University of New Orleans

ScholarWorks@UNO

University of New Orleans Theses and

Dissertations Dissertations and Theses

12-17-2004

Three Factor Authentication Using Java Ring and Biometrics

Jyothi Chitiprolu
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation

Chitiprolu, Jyothi, "Three Factor Authentication Using Java Ring and Biometrics" (2004). University of New
Orleans Theses and Dissertations. 187.

https://scholarworks.uno.edu/td/187

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.


https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/187?utm_source=scholarworks.uno.edu%2Ftd%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

THREE FACTOR AUTHENTICATION USING JAVA RING AND
BIOMETRICS

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the
requirements for the degree of

Master of Science
in
The Department of Computer Science

by
Jyothi Chitiprolu
B.E. Madras University, 2001

December, 2004



ACKNOWLEDGMENTS

I would like to thank my husband Sravan, for his love, support and
encouragement. He is truly my best friend and partner. This thesis would not
have been possible with out his help and patience. I would like to thank my
mother and father for their constant love and support and for being the best
parents any one could wish for. I would like to thank my sister and brother for

their abundant love, affection and humor.

Very special thanks to Dr. Golden Richard II1, for supervising my thesis, for all

his help, support and patience and for being an excellent teacher and advisor.

I would like to thank Dr. Shengru Tu for his help through my years at UNO.

I would like to thank all my friends for being there for me, for their help and for

making this a great experience.



TABLE OF CONTENTS

LIST OF FIGURES. ..ottt ssese s sesesaes vi
ABSTRACT ottt st sttt eesees vii
INTRODUCTION ..ottt sses s ssese e tsese st ssss s ssssenns 1
COMPUTER SECURITY ..ovtitiriciriieieinieieinicintieieistiessessssessesessessssessessssessesessessesessens 3
AUNENTCATION cevvitretiietricici ettt s ettt seeseseseencs 4
PASSWOLAS cuviviiiiiiicii ettt 4
Host-Based AUthentiCation.....c.c.vueeeueeeecurineeeirineeeinieeeireeseesescsessesesessesesessesesenne 5
Physical TOKENS .....c.vviiiiiiiiciiciicicii s 5
BIOMELIICS ettt eseee 5

One Factor AUthENtCAION c...vucueeeceeieecieerieeteieecisiesesseeie s ssesesessesesesseaeseaeseseens 6
Two Factor AUthentiCation .....c.cucueecvneuniecieinieinieeicineieeiseeessesessesessessesessessesenseans 8
Three Factor AUtheNtCAION ...c.cveecuevreucirieieieieicirieeeineeieeseeeeesesesessesesseesessesesesseaes 9
JAVA RING ..ot ssnas 12
Introduction to Java RING ..o 12
IBULEOMN ettt 14
How secure 1 IBULLON c....cucuiiciriiiciiiciicciccetceeeeeeneeneneaes 16

Java Card TeChNolOgy ..o 17
SMALE CALA coreiiieciicc ettt 18
OpenCard Framework ... 20



Introduction to Java Card........cvciviuniininiininiiiiniiiesseeseseesesees 22

Java Card and OpenCard..........oicinicinciniciiiciccceee e 24

Java Card APPLELS ... aees 24
Programming in iIBUttOn ........c.ccvviciinicic e 29
Host APpLCAtion StIUCTULEC.....c..cuevieeeeieeeieieeseneisensesesseseseseseseseessessessessesaees 30
1Button Applet SHUCTULE........cviuieiiiiieii s 34

Java Card Applet EXample ... 39
FINGERPRINT AUTHENTICATOR .......ooiiiiiciiiiisisvsiesscse e 48
Introduction to Fingerprint AuthentiCator ... 48
TruePrint TechNolOgy ... 52
Security concerns with stofing fINGErPIINtS ......ccvvvvvvrvcvicivericiniicienciens 52
AUthentec APL.....cuiiiiiic s 53
IMPLMENTATION .....ooiiiiiiiitciiciisss s ssssas s ssssssssssssssasssns 066
ENLOll SYStEM..coueiieiiiiiiciic e 73
Enroll User Use Case.....iiiiiiciisiiiciiiciciessissessssssssssesens 74
Collaboration DIagrams ... 77
Features of Enroll SyStem........cccviiiiiiiiniciiiciiciicscce e 78
AUhENtICAte SYStEM .vuvuirieiciiecieiicireiecreie ettt seb e sseaesaeaes 81
Authenticate User Use CasC......cuiiniiniciniciniinieiiieiieiessieiesssessenssenans 82
Collaboration DiIagrams.......c.cccuuieicieiniiniiniinciieeesssssessssessssens 85
Features of Authenticate SYSteML......ccvuiiiuiiiicieieieiiieeieesieseienees 86

v



System INIHANZAION .....vvvereeeieiriecieeeciee ettt seaenas 88

1Button Implementation ... sesesans 89
Fingerprint Implementation........coiiciiiciieseeeesssesaees 98
CONCLUSION. ...t ss s sssssssssnes 103
FUTUREWORK ..ot sas s sasaes 106
REFERENCES........oiiii s s s s ssssss s ssssssns 109
VITA o 111



LIST OF FIGURES

Number Page
JAVA RING o 12
IBULTON e 12
Blue Dot RECEPLOTL ...t 13
Self-powered computer chip in an IBULtON ... 14
OpenCard Framework ArChiteCture ... 21
Java Card System AfChItECTULE ......coveviurieiiciciriciccieeeee e 23
Command and Response APDU Structure. ... 26
Working of APDU’s from the reader side to the card side ..o, 35
Different BIOMELIICS ..o 49
Face Recognition and Handwriting ... 50
The Entrepad Family Authentec AES4000 ..o 52
Biometric data Stored/ MatChed. ...t eeeeeeeeteteeseeseeeesesenes 68
High level design of Enroll SYstem.........ccvcieiniiniciniiiciniicnicceieeieeeeceensenns 73
Collaboration diagram for Enroll USer USe CaSe ... 77
High level design of Authenticate SYStem ... 81
Collaboration diagram for Authenticate USer USE CASC....c.eweviueriereriererreerereceenens 85
Communication between host and applet during Enroll process..........ccccvvuvvunece. 90
Communication between host and applet during Authenticate process................ 92

vi



ABSTRACT

Computer security is a growing field in the IT industry. One of the important
aspects of the computer security is authentication. Using passwords (something
you know) is one of the most common ways of authentications. But passwords
have proven to provide weak level of security as they can be easily compromised.
Some other ways of authenticating a user are using physical tokens, (something
you possess) and biometrics, (something you are). Using any one of these
techniques to secure a system always has its own set of threats. One way to make
sure a system is secure is to use multiple factors to authenticate. One of the ways
to use multiple factors is to use all the three factors of authentication, something
you possess, something you are and something you know. This thesis discusses
about different ways of authentication and implements a system using three
factor authentication. It takes many security aspects of the system into

consideration while implementing it, to make it secure.

vii



Chapter 1

INTRODUCTION

As the computer technology is prevailing, the security related problems with
computers are also increasing. The purpose of computer security is to protect an
organization's valuable resources, such as information, hardware, and software.
To know if a person is right user, we need to authenticate the person. The goal of

authentication is to identify a person directly or indirectly.

This thesis implements one of the best ways of authenticating a person taking
many issues into consideration. The structure of this thesis is organized as

follows.

Chapter 2 provides security background and different kinds of authentications. It
introduces different ways of authentications and also discusses how multiple

factors can be used for authentication.

Chapter 3 introduces Java Ring, and iButton. It discusses different functions the
iButton provides and also focuses on how secure an iButton is. It details the Java
Card technology and its functionality in an iButton. It discusses about smart card
technology and open card framework. It also explains as to how the

communication takes place between a Java Card and an Open Card.

Chapter 4 describes the different biometrics and how fingerprints are better than

other biometrics. It discusses the fingerprint API used in the implementation.

Chapter 5 discusses the implementation of the system using three-factor

authentication.



Chapter 6 concludes by summarizing the security aspects of the system

implementation.

Chapter 7 discusses the future work that can be done with the system.



Chapter 2

COMPUTER SECURITY

Computer security has become a prevalent concern from the dawn of the
Internet and before. Network breaches and e-commerce fraud are increasing
rapidly, as reported in the Computer Security Institute -2001 Computer Crime
and Security Survey [7]. Today 85% of large corporations and government
agencies acknowledge network security breaches. Of these organizations, 64%
acknowledge financial losses that run into millions of dollars due to network

breaches and e-commerce fraud [7].

Security is about well-being (integrity) and about protecting property or interests
from intrusion, stealing or wire-tapping (privacy) [1]. The purpose of computer
security is to protect an organization's valuable resources, such as information,
hardware, and software. Examples include remote access to computer accounts,
access to web sites, and bank account access at automated teller machines.
Through the selection and application of appropriate safeguards, security helps
the organization's mission by protecting its physical and financial resources,
reputation, legal position, employees, and other tangible and intangible assets. To
grant access to a few, we need to know whom we can trust and we need to verify

the credentials (authenticate) of those who come near us.

Security is thus based on the following independent issues [1]:

e Privacy - the ability to keep things private/confidential

e Trust - do we trust data from an individual or a host? Could they be used

against us?



e Authenticity - are security credentials in order? Are we talking to whom

we think we are talking to, privately or not?

o Integrity - has the system been compromised/altered already?

Information security is a necessary underpinning for further advances in
electronic business. Technologies such as session encryption, firewalls, virtual
private networks, wireless LLANs, and digital certificates have all emerged as
pieces of the solution. While each is designed to enhance some aspect of
information security — whether by restricting access to or preventing the
interception of private data — none of them alone is designed to address the
fundamental security issue that underlies the most damaging information crimes
such as “is the person who is attempting to access protected files or resources an

authentic user or an impostor?” To know this we need to authenticate the user.

2.1. Authentication:
The goal of authentication is to identify a user either directly or indirectly. There
are many possible ways of authentication available. Some of them are passwords,

host-based authentication, physical tokens and biometrics.

2.1.1. Passwords:

Using password is one of the ways of restricting access to documents where the
server administrator needs to be able to control access on an individual basis.
This is called user authentication and requires a user name and password before
being allowed to access a document. Setting up a User authentication takes two
steps, first creating a file name containing the usernames and passwords.
Secondly, telling the server what resources are to be protected and which users

are allowed (after entering a valid password) to access them.



2.1.2. Host-Based Authentication:

Host based authentication is situation where authentication takes place based on
the host information, rather than the more usual method of prompting for a
password. This is very convenient if a non-interactive process is trying to
authenticate with a remote machine. SSH relies on such authentications and uses

public and private key pairs to establish a secure connection.

2.1.3. Physical Tokens:

Physical Token includes physical devices that are used to compute the credentials
presented to the verifier as well as software files that must be possessed by the
claimant in order to compute the credentials. Examples of physical devices
include smart cards, magnetic stripe cards and one-time password generators.
Software files will typically contain secret or private keys that are used to compute
credentials; however physical devices may contain these keys as well. These

physical devices are sometimes called authentication tokens or dongles.

2.1.4. Biometrics:

Biometrics includes something inherent to a person. In this category, human
physical characteristics such as fingerprints, facial features, heat signature of head,
retinal scans, handwriting or voice are used to produce the credentials. There are
many biometric devices available. An example of biometric is the car Lexus 430s
model 2004 which uses a fingerprint recognition system to identify its owner. The
owner’s fingerprint is scanned when he opens the door handle which uses

fingerprint recognition technology to authenticate [3].

No matter what kind of authentication we use, it is impossible to have a
completely secure system. But we can make it as hard as possible for the person

trying to breach.



Today, the most common form of authentication is password control. In general,
technologies for authenticating a potential user of an information system are
organized into three identification factors: something you know, something you
have, and something you are. An example of something you know is a password
or a personal identification number (PIN), something you have is a physical token
such as a smart card and something you are is a biometric such as a fingerprint.
An application can use either one of these authentication techniques or a
combination of two or more of these techniques. However, each of these factors
is vulnerable to attack if used alone or in pairs. Highly secure systems can use
multiple factors to secure their systems. We will next discuss about one factor,

two factor and three factor authentications.

2.2. One Factor Authentication:

One factor authentication relies on one of the above three factors for
authentication. Using a password is one of the most common one factor
authentication used. Unfortunately, passwords can be easily misapplied and
provide a weak level of security. One reason is that users tend to pick simple
passwords that are easy to remember. Some of the ways passwords can be

compromised are as follows.

e If a dictionary word is used as a password, it is a fairly quick and easy
task for a computer program to try every English word and guess the
password. Policies for ensuring secure passwords result in greater
inconvenience for users, in turn causing users to write down the
passwords or use passwords that can be easily memorized. In addition,
typical users use the same password for multiple accounts, further

degrading security.



Keystroke Monitoring is monitoring and storing every keystroke a
person makes on keyboard. Using special software, passwords are easily
lifted, leading to a potential security compromise. In more extreme
situations, a monitor’s emissions can be read and deciphered, revealing

everything displayed on the screen [8].

Password cracking tools such as brute force that allow an attacker to
automate the process of guessing user passwords are readily available for
download from the Internet, making it relatively easy to crack the average
password. This type of security breach is a result of repeated login

attempts with different key combinations or words.

Furthermore, many successful attacks are accomplished using passwords
obtained from social engineering (an attacker’s use of clever
manipulation to trick trusting users into divulging password information),
a problem that even the best of corporate password policies find difficult

to address|0].

Using Man-in-the-Middle Attack, a computer is set up as an interface
between a client computer and the server that handles authentication.
The computer in the middle accepts the client’s password as if it were the

server and logs in to the server using the client’s identity.

Network Monitoring, also known as sniffing, occurs when a computer
on a network looks for message streams that contain words such as
“password” or “login.” This is especially common in Ethernet networks
where every computer on the network can easily read any network traffic.
Streams containing passwords can be stored and used to gain

unauthorized access [8].



Password security mechanisms can be strengthened further through the use of
“one-time passwords.” One-time passwords can be implemented through either
software or hardware. But one One-time passwords have their own set of
complications. User error is a common problem with password generators
because users must manually enter each password during the authentication
process. This can be cumbersome when repeated many times and can increase
the likelihood of repeated errors. Session-based authentication is vulnerable to
‘session hijacking’ because the end-user is able to leave the computer unattended
while the authenticated session is still active. In addition back-end management of
password generation environments is time consuming and costly as databases and

servers must be retooled to accommodate the changing password requirements

[8]-

2.3. Two factor Authentication:

When two factors are used to authenticate, it is called two factor authentication.
The two factors involved may be any two of three methods: passwords, physical
tokens or biometrics. Two factor authentications are better than one factor
authentication because, if passwords are the only ones used, there is a probability
for the password to be compromised. Passwords with physical tokens such as a
smart card can be used for two factor authentication. This type of authentication
is resistant to single-factor attacks including keystroke monitoring, social
engineering, man-in-the-middle attacks, network monitoring, and password
cracking. One example in daily use is the Bank application where the user is

prompted to enter his card after which he is prompted for a pin.

Many applications use a smart card with a password. To authenticate to an
information system or network, the user will insert his/her smart card into a
hardware reader connected to a workstation or laptop computer. The processor

on the smart card will encrypt a text string with the user’s private key and the



authentication server decrypts using the public key. In this approach, the user’s
private key never has to be communicated outside of the smart card and never
leaves the smart card’s circuitry. This helps preserve the integrity of the private

key.

Systems using this form of two-factor authentication are vulnerable to attacks
through theft of the hardware token coupled with the use of password

compromise techniques mentioned above.

