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Abstract: 

Identification and annotation of RNA Binding Proteins (RBPs) and RNA Binding residues from 

sequence information alone is one of the most challenging problems in computational biology. 

RBPs play crucial roles in several fundamental biological functions including transcriptional 

regulation of RNAs and RNA metabolism splicing. Existing experimental techniques are time-

consuming and costly. Thus, efficient computational identification of RBPs directly from the 

sequence can be useful to annotate RBP and assist the experimental design. Here, we introduce 

AIRBP, a computational sequence-based method, which utilizes features extracted from 

evolutionary information, physiochemical properties, and disordered properties to train a machine 

learning method designed using stacking, an advanced machine learning technique, for effective 

prediction of RBPs. Furthermore, it makes use of efficient machine learning algorithms like 

Support Vector Machine, Logistic Regression, K-Nearest Neighbor and XGBoost (Extreme 

Gradient Boosting Algorithm). In this research work, we also propose another predictor for 

efficient annotation of RBP residues. This RBP residue predictor also uses stacking and 

evolutionary algorithms for efficient annotation of RBPs and RNA Binding residue. The RNA-

binding residue predictor also utilizes various evolutionary, physicochemical and disordered 

properties to train a robust model. This thesis presents a possible solution to the RBP and RNA 

binding residue prediction problem through two independent predictors, both of which outperform 

existing state-of-the-art approaches. 

 

 

Keywords: Machine Learning, Bioinformatics, RNA-Binding Proteins, RNA-Binding Residue.



1 

Introduction: 

1.1 Thesis Overview:  

Today, there has been a lot of development in genomics and hence there is an increased number 

of proteomic data available in different online databases. Experimental methods alone are time 

consuming and costly. So, bioinformatics offers a faster, cheaper way to mine, evaluate and 

interpreted such biological data. Today, bioinformatics has become essential in dealing with 

biological data because of its efficiency and success in various research works. The development 

of computational tools for analysis and interpretation of such data through bioinformatics involves 

few steps: i) Data mining, collection, and preparation of data, ii) Computing to extract useful 

information or characteristics, can also be thought of as features, from the data, iii) Apply various 

Machine Learning Algorithms to develop a robust classifier that uses the features extracted in the 

previous step, and iv) Analyze, compare and evaluate obtained results from the classifiers. These 

three steps have been utilized in this thesis to develop predictors for annotation of RNA Binding 

Proteins and RNA Binding residues. 

  

1.2 Contribution of the Thesis:  

This thesis aims to solve one of the most important problems in bioinformatics by providing 

predictors for efficient annotation of both RNA Binding Proteins and RNA Binding Residues using 

the sequence information of the protein alone. The predictors developed could also be used to 

assist experimental inquiries and can also be used as a stepping stone for other prediction methods. 
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1.3 Technical results of the Thesis: 

Technical results of this thesis can be divided into two parts: i) A predictor for prediction of RNA 

Binding Proteins, named AIRBP, and ii) A predictor for prediction of RNA Binding Residues. The 

two results are described below: 

- A predictor for prediction of RNA Binding Proteins (AIRBP) 

Here, we present a predictor for effective annotation of RNA Binding Proteins called AIRBP. 

AIRBP is a stacking based predictor that utilizes a pool of base learners like Extremely 

Randomized Trees, Random Forest, Logistic Regression, K-Nearest Neighbor and XGBoost 

(Extreme Gradient Boosting Algorithm). This predictor is fast and efficient and outperforms all 

other existing predictors for RNA Binding Proteins. It also provides a balanced performance on 

all the performance metrics and provides biologically relevant prediction of RNA Binding 

Proteins. 

- A predictor for prediction of RNA Binding Residues 

In addition to the RNA Binding Protein predictor, this research also presents a predictor for RNA 

Binding Residues or sites present in the RNA Binding Proteins. This predictor uses software like 

DisPredict, SPIDER, and SCRATCH to obtain various evolutionary, physicochemical and 

disordered properties of RNA Binding Proteins. This work, similar to AIRBP, which uses 

advanced machine learning frameworks like Stacking and Genetic Algorithms. The results from 

our study show that the generated predictor is well balanced on all the performance metrics and 

provides biologically relevant prediction of RNA Binding Residues.   
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1.4 Thesis Organization:  

The primary aim of the thesis is to develop a computational approach for the prediction of RNA-

binding proteins using only sequence information. The rest of the thesis is organized as follows: 

Chapter 2 discusses the design and development of RBP predictor. The details on datasets, feature 

extraction, and performance evaluation are provided in Chapter 2. Chapter 3 discusses the design 

and development of RBP residues predictor. The details on datasets, feature extraction, and 

performance evaluation are provided in Chapter 3. Finally, Chapter 4, concludes this thesis and 

states the major contributions and provides future directions and possibilities for further research 

to make the tools as accurate as possible. 

1.5 Related Publications:  

Below listed are research works that have provided noteworthy results in the world of RBP 

prediction. 

1. Zhang, X. and Liu, S. RBPPred: predicting RNA-binding proteins from sequence using SVM. 

Bioinformatics 2017;33(6):854-862. 

2. Avdesh Mishra, Reecha Khanal§, Md Tamjidul Hoque*, “Accurate Identification of RNA-

binding Proteins (AIRBP) Using Machine Learning Techniques”, The 7th Annual 

Conference on Computational Biology and Bioinformatics, Louisiana, USA, 2019 [Poster]. 

3. Su, H., et al. (2019) Improving the prediction of protein–nucleic acids binding residues via 

multiple sequence profiles and the consensus of complementary methods, Bioinformatics, 35, 

930-936. 

Part of this thesis has also been presented as posters and oral presentation in the 6th and 7th Annual 

LA conference on Computational Biology and Bioinformatics in 2018 and 2019, respectively. 

http://cs.uno.edu/~tamjid/Papers/2019_Reecha.pdf
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Chapter 2 

AIRBP: Accurate Identification of RNA-Binding Proteins Using Machine Learning 

Techniques  

2.1 Introduction 

RNA Binding Proteins (RBPs) are proteins that bind to ribonucleic acid (RNA) molecules and 

form dynamic units, called ribonucleoprotein (RNP) complexes. These RBPs along with the RNP 

complexes play a crucial role starting from the biogenesis process of RNA to its degradation 

(Beckmann, et al., 2015). Additionally, they contribute to several important biological functions 

that include RNA transport, cellular localization, gene expression, expression of histone genes, 

post-transcriptional gene regulation, and regulation of translation and transcription control 

(Glisovic, et al., 2008). As an illustration, the newly formed messenger RNA, that carries necessary 

genetic information from DNA to ribosomes, associates with various RNA binding proteins (RBP) 

to form messenger ribonucleoprotein (mRNP) complexes (Baltz, et al., 2012). These mRNP 

complexes govern major elements of metabolism and functions of mRNA. Similarly, the 

microRNPs (miRNPs), formed through association of the RBPs with microRNAs (miRNAs) 

controls the translation and stability of RNA itself (Wurth, 2012). The identification of RBPs along 

with their mRNA targets is shown useful in cancer therapy (Wurth, 2012). There are numerous 

other diseases that have been linked to defective RBP expression and functions, including 

neuropathies, muscular atrophies, and metabolic disorders (Castello, et al., 2012), highlighting the 

urgency of identifying possible RBPs. 

As of today, numerous studies have been performed and various experimental and computational 

methods have been developed to identify and expand our knowledge of RBPs. The initial steps 
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towards identification and study of RBPs and RNP complexes date back to almost half a century 

ago where experimental methods such as purification of mRNPs from in vitro UV-irradiated 

polysomal fractions (Greenberg, 1979), from UV-irradiated intact cells (Wagenmakers, et al., 

1980) and from untreated cells (Lindberg and Sundquist, 1974) revealed the association of a 

specific set of proteins with mRNA (Baltz, et al., 2012). Recently, cutting-edge experimental 

approaches are developed to recognize numerous RBPs, which include identification of 860 RBPs 

in human HeLa cells (Castello, et al., 2012) using UV crosslinking methods, 797 RBPs in human 

embryonic kidney cell line (Baltz, et al., 2012) using photoreactive nucleotide-enhanced UV 

crosslinking and oligo(dT) purification approach, 555 mRNA-binding proteins from mouse 

embryonic stem cells (Kwon, et al., 2013) using UV crosslinking, oligo(dT) and Mass 

Spectrometry and 120 RBPs from S. cerevisiae cells (Mitchell, et al., 2013) using UV crosslinking 

and purification methods. These experiments for identifying and analyzing of RBPs, have 

broadened our understanding of RBPs to a certain extent. Despite the great efforts and 

achievements, these experiments are expensive, time-consuming and labor-intensive (Si, et al., 

2015). Moreover, the tremendous progress in genome sequencing has resulted in an unprecedented 

amount of genetic information and provided a plethora of protein sequences (Wu, et al., 2006), 

which outpace the tasks of annotating them and elucidating their functions. Thus, it becomes 

urgent to have faster and more accurate computational approaches to build an RBP repository and 

RNA-RBP interaction network maps. 

In the recent past, several attempts have been made in identifying RNA-binding proteins and many 

effective computational prediction methods have been developed, which can be divided into two 

broad categories: i) templated based; and ii) machine learning based. Template based methods 

extract significant structural or sequence similarity between the query and a template known to 
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bind RNA, to assess the RNA-binding preference of the target sequence (Yang, et al., 2012; Zhao, 

et al., 2011; Zhao, et al., 2011). Unlike template based methods, in machine learning methods the 

predictive model is created to make the prediction by finding a pattern in the input feature space 

(Kumar, et al., 2011; Paz, et al., 2016; Shazman and Mandel-Gutfreund, 2008). The machine 

learning approaches vary in the features employed and the classification algorithm used. 

Zhao et al. proposed two template based approaches for predicting RBPs, of which, SPOT-stru 

(Zhao, et al., 2011) is a structure based approach and SPOT-seq (Zhao, et al., 2011) is a sequence 

based approach. In SPOT-stru, the relative structural similarity in the form of Z-score and a 

statistical energy function DFIRE is used to predict RBPs. The results indicate that SPOT-seq 

achieved the Matthew’s Correlational Coefficient (MCC), which is a performance evaluation 

parameter used in machine learning as a measure of the quality of binary classifications, of 0.57 

on the benchmark data of 212 RNA-binding domains and 6761 non-RNA binding domains. On 

the other hand, in SPOT-seq the fold recognition between the target sequence and template 

structures using the defined sequence-structure matching score is used to predict RBPs. As shown, 

SPOT-seq achieved the MCC of 0.62 on the benchmark data of 215 RBP chains and 5765 non-

binding protein chains. 

