

7

8

z
2

Partition for z
2

Fig. 4.3 Partition after Iteration III

fusion, and the distributed BLUE fusion for each iteration.

Table 4.1: MSE Comparison for One Dimensional Sensor Observation

x̂(z1, z2)

MMSE

x̂(z1, z2)

BLUE

x̂(y1, y2)

(Intinal)

x̂(y1, y2)

(Iteration I)

x̂(y1, y2)

(Iteration II)

x̂(y1, y2)

(Iteration III)

MSE(x̂) 0.1101 0.1854 0.1747 0.1299 0.1230 0.1217

Two Dimensional Observation

In this case, each sensor has two dimensional observation. We use uniform partitions in

quantizer design for the random variables yi, i = 1, 2, are given by

After two iterations, the change of MSE for estimator is less than ε = 0.005, and the

partitions are In Table 4.2., we compare the MSE of MMSE, BLUE result for centralized

fusion results, and the distributed BLUE fusion for each iterations.

From Table 4.1. and 4.2., you can observe that:

78

z
1
1

z 12

Initial Partion for z
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

z
2
1

z 22

Initial Partion for z
2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 4.4 Initial Partition

z
1
1

z 12

Partition for z
1

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

z
2
1

z 22
Partition for z

2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 4.5 Partition after Iteration II

Remark 1: By passing the first iteration, the MSE reduces significantly. But after the first

iteration, the MSE does not improve a lot.

Remark 2: The centralized MMSE fusion has the best performance in terms of MSE.

Remark 3: The distributed BLUE fusion with quantized measurement can achieve better

estimation accuracy than centralized BLUE fusion. This is not counterintuitive, because

the optimal centralized BLUE fusion is only a linear estimator of the sensor observations,

however the distributed BLUE fusion with quantized measurement is in fact a nonlinear

function of the sensor observations.

79

Table 4.2: MSE Comparison for Two Dimensional Sensor Observation

x̂(z1, z2)

(MMSE)

x̂(z1, z2)

(BLUE)

x̂(y1, y2)

(Intinal)

x̂(y1, y2)

(Iteration I)

x̂(y1, y2)

(Iteration II)

MSE(x̂) 0.013 0.0982 0.0572 0.0355 0.0354

4.5.2 State Estimation Fusion for Dynamic System

Now, we discuss state estimation update for a dynamic system.

xk = Fk,k−1xk−1 + wk,k−1

zk = Hkxk + vk

where xj =
[

x
(1)
j , x

(2)
j

]′

, and wj and vj are zero mean white Gaussian noise. Consider a dis-

cretized continuous time kinematic system driven by white noise with power spectral density

q, called constant velocity model or white-noise acceleration model which is extensively used

in many tracking algorithm comparisons, described by

Fj =









1 T

0 1









Hj = [1, 0]

Cwj
= Q =









T 3/3 T 2/2

T 2/2 T









q

Cvj
= R = 1

80

where T is the sampling interval. The prior information is

x̂0|0 = x̄ = [200 Km, 0.5 Km/ sec]′ ,

P0|0 =









R R/T

R/T 2R/T 2









and the maneuver index is λ =
√

qT 3/R = 0.707 11.

In the results, we use mser=
trace[Pk|k(Kalman)]

trace[Pk|k(Algorithm)]
, which is the ratio of the mean-square

error of the globally optimal Kalman filter to that of the algorithm under consideration to

show the efficiency of an algorithm. It is in the interval of (0, 1]. The larger the mser is, the

more efficient the algorithm is. In Fig 5.5, we draw the theoretical and sample mser (over

5000 monte Carlo runs) by using three different communication requirement m = 2 (1-bit

quantization), 4 (2-bit quantization) and 8 (3-bit quantization) respectively.

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time

m
se

r

Theoretical Value
Sample Value

1−bit

2−bit

3−bit

Fig. 4.6 mser of State Estimation Update with Communication Constraint

Fig. 4.6 shows that the larger quantization level allowed, the better the performance

81

is. When 3-bit quantization allowed, the state estimation update by using the quantized

measurement only suffers little accuracy compared with the Kalman filter using all raw

measurements.

4.6 Summary

We have presented the optimal quantizer design for distributed estimation systems using

BLUE fusion. A general framework of how to perform state estimation update and sensor

quantization update is introduced a new filter for linear Gaussian dynamic systems is estab-

lished. The new filter differs slightly from the Kaman filter only in the state and estimation

error covariance update parts. At the same time, the quantization update can be easily

handled by performing mapping other than searching for new partitions.

The new BLUE fusion structure with the optimal sensor quantization can achieve better

performance than traditional centralized BLUE fusion in some cases. Although at the center

level, this new BLUE fusion is still linear, it is nonlinear with respect to the whole system

because of the nonlinearity of the sensor quantization step. While the work is inspired by

the estimation fusion, the ideas can be applied in many other areas for constructing the

nonlinear estimator.

In our presented results, sensor quantization update in a dynamic system needs knowledge

of state prediction which is not available at the sensor level. In order to perform the task,

we need also to consider the communication from the center to the sensors, i.e., feedback.

How to formulate the communication constraints for feedback and how to perform update

still need further effort.

82

Chapter 5

Optimal Update with

Out-of-Sequence Measurements

5.1 Introduction

In a distributed multiple-sensor tracking system, observations produced by the sensors typ-

ically arrive at a fusion center with a random time delay due to communication delay. The

state equations are usually obtained in continuous time and then discretized. The sensor

may provide a “time stamp” with each measurement. In centralized multi-sensor tracking

systems, all these measurements are sent to the fusion center for processing. There are

usually different time delays in transmitting data to the fusion center. This can lead to

situations where measurements from the same target arrive out of sequence. In this case,

a measurement produced at time tk is received at the fusion center and is used to produce

an updated track state estimate and covariance matrix for that time tk. Then, a delayed

observation zd produced at a prior time td (tk−l ≤ td < tk−l+1, l = 1, 2, · · ·) is received at

83

the fusion center. This could occur if the observation produced at time td was subject to

a longer transmission delay than the delay associated with the observation produced at the

later time tk.

The problem is how to use the “older” measurement from time td to update the current

state at tk. There are some methods for updating the state estimate globally optimally with

an out-of-sequence measurement (OOSM) within one-step time delay (i.e., l = 1, referred to

as one-step update) for a system with nonsingular state transition matrix [2], and multi-step

OOSM updating using augmented state smoothing [14][15][12]. Also, one-step suboptimal

updating algorithms using stored information have been proposed for systems with invertible

state transition matrix [76][28][9][2]; multi-step update was discussed in [59] without any

discussion of the optimality. These algorithms are shown in this chapter to be special cases

of our proposed update algorithms. The globally optimal update algorithm and the optimal

update algorithm with limited information are optimal in the linear minimum mean-square

error (LMMSE) sense. When the required condition holds, our optimal update algorithm

given limited information reduces to the suboptimal algorithms of [2][59], which provides a

simple proof of the optimality of these generally suboptimal algorithms.

In this chapter, we first present a discussion concerning what the minimum storage at the

current time is to guarantee a globally optimal update. We derive our first algorithm to give

a globally optimal LMMSE update by storing all necessary information. It is general and

systematic. We consider three cases of prior information about the OOSM. In each case, we

try to get the minimum storage. A comparison with existing globally update algorithms in

computation and storage is also discussed. Our second algorithm gives the LMMSE update

by only using the information available at the current time. Although not guaranteed to be

84

globally optimal, it is optimal for the information given. As for the first algorithm, we also

consider three cases of information storage for the second algorithm. Further, we extend the

above single-OOSM update algorithms to the case of arbitrarily delayed multiple OOSMs.

For linear Gaussian dynamic system, Algorithm I and II will have a simplified version.

The results presented in this chapter demonstrate how the “static” estimation fusion

formulas presented in [53] can be applied to dynamic state estimation and fusion.

5.2 Problem Formulation

The dynamics and measurement models assumed are given by

xj = Fj,j−1xj−1 + wj,j−1 (5.1)

zj = Hjxj + vj (5.2)

where Fj,j−1 is the state transition matrix from time tj−1 to tj and wj,j−1 is (the cumula-

tive effect of) the process noise for the interval [tj−1, tj]. The process noise wj,j−1 and the

measurement noise vj are white and have zero mean and covariances

Cwj,j−1
= cov(wj,j−1) = Qj,j−1, Cvj

= cov(vj) = Rj

Suppose time td is in the sampling interval tk−l ≤ td < tk−l+1, where l = 1, 2, · · · . Which

means that the OOSM zd is l lags behind.

Similar to (5.1), we have

xk = Fk,dxd + wk,d

zd = Hdxd + vd

85

.........

z
k−l

.......

z
k−s

 z
d
 z

k−l+1
 z

k

t
k−s

 t
k−l

 t
d
 t

k−l+1
 t

k

Measurement Arrival Time

Measurement Time

Fig. 5.2.1: The OOSM zd arrives after the last processed measurement zk.

The problem is as follows: At time tk the LMMSE estimator is

x̂k|k , E∗(xk|z
k) = arg min

x̂k|k=Azk+B

Pk|k, Pk|k , MSE[x̂k|k]

where x̃ = x − x̂. Letting Cxz =cov(x, z) and Cz =var(z),

x̂ = E∗(x|z) = x̄ + CxzC
−1
z (z − z̄), MSE(x̂) = E(x̃x̃′)

In the above, zk , {zi}
k
i=1 is the measurement sequence through tk. If the inverse C−1

z

does not exist, it can be simply replaced with the unique Moore-Penrose pseudoinverse (MP

inverse in short) C†
z . Subsequently, an earlier measurement at time td arrives after the

state estimate x̂k|k and error covariance Pk|k have been calculated. We want to update this

estimate with the earlier measurement zd, that is, to calculate the LMMSE estimator

x̂k|k,d = E∗(xk|Ωk, zd), Pk|k,d = MSE[x̂k|k,d]

where Ωk stands for the information available for update with the OOSM zd .

5.3 Optimal Update with Available Information

In general, we want to have the globally optimal updated estimate

x̂k|k,d = E∗(xk|z
k, zd)

And generally

E∗(xk|z
k, zd) = E∗(xk|x̂d|k−l, z

d,k)

86

Therefore, if we want to guarantee a globally optimal update, the information stored at each

time tm (k − l + 1 ≤ m ≤ k) should include at least

Ωm = {x̂k−l|k−l, Pk−l|k−l, z
k−l+1,m}

or its equivalent. Otherwise, no guarantee that any update is globally optimal in general. In

some special cases, however, information from a smaller storage is sufficient for global opti-

mality. Thus, all measurements, state estimates, and error covariances from the occurrence

time of OOSM to its arrival time need to be saved to guarantee a globally optimal update.

In practice, an OOSM zd has a random time delay (e.g., l is random). But it may not

be too far before time tk. It is not reasonable to store the observation at each time in order

to get the optimal updated estimate E∗(xk|z
k, zd). In fact, in each step, it is often the

case that only x̂j|j and the associated error covariance Pj|j are stored. So at time tk, the

available information stored is Ωk =
{

x̂k|k, Pk|k

}

. Thus the optimal update is better done

based on this Ωk and OOSM. Now the update in general can be done by using formulas for

BLUE fusion without prior [53], because the prior for update includes the prior information

x̄0|0, P0|0, which may not be available for update with OOSM. This update is not globally

optimal in general, but it is optimal for the information given.

Both algorithms presented in the next section are optimal in the LMMSE sense. They dif-

fer in that different Ωk are used and thus they are optimal for different available information

Ωk.

87

5.4 Optimal Update Algorithms

5.4.1 Algorithm I — Globally Optimal Update

Based on the linear dynamic model, according to recursive LMMSE, the globally optimal

update can be expressed as

x̂k|k,d = E∗(xk|z
k, zd) = x̂k|k + Kd(zd − Hdx̂d|k) = x̂k|k + Kdz̃d|k (5.3)

MSE(x̂k|k,d) = Pk|k − KdSdK
′
d (5.4)

where

Kd = Uk,dH
′
dS

−1
d , Sd = HdPd|kH

′
d + Rd, Uk,d = Cxk,x̃d|k

= cov(xk, x̃d|k)

In the above, if the inverse S−1
d does not exist, we can simply replace it with S†

d, the MP

inverse of Sd =cov(z̃d|k). x̂k|k and Pk|k are available in the Kalman filter. In the following

we focus on other necessary information {x̂d|k, Pd|k, Uk,d}, which in fact exists in a recursive

form (non-standard smoothing):

Let

x̂d|n = E∗(xd|z
n), Pd|n = MSE(x̂d|n), Un,d = Cxn,x̃d|n

Theorem 5: Starting from n = k − l + 1, we have the recursion

x̂d|n+1 = x̂d|n + U ′
n,dF

′
n+1,nH ′

n+1S
−1
n+1z̃n+1|n (5.5)

Pd|n+1 = Pd|n − U ′
n,dF

′
n+1,nH ′

n+1S
−1
n+1Hn+1Fn+1,nUn,d

Un+1,d = (I − Kn+1Hn+1)Fn+1,nUn,d

88

with initial value

x̂d|k−l+1 = x̂d|k−l + Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l

Pd|k−l+1 = Pd|k−l − Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1Hk−l+1Fk−l+1,dPd|k−l (5.6)

Uk−l+1,d = (I − Kk−l+1Hk−l+1)Fk−l+1,dPd|k−l

where

x̂d|k−l = Fd,k−lx̂k−l|k−l (5.7)

Pd|k−l = Fd,k−lPk−l|k−lF
′
d,k−l + Qd,k−l (5.8)

¤

Proof. The recursion for {x̂d|n, Pd|n, Un,d} is generated as follows. For n ≥ k − l + 1

x̂d|n+1 = E∗(xd|z
n+1) = x̂d|n + Cxd,x̃n|n

F ′
n+1,nH

′
n+1S

†
n+1z̃n+1|n

Pd|n+1 = Pd|n − Cxd,x̃n|n
F ′

n+1,nH ′
n+1S

†
n+1Hn+1Fn+1,nC ′

xd,x̃n|n

Un+1,d = Cxn+1,x̃d|n+1
= Cxn+1,x̃d|n−Cxd,x̃n|n

F ′
n+1,nH′

n+1S†
n+1z̃n+1|n

(5.9)

= Cxn+1,x̃d|n
− Cxn+1,z̃n+1|n

S†
n+1Hn+1F

′
n+1,nC

′
xd,x̃n|n

= Fn+1,nUn,d − Kn+1Hn+1Fn+1,nC ′
xd,x̃n|n

And

Cxn,x̃d|n
= Cxn−x̂n|n,xd−x̂d|n

= Cxn−x̂n|n,xd
= Cx̃n|n,xd

= C
′

xd,x̃n|n

89

Thus Cxn,x̃d|n
= C

′

xd,x̃n|n
holds. So the recursion (5.9) can be simplified as

x̂d|n+1 = x̂d|n + U ′
n,dF

′
n+1,nH ′

n+1S
†
n+1z̃n+1|n

Pd|n+1 = Pd|n − U ′
n,dF

′
n+1,nH ′

n+1S
†
n+1Hn+1Fn+1,nU ′

n,d

Un+1,d = (I − Kn+1Hn+1)Fn+1,nU ′
n,d

with initial value

x̂d|k−l+1 = x̂d|k−l + Pd|k−lF
′
k−l+1,dH

′
k−l+1S

†
k−l+1z̃k−l+1|k−l

Pd|k−l+1 = Pd|k−l − Pd|k−lF
′
k−l+1,dH

′
k−l+1S

†
k−l+1Hk−l+1Fk−l+1,dPd|k−l

Uk−l+1,d = (I − Kk−l+1Hk−l+1)Fk−l+1,dPd|k−l

Based on the above recursion, it is easy to get that {x̂d|k, Pd|k, Uk,d} are highly related

with the OOSM occurrence time td through {x̂d|k−l, Pd|k−l} which are highly related with the

state estimate of xd at that time. The key to achieve global optimality for the update lies

in when and how to initialize the recursion.