An example of a product which uses two factor authentication and goes beyond a
simple static password is DataCard. Datacard's Two-Factor Authentication is

designed to curb network and e-commerce abuse [7].

2.4. Three factor Authentication:

Three factor authentication systems relies on three factors for authentication:
something you know such as password, something you possesses such as a
physical token, something you are, a biometric characteristics. Using a
combination of all three makes the security system stronger. Biometrics is one of

the most reliable and most widely used forms of authentication these days.

Having three factors makes it difficult to cheat a system, thus strengthening the
security. There are many companies and software products that use three factor
authentication. Some companies and software products in today’s market which
use three factor authentication are given below along with the factors each use for

three factor authentication.

Fortress Technologies, the market leader in securing wireless LLANSs, uses
three-factor authentication, a pioneering approach to multi-tiered network

authentication for wireless enterprises [4]. The three-factor approach, unique to



Fortress AirFortress wireless security gateway, has three layer of authentication,

Network Authentication, Device Authentication and User Authentication.

Dekart Logon, a software program designed to add the strong authentication
and convenience to the standard Windows logon procedure allows to access
Windows driven computers and domains in an easy, fast and secure way by using
different types of hardware keys. The login and password of the user are entered
automatically once the hardware key is connected to the computer. Users gain the
flexibility to select from different smart cards, hardware tokens, as well as USB
flash drives and other types of removable media to provide fast and convenient

two- or three-factor authentication within their Windows environment [5].

Lock-Out 2000 Biometric Authentication Editionis a combination of
Biometric Middleware and Authentication Middleware. The core module of
Lock-Out 2000 Biometric Authentication Middleware is designed to
engage three-factor's of authentication access. The security administrator of the
workstation assigns a unique wearable Java-powered iButton to the user and then
assigns a PIN number for (two-factor) authentication, similar to any bank ATM
machine. The administration utility tool then acts as the Biometrics enrollment
station, whereby the users look straight into a camera and is enrolled in less
than 20 seconds with 11 default pictures. This authentication assures a 90-100%

verification results.

TRIO VAULT™ combines 3-factor user authentication, a single-sigh-on
solution, and access management into a single, integrated Palm OS® application
that interfaces seamlessly with the existing network security infrastructure and
eliminates the need for authentication and single-sign-on servers. TRIO
VAULT™ requires users to authenticate themselves to a PDA using all three

factors of authentication. The PDA then authenticates the user to the service user

10



wants. Because the PDA manages the creation and use of passwords for each
account, users no longer have a need to remember passwords for individual

accounts [6].

This Thesis implements an application with Three factor authentication using
passwords, a Java Ring (a physical token) and fingerprint recognition (biometric).
The next chapter gives an introduction to the Java Ring and discusses the security

issues of a Java Ring and the communication in a Java Ring.

11



Chapter 3

JAVA RING

3.1. Introduction to JavaRing:

A Java Ring is a wearable finger ring that contains a small microprocessor. The
Java Ring is an extremely secure Java-powered electronic token with a
continuously running, unalterable real time clock. The rugged packaging of the
Java Ring makes it suitable for many applications. The jewel of the Java Ring is

the Java iButton.

Figure 3.1 Java Ring

The Java Rings made their appearance at 1998 Java One Conference.

The iButton is a one-million transistor; single-chip trusted microcomputer with a
powerful Java virtual machine (JVM) housed in a rugged and secure stainless-steel

case [9].

Figure 3.2: iButton

12



When coming to secure internet transactions, the two most fundamental
problems with internet transactions involving sensitive information are
authentication and secure transmission of the data. By eavesdropping, someone
can gain information about a person and steal his identity. The iButton provides
for secure end-to-end internet transactions—including granting conditional access
to Web pages, signing documents, encrypting sensitive files, securing email and
conducting financial transactions safely - even if the client computer, software
and communication links are not trustworthy. When PC software and hardware
are hacked, information remains safe in the physically secure iButton chip. The

ibutton connects to computers with a Blue Dot receptor [10].

Figure 3.3: Blue Dot Receptor

These are some of the functions that can be done by simply pressing the Blue

Dot with the iButton:

e Granting access privileges to sensitive information on a conditionally

accessed Web page using PKI challenges/response authentication.

e Signing documents so the recipient can be certain of their origin. For

example, you can write and sign an expense report. Or you can author a

13



newspaper story, sign it at your vacation home and email it to the

publisher.

e Encrypt and decrypt messages, securing email for the intended eyes only.

® Conduct hassle-free monetary transactions—print your own electronic

postage stamps or prints, write, and sign your own electronic checks [10].

3.2. iButton:
The iButton is a self-powered computer chip with networking serial number

housed in a 16mm stainless steel can.

Figure 3.4: Self-powered computer chip in an
iButton

The iButton form factor has a computer chip with a unique way of
communication by touch contact of the button to a variety of read/write devices.
iButton makes many capabilities which are limited to a stationary or hard-wired
computer, portable and universally available. Among these capabilities are user-
accessible memory, timekeeping, temperature measurement or logging, and

encryption computation.

It has the ability to perform large integer modular exponentiations at high speed

which is central to RSA encryption, Diffie-Hellman key exchange, Digital

14



Signature Standard (FIPS 186), and many other modern cryptographic

operations.

Each iButton has a unique 8-byte serial number and guarantees that no two serial
numbers are the same. Each iButton can be easily used in a network with its serial

number as an address for Internet connection.

As mentioned earlier, an iButton communicates with a processor by a simple
touch to a 1-Wire interface called a Blue Dot Receptor. The iButton is ideal for
applications where information needs to travel with a person or object. Some
iButtons are memory devices that can hold files and subdirectories and can be
read and written like small floppy disks. There are iButtons with password-
protected capabilities for a file for security applications where the iButtons counts
the number of times the files have been rewritten for securing financial
transactions, point-of-sale transactions, remote access authorization, data logging

(including time and temperature), maintenance and quality control.

Java Ring with the iButton can be carried around as an accessory for many
reasons. Passwords are difficult to keep as a secret. They can be stolen. Short
passwords are easy to guess where as long passwords are difficult to remember
and tend to be written down. There are many password breaking tools available
such as brute force, scanning word lists and using patterns. Many network

applications transmit passwords clear over the network.

Java Ring with the iButton can overcome the deficiencies of the secret passwords.
It can be used to store the secret passwords and private keys needed to conduct a
transaction. Using the iButton, the keystrokes can be eliminated with a quick,

intentional press of the Blue Dot.

15



The receptor has an adapter that connects to the computer's serial, parallel, or
USB port. Communication is established when an iButton is touched to the Blue
Dot receptor. The iButton draws the power it requires to operate from the
connection. When not in contact with a receptor, the state of the Java virtual

machine and memory is maintained with lithium backup power.

Java iButton is Java Card 2.0 compliant. Java iButton, can be used to write applets
that can be compiled with the standard tools available from Sun Microsystems.
These applets can be loaded into the Java iButton, and run on demand to support
a wide variety of financial applications. The Java Card 2.0 specification provides

the opportunity to implement a useful version of the JVM and runtime
environment with the limited resources available to a small processor. Java Card

and its related topics are discussed in chapter 3.

3.2.1. How secure is iButton:

The National Institute of Standards (NIST) and the Communications security
Establishment (CSE) have validated a version of the crypto iButton for
protection of sensitive, unclassified information. FIPS 140-2 validation assures
government agencies that the products provide a trusted, physically secure

module to propetly protect secure information [10].

The stainless steel case of the device provides clear visual evidence of tampering
thus providing extraordinary security. The monolithic chip includes up to 134K
of SRAM that is specially designed so that it will rapidly erase its contents as a
tamper response to an intrusion [10]. Rapid erasing of the SRAM memory is
known as zeroization. When an iButton detects any intrusion, it erases its private
keys leading to zeroization. Any attempt to uncover the private keys within the

SRAM made by an attacker are thwarted because the attacker has to both

16



penetrate the iButton's barriers and read its contents in less than the time it takes

to erase its private keys.

There are specific intrusions that result in zeroization. Opening the case of the
iButton, removing the chips metallurgically bonded substrate barricade, micro-
probing the chip or subjecting the chip to temperature extremes leads to

zeroization.

In addition to above, the sole I/O pin is designed in such a way that if an excess

voltage is encountered, the I/O pin fuses and renders the chip inoperable.

The U.S. Postal Service's (USPS) Information Based Indicia Program Postal
Security Device Specification is intended to permit printing of valid U.S. postage
on any PC. This required a combination of two areas of expertise, cryptographic

security and high resistance to attack by hackers.

With it zeroization capability and the private key, crypto iButton is one of the
least counterfeitable devices. It would destroy itself rather than reveal its secret
when tampered. The iButton in the Java Ring is Java Card 2.0 compliant. Java
Card is a type of smart card. Next chapter explains what smart cards and Java

Cards are and how they work and a closer look at writing applets in Java Card.

The iButton provides different pins such as User PIN, Admin PIN and Master

PIN that can be set on the ibutton to control the operations on the iButton.

3.3. Java Card Technology

The iButton is Java Card 2.0 compliant. A Java Card is a type of smart card that is
enabled to work with Java Card Technology. To understand how a Java Card
works and communicates, we need to know how a smart card works and its

communication model. The next section gives an introduction to smart cards and

17



discusses how smart cards communicate. The Java Card section discusses about

Java Card, how Java Card communicates and how the applets run in a Java Card.

3.3.1. Smart Card:

Smart cards are small computing devices that act as tokens to enable services that
require security. A smart card is a type of chip card, embedded with a computer
chip that store and transact data between users. This data in a smart card is
associated with either value or information or both and is stored and processed

within the card’s chip which is either a memory or microprocessor.

A smart card resembles a credit card in size and shape, but inside it is an
embedded 8-bit microprocessor. There are two basic kinds of smart cards: An
intelligent smart card contains a microprocessor and offers read, write, and
calculating capability, like a small microcomputer. A memory card, on the other
hand, does not have a microprocessor and is meant only for information storage.

A memory card uses security logic to control the access of memory [12].

In all, there are five types of smart cards:

1. memory cards

2. processor cards

3. electronic purse cards

4. security cards

5. JavaCard

Here processor card is the intelligent smart card.

18



A smart card can communicate by inserting it into a Card Acceptance Device
(CAD), which may be connected to another computer. The Card Acceptance
Device can be a terminal, reader, or interface device. They all provide the same
basic functions such as supplying the card with power and establishing a data-

carrying connection.

Smart Card Communication model:

The Communication takes place in a smart card by inserting Smart Cards into a
CAD which is connected to some computer, where the applications reside. These
applications are known as host applications. The host applications communicate
by sending commands to the applets in the smart cards. These commands are
known as Command APDUs (Application Protocol Data Unit). APDU contains
cither a command or a response message. In this card model, the master-slave
model is used whereby a smart card always plays the passive role. In other words,
a smart card always waits for a command APDU from a terminal. It then
executes the action specified in the APDU and replies to the terminal with a
response APDU. Command APDUs and response APDUs are exchanged
alternatively between a card and a terminal. A detail look at APDU is given in the

Java Card section of the chapter.

Smart Card Applications:

Smart Cards are used in many applications these days. Smart cards greatly
improve the convenience and security of any transaction. They provide tamper-
proof storage of user and account identity. Smart cards also provide vital
components of system security for the exchange of data throughout virtually any
type of network. They protect against a full range of security threats, from
careless storage of user passwords to sophisticated system hacks. Multifunction

cards can also serve as network system access and store value and other data.

19



Smart Cards are used for many applications. Smart cards can be used with a
smart-card reader attachment to a personal computer to authenticate a user. Web
browsers can use smart card technology to supplement Secure Sockets Layer
(SSL) for improved security of Internet transactions. Smart-card readers can also

be found in mobile phones and vending machines.

The most common smart card applications are:

e (Credit cards

e Electronic cash

e Loyalty systems (like frequent flyer points)

e Banking

o Satellite TV

® Government identification [14]

3.3.2. OpenCard Framework :
Using a smart card requires an interface for the user to be able to read the card
and communicate with it using an application. These interfaces are implemented

by OpenCard framework.

OpenCard is an open standard that provides inter-operability of smart card
applications across network computers, POS terminals, desktops, laptops, set
tops, and PDA’s. OpenCard can provide pure Java smart card applications. Smart
card applications often are not 100% pure because they communicate with an

external device or use libraries on the client.

20



OpenCard provides a framework by defining interfaces that must be
implemented. Applications using smart cards can read and communicate by
implementing the interfaces defined by OpenCard framework. Once these
interfaces are implemented, other services in the upper layers of the API can be

used.

OpenCard Framework architecture:
The architecture of the OpenCard Framework is made up of the CardTerminal,
the CardAgent, the Agents and/or applications that interact with these

components. OpenCard consists of four Java packages with the prefix opencard:

1. application

3. agent
4. terminal

The figure below gives an overview of the OpenCard Framework architecture.

Applications

CardlO ] Card Application CardAgentExtensio
LS

I CardAgent

‘ Card Terminal

Figure 3.5: OpenCard Framework Architecture
The packages opencard.application and opencard.io provide the high-level API

used by the application developer. Classes in opencard.agent and

opencard.terminal packages provide the services needed by the high-level API.

21



The opencard.agent package abstracts the functionality of the smart card through
the CardAgent. The opencard.terminal package contains classes to represent the
card-terminal hardware, to interact with the user, and to manage card-terminal
resources. A card terminal abstracts the device that is used in a computer system

to communicate with a smart card.

3.3.3. Introduction to JavaCard

JavaCard was introduced by Schlumberger and submitted as a standard by
JavaSoft [15]. Java Card is a smart card with the potential to set the overall smart
card standard, and is comprised of standard classes and APIs that let Java applets
run directly on a standard ISO 7816 compliant card [15]. Java Cards enable secure

and chip-independent execution of different applications.

A Java Card means a smart card that is enabled to work with Java Card
Technology. Java Card Technology allows applets written in the Java language to
be executed on smart cards. A Java card is a smart card that is able to execute
Java byte code, similar to the way Java-enabled browsers can execute. But
standard Java with all of its libraries is far too big to fit on a smart card. A
solution to this problem is a stripped-down flavor of Java. Java Card is a special,
stripped-down version of Java that runs on a smartcard itself. In whole, Java Card
Technology provides JCRE (Java Card Runtime Environment) together with
other classes and APIs for developers to create applets to be executed on smart
cards. It is based on a subset of the Java API plus some special-purpose card
commands. Unlike smartcard products which have only one application per card,
Java Card allows smart cards to have multiple applications on them. The
minimum system requirement is 16 kilobytes of read-only memory (ROM), 8

kilobytes of EEPROM, and 256 bytes of random access memory (RAM).

The system architecture on the Java Card is illustrated in the following figure.

22



Applet | Applet | Applet

Industry Add on Classes

Figure 3.6: Java Card System Architecture

As shown in the figure, the Java Card VM is built on top of a specific integrated
circuit (IC) and native operating system implementation. The JVM layer hides the
manufacturet's proprietary technology with a common language and system
interface. The Java Card framework defines a set of Application Programming
Interface (API) classes for developing Java Card applications and for providing
system services to those applications. Add-on libraries to provide a service or to
refine the security and system model are supplied by specific industry or business
supplies. Java Card applications are called applets. Multiple applets can reside on
one card. Each applet is identified uniquely by its AID (application identifier), as
defined in ISO 7816 [19].

The Java Card virtual machine separates applications from the underlying
hardware and operating system. The Java Card platform’s standardized API
provides a uniform interface to disparate smart cards. This unique approach uses
the widely-understood benefits of object-oriented programming to enable

security at both the application and platform level [22].