The machine learning based approach for the prediction of RNA-binding proteins involves two 

important steps: i) extraction of relevant features, and ii) selection of an appropriate classification 

algorithm. Furthermore, depending on the feature extraction mechanism, the existing predictive 

method can be segmented into two different categories: i) extraction of relevant features from the 

structure of protein (Paz, et al., 2016; Shazman and Mandel-Gutfreund, 2008); and ii) extraction 

of relevant features from protein sequence (Kumar, et al., 2011; Ma, et al., 2015; Ma, et al., 2015; 

Zhang and Liu, 2017). BindUp (Paz, et al., 2016) available as a web server, is one of the recent 
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structure-based methods that extracts electrostatic features and other properties from the structure 

of the protein and uses SVM classifier for RBPs prediction. As reported, BindUp attains 

sensitivity, a measure of proportion of actual positives that are correctly identified by a machine 

learning model, of 0.71 and specificity, a measure of proportion of actual negatives that are 

correctly identified as such by a machine learning model, of 0.96 on an independent test set of 323 

structures of RNA binding proteins and a control set of an equal number extracted from Protein 

Data Bank (PDB). Towards sequence-based approaches, Ma et al. (Ma, et al., 2015; Ma, et al., 

2015) recently proposed two different methods, which differ in the features used to train the 

random forest model for predicting. In (Ma, et al., 2015), the authors incorporated features of 

evolutionary information combined with physicochemical features (EIPP) and amino acid 

composition feature to develop the random forest predictor. Besides, in (Ma, et al., 2015), the 

authors employed features such as a conjoint triad, binding propensity, non-binding propensity, 

and EIPP to establish random forest based predictor with the minimum redundancy maximum 

relevance (mRMR) method, followed by incremental feature selection (IFS). As reported, their 

method achieved an accuracy of 0.8662 and MCC of 0.737. Most recently, Zhang and Liu (Zhang 

and Liu, 2017) proposed a new sequence-based approach, namely RBPPred which, integrates the 

physiochemical properties with the evolutionary information extracted from Position Specific 

Scoring Matrix (PSSM) profile and utilizes SVM to predict RBPs. As shown, RBPPred correctly 

predicted 83% of 2780 RBPs and 96% of 7093 non-RBPs with MCC of 0.808 using the 10-fold 

cross-validation (CV) approach. Despite significant progress, most of the approaches for RBPs 

prediction developed in the past are limited in explaining how protein-RNA interactions occur. 

Thus, it is essential to identify new features, effective encoding techniques and advanced machine 
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learning techniques that can help further improve the accuracy of RBPs predictors and ultimately 

improve our understanding of RNA-protein interactions and their functions. 

In this work, we explore different sequence-based features, encoding techniques, and machine 

learning approaches, to further improve the prediction accuracy of RNA-binding proteins and our 

understanding of the binding mechanism of RNA-protein interactions. We propose a method, 

AIRBP, which utilizes features: Evolutionary Information (EI), Physiochemical Properties (PP), 

and Disordered Properties (DP). It uses four different types of feature encoding technique: 

Composition, Transition and Distribution (C-T-D) (Zhang and Liu, 2017), Conjoint Triad (CT) 

(Wang, et al., 2013; Zhang and Liu, 2017), PSSM Distance Transformation (PSSM-DT) (Mishra, 

et al., 2018; Xu, et al., 2015) and Residue-wise Contact Energy Matrix Transformation (RCEM-

T) (Mishra, et al., 2018). Furthermore, AIRBP utilizes an ensemble machine learning framework, 

known as stacking (Wolpert, 1992) to predict RBPs from protein sequence only. AIRBP offers a 

significant improvement in the prediction of RBPs based on the benchmark and independent test 

datasets when compared to the existing start-of-the-art predictors. We believe that the superior 

performance of AIRBP will motivate the researchers to use it to identify RNA-binding proteins 

from sequence information. Moreover, the proposed stacking based machine learning technique, 

encoding techniques and features discussed in this work could be applied to tackle other relevant 

biological problems. 

2.2   Methods 

In this section, we describe the approach for benchmark and independent test data preparation, 

feature extraction and encoding, performance evaluation metrics and finally, the approach we took 

to establish the machine learning framework for RBPs prediction. 
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2.2.1 Dataset  

2.2.1.1 Benchmark Dataset 

For this work, we collected the updated version of the benchmark dataset from (Liu; Zhang and 

Liu, 2017). The updated benchmark dataset was created by the authors (Zhang and Liu, 2017) from 

the original benchmark dataset by removing 16 proteins that had RNAs in their crystal structure 

from the negative set. Therefore, the updated benchmark dataset we collected consist of 7077 non-

RBPs (16 proteins removed from the original benchmark dataset which contained 7093 non-RBPs) 

and 2780 RBPs (same as the original benchmark dataset). Next, we found that 13 out of 2780 and 

90 out of 7077 protein sequences in RBPs and non-RBPs set respectively, contained non-standard 

amino acids (amino acids other than the 20 standard amino acids). These sequences containing 

non-standard amino acids were removed from further consideration as the physiochemical 

properties of non-standard amino acids could not be obtained. Finally, the benchmark dataset 

which contains 2767 RBPs and 6987 non-RBPs was obtained and used for validation and model 

creation of AIRBP.  

2.2.1.2 Independent Test Set 

To test the performance of AIRBP, we collected the updated independent test dataset from (Liu; 

Zhang and Liu, 2017). This dataset consists of independent test sets for 3 species, human, 

Saccharomyces cerevisiae (S. cerevisiae) and Arabidopsis thaliana (A. thaliana). The updated 

independent test set was created by the authors (Zhang and Liu, 2017) from the original 

independent test set by removing 9 proteins from the human set and 7 proteins from S. cerevisiae 

set that had RNAs in their crystal structure from the negative set, respectively. The updated 

independent test sets contained a total of 967 RBPs and 588 non-RBPs for human, 354 RBPs and 
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135 non-RBPs for S. cerevisiae and 456 RBPs and 37 non-RBPs for A. thaliana. Next, we removed 

the protein sequences containing non-standard amino acid from each of these independent set and 

finally obtained 967 RBPs and 584 non-RBPs for human, 354 RBPs and 134 non-RBPs for S. 

cerevisiae and 456 RBPs and 36 non-RBPs for A. thaliana. 

 

2.2.2 Feature Extraction 

To create an effective RBPs predictor from sequence alone, the feature vector for each protein 

sequence was derived from the PSSM profile, Physiochemical Properties (PP), Residue-wise 

Contact Energy Matrix (RCEM) and Molecular Recognition Features (MoRFs). Total of 10 

different properties was encoded with a vector of 2603 dimension to represent a protein sequence 

as shown in Supplementary Fig. 1S. Out of 10, five distinct properties hydrophobicity, polarity, 

normalized van der Waals volume, polarizability and predicted secondary structure were each 

encoded via 21 dimension vector utilizing C-T-D encoding technique (Dubchak, et al., 1995; 

Zhang and Liu, 2017). Moreover, the remaining five properties solvent accessibility, charge and 

polarity of the side chain, MoRFs, RCEM, and PSSM profile were encoded via 13, 64, 1, 20 and 

2400 dimensional vectors, respectively. Here, the properties solvent accessibility, charge, and 

polarity of the side chain, RCEM, and PSSM profile were encoded utilizing C-T-D, CT (Wang, et 

al., 2013; Zhang and Liu, 2017), RCEM transformation (Mishra, et al., 2018) and PSSM-DT 

transformation techniques (Mishra, et al., 2018; Xu, et al., 2015). Each of the 10 properties along 

with their encoding mechanism is described next in detail. 
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2.2.2.1 Features Extracted from Physicochemical Properties 

In this section we describe various feature extraction techniques, we utilized to obtain a fixed 

dimensional feature vector from the physicochemical properties which include hydrophobicity, 

polarity, normalized van der Waals volume, polarizability, predicted secondary structure, solvent 

accessibility and charge and polarity of the side chain to encode protein sequence. 

2.2.2.1.1 Composition, Transition and Distribution (C-T-D) Transformation Features 

The aim of C-T-D transformation method is to describe the distribution patterns of amino acid 

properties. This method to compute distribution patterns of amino acid properties were first 

suggested by (Dubchak, et al., 1995) for protein fold class prediction. In our implementation, we 

used C-T-D transformation to encode the properties including hydrophobicity, polarity, 

normalized van der Waals volume, polarizability, predicted secondary structure and solvent 

accessibility. As the name suggests, this transformation technique focuses on three different 

components: composition of a particular amino acid in the sequence, transition of one amino acid 

to other as we go linearly through the sequence, and distribution referring to how one amino acid 

group is distributed throughout the protein sequence (Han, et al., 2004; Zhang and Liu, 2017). To 

create a consistent number of features for proteins with different sequence length, 20 standard 

amino acids are divided into 3 groups (Dubchak, et al., 1999) based on their hydrophobicity, 

normalized van der Waals volume, polarity, and polarizability. Fig 1. provides an illustration of 

C-T-D transformation technique while, the 20 standard amino acids are divided into 2 groups 

which, generates a feature vector of 13 dimensions. Following the transformation technique shown 

in Fig.1 with an exception that the 20 standard amino acids are divided into 3 groups, we obtain a 
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feature vector of 21 dimensions for the physiochemical properties such as hydrophobicity, 

normalized van der Waals volume, polarity, and polarizability.  

Furthermore, to encode the predicted secondary structure and solvent accessibility as features, 

we first used the SSpro and ACCpro program (Magnan and Baldi, 2014) to predict secondary 

structure in the form of ‘H’ (helix), ‘E’ (strand) and ‘C’ (other than helix and strand) and solvent 

accessibility in the form of ‘e’ (exposed residues) and ‘-’ (buried residues), respectively. The 

choice of SSpro and ACCpro was made to extract predicted secondary structure and solvent 

accessibility because of its superior performance and remarkable speed. As reported SSpro and 

ACCpro (Magnan and Baldi, 2014) achieved an accuracy of 92.9% and 90% for secondary 

structure prediction and relative solvent accessibility prediction, respectively. Using the 

transformation technique described above, we obtained feature vectors of 21 and 13 dimensions 

for predicted secondary structure and solvent accessibility, respectively. 
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Fig. 1. Illustration of C-T-D transformation technique, while the 20 standard amino acids are 

divided into 2 groups (e.g. X and Z). First, the group index (X or Z) of every amino acid in the 

protein sequence is extracted and consequently, a vector of 13 dimensions is obtained through 

composition, transition, and distribution. 

 

2.2.2.1.2 Conjoint Triad (CT) Transformation Features 
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The CT transformation technique was first proposed by Shen et al. for protein-protein interaction 

prediction (Shen, et al., 2007) and has been successfully applied for protein-RNA interaction 

prediction in the past (Wang, et al., 2013; Zhang and Liu, 2017). In our implementation, we 

adopted the CT transformation technique to encode the protein sequence based on the charge and 

polarity of the side chain of the amino acids in a protein. First, the 20 standard amino acids are 

divided into 4 groups: i) acidic (contain residues D and E); ii) basic (contain residues H, R and K); 

iii) polar (contain residues C, G, N, Q, S, T, and Y); and iv) non-polar (contain residues A, F, I, L, 

M, P, V, and W) according to their charge and polarity of the side chain. Then, the protein sequence 

is converted into a sequence of group types where each element in the sequence represents a group 

type of the corresponding amino acid in the protein sequence. Next, a triad of three contiguous 

amino acids is considered as a single unit. Accordingly, all the triads can be classified into 4 × 4 × 

4 = 64 classes. Finally, a sliding window of a triad is passed through a sequence of group types 

and the frequency of occurrences of each type of triad is counted. Through this process, we obtain 

a feature vector of 64 dimensions for charge and polarity of side chains of amino acids in a protein. 

Supplementary Fig. 2 provides an illustration of CT transformation technique we used to extract 

features from protein sequence based on charge and polarity of side chains. 
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Fig. 2. Illustration of Conjoint Triad transformation technique while, the 20 standard amino acids 

are divided into 4 groups (Group A, B, C and D representing acidic, basic, polar and non-polar, 

respectively). 
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2.2.2.2 Features Extracted from Evolutionary Information 

In this section, we describe various feature extraction techniques utilized to obtain a fixed 

dimensional feature vector from the evolutionary information, called the PSSM profile, to encode 

the protein sequence. 

Evolutionary information is one of the most important information useful for solving various 

biological problems and has been widely used in many research work (Iqbal, et al., 2015; Kumar, 

et al., 2007; Kumar, et al., 2008; Kumar, et al., 2011; Mishra, et al., 2018; Zhang and Liu, 2017). 