Depending on different prior information about td, we consider three cases.

Case I: Perfect Knowledge about td at the Next Sampling Time tk−l+1

In this case, we know the exact sampling time at which each observation is made and

supposed to arrive. Suppose zd made at td (tk−l ≤ td < tk−l+1) has not arrived by tk−l+1

(so we know we have an OOSM); instead, it arrives during [tk, tk+1) with a time stamp td.

Then at the time at which zd is supposed to arrive, we can still run the Kalman filter to

get prediction {x̂d|k−l, Pd|k−l}; the only difference is that there is no state update with zd.

Then at the next time tk−l+1, we can initialize by (5.6) and run our recursion (5.5) until

90

the OOSM arrives. This filter is an extension of the traditional Kalman filter by adding

{x̂k|n, Pk|n, Uk,n} at each recursion n (k − l + 1 ≤ n ≤ k). After receiving the OOSM, the

OOSM update algorithm is globally optimal. The complete algorithm is the Kalman filter

associated with the OOSM update, which is referred to as KF-OOSM. The KF-OOSM for

Case I is shown in Fig.5.4.1.

Since the traditional Kalman filter stores {x̂n|n, Pn|n} at each recursion, the information

stored in our KF-OOSM at each recursion n (k − l + 1 ≤ n ≤ k) is

Ωn = {x̂n|n, Pn|n, x̂d|n, Pd|n, Un,d}

Initialization (as for KF)

Measurement missing ?

Kalman Filter

Initialization for OOSM Recursion: (6)

OOSM z
d
 arrives ?

Y

N

Y

OOSM Update:
 (3)−(4)

Kalman Filter

N

OOSM Recursion: (5)

Fig.5.4.1: Algorithm I for Case I

In this case, the storage is fixed as the delay l increases.

Case II: Knowing tk−l < td < tk−l+1 at Time tk−l+1

In this case, we know exactly the sampling interval over which each observation is made

and supposed to arrive; supposed zd made at td (tk−l ≤ td < tk−l+1) has not arrived by tk−l+1

(so we know we have an OOSM); instead, it arrives during [tk, tk+1) with a time stamp td.

91

Then, at time tk−l+1 we can not use {x̂d|k−l+1, Pd|k−l+1, Uk−l+1,d} directly to initialize our

KF-OOSM because they are all related with the state xd. Without receiving the OOSM zd

at time tk−l+1, the necessary state information xd is not available at that time, but we can

initialize our KF-OOSM using the replacement {yk−l+1, Bk−l+1, Uk−l+1}, defined by

yk−l+1 = H ′
k−l+1S

−1
k−l+1z̃k−l+1|k−l, Bk−l+1 = H ′

k−l+1S
−1
k−l+1Hk−l+1, Uk−l+1 = I−Kk−l+1Hk−l+1

(5.10)

None of them are related with state xd and they are generated using the information available

in the traditional Kalman filter at that time. We can define the recursion for {yn, Bn, Un}

with k − l + 1 ≤ n ≤ k as

yn+1 = yn + U ′
nF ′

n+1,nH ′
n+1S

−1
n+1z̃n+1|n

Bn+1 = Bn + U ′
nF ′

n+1,nH ′
n+1S

−1
n+1Hn+1Fn+1,nUn (5.11)

Un+1 = (I − Kn+1Hn+1)Fn+1,nUn

Then {x̂d|k, Pd|k, Uk,d} can be obtained by renewing {yk, Bk, Uk} once the OOSM zd arrives.

Theorem 6:

x̂d|k = Pd|k−lF
′
k−l+1,dyk + x̂d|k−l (5.12)

Pd|k = Pd|k−l − Pd|k−lF
′
k−l+1,dBkFk−l+1,dPd|k−l

Uk,d = UkFk−l+1,dPd|k−l

¤

Proof. Since

92

x̂d|k = x̂d|k−1 + U ′
k−1,dF

′
k,k−1H

′
kS

−1
k z̃k|k−1

Pd|k = Pd|k−1 − U ′
k−1,dF

′
k,k−1H

′
kS

−1
k HkFk,k−1Uk−1,d

Uk,d = (I − KkHk)Fk,k−1Uk−1,d

...

x̂d|k = x̂d|k−l + U ′
k−l,dF

′
k−l+1,k−lH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l + . . . + U ′

k−1,dF
′
k,k−1H

′
kS

−1
k z̃k|k−1

Pd|k = Pd|k−l − U ′
k−l,dF

′
k−l+1,k−lH

′
k−l+1S

−1
k−l+1Hk−l+1Fk−l+1,k−lUk−l,d − . . . − U ′

k−1,dF
′
k,k−1H

′
kS

−1
k

HkFk,k−1Uk−1,d

Uk,d = [(I − KkHk)Fk,k−1] × . . . × [(I − Kk−l+1Hk−l+1)Fk−l+1,k−l]Uk−l,d

also

yk = yk−1 + U ′
k−1F

′
k,k−1H

′
kS

−1
k z̃k|k−1

Bk = Bk−1 + U ′
k−1F

′
k,k−1H

′
kS

−1
k HkFk,k−1Uk−1

Uk = (I − KkHk)Fk,k−1Uk−1

...

yk = yk−l + U ′
k−lF

′
k−l+1,k−lH

′
k−lS

−1
k−lz̃k−l+1|k−l + . . . + U ′

k−1F
′
k,k−1H

′
kS

−1
k z̃k|k−1

Bk = Bk−l + U ′
k−lF

′
k−l+1,k−lH

′
k−lS

−1
k−lHk−l+1Fk−l+1,k−lUk−l + . . . + U ′

k−1F
′
k,k−1H

′
kS

−1
k HkFk,k−1Uk

Uk = [(I − KkHk)Fk,k−1] × . . . × [(I − Kk−l+1Hk−l+1)Fk−l+1,k−l]Uk−l

and for any m ≥ k − l + 1

Um,d = [(I − KmHm)Fm,m−1] × . . . × [(I − Kk−l+2Hk−l+2)Fk−l+2,k−l+1]Uk−l+1,d

Um = [(I − KmHm)Fm,m−1] × . . . × [(I − Kk−l+2Hk−l+2)Fk−l+2,k−l+1]Uk−l+1

93

By comparing the initial value {x̂d|k−l+1,Pd|k−l+1,Uk−l+1,d} and {yk−l+1,Bk−l+1,Uk−l+1}, we

have

Um,d = UmFk−l+1,dPd|k−l

and

Pd|k−lF
′
k−l+1,dyk = Pd|k−lF

′
k−l+1,dyk−l+1 + x̂d|k − x̂d|k−l+1

= Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l + x̂d|k − x̂d|k−l+1

= Pd|k−lF
′
k−l+1,dH

′
k−l+1S

−1
k−l+1z̃k−l+1|k−l + x̂d|k − x̂d|k−l − Pd|k−lF

′
k−l+1,dH

′
k−l+1S

+
k−l+1z̃k−l+1|k−l

= x̂d|k − x̂d|k−l

Pd|k−lF
′
k−l+1,dBkFk−l+1,dPd|k−l = Pd|k−lF

′
k−l+1,dBk−l+1Fk−l+1,dPd|k−l − Pd|k + Pd|k−l+1

= Pd|k−lF
′
k−l+!,dH

′
k−l+1S

−1
k−l+1Hk−l+1Fk−l+1,dPd|k−l − Pd|k + Pd|k−l − Pd|k−lF

′
k−l+1,dH

′
k−l+1S

−1
k−l+1

Hk−l+1 Fk−l+1,dPd|k−l = Pd|k−l − Pd|k

Thus

x̂d|k = Pd|k−lF
′
k−l+1,dyk + x̂d|k−l

Pd|k = Pd|k−l − Pd|k−lF
′
k−l+1,dBkFk−l+1,dPd|k−l

Uk,d = UkFk−l+1,dPd|k−l

The KF-OOSM for Case II is shown in Fig.5.4.2.

The information needed to be stored for our KF-OOSM at each recursion n (k − l + 1 ≤

n ≤ k) in this case is

Ωn = {x̂n|n, Pn|n, yn, Bn, Un, x̂k−l|k−l, Pk−l|k−l}

94

Initialization (as for KF)

Measurement missing ?

Kalman Filter

Initialization for OOSM Recursion: (9)

OOSM z
d
 arrives ?

Y

N

Y

OOSM Update:
 (3)−(4)

Kalman Filter

N

OOSM Recursion: (10)

Renew: (11)

Fig.5.4.2: Algorithm I for Case II

Remark If l = 1 (i.e., one-step update), there is only one recursion in our KF-OOSM ; so

the information needed to be stored is simply

Ωk = {x̂k|k, Pk|k, yk, Bk, x̂k−1|k−1, Pk−1|k−1}

and

Uk,d = [I + (Fk,dPd|k−1F
′
k,d + Qk,d)Bk]Fk,dPd|k−1

In this case, the storage is also fixed as the delay l increases.

Case III: Knowing Maximum Delay s of OOSM

In this case, there is not any prior information about the OOSM zd occurrence time td

before it arrives, but we know the maximum delay s for the OOSM, i.e., tk−s ≤ tk−l ≤ td <

tk−l+1 ≤ tk with an unknown l.

In this case, we do not know when to initialize our KF-OOSM, but we can treat each

95

discrete time in the time window [tk−s, tk) as the possible initialization point, such as

y(n)
n = H ′

nS
−1
n z̃n|n−1, B(n)

n = H ′
nS

−1
n Hn, U (n)

n = I − KnHn (5.13)

and apply the algorithm in Case II to achieve the optimal update after the OOSM is received.

The recursion for {y
(m)
n+1, B

(m)
n+1, U

(m)
n+1} (n > k − l + 1, n − s < m < n) is

y
(m)
n+1 = y(m)

n + U (m)′
n F ′

n+1,nH ′
n+1S

−1
n+1z̃n+1|n

B
(m)
n+1 = B(m)

n + U (m)′
n F ′

n+1,nH ′
n+1S

−1
n+1Hn+1Fn+1,nU (m)

n (5.14)

U
(m)
n+1 = (I − Kn+1Hn+1)Fn+1,nU (m)

n

Then {x̂d|k, Pd|k, Uk,d} can be obtained by renewing {y
(k−l+1)
k , B

(k−l+1)
k , U

(k−l+1)
k } once the

OOSM zd arrives

x̂d|k = Pd|k−lF
′
k−l+1,dy

(k−l+1)
k + x̂d|k−l (5.15)

Pd|k = Pd|k−l − Pd|k−lF
′
k−l+1,dB

(k−l+1)
k Fk−l+1,dPd|k−l

Uk,d = U
(k−l+1)
k Fk−l+1,dPd|k−l

The KF-OOSM for Case III is shown in Fig.5.4.3.

The information storage in our KF-OOSM at each recursion n in this case increases

linearly as time increases from tk−s+1 to tk, which is as follows:

Ωn = {x̂k−s|k−s, Pk−s|k−s, · · · , x̂n|n, Pn|n, y(k−s+1)
n , B(k−s+1)

n , U (k−s+1)
n , · · · , y(n)

n , B(n)
n , U (n)

n }

Remark 1 If s = 1 (i.e., one-step update), it is just the problem considered in Case II with

l = 1.

Remark 2 If td = tk−l, the OOSM was made exactly at a previous sampling time. With

96

Initialization (as for KF)

Initialization for OOSM Recursion: (12)

OOSM z
d
 arrives ?Y

OOSM Update:
 (3)−(4)

Kalman Filter

N

OOSM Recursion: (13)

Renew: (14)

Fig.5.4.3: Algorithm I for Case III

the algorithm slightly changed, the memory can be saved comparing with tk−l < td < tk−l+1.

In this case, the flowchart of KF-OOSM for this case has the same structure as above, but

the OOSM initialization and renewing part are respectively replaced with

y(n)
n = x̂n|n + Pn|nF ′

n,n−1H
′
nS

−1
n z̃n|n−1

B(n)
n = Pn|n − Pn|nF

′
n,n−1H

′
nS

−1
n HnFn,n−1Pn|n

U (n)
n = (I − KnHn)Fn,n−1Pn|n

and

x̂d|k = y
(k−l+1)
k , Pd|k = B

(k−l+1)
k , Uk,d = U

(k−l+1)
k

The information needed at each recursion n (k − s < n ≤ k) in our KF-OOSM in this case

is

Ωn = {x̂n|n, Pn|n, y(k−s+1)
n , B(k−s+1)

n , U (k−s+1)
n , · · · , y(n)

n , B(n)
n , U (n)

n }

Depending on the uncertainty with the OOSM occurrence time, we have considered three

cases of the KF-OOSM and the associated efficient memory structure for Algorithm I. The

more uncertain of the OOSM occurrence time, the more storage we need. Cases I and II

97

have a fixed storage from time tk−l to tk. The storage in case III increases linearly with the

length of the time interval. None of these algorithms for the three cases generally have any

non-singularity requirement on the transition matrix Fk,d.

5.4.2 Comparison of Globally Optimal Update Algorithms

[2, 14] present algorithms to achieve globally optimal update. [2] deals with the single-

step update problem. There are two major steps: retrodiction from current time to OOSM

occurring time and update the estimate with the OOSM. [14] is suitable for our Case III

assuming td = tk−l. It is based on a method of non-standard smoothing by augmenting the

state vector to include all “states” xk−s, xk−s+1, . . . , xk. It is conceptually elegant, but not

attractive computationally. It seems impossible to have a globally optimal update with the

OOSM when td 6= tk−l (i.e., td is not exactly some sampling time instant) within this frame-

work of state augmentation. A technique was suggested in [14] to handle the problem with

tk−l < td < tk−l+1 by approximating td to the nearest time tk−l or tk−l+1. The approximation

makes the estimation not globally optimal. The error is small when the sampling intervals

are small. However, this requires more lags (i.e., large l) in the augmented state, and hence

increases computational load to cover the same maximum time delay. This is a dilemma

when one wants to have small errors and efficient computation simultaneously.

