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Abstract 

Introduction: Isokinetic testing is used in rehabilitation settings on a regular basis, yet 

there is a lack of consistency in rest period usage among protocols. Purpose: The 

purpose of this study was to establish an optimal rest period that would allow 

reproducibility of strength during a common isokinetic strength-test. Methods: Twenty-

seven healthy college-aged males underwent isokinetic strength testing to determine peak 

torque at 60, 180 and 300 deg/sec, respectively. Work:rest ratios of 1:3, 1:8 and 1:12 

were counterbalanced between sets. A 3 X 3 repeated measures ANOVA was used to 

analyze the data. The p < .05 level of significance was used for all tests. Results: There 

was no significant difference in either knee extension or knee flexion peak torque when 

comparing work:rest ratios. Conclusion: These findings suggest that a 1:3 work:rest ratio 

is sufficient during a common isokinetic strength test.  

Key words: isokinetic strength test, rest period, work:rest ratio, knee extension, knee 

flexion, peak torque. 

 



 1

Chapter 1 

Introduction 

 Isokinetic testing has been a favorable method in acquiring new insight into 

biomechanics and greatly expanding the possibilities for studying various physiological 

principles of muscle function such as the force-velocity relationship (Foss & Keteyian, 1998; 

Hill, 1938), the power-velocity relationship (Osternig, 1986; Perrine & Edgerton, 1978), and the 

strength curve (Kulig, Andrews, & Hay, 1984; Stone & O’Bryant, 1987). Isokinetic testing has 

also demonstrated versatility by offering a convenient way to predict 1-repetition maximum 

(1-RM) in dynamic leg extensions (Gulick, Chiappa, Crowley, Schade, & Wescott, 1998), while 

also offering a noninvasive way to predict muscle fiber-type composition (Adams, 2002).  

Since its introduction in the scientific literature (Hislop & Perrine, 1967; Thistle, Hislop, 

Moffroid, & Lowman, 1967), isokinetic testing has become a common method of evaluating 

human muscle performance in athletes and functional capacity in patients. In the same time 

period that isokinetic exercise was introduced, many of the published papers that followed were 

based on knee testing (Dvir, 2004). Although knee testing does not enjoy the same degree of 

exclusivity today, it still remains as one of the most commonly used isokinetic protocols among 

clinicians (Dvir, 2004).  

In isokinetic evaluation, the types of tests commonly performed include muscular 

strength (Tourny-Chollet, Leroy, Leger, & Beuret-Blanquart, 2000), endurance (Colliander, 

Strigard, Westblad, Rolf, & Nordenstrom, 1998), power (Liebermann, Maitland, & Katz, 2002), 

and bilateral and ipsilateral strength (Adams, 2002). Although some have been skeptical of 

isokinetic testing due to the claim of a lack of functionality (Siff, 2003; Stone 2000), it has 

continued to be commonly utilized among researchers, athletic trainers, and physical therapists 
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due to its quantitative capability and the precision of measurement it provides (Baltzopoulos & 

Brodie, 1989; Davies, 1992; Elliott, 1978; Rothstein, Lamb, & Mayhew, 1987). The expansive 

capability to standardize testing procedures in isokinetic testing compared to other strength 

testing modes gives isokinetic testing an advantage in terms of test validity (Sale, 1991). Even 

with the high cost of an isokinetic device, these devices have become more prevalent in many 

athletic training facilities on college campuses and in sophisticated fitness and rehabilitation 

clinics (Adams, 2002).  

  Isokinetic strength testing has become more widely used owing to the credibility it 

conveys through its capacity to identify and quantify clinically relevant muscle performance 

factors such as explosive strength, fatigue tolerance, or strength imbalance, all of which may be 

involved in knee pathology (Perrin, 1993). Another reason for the frequent use of isokinetic 

testing is its capacity to dispense quantifiable data that are useful in monitoring physiological 

changes in athletes and patients alike. This method of strength evaluation has been useful in 

describing physiological changes in response to physical training (Brown & Whitehurst, 2003), 

providing useful biomechanical data for research purposes (Kannus, 1994), and characterizing 

function in various populations (Melzer, Benjuya, & Kaplanski, 2000). Among these various 

populations, athletes in many different sports have been plagued with lower leg injuries 

(Pincivero, Gear, Sterner, & Karaunkara, 2000).  

 A common problem among athletes following anterior cruciate ligament (ACL) 

reconstructive surgery is the loss of quadriceps muscle strength. Through isokinetic strength 

testing, a clearer and more objective view of strength progression and improvement may be 

observed (Tyler, Nicholas, Hershman, Glace, Mullaney, & McHugh, 2004). The extensive use of 

isokinetic strength testing as a common modality for baseline data acquisition has paved the way 
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for optimal rehabilitation program design in patients and athletes. However, the validity of the 

test results regarding strength progression and improvement are heavily dependent on the 

standardization of testing procedures (Pincivero, Lephart, & Karunakara, 1998; Sale, 1991). 

Standardization of testing allows findings to be mainly attributed to the success of the 

rehabilitation program (Pincivero et al., 1998). Furthermore, with the aid of valid and reliable 

strength findings, clinicians and physical therapists will be able to design a much safer and more 

effective training program for their patients. 

Statement of the Problem 

 The ability of an isokinetic device to assess muscular function and pathology by way of 

quantification of torque, work, and power are attributes that are valuable in producing 

measurable change as well as making advances in the disciplines of exercise science and sports 

medicine. With objective measures such as these, validity and reliability of strength tests are 

enhanced, while findings gain practical value (Osternig, 1986). For these reasons, the importance 

of accurately reproducing isokinetic strength values during testing becomes critical in preventing 

instrument or testing error when tracking changes during physical training and rehabilitation 

(Pincivero, Lephart & Karunakara, 1997a). The implication is that when strength values are 

reliable, other confounding variables have been eliminated, thereby allowing the changes of 

physical training and rehabilitation to be more clearly seen.   

Although many studies have employed isokinetic strength testing to investigate various 

aspects of muscle performance, interset rest periods have not received as much attention 

(Bilcheck, Kraemer, Maresh, & Zito, 1993; Parcell, Sawyer, Valmor & Chinevere, 2002; 

Pincivero, Gear, Moyna, & Robertson, 1999; Stratford, Bruulsema, Maxwell, Black, & Harding, 

1990). Even with the inaugural research investigating interset rest periods by Ariki, Davies, 
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Siewart, & Powinski (1985) and Stratford et al. (1990), many researchers have continued to 

underestimate the impact of interset rest periods on measurement reliability. When rest periods 

are not standardized, the test may begin to measure other facets of muscular function such as 

high-intensity muscular endurance (Robinson, Stone, Johnson, Penland, Warren, & Lewis, 1995). 

As a result, an unnecessary amount of fatigue can occur, thereby preventing full muscle 

activation in the succeeding sets (Pincivero et al., 1998). The eventual outcome will be one of 

misleading findings that do not assess muscular strength at its true maximum (Weiss, 1991).  

Obtaining an Optimal Interset Rest Period  

 In attempting to address the problem of lack of standardization of interset rest periods in 

isokinetic testing, fatigue and recovery specific to strength testing need to be clearly understood. 

Furthermore, a fundamental comprehension of the historical roots of fatigue and recovery 

research is essential. In strength testing of any mode, the test is typically of very short duration 

due to the anaerobic nature of high-intensity muscle contractions lasting 1-15-s as dictated by the 

adenosine triphosphate phosphocreatine (ATP-PC) energy system (Robergs & Roberts, 1997). 

The underlying logic to strength is that it is manifested through the ATP-PC energy system with 

the main energy source being phosphocreatine (PCr) (Robergs & Roberts, 1997). Thus, the 

relevance of these underlying concepts is paramount in making coherent and logical decisions 

about rest period establishment.  

 PCr recovery will be the type of exercise recovery referred to in the following review of 

literature on exercise recovery. Since PCr is the primary substrate used in energy production 

during any isokinetic strength test (Robergs & Roberts, 1997), its significance is worthy of 

further explanation. Hence, basic research on PCr recovery kinetics is of primary interest due to 

PCr recovery being the underlying physiological mechanism responsible for strength recovery. 
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 Historically, basic research has primarily looked at exercise recovery in controlled 

laboratory settings using isometric and exhausting dynamic exercise (Bigland-Ritchie, Jones, 

Hosking, & Edwards, 1978; Bogdanis, Nevill, Boobis, Lakomy, & Nevill, 1995; Boska, 

Moussavi, Carson, Weiner, & Miller, 1990; Harris, Edwards, Hultman, Nordesjo, Nylind, & 

Sahlin, 1976; Hultman, Bergstrom & McLennan Anderson, 1967; McCann, Mole, & Caton, 

1995; Nassar-Gentina, Passonneau, Vergara & Rapoport, 1978; Nosek, Fender, & Godt, 1987; 

Spande & Schottelius, 1970; Takahashi, Inaki, Fujimoto, Katsuta, Anno, Niitsu, et al., 1995). 

Several of these studies looked at recovery of isolated animal (Nassar-Gentina, et al., 1978; 

Nosek, et al., 1987; Spande & Schottelius, 1970) and human muscles (Bigland-Ritchie et al., 

1978; Bogdanis et al., 1995; Boska et al., 1990; Harris et al., 1976; Hultman et al., 1967; 

McCann et al., 1995; Takahashi et al., 1995) in which the modes of contraction were not specific 

to the types of contraction typically used in strength training or testing. Many of the earlier 

findings on exercise recovery were based on various anaerobic exercises such as isometrics 

(Boska et al., 1990), electrical stimulation (Bigland-Ritchie et al., 1978), over-ground sprinting 

(Balsom, Seger, Sjodin, & Ekblom, 1992), or cycle sprinting (Bogdanis et al., 1995).  