In this work, the evolutionary information in the form of PSSM profile is directly obtained from 

the protein sequence and later transformed into a fixed dimensional vector. PSSM captures the 

conservation pattern in multiple alignments and preserves it as a matrix for each position in the 

alignment. High score in the PSSM matrix indicates more conserved positions and the lower score 

indicates less conserved positions (Mishra, et al., 2018). For this study, we generated the PSSM 

profile for every protein sequence by executing three iterations of PSI-BLAST against NCBI’s 

non-redundant database (Altschul, et al., 1990). The evolutionary information in PSSM profile is 

represented as a matrix of L*20 dimensions, where L is the length of the protein sequence. A 

particular element Mi,j of the PSSM matrix represents the occurrence probability of the amino acid 

i at position j of a protein sequence. 

2.2.2.2.1 PSSM-Distance Transformation (PSSM-DT) Features 

We use two types of distance transformation techniques (Mishra, et al., 2018; Xu, et al., 2015): i) 

the PSSM distance transformation for same pairs of amino acids (PSSM-SDT); and ii) the PSSM 

distance transformation for different pairs of amino acids (PSSM-DDT), together known as PSSM-

DT to extract fixed dimensional feature vectors of size 100 and 1900, respectively.  
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Utilizing PSSM-SDT, we compute the occurrence probabilities for the pairs of the same amino 

acids separated by a distance D along the sequence, which can be represented as: 

𝑃𝑆𝑆𝑀-𝑆𝐷𝑇(𝑗, 𝐷) =  ∑ 𝑀𝑖,𝑗 ∗  𝑀𝑖+𝐷,𝑗/(𝐿 − 𝐷)

𝐿−𝐷

𝑖=1

 (1) 

where, j represents one type of the amino acid, L represents the length of the sequence, Mi,j 

represents the PSSM score of amino acid j at position i, and Mi+D,j represents the PSSM score of 

amino acid j at position i+D. Through this approach, 20  K number of features were generated 

where K is the maximum range of D (D = 1,2, …, K). 

Likewise, utilizing PSSM-DDT, we compute the occurrence probabilities for pairs of different 

amino acids separated by a distance D along the sequence, which can be represented as: 

𝑃𝑆𝑆𝑀-𝐷𝐷𝑇(𝑖1, 𝑖2, 𝐷) =  ∑ 𝑀𝑗,𝑖1
∗  𝑀𝑗+𝐷,𝑖2

 /(𝐿 − 𝐷)

𝐿−𝐷

𝑗=1

 (2) 

where, 𝑖1 and 𝑖2 represent two different types of amino acids. The total number of features obtained 

by PSSM-DDT is 380  K. Here, we consider K = 5, therefore a total of 100 features was obtained 

by PSSM-SDT and a total of 1900 features was obtained by PSSM-DDT transformation 

techniques. 

2.2.2.2.2 Evolutionary Distance Transformation (EDT) Features 

Unlike PSSM-DT, the EDT approximately measures the non-co-occurrence probability of two 

amino acids separated by a certain distance d in a protein sequence from the PSSM profile (Mishra, 

et al., 2018; Zhang, et al., 2014). The EDT is calculated from the PSSM profile as: 
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𝑓(𝑅𝑥, 𝑅𝑦) =  ∑
1

𝐿 − 𝑑
 ∑(𝑀𝑖,𝑥 −  𝑀𝑖+𝑑,𝑦)2

𝐿−𝑑

𝑖=1

𝐷

𝑑=1

 (3) 

where, d is the distance separating two amino acids, D is the maximum value of d, 𝑀𝑖,𝑥 and 𝑀𝑖+𝑑,𝑦 

are the elements in the PSSM profile, and 𝑅𝑥 and 𝑅𝑦 represent any of the 20 standard amino acids 

in the protein sequence. Here, the value of D = Lmin-1 where, Lmin is the length of the shortest 

protein sequence in the benchmark dataset. Using EDT, we obtain a feature vector of dimension 

400. 

2.2.2.3 Features Extracted to Account for Intrinsically Disordered Regions 

In this section we describe a feature extraction technique utilized to obtain a fixed dimensional 

feature vector from residue-wise contact energy matrix, to encode protein sequence. 

RBPs are found to bind with RNA not only through classical structured 

RNA-binding domains but also through intrinsically disordered regions (IDRs) (Calabretta and 

Richard, 2015). For example, approximately 20% of the identified mammalian RBPs (~170 

proteins) were found to be disordered by over 80% (Järvelin, et al., 2016). The energy contribution 

of a large number of inter and intra-residual interactions in intrinsically disordered proteins (IDPs) 

cannot be approximated by the energy functions extracted from known structures (Hoque, et al., 

2016; Iqbal, et al., 2015; Mishra and Hoque, 2017; Mishra, et al., 2016; Zhou and Skolnick, 2011) 

as IDPs lack a defined and ordered 3D structure (Babu, et al., 2011). Therefore, to inherently 

incorporate important information regarding the IDRs and amino acid interactions, we employed 

the predicted residue-wise contact energies (Dosztányi, et al., 2005) and molecular recognition 

features (MoRFs) (Sharma, et al., 2018), to encode the protein sequence.  
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2.2.2.3.1 Residue-Wise Contact Energy Matrix Transformation (RCEM-T) Features 

We adopted the predicted residue-wise contact energy matrix (RCEM) derived in (Dosztányi, et 

al., 2005), by the least square fitting of 674 proteins primary sequence with the contact energies 

derived from the tertiary structure of 785 proteins. As shown in Table 1, the RCEM is a 20 × 20 

dimensional matrix which contains residue-wise contact energy for 20 standard amino acids. For 

a protein sequence of length L, an L × 20 dimensional matrix M is obtained which holds 20 

dimensional vector for each amino acid in a protein sequence. The resulting matrix M is then 

encoded into a feature vector of 20 dimensions by computing the column-wise sum as: 

𝑓(𝐴𝑗) =  ∑ 𝑚𝑖,𝑗 

𝐿

𝑖=1

(𝑗 = 1,2, ⋯ , 20) (4) 

where, mi,j is the element of matrix M, i is the amino acid index in a sequence and j represents 20 

standard amino acid types. The final feature vector, 𝑅𝐶𝐸𝑀 − 𝑇 = [𝑣1, 𝑣2, ⋯ , 𝑣20] is obtained 

by dividing each element in RCEM-T by the sum of all the elements in the same vector. 

Considering Vs as the sum of all the elements in the RCEM-T vector, each element in the final 

RCEM-T vector can be represented as: 

𝑅𝐶𝐸𝑀𝑇(𝑣𝑖) =  
𝑣𝑖

𝑉𝑠
 (5) 
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Table 1. RCEM table to obtain RCEM-T features 

 A C D E F G H I K L M N P Q R S T V W Y 

A -1.65 -2.83 1.16 1.8 -3.73 -0.41 1.9 -3.69 0.49 -3.01 -2.08 0.66 1.54 1.2 0.98 -0.08 0.46 -2.31 0.32 -4.62 

C -2.83 -39.58 -0.82 -0.53 -3.07 -2.96 -4.98 0.34 -1.38 -2.15 1.43 -4.18 -2.13 -2.91 -0.41 -2.33 -1.84 -0.16 4.26 -4 .46 

D 1.16 -0.82 0.84 1.97 -0.92 0.88 -1.07 0.68 -1.93 0.23 0.61 0.32 3.31 2.67 -2.02 0.91 -0.65 0.94 -0.71 0. 90 

E 1.8 -0.53 1.97 1.45 0.94 1.31 0.61 1.3 -2.51 1.14 2.53 0.2 1.44 0.1 -3.13 0.81 1.54 0.12 -1.07 1. 29 

F -3.73 -3.07 -0.92 0.94 -11.25 0.35 -3.57 -5.88 -0.82 -8.59 -5.34 0.73 0.32 0.77 -0.4 -2.22 0.11 -7.05 -7.09 -8 .80 

G -0.41 -2.96 0.88 1.31 0.35 -0.2 1.09 -0.65 -0.16 -0.55 -0.52 -0.32 2.25 1.11 0.84 0.71 0.59 -0.38 1.69 -1 .90 

H 1.9 -4.98 -1.07 0.61 -3.57 1.09 1.97 -0.71 2.89 -0.86 -0.75 1.84 0.35 2.64 2.05 0.82 -0.01 0.27 -7.58 -3 .20 

I -3.69 0.34 0.68 1.3 -5.88 -0.65 -0.71 -6.74 -0.01 -9.01 -3.62 -0.07 0.12 -0.18 0.19 -0.15 0.63 -6.54 -3.78 -5 .26 

K 0.49 -1.38 -1.93 -2.51 -0.82 -0.16 2.89 -0.01 1.24 0.49 1.61 1.12 0.51 0.43 2.34 0.19 -1.11 0.19 0.02 -1 .19 

L -3.01 -2.15 0.23 1.14 -8.59 -0.55 -0.86 -9.01 0.49 -6.37 -2.88 0.97 1.81 -0.58 -0.6 -0.41 0.72 -5.43 -8.31 -4 .90 

M -2.08 1.43 0.61 2.53 -5.34 -0.52 -0.75 -3.62 1.61 -2.88 -6.49 0.21 0.75 1.9 2.09 1.39 0.63 -2.59 -6.88 -9 .73 

N 0.66 -4.18 0.32 0.2 0.73 -0.32 1.84 -0.07 1.12 0.97 0.21 0.61 1.15 1.28 1.08 0.29 0.46 0.93 -0.74 0. 93 

P 1.54 -2.13 3.31 1.44 0.32 2.25 0.35 0.12 0.51 1.81 0.75 1.15 -0.42 2.97 1.06 1.12 1.65 0.38 -2.06 -2 .09 

Q 1.2 -2.91 2.67 0.1 0.77 1.11 2.64 -0.18 0.43 -0.58 1.9 1.28 2.97 -1.54 0.91 0.85 -0.07 -1.91 -0.76 0. 01 

R 0.98 -0.41 -2.02 -3.13 -0.4 0.84 2.05 0.19 2.34 -0.6 2.09 1.08 1.06 0.91 0.21 0.95 0.98 0.08 -5.89 0. 36 

S -0.08 -2.33 0.91 0.81 -2.22 0.71 0.82 -0.15 0.19 -0.41 1.39 0.29 1.12 0.85 0.95 -0.48 -0.06 0.13 -3.03 -0 .82 

T 0.46 -1.84 -0.65 1.54 0.11 0.59 -0.01 0.63 -1.11 0.72 0.63 0.46 1.65 -0.07 0.98 -0.06 -0.96 1.14 -0.65 -0 .37 

V -2.31 -0.16 0.94 0.12 -7.05 -0.38 0.27 -6.54 0.19 -5.43 -2.59 0.93 0.38 -1.91 0.08 0.13 1.14 -4.82 -2.13 -3 .59 

W 0.32 4.26 -0.71 -1.07 -7.09 1.69 -7.58 -3.78 0.02 -8.31 -6.88 -0.74 -2.06 -0.76 -5.89 -3.03 -0.65 -2.13 -1.73 -1 2.39 

Y -4.62 -4.46 0.9 1.29 -8.8 -1.9 -3.2 -5.26 -1.19 -4.9 -9.73 0.93 -2.09 0.01 0.36 -0.82 -0.37 -3.59 -12.39 -2 .68 

 

2.2.2.3.2 Molecular Recognition Features (MoRFs) 

MoRFs, also sometimes known as molecular recognition elements (MoREs), are disordered 

regions in a protein those exhibit various molecular recognition and binding functions (Vacic, et 

al., 2007). Post-translational modifications (PTMs) can induce disorder to order transitions of IDPs 

upon binding with their binding partners which could be either RNA, DNA, proteins, lipids, 
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carbohydrates or other small molecules (Bah and Forman-Kay, 2016; Lina, et al., 2017). MoRFs 

play a vital role in various biological functions of IDPs located within long disordered protein 

sequences (Mohan, et al., 2006; Sharma, et al., 2018; Sharma, et al., 2018; Sharma, et al., 2018). 