The algorithm presented here do not need to retrodict to the previous state or go back

by smoothing. It is the traditional Kalman filter with a few more terms in the recursion.

It requires more storage than the Kalman filter, but the extra storage used is not large.

In Cases I and II, the storage is fixed at each recursion and even in Case III, the storage

98

increases only linearly as the delay l increases.

Let us simply compare the storage and computational load of our OOSM update algo-

rithm with those of [14] in Case III assuming td = tk−l. In the following, we consider the

same maximum delay s for the OOSM and focus on the total storage and computational

burden within a certain time window. The algorithm of [14] is referred as ALG-S and our

globally optimal algorithm I for Case III as ALG-I in the following:

ALG-S (Storage):

















x̂k−s|k

...

x̂k|k

















,

















Pk−s|k · · · Cx̃k−s|k,x̃k|k

...
. . .

...

Cx̃k|k,x̃k−s|k
· · · Pk|k

















ALG-I (Storage):

























y
(k−s+1)
k

...

yk−1
k

x̂k|k

























,

























B
(k−s+1)
k U

(k−s+1)
k

...
...

B
(k−2)
k U

(k−2)
k

B
(k−1)
k U

(k−1)
k

























Obviously, the dimension of each term of the stacked estimates and the corresponding covari-

ances in the two algorithms is the same, which is the same as xk or Pk|k. Let the dimension

of xk be p, and the dimension of Pk|k be p×p. The total storages for the two algorithms are:

ALG-S sp + s2(p × p)

ALG-I (s − 1)p + 2s(p × p)

Although the storage of ALG-S can be as small as sp + (s2 + s)(p × p)/2 because of the

symmetry of the covariance matrix, the storage is still quadratic in s. The storage of the

99

ALG-I is linear in s, which means as the maximum delay s increases, the storage of ALG-

S will be much larger than that of ALG-I. The maximum delay s could be quite large in

the case of small sampling interval or large computational delay. In practice, td 6= tk−l,

to have good performance for ALG-S, the sampling interval must be small and thus s is

large. Consequently, ALG-S should have significantly larger computational complexity than

ALG-I.

By analysis and comparison, we can conclude that our proposed globally optimal update

algorithm has (1) an efficient memory structure; and (2) an efficient computational structure

to solve the problem by storing the necessary information instead of retrodiction or augment-

ing the state. Also, it is globally optimal for tk−l < td < tk−l+1 as well as td = tk−l, whereas

ALG-S is globally optimal only for td = tk−l. On the other hand, ALG-S is conceptually

clearer and simpler than ALG-I.

5.4.3 Algorithm II — Constrained Optimal Update

Only based on information x̂k|k and zd at the time when OOSM zd arrives, the OOSM up-

date is the LMMSE estimation E∗(xk|x̂k|k, zd). It is in general not globally optimal [i.e.,

E∗(xk|x̂k|k, zd) 6= E∗(xk|z
k, zd)] because the measurements zk and zd of state xk have corre-

lated measurement noise. Of course, under some conditions, E∗(xk|x̂k|k, zd) = E∗(xk|z
k, zd)

holds. Also

E∗(xk|x̂k|k, zd) = x̂k|k + Cxk,z̃d|x̂k|k
C−1

z̃d|x̂k|k
z̃d|x̂k|k

where

z̃d|x̂k|k
= zd − z̄d − Czd,x̂k|k

C−1
x̂k|k

(x̂k|k − x̄k)

100

Because Ωk = {x̂k|k, Pk|k} does not sum up all prior information for this case, the LMMSE

update with prior involves the prior information x̄d, Cxd
, which generally are not stored

in the Kalman filter. So if we want to get the LMMSE with prior update, the information

storage should increase to include the prior information. Now, not increasing our information

storage in the Kalman filer, we present the LMMSE update without prior, which is derived

as follows.

Let

z =









x̂k|k

zd









and treat z as the observation of xk. Then the LMMSE estimator x̂k|k,d of xk must be a

linear combination of x̂k|k and zd, i.e., a linear function of z

x̂k|k,d = Kz + b

We obtain the optimal K and b by satisfying the unbiasedness assumption and minimizing

the MSE matrix. According to the unbiasedness E(xk) = E(x̂k|k,d) requirement, we have,

by (5.1)-(5.2),

Fk,dx̄d = KHx̄d + b

where

H =









Fk,d

Hd









i.e.

(KH − Fk,d)x̄d + b = 0

Since the prior information is not known, this equation must be satisfied for every x̄d, and

101

so

KH = Fk,d, b = 0 (5.16)

A solution of (5.16) always exists, because KH = Fk,d holds at least for K = [I, 0]. The

next step is to obtain the optimal K by minimizing the MSE matrix under linear constraint

KH = Fk,d:

K = arg min
K

MSE(x̂k|k,d) = arg min
K

{(K − Γ)R(K − Γ)′} (5.17)

s.t. KH = Fk,d

and

Γ =

[

Fk,dU
′
k,d + Qk,d − Pk|k 0

]

R†

R =









Fk,dU
′
k,d + Uk,dF

′
k,d + Qk,d − Pk|k 0

0 Rd









where the last equality in (5.17) follows from a tedious derivation, see below

MSE(x̂k|k,d) = cov(xk − x̂k|k,d) = cov(xk − Kz) = cov(Fk,dxd + wk,d − K









x̂k|k

zd









)

= cov(Fk,dxd + wk,d − K









xk − x̃k|k

Hdxd + vd









) = cov(Fk,dxd + wk,d − K









Fk,dxτ + wk,d − x̃k|k

Hdxd + vd









)

= cov{(Fk,d − KH)xd + wk,d − K









wk,d − x̃k|k

vd









} = cov(wk,d − K









wk,d − x̃k|k

vd









)

= Qk,d −

[

Cwk,d,wk,d−x̃k|k
0

]

K
′

− K









C ′
wk,d,wk,d−x̃k|k

0









+ K









Cwk,d−x̃k|k
0

0 Rd









K
′

= (K − Γ)R(K − Γ)′ + Qk,d − ΓRΓ′

102

where

Γ =

[

Fk,dU
′
k,d + Qk,d − Pk|k 0

]

R†

R =









Fk,dU
′
k,d + Uk,dF

′
k,d + Qk,d − Pk|k 0

0 Rd









thus the optimization problem of K is

K = arg min
K

MSE(x̂k|k,d) = arg min
K

{(K − Γ)R(K − Γ)′}

s.t. KH = Fk,d

The general solution, expressed in terms of the MP-inverse, is given by:

K = K̃ + ξT

where

K̃ = Fk,dH
† + (Γ − Fk,dH

+)R(TRT)†, T = I − HH†

and ξ is any matrix satisfying ξTR1/2 = 0. So the estimate of xk is

x̂k|k,d = Kz

Pk|k,d = MSE(x̂k|k,d) = (K − Γ)R(K − Γ)′ + Qk,d − ΓRΓ′

Note that

E(ξTz) = E[ξT (Hxd − v)] = E(ξTv) = 0

cov(ξTz) = ξTRTξ = 0

Although K is not unique, the estimate of xk is unique, given by

x̂k|k,d = K̃z

Pk|k,d = (K̃ − Γ)R(K̃ − Γ)′ + Qk,d − ΓRΓ′ (5.18)

103

Remark 1 When R matrix is non-singular, according to [49], we have

H†[I − R(TRT)†] = (H ′R−1H)†H ′R−1

Then

K̃ = Fk,d(H
′R−1H)†H ′R−1 + ΓR(TRT)†

Remark 2 For invertible Fk,d, the LMMSE estimate of xk without prior is given by the

following theorem.

Theorem 7: For non-singular Fk,d, we have

x̂k|k, d = x̂k|k, dc, Pk|k, d = Pk|k, dc

where

x̂k|k, dc = K̃cz, Pk|k, dc = K̃cRcK̃c

and

K̃c = Hc + [I − Rc(T cRcT c)+], T c = I − Hc(Hc)†

Rc =









Pk|k (Pk|kFk, d
−1′ − Uk, d)H ′

d

Hd(Fk, d
−1Pk|k − Uk, d

′) Rd + HdFk, d
−1Qk, dFk, d

−1′H ′
d









, Hc =









I

HdFk, d
−1









When Rc is invertible, by [49], it becomes

x̂k|k, dc = (Hc′Rc − 1Hc)−1Hc′Rc − 1z (5.19)

Pk|k, dc = (Hc′Rc − 1Hc)−1

¤

Proof. The LMMSE estimate in this case is

x̂c
k|k,d = Kcz + bc

104

according to unbiasedness requirement, we have

x̄k = KcHcx̄k + bc, i.e., (KcHc − I)x̄k + bc = 0

Without knowing the prior information x̄k is equivalent to without knowing the prior in-

formation x̄d because Fk,d is invertible. The equation must be satisfied for every x̄k, and

so

KcHc = I, bc = 0

A solution always exists, because at least we can choose Kc = [I, 0] to make KcHc = I

hold. The optimal Kc is the solution of the following optimization problem with a linear

constraint:

Kc = arg min
K

MSE(x̂c
k|k,d) = arg min

K
KcRcKc′

s.t. KcHc = I

By [53], we have T c = I − Hc(Hc)† and K̃c = (Hc)†[I − Rc(T cRcT c)†]. On the other hand,

obviously we have HcFk,d = H, and in view of KcHc = I, we have

KcHcFk,d = Fk,d, i.e., KcH = Fk,d

Based on this, the MSE of x̂c
k|k,d has another form

MSE(x̂c
k|k,d) = (Kc − Γ)R(Kc − Γ)′ + Qk,d − ΓRΓ′

So

Kc = arg min
K

(Kc − Γ)R(Kc − Γ)′, s.t. KcH = Fk,d

Because the linear constrained optimization problem for Kc is the same as that of K, we

have

x̂c
k|k,d = x̂k|k,d, P c

k|k,d = Pk|k,d

105

Obviously, for invertible Fk,d and Rc, if the update is only within one step, (5.19) is the

solution given by [28, 2]. In the multi-step update case, (5.19) is consistent with [59]. Thus

we can say that these algorithms for update with Ωk = {x̂k|k, Pk|k} and OOSM are optimal in

the LMMSE sense. As such, we have proven the optimality of these existing algorithms. In

Theorem 4.4.2.1, we have shown that {x̂c
k|k,d, P

c
k|k,d} is a special case of our general LMMSE

estimator {x̂k|k,d, Pk|k,d} when Fk,d is nonsingular.

In Algorithm II, the estimator contains a term Uk,d. According to Algorithm I, Uk,d has

the following recursion.

At each recursion n (n ≥ k − l + 1)

Un+1,d = (I − Kn+1Hn+1)Fn+1,nUn,d (5.20)

with initial value

Uk−l+1,d = (I − Kk−l+1Hk−l+1)Fk−l+1,dPd|k−l (5.21)

where

Pd|k−l = Fd,k−lPk−l|k−lF
′
d,k−l + Qd,k−l

Based on this recursion, it is easy to get that Uk,d is highly related with the occurrence

time of OOSM through Pd|k−l, which is highly related with the state estimation error co-

variance of xk at the OOSM occurrence time. Again, the key to achieve optimality for the

update lies in when and how to initialize the recursion.

According to the uncertainty of OOSM occurrence time, we also consider above three

cases of KF-OOSM and associated information storage as Algorithm I.

Case I: Perfect Knowledge about td at the Next Sampling Time tk−l+1

106

Similar to Algorithm I for Case I, the KF-OOSM adds a recursion for Un,d to the tra-

ditional Kalman filter. The flowchart of KF-OOSM for this case has the same structure as

Algorithm I for Case I, where the OOSM initialization is given by (5.21), OOSM recursion

is given by (5.20), and OOSM update by (5.18). The update part has the form of Remark 1

or 2 if the condition is satisfied. Since the Kalman stores {x̂n|n, Pn|n} at each recursion, the

information stored at our KF-OOSM at each recursion n (k − l + 1 ≤ n ≤ k) is

Ωn = {x̂n|n, Pn|n, Un,d}

In this case, the storage is fixed as the delay l increases.

Case II: Knowing tk−l < td < tk−l+1 at Time tk−l+1

In this case, we can initialize our KF-OOSM using the replacement Uk−l+1 defined by

Uk−l+1 = I − Kk−l+1Hk−l+1 (5.22)

and Un (n > k − l + 1) has the recursion

Un+1 = (I − Kn+1Hn+1)Fn+1,nUn (5.23)

so Uk,d can be obtained by renewing Uk once the OOSM zd arrives

Uk,d = UkFk−l+1,dPd|k−l (5.24)

The flowchart of KF-OOSM for this case has the same structure as Algorithm I for Case

II, where the OOSM initialization is given by (5.22), OOSM recursion is given by (5.23),

renew by (5.24) and OOSM update by (5.18). The KF-OOSM has the following information

storage structure for each n (k − l + 1 ≤ n ≤ k):

Ωn = {x̂n|n, Pn|n, Un, Pk−l|k−l}

107

As the delay l increases, the storage is fixed.

Case III: Knowing Maximum Delay s of OOSM

The method is to treat all time from tk−s+1 to tk as a possible initialization point

U (n)
n = (I − KnHn) (5.25)

and applying the algorithm in Case II to achieve the optimal update with the OOSM. The

recursion for U
(m)
n (n > k − l + 1, n − s < m < n) is

U
(m)
n+1 = (I − Kn+1Hn+1)Fn+1,nU (m)

n (5.26)

so Uk,d can be obtained by renewing U
(k−l+1)
k once the OOSM zd arrives, such as

Uk,d = U
(k−l+1)
k Fk−l+1,dPd|k−l (5.27)

The flowchart of KF-OOSM for this case has the same structure as Algorithm I for Case III,

where the OOSM initialization is given by (5.25), OOSM recursion is given by (5.26), renew

by (5.27), and OOSM update by (5.18). The information needed to store in our KF-OOSM

at each recursion n (k − s < n ≤ k) in this case increases linearly from time tk−s+1 to tk−1,

Ωn = {x̂n|n, Pk−s|k−s, · · · , Pn|n, U (k−s+1)
n , · · · , U (n)

n }

Remark If the OOSM was made exactly at a previous sampling time. With the algorithm

slightly changed, the memory can be saved comparing with tk−l < td < tk−l+1. In this case,

KF-OOSM flowchart structure is the same as above, except the OOSM initialization is given

by

U (n)
n = (I − KnHn)Fn,n−1Pn|n

108

and OOSM renew by

Uk,d = U
(k−l)
k

The memory structure of our KF-OOSM at each recursion n (k− s < n ≤ k) in this case is

Ωn = {x̂n|n, Pn|n, U (k−s+1)
n , · · · , U (n)

n }

Algorithm II can always give the optimal update based on the information given. Algo-

rithm II is general, and does not have any invertibility requirement of matrix Fk,d. If Fk,d

is non-singular, the expression of the solution can be simplified. Most often R and Rc are

invertible, which leads to even more simplified results. The algorithms of [28, 2] are special

cases of Algorithm II with invertible Fk,d and Rc for the one-step update case. The algorithm

of [59] solves multi-step update based on invertible matrices Fk,d and Rc. Therefore, we have

proven that these existing algorithms are optimal in the LMMSE sense.