 Although many of these aforementioned studies have investigated the causes of fatigue, 

none have looked at recovery specifically related to strength training or testing. In particular, of 

the few basic research studies investigating PCr recovery kinetics, several looked at PCr 

recovery during exhausting cycle ergometer or isometric tests (Bogdanis et al., 1995; Boska et al., 

1990; Harris et al., 1976; Hultman et al. 1967). Although many applied research studies have 

reported differences in recovery times for isokinetic strength testing (Bottaro, Russo, Oliveira & 

Barbosa, 2005; Parcell et al., 2002; Pincivero et al., 1998; Touey, Sforzo, & McManis, 1994), 

this cannot replace the clear depiction that basic research can offer into strength recovery based 
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on the underlying mechanisms into PCr recovery kinetics. For example, the reported strength 

recovery times in applied research were quantified through indirect measures such as peak torque 

or reproducibility of strength performance (Bottaro et al., 2005; Parcell et al., 2002; Pincivero et 

al., 1998; Touey et al., 1994). On the contrary, basic research provides a direct measure of the 

exact underlying physiological processes (e.g. PCr recovery kinetics) that occur during strength 

recovery through muscle biopsy (Harris et al., 1976; Hultman et al., 1967) or a more recent and 

noninvasive procedure known as phosphorus nuclear magnetic resonance (P-NMR) spectroscopy 

(McCann et al., 1995; Takahashi et al., 1995). In applied research, these underlying 

physiological processes are only implicated based on the indirect measures of peak torque or 

reproducibility of strength performance. With the applied research results of differences existing 

in strength recovery time (Bottaro et al., 2005; Parcell et al., 2002; Pincivero et al., 1998; Touey 

et al., 1994), it gives justification to investigate PCr recovery directly through basic research so 

that these strength recovery differences can be logically confirmed and understood more 

precisely.     

 Although basic research findings have primarily investigated exhausting dynamic 

exercise (e.g. non-functional isometric contractions, cycle ergometry, over-ground sprinting), 

which lacks specificity to resistance training, the rest periods recommended from these results 

have nonetheless been applied in sports, fitness, and rehabilitation settings (Harris et al., 1976; 

Hultman et al., 1967 McCann et al., 1995; Takahashi et al., 1995). However, the specific effects 

of PCr recovery kinetics within strength training or testing have yet to be thoroughly investigated 

in either basic or applied research. This should not negate the tremendous benefit of these basic 

research findings in exercise recovery, because they do encompass the underlying physiological 

processes involved in human fatigue and recovery. However, with the lack of consistency in 
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research findings regarding strength recovery (Bottaro et al., 2005; Parcell et al., 2002; Pincivero 

et al., 1998; Touey et al., 1994) and the genuine importance of having reliable baseline strength 

data, these are just a few of the many reasons that further investigation into strength recovery is 

warranted. The relevance is that if fatigue becomes a factor in strength testing, then the results 

will not reflect the individual’s true strength level, thereby negatively affecting the rehabilitation 

program design and the precision in monitoring strength improvement. The benefits that can be 

expected from standardizing rest periods are as follows: 1) higher test-retest reproducibility; 2) 

better test time management and; 3) higher proficiency in strength assessment and strength 

training program development. Research has demonstrated that sufficient interset rest periods 

enable greater amounts of isokinetic strength production with a higher reliability of measurement 

compared to no rest (Stratford et al., 1990) or short rest periods between sets (Ariki et al., 1985).  

 Although rest periods may vary according to the isokinetic test velocity and the repetition 

load, there has been a general inconsistency in rest period allotment in the literature (see Table 1). 

Proper rest periods are important for maximizing tension, thus allowing maximal strength to be 

reproduced between test trials (Brooks, Fahey, & White, 1996). Inadequate rest between test 

trials may have a significant impact on the reliability of measurements due to fatigue, which may 

compromise the reported findings (Parcell et al., 2002; Pincivero, Gear & Sterner, 2001). If rest 

periods are insufficient, then the specific use of the ATP-PC system and concurrent maximal 

muscular strength will be lost in addition to fatigue becoming a confounding variable (Weiss, 

1991). Unfortunately, an optimal interset rest period has not been determined for strength 

recovery. 
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Table 1 

Summary of Results 
Source          Test          Reps/            Order         Contraction      Gender      Rest         Main 
               Velocities     Velocity            of            Mode                         Period       Findings 
                (deg/s)                       Contractions                                    Length  
 
Ariki et al.     180, 210       10          Ascending       Reciprocal      Males &     30, 60     90-s was optimal 
(1985)        240, 270                                                 Females      90-s       (p < 0.05) 
                 300 
 
Bilcheck et al.   30, 120        3         Randomized       Discrete &      Females     30-s      2.5 minute rest 
(1993)                                                   Reciprocal                          period preserves   
                                                                                           strength         
                                                                                            (p < 0.05) 
 
Bottaro et al.    60, 90         4          Randomized        Discrete       Males     30, 60      No difference 
(2005)          120                                                               120-s       among rest 
                                                                                             periods  
                                                                                             (p < 0.05) 
Brown et al.     60, 120,       3          Ascending         Reciprocal     Males &      30-s     Men had less 
(1998)          180, 240,                                                Females             acceleration ROM 
               300, 360,                                                                     than women 
               400, 450                  (p < 0.05) 
Caiozzo et al.     50, 96,       4-7        Ascending        Not reported     Males &      10-s     Training at 96°/s 
 (1981)          144, 190,                                              Females       per      altered force- 
                240, 288                                                             rep      velocity  

                                                                                         relationship     
                                                                                             (p < 0.05)  
                                                                            
Gomez et al.     30, 180,        3        Not reported       Reciprocal       Males      Not       A 10-kilometer  
 (2002)    300                                 reported     run induces  

                                                                                           muscle-fiber    
                                                                                             specific fatigue 
                                                                                              (p ≤ 0.05)     
                                                                                       

 
  Note. Summary of results continued on next page.  
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Table 1 Continued 
 

Parcell et al.      60, 120         4      Ascending         Discrete     Males        15, 60     A rest period of ≥  
(2002)           180, 240                                                         180,      60-s greater led to  
                300                                                             300-s sufficient recovery   
                                                                                          (p < 0.05)         
Pincivero et al.    90            10      4 sets @          Reciprocal    Males &       40       The 160-s rest  
(1998)                                 90º/s                         Females       160-s     period led to      
                                                                                          greater recovery  
                                                                                          (p < 0.05)         
Stratford et al.    60            5       1 set @           Reciprocal    Females      no rest,     The 30-s rest 
(1990)                                60º/s                                       30-s        led to greater  
                                                                                per        recovery  
                                                                                rep        (p < 0.001) 
Stumbo et al.    60, 180,         3      Ascending          Reciprocal     Males &     3-min     Hand-grip        
(2001)         300                                               Females               stabilization       

                                                                                   improved   
                                                                                           performance     
                                                                                           in men only   
                                                                                           (p < 0.007)       
Weir et al.      60, 180,        3      Ascending          Reciprocal      Males &     Not      Extraneous  
(1996)         300                                                    Females     reported   movement        
                                                                                           effects peak torque 

                                                                                       (p = 0.0196)      
Wyse et al.     60, 180         4      Randomized        Reciprocal      Males      5-min      Time-of-day has an 
(1994)                                                            effect on peak  
                                                                                          torque (p < 0.05) 

  Note. This summary is a combination of strength testing and rest period studies along with other studies that were derived        

  during the compilation of this investigation. Only the studies with a clear explanation and description of test protocols were  

  used in this summary.   
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Purpose of Study 

 While a scant number of studies have investigated interset rest periods in isokinetic 

testing (Parcell et al., 2002; Pincivero et al., 1999), none have identified a time-cost and 

consistently effective interset rest period. The purpose of this study was to establish an optimal 

rest period that would allow consistent reproducibility of strength during a common isokinetic 

strength-testing protocol. The practical applications were to promote higher test reliability that 

would ultimately improve precision of strength progress reports and exercise program design.      

Significance of the Study 

 In isokinetic testing, precision of results are increased due to the quantitative capability of 

the isokinetic apparatus when compared to other modes of strength testing (e.g. free-weights) 

(Perrin, 1993). While many facets in isokinetic testing have been standardized, rest periods have 

been inconsistent in many published studies, while some studies have even failed to report rest 

periods (see Table 1). Although convenience may be a reason for ignoring length of rest periods, 

this is not an acceptable reason to avoid standardizing rest periods. Therefore, rest periods should 

be studied more extensively and eventually standardized in retrospect to isokinetic testing being 

a highly quantitative form of measurement and evaluation.  

 When true strength change and improvement are the objective among clinicians and 

researchers, test reliability becomes critical in the fulfillment of attaining reliable data (Pincivero 
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et al., 1997a). Therefore, rest periods need to be further investigated in order to atone for 

confounding variables and to preserve high test reliability.   

Hypotheses  

 1) There will be significant differences in knee extension peak torque when using 

different work:rest ratios (rest periods). 

 2) There will be significant differences in knee flexion peak torque when using different 

work:rest ratios (rest periods). 

Definition of Terms 

Applied Research: Type of research that has direct practical application to educational problems, 

but of which the researcher has limited control of the research setting (e.g. peak torque 

measurement used to indirectly indicate PCr stores post-exercise based on peak torque and PCr 

correlation) (Gay & Airasian, 2003; Thomas & Nelson, 2001). 

Basic Research: Type of research conducted in laboratory settings in which the researcher has 

careful control of the conditions and of which theory development is paramount, but of which 

research findings have limited practical application to educational problems (e.g. muscle biopsy 

to determine PCr stores post-exercise) (Gay & Airasian, 2003; Thomas & Nelson, 2001). 