Additionally, Mohan et al. suggest that functionally significant residual structures exist in MoRF 

regions prior to the actual binding (Mohan, et al., 2006). These residual structures could, therefore, 

be useful in the prediction of binding between proteins and RNA. Here, to capture functional 

properties of IDRs which may bind to RNAs, we employ a single predicted MoRFs score as a 

feature. To obtain a single predicted MoRFs score, first, the residue-wise predicted MoRFs scores 

are obtained from the OPAL program (Sharma, et al., 2018). Then, a single predicted MoRFs score 

is computed by taking a ratio of the sum of the residue-wise MoRFs score and the length of the 

protein sequence. 

 

2.3 Performance Evaluation 

To evaluate the performance of AIRBP, we adopted a widely used 10-fold cross-validation (CV) 

and the independent testing approach. In the process of 10-fold CV, the dataset is segmented into 

10 parts, which are each of about same size. When one fold is kept aside for testing, the remaining 

9 folds are used to train the classifier. This process of training and test is repeated until each fold 

has been kept aside once for testing and consequently, the test accuracies of each fold are combined 

to compute the average (Hastie, et al., 2009). Unlike a 10-fold CV, in independent testing, the 

classifier is trained with the benchmark dataset and consequently tested using the independent test 

dataset. While independent testing, it is ensured that none of the samples in the independent test 

set are present in the benchmark dataset. We used several performance evaluation metrics listed in 
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Table 2 as well as ROC and AUC to test the performance of the proposed method as well as to 

compare it with the existing approaches. AUC is the area under the receiver operating 

characteristics (ROC) curve which is used to evaluate how well a predictor separates two classes  

 of information (RNA-binding and non-binding proteins).  

  

Table 2. Name and definition of the evaluation metric. 

Name of Metric Definition 

True Positive (TP) Correctly predicted RNA-binding proteins 

True Negative (TN) Correctly predicted non RNA-binding proteins 

False Positive (FP) Incorrectly predicted RNA-binding proteins 

False Negative (FN) Incorrectly predicted non RNA-binding proteins 

Recall/Sensitivity/True Positive 

Rate (SN) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity/True Negative Rate (SP) 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Fall Out Rate /False Positive Rate 

(FPR) 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Miss Rate/False Negative Rate 

(FNR) 

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

Accuracy (ACC) 
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Balanced Accuracy (BACC) 
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

Precision (PR) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F1-score (Harmonic mean of 

precision and recall) 

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Mathews Correlation Coefficient 

(MCC) 

(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
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2.4 Feature Selection 

In this section, we discuss the feature selection approaches that we adopted to select relevant 

features. During the feature extraction process, we collected a feature vector of 2603 dimensions, 

which is significantly large. Therefore, to reduce the feature space and select the relevant features 

that could help improve the classification accuracy, we adopted two distinct feature selection 

approaches, namely Incremental Feature Selection (IFS) and Genetic Algorithm (GA) based 

feature selection. 

Feature Selection using IFS 

IFS starts with an empty feature vector and a feature group is added to the feature vector if the 

addition of the feature group to the feature vector improves the performance of the predictor. In 

case, by adding the new feature group, the accuracy of the predictor is reduced, this feature group 

is discarded, and a new feature group is tested in an iterative fashion. During IFS, we performed 

10-fold CV on benchmark dataset using XGBoost as a predictor. The values of XGBoost 

parameters: max_depth, eta, silent, objective, num_class, n_estimators, min_child_weight, 

subsample, scale_pos_weight, tree_method and max_bin were set to 6, 0.1, 1, ‘multi:softprob’, 2, 

100, 5, 0.9, 3, ‘hist’ and 500, respectively and the rest of the parameters were set to their default 

value. We used ACC as the evaluation metric to decide whether the new feature group will be 

added to the feature vector or not. In our implementation of IFS, only Vander Waals Volume 

feature group was ignored from the feature vector as the addition of this feature decreased the ACC 

of the predictor. Therefore, through IFS, 2582 features out of 2603 features were selected as 

relevant features. 
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Feature Selection using GA 

GA is a population-based stochastic search technique that mimics the natural process of evolution. 

It contains a population of chromosomes where each chromosome represents a possible solution 

to the problem under consideration. In general, a GA operates by initializing the population 

randomly, and by iteratively updating the population through various operators including elitism, 

crossover and mutation to discover, prioritize and recombine good building blocks present in 

parent chromosomes to finally obtain fitter chromosome (Hoque, et al., 2010; Hoque, et al., 2007; 

Hoque and Iqbal, 2017).  

Encoding the solution of the problem under consideration in the form of chromosomes and 

computing the fitness of the chromosomes are two important steps in setting up the GA. Here, to 

perform feature selection, we encode each feature 𝑓𝑖 in our feature space 𝐹 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑛] by a 

single bit of 1/0 in a chromosome space where, the value of 1 represents that the i-th feature is 

selected and the value of 0 represents that the i-th feature is not selected. The length of the 

chromosome space is equal to the length of the feature space. Moreover, to compute the fitness of 

the chromosome, we use the XGBoost algorithm (Chen and Guestrin, 2016). The choice of 

XGBoost was made because of its fast execution time and reasonable performance compared to 

other machine learning classifiers. During feature selection, the values of XGBoost parameters: 

max_depth, eta, silent, objective, num_class, n_estimators, min_child_weight, subsample, 

scale_pos_weight, tree_method, and max_bin were set to 6, 0.1, 1, ‘multi:softprob’, 2, 100, 5, 0.9, 

3, ‘hist’ and 500, respectively and the rest of the parameters were set to their default value. In our 

implementation, the objective fitness is defined as: 

𝑜𝑏𝑗_𝑓𝑖𝑡 =  𝐴𝐶𝐶 + 𝐴𝑈𝐶 + 𝑀𝐶𝐶 (6) 
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where, ACC is the accuracy, AUC is the area under the receiver operating characteristic curve and 

MCC is the Matthews Correlation Coefficient. To evaluate the fitness of the chromosome, a new 

data space D is obtained which only includes the features for which the chromosome bit is 1. The 

values of ACC, AUC and MCC metrics of the obj_fit are obtained by performing 10-fold CV on 

a new data space D using the XGBoost algorithm. Furthermore, the additional parameters of the 

GA in our implementation were set to a population size of 20, maximum generation to 300, elite-

rate to 5%, crossover-rate to 90% and mutation rate to 50%. Through this GA based feature 

selection, only 1346 features out of 2603 features were selected as relevant features. Therefore, 

we were able to achieve two-fold benefits from the GA based features selection which are 

significantly reduced feature space and relevant features. Finally, we noticed that at least one of 

the features from each type of features we extracted was present in the feature set selected by GA. 

Therefore, all the feature types extracted in this study were found to be important for the prediction 

of RBPs. 

2.5 Framework of AIRBP 

To develop the AIRBP predictor for RBPs prediction, we adopted the idea of a stacking based 

machine learning approach (Wolpert, 1992) which, has recently been successfully applied to solve 

various bioinformatics problems (Hu, et al., 2015; Iqbal and Hoque, 2018; Mishra, et al., 2018; 

Nagi and Bhattacharyya, 2013). Stacking is an ensemble based machine learning approach, which 

collects information from multiple models in different phases and combines them to form a new 

model. Stacking is considered to yield more accurate results than the individual machine learning 

methods as the information gained from more than one predictive model minimizes the 

generalization error. Stacking framework includes two-levels of classifiers, where the classifiers 
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of the first-level are called base-classifiers and the classifiers of the second-level are called meta-

classifiers. In the first level, a set of base-classifiers C1, C2, …, CN are employed (Džeroski and 

Ženko, 2004). The prediction probabilities from the base-classifiers are combined using a meta-

classifier to reduce the generalization error and improve the accuracy of the predictor. To enrich 

the meta-classifier with necessary information on the problem space, the classifiers at the base-

level are selected such that their underlying operating principles are different from one another 

(Mishra, et al., 2018; Nagi and Bhattacharyya, 2013).  

In order to select the classifiers to use in the first and second level of the AIRBP stacking 

framework, we analyzed the performance of six individual classification methods: i) Random 

Decision Forest (RDF) (Ho, 1995); ii) Bagging (Bag) (Breiman, 1996); iii) Extra Tree (ET) 

(Geurts, et al., 2006); iv) Extreme Gradient Boosting (XGBoost or XGB) (Chen and Guestrin, 

2016); v) Logistic Regression (LogReg) (Hastie, et al., 2009; Szilágyi and Skolnick, 2006); and 

vi) K-Nearest Neighbor (KNN) (Altman, 1992).  

All the classification methods mentioned above are built and optimized using python’s Scikit-

learn library (Pedregosa, et al., 2012). In order to design stacking framework for AIRBP, we 

evaluated the different combination of base-classifiers and finally selected the one that provided 

the highest performance. The set of stacking framework tested are: 

i) SF1: RDF, XGBoost, LogReg, KNN in base-level and XGBoost in meta-level, 

ii) SF2: Bag, XGBoost, LogReg, KNN in base-level and XGBoost in meta-level and 

iii) SF3: ET, XGBoost, LogReg, KNN in base-level and XGBoost in meta-level. 

Here, the choice of base-level classifiers is made such that the underlying principle of learning of 

each of the classifiers is different from each other (Mishra, et al., 2018). For example, in SF1, SF2 

and SF3 the tree-based classifiers RDF, Bag and ET are individually combined with the other two 
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methods LogReg and KNN to learn different information from the problem-space. Additionally, 

for each of the combination SF1, SF2 and SF3, the XGBoost classifier is used both in the base as 

well as in the meta-level because it performed best among all the other individual methods applied 

in this work. While examining the 10-fold CVs performance of the above three combinations, we 

found that the first stacking framework, SF1 attains the highest performance. Therefore, we 

employ four classifiers RDF, XGBoost, LogReg, and KNN as the base classifiers and another 

XGBoost as the meta-classifier in AIRBP stacking framework. In AIRBP, the probabilities of both 

the classes (RBP and non-RBP) generated by the four base-classifiers are combined with the 1346 

features selected by GA and provided as an input features to the meta-classifier which eventually 

provides the prediction for RBPs. Fig. 3 illustrates the prediction framework of the AIRBP. 
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Fig 3. Illustration of the AIRBP framework. 

 

2.6 Results 

In this section, we first demonstrate the results of the feature selection. Then, we show the 

performance comparison of potential base-classifiers and stacking frameworks. Finally, we report 

the performance of AIRBP on the benchmark dataset and three independent test datasets and 

consequently compare it with the existing method. 
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2.6.1 Feature Selection 

To reduce the feature space and select the relevant features that support the classification accuracy, 

we adopted the IFS and GA based feature selection approach. Through IFS and GA, 2582 and 

1346 features out of 2603 total features were selected as relevant features, respectively. From Table 

3, we observe that IFS could not reduce the feature space as significantly as GA. Additionally, the 

performance of XGBoost after IFS did not improve significantly and is lower than the performance 

resulted by the GA-based feature selection. We found that the benefit of GA feature selection were 

two folds, significant reduction of feature space and identification of relevant features along with 

improved performance. In Supplementary Table 3S, we show the performance comparison of 

XGBoost based predictor before and after IFS and GA-based feature selection. 

 

Table 3. Comparison of RBPs prediction results on benchmark dataset before and after feature 

selection. 

