
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Summer 8-4-2011

SEA: a novel computational and GUI software pipeline for SEA: a novel computational and GUI software pipeline for

detecting activated biological sub-pathways detecting activated biological sub-pathways

Thair Judeh
University of New Orleans, tjudeh@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Judeh, Thair, "SEA: a novel computational and GUI software pipeline for detecting activated biological
sub-pathways" (2011). University of New Orleans Theses and Dissertations. 463.
https://scholarworks.uno.edu/td/463

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Figure 2.3: A network and its transpose. By running the All Linear Paths algorithm detailed
in Figure 2.2 on both networks, the same set of gene sets is produced. In essence, this states
that without any prior information a network and its transpose are both equal in terms of
finding the final network.

Table 2.1: Statistics concerning E. coli networks from the DREAM3 Network Challenges.
Also displayed are the results of the LPA algorithm where Sensitivity = TP

TP+FN
. Specificity

= TN
TN+FP

. Positive Predictive Value (PPV) = TP
TP+FP

. TP equals true positives, FP equals
false positives, TN equals true negatives, and FN equals false negatives.

intersection stages. This modularity allows for ease of updating stages individually. Figure

2.4 presents a high-level flow chart of the LPA algorithm.

12

Figure 2.4: The LPA algorithm consists of five key stages. The first stage, preprocessing,
separates the gene sets into components. The second stage, sorting, places the gene sets in
order. The third stage, growth, searches for candidate networks. The fourth stage, pruning,
scores the candidate solutions and removes candidate solutions with low score. The final
and fifth stage, intersection, is needed in the absence of prior data to reconcile any candidate
solutions still left.

2.3.1 Preprocessing

The idea behind the preprocessing stage is to divide the gene sets into “components.” The

process is relatively straightforward. If two gene sets A and B share at least one node, they

are placed in the same component. If gene set C shares at least one node with either gene set

A or B, it is also placed in the same component. If the original network is a single connected

component, than all gene sets will fall into one component. Similarly, if the original network

had k disconnected components, then there will be k sets of gene sets. For all scenarios

listed, it is assumed that no gene sets are missing so the number of sets of gene sets in

practice may vary. This allows for a divide and conquer approach where the next steps are

run k times, once for each set of gene sets.

13

2.3.2 Sorting

This stage assigns an order for a set of gene sets. The LPA algorithm is very sensitive to

the order of the gene sets. The order of the gene sets can actually determine whether the

algorithm converges to the correct solution and may have a direct affect on its computational

complexity. The current approach places the longest gene sets first. While this increases

the computational complexity of the algorithm, it makes it more likely to converge to the

correct solution.

2.3.3 Growth

The growth stage is very akin to the “searching” stage of a structure learning algorithm.

For the first iteration, assuming no prior knowledge has been provided, length(G1)!
2

networks

are constructed where G1 is the first gene set. Each network corresponds to one linear path

from the length(G1)!
2

possible permutations. The quantity is divided by two as the reverse of

the permutations are automatically discarded (Figure 2.3). These networks are stored in a

set of candidate networks F 1
i . After the pruning stage, one now begins with the pruned F 1′

i .

Each network in F 1′
i is expanded using length(G2)!

2
permutations for G2. However, to reduce

the search space, the topological sort order of each network is taken into account. Thus,

only permutations that do not violate its topological sort order are added. For example, if a

pathway P consists of the linear path 1→ 2→ 3 and the new gene set is {2, 3, 4}, 3→ 2→ 4

will not be added as it violates the topological sort order. {2 → 3 → 4, 2 → 4 → 3, ...}, on

the other hand, are valid permutations, and P will split into new networks accordingly. The

new augmented networks are then added to F 2
i while the networks in F 1′

i are discarded. The

process repeats itself until all gene sets are used and is illustrated in Figure 2.5.

14

Figure 2.5: Growth Stage.

2.3.4 Pruning

The pruning stage is very akin to the “scoring” stage of a structure learning algorithm. This

stage attempts to reduce even further the set of candidate solutions. An important part of

this stage is that it uses all gene sets to compute a score for each network. In its essence,

this score measures how many gene sets that the underlying network can support. In other

words, if one were to run the All Linear Paths algorithm on the network, its score consists of

the intersection of its unordered linear paths with the gene sets. Figure 2.6 provides further

details on the pruning stage.

2.3.5 Intersection

The final stage is needed only when there still remain some candidate network solutions.