Discrete Single Contraction – An isokinetic test mode in which movement is non-continuous and 

is typically in a single direction (e.g. knee extension immediately followed by relaxing and 
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letting the leg fall back to starting position) (Brown, Whitehurst, Findley, Gilbert, Groo & 

Jimenez, 1998; Wrigley & Strauss, 2000). 

Fatigue – The inability to maintain a given exercise intensity (Robergs & Roberts, 1997). 

Interset Rest Period – The allotment of time between sets of resistance exercise (Pincivero & 

Campy, 2004). 

Isokinetic – An accommodating resistance that functions to keep speed of movement at a 

constant pre-set speed throughout a specific range of motion, regardless of force exertion being 

maximal or submaximal (Perrin, 1993). 

Metabolic Fatigue – Fatigue that arises from the accumulation of metabolic by-products due to 

energy-producing anaerobic metabolic processes [e.g. excessive build-up of inorganic phosphate 

(Pi) and lactate] (Boska et al., 1990).  

Non-Metabolic Fatigue – Fatigue that arises from neurological origin and could be both of 

peripheral or central location (e.g. failure of nerve impulses to reach muscles or a 

neurotransmitter transmission failure) (Moussavi, Carson, Boska, Weiner & Miller,1989). 

Peak Torque (Strength) – Maximal amount of force exerted within the isokinetic moment 

angular curve; usually is the highest point in the torque curve (Perrin, 1993). 

Phosphagen System (ATP-PC) – A simple anaerobic energy system involving muscle stores of 

ATP and the use of PC to sustain ATP production primarily during short-term, high-intensity 
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work (Foss & Keteyian, 1998; Wilmore & Costill, 1999). 

Phosphocreatine (PCr) – An energy-rich compound found in skeletal muscle that plays a pivotal 

role primarily during high-intensity, short duration exercise by providing energy for muscle 

contraction by maintaining adenosine triphosphate (ATP) concentration (Robergs & Roberts, 

1997; Wilmore & Costill, 1999).  

Rate of Force Development – The speed with which one can access maximal strength or a 

specific percentage of his or her maximal strength within a very short period of time (e.g. amount 

of force generated within the first 0.03-s of muscular contraction) (Behm, 1995; Bell & Jacobs, 

1986). 

Reciprocal Contraction – An isokinetic test mode in which movement is continuous and typically 

concentric muscle force is measured in both directions (e.g knee extension immediately followed 

by knee flexion) (Brown et al., 1998; Wrigley & Strauss, 2000). 

Work:Rest Ratio – A proportional relationship between the time spent exercising and the time 

spent resting (e.g. a 1:3 work:rest ratio would equate to 10 seconds of exercise, followed by 30 

seconds of rest) (Foss & Keteyian, 1998).   

Limitations 

 Limitations in this study were as follows: 

1) The effects of race: Race was not controlled in this study. Research has shown that 
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African-American males have a greater proportion of type II muscle fibers compared to 

Caucasian males, suggesting potentially greater fatigue rates and a slower recovery time (Ama, 

Simoneau, Boulay, Serresse, Theriault, & Bouchard, 1986).  

2) Subject reliability: In regard to subject reliability, this was a difficult variable to control due to 

the complexities of the human element (Perrin, 1993). For instance, the willingness to exert 

maximum effort and compliance to test instructions are factors that may confound the reliability 

of measurement.     

3) Measurement of PCr dynamics: Due to equipment and time feasibility, PCr could not be 

measured. As a result, PCr concentration was premised on the theoretical basis in which it 

behaves during high-intensity exercise (Harris et al., 1976; Hultman et al., 1967). This basis is 

that as peak torque declines, so does PCr concentration.   

4) Improvement in strength from daily activities: Research has shown that strength changes can 

occur as a result of the testing itself being a stimulus for strength improvement among novice 

subjects (Cronin & Henderson, 2004). Although research has shown 5 days between test sessions 

to be an ideal amount of time in attaining reliable measures (Gleeson & Mercer, 1996), 2 days 

between test sessions has also shown to be an adequate time period in retaining reliability as well 

(Bardis, Kalamara, Loucaides, Michaelides, & Tsaklis, 2004; Levene, Hart, Seeds, & Fuhrman, 

1991). This interday rest period of 2 days was used in this study due to its time-cost effectiveness. 
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While learning effects during testing sessions have also been suggested to confound 

measurements (Kues, Rothstein, & Lamb, 1992), these learning effects can be expected due to 

normal day-to-day variation in strength (Dvir, 2003). In delineation of whether changes in 

strength occur as a result of measurement error or real change, Dvir (2003) has suggested that no 

real change is significant unless a 20% difference is found in retesting. Thus, an arbitrary cut-off 

point has now been established to distinguish learning effects versus treatment effects. 

Furthermore, two familiarization sessions took place prior to experimental testing to reduce 

strength changes due to learning effects.   

Delimitations 

Delimitations in this study were as follows: 

1) Age: Only subjects between the ages of 18-35 participated in the study. 

2) Health status: Only subjects in good physical condition participated in this study. Subjects 

consisted of males at low-risk for cardiovascular disease and who had non-pathologic knees. 

3) Fitness status: Only subjects who participated in 30-minutes of accumulated physical activity 

at least 3 days per week were included in this study.    

4) Participant Recruitment: Only university students were recruited for participation in this 

study. 
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Assumptions 

 Assumptions in this investigation were as follows: 

1) Subjects were given the same form of consistent verbal encouragement during testing.  

2) Peak torque reproducibility represented PCr concentration and subsequent recovery. The 

assumption was that as peak torque decreases, PCr decreased as well. The logic to this 

assumption has been substantiated in research showing declines in strength (peak torque) when 

rest periods are insufficient (Hitchcock, 1989). Other research has positively correlated (r = 0.80, 

p < 0.05) PCr concentration with total work production (Casey, Constantin-Teodosiu, Howell, 

Hultman, & Greenhaff, 1996). Thus, strength (peak torque) was used to understand the effect rest 

periods had on PCr concentration.   

3) The Cybex NORM isokinetic dynanometer provided valid data despite its known inherent 

problems such as torque overshoot (Sapega, Nicholas, Sokolow, & Saraniti, 1982) and gravity 

correction estimation based on the cosine curve (Keating & Matyas, 1996). 

4) Subjects did not vary dietary patterns and outside physical activities throughout the course of 

the study. From a performance enhancement perspective, it has been shown that oral creatine and 

caffeine intake have ergogenic effects on strength performance in isokinetic testing (Greenhaff, 

Casey, Short, Harris, Soderlund, & Hultman, 1993; Jacobson, Weber, Claypool, & Hunt, 1992). 

Thus, subjects were asked to refrain from caffeine a minimum of 12 hours before testing and any 
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other ergogenic aids throughout the course of this study.  

5) Subjects did not vary time of day for testing. Time of day can be a confounding factor that has 

also been shown to affect strength test performance (Wyse, Mercer, & Gleeson, 1994). However, 

as a result of the busy schedule of college students juggling class time with other commitments 

such as employment (Buckworth, 2001), time of day and time between test sessions were 

scheduled judiciously, but within a standardized time scope. Therefore, testing occurred a 

minimum of 48 hours between test sessions (Bardis et al., 2004; Levene et al., 1991; Weiss, 

Coney & Clark, 1988) within roughly the same time of day (11 a.m. – 1 p.m.) for each subject.  
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Chapter 2 

 Review of Related Literature 

 In most isokinetic studies, the prevalent method of strength testing has typically been of 

ascending order in which the test progresses from slow-to-fast speeds (see Table 1). However, 

the establishment of interset rest periods between sets has been an area of discordance. The 

problem is that many of these studies have used interset rest periods that do not account for the 

changing intensity of test sets in this prevalent slow-to-fast speed test design. On the contrary, 

interset rest periods in isokinetic strength tests should be dependent on the intensity of the sets. 

The intensity is grounded on the repetition load and the corresponding isokinetic test velocity. 

The repetition load relates training effects to a specific number of repetitions (Fleck & Kraemer, 

1988), but it also implicates the intensity and the bioenergetic pathway involved (Knuttgen, 2003; 

Kraemer, 2003). The isokinetic velocity relates to the magnitude of motor units active and the 

force generated as supported by the force-velocity relationship (Hill, 1938). Thus, each test 

velocity will incur a different workload as determined by the total contraction time. If an 

isokinetic test is designed to measure muscular strength, then the repetition load should be from 

2-6 repetitions (Baltzopoulos & Brodie, 1989; Perrine, 1986; Pincivero & Campy, 2004).  

 Although the comparison among different protocols of isokinetic testing is difficult due 

to the differences in contraction mode (i.e., discrete single vs. reciprocal or concentric-only vs. 
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concentric-eccentric), exercise mode of study (i.e., training vs. testing), and repetition load (i.e., 

4 reps vs. 20 reps), they provide the most closely related comparisons in the scientific literature 

identifying interset rest periods (Woods, Bridge, Nelson, Risse, & Pincivero, 2004). The 

following review of literature provides an overview of the scant number of published studies on 

interset rest periods in isokinetic testing. Thereafter, relevant concepts pertaining to the logic in 

understanding strength recovery were reviewed. Ultimately, a proposed solution in deriving an 

optimal interset rest period in isokinetic testing was examined. The review of literature and 

relevant concepts are in the order as follows:  

1) Isokinetic strength testing. 

2) ATP-PC system supremacy in strength testing. 

3) Fatigue specific to a common isokinetic knee strength testing protocol. 

4) Recovery in strength testing. 

5) Proposed method of identifying strength recovery. 