Algorithm 
Num. of 

Features 

Evaluation Metrics 

SN 

(%) 

SP 

(%) 

BACC 

(%) 

ACC 

(%) 
FPR FNR 

PR 

(%) 

F1-

score 
MCC 

XGBoost 

Before Feature 

Selection 
2603 82.11 96.81 89.46 92.64 0.03 0.18 91.06 0.86 0.82 

XGBoost After 

IFS 
2582 82.26 96.92 89.59 92.76 0.03 0.18 91.37 0.87 0.82 

XGBoost After 

GA-based 

Feature 

Selection 

1346 89.13 96.95 91.03 93.59 0.03 0.15 91.71 0.88 0.84 

Best scores are bold faced. 
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2.6.2 Selection of Classifiers for Stacking 

To select the methods to use as the base and the meta-classifiers, we analyzed the performance of 

six different machine learning algorithms: RDF, Bag, ET, XGBoost, LogReg, and KNN on the 

benchmark dataset through 10-fold CV approach. The performance comparison of the individual 

classifiers on the benchmark dataset is shown in Table 4. 

Table 4. Comparison of various machine learning algorithms on the benchmark dataset 

through 10-fold CV. 

Metric/Methods Bag KNN LogReg RDF XGBoost ET 

SN (%) 82.18 57.54 82.00 72.24 89.09 67.44 

SP (%) 96.84 89.17 96.39 98.47 97.48 98.58 

BACC (%) 89.51 73.35 89.20 85.36 93.28 83.01 

ACC (%) 92.68 80.19 92.31 91.03 95.10 89.75 

FPR 0.032 0.108 0.036 0.015 0.025 0.014 

FNR 0.178 0.425 0.180 0.278 0.109 0.326 

PR (%) 91.14 67.77 90.00 94.92 93.34 94.96 

F1-score 0.866 0.622 0.858 0.820 0.912 0.789 

MCC 0.816 0.492 0.807 0.775 0.878 0.742 
Best score values are bold faced. 

 

Table 4 further shows that the optimized XGBoost is the best performing classifier among six 

different classifiers implemented in our study, in terms of sensitivity, balanced accuracy, accuracy, 

FNR, F1-score, and MCC. Moreover, the optimized XGBoost attains sensitivity, balanced 

accuracy, accuracy, FNR, F1-score, and MCC of 89.09%, 93.28%, 0.109, 0.912, and 0.878, 

respectively. Besides, the ET classifier attains the highest specificity, FPR, and precision of 

98.58%, 0.014, and 94.96%, respectively. As the benchmark dataset is highly imbalanced, we 

consider MCC as the deciding scores as it provides the balanced measure of any predictor trained 

on an imbalanced dataset. Furthermore, it is evident from Table 1 that the MCC of the optimized 

XGBoost is 18.33%, 13.29%, 8.79%, 78.46%, and 7.59% higher than ET, RDF, LogReg, KNN, 
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and Bag, respectively. The greater performance of the XGBoost algorithm motivated us to use it 

both as a base as well as a meta-classier in the AIRBP prediction framework. 

To further select the classifiers to be used at the base-level, we adopted the guidelines of base-

classifier selection based on different underlying principles. Therefore, we used KNN and LogReg 

as two additional classifiers at the base-level. Then, we added single tree-based ensemble method 

out of three methods, RDF, Bag, and ET, at a time as the fourth base-classifier and designed three 

different combinations of stacking framework, namely SF1, SF2, and SF3. The performance 

comparison of SF1, SF2 and SF3 stacking framework on the benchmark dataset using 10-fold CV 

are presented in Table 5. 

Table 5. Comparison of different stacking framework with different set of base-

classifiers on benchmark dataset through 10-fold CV. 

Metric/Methods SF1 SF2 SF3 

SN (%) 90.17 89.99 90.53 

SP (%) 97.44 97.15 97.29 

BACC (%) 93.80 93.57 93.91 

ACC (%) 95.38 95.12 95.38 

FPR 0.026 0.028 0.027 

FNR 0.098 0.100 0.095 

PR (%) 93.31 92.59 92.98 

F1-score 0.917 0.912 0.917 

MCC 0.885 0.879 0.885 

Best scores are bold faced. 

 

Table 5 demonstrates that SF1, which includes RDF, XGBoost, LogReg, and KNN as base-

classifiers and another XGBoost as a meta-classifier outperformed SF2 and SF3. Hence, we select 

SF1 as our final predictor of RBPs. 

 



32 

 

2.6.3 Performance Comparison with Existing Approaches on the Benchmark Dataset 

Here, we compare the performance of AIRBP with RBPPred (Zhang and Liu, 2017) on the 

benchmark dataset using the 10-fold CV approach. RBPPred is a top performing existing approach 

for the prediction of RBPs directly from the sequence. Furthermore, it is to be noted that AIRBP 

uses the same benchmark dataset as RBPPred therefore, for the comparison, the quantities for all 

the evaluation metrics for RBPPred are obtained from Zhang and Liu (Zhang and Liu, 2017). The 

prediction results of AIRBP and RBPPred on benchmark dataset computed using 10-fold CV are 

listed in Table 6. 

Table 6. Comparison of AIRBP with existing method on benchmark dataset through 

10-fold CV. 

Metric/Methods RBPPred AIRBP (% imp.) 

SN (%) 83.07 90.17 (8.55%) 

SP (%) 96.00 97.44 (1.50%) 

BACC (%) - 93.80 (-) 

ACC (%) 92.36 95.38 (3.26%) 

FPR - 0.026 (-) 

FNR - 0.098 (-) 

PR (%) 89.00 93.31 (4.84%) 

F1-score 0.859 0.917 (6.75%) 

MCC 0.808 0.885 (9.53%) 
Here, best scores are bold faced. The ‘% imp.’ stands for percentage improvement and ‘-’ represents 

missing value or the value not reported by RBPPred and ‘(-)’ represents that the % imp. cannot be 

calculated. 

 

From Table 6, we observed that AIRBP outperforms RBPPred based on all the evaluation metrics 

applied in this study. Particularly, AIRBP provides 8.55%, 1.50%, 3.26%, 4.84%, 6.75% and 

9.53% improvement over RBPPred based on SN, SP, ACC, PR, F1-score and MCC, respectively. 

In addition, in Table 3, we report the values of BACC, FPR, and FNR only for the AIRBP predictor 

as the values of these metrics were not reported by RBPPred. Since our benchmark dataset is highly 

imbalanced (contains 2767 RBPs and 6987 non-RBPs) which also reflects the natural frequency, 

we focus on comparing the predictors based on MCC and F1-score. MCC considers true and false 
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positives as well as negatives and is generally considered as a balanced measure which can be used 

even though the classes are of very different sizes. Likewise, F1-score is the harmonic average of 

the precision and recall and is generally considered another balanced measure when the dataset is 

imbalanced. Since F1-score considers harmonic average, it is considered to provide an appropriate 

score to the model rather than an arithmetic mean. From Table 3, it is clear that based on MCC 

and F1-score AIRBP outperforms RBPPred by 9.53% and 6.75%. 

2.6.4 Performance Comparison with Existing Approaches on the Independent Test Set 

In this section, we further compare the performance of AIRBP with RBPPred predictor on three 

different independent test sets, Human, S. cerevisiae and A. thaliana. Here, we only report the 

comparison of AIRBP with RBPPred because RBPPred is the top performing sequence-based 

predictor of RBPs in the literature. As reported, RBPPred provides much better performance than 

SPOT-seq (Zhao, et al., 2011) and RNApred (Kumar, et al., 2011) predictors, which are the only 

two additional sequence-based methods that can be accessed either through a web server or code 

is publicly available for download. To perform independent testing, we first train AIRBP on 

complete benchmark dataset and subsequently test it on three different independent test sets, 

Human, S. cerevisiae and A. thaliana. The predictive results of AIRBP and RBPPred on three 

different independent test sets are compared in Table 4. Table 4 indicates that AIRBP achieves an 

improvement of 9.32% in SN, 4.54% in ACC, 4.19% in F1-score and 8.50% in MCC over 

RBPPred on Human test set. Likewise, AIRBP achieves an improvement of 9.51% in SN, 4.41% 

in ACC, 3.52% in F1-score and 8.23% in MCC over RBPPred on S. cerevisiae test set. 

Furthermore, while testing on A. thaliana, AIRBP achieves an improvement of 6.61% in SN, 

5.34% in ACC, 4.28% in PR, 3.03% in F1-score and 10.61% in MCC over RBPPred approach.  
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Moreover, while analyzing the average percentage improvement over all the independent test sets 

AIRBP attains improvement of 8.48% in SN, 4.76% in ACC, 0.21% in PR, 3.58% in F1-score and 

9.11% in MCC over RBPPred. Besides, RBPPred seems to be 7.34% better in an average over 

three test sets in terms of SP (i.e. predicting negative samples or non-RBPs) over AIRBP. 

However, AIRBP provides 0.21% improvement in an average over three test sets in terms of PR 

over RBPPred. Additionally, as stated above, for the imbalanced dataset the F1-score and MCC 

are widely used as a balanced measure between sensitivity and specificity. Our predictor, AIRBP 

shows consistent improvement in F1-score and MCC over RBPPred for all three independent test 

set. Specifically, AIRBP provides 4.19% and 8.05% improvement in F1-score and MCC, 

respectively over RBPPred while tested on Human test set. Similarly, AIRBP shows 3.52% and 

8.23% improvement in F1-score and MCC, respectively over RBPPred on S. cerevisiae as well as 

3.03% and 10.61% improvement in F1-score and MCC, respectively over RBPPred on A. thaliana 

Table 7: Comparison of AIRBP with an existing method using independent test sets. 

Meth

ods 
Dataset 

Evaluation Metrics 

SN (%) SP (%) 
BACC 

(%) 
ACC (%) FPR FNR PR (%) 

F1-

score 
MCC 

RBP

Pred 

Human 84.28 96.65 - 89.00 - - 97.65 0.905 0.788 

S. 

cerevisiae 
86.16 94.59 - 87.73 - - 96.52 0.910 0.729 

A. thaliana 86.40 94.59 - 87.02 - - 94.59 0.925 0.537 

AIR

BP 

Human 

(% imp.) 
92.14 

(9.32%) 

94.52 

(-2.21%) 

93.33 

(-) 
93.04 

(4.54%) 

0.055 

(-) 

0.079 

(-) 

96.53 

(-1.14%) 
0.943 

(4.19%) 
0.855 

(8.50%) 

 

S. 

cerevisiae 

(% imp.) 

 

94.35 

(9.51%) 

84.33 

(-10.85%) 

89.34 

(-) 
91.60 

(4.41%) 

0.157 

(-) 

0.057 

(-) 

94.09 

(-2.52%) 
0.942 

(3.52%) 
0.789 

(8.23%) 

A. thaliana 

(% imp.) 
92.11 

(6.61%) 

86.11 

(-8.97%) 

89.11 

(-) 
91.67 

(5.34%) 

0.139 

(-) 

0.079 

(-) 
98.82 

(4.28%) 
0.953 

(3.03%) 
0.594 

(10.61%) 

 

 

(avg.% 

imp.) 

(8.48%) (-7.34%) (-) (4.76) (-) (-) (0.21%) (3.58%) (9.11%) 

Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the improvement in percentage achieved by AIRBP 

for corresponding independent test set for corresponding evaluation metric over the RBPPred method. Likewise, 

the ‘avg. % imp.’ represents the average percentage improvement achieved by AIRBP for all independent test set 

for corresponding evaluation metric over the RBPPred method. Additionally, ‘-’ represents missing value or the 

value not reported by RBPPred and ‘(-)’ represents that the % imp. or avg. % imp. cannot be calculated. 
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test set. Finally, based on an average percentage improvement (calculated over three different 

datasets) in F1-score and MCC, AIRBP outperforms RBPPred by 3.58% and 9.11%. 

The above comparison of results indicates that the proposed method, AIRBP outperforms the 

existing methods and is a very promising predictor. We believe that this comprehensive 

investigation of the stacking based machine learning framework and features in predicting RNA 

binding proteins might be useful for future proteomics studies. 