The algorithm C of [2] is also a special case of Algorithm II with wk,d = 0 and invertible

Fk,d. But by setting some terms to zero in the algorithms, the new estimates may or may

not be the minimizer of the original problem, i.e., MSE(x̂∗
k|k,d) ≤MSE(x̂k|k) may or may not

hold, where x̂∗
k|k,d is the update estimation by applying Algorithm ∗.

It can be seen from the deviation of Algorithm II that the update Algorithm actually

needs more information than {x̂k|k, Pk|k} as provided by the Kalman filter, and the OOSM

zd. Although at the beginning we hope to update based on the current observations, i.e.,

the optimal linear combination of x̂k|k and zd, we need their correlation to build the linear

combination weight which include both Pk|k and Uk,d. It tells us that the valuable update

which will improve the current state estimation in general can not only based on Kalman

filer.

109

5.4.4 Update with Arbitrarily Delayed OOSMs

In all cases discussed before, we only consider the single-OOSM update problem. But there

exists arbitrarily delayed multiple OOSMs for update. The OOSMs can be the measurements

of the same state or different states; the OOSMs can arrive at the same or different time.

The case that any OOSM arrives before the next OOSM occurrence time belongs to the

single-OOSM update problem. We can solve it by sequentially applying the single-OOSM

update algorithms discussed above. But in some cases, during the period between the oc-

currence time and arrival time of one OOSM, other OOSMs may occur. We now consider

the optimal update problem in such cases, referred to as arbitrarily delayed OOSM update.

In the following, we only consider the problem of update with two OOSMs. Generalization

to update with more than two OOSMs is straight forward.

.........
z

k
1
−l

1

.......

z
d

1

 z
k

1
−l

1
+1

 z
k

2
−l

2

t
k

1
−l

1

t
d

1

 t
d

2

 t
k

2
−l

2

Measurement Arrival Time

Measurement Time z
d

2

 z
k

2
−l

2
+1

t
k

2
−l

2
+1

......... t

k
2

t
k

1
−l

1
+1

 t
k

2
+1

.........

t
k

1

 t
k

1
+1

z
k

2

 z
k

1

 z
k

2
+1

 z
k

1
+1

.........

Fig. 5.4.4 The OOSMs within the maximum delay period

Suppose zd1 and zd2 are two OOSMs observed at tk−li ≤ tdi
< tk−li+1 with 1 ≤ li < s,

i = 1, 2, and arrived during the time period [tki,tki+1). If zd1 arrives before td2 (see Fig.

5.4.3), the state update with zd2 at its arrival time is just the single-OOSM update problem

as before. zd1 had been used to update the state when it arrived. At zd2 occurrence time,

there is not any other OOSMs except zd2 . So we can directly apply Algorithm I or II for

updating with the single-OOSM zd2 at its arrival time. If both of them arrive at the same

110

time, although we can update the state estimate with them stacked together, computation-

ally and operationally, it is better to update with the OOSM one by one sequentially.

.........
z

k
1
−l

1

.......

z
d

1

 z
k

1
−l

1
+1

 zk
2
−l

2

t
k

1
−l

1

 t
d

1

 t
d

2

 t
k

2
−l

2

Measurement Arrival Time

Measurement Time
z

d
2

 z
k

2
−l

2
+1

t
k

2
−l

2
+1

.........

t
k

2

 t
k

1
−l

1
+1

 t
k

2
+1

.........

t
k

1

 t
k

1
+1

.........

z
k

2

 z
k

1

 z
k

2
+1

 z
k

1
+1

.........
z

k
1
−l

1

.......

z
d

1

 z
k

1
−l

1
+1

 z
k

2
−l

2

t
k

1
−l

1

 t
d

1

 t
d

2

 t
k

2
−l

2

Measurement Arrival Time

Measurement Time
z

d
2

 z
k

2
−l

2
+1

t
k

2
−l

2
+1

.........

t
k

1

t
k

1
−l

1
+1

t
k

1
+1

.........

t
k

2

 t
k

2
+1

.........

z
k

1

 z
k

2

 z
k

1
+1

 z
k

2
+1

Fig. 5.4.5 The OOSMs within the maximum delay period

In the following, we will consider the case that zd1 arrives after td2 (see Fig. 5.4.5).

Suppose zd2 arrives before zd1 , or we process zd2 before zd1 if both of them arrive at the

same time. According to Algorithm I and II for single-OOSM update, we need to update

the state estimation x̂k2|k2 and Pk2|k2 with zd2 when it arrived. At the same time, we also

need to update other quantities, such as {x̂d1|k2 , Pd1|k2 , Uk2,d1} for AlG-I, {Uk2,d1} for ALG-II

with zd2 . Because zd1 has not arrived yet, the quantities are necessary for updating the state

estimate with later arrived zd1 . Based on different update procedures at zd2 arrival time,

we consider two LMMSE optimal updates cases: (a) globally optimal and (b) constrained

optimal.

Globally Optimal Update

In this globally optimal update case, when zd2 arrives, we need to update not only {x̂k2|k2 , Pk2|k2}

with zd2 , but also {x̂d1|k2 , Pd1|k2 , Uk2,d1} used to update with the next zd1 . Denote the updated

quantities as {x̂k2|k2,d2 , Pk2|k2,d2} and {x̂d1|k2,d2 , Pd1|k2,d2 , U
∗
k2,d1

}. Update from {x̂k2|k2 , Pk2|k2}

111

to {x̂k2|k2,d2 , Pk2|k2,d2} is trivial, it can be done by directly applying single-OOSM glob-

ally optimal update algorithm. Here we focus on the update from {x̂d1|k2 , Pd1|k2 , Uk2,d1}

to {x̂d1|k2,d2 , Pd1|k2,d2 , U
∗
k2,d1

}.

By definition

x̂d1|k2,d2 = E∗(xd1 |z
k2 , zd2), Pd1|k2,d2 = MSE(x̂d1|k2,d2), U∗

k2,d1
= Cxk2

,x̃d1|k2,d2

According to the recursive LMMSE, we have

x̂d1|k2,d2 = x̂d1|k2 + Ck2
d2,d1

H ′
d2

(Hd2Pd2|k2H
′
d2

)−1z̃d2|k2

Pd1|k2,d2 = Pd1|k2 − Ck2
d2,d1

H ′
d2

(Hd2Pd2|k2H
′
d2

)−1Hd2(C
k2
d2,d1

)′

U∗
k2,d1

= Uk2,d1 + Uk2,d2H
′
d2

(Hd2Pd2|k2H
′
d2

)−1Hd2(C
k2
d2,d1

)′

where

z̃d2|k2 = zd2 − Hd2x̂d2|k2 , Ck2
d2,d1

= Cxd1
,x̃d2|k2

Let

Cn
d2,d1

= Cxd1
,x̃d2|n

Theorem 8: Cn
d1,d2

= (Cn
d2,d1

)′. ¤

Proof.

Cn
d1,d2

= cov(xd2 , xd1 − x̂d1|n)

= cov(xd2 − x̂d2|n, xd1 − x̂d1|n)

= cov(xd2 − x̂d2|n, xd1)

= cov(xd1 , xd2 − x̂d2|n)′

= (Cn
d2,d1

)′

112

Theorem 9: Cn
d2,d1

has a recursion for k2 − l2 + 1 ≤ n ≤ k2, which has the form

Cn
d2,d1

= Cn−1
d2,d1

− U ′
n−1,d1

F ′
n,n−1H

′
nS

−1
n HnFn,n−1Un−1,d2 (5.28)

with initial value

Ck2−l2
d2,d1

= Fd2,k2−l2Uk2−l2,d1

¤

Proof. When n ≥ k2 − l2

Cn
d2,d1

= cov(xd1 , xd2 − x̂d2|n)

= cov(xd1 , xd2 − x̂d2|n−1 − U ′
n−1,d2

F ′
n,n−1H

′
nS

†
nz̃n|n−1)

= cov(xd1 , xd2 − x̂d2|n−1) − cov(xd1 , x̃n−1|n−1)F
′
n,n−1H

′
nS

†
nHnFn,n−1Ud2,n−1

= Cn−1
d2,d1

− U ′
n−1,d1

F ′
n,n−1H

′
nS

†
nHnFn,n−1Un−1,d2

with initial value

Ck−l2
d2,d1

= Fd1,k2−l2Uk2−l2,d1

After this update procedure, we will have {x̂k2|k2,d2 , Pk2|k2,d2} and {x̂d1|k2,d2 , Pd1|k2,d2 ,

U∗
k2,d1

}. Through KF-OOSM, at zd1 arrival time, we will get {x̂k1|k1,d2 , Pk1|k1,d2} and {x̂d1|k1,d2 ,

Pd1|k1,d2 , U∗
k1,d1

}, where U∗
k1,d1

= Cxk1
,x̃d1|k1,d2

. Now, the single-OOSM globally optimal update

Algorithm I can be directly applied to obtain {x̂k1|k1,d2,d1 , Pk1|k1,d2,d1}.

It is easy to see that this OOSM update is just a sequential application of the single-

OOSM globally optimal update algorithm except that at each OOSM arrival point, we need

update not only the state estimate but also some other necessary quantities prepared to

113

update other OOSMs which are not arrived yet. This update contains a new term Ck2
d2,d1

(i.e., the correlation between two OOSMs) which fortunately has a recursive form. So very

similar to Algorithm I for single OOSM update case, we can have KF-OOSM for the three

different cases considered before.

Constrained Optimal Update

In this constrained optimal update case, when zd2 arrives, we need to update not only

{x̂k2|k2 , Pk2|k2} with zd2 , but also {Uk2,d1}. Denote the updated quantities as {x̂k2|k2,d2 , Pk2|k2,d2}

and {Ūk2,d1}. Update from {x̂k2|k2 , Pk2|k2} to {x̂k2|k2,d2 , Pk2|k2,d2} is trivial by directly applying

single-OOSM constrained optimal update algorithm. Now, we focus on how to update from

{Uk2,d1} to {Ūk2,d1}.

Theorem 10:

Ūk2,d1 = Cxd1
,x̃k2|k2,d2

=

[

Uk2,d1 0

]

K̃ ′ (5.29)

where

K̃ = Fk2,d2H
† + (Γ − Fk2,d2H

†)R(TRT)−1, T = I − HH†

Γ =

[

Fk2,d2Ūk2,d2 + Qk2,d2 − Pk2|k2,d2 0

]

R†

R =

















Fk2,d2Ūk2,d2 + Ūk2,d2F
′
k2,d2

+

Qk2,d2 − Pk2|k2,d2

0

0 Rd2

















, H =









Fk2,d2

Hd2









¤

Proof.

114

Ūk2,d1 = Cxd1
,x̃k2|k2,d2

= cov(xd1 , xk2 − x̂k2|k2,d2)

= cov(xd1 , xk2 − K̃(2)









x̂k2|k2

zd2









)

= cov(xd1 , xk2 − K̃(2)









xk2 − x̃k2|k2

zd2









)

= cov(xd1 , Fk2,d2xd2 + wk2,d2 − K̃(2)H(2)xd2 − K̃(2)









wk2d2 − x̃k2|k2

zd2









)

= cov(xd1 , wk2,d2 − K̃(2)









wk2,d2 − x̃k2|k2

vd2









)

=

[

Uk2,d1 0

]

K̃ ′
(2)

where K̃(2) is the gain matrix for update with zd2 at its arrival time.

In fact, K̃ is the gain matrix for update with zd2 when it arrives. Thus after this update

procedure, we have {x̂k2|k2,d2 , Pk2|k2,d2} and {Ūk2,d1}. Through recursion, at zd1 arrival time,

we can have {x̂k1|k1,d2 , Pk1|k1,d2} and {U∗
k1,d1

}, where U∗
k1,d1

= Cxd1
,x̃k1|k1,d2

. Now, the single-

OOSM constrained optimal update Algorithm II can be directly applied to obtain state

estimate x̂k1|k1,d2,d1 and Pk1|k1,d2,d1 .

This constrained OOSM update is just the sequential single-OOSM constrained optimal

update procedure. So all previous conditions that will simplify the estimation formulas can

be derived directly here. The three cases for different uncertainty of the OOSMs occurrence

time can be considered in the same way as the single-OOSM case.

115

5.5 OOSMs Update for Linear Gaussian Systems un-

der Nonsingularity Conditions

In a linear Gaussian dynamic system, the dynamic and measurement models for a single

target are given by

xj = Fj,j−1xj−1 + wj,j−1 (5.30)

zj = Hjxj + vj (5.31)

where Fj,j−1 is the state transition matrix from time tj−1 to tj and wj,j−1 is (the cumulative

effect of) the process noise for this interval. The process noise wj,j−1 and the measurement

noise vj are white, mutually uncorrelated, with zero mean and variances var(wj,j−1) = Qj,j−1,

var(vj) = Rj.

5.5.1 Algorithm I — Globally Optimal Update (ALG-I)

Based on the linear dynamic model, it follows from recursive LMMSE estimation that the

globally optimal update can be written as

x̂k|k,d = E∗[xk|z
k, zd] = x̂k|k + Kd(zd − Hdx̂d|k) = x̂k|k + Kdz̃d|k (5.32)

Pk|k,d = Pk|k − KdSdK
′
d (5.33)

where

Kd = Uk,dH
′
dS

−1
d , Sd = HdPd|kH

′
d + Rd, Uk,d = Cxk,x̃d|k

Let

x̂d|n = E∗(xd|z
n), Pd|n = MSE(x̂d|n), Un,d = Cxn,x̃d|n

116

Theorem 11: When Pn+1|n+1, Pn+1|n and Rn+1 are nonsingular (which hold for most

target tracking problems), we have

H ′
n+1S

−1
n+1z̃n+1|n = P−1

n+1|n(x̂n+1|n+1 − x̂n+1|n)

H ′
n+1S

−1
n+1Hn+1 = P−1

n+1|n(Pn+1|n − Pn+1|n+1)P
−1
n+1|n (5.34)

(I − Kn+1Hn+1) = Pn+1|n+1P
−1
n+1|n

¤

Proof.