Isokinetic Strength Testing 

 The primary methods of identifying strength recovery in the research have included a 

variety of rest periods (Parcell et al., 2002) and work:rest ratios (Pincivero, Lephart & 

Karunakara, 1997b). The work:rest ratio is a simplistic method of standardizing rest periods 

more in depth as compared to the allotment of one set rest period. For instance, in two work 
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bouts of 6-s and 12-s of muscular contractions, a standard 60-s rest period would apply to both 

work bouts. However, a work:rest ratio of 1:10 would be dependent on the duration of the work 

bout. In this case, the rest periods would be 60-s and 120-s for the 6-s and 12-s work bouts, 

respectively. The rest periods (60 & 120-s) in this case were based on the ratio (1:10) in which 

the rest periods are in multiples of each of the work bouts (6-s x 10 & 12-s x 10 = 60 & 120-s). 

The logic to this method is that it accommodates for the specific magnitude of fatigue induced by 

each work bout. The premise is that the longer the duration of the exercise bout within the 

ATP-PC system, the greater the depletion of PCr, thus the need for the rest period to be 

dependent on the work bout. This is a factor that is missed when allotting a standard and 

restrictive 60-s rest period (Parcell et al., 2002).    

 The current data available have indicated conflicting findings in regard to interset rest 

periods in isokinetic strength testing and training, with some research indicating short rest 

periods (≤ 60-s) to be adequate (Parcell et al., 2002), while others have shown intermediate (90-s) 

(Ariki et al., 1985) and long rest periods (≥ 150-s) (Bilcheck et al., 1993) to be adequate. In an 

inaugural investigation studying the influence of rest periods along the velocity spectrum (180, 

210, 240, 270, and 300 deg/s), Ariki et al. (1985) found that in performing 10 repetitions per 

velocity, a 90-s rest period was optimal in strength performance. Contrary to these early findings 

by Ariki et al. (1985), Bilcheck et al. (1993) found that a rest period of 150-s was adequate in 
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strength recovery when performing 1 set of 3 repetitions at 30 deg/s and 120 deg/s following a 

fatigue task consisting of 3 sets of 30 repetitions at 120 deg/s. Interestingly, Pincivero et al. 

(1999) found that although a 1:8 work:rest ratio (160-s rest period) led to a better preservation of 

peak torque compared to a work:rest ratio of 1:2 (40-s rest period) when performing 4 sets of 20 

repetitions at 180 deg/s (20-s per set), although the longer rest interval still did not allow 

sufficient recovery. Touey et al., (1994) found that a longer rest period (120-s) allowed adequate 

strength recovery at 60 deg/s, while a shorter rest period (60-s) was adequate at 180 deg/s in 

performing 4 sets of 10 repetitions for each test velocity. It was later noted that a rest period of 

60-120-s allowed optimization of the work:rest ratio (1:4-1:8), although performance was 

maximized with 240-s of rest (Touey et al., 1994). Others have found that a rest period of 160-s 

was sufficient for optimal recovery and strength performance (Pincivero & Campy, 2004; 

Pincivero et al., 1997b; Pincivero et al., 1998). Specifically, Pincivero & Campy (2004) used a 

workload of multiple sets of 20 repetitions at 180 deg/s, while Pincivero et al. (1998) and 

Pincivero et al. (1997b) both used a workload of multiple sets of 10 repetitions at 90 deg/s. 

Although these studies found similar results of longer rest periods being optimal, each of these 

studies were looking at completely different aspects of rest period influence on strength 

(Pincivero & Campy, 2004; Pincivero et al., 1997b; Pincivero et al., 1998). Pincivero et al. (1998) 

investigated how rest periods effected strength recovery and reliability in testing, while Pincivero 
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et al. (1997b) utilized the long (160-s) and short (40-s) rest periods to observe strength changes 

over a 4-week training period. Pincivero & Campy (2004) and Pincivero et al. (1997b) both 

shared a common interest in observing strength changes over a training program, with the only 

difference in protocol being that the training period by Pincivero & Campy (2004) was extended 

to 6-weeks.  

 Contrary to these latter findings, other investigators have found that shorter rest periods 

were enough to recover during testing. Parcell et al. (2002) found that 60-s of rest was sufficient 

to generate reproducible maximum efforts when performing 5 sets of 4 repetitions in an 

ascending order from 60, 120, 180, 240, and 300 deg/s. In an attempt to replicate the findings of 

Parcell et al. (2002), Warren & Blazquez (2004) used a similar protocol. The major difference in 

the protocol by Warren & Blazquez (2004), was that a different rest period was distributed after 

each set throughout the session, as opposed to sustaining the same rest period throughout the 

entire session (Parcell et al., 2002). In addition, it was later discovered by the researchers 

(Warren & Blazquez, 2004) that the effects of gravity and overshoot may not have been 

corrected in every subject. Research has demonstrated that the magnitude of error can be as high 

as 510% if gravity is unaccounted for during isokinetic testing (Winter, Wells, & Orr, 1981). Not 

surprisingly, no significant differences or findings were observed in the work of Warren & 

Blazquez (2004). In a more recent study, Bottaro et al. (2005) found 30-s to be adequate when 
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performing 2 sets of 4 repetitions at 60, 90 and 120 deg/s in randomized order.   

 In other research, Conroy, Stanley, Fry, & Kraemer (1989) found that a 2-minute rest did 

not lead to any significant performance differences compared to no rest in 1 set of 3 reciprocal 

repetitions of leg extension and flexion. However, the 2-minute rest was allotted between 

repetitions and not sets in addition to there being an overall lack of detail in the methodology. 

For instance, while participants were tested at four test velocities (60, 180, 240, & 300 deg/s), no 

details were offered as to the rest interval between sets. In other findings (Harder, 

Kincade-Schall, Pincivero, Coelho, Lephart & Robertson, 1999; Keller, Pincivero, Coelho, 

Lephart, & Robertson, 1999), it was found that short interset rest periods (40-s) were conducive 

for short-term strength development when training at 180 deg/s. Although an attractive finding, it 

has no relevance since the purpose was to develop strength through training, instead of 

preserving strength for testing. 

  In regard to the findings of Parcell et al. (2002) and Bottaro et al. (2005), a possible 

reason for finding a shorter rest period to be sufficient in sustaining peak torque could be due to 

the relative intensity of the strength test. The rest periods necessary to optimize strength 

performance tend to be higher as intensity increases. Such a linear relationship was demonstrated 

in the results of Touey et al. (1994) who concluded that at 60 deg/s, a 2-minute rest period 

allowed adequate recovery, while at 180 deg/s, a 1-minute rest period allowed adequate recovery. 
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The implication from their findings suggests the need for longer rest periods for heavier 

resistances that are represented isokinetically as slower velocities (force-velocity relationship). 

Another interesting outcome from the work of Touey et al. (1994) was that they advocated a 

240-s rest period for allowing maximal strength recovery. An intriguing similarity was that this 

240-s rest period would have equated to a 1:12 work:rest ratio in the testing protocol of Pincivero 

et al. (1999). In the findings of Pincivero et al. (1999), it was remarked that even with a 160-s 

rest period, this 1:8 work:rest ratio still did not allow full recovery. Based on these indications, it 

would seem plausible to have higher work:rest ratios during isokinetic strength testing.  

 In the testing protocol used by Touey et al. (1994), both testing velocities (60 deg/s & 

180 deg/s) consisted of a workload of 4 sets of 10 repetitions. However, the 60 deg/s test velocity 

set lasted longer, thereby inducing a higher metabolic workload that would presumably have led 

to a longer needed rest period. Alternatively, Parcell et al. (2002) used 5 sets of 4 repetitions 

consisting of discrete single concentric-only contractions with each set advancing to a faster 

velocity, thus leading to less tension time on the working musculature. In similar fashion, 

Bottaro et al. (2005) used 2 sets of 4 repetitions consisting of discrete single concentric-only 

contractions. Given that these were discrete single concentric-only contractions with no 

significant knee flexion work involved, the duration of work was shorter. Furthermore, with the 

exception of 60 deg/s, all other velocities were ≥ 90-120 deg/s. Hence, the actual amount of work 
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accomplished during subsequent sets was considerably less than other studies using reciprocal 

concentric knee extensions/flexions (Pincivero & Campy, 2004; Pincivero et al., 1997b; 

Pincivero et al., 1999; Pincivero et al., 1998; Touey et al., 1994) and single concentric/eccentric 

knee extensions (Bilcheck et al., 1993).  

While it has been well established that the magnitude of fatigue and the duration of the 

ensuing rest periods undertaken can have a dramatic effect on subsequent exercise performance, 

there is a lesser known psychological component within strength testing that may also have a 

significant impact on strength performance. In a study by Tharion, Harman, Kraemer, and Rauch 

(1991), it was found that shorter interset rest periods led to greater psychological anxiety and 

fatigue. If rest periods are short (≤ 60-s), the bodily sensations from an inadequate rest period 

may prevent optimal psychological preparation. This acute response to short interset rest periods 

can prevent reproduction of maximal effort during subsequent test trials, thereby compromising 

test validity and reliability. Optimal rest periods between sets are needed to allow adequate 

recovery and enough time to attain an optimal level of cognitive arousal for the next test trial 

(Young, 1989).  

While the amount of rest will be dependent on the nature of the test, Perrin (1993) has 

recommended an interset rest period of 30-60-s for strength testing at any velocity. He also 

suggested that the interset rest period be at least 1-minute or longer if the test consists of 25-30 
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repetitions (Perrin, 1993). In agreement, Wrigley & Strauss (2000) recommended a 40-60-s rest 

interval be allowed between sets. Furthermore, they also suggested that shorter rest intervals be 

used for discrete single concentric-only contractions and tests at high-velocities (Wrigley & 

Strauss, 2000). Opposing views by Davies (1992) and Davies, Heiderscheit, & Brinks (2000) 

suggested that 90-s is the optimum rest period, while for power profile testing, a 3-minute rest 

period is recommended. Sale (1991) suggested that longer rest periods (1-3 minutes) should be 

administered at slower velocities testing larger muscle groups. Although Davies (1992) 

advocated a 90-s rest period based on the findings of Ariki et al. (1985), he suggested that this 

amount of time lacks ecological validity since it would take up too much time in a busy clinical 

setting. In addition, it should be disclosed that this 90-s rest period was directed towards training 

rather than testing. Interestingly, the basis for this 90-s rest period was predicated on test 

velocities ≥ 180 deg/s, which refutes the 30-60-s rest period recommendations for fast test 

velocities (Perrin, 1993; Wrigley & Strauss, 2000). In reference to the exercise protocol used by 

Ariki et al. (1985), the work:rest ratios ranged from 1:9-1:15.  