Due to limited memory resources and computing power, the Java Card

specifically, does not support:

e Dynamic class loading

23



e Security manager

e Threads and synchronization

e Object cloning

e Finalization

Large primitive data types (float, double, long) and char data type [17]

3.3.4. Java Card and OpenCard:

An OpenCard Framework is Java in the computer or terminal talking to a
smartcard. Java applications running on a PC can use OpenCard to access Java
Card smart cards and standard smart cards. Java applets (also known as cardlets)
can be written and run on Java Card which is compliant with the Java Card
standard. OpenCard is the ideal host-side application framework for accessing
Java Card. Any smart card to access Java Card needs a card service which

supports the interfaces of Java Card applet [13].

3.3.5. Java Card Applets:

When a Java Card is inserted, the Card Acceptance Device (CAD) accepts the
Java Card and selects an applet which sends a series of commands to execute.
Each applet in a Java Card is identified and selected by its unique Application
Identifier (AID). Commands are formatted and transmitted between the
application and the applets using Application Protocol Data Units (APDU).
Applets reply to each APDU command as status words. Applets can optionally
reply to an APDU with other data. The communication between the applet and

the application are discussed in detail in the next part.

Briefly, applet designing requires:

24



e Specifying the working functionality of the applet

e Requesting and assigning AIDs to both the applet and the packages

containing the applet class

e Designing the class structure of the program and

e Defining the interface between the applet and the terminal application.

Interface between an Applet in Java Card and Its Terminal Application:
The APDU is like an interface between an applet and the application hosted on

the CAD. All the communication between an applet and the application hosted
on the Cad is carried by the APDU.

APDU (Application Protocol Data Unit):

e APDU commands are always a set of pairs. Each pair contains a
Command APDU and a Response APDU. A Command APDU specifies
a command sent by the application through a CAD, and response APDU

specifies the result executed by the applet.

e The terminal application sends a command APDU through the CAD.
The JCRE receives the command and either selects a new applet or
passes the command to the currently selected applet, which processes the
command and returns a response APDU to the terminal application.
Command APDU and response APDU are exchanged alternately
between a card and a CAD.

e APDU Format

25



Command APDU

Mandatory header | Optional header

CLA INS P1 P2 Ic Data Le
Field

CLA (1 byte): Class of instruction -- indicates the structure and format for a
category of command and response APDUs.

INS (1 byte): Instruction code: specifies the instruction of the command.
P1 (1 byte) and P2 (1 byte): Instruction parameter.
Lc (1 byte): Number of bytes present in the data field of the command.

Data field (bytes equal to the value of Lc): Data in the form of sequence of
bytes.

Le (1 byte): Maximum of bytes expected in the data field of response

command.
Response APDU
Optional Body Mandatory trailer
Data field SW1 | SW2

Data field (variable length): A sequence of bytes received in the data field of
the response.

SW1 (1 byte) and SW2 (1 byte): Status Words -- denote the processing state
in the card.

Figure 3.7: Command and Response APDU
Structure

CLA - The CLA field is meant to be used as control data. Normally, each applet
has one CLLA. A normal use of the CLA field is to insure that the host is talking
to the correct applet. For example, normally, the first thing that occurs in the
process method is to check whether the CLA in the commandAPDU just
received matches the CLA of that applet. If not, it should return with an error.

Example:

26




final static private byte THIS_APPLET CLA = (byte)0x80;

public void process(APDU apdu)

{
byte[] buffer = apdu.getBuffer();

//Check for a valid CLA.
if(buffer[ISO.OFFSET_CLA] = THIS_APPLET_CLA)

{
ISOException.throwIt(ISO.SW_CLA_NOT_SUPPORTED);

}

INS - The INS field is meant to be used to tell the applet what instruction the
host wishes to be performed. The particular value of the instruction bytes do not
matter, as long as the applet and host both know what numbers each instruction
corresponds to. For example, both a host and its corresponding applet might

have the following declarations:

// BEGIN INSTRUCTION DECLARATIONS

public static final byte BASICS_CLA = (byte)0x80;
public static final byte BASICS_INS_STORE_NUMBER = (byte)0;
public static final byte BASICS_INS_GET_NUMBER = (byte)1;

// END INSTRUCTION DECLARATIONS

The process method would perform the appropriate instruction by doing a switch

on the INS field of the apdu, calling the appropriate method:

//Call the appropriate dispatch method for the given INS.
switch (buffer[ISO.OFFSET_INS))
{
case BASICS_INS_STORE_NUMBER:
store_numberDispatch(apdu, buffer[ISO.OFFSET_P1],
buffer[ISO.OFFSET_P2));
break;

27



case BASICS _INS_GET NUMBER:
get_numberDispatch(apdu, buffer[ISO.OFFSET_P1],
buffer[ISO.OFFSET_P2));
break;

default:
ISOException.throwIt(ISO.SW_INS_NOT_SUPPORTED);
}

P1 & P2 - The P1 and P2 fields are normally used as additional control data. For
example, if you had an instruction to sort a byte array on the iButton with the
option to sort forwards or backwards. You may not want to break that up into
separate instructions. Instead, you could pass the same instruction, and set a value

of P1 or P2 to indicate how the array should be sorted.

DATA - This field contains the data (in the form of a byte array) sent. An

example of how to access this data follows:

public void process(APDU apdu)
{

byte[] buffer = apdu.getBuffer();
apduData = new byte[buffer[ISO.OFFSET_LC] & 0x0FF];
short apduDataOffset = 0;
//Read in the entire APDU.
short bytesRead = apdu.setIncomingAndReceive();
//Loop until all bytes have been read.
while (bytesRead > 0)
{
Util.arrayCopyNonAtomic(buffer, ISO.OFFSET_CDATA, apduData,
apduDataOffset, bytesRead);
apduDataOffset += bytesRead;
bytesRead = apdu.receiveBytes(ISO.OFFSET_CDATA);

}

/BB oRok

* The byte array apduData now contains the

* data sent from the host to the applet.
***********************************************/

28



Functionality inside a Java Card:

Inside a Java Card, JCRE (Java Card Runtime Environment) refers to the Java
Card virtual machine and the classes in the Java Card Framework. JCRE assigns
the unique AID to each applet within a Java Card. After an applet is correctly
loaded into the card's persistent memory and linked with the Java Card
Framework and other libraties on the card, JCRE calls the applet's install method
as the last step in the applet installation process. A public static method, install,
must be implemented by an applet class to create an instance of the applet and

register it with JCRE.

An applet on the card remains inactive until it is explicitly selected. The terminal
sends a select APDU command to JCRE. JCRE suspends the currently selected
applet and invokes the applet's deselect method to perform any necessary
cleanup. JCRE then marks the applet whose AID is specified in the select APDU
command as the currently selected applet and calls the newly selected applet's
select method. The select method prepares the applet to accept APDU
commands. JCRE dispatches the subsequent APDU commands to the currently

selected applet until it receives the next select APDU command.

3.4. Programming in iButton :
Programming for the iButton requires writing both a host application and an
iButton applet. These two are completely separate Java programs that will

communicate with each other but be executed on two different machines.

The host application resides on a personal computer or embedded system. Its
function is to send control instructions and data to the iButton applet, collect and
interpret the response data received, and output the results in some form to the
user. A detailed explanation of the structure of a host application is given in the

Host Application Structure part of this section.

29



The applet is downloaded and run on the iButton itself. Once installed and
selected to run, it waits to process host instructions. A detailed explanation of the
structure of an iButton applet is given in the iButton Applet Structure part of this

section.

3.4.1. Host Application Structure:
The host application is responsible for controlling the iButton applet. It allows a
user to interact with the applet, sending command instructions and displaying

Output.

The host code, with full security access, has complete control of the iButton. It
can retrieve and erase an iButton's contents, download an applet, or select a

particular applet already installed on the button to run.

Host Interface

A host application must implement opencard.core.event.CTListener. This allows
the host application to receive events when an iButton is inserted or removed. A
host that implements CTListener must implement the methods cardInserted and
cardRemoved. A CardTerminalEvent is the parameter to these methods, and can

be used to obtain a SlotChannel, which is used to send APDU's to the iButton.

Host and Applet Commnnication

As mentioned before, because iButton is Java Card 2.0 compliant, the host and
applet in iButton communicate using APDUs. The host sends CommandAPDUs
to the iButton, each containing an instruction and any data which needs to be
sent. The iButton processes the instructions and sends a Response APDU back to
the host that contains any data to be returned plus a status word that indicates
whether or not the instruction completed successfully. The data in the command

and the response APDU is sent in the form of a byte array. A successful

30



execution, which means no errors or exceptions, occurred in processing the

instruction is indicated with a status word of 0x9000 [21].

The host application must know the class and instruction bytes of each iButton
applet it expects to control. These bytes are passed in the CommandAPDU
header and will tell the applet what action to perform. The class byte is generally
used as identification for the applet. Normally, most applets have one class byte
(usually named CLASSNAME_CLA) that it references each time a
CommandAPDU arrives from the host application. If the class byte sent from
the host doesn't match the class byte of the applet, it throws an
ISO.SW_CLA_NOT_SUPPORTED exception. In concert with the instruction

byte, it can be used to act as additional control data.

Since a host application can't make a remote function call on the iButton, it has to
send commands to indicate what functions to call or what actions to perform.
The instruction byte of the CommandAPDU carries this information. Suppose
an applet has designated the byte 0x04 to perform ‘exclusive or’ on two
hardcoded integers, the host knows it wants the iButton to perform this action, it
would send a CommandAPDU with applet's class byte and an instruction byte of

0x04.

The structure of a Host Application is shown below: [21]

Minimal Host Application, OpenCard API

import opencard.core.event.*;

import opencard.core.service.®;

import opencard.core.terminal.*;

import opencard.opt.applet.*;

import java.util.*;

import java.io.%;

public class ocf_Host implements CTListener

31



{

public static final byte OCF_CLA = (byte)0x80;

public static final byte OCF_INS_EXECUTE = (byte)0;

/¥

* Sets up the listener for iButton inserted and iButton

* removed events.

*

* @param appletPath the path to the applet that should
be loaded into the iButtons.

* @param appletName the name of the applet that should

* be loaded into the iButtons.

*/

public ocf_Host()

{

] Rk ook

//* Add any initialization code here. *

[ JFRRRRRRR ROk
oy Ao
opencard.core.service.SmartCard.start();
CardTerminalRegistry reg = CardTerminalRegistry.getRegistry();
reg.addCTListener(this);
reg.createEventsForPresentCards(this);
4 catch(Exception e)

System.out.println("Caught an exception: "+e.toString());
System.exit(0);
H
§
/¥
* Called when an iButton gets inserted.
*

* (@param event the insertion event.
*/
public void cardInserted(CardTerminalEvent ctevent)

{

System.out.println("Card has been inserted");
SlotChannel sc = null;

oy o

JFRRRRRR o ooRoRoRcsoRoRoRoRoRoRoRoRopkok

* Note that a SmartCard object and a SlotChannel *
* object cannot both exist at the same time. One *
* must close so you can open the other! *

32



***************************************************/

CardTerminal ct = ctevent.getSlot().getCard Terminal();
int slotid = ctevent.getSlot().getSlotID();
Object lock = new Object();
sc = ct.openSlotChannel(slotid, lock);
//*****************************************
//* Insert any code to be done when *
//* an iButton is inserted here, *
//* using the SlotChannel object 'sc' ~ *
//*****************************************
executeDispatch(sc);

} catch(CardTerminalException cte)

{
System.err.printin("ERROR:  CardTerminalException occurred while

communicating with iButton.");

cte.printStackTrace();

} catch(IOException ioe)

{ System.out.println("IO Exception");
ioe.printStackTrace();

} catch(Exception e)

{

//Exceptions that occur in iButtonInserted events
//will be drained in the OpenCard internals if we
//don't catch them here.
System.etr.println("Exception in cardInserted:");
e.printStackTrace();

}

finally {
//we must ALWAYS close the slot channel!!!
try
{ if (sc!=null)

sc.close();

} catch(CardTerminalException cte)

// drain

33



iButton Applet Structure:

The iButton applet runs on the iButton itself. It receives and executes
instructions from the host. After an applet has been downloaded to the iButton
and selected, it waits for Command APDU's to be sent from the host. When an
APDU is received, the applet's process method is called to handle the command.
The process method should perform the correct function for the instruction
contained in the APDU and will automatically return a Response APDU. This
response APDU contains any data the applet writes out, and a status word

indicating the success or failure of executing the instruction.

Data Types

The iButton applet has the following data types available: int, short, byte,
boolean, and one dimensional arrays. There is no String data type available on the
iButton. String data should be saved into a byte array in order to be used in an

iButton applet.

Structure:

An applet written to run on the Java ring follows a very simple structure. The
iButton applet must extend javacard.framework.Applet and must override the
constructor, the install method, and the process method. The constructor must
first make a call to the register() function, which registers this applet with the
JCRE (Java Card Runtime Environment). The process of writing an applet is very
similar to applet programming in that there are several methods that you have to

override. These methods are:

e desclect -- another applet, or possibly this one, is about to be selected

e install -- installs the applet

e process -- incoming APDUs arrive here

34



® register -- register applet

e select -- called when a select command is received

The static install method should create a new instance of this applet. The process
method should perform the appropriate function based on the instruction passed
in the APDU. The process method will be called when the applet is selected. So it
should check to see if selection is the reason it is being called. (If the applet is

being selected, then the CLA will be 0x00, and the INS will be 0xA4.)

The workings of the process() with the APDU is shown in the figure below. The
APDU commands are sent from the host (client) application as shown in the

figure below.

Reader-Side Card Sie
Commands Commands Apple;
Bad:-End e I " ./'
Applicaon -1+ Huzt APOLs i APl S
R ||| e Applet,

Figure 3.8: Workings of the APDU from the reader
side to the card side

The basic structure of an iButton applet is as shown below

import javacard.framework.*;
public class Basics_Applet extends Applet

{

public Basics_Applet()

{
//Register this applet with the JCRE

register();

35



//**************************************

//* Add any initialization code here. *
| [

}
public static void install(APDU apdu)

{
new Basics_Applet();
h

public void process(APDU apdu)

{
byte[] buffer = apdu.getBuffer();

//Determine if the applet is being selected.

if((buffer[ISO.OFFSET_CLA] == SELECT_CLA) &&
(buffer[ISO.OFFSET_INS] == SELECT_INS))

{

//***********************************

//* Add any code to be executed on *
//* applet selection here. *
| [ RRRRRRAAAAAAAAAAAAAAAAAAAAAAAAAAAK

return;
}
//Check for a valid CLA.
if(buffer[ISO.OFFSET_CLA] != BASICS_CLA)

{
ISOException.throwlt(ISO.SW_CLA_NOT_SUPPORTED);

}
else {
//Call the appropriate dispatch method for the given INS.
switch (buffer[ISO.OFFSET_INS])
{
case BASICS _INS_STORE_NUMBER:
store_numberDispatch(apdu, buffer[ISO.OFFSET_P1],
buffer[ISO.OFFSET_P2]);
break;

case BASICS _INS_GET NUMBER:
get_numberDispatch(apdu, buffer[ISO.OFFSET_P1],
buffer[ISO.OFFSET_P2));
break;

36



default:
ISOException.throwIt(ISO.SW_INS_NOT_SUPPORTED);

Java developers must override at least the install and process methods of the
super class, Applet. In simple applets such as Business Card discussed next, install
simply constructs a new instance. It is the job of the constructor to register the

applet with the Java Card runtime environment (JCRE).