Thus, the final network returned is the intersection of all remaining candidate network

solutions. In the absence of prior knowledge, one must choose between a network and

its transpose. An ad hoc solution at the moment is to choose the network whose upper

15

Figure 2.6: Pruning Stage.

triangular matrix is heavier. Naturally, this process may fail when the upper triangular and

lower triangular matrices have an equal number of edges. Figure 2.7 provides an example of

the intersection stage.

Figure 2.7: Intersection Stage.

A post-processing step is the combination of the separate components, if any, pro-

duced by the algorithm. At this stage, the presence of prior knowledge is a must as a

16

network and its transpose are equally likely in the absence of prior knowledge. After this

step is finished, the final network is ready for presentation to the user.

LPA has some novel contributions. At this stage, though, it needs a better sorting,

growth, and pruning stages for it be computationally feasible. Given its modular nature,

though, it is hoped that finding improvements for these stages will be an achievable task.

17

Chapter 3: Network Partitioning

It is often the case that a reconstructed network is too broad of a representation for a process

of interest. Furthermore, there are now readily available high fidelity biological networks with

the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16, 18, 17] being at the forefront

of the databases. Since not all of a biological pathway structure is activated at once, a

finer level of detail is needed when examining the structure of biological pathways. As such,

decomposing a biological pathway structure into sub-pathways is of utmost importance as

they may provide valuable insight into various biological processes.

It is vital to first define what a sub-pathway is. For biological pathways the concept

sub-pathway is very similar to the concept of communities in social networks. A community

is a subgraph of a given graph such that (1) the connections within the community from

node to node are strong and (2) the external connections between other communities are few

and weak. Figure 3.1 provides an illustration of the concept of communities.

Figure 3.1: The network displayed consists of two communities shaded white and black,
respectively. Both communities exhibit high internal connections. Furthermore, the con-
nections between the two communities consists only of a single edge. This original author
contribution is set to also appear in [2].

There are two approaches for finding the sub-pathways of a biological pathway struc-

ture or graph, namely graph clustering and community detection algorithms [25]. The former

type of algorithms have their origin in computer science and other related fields. The latter

18

type of algorithms were originally used by sociologists. They now encompass algorithms in

applied mathematics, physics, and biology.

For graph clustering algorithms, a user must specify the number of clusters or par-

titions. A graph clustering algorithm will always return the specified number of partitions

regardless of whether the underlying graph is partitionable. These algorithms were designed

with specific applications in mind. Some applications include improving the paging prop-

erties of programs and placing the components of an electronic circuit onto printed circuit

cards [19].

One may ask, “Why study graph clustering algorithms for biological pathways?”

This is indeed a pertinent question. The major reason is that these algorithms often serve

as an inspiration for community detection algorithms. For example, the Laplacian matrix

whose use is popular in graph clustering algorithms can be modified to perform eigenvector

decomposition [25]. Another example can also be found in Newman’s eigenvector method

[25]. In this paper Newman used the Kernighan-Lin algorithm [19] as inspiration for a

post-processing algorithm, namely Algorithm 2.

Concerning community detection algorithms, the underlying assumption behind these

algorithms is that a network or graph can “naturally” be divided into sub-pathways or

communities. Thus, the sub-pathways of a graph can be viewed as a topological property of

the graph. This design philosophy is a major difference between community detection and

graph clustering algorithms.

Before discussing some algorithms in detail, it is prudent to discuss the nature of

these algorithms. Most algorithms in this field work for undirected networks and produce

mutually exclusive partitions. It is often far from trivial to extend the undirected version of

an algorithm to work for directed networks [10]. It is often the case that an algorithm that

works only for undirected graphs is simply applied to directed graphs by ignoring the edge

direction in the directed graphs. As seen in Figure 3.2, this approach is far from adequate.

19

Figure 3.2: An E. coli network from the DREAM3 Network Challenges [22]. (Left) The
six communities of the network ignoring edge direction. (Right) Taking edge direction into
account, no communities could be found. In both cases, the appropriate version of InfoMap
[30] was run for 100,000 iterations. This original author contribution is set to also appear in
[2].

As with the network reconstruction algorithms outlined earlier, it is very helpful to

have some gold standard networks to compare different algorithms. What constitutes a gold

standard network is an area of research itself. For illustration purposes Zachary’s karate

club [36] has often been used as a “gold standard” network. This social network has in its

origin the relationships amongst 34 karate club members. A disagreement arose between the

club’s administrator and the instructor with the latter splintering off to form a new club as

seen in Figure 3.3.

The remainder of this chapter will now be outlined. First, the Kernighan-Lin al-

gorithm [19] will be discussed to provide a flavor for graph clustering algorithms. This

discussion will be followed by an examination of the Girvan-Newman Algorithm [13, 26],

a very popular community detection algorithm. Finally, the Clique Percolation Method

(CPM) [27] will be discussed. Compared to the previous two algorithms, CPM has a version

that works with directed networks and also produces nonexclusive sub-pathways.