In light of these reports and findings, there are several factors that need to be addressed 

prior to drawing conclusions simply based on these findings. One important factor is how the 

type of contraction modes within the isokinetic test protocols tended to differ among the studies. 

For instance, discrete single concentric-only contractions (Parcell et al., 2002) and reciprocal 
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concentric-only contractions (Pincivero et al., 1999; Pincivero et al., 1998; Touey et al., 1994) 

were employed by some investigators, whereas concentric and eccentric contractions were 

utilized by Bilcheck et al. (1993). Two potential problems arise with the administration of 

differing contraction modes. First, the recovery effects would tend to differ due to a dissimilar 

amount and type of work completed (Fleck & Kraemer, 2004). Reciprocal contractions 

accomplish twice the amount of work as discrete single contractions, since in reciprocal 

contractions the muscle group does not relax at any point, whereas in discrete single contractions, 

the muscle group works half the time while relaxing in the return to the starting position. Thus, 

whether the contraction mode is reciprocal with concentric-only or concentric-eccentric 

contractions, the energy requirements will be greater in reciprocal versus discrete single 

contractions. Moreover, there would be a greater localized diminishment of energy stores when 

performing concentric and eccentric contractions since the agonist muscle group is being worked 

on both contractile phases (Bilcheck, Maresh & Kraemer, 1992). Pasquet, Carpentier, Duchateau, 

& Hainaut (2000) found that a greater loss of force occurred in concentric contractions (31.6%) 

compared to eccentric contractions (23.8%). However, recall that in concentric-only reciprocal 

contractions, an agonist-antagonist contraction pattern is achieved. Hence, the total time under 

tension is evenly distributed across agonist-antagonist muscle groups, whereas in a reciprocal 

concentric-eccentric contraction, the total time under tension will be sustained by the agonist 
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muscle group the entire time (Bilcheck et al., 1993). Although one could argue either viewpoint, 

the fact still remains that concentric-only contractions versus concentric-eccentric contractions 

will elicit different fatigue and recovery patterns as supported by the law of specificity (Fleck & 

Kraemer, 2004).  

In research pertaining to isokinetic testing, the prevalent methodology of isokinetic 

strength testing has reflected an ascending order across the velocity-spectrum (Parcell et al., 

2002). In these prevalent practices, one velocity-spectrum set is typically used in assessing and 

quantifying muscular strength. Thus, the approach to discovering the optimal rest period must 

address the current methodology of isokinetic strength testing. Since one velocity-spectrum set is 

performed, the issue becomes how the fatigue patterns of the previous test velocity sets influence 

subsequent sets at different test velocities. With ascending order protocols testing at slow 

velocities first, the effect of fatigue induced by these slower velocity test sets needs to be 

addressed in regard to how it impacts performance at faster subsequent test velocities. At fast test 

velocities, the strength expression is limited by the short duration of contraction time. Hence, the 

rate of force development will be the determinant of the exact percentage of maximal strength 

that will be displayed as peak torque in these fast velocity sets. Following this logic, if fatigue 

reduces the rate of force development, then the peak torque at faster velocities should also be 

depressed (Ewing, 1982; Spendiff, Longford, & Winter, 2002). Therefore, if the objective in 
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isokinetic testing is to obtain the best possible results that can only transpire through maximal 

efforts, it is important to identify how the previous slower-velocity set may deter the strength 

response in the following higher-velocity set.  

ATP-PC System Supremacy in Strength Testing 

 Before delving into strength recovery physiology, there is a relevant and rudimentary 

bioenergetic-time continuum worthy of discussion. In isokinetic strength testing, the primary 

energy system being used is the ATP-PC system. Providing that strength testing is conducted 

with a proper repetition load (2-6 reps) (Baltzopoulos & Brodie, 1989) and duration (1-15-s) 

(Wilmore & Costill, 1999), the ATP-PC system will predominate irrespective of the test velocity. 

If the intensity is maximal then the duration will be short since the energy pathway will be 

primarily anaerobic (Adams, 2002; Foss & Keteyian, 1998; Serresse, Lortie, Bouchard, & 

Boulay, 1988). To illustrate this, Serresse et al. (1988) demonstrated the relationship of the time 

course of exercise being indicative of the energy system utilized during a 10-s work performance 

on a cycle ergometer. The major contributors to this 10-s work performance were estimated at 

53%, 44%, and 3% for the phosphagenic, glycolytic, and oxidative pathways, respectively 

(Serresse et al., 1988). In contrast, when performing a 90-s work performance, the major 

contributors to energy production were estimated at 12%, 42%, and 46% for the phosphagenic, 

glycolytic, and oxidative pathways, respectively (Serresse et al., 1988). When reviewing the 



 30

literature, the maximal power of the ATP-PC system has been found to vary from 1-15-s (Conley, 

2000; Foss & Keteyian, 1998; McArdle, Katch & Katch, 2001; Wilmore & Costill, 1999). 

Although the ATP-PC system is still a strong contributor beyond 15-s, substrate utilization shifts 

more towards anaerobic glycolysis beyond 15-s (Foss & Keteyian, 1998; McArdle et al., 2001; 

Wilmore & Costill, 1999). Essentially, the ATP-PC system is the primary contributor up to 15-s, 

afterwards the glycolytic system begins to supersede the energy contribution duties. Therefore, 

while intensity, as indicated by work bout duration, may vary due to the isokinetic 

velocity-spectrum, it can logically be deduced from the bioenergetic-time continuum that the 

ATP-PC system is the primary bioenergetic pathway that is utilized during any common 

isokinetic strength testing protocol. 

Fatigue Specific to a Common Isokinetic Knee Strength Testing Protocol 

 Understanding fatigue as a physiological phenomenon has been very elusive due to the 

complexities of the human biological system and the vast array of interrelated factors involved in 

the fatigue process. Although other definitions are available, fatigue will be operationally defined 

in this investigation as the inability to maintain a given exercise intensity (Brooks et al., 1996; 

Robergs & Roberts, 1997). Essentially, fatigue was represented in this investigation by 

significant declines in peak torque across the velocity-spectrum. Although evidence exists in 

regard to many factors being associated with fatigue (Boska et al., 1990; Green, 1995; Moussavi 
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et al., 1989), the exact sights and causes of fatigue have been difficult to decipher. Nevertheless, 

there have been significant factors associated with fatigue that have been found to arise more 

prominently within the specific energy system being emphasized. 

The recovery of strength is dependent upon the rate of ATP regeneration, which relies on 

the resynthesis of PCr, an oxidative process, and partly to anaerobic glycolysis as well (Bogdanis 

et al., 1995; Conley, 2000; Harris et al., 1976). In order for maximal voluntary contraction (MVC) 

to be returned to pre-fatigue levels, certain biochemical events need to occur. Many have come 

to a consensus toward the relationships between MVC and certain metabolic factors. There are at 

least three metabolic factors that are associated to a loss in MVC: 1) Inorganic phosphate (Pi) 

accumulation (Westerblad, Allen, & Lannergren, 2002), 2) Adenosine diphosphate (ADP) 

accumulation (Robergs & Roberts, 1997), and 3) PCr depletion (Brooks et al., 1996). Each of 

these factors coexists in the process of metabolic activity in high-intensity exercise of very short 

duration (1-15-s). When one engages in a high-intensity exercise bout for a period of 1-15-s, 

stored intramuscular ATP is hydrolyzed up to a certain point, which is followed by PCr 

hydrolysis and ultimately, eventual PCr depletion (Brooks et al., 1996). During these catabolic 

reactions, metabolic by-products such as Pi and ADP accumulate due to the breakdown and 

eventual depletion of PCr (Brooks et al., 1996; Robergs & Roberts, 1997). Westerblad et al. 

(2002) suggested that the frequently observed relationship between declining pH and decreased 
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muscle performance is more coincidental than causal and that some other consequence of 

anaerobic metabolism, such as Pi, is a stronger candidate as being a cause for impaired muscle 

performance in high-intensity exercise. Furthermore, this metabolic by-product pattern of 

accumulation would seem plausible regarding the bioenergetic time-continuum. When ATP 

stores begin to diminish, the PCr stores are tapped until depletion, along with a concomitant 

increase in Pi levels. Once PCr stores are depleted or when catabolic rates exceed anabolic rates, 

glycolysis commences with a greater accumulation of H+ as excessive quantities of lactate are 

produced. Hence, it can be recognized that decreases in pH brought on by increases in H+ are not 

as significant in deterring contractile function during short duration high-intensity exercise (≤ 

15-s) as once thought (Brooks et al., 1996). If the rest periods are adequate enough to promote 

full recovery, then the ATP-PC system will remain the primary supplier of energy. It is when 

inadequate recovery occurs that lactic acid begins to accumulate due to the inadequate 

replenishment of PCr stores, thus the natural transition from the ATP-PC energy system to the 

glycolytic energy system. Therefore, it is important to maintain the correct test duration, 

repetition loads and rest periods since maximal strength production occurs within 1-15-s as 

deemed by the ATP-PC system.   