The following code segment demonstrates how to override the install method. [9]
The install method is normally used to set up the applet environment. Simple
applets may be ready to run after calling install. More complicated applets may
require additional initialization sequences. The code in the process method is not

given below.

class BusinessCard extends Applet {
public BusinessCard() {
// Register our applet with the JCRE
register();

}
public static void install(APDU apdu) {

new BusinessCard();

b
public void process(APDU apdu) throws ISOException {

In order to communicate with the host, the card terminal, the applet must

implement the process method. This method is invoked on the selected applet

37



whenever a command APDU is received from the host. Following is a segment
of BusinessCard's implementation of the process method. Its structure is typical

of Java Card applets.

public void process(APDU apdu) throws ISOException {
byte[] buffer = apdu.getBuffer();
// process selects separately

if (buffer[ISO.OFFSET_CLA] != BC_CLA) {
// Don't know what to do with this instruction
throw new ISOException(ISO.SW_CLA_NOT_SUPPORTED);
}
else {
switch (buffer[ISO.OFFSET_INS]) {
// Store new business card data
case BC_INS_STORE:
businessCardStore(apdu);
break;
// Send business card data to the host
case BC_INS_RETRIEVE:
businessCardRetrieve(apdu);
break;
// Don't know what to do with this instruction
default:
throw new ISOException(ISO.SW_INS_NOT_SUPPORTED);

h
b
}

As mentioned before, the main purpose of the process method is to invoke the
correct dispatch method. If process has trouble understanding the header, it will

throw an instance of ISOException with the appropriate status code.

38



3.5. Java Card Applet Example:
The following example is an electronic wallet application, which stores electronic
cash. The wallet handles read_balance, deposit, and debits APDU commands.

Access to the wallet is authenticated by an owner PIN [17].

The example is formatted in two columns: The left column contains Java code
with Java style comments; the right column provides further explanation of the

code that it lines up with on the left side.

package bank.purse; Java Card supports
package and identifier

name convention as in

standard Java
import javacard.framework.*;
import javacardx.framework.*;
public class Wallet extends Applet { An applet is an instance of

a class which extends from

/* constants declaration */ javacard.framework. Applet

// code of CLA byte in the command APDU header CLA identifies the

application
final static byte Wallet_ CLLA =(byte)0xB0;

// codes of INS byte in the command APDU header
final static byte Deposit = (byte) 0x10; INS specifies the
final static byte Debit = (byte) 0x20;

39




final static byte Balance = (byte) 0x30;
final static byte Validate = (byte) 0x40;

application instructions

// maximum number of incorrect tries before the PIN is
blocked

final static byte PinTryLimit =(byte)0x03;

// maximum size PIN

final static byte MaxPinSize =(byte)0x04;

PIN object parameters

// status word (SW1-SW2) to signal that the balance becomes
negative;

final static short SW_NEGATIVE_BALANCE = (short)
0x6910;

Applet specific static word

/* instance variables declaration */

OwnerPIN pin;

byte balance;

byte buffer|];

// APDU buffer

private Wallet() {

// Itis good programming practice to allocate

ptivate constructor -- an
instance of class Wallet is

instantiated by its install

40




// all the memory that an applet needs during its

// lifetime inside the constructor

pin = new OwnerPIN(PinTryLimit, MaxPinSize);

balance = 0;

register();

} // end of the constructor

method. Applet registers
itself with JCRE by calling
register method, which is
defined in class Applet.
Now the applet is visible

to the outside world

public static void install(APDU apdu) {

// create a Wallet applet instance

Method install is invoked

new Wallet(); by JCRE as the last step in
the applet installation
i // end of process
install method
public boolean select() {
// reset validation flag in the PIN object to false This method is called by
pin.reset(); JCRE to inform that this

// returns true to JCRE to indicate that the applet

// is ready to accept incoming APDU.

applet has been selected. It
performs necessary
initialization which is
required to process the

following APDU

41




return true; messages.
}// end of select method
public void process(APDU apdu) { After the applet is

// APDU object catties a byte atray (buffer) to
// transfer incoming and outgoing APDU header
// and data bytes between card and CAD

buffer = apdu.getBuffer();

successfully selected,
JCRE dispatches incoming
APDU s to this method.

APDU object is owned
and maintained by JCRE.
It encapsulates details of
the underlying
transmission protocol (T0
or T1 as specified in ISO
7816-3) by providing a

common intetrface.

// vetify that if the applet can accept this
// APDU message
if (bufter[ISO.OFFSET_CLA] == Wallet_ CLA)
ISOException.throwlt
(ISO.SW_CLA_NOT_SUPPORTED);

When an error occurs, the
applet may decide to
terminate the process and
throw an exception
containing status word
(SW1 SW2) to indicate the
processing state of the

card.

An exception that is not

42




caught by an applet is
caught by JCRE.

switch (buffer[ISO.OFFSET_INS]) {

case Balance: getBalance(apdu); return;

case Debit:

debit(apdu); return;
case Deposit:  deposit(apdu);return;

case Validate: validate(apdu);return

The main function of
process method is to
perform an action as

specified in APDU

and returns an appropriate

response to the terminal.

INS byte specifies the type

of action needs to be

default performed
ISOException.throwlt
(ISO.SW_INS_NOT_SUPPORTED);
}
4 // end of process method
private void deposit(APDU apdu) { The parameter APDU

// access authentication
if (! pin.isValidated() )
ISOException.throwlt (ISO.SW_PIN_REQUIRED);

object contains a data
field, which specifies the
amount to be added onto

the balance.

43




// Lc byte denotes the number of bytes in the data

// field of the comamnd APDU
byte numBytes = (byte) (buffer[ISO.OFFSET_LC]);

// indicate that this APDU has incoming data and

// receive data starting from the offset

// ISO.OFFSET_CDATA

byte byteRead = (byte)(apdu.setincomingAndReceive());

// itis an error if the number of data bytes read does

not

// match the number in Lc byte
if (byteRead I= 1)
ISOException.throwlt(ISO.SW_WRONG_LENGTh);

// increase the balance by the amount specified in the
// data field of the command APDU.
balance = (byte)

(balance + buffer[ISO.OFFSET_CDATA]);

// return successfully

return;

} // end of deposit method

Upon receiving the APDU
object from JCRE, the
first 5 bytes (CLA, INS,
P1, P2, Lc/Le) ate
available in the APDU
buffer. Their offsets in the
APDU buffer are specified
in the class ISO. Because
the data field is optional,
the applet needs to
explicitly inform JCRE to
retrieve additional data

bytes.

The communication
between card and CAD is
exchanged between
command APDU and
response APDU pair. In
the deposit case, the
response APDU contains
no data field. JCRE would
take the status word
0x9000 (normal
processing) to form the
correct response APDU.
Applet developers do not
need to concern the details

of constructing the proper

44




response APDU.

When JCRE catches an
Exception, which signals
an error during processing
the command, JCRE
would use the status word
contained in the Exception

to construct the response

APDU.

private void debit(APDU apdu) {

// access authentication
if (! pin.isValidated() )
ISOException.throwIt(ISO.SW_PIN_REQUIRED);

byte numBytes = (byte)(buffer[ISO.OFFSET_LC);
byte byteRead = (byte)(apdu.setlncomingAndReceive());

if (byteRead I= 1)
ISOException. throwIt(ISO.SW_WRONG_LENGTH);

// balance can not be negative
if ( ( balance - buffer[ISO.OFFSET_CDATA]) < 0)
ISOException.throwlt(SW_NEGATIVE_BALANCE);

balance = (byte)

In debit method, The
APDU object contains a
data field, which specifies
the amount to be

decrement from the

balance

45




(balance - buffer[ISO.OFFSET_CDATA]);

} // end of debit method

ptivate void getBalance(APDU apdu) {

// access authentication
if (! pin.isValidated() )
ISOException.throwlt(ISO.SW_PIN_REQUIRED);

// inform system that the applet has finished processing
// the command and the system should now prepate to
// construct a response APDU which contains data field

apdu.setOutgoing();

// indicate the number of bytes in the data field
apdu.setOutgoinglength((byte)1);

// move the data into the APDU buffer starting at offset 0
buffer[0] = balance;

// send 1 byte of data at offset 0 in the APDU buffer
apdu.sendBytes((short)0, (short)1);

} // end of getBalance method

getBalance returns the
Wallet’s balance in the
data field of the response
APDU.

Because the data field in
response APDU is
optional, the applet needs
to explicitly inform JCRE
of the additional data.
JCRE uses the data array
in the APDU object buffer
and the proper status word
to construct a complete

response APDU.

46




ptivate void validate(APDU apdu) {

// retrieve the PIN data which requires to be valid ated

// the user interface data is stored in the data field of the

APDU
byte byteRead = (byte)(apdu.setlncomingAndReceive());

// validate user interface and set the validation flag in the

user interface
// object to be true if the validation succeeds.

// if user intetface validation fails, PinException would be

// thrown from pin.check() method.
pin.check(buffer, ISO.OFFSET_CDATA, byteRead);

} // end of validate method

} // end of class Wallet

PIN is a method
commonly used in smart
catds to protect data from

unauthorized access

A PIN records the
number of unsuccessful
tries since the last correct
PIN vetification. The catd
would be blocked, if the
number of unsuccessful
tries exceeds the
maximum number of
allowed tries defined in the
PIN.

After the applet is
successfully selected, PIN
needs to be validated first,
before any other
instruction can be

performed on the applet

47




Chapter 4

FINGERPRINT AUTHENTICATOR

4.1. Introduction to Fingerprint Authenticator:

Biometrics is defined in the security industry as a measurable physical
characteristic or personal behavioral trait used to recognize the identity or verify
the claimed identity of a person and biometric identification is the use of

computers to confirm the identity of a user [24].

Unlike other ways of authentication such as passwords — something a person
knows, security device — something a person possess, biometrics deals with
something a person is. While a password and a security device can be stolen, a
biometric cannot be stolen and is always with you. Biometrics have proven to be
an effective solution for high-security access control, ensuring that only
authorized individuals can access protected or secure data. Biometric systems
require controlled and accurate enrollment processes, careful monitoring of
security settings to ensure that the risk of unauthorized entry is low and well-

designed interfaces to ensure rapid acquisition and matching.

There are many types of biometrics available such as fingerprint recognition,
voice recognition, face recognition, retina, iris and DNA. Given below are some

of the biometrics used for authentication purposes [24].

48



Biometric Characteristics

Figure 4.1: Different Biometrics

The first image is a finger print, second a spatial thermogram where an infrared
image of the face is obtained by the heat emitted from the face. The third image
shows the hand geometry, fourth face recognition, fifth heat emitted by the hand,
sixth iris, seventh retina scan where a light is used to scan the retina, eight speech

recognition and ninth signature.

The next image shows how most of the biometrics can have complexities
involved and cannot be accurate all the time. The first image shows how complex
face recognition system works as it has to consider different aspects such as
taking images of the person from different angles as well take the different
expressions of the person into consideration. The second image shows the
handwriting of a person at different times and different conditions (e.g., when the
person is ill or when a person is drunk). In this case, it reveals more information
about the person than required. Using DNA for authentication also has the same
drawback of revealing more information about the person. The next image shows
how a person is disguised in different ways and can fool a face recognition

system. Hence, face recognition also has its set of complexities.

49



FACES CAN LIE.

2]° JaalA
ALE The

RAFIRIER
S[%[E]le

FINCERFRINTS,NEVER.

Figure 4.2: Face Recognition and Handwriting [24]

As the complexity involved with fingerprint is not as much as with other kinds of
biometric authentication, fingerprint authentication is considered a better way of
authentication. Since different fingers have different ridges and characteristics,
these minute details help to identify a person and do not reveal other information
about the person than required. These minute details are permanent for each
person. Even identical twins have different fingerprints. Fingerprints have a long
history and are considered to be unique. Fingerprint impressions in clay tablets
over 2000 years old have been seen in archaeological materials from both China
and the Middle Fast. Fingerprinting received a scientific basis through work
performed in the 19" and 20" century by a wide variety of researchers and

institutions [28].

The problem with fingerprints is that the fingerprint sensor can be fooled. Here

are some of the cases where fingerprint sensors were fooled.

e Dr. Matsumoto used procedures to create gelatin ‘gummy fingers’ that

possessed the same fingerprint geometry and minutiae as a live finger.

50



This can be done by lifting a latent print from a sensor or spoofing with
an easily crafted gummy finger made of a home made gelatin mold [25].
Fingerprints are lifted from objects such as a coffee cup and a gummy

finger is created and touched up using a microscope.

e Reactivating a latent fingerprint by placing a water-filled plastic bag on the
sensor or brushing graphite powder on the sensor and applying pressure
to an adhesive film on top of the powder are some of the other ways of

fooling a fingerprint sensor [20].

e Jatent prints placed on a transparency by simply pressing on the surface.
The prints are increased in clarity and contrast by using a black latent
print powder. After brushing away the excess powder, the latent
fingerprint is lifted using scotch tape. The tape and print is then placed on
to the sensor with the sticky side down and pressure is applied to activate

the sensor. [20].

e A Milpitas, California-based company claims to have addressed some
fingerprint fooling methods with a technology that relies on a
combination of a new algorithm and monitoring of physical changes to

the optical sensor reading the print [25].

e TFactors such as calluses, dryness, moisture or the affects of aging can

affect the image capturing of the fingerprint sensor.

There are many fingerprint authentication products available in the market. The

fingerprint sensor used in this thesis application is an Authentec AES 4000.

51



Figure 4.3: The Entrepad Family Authentec
AES4000

This fingerprint uses Trueprint technology.

4.1.1. TruePrint Technology:

TruePrint based fingerprint sensors are small components that can be easily
designed into almost any electronic device. The user simply places his finger flat
on the sensor surface to activate the system. The sensor generates an image of

the pattern in the finger skin that touches it.

TruePrint technology sensors can capture images from beneath the surface of the
skin where the ridge-and-valley pattern suffers less damage from day-to-day
living. It is this technology that does not let the fingerprint sensor be fooled by a
gummy finger or any of the sensor fooling methods mentioned before. By
looking below the surface layer of the skin, TruePrint Technology reads the real
fingerprint, producing an unaffected, undistorted image, thus avoiding the
limitations of previous techniques where the upper layer of the finger is scanned.
Unlike prior approaches, skin surface conditions such as calluses, dryness,
moisture or the effects of aging do not limit the image capturing ability.
Contaminants such as ink, paint or glue have little or no effect as it is the second

layer that is scanned.

4.1.2. Security concern with storing fingerprints:
The reality is that once personal information such as a fingerprint has been

provided to an external medium the individual no longer has the capacity to

52



control who will be able to peruse or access it. To date, this lack of control has

been subject to the limitations of regulation and of the technology itself.

The authentication system in this project provides a solution. It allows individuals
to control the access themselves - thus rendering individuals no longer impotent
to the vulnerability of computers, databases and software or to accidents,
malfunction or intrusion. This project aims to hand the individual back control of
their identity. This is done by storing the fingerprint in the iButton of the Java
Ring which an individual carries with him. This is discussed in the

implementation part in chapter 5.

4.2. Authentec API:

The fingerprint system used in this thesis provides the developers of the
AuthenTec fingerprint biometrics with AuthenTec Windows Fingerprint System
(AWES) API library. In further sections of the thesis AuthenTec Windows
Fingerprint System is referenced as AWES.

The next part of this chapter goes through the fundamentals of AWES API and

discusses all the terms and functions needed in the thesis.

The AWES API supports a comprehensive set of functions for single application
using a single sensor. It provides functions for fingerprint database management
to store user and fingerprint data and algorithms for extracting template data

from fingerprint images and for matching fingerprint template data.