S−1
n+1 = (Hn+1Pn+1|nH ′

n+1 + Rn+1)
−1

= R−1
n+1 − R−1

n+1H
′
n+1(P

−1
n+1|n + H ′

n+1R
−1
n+1Hn+1)

−1Hn+1R
−1
n+1

H ′
n+1S

−1
n+1z̃n+1|n = H ′

n+1R
−1
n+1z̃n+1|n − H ′

n+1R
−1
n+1H

′
n+1(P

−1
n+1|n + H ′

n+1R
−1
n+1Hn+1)

−1Hn+1R
−1
n+1z̃n+1|n

= P−1
n+1|n(P−1

n+1|n + H ′
n+1R

−1
n+1Hn+1)

−1Hn+1R
−1
n+1z̃n+1|n

= P−1
n+1|n(P−1

n+1|n + P−1
n+1|n+1 − P−1

n+1|n)−1(P−1
n+1|n+1x̂n+1|n+1 − P−1

n+1|nx̂n+1|n

− P−1
n+1|n+1x̂n+1|n + P−1

n+1|nx̂n+1|n)

= P−1
n+1|nPn+1|n+1(P

−1
n+1|n+1x̂n+1|n+1 − P−1

n+1|n+1x̂n+1|n)

= P−1
n+1|n(x̂n+1|n+1 − x̂n+1|n)

(I − Kn+1Hn+1) = I − Pn+1|nH ′
n+1S

−1
n+1Hn+1

= I − Pn+1|n[P−1
n+1|n(Pn+1|n − Pn+1|n+1)P

−1
n+1|n]

= (Pn+1|n − Pn+1|n + Pn+1|n+1)P
−1
n+1|n

= Pn+1|n+1P
−1
n+1|n

117

Based on the recursion for {x̂d|k, Pd|k, Uk,d} derived in [81] and Theorem 11, the recursion

for {x̂d|k, Pd|k, Uk,d} starting from n = k − l + 1 can be rewritten as

x̂d|n+1 = x̂d|n + U ′
n,dF

′
n+1,nP

−1
n+1|n(x̂n+1|n+1 − x̂n+1|n)

Pd|n+1 = Pd|n − U ′
n,dF

′
n+1,nP−1

n+1|n(Pn+1|n − Pn+1|n+1)P
−1
n+1|nFn+1,nUn,d (5.35)

Un+1,d = Pn+1|n+1P
−1
n+1|nFn+1,nUn,d

with the initial conditions given by

x̂d|k−l+1 = x̂d|k−l + Pd|k−lF
′
k−l+1,dP

−1
k−l+1|k−l(x̂k−l+1|k−l+1 − x̂k−l+1|k−l)

Pd|k−l+1 = Pd|k−l − Pd|k−lF
′
k−l+1,dP

−1
k−l+1|k−l(Pk−l+1|k−l − Pk−l+1|k−l+1)P

−1
k−l+1|k−lFk−l+1,dPd|k−l

(5.36)

Uk−l+1,d = Pk−l+1|k−l+1P
−1
k−l+1|k−lFk−l+1,dPd|k−l

where

x̂d|k−l = Fd,k−lx̂k−l|k−l (5.37)

Pd|k−l = Fd,k−lPk−l|k−lF
′
d,k−l + Qd,k−l (5.38)

From (5.35)-(5.36), we can see that the necessary information in order to update {x̂d|k, Pd|k, Uk,d}

includes

Ωk = {x̂k−l|k−l, Pk−l|k−l, · · · , x̂k|k, Pk|k}

For this situation, we do not have any prior information about the OOSM zd occurrence

time td, and what we know is the maximum delay s for the OOSM, i.e., tk−s ≤ tk−l ≤ td <

tk−l+1 ≤ tk . In order to save all necessary information for the update, we should have

Ωk = {x̂k−s|k−s, Pk−s|k−s, · · · , x̂k|k, Pk|k}

118

and use (5.35)-(5.36) together with (5.32)-(5.33) for the OOSM update algorithm. The

OOSM filter update uses the traditional Kalman filter with an additional OOSM update,

which is shown in Fig5.5.1.

Initialization (as for KF)

OOSM z
d
 arrives ?Y

OOSM Update:
 (3)−(6) Kalman Filter

N

Fig5.5.1: Flowchart for Algorithm I

Algorithm I presented above is the globally optimal update [81] with less storage require-

ment since Pn+1|n+1, Pn+1|n and Rn+1 are all nonsingular. The storage requirement increases

linearly with maximum delay s. However, the necessary information only includes the state

estimates in the concerned time interval. The storage is the same as Algorithm Al1 proposed

in [6], but can achieve the best performance within the linear class.

We conclude that Algorithm I has (1) an efficient memory structure; and (2) an efficient

computational structure to solve the problem by storing the necessary information instead

of retrodiction or augmenting the state [76, 28, 9, 14]. Also, it is globally optimal for

tk−l < td < tk−l+1 as well as td = tk−l+1.

5.5.2 Algorithm II — Constrained Optimal Update (ALG-II)

Based only on the information x̂k|k and zd at time when OOSM zd arrives, the optimal

OOSM update is the LMMSE estimator E∗(xk|x̂k|k, zd) without prior information [53]. It

119

is in general not globally optimal [i.e., E∗(xk|x̂k|k, zd) 6= E∗(xk|z
k, zd)], but it is optimal

conditioned on the information available. As presented in [81], the LMMSE update without

prior is given by

x̂k|k,d = K̃z

Pk|k,d = (K̃ − Γ)R̄(K̃ − Γ)′ + Qk,d − ΓR̄Γ′ (5.39)

where z =









x̂k|k

zd









and

K̃ = Fk,dH
+ + (Γ − Fk,dH

+)R̄(TR̄T)+

T = I − HH+, H =









Fk,d

Hd









(5.40)

Γ =

[

Fk,dU
′
k,d+Qk,d−P k|k 0

]

R̄+

R̄ =









Fk,dU
′
k,d+Uk,dF

′
k,d+Qk,d−P k|k 0

0 Rd









where [·]+ is the MP inverse of [·]. Algorithm II always gives the optimal update based on

the available information. We have the property that, for nonsingular Fk,d and Rc, if the

update is only one lag, (5.39) is the solution given by [28, 2]. In the multi-step update case,

(5.39) is consistent with [59]. In Algorithm II, the estimator contains the term Uk,d. As for

Algorithm I, when Pn+1|n+1, Pn+1|n and Rn+1 are nonsingular, we have

(I − Kn+1Hn+1) = Pn+1|n+1P
−1
n+1|n

So the recursion for {Uk,d} starting from n = k − l + 1 can also be rewritten as

Un+1,d = Pn+1|n+1P
−1
n+1|nFn+1,nUn,d (5.41)

120

with the initial value

Uk−l+1,d = Pk−l+1|k−l+1P
−1
k−l+1|k−lFk−l+1,dPd|k−l (5.42)

If the maximum delay for the OOSM is s. We should require

Ωk = {Pk−s|k−s, · · · , Pk|k}

Similar to Algorithm I, this OOSM update algorithm can be implemented at the arrival time

of OOSM zd. The OOSM update is the traditional Kalman filter with the OOSM update

using equations (5.39)-(5.42).

Algorithm II always gives the optimal update based on the available information when

Pn+1|n+1, Pn+1|n and Rn+1 are all nonsingular. If Fk,d is nonsingular, the expression of (5.40)

can be simplified (See Remarks 1 in [81]). Most often R̄ are nonsingular, which leads to

even more simplified results (See Remarks 2 in [49]). The information storage increases

linearly with the maximum delay s. The storage is the same as Algorithm Bl1 of [6], it can

achieve better performance in terms of the MSE errors.

5.5.3 Update with Arbitrarily Delayed OOSMs

In the case of arbitrarily delayed multiple OOSMs, if we consider the case that zd1 arrives

after td2 , we can not simply apply the single OOSM update algorithm twice. Suppose zd2

arrives before zd1 , or we process zd2 before zd1 if both of them arrive at the same time.

According to ALG-I and ALG-II for single-OOSM update, we need to update x̂k2|k2 and

Pk2|k2 with zd2 when it arrived. By using a Kalman filter, until time tk1 , we have the state

estimate sequence {x̂k2|k2,d2 , Pk2|k2,d2 , . . ., x̂k1|k1,d2 , Pk1|k1,d2}. At the time when OOSM zd1

121

arrives, in order to update {x̂k1|k1,d2 , Pk1|k1,d2}, the necessary information for Algorithm I

or II includes {x̂k2−l2|k2−l2,d2 , Pk2−l2|k2−l2,d2 , . . ., x̂k2−1|k2−1,d2 , Pk2−1|k2−1,d2} or {Pk2−l2|k2−l2,d2 ,

. . ., Pk2−1|k2−1,d2}. Therefore, at the time when the first OOSM zd2 arrives, we need to

update not only update the current state {x̂k2|k2 , Pk2|k2}, but also {x̂k2−l2|k2−l2 , Pk2−l2|k2−l2 ,

. . ., x̂k2−1|k2−1, Pk2−1|k2−1} for Algorithm I or {Pk2−l2|k2−l2 , . . ., Pk2−1|k2−1} for Algorithm

II between OOSM zd2 occurrence time and its arrival time. The update for {x̂k2−i|k2−i,

Pk2−i|k2−i} or just {Pk2−i|k2−i} with i = 1, . . . , l2 is quite simple. It can be implemented with

the same procedure for{x̂k2|k2 , Pk2|k2} by treating the arrival time of OOSM zd2 as in the

time interval [tk−i, tk−i+1] with i = 1, . . . , l2.

5.6 Numerical Examples

Several simple numerical examples are given in this section to verify the formulas presented

and the existence of the optimal solution in the case where the state transition matrix is not

invertible. All these examples are for the following linear system

xj = Fj−1xj−1 + wj−1

zj = Hjxj + vj

where xj =
[

x
(1)
j , x

(2)
j

]′

, and wj and vj are zero mean white Gaussian noise. In order to

consider multi-lag delay as well as single-lag delay update, we choose a series of OOSMs

zd, these OOSM occurred at d = (l + 1)n and arrived at (l + 1)n + l with n = 1, 2, . . .,

which corresponding to l-lag delayed OOSMs, where l = 1, 2, For example, suppose

the in-sequence observation series is {z1, z2, z3, . . .}, then the observation series with OOSMs

for l = 1 is {z1, z3, z2, z5, z4, . . .} and the updated states are x3, x5, x7, . . .; the observation

122

series with OOSMs for l = 2 is {z1, z2, z4, z3, z5, z7, z8, z6, . . .} and the updated states are

x4, x8, x11, . . .; and so on. Globally optimal estimates were obtained by the Kalman filter

using all observations (including OOSMs) in the right time sequence.

In the result, we use mser=
trace[Pk|k,d(KF)]

trace[Pk|k,d(Algorithm)]
, which is the ratio of the mean-square

error of the globally optimal Kalman filter to that of the algorithm under consideration. It

shows the efficiency of the algorithm. It is in the interval of (0, 1]. The larger the mser is,

the better the algorithm is.

5.6.1 Nonsingular Fk,d

Consider a discretized continuous time kinematic system driven by white noise with power

spectral density q, known as constant velocity model or white-noise acceleration model in

target tracking, described by

Fj =









1 T

0 1









, Hj = [1, 0]

Cwj
= Q =









T 3/3 T 2/2

T 2/2 T









q, Cvj
= R = 1

where T is the sampling interval. The prior information is

x̂0|0 = x̄ = [200 Km, 0.5 Km/ sec]′ , P0|0 =









R R/T

R/T 2R/T 2









and the maneuver index is λ =
√

qT 3/R.

123

Single-Step Update (l = 1)

In this example, we first apply our globally optimal update algorithm in Case I and II. Then

we apply Algorithm B of [2], referred to as ALG-B, to compare with our optimal update

Algorithm II with limited information, referred to as ALG-II. Although there are two outputs

(filtering output or smoothed output) possible from the framework of [14], smoothed output

algorithm needs use future observations to estimate the current state. It is unfair to compare

the smoothed output update result with that of other algorithms by update only with the

observations up to current time. In order to have a fair comparison, we only apply the

filtering output Algorithm of [14], referred to as ALG-S. For the case tk−1 < td < tk, in order

to apply ALG-S, we approximate td to the nearest sampling time tk−1. In Table I, we present

mser of all algorithms at time j = 3. We adopt the same values of (λ, q) as in [2], [14], [59].

Table 5.1: msers of algorithms

(λ, q) KF KF∗ ALG-I ALG-II ALG-B ALG-S

(2,2) 1 0.8786 1 0.9680 0.9680 0.7071

(1,1) 1 0.9121 1 0.9790 0.9790 0.8163

(0.5,0.5) 1 0.8787 1 0.9999 0.9999 0.9283

In Table 1, KF stands for the globally optimal Kalman filter; KF∗ stands for the Kalman

filter without using OOSM. It is easy to see that our Algorithm I in Cases I and II give

the globally optimal update. While Algorithm II gives the same update as Algorithm B of

[2]. But the update using the algorithm of [14] is not optimal and sometimes can be worse

than without using OOSM, i.e., mser(ALG-S) < mser(KF∗) [see the cases (λ, q) = (2, 2)

124

and (λ, q) = (1, 1)]. It is caused by the error arising from the approximation of the OOSM

occurrence time td. For (λ, q) = (0.5, 0.5), the sampling interval T becomes smaller, ALG-S

becomes better.

In Figure 5.6.1, we show the theoretical and sample mser of ALG II for (λ, q) = (2, 2).

The two curves match each other very well, which verifies our update formula.

0 5 10 15 20 25 30 35 40 45 50
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Time k

Theoretical
Sample

Fig 5.6.1 Theoretical and sample mser

It is reasonable to require that any algorithm which updates x̂k|k with an OOSM zd to

yield x̂k|k,d should satisfy

MSE(x̂∗
k|k,d) ≤ MSE(x̂k|k) (5.43)

Otherwise update by the algorithm is questionable. All our algorithms satisfy (5.43), because

they are optimal estimators that minimize MSE based on the information given, but not Alg-

S of [14].

Multi-Step Update

In this example, first consider l = 2 with d = 3n and (λ, q) = (2, 2), we apply our globally

optimal update Algorithm I in all three cases and yield mser= 1, which verifies the global

125

optimality of the algorithm. Also, we apply Algorithm II and compare the mser with

the algorithm of [59], referred to as ALG-M. Figure 5.6.2 shows that the sample mser of

ALG II matches its theoretical mser. ALG-II and ALG-M have the same theoretical mser.

Meanwhile it shows the benefit of updating by comparing with KF∗.

0 5 10 15 20 25 30 35 40 45 50

0.9

0.95

1

1.05

Time k

ALG−II
ALG−M
Sample(ALG−II)
KF*

Fig 5.6.2 Comparison of mser

Table 2 shows the benefit of updating when (λ, q) = (2, 2), l = 1, · · · , 3 with d =

2n, 3n, · · · and 6n respectively, which shows that as the lag l of OOSM becomes larger,

the benefit of updating becomes smaller. Results of KF∗ for Kalman filter by ignoring

OOSM show that the effect of OOSM fades quickly with the target maneuvering behaviors.

It provides a strong hint for the maximum delay s to consider, in addition to physical

considerations.

5.6.2 Singular Fk,d

A system with a singular state transition matrix Fk,d is rare in practice because most discrete

time systems are discretized from continuous systems. However in some cases, when a

126

Table 5.2: msers of algorithms

mser d = 2n d = 3n d = 4n d = 5n d = 6n

ALG II(ALG M) 0.9680 0.9738 0.9976 0.9999 1

KF∗ 0.8786 0.9667 0.9972 0.9999 1

practical system is defined directly in discrete time, state transition matrix Fk,d may be

singular. The corresponding OOSM update problem needs to be considered. Also, allowing

Fk,d to be singular provides additional flexibility to handle some artificial system models,

just like the study of noncausal systems, which is meaningful.