 Recall that if the objective in isokinetic testing is to obtain the best possible results that 

can only transpire through maximal efforts, it is important to identify how the previous 
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slower-velocity set may deter the strength response in the following higher velocity set. The 

main reason for this approach is that ascending order protocols reflect the prevalent 

methodologies in the literature (see Table 1). Thus, the findings of this investigation may have 

practical implications to current and future clinicians and physical therapists. In approaching this 

issue, how torque is developed at higher velocities must be understood. Research on the 

relationship between muscle-fiber composition and the torque-velocity curve has suggested that 

the rate of force development is a strong indicator of torque levels at higher velocities 

(Thorstensson, Grimby, & Karlsson, 1976; Thorstensson & Karlsson, 1976). The implication is 

that if the rate of force development is the main factor in peak torque development at faster 

velocities, then the influence of rest periods on rate of force development needs to be 

investigated. 

 Interestingly, emerging research has investigated the effects of fatigue on neural 

manifestations such as rate of force development, which constitutes maximal strength production 

(Ewing, 1982; Gandevia, 2001; Haff, Stone, O’Bryant, Harman, Dinan, & Johnson et al., 1997; 

Hakkinen, 1993; Kearney & Stull, 1981; Royce, 1962; Spendiff et al., 2002). It has been 

suggested that the earliest signs of neuromuscular fatigue tend to occur during intense exercise of 

at least 30-s or greater (Robergs & Roberts, 1997). However, neuromuscular fatigue has been 

suggested to occur during intense interval exercise if the rest periods are insufficient (Bompa, 
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1999b). The line of reasoning is that with short rest periods, an intermittent effect of fatigue (i.e. 

3 sets of high-intensity exercise of 10-s) can accrue into having a cumulative effect similar to a 

continuous exercise bout (i.e. 1 set of high-intensity exercise of 30-s) (Hogan, Ingham & Kurdak, 

1998). 

 In an isokinetic strength test, it is also important to understand how a participant’s effort, 

as dictated by pretest instruction, can influence the rate of energy expenditure of the ATP-PC 

energy system and the correspondent fatigue patterns of the ATP-PC energy system as well. This 

chain of events occurs since the participants are required to perform fast and explosive 

contractions in order to reach the pre-set testing speed. Research has shown that specific neural 

patterns such as higher firing rates and stronger neural impulses occur in the performance of 

explosive type movements and exercises (Behm, 1995). In support, Linnamo, Hakkinen, & Komi 

(1998) compared the effects of maximal versus explosive strength loading and found that 

explosive strength loading resulted in a significantly greater (p < 0.05) decrease in rate of force 

development in the early contraction phase (0-100 ms). An important aspect of the methodology 

used was that in the explosive strength loading condition, participants lifted a load of 40% of 

10-RM and were told to perform the contractions as explosively as possible (Linnamo et al., 

1998). Similarly, these pretest instructions are required in isokinetic testing for optimization of 

the load range, which will ultimately lead to optimal performance (Sale, 1991; Wrigley & 
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Strauss, 2000). Furthermore, with the presence of visual feedback and verbal encouragement in 

many isokinetic testing protocols, fatigue tends to occur even more rapidly than without these 

social influences (Dvir, 2004). With factors such as test instructions (contracting as hard and as 

fast as possible), verbal encouragement, and visual feedback being prevalent in isokinetic 

strength tests (Sale, 1991; Wrigley & Strauss, 2000), the manifestation of fatigue occurs very 

rapidly whereby neural control becomes impeded as well. In one such study looking at the 

influence of fatigue across the isokinetic velocity-spectrum in discrete single knee extensions, 

Spendiff et al. (2002) detected greater reductions in peak and mean torque in all test velocities 

(30, 60, 120, & 180 deg/s) following fatiguing exercise at low test velocities (30 & 60 deg/s). 

Therefore, the interference of optimal force production following one slow-velocity set may have 

an affect on strength performance in subsequent high velocity sets, since rate of force 

development is a determining factor of peak torque at higher velocities (Thorstensson et al., 

1976). 

In retrospect to short rest periods (30-60-s) being recommended (Perrin, 1993) and used 

(see Table 1) in velocity-spectrum isokinetic strength tests, it should be acknowledged that PCr 

levels may plummet to suboptimal levels which may encourage earlier signs of fatigue in 

subsequent test speeds in these test protocols due to a lower starting level of PCr (Dawson, 

Goodman, Lawrence, Preen, Polglaze & Fitzsimmons et al., 1997). Consequently, PCr will 
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gradually decline to lower starting levels after each set as a result of insufficient rest periods. 

Such an occurrence was the eventual outcome in the findings of Dawson et al. (1997) and 

Gaitanos, Williams, Boobis, & Brooks (1993). Gaitanos et al. (1993) detected that after a single 

6-s maximal cycle sprint, there was a 57% decline (76.5 ± 7.2 to 32.9 ± 2.6 mmol kg -¹) in 

muscle PCr concentrations. Similarly, Dawson et al. (1997) found that after one maximal 6-s 

cycle sprint, PCr stores were at 55%, 69%, and 90 % of the pre-exercise value at 10-s, 30-s, and 

3 minutes post-exercise, respectively. In addition, a comparison was made on the influence of 

one single maximal cycle sprint (1 x 6-s) vs. a repeated series of cycle sprints (5 x 6-s) on PCr 

depletion and repletion rates. From these findings, it was later suggested that full repletion of 

PCr takes longer in repeated cycle sprints due to a greater depletion of PCr stores, whereby 

repletion must occur from lower PCr levels (Dawson et al., 1997). In essence, while a 30-60-s 

rest interval may permit performance during one or two test velocities, it is not recommended for 

multiple set test protocols. Therefore, when testing for strength, it is recommended that the rest 

period coincide with the specific capacity (substrate maximum attainable power and substrate 

recovery time) of the energy system (ATP-PC) being utilized. 

Recovery in Strength Testing 

Now that fatigue pertaining to the ATP-PC system has been described, a better 

understanding of strength recovery can occur, which can aid in improving the prescription of rest 
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periods in isokinetic strength testing. Typically, the work bouts in strength tests are readily 

acknowledged and identified while the recovery aspects are not given the same recognition 

(Matuszak, Fry, Weiss, Ireland, & McKnight, 2003; Parcell et al., 2002; Pinicivero et al., 1997b). 

Although frequently overlooked, recovery is just as important, if not more important than the 

actual work performed (Pauletto, 1986; Pincivero et al., 1997b). Recovery is defined as the 

replenishment process of the energy stores specific to the energy-system(s) being used (Foss & 

Keteyian, 1998).  

Based on the inconsistency in the literature, many rest periods appear to have been 

arbitrarily set based on anecdotal test experience or personal observation in isokinetic 

strength-testing (see Table 1). With some studies implementing rest periods of 30-s or less for 

maximal strength-tests (see Table 1), it is difficult to understand why these researchers have not 

referred to the human PCr substrate recovery paradigm established by many investigators, which 

is based on maximal strength production and strength recovery (Harris et al., 1976; Hultman et 

al., 1967; McCann et al., 1995; Takahashi et al., 1995). The importance of this PCr substrate 

recovery paradigm is monumental, considering this is the specific energy substrate used in any 

properly administered isokinetic strength test (Pincivero et al., 1998). Thus, with the luxury of 

data on PCr substrate recovery as accomplished through basic research, a more precise and 
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logical approach is available in the prescription of rest periods (Harris et al., 1976; Hultman et al., 

1967).  

The half-life of PCr replenishment has been estimated to be approximately 20-30-s and as 

long as 36-48-s (Fleck & Kraemer, 2004; Harris et al., 1976; Kraemer, 1983). Fleck & Kraemer 

(2004) reported that “Within 20 to 48-s 50% of the ATP and PCr are replenished; in 40 to 96-s 

75% is replenished; and in 60 to 144-s 87 % is replenished. Thus, the majority of the depleted 

ATP and PCr intramuscular stores are replenished within 3-4 minutes” (pg. 79). In agreement, 

Hultman et al. (1967) found that 70% of the ATP-PC stores were replenished in 30-s while most 

of the ATP-PC stores were replenished in 3-5 minutes. In congruence, Foss & Keteyian (1998) 

have recommended that the general rest period for ATP-PC recovery be 2-5 minutes.   

Similarly, PCr recovery was graphically illustrated to occur approximately 4-minutes 

after cessation of exercise by McCann et al. (1995). However, it was indicated that 100% PCr 

recovery did not occur until 15-minutes after exercise (McCann et al., 1995). Harris et al. (1976) 

found that in dynamic exercise, 2-4 minutes of recovery led to an 84 and 89% restoration of PCr 

stores, respectively. By 8-minutes, 97% of the PCr stores were replenished (Harris et al., 1976). 

While the process of exercise recovery can be separated into two preliminary phases, the fast 

component (alactacid) and the slow component (lactacid) (Kraemer, 1983), Harris et al. (1976) 

demonstrated that there is a fast component and slow component for PCr recovery too. It was 



 39

found that the fast component of PCr recovery had a half-life of 21-23 seconds and a slower 

component with a half-life of greater than 3-minutes (Harris et al., 1976).  

In many of these studies and reports, complete recovery was presumed to mean an 87% 

or slightly greater concentration of PCr. This level of PCr was suggested to be the highest 

attainable level that can occur in the midst of exercise (Landwer, J., personal communication, 

April 1, 2004). The basis for this presumption of permitting an 87% or slightly greater PCr 

concentration during strength testing appears to be related to the weighing of time versus the 

significance of an added ≥ 13% of PCr recovery. The situation presents itself as follows: If PCr 

concentration is depleted, the estimated time to 87% has been found to range from 60-s to 

4-minutes (Harris et al., 1976; Hultman et al., 1967; McCann et al., 1995), while the estimated 

time to 97 and 100% has been found to be 8-minutes (Harris et al., 1976) and 15-minutes 

(McCann et al., 1995), respectively. This difference is explained by the rate of PCr recovery 

exhibiting a fast component as suggested by Harris et al. (1976) with a slower component of PCr 

recovery following. Thus, the significance of waiting 4-14 additional minutes for a 13% 

repletion of PCr is irrational and unrealistic in a testing environment.           