Below are some of the definitions and terminology used through the project.

Binary Large Object (BLOB): In the context of the AWES, a BLOB is an
application generated array of bytes. An application can specify the size of (in

bytes) and save, retrieve or delete a BLOB of information data for a user. When

53



an enrollment takes place, the template is stored in BLOB. The AWES allows an
application to store arbitrary information (in addition to templates) for a user in

the form of a BLOB in the AWEFES database.

Enrollment: The process by which the reference template for a user is
constructed and stored in a database is called Enrollment. This is done by
collecting one or more images from the fingerprint sensor, extracting salient

feature data and combining these results to make a template.

Identification: A match operation in which a fingerprint is compared to
templates in an AWES database to determine the identity, i.e., name and finger

number, associated with the fingerprint.

Image Item: An image item is an opaque structure that is used by the AWES to
pass image data to and receive image data from an application. An image item

contains pixel data, sizing data and other AWES proprietary data.

Match Template: A template that is created during an authentication operation
from one or more images acquired from the sensor is called a Match template.
During authentication, match templates are compared to reference templates to

determine if they represent the same fingerprint.

Reference Template: A template created during the enrollment process is called

a Reference Template.

Validation: A special case of identification where the template of a user has to be
specified is called Validation. A fingerprint is matched against only those
templates in the AWES database for a specified user to determine if there is a

match.

54



Verification: A match operation in which a finger print is matched against an
application-supplied list of templates. An application will use a verification

operation when it maintains reference templates in its own database.

Sensor Interface:

The AWES software can support from 1 to 36 physical sensors attached to a

single system. This application uses a single sensor

AT_RESULT_CODE ATOpenSensor (
TCHAR* pszStrSensorName,
intl6 AccessMode )

An application must call ATOpenSensor() to open an AWES sensor prior to
performing any sensor access functions. The first parameter, pszS#rSensorName, in
the function is the name of the sensor to open. In the most common usage case,
a system with a single unnamed sensor, an application will pass NULL for the
sensor name. If psx$S#rSensorName is non-NULL, it must be the name assigned to

the sensor by running the ATSensorWizzard.

Database Services:

A proprietary database is provided by AWES to store user data and templates
extracted from fingerprint images. AWES database stores the templates during
the enrollment process or by database update procedures. The AWES database
can be managed and queried using the functions provided by the AWES APIL
Information stored in AWES proprietary databases is fully encrypted to maintain
security. An application can use its own template storage database instead of
AWTS database. In such case, the application must present fingerprint templates

to the AWES system at the beginning of a matching operation.

55



Some of the features of the AWFS database are as follows:

Shareable and Exclusive Use Databases: An application using an AWFS
database can open it with either shared or exclusive access. When more than one
application need the same user data and need to access the same database, shared
access database is used. A database can be opened with exclusive access when an
application wants to preclude use of the database by other applications or

processes.

Support for Binary Large Objects: The AWES database provides functions to
save and retrieve application-defined binary data for a user. The AWES is not
concerned with the data content of this user information and deals with this user
data as a Binary Large Object (BLOB). A BLOB has no structure that can be
interpreted by the AWES and is known only by its size in bytes [30].

Deletion of Stored Data: The AWES provides functions to delete specified

templates for a user, to delete all data for a user and to delete all data for all users.

Database Query Support: The AWES provides functions to get a count of the
number of users in the database, to obtain a list of all users enrolled in the

database and to obtain a list of fingers enrolled for a given user.

Some of the functions of AWES database are creating a database, opening a
database, closing a database. An application using an AWES database must open
it before performing any database read, write or delete functions. An error will be
returned to the application if it fails to open a database prior to calling an AWES
API function. An application calls ATOpenDatabase() to create a new database or

to open an existing database.

AT_RESULT_CODE ATOpenDatabase(

56



TCHAR* pszStrDatabaseFile,

int32 iAccessMode,

uint32  iMemorySize,

void* pAuthenRec,

uint32  iSizeAuthenRec)

The first parameter, pszStrDatabaselile, defines the pathname and filename of the
file to be used for persistent database storage. A new database will be created if

the specified filename does not exist. If the filename exists, the specified database

is loaded for use.

The second parameter, zAccessMode, specifies the database access mode as either
AT_DATABASE_ACCESS_SHARE or
AT _DATABASE_ACCESS_EXCLUSIVE. The access mode is established by
the first application or process that opens a named database. The established
access mode for a named database remains in effect until the last application or
process that has opened the database closes it. In shared access, an application
can receive notification when the database is modified by another application. A

database size can optionally be specified in the ATOpenDatabase() call.

The third parameter, zMemorySize, which defines the database size is used to
apprise the AWES of the amount of memory to allocate for the database. This is
useful in case where there are a large number of users and fingers to be enrolled.
It is more efficient to initially allocate a large block of memory than to reallocate
memory on-the-fly as users are added [30]. The ATGerEstimatedDatabaseSize() API
function provides an estimated database size based on the number of users,
templates, BLOBS, etc. it will maintain. If an application specifies zero for the
memory size parameter in the ATOpenDatabase() call, the AWFES will use default
sizing values to allocate database memory buffers. The AWFES will automatically

increase the size of its database memory buffers as needed when new data are

added.

57



When a database is created, an optional application-defined certificate of
authenticity is assigned to a database by specifying the certificate in the
ATOpenDatabase() function. A certificate is specified if pAuthenRec is non-NULL
and S7zeAuthenRec is non-zero. This certificate must be supplied in all subsequent
ATOpenDatabase() calls for that database, regardless of whether the database is
being opened by the creating application or by another application. A database
that is not created with a certificate of authenticity will fail to open if a certificate

is supplied when a subsequent attempt to open it is made.

ATCloseDatabase() should be called to close an open database. This function is
called once the database is no longer required prior to termination of the

application.

The AWFS maintains the database in memory and automatically saves the
database to disk at the end of any operation that modifies the content of the
database. For example, the database is saved after enrollment, the writing of a

user BLOB and insertion or deletion of data [30].

The AWES provides a suite of extraction and matching algorithms. These
algorithms are used within AWES enrollment and matching (identification,
validation and verification) functions. An application can be designed to use
AWTS algorithms or it can use its own proprietary algorithms. In the latter case,

AWTS is used for image acquisition only.

Transactions:

Enrollment, authentication and image acquisition are some of the high-level
biometric operations. These operations involve reading and processing a series of
images from the AuthenTec sensor. There might be a possibility for any other

application to block the operations from another application. To prevent

58



blocking for the duration of the operation, the API for these operations is
transaction oriented. Each transaction is initiated with an “ATBeginX” function,
where “X” stands for the operation being started such as Enroll, Acquirelmage,

Verity, Validate, Identify.

An application can receive events during a transaction by one of two methods:
the application can receive messages synchronously by polling for new event
messages of it can receive messages asynchronously by registering a callback
function in the “ATBeginX” transaction function [30]. If the latter method is

used the callback function is invoked whenever a new event message is available.

Focus:

When applications share the same sensor, at any given time only one application
can receive images from the sensor. A loss of focus message ends the current
transaction. All transaction message handlers should check for an
AT_API_LOST_SENSOR_FOCUS message. The application that lost the
sensor focus should not attempt to begin a new transaction until the window it is

displaying gets the focus from Windows.

Transaction Timeout:

A timeout message message type AT_API_TIMEOUT is received by an
application, , during a transaction if the AWES is expecting to detect a finger on
the sensor and no finger is detected after an extended period of time. A timeout
message ends the current transaction. All transaction message handlers should

check for an AT_API_TIMEOUT message.

Transaction Event Messages:

59



The following event messages can be sent to the transaction event handler during

an open transaction. The messages along with what they specify are given below.

Information Messages:

* AT_API_NEW_DISPLAY_IMAGE - A new image is available. This is used to

update the real-time image display window.

* AT_API_FINGER_DETECTED - A finger placement has been detected.

* AT_API_FINGER_REMOVED - A finger removal has been detected.

* AT_API_DATABASE _CHANGE - The opened shared database has been
modified by another application. There is usually no action required of the
application unless it is displaying database information, for example, a list of

users.

* AT_API_NO_CORE - The current finger placement does not contain a core (the
center of the fingerprint pattern). This is usually caused by a poor finger

placement. A good finger placement has the core in the center of the sensor.

Prompt messages:

* AT_API_LIFT_AND_REPLACE - The current transaction requires the user to lift

his finger from the sensor and then place the same finger on the sensor.

* AT_API_PLACE_FINGER - The current transaction requires the user to place a

finger on the sensor.

Transaction data ready messages:

60



* AT_API_ACQUIRE_DATA_RDY - The current acquire image transaction has the
final data ready. The application should call ATEndAcquirelmage() to receive the

transaction results.

* AT _API_ENROLL DATA_RDY - The current enroll transaction has the final
data ready. The application should call ATEndEnrll() to receive the transaction

results.

e AT API VALIDATE DATA RDY - The current validation transaction has the
final data ready. The application should call ATEndl alidatelD() to receive the

transaction results.

* AT _API_VERIFY_DATA_RDY - The current verification transaction has the final
data ready. The application should call ATEndl erify() to receive the transaction

results.

e AT API _IDENTIFY DATA RDY - The current transaction has the final data
ready. The application should call ATEwndldentify() to receive the transaction

results.

Transaction termination messages:

e AT API TIMEOUT — The AWES cancelled the current transaction due to a

timeout. The AWES was unable to obtain a good image.

* AT_API_LOST_SENSOR_FOCUS — Another application sharing the same sensor
has initiated a transaction. The current transaction for this application is

terminated [30].

Cancelling a Transaction:

61



An application can cancel a transaction by calling AT AbortTransaction().
Building an AWFS System:

Building an AWES system require the include files and the libraries as given

below:
Header Files The required header files are as follows:
GenTypes.h - Type definitions.

ACAPIDef.h - Message defines, structure definitions, error codes and

enumeration value ATStdAPITypes.h — AT structure definitions.
ATInterface.h - API functions header file

Link Files An application should link to dynamic library ATSC57./ib and load
the ATSC57.d/] at rantime

Initialization An application must first initialize the AWES system before calling
any other API functions. In C, ATInit() is called to initialize the system. See the
following code sample:

if (AT_OK = ATInit())
return -1;

if (AT_OK != ATOpenSensor(NULL,
AT_SENSOR_OPEN_MODE_SHARED) )

1

MessageBox(NULL, “Failed to open a Fingerprint Sensor..\nExiting...",
“System Error!", MB_OK);

return -1;

b

// Close the sensor

ATCloseSensor() ;

// Close the system

62



ATClose();
API Functions
Initialization

ATInit()

As mentioned above ATInit() function Initializes the AuthenTec system APL. An
application calls this function during initialization. Calling this function requires a

corresponding call to AT Close() prior to application shutdown.

AT _RESULT_CODE ATlInit()
Parameters

None

Returns

AT OK Initialization successful.

ATCreate()

This function initializes the AuthenTec system APIL An application calls this
function during initialization. Calling this function requires a corresponding call

to AT Clse() prior to application shutdown.

AT_RESULT_CODE ATCreate()
Parameters

None

Returns

AT _OK Initialization successful.

ATClose()

This function Closes the AuthenTec sub-system that was initialized previously by
calling the ATInit() or ATCreate() function.

63



AT _RESULT_CODE ATClose()
Parameters

None

Returns

AT OK Termination successful.

Convenience API:

There are Transacton Begin/End functions such as ATBeginEnroll,
ATEndEnroll, ATBeginValidate, ATEndValidate. The AWES API refers to these
functions in ATSC51.1ib and ATAuthenticateLib.lib. A user application can be
developed using these functions but there is no user interface support included in
this API. The AWLES includes additional ‘“convenience” support called
convenience API to rapidly develop an AWES application. This support includes
user interfaces for performing the various biometric operations such as
enrollment, identification, etc using functions such as ATEnroll, ATIdentify.
These functions in the convenience API make use of the transaction Begin/End
functions required to do the operations. The source code and header files for the
convenience functions can be compiled and included into the application which
invokes a desired biometric operation by calling a single high-level convenience
function. Convenience functions display user interface items, such as text
prompts and fingerprint images necessary to perform the requested biometric
operation. The convenience source code makes calls into the AWFS API, and
obtains feedback from the main AWEFS API while carrying out the biometric
operation. An application is blocked while a convenience function is in process.
Only the final result of the operation is returned by the convenience function. An
application developer can alter the appearance or behavior of the user interface
by modifying the supplied source code. The various biometric operations, and the

high-level API calls for the Convenience API are described below.

High-Level Convenience Functions

64



ATConvenienceAPIInit() Initializes the Convenience API components.

ATEnroll() Performs an enrollment of a finger. The resulting reference template
can be placed into the AWFES proprietary database or exported from the function
upon successful completion. Various windows and message boxes will

automatically guide the user through the enrollment process.

ATValidateFingers() Determines which, if any, external fingerprint template
passed into the function matches the finger being placed on the sensor. Various
windows and message boxes will automatically guide the user through the

process.

ATValidateID() Determines whether a template for the specified user ID stored
in the AWES database matches the finger being placed on the sensor. Various
windows and message boxes will automatically guide the user through the

process.
ATIdentify()

Determines which, if any, template stored in the AWES database matches the
finger being placed on the sensor. Various windows and message boxes will

automatically guide the user through the process.

65



Chapter 5

IMPLEMENTATION

Implementation is one of the important aspects when considering a security
application. The Authentication system implemented in this thesis uses three
factor authentication to give access to many applications with out the need for
the user to enter his or her user id and password for each of the applications. Any
application can use this component to provide three factor authentication. There
might be applications that already use password to authenticate the users. These
applications can further augment their security by using this three factor

authentication system.

To use this system the user has to go through two phases Enroll phase and
Authenticate phase. During the Enroll phase, the user is enrolled to the
Authentication system using Java Ring, PIN and fingerprint. During enroll
process a reference template of the user fingerprint is created. The user initially
has to choose a user id and give his information such as first name, last name,
phone no. etc. which are stored in the database. This database in this system is
used to keep a record of the users using the authentication system and the user

related information.

During the Authenticate phase, the user gives his Java Ring, pin and the
fingerprint. The system checks to see if the ring belongs to that particular user,
then the system checks if the pin is valid and then the system matches the users
fingerprint with the reference template obtained during the enroll process. Only if
all the three factors are validated, the user is authenticated. Once the user is

authenticated , he is given access to the application.

66



Biometrics has proven to provide good authentication. But when using
biometrics like a fingerprint, the question that arises is as to where to store the
fingerprint. Fingerprint is vulnerable and if the fingerprint template is not stored

in a secure place, it is possible that the fingerprint template can be tampered.

When considering a basic application providing logical access to PC/Network
logon using biometrics, storing the fingerprint at the local computer or server
might be enough as the fingerprint represent the digital identity of the person in
the local environment and not on the internet. If the scope is PKI based
applications (such as VPN, secure email etc) where a smart card is used for

credential storage, the fingerprint template should be stored in the smart card.

It is important to choose the appropriate level of security for a system. There are
different ways to implement biometrics. Two important aspects of biometric

systems are

e Storing (on a server, in the PC, in a smart card)

e Matching (on a server, in the PC, in a smart card)

The card in our case is the Java Card in the Java Ring, which is a type of smart
card. Depending on how these parts are combined, the security implications of

the system are different.

67



The table below shows combinations of where a fingerprint can be stored, and
where it can be matched. Some of these combinations are highly unlikely to ever
exist in a commercial product and are therefore not discussed and marked with

an X.