Here we consider a system with H = [1, 1], Q = 0.2I, R = 0.3I and prior information

x̂0|0 = x̄ = [1, 1]′, P0|0 = 0.001I.

Single-Step Update (l = 1)

In this case, we use

F2n−1 =
1

n2









1 1

0 1









, F2n =









1 − 1
n2

−1 1
n2









Algorithm I in Case I or II can always gets mser= 1. As shown in Figure 5.6.3, the theoretical

and sample mser of ALG II match each other, which verifies the formula.

Multi- step Update (l = 2)

In this case, k = 3n + 2, we use

F3n =









1 1/n

−1 −1/n









, Fj =









1 1/j

0 1









j 6= 3n

127

0 5 10 15 20 25 30 35 40 45 50
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time k

Theoretical
Sample

Fig 5.6.3 Theoretical and Sample mser

Algorithm I in all three cases all gave mser= 1. As shown in Figure 5.6.4, ALG II can give

the benefit of updating, as shown by comparing mser with KF∗.

0 2 4 6 8 10 12 14

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Time k

ALG−II
KF*

Fig 5.6.4 Comparison of mser

Examples in this section verify both Algorithms I and II. They show that our proposed

Algorithms I and II are more general. They can solve single-step as well as multi-step update.

Also, for singular state transition matrix Fk,d, they are still efficient.

128

5.7 Summary

We have presented two general algorithms with three cases of different information storage for

state estimation update with out-of-sequence measurements. Both algorithms are optimal in

the LMMSE sense for the information given and are more general than previously available

algorithms. In particular, they are optimal for multiple-step as well as single-step update;

they do not have any non-singularity requirement on the matrix Fk,d; they yield the best

unbiased estimates among all linear estimation algorithms. Algorithm I is always globally

optimal (in the LMMSE sense). Algorithm II is optimal (in the LMMSE sense) for the

information given. Under the linear-Gaussian assumption of the Kalman filtering, both

algorithms give the conditional mean, and have a simplified version under the assumptions

of nonsingularity of certain matrices valid for most tracking applications.

Both algorithms need the smallest storage in Case I, the largest storage in Case III. The

storage of Algorithm II for all cases are smaller than Algorithm I. For single-step update, the

information stored is even smaller. Each item in the algorithms has a recursive form and can

be computed easily, as presented. As illustrated by the simulation results, these variants in

information storage complement each other in that they are suitable for different practical

situations and yield the same optimal update.

Overall, both Algorithms have (1) an efficient processing structure for information up-

date; (2) an efficient memory structure for storing historical information; (3) an efficient

computational structure, and thus (4) an easy generalization for arbitrarily delayed multiple

OOSMs.

129

Chapter 6

Multi-Sensor Multi-Target Tracking

with OOSMs

6.1 Introduction

The previous results for OOSM update are formulated for a Kalman filter to update the state

at time tk by using the “older” measurement from time td. In this problem, the measurement

at each sampling time is assumed to be target originated and no clutter or interference from

other targets is considered. We call the above setting an OOSM update problem. There are

some optimal methods [2, 14, 81] and suboptimal methods [59, 6, 76, 28, 9] for single-lag as

well as multi-lag OOSM update. Two general algorithms ALG-I and ALG-II proposed in

[81] can solve the one-lag as well as the multi-lag OOSM update problem globally optimal

or suboptimal (optimal with limited information) with little restriction. They are optimal

in the LMMSE sense.

However, in real-world multi-sensor multi-target tracking problems, measurements re-

130

ceived at the fusion center can originate from targets or clutter, i.e., false alarms. The filter

handles the measurement origin uncertainty via the so-called data association. The exist-

ing optimal criterion for OOSM update within the Kalman filter framework is no longer

valid for the target tracking problem with measurement origin uncertainty. In this case,

the OOSM update needs to be combined with data association. However, the optimal data

association (in the Bayesian sense) relies on all measurements from the beginning up to the

current time. With limited storage, for example only based on the state estimate without

storing the measurements, it is complicated to have the optimal data association. There

exist data association algorithms, such as Probabilistic Data Association (PDA) for a single

target in clutter and Joint Probabilistic Data Association (JPDA) or Multiple Hypothesis

Tracker (MHT) for multiple targets in clutter, that solve the measurement-to-track associ-

ation sub-optimally. In this setting, it is hard to propose a meaningful criterion to update

the OOSMs optimally for multi-target tracking in clutter. In this chapter, we provide one

solution by incorporating the PDA technique with the OOSM update for tracking a single

target in clutter. Through performance comparison between the PDA with OOSM update

and the in-sequence PDA filter, we find that the performance degradation of the PDA with

the OOSM update is relatively small. We also find that the PDA with the OOSM update

has better performance than just ignoring OOSMs. The generalization of incorporating the

JPDA or MHT with the OOSM filter update for multi-sensor multi-target tracking in clutter

is briefly discussed.

131

6.2 Problem Formulation

For multi-sensor multi-target tracking in the presence of clutter, during each sampling period,

there is a set of measurements zj arriving at the fusion center. Some of them are target

originated, others are false measurements. The existing algorithms for tracking a target in

the presence of clutter include Bayesian and non-Bayesian techniques [4]. The PDA and

its extension JPDA, belong to Bayesian techniques. PDA and JPDA are target-oriented

approach. For a known number of targets, PDA (JPDA) evaluates the measurement-to-

target association probabilities and combines them into the corresponding state estimates.

The MHT is a measurement-oriented approach. It finds the best hypothesis for a track to

be associated with a measurement sequence.

Here we limit the discussion to a single target tracking in clutter and assume a measure-

ment set zd produced at previous time td arrived at the fusion center after the measurement

set zk produced at the most recent time tk, where tk > td. Then we can identify that the

measurement set produced at td contains OOSMs. We will formulate the PDA incorporat-

ing OOSM update for a single target tracking. It is easy to analyze and the result can be

generalized to other more complicated cases.

The set of validated measurements is denoted as

zj = {zi
j}

mj

i=1

where zi
j is the i-th validated measurement and mj is the number of measurements in the

validated region at time tj. In view of the assumptions listed, the association events

θi
j =















{zi
j is the target originated measurement}

{None of the measurements is target originated}

i = 1, . . . ,mj

i = 0

132

are mutually exclusive and exhaustive for mj ≥ 1. The problem is as follows: an earlier

set of measurements zd = {zi
d}

md

i=1 at time td arrives after the state estimate x̂k|k and the

covariance Pk|k have been calculated. Using the total probability theorem, the state estimate

using zd is

x̂k|k,d = E(xk|z
k, zd)

=

md
∑

i=0

E(xk|θ
i
d, z

k, zd)P (θi
d|z

k, zd)

=

md
∑

i=0

x̂i
k|k,dβ

i
d

where x̂i
k|k,d for i = 1, . . . ,md is the updated state conditioned on the event that the i-

th validated measurement zi
d is target originate and βi

d = P (θi
d|z

k, zd) is the conditional

probability of the event — the association probability — and x̂0
k|k,d = x̂k|k, P 0

k|k,d = Pk|k.

Also

Pk|k,d = E{[xk − x̂k|k,d][xk − x̂k|k,d]
′|zk, zd}

=

md
∑

i=0

E{[xk − x̂k|k,d][xk − x̂k|k,d]
′|θi

d, z
k, zd}β

i
d

= P̄k|k,d + P̃d

where P̄k|k,d =
md
∑

i=0

βi
dP

i
k|k,d, P̃d =

md
∑

i=0

βi
dx̂

i
k|k,d(x̂

i
k|k,d)

′− x̂k|k,d(x̂k|k,d)
′. Based on different OOSM

update, x̂i
k|k,d, P i

k|k,d and βi
d will have different forms.

133

6.3 OOSM Update in Clutter

6.3.1 OOSM Update: PDA with ALG-I

It follows from the globally optimal OOSM update Algorithm I of chapter 5, that

x̂i
k|k,d = x̂k|k + Kd(z

i
d − Hdx̂d|k) = x̂k|k + Kdz̃

i
d

P i
k|k,d = Pk|k − KdSdK

′
d

With z̃d =
md
∑

i=1

βi
dz̃

i
d, we have

x̂k|k,d =

md
∑

i=0

x̂i
k|k,dβ

i
d = x̂k|k + Kdz̃d

Let P c
k|k,d = Pk|k − KdSdK

′
d. Then

P̄k|k,d = β0
dPk|k + [1 − β0

d]P
c
k|k,d

and

P̃d = Kd

[

md
∑

i=0

βi
dz̃

i
d(z̃

i
d)

′ − z̃dz̃
′
d

]

K ′
d

The association probability can be derived in the same way as for the in-sequence PDA filter,

βi
d =



























ei

b+
md
∑

j=1
ej

i = 1, . . . ,mk

b

b+
md
∑

j=1
ej

i = 0

(6.1)

where ei = e−
1
2
(z̃i

d
)′S−1

d
z̃i
d and b = λ|2πSd|

1/2 1−PDPG

PD
with gate probability PG and detection

probability PD.

134

6.3.2 OOSM Update: PDA with ALG-II

It follows from the proposed constrained optimal OOSM update Algorithm II, that

x̂i
k|k,d = E∗(xk|x̂k|k, z

i
d) = K̃z∗i

P i
k|k,d = MSE(x̂i

k|k,d) = (K̃ − Γ)R̄(K̃ − Γ)′ + Qk,d − ΓR̄Γ′

where E∗(xk|x̂k|k, z
i
d) is the LMMSE without prior and z∗i =

[

x̂
′

k|k (zi
d)

′

]′

. With z̃d =

md
∑

i=1

βi
dz

∗
i =

[

(1 − β0
d)x̂

′
k|k

md
∑

i=1

βi
d(z

i
d)

′

]′

, we have

x̂k|k,d =

md
∑

i=0

x̂i
k|k,dβ

i
d = β0

d x̂k|k + K̃z̃d

Let P c
k|k,d = (K̃ − Γ)R̄(K̃ − Γ)′ + Qk,d − ΓR̄Γ′. Then

P̄k|k,d = β0
dPk|k + [1 − β0

d]P
c
k|k,d

and

P̃d = K̃[

md
∑

i=0

βi
dz

∗
i (z

∗
i)

′ − z̃d(z̃d)
′]K̃ ′ + β0

d [1 − β0
d]x̂k|kx̂

′
k|k − β0

d x̂k|k(z̃d)
′K̃ ′ − β0

dK̃z̃dx̂
′
k|k

The association probability has the same form as (6.1) with ei = e−
1
2
(z̃i

d
)′S−1

d
z̃i
d and b =

λ|2πSd|
1/2 1−PDPG

PD
, where z̃i

d = zi
d − HdE

∗(xd|x̂k|k) and Sd = HdPd|kH
′
d + Rd. Therefore, the

only task for the PDA to incorporate the constrained optimal OOSM update is to get the

LMMSE x̂d|k = E∗(xd|x̂k|k) and Pd|k =MSE[x̂d|k]. Based on the limited information storage

Ωk = {Pk−s|k−s, . . ., Pk|k, z(d)}, we can only do LMMSE estimation without prior.

Theorem 12: The LMMSE x̂d|k = E∗(xd|x̂k|k) and Pd|k =MSE[x̂d|k] without prior is

x̂d|k = F−1
k,d x̂k|k (6.2)

Pd|k = F−1
k,d R̄dF

−1
k,d ′ (6.3)

135

where

R̄d = Qk,d + Fk,dU
′
d,k + Ud,kF

′
k,d − Pk|k

¤

Proof. According to

x̂i(d|k) = Kdx̂k|k + b

x̄d = KdFk,dx̄d + b

i.e.

(KdFk,d − I)x̄d + b = 0

Since the prior information is not known, this equation must be satisfied for every x̄k, and

so

KdFk,d = I, b = 0

MSE[x̂i(d|k)] = cov(xd − x̂i(d|k))

= cov(xd − Kdx̂k|k) = cov[xd − Kd(xk − x̃k|k)]

= cov[xd − KdFk,dxd − Kdwk,d + Kdx̃k|k)]

= cov[Kdwk,d − Kdx̃k|k)] = Kdcov[wk,d − x̃k|k)]K
′
d

= KdR̄dK
′
d

where

R̄d = Qk,d + Fk,dU
′
d,k + Ud,kF

′
k,d − Pk|k

136

Now the optimal K̃d is the solution of the following optimization problem:

K̃d = arg min
K

MSE[x̂i(d|k)] = arg min
K

{KdR̄dK
′
d}

s.t. K̃dFk,d = I

The general solution is given by:

K̃d = F−1
k,d

So

x̂d|k = F−1
k,d x̂k|k

Pd|k = F−1
k,d R̄dF

−1′
k,d

According to Theorem 12, z̃i
d = zi

d − HdF
−1
k,d x̂k|k and Sd = HdF

−1
k,d R̄dF

−1′
k,d H ′

d + Rd.

PDA with OOSM update is suggested for single target tracking in clutter. The OOSM

update filter can only handle the state update problem. OOSM update in the presence

of measurement origin uncertainty can not be done easily. This means we can not expect

the PDA with OOSM update will achieve the same performance as the in-sequence PDA

filter. If we want the updated PDA filter to have the same performance as the in-sequence

PDA, we need also update the associated probability βi
j with j = k − l + 1, . . . , k. But βi

d

relies on the observation zi
j. So in order to update βi

j, all observations from tk−l+1 to tk are

needed. However, the information we have at the OOSMs arrival time is limited, such as

Ωk = {x̂k−s|k−s, Pk−s|k−s, . . ., x̂k|k, Pk|k, zd} or Ωk = {Pk−s|k−s, . . ., Pk|k, zd}. Even the PDA

with globally optimal OOSM update will have difference in performance with the in-sequence

PDA. But we can not be sure that the updated PDA filter will always perform poorer than

137

the in-sequence PDA since the PDA filter itself is not optimal. There are no fundamental

optimal criteria for us to obtain the optimal OOSMs update within the PDA framework.

If the available information for update is Ωk = {x̂k−s|k−s, Pk−s|k−s, . . ., x̂k|k, Pk|k, zk, zd}

or Ωk = {Pk−s|k−s, . . ., Pk|k, zk, zd}, we can also update βi
k with i = 1, . . . ,mi to obtain a

more accurate estimate of xk. The procedure includes update state x̂k−1|k−1 to x̂k−1|k−1,d,

then applying the in-sequence PDA filter to yield x̂k|k,d by recalculating βi
k with zk. The

performance will be the same as PDA with l − 1 lag OOSM update if we treat the original

PDA with OOSM update as an l-lag problem.