 Not surprisingly, these 3-5 minute scientific findings of PCr recovery have coincided 

with the 3-5 minute general recommendations for strength and power recovery made by several 

lead investigators (Baechle, Earle & Wathen, 2000; Clark, 2001; Fleck & Kraemer, 1988; Fleck 
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& Kraemer, 2004; Kraemer, 2003; Kraemer & Fry, 1995; Pincivero, 2001; Weiss, 1991; 

Zatsiorsky, 1995). Even though these recovery rates have been established, the findings of PCr 

recovery were based on recovery from exhausting and extremely fatiguing exercise whereby PCr 

levels were severely depleted. Thus, one must consider the intensity and duration of the exercise 

bout prior to simply applying this 3-5 minute generalized recommendation (Brooks et al., 1996; 

McCann et al., 1995). To illustrate this, Hitchcock (1989) found that the intensity of prior cycle 

ergometer exercise altered the pattern in recovery of maximal short-term power output (STPO) 

in isokinetic knee extensions at 60 deg/s. Immediately after exercise, STPO fell to 85, 75, 55, 

and 47% of preexercise values for prior exercise equivalent to 60, 80, 100, and 120% of maximal 

O2 uptake, respectively (Hitchcock, 1989). STPO had fully recovered by 1 minute of 

postexercise after submaximal work rates (60 and 80%) whereas recovery was delayed until after 

4 minutes of postexercise after maximal exercise (100%) (Hitchcock, 1989). Therefore, in order 

to truly understand the importance of strength recovery and how to administer rest periods, the 

preceding intensity and duration of the exercise bout need to be better determined and 

understood.   

Proposed Method of Identifying Strength Recovery 

 Upon review of the literature, the prominent method of allotting and identifying rest 

periods appears to have been accomplished by utilizing already established rest periods from 
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previous studies or by arbitrarily assigning rest periods based on empirical observation in 

isokinetic strength-testing (see Table 1). While these methods of identifying optimal rest periods 

are prominent in the literature, they are not preferable in terms of validity, reliability, and time 

efficiency (Pincivero et al., 1997a; Pincivero et al., 1998). Consequently, there have been 

conflicting findings regarding the optimal rest period in isokinetic strength testing. The ideal 

approach would be to use methods that control for most confounding and extraneous variables in 

subjects, and as a result, provide a greater consistency in research findings. If exercise science 

aims at truth, then it must aim at consistency (Lakatos, 1970). Such an approach of promoting 

consistency has been available through the methods of interval training (Fleck, 1983). While 

different from resistance training, the same basic principles used in interval training may be 

viable alternatives in standardizing rest periods in isokinetic strength testing (Pincivero, 2001). In 

interval training, the work:rest ratio method has been a prominent mode of identifying the 

optimal rest interval. This proposed method is based on the positive relationship that 

standardization of testing has on reliability of test results (Sale, 1991). 

Work:Rest ratio method. 

  A common method of identifying optimal recovery is the work:rest ratio, which is based 

on the relationship between the work interval and the rest interval (Fleck, 1983; Foss & Keteyian, 

1998). For example, a 1:3 work:rest ratio means that if the work bout is 10-s, the rest interval 
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would be 30-s. Despite the work:rest ratio being an established method in interval training, there 

have been conflicting findings in regard to recommendations of work:rest ratios (Conley, 2000; 

Fleck, 1983; Fox & Matthews, 1974; Karp, 2000; Lamb, 1978; McArdle et al., 2001). Most 

research has shown a 1:3 ratio to be ideal for high-intensity exercise (Fleck, 1983; Foss & 

Keteyian, 1998; Fox & Matthews, 1974; McArdle et al., 2001). Conversely, Karp (2000) 

recommended a work:rest ratio of 1:3-1:6 for a 10-s bout of exercise. Similarly, Clark (2001) 

recommended a work:rest ratio of 1:5-1:12 when training for strength/power, which is 

characterized as 85-100% intensity (1-5 repetitions). In isokinetic performance research, only a 

few investigators have used the work:rest ratio as an indicator of muscle recovery (Pincivero & 

Campy, 2004; Pincivero et al., 1999; Pincivero et al., 1997b; Pincivero et al., 1998; Touey et al., 

1994). Touey et al. (1994) found that 120-s optimized a work:rest ratio of 1:4 at 60 deg/s and a 

1:12 work:rest ratio at 180 deg/s, although performance was maximized at 240-s. Pincivero et al. 

(1999, 1997b, 1998) have typically found a 1:8 work:rest ratio to be sufficient in allowing 

maintenance of strength performance. In a commentary that may elucidate some of the 

discordance, Pincivero (2001) indicated that, “Studies have shown work:rest ratios of 1:1, 1:3, 

1:5, and sometimes even 1:8 were not enough to allow full muscle recovery ” (pg. 1). Pincivero 

(2001) later suggested that using the work:rest ratio alone was not enough to dictate muscle 

recovery. Thus, it was recommended that an absolute minimum rest interval length of 3-5 
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minutes be employed when performing multiple bouts of resistance exercise (Pincivero, 2001). 

However, these comments by Pincivero (2001) regarding work:rest ratios were targeted towards 

resistance exercise of multiple bouts, which would imply longer durations that would emphasize 

the glycolytic energy system to a greater extent than in standard strength testing. In light of this 

distinction, Conley (2000) proposed that work:rest ratios of 1:12-1:20 be applied when 

performing high-intensity exercise lasting 5-10 seconds. In support, Bompa (1999a) has 

suggested a work:rest ratio of 1:4 to as high as 1:25 for high-intensity exercise lasting 4-15 

seconds. The basis for the application of the 1:12-1:20 work:rest intervals was founded on the 

maximum attainable power for the ATP-PC system (15-s) and its corresponding substrate 

recovery times (3-5 minutes) (Conley, 2000).   

 Before implementing work:rest ratios into isokinetic strength testing, there are several 

factors that need to be addressed. The basis for the work:rest ratio in interval training was 

originally founded on relative strength rather than maximal strength. For example, in sprint 

interval training, the large leg muscles provide the forces necessary to maintain a level of 

strength relative to the individual’s body weight. On the contrary, a heavy resistance training 

exercise (> 90% 1-RM) like the squat involves the same large leg muscles, however, these same 

muscles must provide maximal forces to sustain the level of strength required to perform the 

heavy squat movement. The difference is that the intensity of contraction is greater during a high 
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intensity resistance exercise (> 90% 1-RM) such as the squat, because of the recruitment of a 

greater number of motor units and muscle fibers. This increase in muscle fiber recruitment is 

based on the size principle, which describes an orderly recruitment of muscle fibers from type 

I-to-type II fibers as determined by increasing intensity (Palmieri, 1983). With different 

metabolic costs such as these, the rest interval would need to be adjusted in order to 

accommodate these inherent differences in metabolic cost. In fact, this accommodation appears 

to have been apparent in the proposed work:rest ratios of Conley (2000). The basis for having 

higher work:rest ratios in resistance training is founded on the established differences in excess 

post-exercise oxygen consumption (EPOC) between resistance training (e.g isokinetic strength 

testing) and aerobic training (e.g. sprint interval training) (Burleson, O'Bryant, Stone, Collins, & 

Triplett-McBride, 1998). In a comparison between resistance training and aerobic training 

matched for VO2 rate and exercise duration, it was found that EPOC 30-minutes after exercise 

was significantly greater (p < 0.05) in resistance exercise (19.0 L) compared to aerobic exercise 

(12.7 L). Thus, this finding justifies the rationale of heavy resistance exercise having a higher 

metabolic cost due to the greater intensity of contraction, despite having identical contraction 

times. Except, with such a large variance in the ratio for high intensity exercise (1:3-1:25), to 

apply the work:rest ratio method would be no different than arbitrarily allotting rest periods. 

However, the standardization, consistency, and advantages of this method must be acknowledged 
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before arriving to early conclusions. Although the application of this method seems to be no 

different than arbitrarily assigning rest intervals, the usage of this method warrants further study 

due to the fact that it presents unique traits that restrictive arbitrary rest intervals do not offer.  

 In the protocol used by Parcell et al. (2002), it was estimated that the contraction time and 

work for each test set lasted 2-6-s. The approximation of this contraction time was derived from 

taking the distance the working limb traveled (90 degrees) and dividing it by the test velocity, 

then multiplying this value by the total number of repetitions {[(ROM traveled/test velocity) x 1 

for discrete single contraction OR x 2 for reciprocal contraction] x reps}. However, upon review, 

the actual estimation of contraction time per set was 1 ½-6-s. An important aspect of this 

calculation is that the 300 deg/s set was excluded, because after the 300 deg/s set, no subsequent 

sets commenced. In applying the 60-s rest interval found to be adequate in their protocol (Parcell 

et al., 2002), a work:rest ratio was devised for each test velocity based on this 60-s rest interval. 