2.7 Conclusions 

In this work, we constructed a stacking based machine learning framework, called AIRBP, for the 

prediction of RNA-binding proteins directly from the protein sequence. To improve the prediction 

accuracy of RNA-binding proteins, we have investigated and used various feature extraction and 

encoding techniques, various feature selection techniques along with an advanced machine 

learning technique called stacking. We extracted various features including evolutionary 

information, physiochemical properties, and disordered properties and applied various encoding 

techniques such as composition, transition and distribution, conjoint triad, PSSM distance 

transformation, and residue-wise contact energy matrix transformation to encode the protein 

sequence in terms of features. Next, we applied two different feature selection techniques 

incremental feature selection and genetic algorithm based feature selection to identify the relevant 

features as well as to significantly reduce the feature space. Next, only the relevant features are 

used to train the ensemble of predictors at the first-level (i.e. base-layer) of the stacking framework. 

Then, the prediction probabilities from the first-level predictors are combined with the originally 

selected features and used to train the predictor at the second-level (i.e. meta-layer) of the stacking 

framework. Finally, the AIRBP stacking framework achieves a 10-fold CV accuracy, F1-score, 
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and MCC of 95.38%, 0.917 and 0.885 respectively, on the benchmark dataset. While performing 

the independent test, AIRBP achieves an accuracy, F1-score, and MCC of 93.04%, 0.943 and 

0.855, for Human test set; 91.60%, 0.942 and 0.789 for S. cerevisiae test set; and 91.67%, 0.953 

and 0.594 for A. thaliana test set, respectively. These promising results indicate that the stacking 

framework helps improve the accuracy significantly by reducing the generalization error. 

Furthermore, in comparison with the top performing method, RBPPred, AIRBP achieves 3.26%, 

6.75% and 9.53% improvement in terms of accuracy, F1-score and MCC respectively, based on a 

benchmark dataset. F1-score and MCC are two widely used measures for the imbalanced dataset. 

Moreover, the average percentage improvement, calculated over three different independent test 

sets, AIRBP outperforms RBPPred by 4.76%, 3.58% and 9.11% in terms of accuracy, F1-score, 

and MCC, respectively. These outcomes help us summarize that the AIRBP can be effectively 

used for accurate and fast identification and annotation of RNA-binding proteins directly from the 

protein sequence and can provide valuable insights for treating critical diseases. 
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Chapter 3 

Prediction of RNA Binding Residues using Advanced Machine Learning Techniques 

3.1 Introduction:  

RNA Binding proteins (RBPs) are essential components that play pivotal roles in several cellular 

and developmental processes like gene expression, gene regulation, protein synthesis, 

posttranscriptional splicing and cellular localization of mRNAs (Beckmann, et al., 2015). RBPs 

also interact with several types of RNAs, such as mRNA, tRNA, and rRNA and hence are 

important in several biological processes. Defects in RBPs have been also linked to critical 

diseases like cancer, several immunological disorders and neurodegenerative diseases in humans 

(Walia, et al., 2016).  

Eukaryotic genomes encode many RBPs. For Example, In yeast, 5–8% of genes encode RBPs, 

and in Caenorhabditis elegans and Drosophila melanogaster, approximately 2% of the genome is 

annotated to encode RBPs (Pruitt, et al., 2014).  The human genome encodes more than 1500 

different RBPs (Walia, et al., 2016). Despite such abundance of RBPs in nature, we know very 

little about these proteins. 

Several efforts have been made to understand RBPs and RNA and protein interactions in general. 

Some oldest and direct ways of determining and understanding complex structures of protein-RNA 

complexes date back to almost four decades through experiments such as X-ray and/or NMR  (Su, 

et al., 2019). These and other several experimental methods have provided us a lot of information 

about nucleic acid and protein interactions that otherwise would have been unknown. Despite their 

great importance, the experimental methods are expensive, time-consuming and labor intensive.  
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Today, there is an abundance of known proteins and protein sequences due to great progress in 

genome sequencing. There is also a rapid accumulation of the proteins, Nucleic Acids (RNA and 

DNA) data. For instance, as of November 2014, NCBI’s RefSeq database (Pruitt, et al., 2014) 

includes about 47 million nonredundant proteins and more than 9 million RNA and DNA 

transcripts from about 49 000 organisms1 (Yan, et al., 2015). 

Thus, with an increasing number of protein and RNA data, there is growing demand and urgent 

need of faster and accurate computational algorithms to gain more information about these data in 

a faster and automated manner. These accurate and fast computational methods could also assist 

the ongoing experimental techniques. Many diverse computational studies have been conducted 

which has focused on wide range of problems like prediction of RNA binding proteins and DNA 

Binding proteins (Mishra, et al., 2018; Zhang and Liu, 2017), recognition of DNA-binding 

domain/protein(Si, et al., 2015), DNA motif pair discovery(Wong, 2017), and more. Prediction 

and understanding of protein-RNA interactions would be a huge help in knowing more about these 

increasing amounts of uncategorized protein and RNA sequence data.  

In this work, we focus on the computational prediction of RNA Binding residues (i.e., residues 

that directly contact RNA) from RNA-binding protein chains. The ability to computationally 

predict which residues of a protein directly participate in the RNA-binding process can help us 

understand the mechanisms of protein-RNA interactions. The computational methods for 

identification of RNA binding residues can be divided into two broad categories: i) template based; 

and ii) machine learning based. Template based methods detect significant structural or sequence 

similarity between the query and a template known to bind RNA, to assess the RNA-binding 

                                                           
1 http://www.ncbi.nlm.nih.gov/refseq/ 

http://www.ncbi.nlm.nih.gov/refseq/


39 

 

preference of the target sequence. Template based method is a more definitive method to identify 

RNA binding residues. Template based method extracts the RNA binding residue from a high-

resolution experimental structure of a protein-RNA complex (Walia, et al., 2016). However, these 

three dimensional structures used by template based methods are available for only a small fraction 

of known protein-RNA complexes. Such three dimensional protein structures are very difficult to 

obtain. The number of solved protein-RNA complex structures in the Protein Data Bank (PDB) is 

only 1661 out of 114,402 total structures as of December 16, 2015 (Walia, et al., 2016). These 

methods can also be thought of as structure based method (Ren and Shen, 2015; Zhang, et al., 

2010; Zhao, et al., 2011). They use structure derived features such as solvent-accessible surface 

area or secondary structure to make predictions. 

Machine Learning based methods, however, learn to make predictions by finding a pattern in input 

feature space. Some examples of Machine Learning methods are support vector machines (SVM), 

neural networks, random forest, naïve Bayes classifier, nearest neighbors algorithm, and other 

ensemble classifiers. Machine Learning based methods can be very useful to identify RNA binding 

residue in the absence of a three dimensional structure. They make use of sequence information of 

a protein/RNA sequence which is much more easily available and is abundant nowadays. These 

methods can also be thought as of sequence based methods (Terribilini, et al., 2007; Wang and 

Brown, 2006). They use sequence derived features such as amino acid identity or physiochemical 

properties to make predictions. For instance, BindN is a machine learning based approach for 

classification of RNA Binding Residue that uses support vector machines (SVM). Results indicate 

that BindN achieves an accuracy of 69.32%, along with a sensitivity of 66.28% and a specificity 

of 69.84% (Wang and Brown, 2006). Pprint is a machine learning based method that uses SVM 

trained on PSSM profile generated by PSI-BLAST search of 'nr' protein database. Results indicate 
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that it achieves a prediction accuracy of 75.53% and MCC value of 0.44 while predicting RNA-

interacting amino acids. 

There are also few methods that combine both template based and machine learning based methods 

to achieve a predictor that can utilize benefits of both types of methods (Su, et al., 2019; Terribilini, 

et al., 2007). (Su, et al., 2019) is a method that combined both template based, and sequence based 

methods. It is also the best performing predictor of DNA and RNA binding residue. 

In this study, we present a sequence based method for prediction of RNA Binding residues. We 

explore different features, encoding techniques, and machine learning approaches, to further 

improve the prediction accuracy and further understand the binding mechanisms of RNA-protein 

interactions with higher accuracy. Finally, we propose an RBP residue predictor that utilizes 

Evolutionary, physicochemical and disordered features of a protein. We believe that the proposed 

predictor can be used to predict RNA binding residues effectively from sequence information 

alone. Moreover, the proposed predictor can also be applied to solve other relevant biological 

problems.  

3.2. Methods 

This section describes the process of benchmark and test dataset preparation, feature extraction 

and encoding, performance evaluation metrics and finally, the machine learning methods and 

framework developed for this work. 

3.2.1 Dataset 

For this work, we used three benchmark datasets YFK16, YK17 and MW15 These three datasets 

were collected from recent studies (Miao and Westhof, 2015; Su, et al., 2019; Yan, et al., 2015; 
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Yan and Kurgan, 2017). These datasets contain subsets for DNA binding proteins and/or RNA 

binding proteins. We only extracted RNA Binding proteins from each of these datasets because 

our research work only focuses on RNA Binding Residues. RNA Binding protein contents in each 

of these datasets are described below: 

YFK16: This dataset considers both 3.5 and 5 Å cutoff. The sequence identity between the training 

and test proteins is less than 30%. For training dataset, this database contains 158 RBPs extracted 

at a sequence identity cutoff of 3.5 Å and 158 RBPs in extracted at a sequence identity cutoff of 5 

Å. Furthermore, for test dataset, this dataset consists of 17 RBPs extracted at a sequence identity 

cutoff of 3.5 Å and another 17 RBPs in extracted at a sequence identity cutoff of 5 Å (Su, et al., 

2019). 

YK17: This dataset is an extension of YFK16 database by the inclusion of more structures that 

were released after YFK16 was published. All the protein sequences in this database were 

extracted at a sequence identity cutoff of 3.5 Å. This dataset contains a total of 339 RBPs in training 

dataset and 49 RBPs in the test data set (Su, et al., 2019).  

MW15: This dataset is used as independent test dataset and includes 15 RBPs extracted at a 

sequence identity cutoff of 5 Å. Sequence identity between this dataset and the previous two 

datasets is less than 25%. This dataset contains no training data (Su, et al., 2019). 

3.2.2 Feature Extraction 

Aiming to create an efficient RBP residue predictor using sequence information alone, a feature 

vector for each amino acid in a protein sequence was derived using PSSM profile, Physicochemical 

Properties, Residue-wise Contact Energy Matrix (RCEM) and Molecular Recognition Features 

(MoRFs). 
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3.2.2.1 Physicochemical Properties 

We obtained seven features for physicochemical properties. These features were extracted directly 

from DisPredict2 (Iqbal and Hoque, 2015). The features we obtained, include steric parameters, 

hydrophobicity, volume, polarizability, isoelectric point, helix probability, and sheet probability 

(Meiler, et al., 2001). 

3.2.2.2 Residue Wise Contact Energy Matrix (RCEM) feature 

 To get the RCEM feature we used the residue-wise contact energy matrix (RCEM matrix) derived 

in (Dosztányi, et al., 2005), by the least square fitting of 674 proteins primary sequence with the 

contact energies derived from the tertiary structure of 785 proteins. The RCEM matrix is a 20 × 

20 dimensional matrix which contains residue-wise contact energy for 20 standard amino acids. 

For a protein sequence of length L, an L × 20 dimensional matrix M is obtained which holds a 20 

dimensional vector for each amino acid in a protein sequence. The resulting matrix M is then 

encoded into a feature vector of 20 dimensions by computing the column-wise sum. The final 

feature vector, 𝑅𝐶𝐸𝑀 − 𝑇 = [𝑣1, 𝑣2, ⋯ , 𝑣20] is obtained by dividing each element in RCEM-T 

by the sum of all the elements in the same vector. Hence, a 20 dimensional feature vector is 

obtained for each amino acid residue of a protein sequence. 