20

(a) The true partitioning (b) Girvan-Newman partition

Figure 3.3: (Left) The true partitioning of Zachary’s karate club. (Right) The partitioning as
returned by the Girvan-Newman algorithm [13] which mislabels a single node. This original
author contribution is set to also appear in [2].

3.4 Kernighan-Lin Algorithm

Developed in the 1970s, the Kernighan-Lin algorithm is a well-known graph clustering algo-

rithm. Given its applicability it is often used as a subroutine for other algorithms. It was

initially developed in order to divide electronic circuits on boards. The connections between

the various circuits were quite expensive. Minimizing the number of connections between the

various circuits is a key goal. Formally, the Kernighan-Lin algorithm is a heuristic method

that sought to solve the following combinatorics problem: provided a weighted graph G, di-

vide the vertices in V into k partitions such that no partition is larger than a user-specified

m. The objective function is that to minimize the total weight of the edges connecting the

k partitions.

The algorithm itself seeks to divide a network into two subnetworks. If more clusters

are needed, the algorithm may be applied in a recursive fashion. To begin one has an undi-

rected graph G of size |V | = n1 + n2 where n1, n2 correspond to the size of the subnetworks

X,Y , respectively. Without loss of generality, assume that n1 ≤ n2. Let cij be the cost from

vertex i to vertex j. All cii equal zero, and the adjacency matrix representing G is

21

symmetrical. Thus, the goal of the Kernighan-Lin algorithm is to minimize the cost C of

the edges connecting the subnetworks X and Y , where for y ε Y and x ε X

C =
∑
X×Y

cxy. (3.1)

For each node α ε A where A may be either X or Y , let

Dα =
∑
βεĀ

cαβ −
∑
α′εA

cαα′ (3.2)

where the first sum represents the intracluster costs between a vertex α and all other vertices

in the opposite cluster. The second sum represents the intercluster costs between vertex α

and all other vertices in its own cluster. Another important quantity to note is the gain g

for swapping two nodes between their respective clusters. Let

g = Dx +Dy − 2cxy. (3.3)

Algorithm 1: Kernighan-Lin Algorithm

Data: An undirected network G and initial guesses for X and Y
Result: The subnetworks X and Y such that Equation 3.1 is minimized.
repeat

Calculate D values ∀ x ε X, y ε Y
Let Y ′ = Y , X ′ = X.
for i = 1 : n1 do

Select y ε Y ′ and x ε X ′ that maximizes gi.
Let y′i = y and x′i = x.
Remove the selected x and y from their respective clusters X ′ and Y ′.
Recalculate the D values for the remaining elements.

Select j to maximize Γ =
∑j

i=1 gi.
if Γ � 0 then

Swap the 1 to j x′i’s and y′i’s between X and Y .

until Γ ≤ 0

22

The complexity of the Kernighan-Lin algorithm is O(|V |2log|V |). It is very sensitive

to the initial guesses for the subnetworks X and Y and may perform quite poorly for a

random initialization. It is often the case that a different algorithm provides the initial

guesses for the subnetworks, and the Kernighan-Lin algorithm improves upon those guesses.

From a biological standpoint, the Kernighan-Lin algorithm may not be quite applicable as

initial guesses for X and Y may be hard to obtain, especially if prior knowledge is lacking.

Furthermore, the Kernighan-Lin algorithm imposes a minimum number of sub-pathways

which may not be biologically valid. Regardless, the Kernighan-Lin algorithm did provide

the inspiration for a post-processing community detection algorithm developed by Newman

[25].

Algorithm 2: Post-processing Community Optimization

Data: An undirected network G and initial guesses for X and Y
Result: The subnetworks X and Y such that some quality function F is maximized.
repeat

for i = 1 : |V | do
Move a vertex v from either X to Y or vice-versa that maximizes F .
Remove vertex v from any further consideration.
Store the resulting partition of G as Pi

Select Pi that maximizes F .
Let X = Xi and Y = Yi obtained from Pi.

until no further improvement in F can be obtained.

3.5 Girvan-Newman Algorithm

The Girvan-Newman algorithm [13] is an extremely popular divisive clustering algorithm.

Divisive clustering algorithms are machine-learning algorithms that provide users with par-

titions of varying sizes. They are also a type of hierarchical clustering algorithms of which a

second type is agglomerative clustering. A brief description of the two types of hierarchical

clustering algorithms now follows.

23