Store on Store on PC Store on
server smart card
Match on a X b
server
Match on PC X c d
Match on X X e
smart card

Figute 4.4: Biometric data Stored/Matched [31]

(a) Match on setver / Store on setver

In this case, during the enroll process a reference template is created and stored
on the server in a database. During the verification process, the user’s fingerprint
template (or match template) is sent to the server and the user’s template is
matched with the reference template at the server and a result is sent back to the

user.

Matching on a server means matching the template in a protected environment.
Using this system, the administrator can monitor the security and detect

attempted attacks on the system. Hence the administrator has full control of the

68



fingerprint database. The storage on the servers means that also the template is

protected from tampering, at least from the outside.

The drawbacks of using this system are that, it violates personal integrity. Getting
users to store their fingerprint templates in a server out of their control may be
hard; this requires that the party running the server is trusted. One security
problem is the transfer of the template from the capturing device to the server.
This requires a secure internet session or an intelligent way to solve the problem
with cryptography. This solution also requires that a new infrastructure is built,

which makes the solution difficult to deploy in large scale.
(b) Match on setver / store on card

In this case, the reference template obtained during enrollment, remains with the
user on a smart card. During the verification process, the user’s fingerprint is sent
to the server along with the reference template in the smart card. A matching of
the user’s fingerprint template with the reference template takes place at the

server and a result of the matching is sent back to the user.

Using this kind of a system, the problem with storing ones fingerprint template

on a server out of control is solved.

This solution has drawbacks both with regards to security and due to the fact that
a new infrastructure has to be built. The problem with servers - the transfer of
information across an untrusted network is augmented; now both the template
and the input image must be transferred. In this case some kind of strong
encryption should be applied to secure the transfer. This might require a new

infrastructure to be built.

(c) Match on PC / Store on PC

69



This is a common combination where the templates are stored on the user’s hard
drive. This is also where the matching takes place. The advantage of using this

system is that the user has got control of his/hers own templates.

Since the PC is not a secure device there is an immediate threat that secrets such
as templates or passwords may be stolen or tampered with. Mobility may be a
problem; the user can only log on to the computer where the template is stored.

This solution is not even scalable on a local network.
(d) Match in PC / stote on smart card

In this case, the reference template is stored on the smart card and during the
verification process; the user’s template is matched with the reference template

on the PC.

This solution eliminates some of the problems with Match on PC/Store on PC.
The advantage using this kind of a system is that the user can carry his or her own
template. When a smart card is used it is often access to the protected area on the
card that is critical. Access is granted if the correct PIN is sent to the card. The
PIN is matched on the card. In this system, both the template and the PIN have
to be transferred to the PC from the card, if the input image matches the
template the PIN is sent back to the smart card to gain access. The template is
not available for hacking at all time since it is stored on a card. The user can use

the fingerprint and the smart card for accessing multiple devices.

The drawback of using this kind of a system is that the templates are exposed
during verification process. The critical information (the template and the secret
e.g. PIN) is sent to the PC from the card when matching. This means that both
the template and the secret can be tampered with or stolen. This solution cannot

be used for secure network transactions.

70



(€) Match on card / Store on card

In this case the reference template is stored on the card and during the
verification process, the user’s template is sent to the card and a matching takes
place with the reference template and a result is sent back to the user. Using this
kind of a solution the sensitive data (the template) never leaves the card. There is
also no secret to steal since a successful match enables the use of certificates on
the card without the need of stored PINs or passwords. Even in the unlikely
event that a card is tampered with; only limited damage is done since only that
specific users’ credentials are hacked. An attack on multiple users means that the
attacker must get hold of all users' cards. This method is normally seen as the
most secure way of biometrically securing computers, networks and digital

information in general.

The advantages of using this kind of a system are as follow:

e The smart card is made personal; it cannot be accessed without the

appropriate biometric authentication

e The templates are never exposed to a non-tamper proof environment

e The user carties his/hers own templates

e The solution works with a PKI (digital signatures, authentication over

networks, encryption) without the need of new infrastructure.

From the cases discussed, we know that security wise, match on card/ store on
card is one of the best ways of implementing a system. The Java Ring used in this
thesis implementation, does not support the fingerprint matching API. A product

named Precise BioMatch provides the fingerprint matching API. Using this API

71



we can match the template inside the card (Java Ring). But the API precise
BioMatch provides is Java Card 2.1.2 compatible where as the iButton in the Java
Ring is 2.0 compatible. So, it is not possible to match the fingerprint template
inside the Java Card. Due to this reason, we are going to store the reference
template in the card and match the template with the user’s fingerprint outside
the card. So we ate going to use the match on server/ store on card scenatio

discussed eatlier.

Java Ring used in this project has 6K memory. It uses most of its memory for
loading the applet in the card. Since the memory left after loading the applet is
not sufficient to store a fingerprint template, we have segmented the fingerprint
template into two. One of the segments is stored in the Java Ring and the other
segment is stored on the database. Java Ring and iButton are used synonymously

through out the discussion of the implementation.

The fingerprint API, AT API used in this project is in C and C++. To integrate
the native methods in AT API with the other part of the system (which is

implemented in Java), Java Native Interface (JNI) interface is used.

The two phases, the Enroll phase and the Authenticate phase as mentioned
carlier are implemented as two systems, Enroll and Authenticate systems
respectively. In the next section we will discuss about Enroll system and
Authenticate system. For each of the system we discuss the high level design,
system use case, collaboration diagrams and the features of each system as to how
they are implemented. The implementation of the application is shown in UML

notation

72



5.1. Enroll system:
Enrollment is a process where a user is initially enrolled into the system using,
fingerprint, Java Ring and a pin. The figure below gives a high level design of the

system.

Java Ring

/' subsystem

—i Enroll System GUI — Enroll Server /
— L — subsystem

\

Fingerprint
subsystem

Figure 4.5: High level design of Enroll system

There are three subsystems involved in the enroll process, Java Ring
subsystem, Fingerprint subsystem and Enroll server subsystem. The user sends
an enroll request to the Enroll system GUI which is forwarded to the enroll
server. The Enroll server sends requests to the Fingerprint subsystem to get the
fingerprint template. The Fingerprint subsystem creates a fingerprint template for
the user and sends the template as a response. The Enroll server next sends
requests to store user information, the user application list, the user fingerprint
template and the user pin to the Java Ring subsystem. The Java Ring subsystem
stores the information of the user. The Enroll server sends requests to the
database to store user Information, the user applications and the other part of the
fingerprint template segment. The database stores all the required information of
the user. Once all the information is stored, the iButton is locked. Locking the

iButton is the last step in the enroll process. This is done my setting a flag.

73



5.1.1. Enroll User Use Case :

Use Case name: Enroll User

Summary: Customer is enrolled into the system to get access to application using

a single sign on.

Actor: Authentication system customer

Precondition: System is idle with application Enroll and Authenticate option
buttons on the screen. Administrator is available with the user for enrolling the

user.

Description:

1. 'The customer clicks on the Enroll button.

2. The system displays a user information form with the fields for user

name, phone number and address.

3. The user fills the form by entering his user name, phone number and

address

4. If the user phone number is valid, the system prompts the user to choose

a User ID.

5. If the User ID is not already enrolled for this user or any other user the

system enrolls the user with the user id.

6. The system prompts the user to place his finger on the fingerprint sensor.

7. The user places his finger on the fingerprint sensor and follows the

instructions for enrolling the fingerprint.

74



10.

11.

12.

13.

14.

15.

16.

The system enrolls the user fingerprint.

The system prompts the user to insert his Java Ring in the blue dot

receptor.

The user inserts his Java Ring in the blue dot receptor.

The system checks to see if the Java Ring is already enrolled.

If the Java Ring is not already enrolled, the system prompts the user to
enter a User PIN (for the Java Ring).

The user enters a User PIN.

The system enrolls the Java Ring with the User PIN.

The system locks the Java Ring to Enrolled mode.

The system displays a message saying that the user is enrolled.

Alternatives:

If the phone number is invalid and has less than or more than 10 digits,

the system re-prompts the user to enter a valid phone number

If the user chosen User ID is already enrolled for another user, the user

prompts the user to choose a different user ID.

If the user chosen User ID is already enrolled for this user, the system

prompts if the user wants to re-enroll

75



e If the user selects the re-enroll option, the User ID is set as not enrolled

and the user is enrolled again following steps from 1 to 16.

e If the system does not detect a fingerprint on the sensor for a certain

amount of time, the system displays a system out of time message.

e If the system does not detect the user Java Ring in the blue dot receptor,

the system displays a Java Ring not found error message.

e If the Java Ring is already enrolled, the system displays a message saying

the Ring is already enrolled with an option to re-enroll.

e If the user selects a re-enroll option the system re-enrolls the Java Ring

with the user chosen new User PIN

Postcondition: Customer has been enrolled.

76



5.1.2. Collaboration Diagram:

1. Enroll Reguest

2. User ID, User Info & User App List
(User Information)

4. User PIN

1.1. Enroll Request
2.1 User Information
5.1. User PIN

_) << user interface>>
: BioSecureEnroll

(_ Frame

1.3. User ID, User Info & User 1.2. Get user ID, User Info, User

App List prompt ;gp éiﬁ‘F(F's‘“ '“f."’t'"aﬁ““]' L iy
2.3. Fingerprint prompt i L

3.7 Insert java Ring prompt 3.6. Insert Java Ring

4.7. yet User PIN 4.2.Java Ring available
g:E'zFS;:?:YULSI:;PI;:[‘;F;JN 5.11. User Enrolled Successfully ;g U|_|S:¢:rn|="]|tNEsnertD"Bd
auccessiully 3.8. User Information &
<< entity>> Template Segment stored <<state depentdent
H control=>
BioSecureEnroll_Ho £ : BioSecureEnroll
st Model
3.6a. Check Java Ring availahba
4.3. Check user already Enrolled
5.2. Set User PIN
5.6. Store User Information & 5.9. Store
Template segment User
Information
3.6a.1. Check Java Ring & Template
4.1. Java Ring availahle available 5.10. User segment
4.5. User not Enrolled 4.4. Check user already Enrolled Information
3.4 User PIN set 5.3. Set User PIN & Template
5.7. User Information & 5.7. Store User Information & Segment
Template Segment stored Template Segment

3.2. User Enrolled

3.5. Template
3.2 Enroll
4. Java Ring -
«<<external IF0 Inserted i::’;%:s::;e
devicex» —) 3
; : BioSecure
: Java Ring Blue dot Foh
Authentication_Appl
receptor ot
3. Fingerprint
<< external /0 —_—) =< 1/0 device
devicer> Interfaces=»
: Fingerprint Sensor L ATApI

Figure 4.6: Collaboration diagram for Enroll User

use case

77

2.2a.Get Fingerprint

User

3.4. Get Template

stored
3.1. Fingerprint // @



5.1.3. Features of the Enroll system:

The Enroll system enroll the user using the Fingerprint, Java Ring and a
User PIN

This system stores the application list that the user has to access to in the

iButton.

The Enroll system uses Obsever-Observable design pattern extending
java.util. Observable to notify the user of the events about the Java Ring.
The Observers of this class can be notified of the card inserted and card
removed events and also notify of messages (like Exceptions etc on
cardInserted actions). The Java Card has a listener called CTListener to
observe for any events such as a Java ring inserted or Java Ring removed
event. The Enroll application observes these events and notifies the
model which further notifies the GUI which notifies the user about the
update events. The host observes the applet using CTListener for any
events and if any events occur, the host notifies the model which further
notifies the GUI of the events and updates. This GUI displays an
appropriate message to the user such as the iButton is inserted or iButton

is removed.

The Enroll system uses Model View Controller (MVC) design pattern.
This design pattern clearly defines the boundaries between the user
interface and business logic. Using this design pattern gives a good
separation of modules and makes it clear and easy to understand. Model
in this application deals with the data that need to be displayed and the
operations that can be applied to transform the objects. The controller

deals with updating a particular parameter in the model which has to be

78



displayed by the view. This is done in the action performed methods. The

view deals with the GUI (presentation of the information to the user).

The Enroll system provides, enroll and re-enroll features. A user can re-
enroll with the same Java Ring again with out having to change his user

id. The system uses the same user id to re-enroll the user.

The system is self aware of the mode and presents the GUI accordingly.
The system keeps track of the present mode and goes to the next mode
according to action taken in this mode. For example, consider the case
where the system is in ‘insert’ mode, where the user information is
inserted into the database and Java Ring. The system finds that the ring is
already enrolled. In such a case, the system asks the user if he wants to re-
enroll. If the user chooses to re-enroll, the mode is automatically set to
‘modify’, where only the information that has been modified is updated in

the database and the ring.

The system uniquely handles exceptions and validations and displays the

appropriate message to the user.

The system locks the iButton as a last step in the enroll process. The user
is considered as enrolled only if the iButton is locked. Locking the
iButton, locks all the administrative functions after initial setup. iButton
once locked cannot be accessed by the user thus preventing any changes

to be made by the user.

The application makes use of check pin function, which makes use of the
Java Card Owner PIN API and iButton clock. This function checks to
see if the PIN passed from the host (user PIN) matches the applet's

79



internal PIN. A host application has 5 tries to get the correct PIN. If an
incorrect PIN is supplied 5 times in a row, the PIN is blocked and cannot
be used again (even with the correct PIN value) for a duration of 30
minutes. After this time period has elapsed, the host may once again

attempt to send a correct PIN.

The application provides 3 attempts for entering a correct PIN. If the
user does not enter a correct PIN in 3 attempts, he is not authenticated

and hence not given access to the applications

The system provides the additional feature of giving administrator access
to the Ring after locking the iButton. The administrator can access the
iButton using an administrator PIN. This can be useful in cases where a
user happens to forget his or her user PIN. Another example is where a
user wants to re-enroll or change his information in the card; he can do

so with the help of the administrator who has the administrator key.

The user fingerprint is uploaded into the applet in batches 128 bytes. The
fingerprint segment cannot be sent in a single apdu due to constraints of
Java One’98 release of iButton which limits the array index parameter to
maximum number of bytes that can be sent. So, the fingerprint is sent

iteratively in batches of 128 bytes.

80



5.2. Authenticate system: Once a user is enrolled, the user can access the
applications he wants using the authentication process. The figure below gives a

high level design of the authentication process.

Java Ring

/' subsystem

— Authentication — Authentication /
h h

Systemn GLI Server subsystem

\

Fingerprint
subsystem

Figure 4.7: High level design of Authenticate
system

There are three subsystems involved in the authentication process. They are Java
Ring subsystem, Fingerprint subsystem and the Authentication server subsystem.
The user sends a request for authentication to the Authentication system GUI
which is forwarded to the Authentication server subsystem. The Authentication
server subsystem first checks to see if the iButton is locked. Only if the ibutton is
locked, the user is considered entolled. If the ibutton is not locked, the user is
considered as not enrolled and hence not authenticated and not given access tot
eh application. During the authentication process, the Authentication server
subsystems request the Java Ring subsystem for information such as user pin,
user information, user applications and fingerprint templates, and the Java Ring
sends the corresponding information. The fingerprint template segment obtained
from the Java Ring is the first segment of the fingerprint template. The
Authentication server subsystem gets the second segment of the fingerprint

template from the database. The Authentication server subsystem then sends a

81



request to Fingerprint subsystem to validate the user template. The Fingerprint
subsystem validates the user reference template against the user fingerprint and
sends a response to the Authentication server subsystem. If the fingerprint is

validated, the user is authenticated and given access to his applications.

5.2.1. Authenticate User Use Case:

Use Case name: Authenticate User

Summary: Customer is given access to the user applications using a single sign

on.

Actor: Authentication system customer

Precondition: System is idle with application Enroll and Authenticate option

buttons on the screen.