 

3.2.2.3 Half Sphere Exposure (HSE) and Torsion angles 

Half Sphere Exposure(HSE) was first introduced and used in (Hamelryck, 2005).  HSE is a 

measure of amino acid residue exposure in protein. HSE can be calculated by division of contact 

number (CN) sphere into two halves by a plane perpendicular to the Cβ-Cα vector. Two measures 

produced from the division of CN sphere are called HSE-up and HSE-down. For our work, we 
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used SPIDER2 (Heffernan, et al., 2016; Heffernan, et al., 2018 (in press); Heffernan, et al., 2017) 

to extract HSE-up and HSE-down feature. Additionally, the backbone structure of a protein can 

be described by torsion angles Phi (φ) and Psi (ψ).  

Torsion angles are the important structural descriptor for proteins. They are also important in 

understanding and predicting protein structure, function, and interactions. In our study, we 

employed predicted φ and ψ angles as features which were also extracted from SPIDER2 program.  

3.2.2.4 Molecular Recognition Features (MoRFs) 

MoRFs are disordered protein regions that exhibit various binding and molecular recognition 

functions. Post-translational modifications (PTMs) can induce disorder-to-order transitions of 

intrinsically disordered proteins (IDPs) upon binding to RNA, DNA or other molecules. They are 

also suggested to be present prior to actual binding, so can be a good indicator of binding. In this 

work, we obtain a single predicted MoRFs score from the OPAL program (Sharma, et al., 2018). 

Hence one dimensional feature vector is obtained for each amino acid residue. 

3.2.2.5 Position Specific Scoring Matrix (PSSM) 

PSSM captures the evolution derived information in proteins. Evolutionary information is one of 

the most important information useful for solving various biological analysis and is also used in 

many studies (Biswas, et al., 2010; Iqbal and Hoque, 2016; Iqbal and Hoque, 2018; Iqbal, et al., 

2015; Islam, et al., 2016; Mishra, et al., 2018; Verma, et al., 2010). Furthermore, evolutionarily 

conserved residues are found to play crucial functional roles such as binding (Glaser, et al., 2003). 

The normalized PSSM value was used for this software and the PSSM values were obtained using 

DisPredict. DisPredict2 internally executes three iterations of PSI-BLAST (Altschul, et al., 1990) 

against NCBI’s non-redundant database to generate a PSSM profile and subsequently converts it 
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to normalized PSSM by dividing each value by a value of 9. PSSM is a matrix of L×20 dimensions, 

where L is the length of the protein. The rows in PSSM represent the position of amino acid in the 

sequence and the columns represent the 20 standard amino acid types. Hence, every residue in the 

protein sequence is encoded by a 20-dimensional feature vector. 

3.2.2.6 Amino Acid Type 

To obtain this feature a single numerical value out of 20 is provided. Each number representing 

one type of amino acid residue out of the 20 standard amino acid residues. 

3.2.2.7 Ordered or Disordered Proteins 

This is a single dimensional feature vector obtained from DisPredict. This feature is simply 

representing whether a protein residue is ordered or disordered. A value of +1 represents a 

disordered residue while a value of -1 represents an ordered residue. 

3.2.2.8 Monogram (MG) and Bigram (BG) 

Monogram and Bigram were extracted from DisPredict which internally used computed these two 

features using PSSM. MG and BG represent the conserved evolutionary information in three 

dimensional structural levels. Monogram feature matrix consists of one monogram value (MG) for 

each type of amino acid and bigram feature matrix consists of one bigram value (BG) for each pair 

of 20 possible amino acids, respectively. 

3.2.2.9 Position Specific Estimated Energy (PSEE) and Terminal Indicator 

Position Specific Estimated Energy (PSEE) has been found and empirically verified to effectively 

classify disorder versus ordered residues and can segregate different secondary structure type 

residues by computing the constituent energies. PSEE can also be useful in the detection of the 
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existence of the critical binding regions (Iqbal and Hoque, 2016). We used DisPredict to extract 

the value of PSEE. PSEE was indicated by a feature vector of length one. 

Terminal Indicator feature helps distinguish the terminal residues for their position specific 

disorder like behavior. We extracted the value of the terminal indicator from DisPredict. DisPredict 

included terminal indicator feature (T) by encoding five residues of N-terminal as {−1.0, −0.8, 

−0.6, −0.4, −0.2} and C-terminal as {+1.0, +0.8, +0.6, +0.4, +0.2} respectively, whereas the rest 

of the residues were labeled 0.0. The terminal indicator was hence also represented by a feature 

vector of length one. 

3.2.2.10 Backbone dihedral torsion angles (dphi and dpsi) 

Many protein functions are a result of the flexible motion of the protein backbone. This backbone 

flexibility of a protein can be described by the fluctuation of backbone torsion angles. Dihedral 

torsion angles (dphi and dphi) are believed to provide a complete description of the backbone. By 

significant change of torsion angles of only a few amino-acid residues, it can result in many 

functional motions  (Zhang, et al., 2010). 

Two feature vectors for each amino acid representing the backbone dihedral torsion angles are 

extracted from DisPredict software itself. The DisPredict software runs DAVAR internally to get 

values for theses torsion angles. 

3.2.2.11 Accessible Surface Area (ASA)  

ASA is a structural feature that is found to be very effective for the prediction of binding sites. To 

obtain ASA probability SPIDER2 was used. SPIDER2 that utilizes three iterations of deep learning 

neural networks to improve the prediction accuracy of several structural properties simultaneously. 
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It also achieves a correlation coefficient of 0.76 between predicted and actual solvent accessible 

surface area (Yang, et al., 2016). 

3.2.2.12 Solvent Accessibility (SA) and Secondary Structure (SS) 

We use SCRATCH (Cheng, et al., 2005) to obtain Secondary Structure(SS) and Solvent 

Accessibility(SA) of protein residues. SCRATCH, in turn, uses SSPro (Pollastri, et al., 2002) to 

predict SS of a protein based on sequence homology and structure homology. SSPro gives its 

output in terms of three classes (helix, strand and other) to represent the secondary structure of a 

protein. We modified the output obtained from SCRATCH through SSPRO to a three dimensional 

feature vector where 1 represents presence and 0 represents the absence of helix or strand or other 

(Cheng, et al., 2005). For instance, a feature vector 1, 0, 0 represents the presence of helix, a feature 

vector of 0,1,0 represents the presence of strand and, a feature vector of 0,0,1 represents the 

presence of other structures. 

Similarly, SCRATCH, in turn, uses ACCPro (Pollastri, et al., 2002) to predict  SA of protein 

residues. The prediction is based on one dimensional recurrent neural network that takes PSI-

BLAST generated homologs as input. Each residue in a protein is predicted as either buried or 

exposed residue (Cheng, et al., 2005). We modified the output for SA from SCRATCH into a one 

dimensional feature vector where 1 represents the exposed residue and 0 represents the buried 

residue. 

3.2.3 Feature Selection using Genetic Algorithm 

For this work during the feature selection process Genetic Algorithm is used. GA is a population-

based stochastic search technique that mimics the natural process of evolution. It contains a 

population of chromosomes where each chromosome represents a possible solution to the problem 
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under consideration. In general, a GA operates by initializing the population randomly, and by 

iteratively updating the population through various operators including elitism, crossover and 

mutation to discover, prioritize and recombine good building blocks present in parent 

chromosomes to finally obtain fitter chromosomes (Hoque, et al., 2010; Hoque, et al., 2007; Hoque 

and Iqbal, 2017).  

Encoding the solution of the problem under consideration in the form of chromosomes and 

computing the fitness of the chromosomes are two important steps in setting up the GA. Here, to 

perform feature selection, we encode each feature 𝑓𝑖 in our feature space 𝐹 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑛] by a 

single bit of 1/0 in a chromosome space where, the value of 1 represents that the i-th feature is 

selected and the value of 0 represents that the i-th feature is not selected. The length of the 

chromosome space is equal to the length of the feature space. Moreover, to compute the fitness of 

the chromosome, we use XGBoost algorithm (Chen and Guestrin, 2016). The choice of XGBoost 

was made because of its fast execution time and reasonable performance compared to other 

machine learning classifiers. During feature selection, the values of XGBoost parameters: 

max_depth, eta, silent, objective, num_class, n_estimators, min_child_weight, subsample, 

scale_pos_weight, tree_method, and max_bin were set to 6, 0.1, 1, ‘multi:softprob’, 2, 100, 5, 0.9, 

3, ‘hist’ and 500, respectively and the rest of the parameters were set to their default value. In our 

implementation, the objective fitness is defined as: 

𝑜𝑏𝑗_𝑓𝑖𝑡 =  𝐴𝐶𝐶 + 𝐴𝑈𝐶 + 𝑀𝐶𝐶 (6) 

where, ACC is the accuracy, AUC is the area under the receiver operating characteristic curve and 

MCC is the Matthews Correlation Coefficient.  
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3.2.4 Window selection        

While considering binding residues it is important to consider neighboring residues too. Including 

the information of neighboring residues helps to consider the effect of optimal interactions among 

amino acid residues due to contacts among neighboring residues. The contacts among neighboring 

residues have been found to play essential roles in determining the structure of proteins and the 

way in which protein folding occurs. An optimal size of the sliding Window (W) was searched to 

determine the number of residues around a target residue, which can moderate the RNA-protein 

interaction. We designed 20 different machine learning models using XGBoost classifier and 20 

different window sizes (3, 5, 7, 9, 11, 13, 15 ,17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, and 41). 

Window size for which the XGBoost classifier yields the highest 10-fold cross-validation(CV) 

balanced accuracy and AUC was selected as the optimal window size for the classifier.  

Table 8. Performance of various window sizes on the combined benchmark dataset using the 

XGBoost Classifier. 

Window

/Metric 

SN SP BACC ACC FPR FNR Precision F-Score MCC 

3 31.510 98.245 64.877 87.914 0.01755 0.68490 76.77 0.44665 0.44097 

5 32.486 98.268 65.377 88.085 0.01732 0.67514 77.456 0.45774 0.45148 

7 33.180 98.284 65.732 88.205 0.01716 0.66820 77.980 0.46552 0.45882 

9 33.254 98.313 65.783 88.242 0.01687 0.66746 78.311 0.46684 0.46075 

11 33.327 98.345 65.836 88.280 0.0165 0.66673 78.667 0.46819 0.46278 

13 33.235 98.374 65.804 88.290 0.01626 0.66765 78.918 0.46773 0.46315 

15 33.278 98.409 65.843 88.326 0.01591 0.66722 79.298 0.46882 0.46504 

17 33.677 98.400 66.038 88.380 0.01600 0.66323 79.401 0.47295 0.46845 

19 33.075 98.453 65.764 88.332 0.01547 0.66925 79.654 0.46742 0.46500 
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21 33.419 98.433 65.926 88.369 0.01567 0.66581 79.623 0.47079 0.46745 

23 33.432 98.465 65.948 88.397 0.01535 0.66568 79.956 0.47149 0.46892 

25 33.425 98.438 65.932 88.374 0.01562 0.66575 79.672 0.47093 0.46770 

27 33.180 98.433 65.807 88.332 0.01567 0.66820 79.506 0.46820 0.46517 

29 33.401 98.492 65.946 88.416 0.01508 0.66509 80.224 0.47165 0.46980 

31 33.444 98.466 65.995 88.400 0.01534 0.66556 79.974 0.47164 0.46909 

33 33.358 98.482 65.920 88.400 0.01518 0.66642 80.097 0.47100 0.46895 

35 33.591 98.491 66.041 88.444 0.01509 0.66409 80.302 0.47368 0.47155 

37 33.290 98.490 65.890 88.397 0.01510 0.66710 80.148 0.47041 0.46865 

39 33.223 98.527 65.875 88.417 0.01473 0.66777 80.509 0.47036 0.46963 

41 33.468 98.538 66.003 88.465 0.01462 0.66532 80.744 0.47322 0.47245 

Selected window size is bold faced. 