6.3.3 OOSM Update: Multiple Target Case

In the previous subsections, we have incorporated the PDA with Algorithms I and II for

the OOSM update. For multi-target tracking in clutter, we need to consider both data as-

sociation and OOSM update. For data association via JPDA or its variants e.g., nearest

neighbor JPDA, incorporating the OOSM update using Algorithms I and II is straightfor-

ward. For each track, when OOSMs are received, the Algorithms I and II operate based

on the marginal data associated probability obtained via JPDA and the filter updates are

decoupled among different tracks once the marginal data association probabilities for the

validated measurements are computed by evaluating the joint events using JPDA. For the

multiple hypothesis tracker, the decision on measurement-to-track association is based on

measurements from multiple frames and the hypothesis management is often based on a

sliding window where the decision on which measurement goes to which track at the end of

the sliding window is frozen due to limited storage and computational power. In this setting,

138

the measurements within the sliding window need to be stored to resolve the measurement

origin uncertainty issue. Any OOSMs within the sliding window can be reordered and pro-

cessed as an in-sequence measurement within the MHT framework. If the OOSM has a time

stamp earlier than the frozen time of the sliding window, then Algorithms I and II can be

applied to the state estimate at the frozen time for track oriented MHT. All these subtleties

are data association issue rather than the OOSM update.

6.4 Simulations

6.4.1 Scenario

Several simple numerical examples are given in this section to verify the proposed algorithms.

Consider a discretized continuous time kinematic system driven by white noise with power

spectral density q, known as constant velocity model or white-noise acceleration model in

target tracking, described by the following linear model

xj = Fj−1xj−1 + wj−1

zj = Hjxj + vj

where xj =
[

x
(1)
j , x

(2)
j

]

, wj and vj are zero mean white mutually uncorrelated Gaussian noise

with

Fj =









1 T

0 1









Hj = [1, 0]

var(wj) = Q =









T 3/3 T 2/2

T 2/2 T









q, var(vj) = R = 1

139

where T is the sampling interval. The prior information is

x̂0|0 = x̄ = [200km, 0.5km/ sec]′, P0|0 =









R R/T

R/T 2R/T 2









and the maneuver index is λ =
√

qT 3/R.

In order to consider multi-lag delay as well as single-lag OOSM update, we choose a series

of OOSMs zd. These OOSMs occurred at d = (l + 1)n and arrived at (l + 1)n + l with

n = 1, 2, . . ., corresponding to l-lag delayed OOSMs, where l = 1, 2, For example, if the

in-sequence observation series is {z1, z2, z3, . . .}, then the observation sequence with OOSMs

for l = 1 is {z1, z3, z2, z5, z4, . . .} and the updated states are x3, x5, x7, . . .; the observation

series with OOSMs for l = 2 is {z1, z2, z4, z5, z3, z7, z8, z6, . . .} and the updated states are

x5, x8, x11, . . .; and so on. Ideal estimates were obtained by the Kalman filter using all target

originated observations only (including OOSMs) in the right time sequence.

For clutter generation, we use a poisson model with a spatial density λ to get the number

of false measurements in the validation region:

µF (m) = e−λV (λV)

m!

By choosing λV ∈ [0, 1], we can simulate different clutter densities. We use PD = 1. Residual

based χ2(99.9) test is used for testing tracking divergence. In simulation results, there is less

than 10% track loss.

We show RMS errors over 1000 monte Carlo runs for the OOSM updated states at (l +

1)n + l with n = 1, 2, . . ., where KF — in-sequence Kalman filter without clutter; IS-PDAF

— in-sequence PDA filter; IG-PDAF — in-sequence PDA filter ignoring the OOSMs; UD-

PDAF1 — PDA with globally optimal OOSM Update; UD-PDAF2 — PDA with constrained

140

optimal OOSM update.

6.4.2 Results for OOSMs with Good Accuracy

We design the OOSM model by choosing var(vj) = R/10 at j = (l + 1)n with n = 1, 2, . . .,

which means the OOSMs are more accurate than the in-sequence measurements. In the

following, we show the RMS errors for the 1-lag, 2-lag and 4-lag OOSM update problems at

time k = 29 with λV ∈ {0, 0.25, 0.5, 0.75, 1} in Fig.6.1, Fig.6.2 and Fig.6.3 respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

λV

RM
S

Comparison for 1−lag delay Problem at k=29

KF
IS−PDAF
IG−PDAF
UD−PDAF1
UD−PDAF2

Fig.6.1 RMS errors with 1-lag OOSMs at time k = 29 with λV ∈ {0, 0.25, 0.5, 0.75, 1}

As shown in these figures, when there is no clutter, i.e., λV = 0, Algorithm I has the

same performance as the KF, while Algorithm II has slightly poorer performance. For target

tracking in clutter, the PDA with OOSM update by Algorithm I or II yields RMS errors

close to the KF, which indicates that through OOSM update, the performance has significant

improvement especially for small-lag OOSMs. For large-lag OOSMs, by ignoring them, the

performance does not suffer much even if the OOSMs have much better accuracy. The RMS

141

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

λV

RM
S

Comparison for 2−lag delay Problem at k=29

KF
IS−PDAF
IG−PDAF
UD−PDAF1
UD−PDAF2

Fig.6.2 RMS errors with 2-lag OOSM at time k = 29 with λV ∈ {0, 0.25, 0.5, 0.75, 1}

errors of UD-PDAF1 and UD-PDAF2 are very close to that of the in-sequence PDA filter.

It also shows that the performance of IS-PDAF, IG-PDAF, UD-PDAF1 and UD-PDAF2

deteriorates as the clutter becomes heavier.

6.4.3 Results for OOSMs with Moderate Accuracy

The OOSMs have Cvj
= R, at j = (l + 1)n with n = 1, 2, . . ., meaning that the in-sequence

measurements have the same accuracy as the OOSMs. From Fig.6.4, we can clearly see

that by ignoring the OOSMs, the performance still suffers a lot. But the PDA with OOSM

update improves the performance, which is close to that of the in-sequence PDA filter.

6.5 Summary

In this Chapter, we proposed using PDA with Algorithm I and II for the OOSM update

in the presence of clutter. Simulation results show that the PDA with the OOSMs update

142

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

λV

RM
S

Comparision for 4−lag delay Problem at k=29

KF
IS−PDAF
IG−PDAF
UD−PDAF1

Fig.6.3 RMS errors with 4-lag OOSM at time k = 29 with λV ∈ {0, 0.25, 0.5, 0.75, 1}

in clutter performs significantly better than ignoring the OOSMs, especially for small-lag

OOSMs. Its performance is close to the in-sequence PDA update for OOSMs with various

lags and under mild clutter where the PDA filter has less than 10% track loss. In summary,

the PDA incorporating the two OOSM update algorithms has (1) an efficient processing

structure; (2) an efficient memory structure; (3) an efficient computational structure. A

brief discussion was given concerning how to incorporate the OOSM update algorithms with

the JPDA or MHT for multi-target tracking in clutter.

143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

λV

RM
S

Comparison for 2−lag delay Problem at k=29

KF
IS−PDAF
IG−PDAF
UD−PDAF1
UD−PDAF2

Fig.6.4 RMS errors with 2-lag OOSM at time k = 29 with λV ∈ {0, 0.25, 0.5, 0.75, 1}

144

Chapter 7

Conclusions and Future Work

Distributed estimation fusion is useful for surveillance using sensor networks. The mea-

surements of all the sensors among a sensor network are shared directly with the fusion

center with constraints on communication, data processing capability at fusion center and

information storage.

Due to the limited communication bandwidth and the limited processing capability at

the fusion center, however, it is crucial to compress the raw measurements for the final

estimation at the fusion center. One way of accomplishing this is to reduce the dimension

of the data with minimum or no loss of information. Based on the BLUE fusion developed

recently, in this dissertation, we have presented the optimal rules for compressing data at

each local sensor to an allowable size (i.e., dimension) such that the fused estimate is optimal.

We showed that without any performance deterioration, all sensor data can be compressed

to a dimension not larger than that of the estimatee (i.e., the quantity to be estimated). For

some simple cases, these optimal compression rules are given analytically; for the general

case, they can be found numerically by Gaussian-Seidel iteration algorithm.

145

Due to the capacity constraints at the communication links, the measurements from the

sensors are transmitted at a rate insufficient to convey all observations reliably. Therefore,

the observations are vector quantized and the estimation is achieved using compressed mea-

surements. In this dissertation, using the BLUE fusion, we developed optimal sensor quan-

tization schemes which use only bivariate probability distributions of the state and sensor

observations. For a dynamic system, it is shown that, under the communication constrains,

the state update reduces to quantizing and estimating the current state conditioned on the

past quantized measurements. A simple quantization and state estimation update structure

for general dynamic system have been presented, and a new filter based on this structure for

linear Gaussian system has been derived.

In multi-sensor target tracking systems, measurements from the same target can arrive

out of sequence, called the out-of-sequence measurements (OOSMs). A problem is how

to update the current state estimates with these “old” measurements. Due to the limited

information storage, under BLUE fusion, we have presented two algorithms for updating

with OOSM that are optimal for the information available at the time of update. Different

minimum storages of information concerning the occurrence time of OOSMs were given for

both algorithms. The update algorithms assume perfect target detection and no clutter in

the received measurements. The real world has, however, possible missed target detection

and random clutter in the possible OOSMs and thus the filter has to handle the measurement

origin uncertainty. we have incorporated the probabilistic data association (PDA) into the

two OOSM update algorithms with economic storage and efficient computation based on the

nonsingularity assumption of some special matrices. The results shows that PDA with the

two OOSM update algorithms have compatible RMS errors to the in-sequence PDA filter.

146

My future research work is to develop novel techniques for data compression in esti-

mation fusion systems. I hope to address the dynamic quantization issue, which includes

recursive update for the optimal quantization. A research in which the optimal sensor data

compression rule and the optimal fusion rule can both be taken into consideration will thrive

prominently.

Meanwhile, I am interested in distributed decision and classification. An intelligent

optimal fusion system can be built in which the local processing and communication are taken

into account in optimization. Also, this structure can have a very promising application in

machine learning, data mining, and statistical inference areas.

Another interesting topic is to develop advanced information fusion frameworks with the

regularization theory. Inverse problems of mathematical physics frequently lead to the ill-

posed issues which are incorrectly formulated. Regularization theory is a general solution

to incorrectly formulated problems. Recently, the regularization method has achieved great

success in machine learning area (e.g. regularization networks and support vector machines).

I feel confident that an advanced theoretical framework for information fusion with the

regularization theory can dramatically improve the fusion performance, especially for those

inaccurate model-based fusion frameworks.

In summary, I am interested in the research and technology area of information fusion,

and hope my research work can assist in bringing this area to maturity, and in fostering

specific applications.

147

Bibliography

[1] E. Ayanoglu. On optimal quantization of noisy sources. Proc. IEEE Trans. Inform.

Theory, 36(6):1450–1452, Nov. 1990.

[2] Y. Bar-Shalom. Update with Out-of-Sequence Measurements in Tracking: Exact Solu-

tion. In Proc. 2000 SPIE Conf. on Signal and Data Processing of Small Targets, vol.

4048, Apr. 2000.

[3] Y. Bar-Shalom and X. R. Li. Estimation and Tracking: Principles, Techniques, and

Software. Artech House, Boston, MA, 1993. (Reprinted by YBS Publishing, 1998).

[4] Y. Bar-Shalom and X. R. Li. Multitarget-Multisensor Tracking: Principles and Tech-

niques. YBS Publishing, Storrs, CT, 1995.

[5] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with Applications to Tracking

and Navigation: Theory, Algorithms, and Software. Wiley, New York, 2001.

[6] Y. Bar-Shalom, M. Mallick, H. Chen, and R. Washburn. One-Step Solution for the

General Out-of-Sequence Measurements Problem in Tracking. In Proc. 1st IEEE Conf.

Aerospace, Big Sky, MT, March 2002.

148

[7] R. E. Bellman. Adaptive Control Precesses: A Guided Tour. Princeton University Press,

Princeton, NJ, 1961.

[8] W. R. Bennett. Spectra of quantized signals. Bell Syst. Tech. J., 27:446C–472, July

1948.

[9] S. S. Blackman and R. F. Popoli. Design and Analysis of Modern Tracking Systems.

Artech House, Norwood, MA, 1999.

[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth & Brooks, Monterey, CA, 1984.

[11] L. Campo, Y. Bar-Shalom, and X. R. Li. Control of Discrete-Time Hybrid Stochastic

Systems. In C. T. Leondes, editor, Control and Dynamic Systems: Advances in Theory

and Applications, volume 76. Academic Press, New York, 1996.

[12] S. Challa, R. Evans, and J. Legg. A Fixed Lag Smoothing Framework for OOSI Prob-

lems. Communications in Information and Systems, 2(4):327–350, December 2002.

[13] S. Challa, R. Evans, and X. Wang. A Fixed Lag Smoothing Framework for Target

Tracking in Clutter Using Out of Sequence Measurements. Defense Applications of

Signal Processing, October 2001.

[14] S. Challa, J. E. Robin, and X. Wang. A Bayesian Solution and Its Approximations to

Out-of-Sequence Measurement Problems. Journal of Information Fusion, 4(3):185–199,

Sepetember 2003.

149

[15] S. Challa, X. Wang, and J. Legg. Track-to-Track Fusion using Out-of-Sequence Tracks.

In Proc. International Conf. on Information Fusion, pages 919–926, Annapolis, MD,

July 2002.

[16] K. C. Chang, S. Mori, and C. Y. Chong. Evaluating a Multiple-Hypothesis Multitarget

Tracking Algorithm. IEEE Trans. Aerospace and Electronic Systems, 30(2):578–590,

Apr. 1994.

[17] H. M. Chen, K.-S. Zhang, and X. R. Li. Optimal Data Compression for Multisen-

sor Target Tracking with Communication Constraints. In International Symposium on

Information Processing in Sensor Networks 2004, submitted, Oct. 2003.

[18] L. F. Chen, H. Y. M. Liao, M. T. Ko, J. C. Lin, and G. J. Yu. A New LDA-based

Face Recognition System Which Can Solve the Small Sample Size Problem. Pattern

Recognition, 33(10):1713–1726, 2000.

[19] R. E. Curry. Estimation and Control with Quantized Measurements. The M.I.T. Press,

Cambridge, Massachusetts, London, England, 1970.

[20] K. I. Diamantaras and S. Y. Kung. Principal Component Neural Networks. Wiley, New

York, 1996.

[21] Y. Ephraim and R. M. Gray. A Unified Approach for Encoding Clean and Noisy Sources

by Means of Waveform and Autoregressive Model Vector Quantization. Proc. IEEE

Trans. Inform. Theory, 34:826–834, July 1988.

[22] R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annual of

Eugenics, 7:179–188, 1936.

150

[23] T. J. Flynn and R. M. Gray. Encoding of correlated observations. Proc. IEEE Trans.

Inform. Theory, (33):773–787, Nov. 1987.

[24] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New

York, 2nd edition, 1990.