Description:

1. The customer clicks on the Authenticate button.

2. The system prompts the user to enter his User ID.

3. If the User ID is already enrolled, the system prompts the user to insert

his Java Ring in the blue dot receptor.

4. 'The user inserts his Java Ring in the blue dot receptor.

5. 'The system checks to see if the Java Ring is already enrolled.

6. If the Java Ring is already enrolled, the system prompts the user to enter
his User PIN.

82



7. 'The user enters his User PIN.

8. If the user entered User PIN is valid, the system prompts the user to

place his finger on the fingerprint sensor.
9. The user places his fingerprint on the fingerprint sensor.
10. The System validates the fingerprint with the template.

11. If the fingerprint is validated, the system displays a User Authenticated

message along with the list of applications accessible to the user.
12. The user selects the application he wants to access.

Alternatives:

e If the User ID is not already enrolled, the system displays an invalid User

ID message.

e If the system does not detect the Java Ring in the blue dot receptor, the

system displays a Java Ring not found error message.

e If the Java Ring is not already enrolled, the System displays a Java Ring

not enrolled message

e If the system does not detect a fingerprint on the sensor for a certain

amount of time, the system displays a system out of time message.

e If the user entered User PIN is invalid, the system re-prompt the user for

a User PIN

83



e If the User PIN is invalid for three times, the system exits.

Postcondition: The user is authenticated using single sign on and given access to

all of the user applications.

84



5.2.2. Collaboration Diagrams:

1. Authenticate
regquest
3. User PIN

<<user interface=>

_) : BioSecure
( Authenticator
Frame

1.3. Insert Java Ring prompt

2.4. PIN promt

3.13. Enter Fingerprint

prompt

4.59. User Authenticated
Display App List

2.1. Java Ring availahle

3.3. Valid PIN

3.8. User ID, User App List
Template segment

1.1. Authenticate request
3.1. User PIN

1.2. Insert Java Rin
2.3. Get User PIN

3.12. get User Fingerprih
4.4, User Authenticated (App List)

2.2. Java Ring available
3.5, Valid PIN

3.9. UserID, User App list & | .. .oo4n depentdent
<<entity>> Template segment control>>
: BioSecure : BioSecure
Authenticate Host <_ Authenticator
Model
1.2a. Check Java Ring availabhle
3.2. Validate PIN
3.6. Get User Id, User App List &
Template segment{User PIN) 211 3.10. get
1.2a.1. Check Java Ring o || Tomeixe
available {User ID)
3.3. Validate PIN
&T l 3.7. Get User ID, User App List
& Template segment
{User PIN)

4.1. User Fingerprint inp
4.3. Fingerprint Validat

3.12a. Get User Fingerprint
4.2, Validate Fingerprint
with template

<<external YO

—>

2. java Ring
<<external YO inserted << /0 device
devicer> —_— Interfaces>;
: Java Ring Blue dot BioSecureAuthentic
receptor ation_Applet

4. Fingerprint

<<1/0 device
Interfaces==

device:==

: Fingerprint Sensor

L ATApi

Figure 4.8: Collaboration diagram for Authenticate

User use case

85



5.2.3. Features of Authenticate system:

The Authenticate system stores the fingerprint template on the card and

matches the template on the host.

The Enroll system uses Obsever-Observable design pattern extending
java.util. Observable to notify the user of the events about the Java Ring.
The Observers of this class can be notified of the card inserted and card
removed events and also notify of messages (like Exceptions etc on
cardInserted actions). The Java Card has a listener called CTListener to
observe for any events such as a Java ring inserted or Java Ring removed
event. The Enroll application observes these events and notifies the
model which further notifies the GUI which notifies the user about the
update events. The host observes the applet using CTListener for any
events and if any events occur, the host notifies the model which further
notifies the GUI of the events and updates. This GUI displays an
appropriate message to the user such as the iButton is inserted or iButton

is removed.

The Authenticate system uses Model View Controller (MVC) design
pattern which clearly defines the boundaries between the user interface
and business logic. Model in this application deals with the data that need
to be displayed and the operations that can be applied to transform the
objects. The controller deals with updating a particular parameter in the
model which has to be displayed by the view. The view deals with the

GUI (presentation of the information to the user).

The Authentication system has a timeout feature. If the system does not

detect a Java Ring or a fingerprint on the sensor with in a specified time,

86



the system exits with a time out message and the authentication of the

user is failed.

The system provides 3 attempts for entering a correct PIN. If the user
does not enter a correct PIN in 3 attempts, he is not authenticated and

hence not given access to the applications.

The application makes use of check pin function, which makes use of the
Java Card Owner PIN API and iButton clock. This function checks to
see if the PIN passed from the host (user PIN) matches the applet's
internal PIN. A host application has 5 tries to get the correct PIN. If an
incorrect PIN is supplied 5 times in a row, the PIN is blocked and cannot
be used again (even with the correct PIN wvalue) for a duration of 30
minutes. After this time period has elapsed, the host may once again

attempt to send a correct PIN.

The Authentication system has a simplified usage and can be plugged into
any application by instantiating an Authenticate object and calling
Authenticate and user name as parameters. This feature makes it ideal to
be used as an API. An application can use the Authenticate application by

passing the user id.

When an application calls Authenticate object, the application and the
GUI for the Authenticate system run in two different threads. Calling an
instance of Authenticate immediately starts GUIL Since application and
the GUI run in two different threads, the thread for the calling
application is stopped and the GUI thread is started. Once the
Authentication system authenticates the user, the control is given to the

application thread. The Authentication system returns the user id if the

87



user is authenticated. If the user is not authenticated, it throws an
exception. The calling program gives access to the user, depending on
what the Authenticate system returns. If the Authentication system
returns user id, the user is authenticated and hence can access the

application.

e The Authenticate system retrieves the fingerprint from the iButton in

batches of 128 bytes.

e The system uniquely handles exceptions and validations and displays the

appropriate message to the user.

5.3. System Initialization:
When the Authentication system is initialized, it performs the following

functions:

e Sets the Database Connection

e Checks if fingerprint sensor is available

e Checks if the blue dot receptor is available

e Instantiates a Java Ring host

Initializes the AT Api (fingerprint APT).

If system fails to perform any one of the above initialization functions, it gives a

fatal exception message and shuts down.

88



5.4. iButton Implementation:

The BioSecureAuthenticate_Applet is the applet in the iButton. There are two
hosts, enroll host and authenticate host. In this application, enroll host is the
BioSecureEnroll Host and authenticate host is the BioSecureAuthenticate. Host.
When an iButton is inserted, the enroll host and the authenticate host check to
see if the applet is loaded in the iButton. The enroll host loads an applet, if an
applet not already loaded in the iButton during the enroll process. The
authenticate host gives an error message if an applet is not already loaded during

the authentication process.

During the enroll process, the host communicates with the applet using a set of
commands. The figure below shows the commands sent from the host to the

applet during enroll process.

89



BioSecure
Enroll host

Delete Applet by ID (optional)

Master Erase Applet (optional)

\ 4

Load Applet

\ 4

Set Ephemeral GC mode

\ 4

Set Applet GC Mode

\ 4

Set User Information

\ 4

Set Application List

\ 4

Set Fingerprint Template Segment

\ 4

Set User PIN

\ 4

Lock iButton

\ 4

Figure 4.9: Communication between host and
applet during Enroll process

\ 4

BioSecure
Authenticate_|
Applet

If the host finds that an applet is already loaded in the iButton with the given user

information, it asks the user if he or she wants to re-enroll. If the user accepts to

re-enroll, BioSecureEnroll_host sends a delete applet by ID request to the

BioSecureAuthenticate_Applet to delete the already existing applet in the iButton.

Master Erase Applet is an optional command and is sent only in cases where

there are no other applets (used by other applications) co-existing with the

BioSecureAuthenticate_Applet in the iButton. Master Erase Applet option erases

all the applets installed on the iButton, frees all memory created by these applets,

90



and reset all configuration options back to default values. (i.e., set AppletGC to

off, etc.).

Load applet command is sent to the applet when the host does not detect a user
information applet in the iButton. The host sends the Load applet command
after sending a Delete Applet by ID command or a Master Erase command to

load an applet.

Setting the Ephemeral GC mode, the ephemeral collector in the applet recovers
data that was referenced for a short period and been out of scope (local variables,

objects whose references are never stored in reference fields, etc).

Setting the Applet GC mode, applet collector recovers data that was referenced
by the fields of an applet. These references are instantiated and then the
references are lost either by setting the field to null or by instantiating another

block of data.

Set User Information sets the user given information - user id, user name,

phone number and address in the applet.

Set User Application Access List sets the user application list along with their

corresponding user name and passwords for each application in the applet.

Set Fingerprint Template Segment sets the fingerprint template segment for

the user in the applet.

Set User PIN sets the user pin for the user in the iButton. The user can access
the iButton using this user pin when the user wants to get access to his

applications.

91



The last part of the enrolling processing is to lock the iButton. This is done after

setting the user pin. Locking the iButton is to let the application know that the

user has been enrolled. If the user quits before finishing the enroll process, in

such a case, iButton is not locked and hence the application knows the user is not

enrolled. The communication between the BioSecureAuthenticate Host and

BioSecureAuthenticate_Applet is as shown below.

Is Applet Loaded

Applet Loaded reponse

\ 4

A

Is iButton Locked

iButton Locked response

\ 4

A

Get User Information

\ 4

BioSecure

. r Information
Authenticate_| Use ormatio

host
o8 Get Fingerprint Template Segment

Fingerprint Template Segment

\ 4

A

Get User Application Access List

User Application Access List

\ 4

A

Figure 4.10: Communication between host and
applet during the Authentication process

BioSecure
Authenticate_|
Applet

During the Authentication process, the applet checks if the applet is loaded using

the Is Applet Loaded command. If the applet is already loaded, applet sends a

response indicating that the applet is loaded. If the applet is not loaded, it sends a

92



response indicating that the applet is not loaded. In cases where the applet is not
loaded, system throws an exception giving an error message stating that the user

is not enrolled.

The applet next checks if the iButton is locked using is iButton locked
command. If the host receives an iButton locked response, it proceeds to the
other commands. If the host receives an iButton unlocked response, it sends an

error message stating that the user is not enrolled.

Once the host makes sure that the applet is loaded and the iButton is locked, the
host gets the user information from the applet using the Get User Information
command. The user pin is send as a parameter to check if the user is the right
user. The applet returns the user id, phone number and address as the response

to this command.

Get Fingerprint Template Segment command is send with the user pin as a

parameter to get the user template segment as a response from the applet.

Get User Application access List command is send with the user pin as a

parameter to get the user application list as a response.

As mentioned in chapter 5, the host and the applet communicate using APDU
commands and responses. A command APDU has CLA (the applet name), INS
(method being called), p1 & p2 (additional control data), DATA (data to be sent)

and Le (length of the data) as its parameters.

The applet sets the CLA of the applet as shown below

public static final byte BIOSECURITYENROLL_CLA = (byte)0x80;

93



Each method in the applet is given a number as shown below to be represented

as 1 byte.

// Main Functionality
public static final byte BIOSECURITYENROLL_INS_SETUSERINFO =

(byte)0;
public static final byte BIOSECURITYENROLL_INS_GETUSERINFO =

(byte)1;

The install method in the applet is overridden by calling the constructor as

follows.

public static void install(APDU apdu)
{

new BioSecureAuthenticate_Applet();
b

The first thing the process method does is to check whether CLA in the
command APDU received matches the CLLA of the applet.

//Determine if the applet is being selected.
if(buffer[ISO.OFFSET_CLA] == SELECT_CLA) &&
(buffer[ISO.OFFSET_INS| == SELECT_INS))

{

//***********************************

//* Add any code to be executed on *

//* applet selection here. *
| [RRRRRRRRRRRRRRRRAAAAAAAAAAAAAAK

return;

}

94



The process method would perform the appropriate instruction by doing a switch

on the INS field of the apdu, calling the appropriate method.

switch (buffer[ISO.OFFSET_INS))

{
case BIOSECURITYENROLL_INS_SETUSERINFO:

setUserInfo_Dispatch(apdu, buffer[ISO.OFFSET_P1],
buffer[ISO.OFFSET_P2));
break;

case BIOSECURITYENROLL_INS_GETUSERINFO:
getUserInfo_Dispatch(apdu, bufter[ISO.OFFSET_P1],
buffer[ISO.OFFSET_P2));
break;

default:
ISOException.throwIt(ISO.SW_CLA_NOT_SUPPORTED);

In the host application the send APDU method

sendAPDU(int CLA, int INS, int P1, int P2, byte[] Data, int Le) is overridden

with the

sendAPDU((int CLA, int INS, int P1, int P2, byte[] Data, SlotChannel sc) method.

The SlotChannel sc here is the connection through which the apdu is be sent.

All the methods in the host application use the send APDU method with slot
channel as one of its parameters. After executing all the methods, the host runs

the finalize method which closes all the open slot channels.

95



The next part of this section discusses about the CLLA, INS, p1 & p2, Data and
Le wvalues for each of the methods in the BioSecureEnroll Host and

BioSecureAuthenticate_ Host.
BioSecureEnroll Host methods:

CLA value is the same for all methods since we are sending the apdu to the same
applet. The length Le is different for each method and is equal to the length of
the data. For any method, the data is always appended with the length of the user,

user pin and the length of the actual data to be sent.
CLA: 0x80

INS: (byte)0 (BIOSECURITYENROLL_INS_SETUSERINFO)
pl: 0x00 & p2: 0x00
Data: byte array with user first name, last name and phone number.
pl: 0x01 & p2: 0x00
Data: byte array with user address.

INS: (byte)2
(BIOSECURITYENROLL_INS_SETFINGERPRINTSEGMENT)
pl: 0x00 & p2: 0x00
Data: Since the whole template segment cannot be send in a single apdu,
the template segment is divided and send in blocks of 128 byte, which is
the APDU packet length. When pl and p2 have a value of 0x0, it
indicates that the block being sent is the first block of the template
segment.
pl: 0x01 & p2: 0x00
Data: when p1 has a value of 0x01, it indicates that the block being sent is

a second, third, last or any other block. It indicates that it is not a first
block.

INS: (byte)7 (BIOSECURITYENROLL_INS_SETUSERPIN)

pl: 0x00 & p2: 0x00
Data: user pin as a byte array.

INS: (byte)5 (BIOSECURITYENROLIL,_INS_SETAPPLIST)

96



pl: 0x00 & p2: 0x00
Data: user application list as a byte array.

INS: (byte)9 (BIOSECURITYENROLL,_INS_LOCKBUTTON)
pl: 0x00 & p2: 0x00
Data: user pin that has to be locked as a byte array.

INS: (byte)1 (BIOSECURITYENROLL_INS_GETUSERID)
pl: 0x00 & p2: 0x00
Data: user pin as a byte array.

The response apdu for this method would have the user ID as its Data and the status words.

BioSecureAuthenticate_ Host methods:

CLA: 0x80
INS: (byte)1 (BIOSECURITYENROLL_INS_GETUSERINFO)
pl: 0x00 & p2: 0x00
Data: user pin as a byte array. If p1 and p2 are 0x00, it indicates that the
applet must send the user first name, last name and phone number as a
response.
Response APDU:
Data: user first name, last name and phone number
pl: 0x01 & p2: 0x00
Data: user pin as a byte array. If pl has a value of 0x01 and p2 0x00, it
indicates that the applet must send the user address as a response.
Response APDU:
Data: user address

INS: (byte)3
(BIOSECURITYENROLL_INS_GETFINGERPRINTTEMPLATESIZE)
pl: 0x00 & p2: 0x00
Data: When p1 and p2 have a value of 0x0, it indicates that the applet
must send the first block of the fingerprint segment.
Response APDU:

Data: first block of the template segment
pl: 0x01 & p2: 0x00
Data: when pl has a value of 0x01, and p2 0x00, it indicates the
applet to send the next fingerprint segment block (which is not the
tirst block). The data also has the start index and end index of the

97



segment that is sent as the block. Using these two indices, a block of
the fingerprint is made and sent.