From the table above, the optimal performance is found at the window size of 17 which has 

Sensitivity of 33.677%, Specificity of 98.400%, Balanced Accuracy of 66.038 and Overall 

Accuracy of 88.380. The best Specificity and Precision is obtained at window size 41 which is 

98.538 and 80.744 respectively. However, the window size of 17 was used since it provides the 

best balanced accuracy which is an important metric for measuring the predictive performance of 

various machine learning methods in an imbalanced dataset.  

 3.2.5 Performance Evaluation 

To evaluate the performance of our predictor, we used 10-fold CV and the independent testing 

approach. In 10-fold CV, the dataset is divided into 10 equal(more or less) parts. When one fold 

is kept aside for testing, the remaining 9 folds are used to train the classifier. This process of 
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training and test is repeated until each fold has been kept aside once for testing and consequently, 

the test accuracies of each fold are combined to compute the average (Hastie, et al., 2009).  

For independent testing, the classifier is trained with the benchmark dataset and consequently 

tested using the independent test dataset. While independent testing, it is ensured that none of the 

samples in the independent test set are present in the benchmark dataset. We used several 

performance evaluation metrics listed in Supplementary Table 1S as well as ROC and AUC to test 

the performance of the proposed method as well as to compare it with the existing approaches. 

AUC is the area under the receiver operating characteristics (ROC) curve which is used to evaluate 

how well a predictor separates two classes of information (RNA-binding and non-binding residue). 

 

 

3.2.6 Framework of our RBP residue Predictor: 

To develop our predictor for efficient prediction of RNA Binding Protein residues, we have used 

an advanced ensemble based machine learning based approach called stacking (Wolpert, 1992). 

Stacking has been successfully used in many research works and has also been proved to be useful 

in solving various bioinformatics problems (Hu, et al., 2015; Iqbal and Hoque, 2018; Mishra, et 

al., 2018; Nagi and Bhattacharyya, 2013).  Stacking collects information from multiple models in 

different phased and combines them to form a new model. Stacking is also considered to yield 

better results than individual methods by reduction of the generalization error. 

In order to select the classifiers to use in the first and second level of the AIRBP stacking 

framework, we analyzed the performance of six individual classification methods: i) Random 

Decision Forest (RDF) (Ho, 1995); ii) Logistic Regression (LogReg); iii) Extreme Gradient 

Boosting (XGBoost or XGB) (Chen and Guestrin, 2016); iv) K-Nearest Neighbor (KNN) (Altman, 
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1992); and v)Extra Tree (ET) (Geurts, et al., 2006);  (Hastie, et al., 2009; Szilágyi and Skolnick, 

2006). These classification methods in addition to their configuration details are briefly discussed 

below. 

i) RDF: RDF (Ho, 1995) constructs a multitude of decision trees on various sub-samples of the 

dataset and outputs the mean prediction of the decision trees to improve the predictive accuracy 

and control over-fitting. In our implementation of the RDF, we used bootstrap samples to construct 

1,000 trees in the forest. 

ii) KNN: KNN (Altman, 1992) operates by learning from the K number of training samples 

closest in distance to the target point in the feature space. The classification decision is computed 

from the majority votes coming from the neighbors. In this work, the value of K was set to 9 and 

all the neighbors were weighted uniformly. 

iii) XGB: XGB (Chen and Guestrin, 2016) follows the principle of gradient boosting. It also uses 

a more regularized model formalization to control over-fitting, which results in better performance. 

In addition to better performance, XGB is designed to provide higher computational speed. In our 

implementation of the XGB, we used 100 bosting stages with a softprob, a parameter for XGB, 

learning objective, where the number of classes was set to 2 as we are dealing with a binary 

classification problem of carbohydrate-binding and non-carbohydrate-binding residues. The 

values of the additional parameters: learning rate, maximum depth, minimum child weight, and 

subsample ratio were set to 0.1, 3, 5 and 0.9, respectively. 

iv) LOGREG: We implemented LOGREG (Hastie, et al., 2009; Szilágyi and Skolnick, 2006) 

with L2 regularization as another classifier to be used in staking framework. It measures the 

relationship between the dependent categorical variable (in our case: a carbohydrate-binding or 

non-carbohydrate-binding) and one or more independent variables by generating an estimation 
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probability using logistic regression. The parameter, C which controls the regularization strength 

is optimized to achieve the best 10-fold CV balanced accuracy using grid search (Bergstra and 

Bengio, 2012). In our implementation, the optimal value of the parameter, C was found to be 

2.3784. 

v) ET: We employed extremely randomized tree or ET (Geurts, et al., 2006) as another classifier 

to be used in stacking framework. ET fits several randomized decision trees from the data sample 

and uses averaging to improve the prediction accuracy and control over-fitting. We constructed 

the ET model with 1,000 trees and the quality of a split was assessed by the Gini impurity index. 

The rest of the parameters for our model were set to default. 

 All of the above discussed classifiers and machine learning methods were implemented using 

python’s Scikit-learn library (Pedregosa, et al., 2012). We further evaluated three different 

combinations of base-classifiers and finally selected the one that provided the best performance. 

Three sets of machine learning frameworks tested are described below: 

iv) SF1: ET, KNN, RDF in base-level and ET in meta-level, 

v) SF2: ET, LogReg, RDF in base-level and ET in meta-level and 

vi) SF3: ET, XGB, RDF in base-level and ET in meta-level. 

 The choice of base-level classifiers is made such that the classifiers are different from each other 

and the individual performance on the training dataset using 10-fold cross-validation. 
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3.3 Results  

In this section, we demonstrate the results of the individual machine learning methods on the 

benchmark training dataset with 10 fold cross validation (CV). Then we show the performance 

and performance comparison of the stacking frameworks on the benchmark training dataset with 

10 fold CV. 

3.3.1 Selection of Classifiers for Stacking 

To select the individual machine learning methods to be used as base and meta-classifiers, we 

analyzed the performance of five different machine learning algorithms: KNN, LogReg, RDF, 

XGB, and ET on the benchmark dataset through 10-fold CV. The performance comparison of the 

individual classifiers on the benchmark dataset is shown in the table below. 

Table 9.  Comparison of various machine learning methods on benchmark dataset with 10-fold 

CV. 

Metric/Methods KNN LogReg RDF XGB ET 

SN (%) 21.011 35.501 82.729 33.677 82.802 

SP (%) 96.693 97.017 99.267 98.400 99.519 

BACC (%) 58.852 66.259 90.998 66.038 91.16 

ACC (%) 84.977 87.494 96.707 88.380 96.931 

FPR 0.03307 0.02983 0.00733 0.01600 0.00481 

FNR 0.78989 0.64499 0.17271 0.66323 0.17198 

PR (%) 53.780 68.548 95.384 79.401 96.924 

F1-score 0.30216 46.776 88.607 47.295 0.89308 

MCC 0.26864 43.313 86.993 46.845 0.87899 
Best score values are bold faced. 

The table above further shows that the ET is the best performing classifier among the five tested 

classifiers in terms of sensitivity, specificity, balanced accuracy, overall accuracy, precision, F1-

score, and MCC. Moreover, the ET classifier attains a sensitivity, balanced accuracy, overall 

accuracy, precision, F1-score, and MCC of 82.802%, 99.519%, 91.16%, 96.931%, 96.924%, 
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0.89308, and 0.87890. Because of the greater performance of ET algorithm, we chose to use it as 

both meta and base classifier for our predictor. 

To further select the classifiers to be used at the base-level, we adopted the guidelines of base-

classifier based on different underlying principles. We created three combinations of stacking 

frameworks on the benchmark dataset using 10-fold CV as presented in the table below. 

Table 10: Comparison of different stacking framework with a different set of base-

classifiers on the benchmark dataset through 10-fold CV. 

Metric/Methods SF1 SF2 SF3 

SN (%) 83.066 83.189 83.164 

SP (%) 99.528 99.525 99.524 

BACC (%) 91.297 91.357 91.344 

ACC (%) 96.979 96.996 96.992 

FPR 0.00472 0.00475 0.00476 

FNR 0.16934 0.16811 0.16836 

PR (%) 96.989 96.979 96.972 

F1-score 0.89489 0.89556 0.89539 

MCC 0.88097 0.88167 0.88147 

Best score values are bold faced. 

The table above demonstrates that SF2, which includes ET, Log Reg, and RDF as base-level 

classifiers and ET as a meta-level classifier outperformed SF1 and SF3. Hence, we select SF2 to 

be our final predictor. 

3.3.2 Future Work 

This research work can be further extended to perform test on the independent a test dataset. The 

performance of our predictor on the test datasets will also allow the comparison of our proposed 

method with other state-of-the-art methods. Future works will also focus on applying other more 

complex machine learning methods like support vector machine (SVM). Further, we can also focus 

on annotation of RNA-binding residues with a focus on complex stacking based architecture. We 
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can also create two separate predictors for datasets with different cutoff (3.5A and 5A). The 

methods will also be tested on several other datasets so as to establish consistency in performance. 

3.4 Conclusions 

In this research work, we have developed a stacking based machine learning predictor for 

prediction of RNA Binding Protein residues. We collected a benchmark dataset of three 

independent training data set and four independent testing data set to train and independently test 

our predictor. Several features were extracted and chosen with the help of the genetic algorithm to 

train our predictor. In addition to this advanced ensemble based machine technique, called 

stacking, was implemented to create a robust classifier. To utilize advantages of stacking we 

combined the output from the base-learners with the original features and used it as an input to the 

predictor at second-stage (i.e., meta-layer). These outcomes can help us conclude that our predictor 

can be used for efficient annotation of RNA Binding Protein Sites and could also provide insights 

in curing critical diseases.  
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Chapter 4 

Conclusions and Recommendations  

The aim of this work was to characterize of new biological properties of proteomic data in order 

to categorize the proteomic data itself. Computational modeling of various properties of RNA 

binding proteins was done in this research work. This work can be useful in better understanding 

proteins, RNAs and their interactions in nature. The comprehensive research objective addressed 

the applications in the following three disciplines: 

1) Bioinformatics: It involves the process of development and implementation of various tools 

using novel algorithms to solve important biological problems. 

2) Computational Biology: It involves the analysis and interpretation of the protein and amino 

acid data along with their structures to perform efficient analysis of the biological features 

3) Machine Learning: It involves the development of novel machine learning algorithms to 

perform advanced analysis like pattern finding in data and get as much information from 

the feature space as possible.  

4.1 Summary  

In this research work, two predictors have been developed, namely AIRBP and RNA Binding 

Residue Predictor. Summary of these two predictors are listed below: 

AIRBP: We have developed a predictor, AIRBP, for efficient annotation of RNA Binding Proteins. 

Here we perform large scale data collection from online databases, extract evolutionary, 

physicochemical and disordered features from the data obtained and finally apply advanced 
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machine learning techniques to these data in order to create a predictor that can efficiently predict 

RNA Binding Proteins. This predictor outperforms other state-of-the-art methods. 

RNA Binding Residue Predictor: Using similar processes a predictor for RNA Binding Residue is 

developed in this work. This predictor utilizes features created by software like DisPredict, 

SPIDER and SCRATCH. This predictor is trained on evolutionary, physicochemical and 

disordered features, and uses advanced machine learning techniques like Genetic Algorithm and 

Stacking. 

4.2 Future Scope  

The predictors developed here, in this research work can be used to assist experimental methods 

that have been ongoing to better understand protein-RNA interaction. It can be very useful in 

categorizing a large amount of protein data that has been discovered today due to developments in 

genomics and proteomics. Moreover, the methods used in this research work can also be used by 

other predictors, methods like stacking and genetic algorithm are generic and can be used in other 

fields besides the study of RNAs and proteins. 
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