[25] A. Gelb. Applied Optimal Estimation. The MIT Press, 1974.

[26] R. M. Gray and D. L. Neuhoff. Quantization. Proc. IEEE Trans. Inform. Theory,

6(44):2325–2383, 1998.

[27] J. A. Gubner. Constrained distributed estimation and Quantization for Distributed

Estimation Systems. In IEEE Int. Symp. Inform. Theory, pages 32–33, San Diego,

CA, Jan. 1990.

[28] R. D. Hilton, D. A. Martin, and W. D. Blair. Tracking with Time-Delayed Data in

Multisensor Systems. Technical Report NSWCDD/TR-93/351, Naval Surface Warfare

Center, Dalgren, VA, Aug. 1993.

[29] Z. Q. Hong and J. Y. Yang. Optimal Discriminant Plane for a Small Number of Samples

and Design Method of Classifier on the Plane. Pattern Recognition, 24(4):317–324, 1991.

[30] A. K. Jain and B. Chandrasekaran. Dimensionality and Sample Size Considerations in

Pattern Recognition Practice. In P.R. Krishnaiah and L.N. Kanal, editors, Handbook

of Statistics, volume 2, pages 835–855. Amsterdam, North Holland, 1982.

[31] A. K. Jain, R. P. W. Duin, and J. C. Mao. Statistical pattern recognition: A review.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

151

[32] I. T. Jolliffe. Principal Component Analysis. Springer Verlag, New York, 1986.

[33] W. M. Lam and A. R. Reibman. Design of Quantizers for Decentralized Estimation

System. Proc. IEEE Trans. Communications, 41(11):1602–1605, Nov. 1993.

[34] B.-H. Li, Y.-M. Zhu, and X. R. Li. Fault-Tolerant Interval Estimation Fusion by

Dempster-Shafer Theory. In Proc. 2002 International Conf. on Information Fusion,

pages 1605–1613, Annapolis, MD, USA, July 2002.

[35] X. R. Li. The PDF of Nearest Neighbor Measurement and Probabilistic Nearest Neigh-

bor Filter for Tracking in Clutter. In Proc. 32nd IEEE Conf. on Decision and Control,

pages 918–923, San Antonio, TX, Dec. 1993.

[36] X. R. Li. Hybrid Estimation Techniques. In C. T. Leondes, editor, Control and Dynamic

Systems: Advances in Theory and Applications, volume 76, pages 213–287. Academic

Press, New York, 1996.

[37] X. R. Li. Data Association Probability and Measurement Density Function of Tracking

with Strongest Neighbor Measurements. In Proc. 1997 SPIE Conf. on Signal and Data

Processing of Small Targets, vol. 3163, San Diego, CA, July 1997.

[38] X. R. Li. Probability, Random Signals, and Statistics. CRC Press, Boca Raton, FL,

1999.

[39] X. R. Li. Applied Estimation and Filtering. Course Notes, University of New Orleans,

2002.

152

[40] X. R. Li. Optimal Linear Estimation, Filtering, and Fusion. Course Notes, University

of New Orleans, 2002.

[41] X. R. Li and Y. Bar-Shalom. Tracking in Clutter with Nearest Neighbor Filters: Analysis

and Performance. IEEE Trans. Aerospace and Electronic Systems, AES-32(3):995–1010,

July 1996.

[42] X. R. Li and V. P. Jilkov. A Survey of Maneuvering Target Tracking: Dynamic Models.

In Proc. 2000 SPIE Conf. on Signal and Data Processing of Small Targets, vol. 4048,

pages 212–236, Orlando, Florida, USA, April 2000.

[43] X. R. Li and V. P. Jilkov. A Survey of Maneuvering Target Tracking—Part II: Ballistic

Target Models. In Proc. 2001 SPIE Conf. on Signal and Data Processing of Small

Targets, vol. 4473, pages 559–581, San Diego, CA, USA, 2001.

[44] X. R. Li and V. P. Jilkov. A Survey of Maneuvering Target Tracking—Part III: Mea-

surement Models. In Proc. 2001 SPIE Conf. on Signal and Data Processing of Small

Targets, vol. 4473, pages 423–446, San Diego, CA, USA, 2001.

[45] X. R. Li and V. P. Jilkov. A Survey of Maneuvering Target Tracking—Part IV: Decision-

Based Methods. In Proc. 2002 SPIE Conf. on Signal and Data Processing of Small

Targets, vol. 4728, Orlando, Florida, USA, April 2002.

[46] X. R. Li and N. Li. Integrated Real-Time Estimation of Clutter Density for Tracking.

IEEE Trans. Signal Processing, 48(10):2797–2805, Oct. 2000.

153

[47] X. R. Li and J. Wang. Unified Optimal Linear Estimation Fusion—Part II: Discus-

sions and Examples. In Proc. 2000 International Conf. on Information Fusion, pages

MoC2.18–MoC2.25, Paris, France, July 2000.

[48] X. R. Li and K. S. Zhang. Optimal Linear Estimation Fusion—Part IV: Optimality

and Efficiency of Distributed Fusion. In Proc. 2001 International Conf. on Information

Fusion, pages WeB1.19–WeB1.26, Montreal, QC, Canada, Aug. 2001.

[49] X. R. Li, K.-S. Zhang, J. Zhao, and Y.-M. Zhu. Optimal Linear Estimation Fusion–Part

V: Relationships. In Proc. International Conf. on Information Fusion, pages 497–504,

Annapolis, MD, USA, July 2002.

[50] X. R. Li and P. Zhang. Optimal Linear Estimation Fusion—Part III: Cross-Correlation

of Local Estimation Errors. In Proc. 2001 International Conf. on Information Fusion,

pages WeB1.11–WeB1.18, Montreal, QC, Canada, Aug. 2001.

[51] X. R. Li, Z. Zhao, and V. P. Jilkov. Estimator’s Credibility and Its Measures. In Proc.

IFAC 15th World Congress, Barcelona, Spain, July 2002.

[52] X. R. Li and X. Zhi. Probabilistic Strongest Neighbor Filter for Tracking in Clutter.

In Proc. 1996 SPIE Conf. on Signal and Data Processing of Small Targets, vol. 2759,

pages 230–241, Orlando, FL, Apr. 1996.

[53] X. R. Li, Y. M. Zhu, and C. Z. Han. Optimal Linear Estimation Fusion-Part I: Unified

Fusion Rules. IEEE Trans. Information Theory, 49(9):2192–2208, Sep. 2003.

154

[54] M. Liggins, C. Y. Chong, I. Kadar, M. G. Alford, V. Vannicola, and S. Thomopoulos.

Distributed Fusion Architectures and Algorithms for Target Tracking. Proceedings of

the IEEE, 85(1):95–107, Jan. 1997.

[55] K. Liu, Y. Cheng, and J. Yang. A Generalized Optimal Set of Discriminant Vectors.

Pattern Recognition, 25(7):731–739, 1992.

[56] S. P. Lloyd. Least Squares Quantization in PCM. Proc. IEEE Trans. Inform. Theory,

(28):129–136, Mar. 1982.

[57] M. Loog, R. P. W. Duin, and R. H. Umbach. Multiclass linear dimension reduction by

weighted pairwise fisher criteria. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23(7):762–766, 2001.

[58] Z. Q. Luo. Universal Decentralized Estimation in a Bandwidth Constrained Sensor

Network. Draft, 2003.

[59] M. Mallick, S. Coraluppi, and C. Carthel. Advances in Asynchronous and Decentralized

Estimation. In Proc. IEEE Conf. Aerospace, Big Sky, MT, March 2001.

[60] M. Mallick, SJ. Krant, and Y. Bar-Shalom. Multi-sensor Multi-target Tracking using

Out-of-Sequence Measurements. In Proc. International Conf. on Information Fusion,

pages 135–142, Annapolis, MD, July 2002.

[61] M. Mallick, K. S. Zhang, and X. R. Li. Comparative Analysis of Multiple-lag Out-

of-sequence Measurement Filtering Algorithms. In Proc. International SPIE Conf. on

Signal and Data Processing of Small Targets, Aug. 2003.

155

[62] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. R. Muller. Fisher Discriminant

Analysis with Kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors,

Neural Networks for Signal Processing IX, pages 41–48. IEEE, 1999.

[63] G. N. Nair and R. J. Evans. State Estimation via a Capacity-Limited Communication

Channel. In IEEE Int. Conf. Decision and Control, pages 866–871, 1997.

[64] Girish N. Nair and Robin J. Evans. State Estimation under Bit-Rate Constraints. pages

251–256, 1998.

[65] B. M. Oliver, J. Pierce, and C. E. Shannon. The Philosophy of PCM. Proc. IRE,

36:1324C–1331, Nov. 1948.

[66] M. Orton and A. Marrs. A Bayesian Approach to Multi-target Tracking Data Fusion

with Out-of Sequence Measurements. Proc. IEEE (submitted), 2001.

[67] P. F. Panter and W. Dite. Quantizing Distortion in Pulse-Count Modulation with

Nonuniform Spacing of Levels. Proc. IRE, 39:44C–48, Jan. 1951.

[68] C. R. Rao. The Utilization of Multiple Measurements in Problems of Biological Classi-

fication. Journal of the Royal Statistical Society. Series B (Methodological), 10:159–203,

1948.

[69] S. J. Raudys and A. K. Jain. Small Sample Size Effefcts in Statistical Pattern Recogni-

tion: Recommendations for Practitioners. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 13(3):252–264, 1991.

156

[70] S. J. Raudys and V. Pikelis. On Dimensionality, Sample Size, Classification Error, and

Complexity of Classification Algorithms in Pattern Recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2:243–251, 1980.

[71] B. Scholkopf, A. Smola, and K. R Muller. Nonlinear Component Analysis as a Kernel

Eigenvalue Problem. Neural Compution, 10:1299–1319, 1998.

[72] C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., pages

379C–423, 623–C656, 1948.

[73] C. E. Shannon. Coding Theorems for a Discrete Source with a Fidelity Criterion,. IRE

Nat. Conv. Rec., pages 142–163, 1959.

[74] H. Steinhaus. Sur la Division Des Corp Materiels en Parties. Bull. Acad. Polon. Sci.,

pages 801–C804, Jan. 1956.

[75] G. W. Stewart. Introduction to Matrix Computations. Academic Press, New York, 1973.

[76] S. Thomopoulos and L. Zhang. Distributed Filtering with Random Sampling and Delay.

In Proc. 27th IEEE Conf. Decision and Control, Austin, TX, Dec. 1988.

[77] Q. Tian, M. Barbero, Z.-H. Gu, and S. H. Lee. Image classification by the Foley-Sammon

transform. Optical Engineering, 25(7):834–840, 1986.

[78] W. S. Wong and R. W. Brockett. Systems with Finite Communication Bandwidth Con-

straints: State Estimation Problem. IEEE Trans. on Automatic Control, 42(9):1294–

1299, 1997.

157

[79] K. S. Zhang, X. R. Li, and H. M. Chen. Multisensor Multitarget Tracking with Out-

of-Sequence Measurements. In Proc. International Conf. on Information Fusion, pages

672–679, Caims, Queensland, Australia, July 2003.

[80] K.-S. Zhang, X. R. Li, P. Zhang, and H. F. Li. Optimal Linear Estimation Fusion—

Part VI: Sensor Data Compression. In Proc. International Conf. on Information Fusion,

pages 221–229, Caims, Queensland, Australia, July 2003.

[81] K. S. Zhang, X. R. Li, and Y. M. Zhu. Optimal Update with Out-of-Sequence Measure-

ments for Distributed Filtering. In Proc. International Conf. on Information Fusion,

pages 1519–1526, Annapolis, MD, USA, July 2002.

[82] Z. Zhang and T. Berger. Estimation via Compressed Data. IEEE Trans. Info. Theory,

34(2):198–211, 1989.

[83] Z. Zhang and T. Berger. Estimation via Compressed Information. Proc. IEEE Trans.

Inform. Theory, 34(2):198–211, 1989.

[84] Z.-L. Zhao, X. R. Li, V. P. Jilkov, and Y.-M. Zhu. Optimal Linear Unbiased Filtering

with Polar Measurements for Target Tracking. In Proc. 2002 International Conf. on

Information Fusion, pages 1527–1534, Annapolis, MD, USA, July 2002.

[85] Y. M. Zhu. Multisensor Decision and Estimation Fusion. Kluwer Academic Publishers,

2002.

[86] Y. M. Zhu and X. R. Li. Best Linear Unbiased Estimation Fusion. In Proc. 1999

International Conf. on Information Fusion, Sunnyvale, CA, USA, July 1999.

158

[87] Y. M. Zhu and X. R. Li. Recursive Least Squares with Linear Constraints. In Proc.

38th IEEE Conf. on Decision and Control, pages 2414–2419, Phoenix, AZ, USA, Dec.

1999.

[88] Y. M. Zhu, Z. S. You, J. Zhao, K.-S. Zhang, and X. R. Li. The Optimality for the

Distributed Kalman Filtering Fusion with Feedback. Automatica, 37:1489–1493, 2001.

[89] Y. M. Zhu, K. S. Zhang, and X. R. Li. An SPRT-Type Procedure with Finite Upper

Bound on Stopping Time. IEEE Trans. Information Theory (submitted), 2002.

[90] Y. M. Zhu, J. Zhao, K. S. Zhang, X. R. Li, and Z. S. You. Performance Analysis for

Feedback Track Fusion. In Proc. the 3rd Chinese World Congress on Intelligent Control

and Intelligent Automation, Hefei, China, June 2000.

159

VITA

Born in Leshan, Sichuan, China in 1975, Keshu Zhang spent her first twenty-four years

in Chengdu, the capital city of Sichuan province, P.R. China. She enrolled in Sichuan

University in 1994, which is one of the best universities in China. In 1998, she earned a

Bachelor of Science in Mathematics with a minor in Computer Science. After that, she

entered her master program in Mathematics Department of Sichuan University, major in

Probability and Statistics. She has been doing research on distributed decision, data fusion

and stochastic signal processing ever since she pursued her Ph.D. degree in 1999. In 2002,

she earned a Ph.D. degree in Probability and Statistics from Mathematics Department of

Sichuan University.

Based on mutual agreement between two universities, since August of 2000, she also

enrolled in the graduate program in Electrical Engineering Department at University of New

Orleans, and worked as a research assistant. Her graduate study is concentrated on multi-

sensor estimation, distributed decision, target tracking, data fusion and stochastic signal

processing.

	Best Linear Unbiased Estimation Fusion with Constraints
	Recommended Citation

	Title Page
	Acknowledgment
	Contents
	Abstract
	Introduction and Preliminaries
	Previous Works
	Optimal Sensor Data Dimension Reduction for BLUE Fusion
	Optimal Sensor Data Quantization for BLUE Fusion
	Optimal Update with Out-of-Sequence Measurements
	Mutli-Sensor Multi-Target Tracking with OOSMs
	Conclusions and Future Work
	Bibliography
	Vita