Response APDU:
Data: It has the second, third, last or any other block other than the
first block of the template segment

INS: (byte)1 (BIOSECURITYENROLL_INS_GETAPPLIST)
pl: 0x00 & p2: 0x00
Data: user pin as a byte array
Response APDU:
Data: the user application list
All the response apdu’s have a status word along with the reponse data to indicate

the status of the operation. For example a status word of 0x9000 indicates a

successful execution with out errors.

5.5. Fingerprint Implementation:

The application first initializes the fingerprint API during the initialization of the
enroll process. When fingerprint API is initialized, the fingerprint database is
initialized. AT API is used to initialize, enroll, identify and validate a user. During
an enroll process, a fingerprint template is created for a user. This template is
passed to the application controller which then segments the template into two
and stores one of the segments in the Java Ring and the other in the database.
During the authentication process, the application controller combines the two
template segments and passes the complete template to the AT API for
validation. The AT API then obtains a user fingerprint and matches it against the
application fingerprint template. If a match is found, the user is validated, if not
the user is not validated. If a user is not validated, he or she is not authenticated
and hence not given access to the applications. If a user is validate he or she is

given access to the applications.

98



The AT API for the fingerprint is in C and C++. The native methods are called
from the Java implementation part of the application by creating dynamic

libraries (dlI).

The following are the native functions used by the Java implementation part of

the application.

N_ATInitialize(String pDatabaseFileName, int pHwnd)

This method calls the native function which initializes the fingerprint database.
The database is usually stored as a file. This file name along with a window handle
is sent. The window handle is used to display the fingerprint while enrolling,
identifying or validating the user. The native function in C calls the function

ATInit() to initialize the database as shown below.

IDatabaseFilename = (TCHAR*)pEnv->GetStringUTFChars(pDatabaseFileName,
&isCopy);

// Initialize the AT control DLL.

ATInit();

// Open up a database for this application to use

iFLResult = ATOpenDatabase( IDatabaseFilename,
AT_DATABASE_ACCESS_SHARE,
100000, NULL, 0);

return iFLResult;

N_ATIdentify()

This method calls the native function to identify a fingerprint template which
returns the user id (String) as a return value. Identification is process where, the
application matches the user fingerprint against the enrolled fingerprint templates
in the database. This native function calls a function ATIdentify() with user id as

its parameter as shown below.

99



iFLResult = ATIdentify( (PTCHAR)IUserld );
return pEnv->NewStringUTF(Userld);

N_ATEnroll(String pUserld)

This method calls the native function to enroll a user. User id is given as an input
parameter to the native method and an integer representing the result code is
returned. This integer can be decoded and an appropriate message is given to the
user. The native function calls the function ATEnroll(). The native function first
allocates some memory for the fingerprint template before calling the ATEnroll()

as shown below.

1Userld = (PTCHAR)pEnv->GetStringUTFChars(pUserld, &isCopy);

if ((IFLResult = ATEnroll(NULL, 0, NULL, 0, &iEnrollMaxStructSize )) ==
AT_OK)

{

iFLResult = ATEnroll(1Userld, 0, m_pTemplateStorage,
iEnrollMaxStructSize, &iEnrollResultStructSize );
if (iFLResult I= AT_OK)

{

b
j
pEnv->ReleaseStringUTFChars(pUserld, (char*)IUserld);
return iFLResult;

m_pTemplateStorage = NULL;

getATTemplate(String pUserld)

This method calls the native function to get a template for a particular user id.
The template is returned as a byte array. The native function gets a pointer to the

enrolled template and returns the template as shown below.

100



PTCHAR IUserld;

jboolean isCopy;

AT_RESULT_CODE iFLResult;

jbyteArray jb;

1Userld = (PTCHAR)pEnv->GetStringUTFChars(pUserld, &isCopy);
jb = pEnv->NewByteArray(iEnrollResultStructSize);
pEnv->SetByteArrayRegion(jb, 0, iEnrollResultStructSize, (jbyte*)
m_pTemplateStorage);

pEnv->ReleaseStringUTFChars(pUserld, (char*)IUserld);

return (jb);

N_ATValidate(String pUserld)

This method calls the native function which validates a fingerprint against the
templates available in the database file. The native function calls the function

ATValidateID() , which takes in a user id as an input as shown below.

1Userld = (PTCHAR)pEnv->GetStringUTFChars(pUserld, &isCopy);
iFLResult = ATValidateID(1Userld );
pEnv->ReleaseStringUTFChars(pUserld, (char*)IUserld);

return iFLResult;

N_ATValidateFinger(byte[] pTemplate)

This method calls the native function to validate a fingerprint against another
specific template passed to it as an input byte array. The function returns the
result code which is an integer. The user fingerprint is obtained from the user
from the window handle. It uses the ATValidateFingers function to validate the

fingerprint against the fingerprint template as shown below.

ITemplate = pEnv->GetByteArrayElements(pTemplate, 0);
if (pTemplate == NULL) {

iFLResult = AT_BAD_POINTER;
} else {

101



iFLResult = ATValidateFingers( (void *)ITemplate );

j
pEnv->ReleaseByteArrayElements(pTemplate, ITemplate, 0);

return iFLResult;

102



Chapter 6

CONCLUSION

The Authenticate system uses three-factor authentication to authenticate a user.
This makes the system more secure than one factor or two factor authentications.
For this thesis, we developed the three-factor authentication system with Java
Ring, Biometrics and a pin. We were able to demonstrate its usage by securing
some applications including the Enroll application. Using the Authentication
system for the Enroll application, only the authenticated users are given access to

the Enroll application. This Authentication system has many security features.

It uses Java Ring with an iButton which is Java Card 2.0 compliant. Java Card is a
kind of smart card. Smart cards have always been considered very secure way of
storing information. Java Ring with the iButton can overcome the deficiencies of
the secret passwords. In order to gain access to the iButton, the user has to know
the pin. The iButton’s zeroization capability erases the fingerprint template than

reveal it to anyone.

The National Institute of Standards (NIST) and the Communications security
Establishment (CSE) have validated a version of the crypto iButton for

protection of sensitive, unclassified information.

The fingerprint sensor used in this application uses TruePrint technology. Using
this technology makes it difficult for an imposter to fool the sensor with
techniques such as gummy finger, thus making it less vulnerable. One of the most
important issues of storing the fingerprint is solved in this application. The
fingerprint template is stored in the Java Ring. The advantages of using this

system are that the user can carry his or her own template (stored in the smart

103



card) and the user might use the fingerprint/smart card for accessing multiple
devices. It allows individuals to control the access themselves - thus rendering
individuals no longer impotent to the vulnerability of computers, databases and

software or to accidents, malfunction or intrusion.

With this three factor authentication, even if a hacker gets the pin, he cannot gain
access to the application as he has to go through the process of fingerprint

validation.

The iButton is locked once enrolled, not allowing any one to see or change the
information in the Java Ring. If the Ring is stolen, the hacker cannot access it
because he has to unlock the iButton to access any of its resources. Unlocking an

iButton can be done only by the administrator.

The application uses check pin function, one of the features of iButton. This
function gives the additional security of blocking the iButton for a certain period
of time. If an incorrect PIN is supplied 5 times in a row, the PIN is blocked and
cannot be used again, even with the correct PIN value for duration of 30

minutes.

The application provides 3 attempts for entering a correct PIN. If the user does
not enter a correct PIN in 3 attempts, he is not authenticated and hence not given

access to the applications.

In this application, the fingerprint template is segmented into two and each of the
segments is stored in a different place. This makes it more difficult for the hacker
to get the complete template because he has to get the template from different

places.

104



The Authentication system can be integrated in many ways. These are discussed

in future work.

Three factor authentication is one of the good ways of authenticating a user.
Three factor authentication can be done using other physical devices and
biometrics. The biometrics may include any thing such as scanning the iris, face
recognition etc. Using three factor authentication and implementing a system by

considering all the security issues makes a system more secure.

105



Chapter 7

FUTURE WORK

The Authentication system can be integrated further in many ways. Given below

are some of the future works that can be done on the system.

Hand Shaking:

It is good to have a handshaking between the host and the applet before the host
gives any commands to the applet. In the handshaking process, host application
(or terminal) must authenticate the applet before sending any messages to it and

the applet also must authenticate the host.

Encrypting the communication:

If the communication between the host and the applet is encrypted, it can

prevent the hackers from hacking any information between the host and the

applet.

iButton as a Single Sign-On (SSO) resource with authorization:

The iButton can be made as a SSO resource by saving the applications that the
user can access along with the applet pin and application access List in the
iButton. The user name and password for each application is saved in the iButton
and once the user is authenticated using three factor authentication, he or she is

automatically logged in to the application.

The application authorization features of the user can also be stored in the

iButton. These authorization features specify the user’s actual roles in the

106



application such as employee, department head etc. The application downloads
the authorization information and gives access to the user according to the access

privilege set for the role

Store the whole Fingerprint Template:

In the Authentication system, the complete template cannot be stored in the
iButton due to memory limitations. There are iButton available with more
memory. Using an iButton with more memory allows storage of the whole

fingerprint template in the iButton.

Store usage statistics:

iButton can be further used to store usage information statistics such as the time
when a particular application was accessed, last time the database was accessed
using iButton, the time when a particular transaction took place etc for securing
financial transactions, point-of-sale transactions. Storing this kind of information
can be useful for the administrator as well as the user. A user can keep a record of
his or her transactions and activities. It can help the administrator to keep track of

the uset’s actions.

Store application Level information:

iButton can be used to store application level information which can be
application related information such as encryption key or decryption key to gain

access to an internet application or a database resource.
Match on Card:

The iButton used in the Authentication system is Java Card 2.0 compliant. A

product named precise BioMatch, provides API to match a fingerprint inside the

107



Java Card. But the BioMatch API is Java Card 2.1.2 compliant. This is one of the
reasons why iButton in this thesis could not match the fingerprint on the card.
Using an iButton which is Java Card 2.1.2, we can match the fingerprint in the
card using the precise BioMatch API thus upgrading the system further to Match
on Card/Store on Card system, which is considered the most secure way of
implementing a three factor authentication system with fingerprints as the

biometrics.

108



REFERENCES

[1] Gollmann, Stallings; Computers and Security; July 2001;
http://www.iwar.org.uk/comsec/resources/secutity-lecture/show50b7.html

[2] Jess Garms and Daniel Somerfield, Professional Java Security, Wrox Press
Ltd., 2001

[3] Nari Kannan; How to catch some next big things and lose others; March
2004; http://blogs.ittoolbox.com/bi/entrepreneur/archives/000574.asp

[4] Fortress Technologies; Fortress Technology Unveils Three-Factor
Authentication for Wireless Security;
http://www.80211bnews.com/publications/page207-495001.asp

[5] Dekart Logon; Secure Logon for windows;
http://www.dekart.com/products/authentication access/logon/

[6] Trio Security Inc.; A new standard in Authentication security;
http://www.findbiometrics.com/Pages/ feature%20atticles/ trio.html

[7] Richardson Business Machines; Two & Three Factor Authentication;
http://www.richardsonbus.com/products/2factor.html

[8] Rainbow Technologies Inc.; Two-Factor Authentication — Making sense of all
options; February 2002; http://www.itsecurity.com/papers/rainbow2.htm

[9] Stephen M.Curry, An Introduction to Java Ring; 1998;
http://www.javaworld.com/javaworld/jw-04-1998 /jw-04-javadev_p.html

[10] iButton; Java-Powered Cryptographic iButton;
http://www.ibutton.com/ibuttons/java.html

[11] Search Web Services; Java Ring; March 2004;
http://searchwebsetvices.techtarget.com/sDefinition/0,,sid26 gci836660,00.
html

[12] Dallas Semiconductor Maxim, Frequently Asked Questions;
http://db.maxim-
ic.com/ibutton/faq/index.cfmrfuseAction=FAQ).subCategories&Categoryl
D=5&categoryName=iButtons#What%020is%20an%20iButton?

[13] OpenCard; Open Card Framework: Frequently asked questions;
http://www.opencard.org/misc/ OCF-FAQ.shtml#]avaCard

[14] Howstuftfworks; What is a smart card;
http://electronics.howstuffworks.com/question332.htm

[15] Rinaldo Di Giorgio; Smart cards: A Primer; 1997,
http://www.javaworld.com/javaworld /jw-12-1997 /jw-12-javadev.html

[16] Rinaldo Di Giorgio; Smart cards and OpenCard Framework; 1998;
http://www.javawotld.com/javaworld /jw-01-1998 /jw-01-javadev.html

[17] Zhiqun Chen; Understanding Java Card 2.0; 1998;
http://www.javaworld.com/javaworld /jw-03-1998 /jw-03-javadev.html

109



[18] Arsalan Lodhi; A Java Card Primer;
http://www.developer.com/java/other/article.php/910261

[19] Thomas Schaeck with Rinaldo Di Giorgio; How to write OpenCard services
for Java Card Applets; 1998; http://www.javaworld.com/javaworld /jw-10-
1998 /jw-10-javadev.html

[20] Dallas Semiconductot, maxim; ftp://ftp.dalsemi.com/pub/iB-IDE 2.0

[22] Sun Microsystems Inc.; Java Card Platform Security, Technical white paper;
http://java.sun.com/products/javacard/JavaCardSecurityWhitePaper.pdf

[23] International Biometric Group;
http://www.biometricgroup.com/access control.html

[24] Anil K. Jain; Fingerprint Matching; 2002;
http://www.pims.math.ca/industrial /2002 /mitacs-agm /jain

[25] Jay Lyman; New Technology spots Fingerprint ploys; June 2002;
http://www.newsfactor.com/petl/story/18029.html

[26] Aron Ligon; An Investigation into the Vulnerability of the Siemens ID
Mouse Professional Version 4; September 2002;
http://www.bromba.com/knowhow/idm4vul.htm

[27] Tsutomu Matsumoto; Impact of Artificial “Gummy” Fingers on Fingerprint
Systems;
http://www.totse.com/en/bad ideas/locks and security/164704.html

[28] AuthenTec Inc.; Why Fingerprint Authetication;
http://www.authentec.com/finallnteg/WhyFingerprints.htm

[29] AuthneTec Inc.; Why TruePrint Technology;
http://www.authentec.com/finallnteg/WhyTruePrint.htm

[30] AuthenTec, Inc.; AuthenTec Windows Fingerprint Software Version 6.3 for
Microsoft Windows, Programmer’s Reference Manual.

[31] Magnus Pettersson, Marten Obrink.; How secure is your biometric solution?,
20" Febuary 2002

110



VITA

Jyothi Chitiprolu earned her Bachelor of Science, degree from the University
of Madras, India, in 2001. She majored in Computer Science. She pursued a
Masters of Science degree in Computer Science to gain more experience in
her fields of interest. Her areas of interest include Computer security, Client
server web application and distributed databases.

111



	Three Factor Authentication Using Java Ring and Biometrics
	Recommended Citation

	Table of Contents
	List of Figures
	Abstract
	Introduction
	Computer Security
	Java Ring
	Fingerprint Authenticator
	Implementation
	Conclusion
	Future work
	References
	Vita