It was found that the work:rest ratios were 1:10, 1:20, 1:30, and 1:40 for test velocities of 60, 120, 

180, and 240 deg/s, respectively. This ratio would appear to be reversed, considering as test 

velocity increases, total contraction time along with peak torque production decrease. To support 

this rationale, Parcell et al. (2002) found a significant decrease in peak torque at 120 deg/s for the 

15-s rest period but not the180- and 300- s rest periods. A possible reason for this difference is 

based on the level of PCr decline that likely followed the 60 deg/s slow-velocity set. A rest 
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period of 15-s was just not enough to allow adequate strength recovery. However, the fulfillment 

of adequate strength recovery in the 60-s rest period may have been masked by the decreasing 

intensity of later sets, which may have allowed PCr repletion to catch up to depletion levels and 

subsequently allow satisfactory strength performance. If this presumption is true, then the 60-s of 

rest was less than needed for a 60 deg/s set and more than needed for the 180 and 240 deg/s sets, 

which would indicate ineffective test time management. Instead of this restrictive rest period 

allotment, the work:rest ratio accommodates for the workload by adjusting rest periods specific 

to the intensity of the set, which is founded on contraction time (see Table 2). However, since the 

intensity of contraction is such an elusive factor to measure or control for, higher work:rest ratios 

as proposed by Conley (2000) would need to be implemented to conform to this elusive factor 

that does influence PCr depletion rate. 
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Table 2  

Accommodating Rest Periods 

Proposed Work:Rest Ratios and Corresponding Rest Periods for Parcell et al. 
(2002) Strength-Testing Protocol 

 
    Test Velocity         1:3             1:8                1:12          

 
     60 deg/s            18-s             48-s                72-s          

 
     120 deg/s            9-s             24-s                36-s          

 
     180 deg/s            6-s             16-s                24-s          

 
     240 deg/s            4.5-s            12-s                18-s         

 
 

Note. Theoretically, the ideal work:rest ratio for the protocol by Parcell et al. (2002) would be a 

1:12 ratio, although a 1:8 ratio may be prove to be adequate as well. Work:rest ratios were 

derived from usage of the following formula {[(*ROM traveled/test velocity) x 1 for discrete 

single contraction OR x 2 for reciprocal contraction] x reps}. 

* ROM traveled is presumed to be 90 degrees in this protocol. 
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      With the implementation of an optimal work:rest ratio, several benefits can be reaped. 1) 

They will accommodate to large testing groups and universally apply to most clinicians and 

researchers utilizing an isokinetic knee strength testing protocol. 2) It will eliminate the arbitrary 

assigning of rest intervals and provide a sound method that will apply to patients and athletes. 3) 

This method can also apply to strength testing protocols utilizing only one velocity (e.g. 60 deg/s 

or 180 deg/s). However, since most strength test protocols are of ascending order, this method 

may provide highly practical applications that will maximize test time effectively while ensuring 

optimal recovery, specific to each workload per set. For example, in a protocol with test 

velocities of 60, 120, 180, 240, & 300 deg/s, a 3-minute rest interval would make this strength 

test quite long. Moreover, it would seem logical to presume 3-minutes to be excessive after a test 

set of 240 deg/s that consisted of only 4 repetitions at a standard ROM of 90 degrees for the knee. 

Total contraction time in this set would be ~1.5-s at 4 reps in discrete single contractions, but 

still only 3-s at 4 repetitions in reciprocal contractions. For a 3-minute rest period, this workload 

would equate to a work:rest ratio of 1:60 and 1:120 for a discrete and reciprocal contraction 

mode, respectively. Instead, let’s presume having a standard work:rest ratio of 1:20. Now, the 

rest interval for 240 deg/s would be ~ 30-s for a discrete test mode and 60-s for a reciprocal test 

mode. Although these rest periods are short, research has shown these rest intervals to be 

sufficient at this particular test velocity (240 deg/s) and other fast velocities (Parcell et al., 2002; 
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Perrin, 1993; Wrigley & Strauss, 2000). The idea of this example is, with the work:rest ratio, 

there is more clarity and standardization in testing. 4) Lastly, even if the work:rest ratio approach 

failed to clarify the research issue of interset rest periods, one could resort to the well established 

and generally recommended 3-5 minute rest interval as a safe-haven (Baechle et al., 2000; Clark, 

2001; Fleck & Kraemer, 1988; Fleck & Kraemer, 2004; Kraemer, 2003; Kraemer & Fry, 1995; 

Pincivero, 2001; Weiss, 1991; Zatsiorsky, 1995). Thus, the work:rest ratio is a very promising 

method in searching for the optimal interset rest period and improving test time management in 

isokinetic strength testing. 

 When analyzing the data, the total test time in the isokinetic strength testing protocol of 

Parcell et al. (2002) was 252.5-s when taking into account the 60-s rest period for every test 

velocity set. However, with the implementation of a 1:8 and 1:12 work:rest ratio, the total test 

time was found to be shorter at 112.5-s and 162.5-s, respectively (see Table 3). While Parcell et 

al. (2002) found a 60-s rest period to be adequate, their protocol consisted of discrete single 

concentric knee extensions with a passive knee flexion against virtually no resistance. Thus, their 

finding is applicable in reference to discrete single concentric knee extension protocols, however, 

their finding may not be applicable to the prevalent and more common reciprocal concentric 

knee extension and flexion protocol used by most clinicians and researchers (Wrigley & Strauss, 

2000). Therefore, it was the purpose of this investigation to use a common isokinetic testing 
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protocol (Dvir, 2004) with a common methodological design such that the findings of this study 

can have practical application to current and future clinicians and researchers in the 

administration of isokinetic knee strength-testing and assessment.    
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Table 3 

Restrictive Rest Period Vs. Accommodating Rest Periods 

A Comparison of Total Test Time Between the Assigned 60-s Rest Period from the 
Parcell et al. (2002) Strength-Testing Protocol and a 1:8 and 1:12 Work:Rest Ratio 

 
  Strength Recovery     Total Contraction      Total Rest      Total Test 
      Method               Time              Time           Time 

                             
 

 
60-s rest period                12.5-s              240-s         252.5-s 
 
1:8 work:rest ratio              12.5-s             *100-s         112.5-s 

 
1:12 work:rest ratio             12.5-s             *150-s         162.5-s 

 

 

Note. * Total rest time was summated from the rest intervals per test velocity as tabulated from 

Table 2. 
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Summary 

 Whether testing isokinetic muscular strength in research, athletic, or rehabilitative 

settings, it is important to standardize the interset rest periods. When the objective is to ensure 

reliable results that can be attributed mainly to the effects of the training intervention’s success, 

as opposed to other confounding factors such as fatigue or inconsistent rest periods, proper 

implementation of optimal rest periods becomes essential. In an attempt to aid in the 

standardization of an optimal rest period, the work:rest ratio method was suggested as being a 

viable strategy in the establishment of optimal muscle recovery. The application of the work:rest 

ratio is very promising in that it provides a scientific approach that will allow standardization 

among various patients and strength testing protocols. With the work:rest ratio method providing 

an applicable predication formula for researchers and clinicians {[(ROM traveled/test velocity) x 

1 for discrete single contraction OR x 2 for reciprocal contraction] x reps},the implementation of 

this method is heavily warranted. However, since there has been little research on the impact of 

rest intervals on strength recovery, many researchers have defaulted to arbitrarily assigning rest 

intervals as opposed to having the type of standardized rest period allotment that can be offered 

by the work:rest ratio method.    

 It is important to recognize that while recommendations for short restrictive rest periods 

(60-s or less) may apply to some populations, it is critically important that a larger window of 
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variability be permitted to accommodate for a wider variety of populations, training status, and 

workload changes in ascending order velocity spectrum testing. It has been shown that short rest 

periods induce physical (Pincivero et al., 1999) and mental fatigue (Tharion et al., 1991). Thus, it 

is important to eliminate physical and mental fatigue as a potential confounding variable by 

providing an optimal amount of rest between sets. Conceivably, the main purpose of searching 

for the minimal rest period in isokinetic testing is to manage time more effectively. Although this 

may be important for mass testing, this approach is not advised when measurement precision is 

an included objective. Therefore, an optimal work:rest ratio with resultant optimal rest periods 

(see Table 4) should be implemented to promote effective test time management (see Table 3) 

and to provide subjects with the best opportunity to attain optimal strength performance, which 

will lead to effective exercise program design, assuring improvements are induced only by the 

success of the program. 
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Table 4 
 
Work:Rest Ratios for Current Strength-Testing Protocol 

 
Proposed Work:Rest Ratios and Corresponding Rest Periods for Current 

Strength-Testing Protocol 
 

  Test Velocity     Contraction      1:3           1:8        1:12  
                     Time 

 
   60 deg/s            15-s         45-s           120-s      180-s        

 
   180 deg/s            5-s         15-s            40-s       60-s        

 
 

Note. Work:rest ratios were derived from usage of the following formula {[(*ROM traveled/test 

velocity) x 1 for discrete single contraction OR x 2 for reciprocal contraction] x reps}. 

* ROM traveled is standardized at 90 degrees in this protocol. 
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Chapter 3 

Methodology 

Study Design 

 This study was a 3 x 3 repeated measures ANOVA design with the factors of velocity and 

work:rest ratio as the independent variables. The dependent variable was peak torque. The 

requirements for participation involved meeting for a total of 5 sessions (2 familiarization & 3 

experimental), in which each session was separated by at least 48 hours. Each session lasted 

approximately 10-30 minutes in duration. The reason for this time fluctuation was because in the 

first two sessions, extra time was needed to complete the required preliminary paperwork 

(preparticipation forms) and for the participants to become accustomed to isokinetic resistance. 

Participants performed 3 sets of 5 repetitions of maximal isokinetic knee extensions and flexions. 

The progression of resistance followed an ascending order in which the resistance decreased 

while speed concurrently increased (60, 180, & 300 deg/s). The reason for usage of only three 

speeds was based on the intent of retaining the power of statistical significance. Additionally, 

this testing protocol has been used often and by many researchers (Adams, 2002; Bardis et al., 

2004; Stumbo, Merriam, Nies, Smith, Spurgeon, & Weir, 2001; Weir, Evans, & Housh, 1996). 

More importantly, these three speeds are optimal intermediates across the velocity-spectrum 

(Kovaleski & Heitman, 2000). These three speeds encompass strength and power just as 
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effectively as other intermediates (90, 120, 240 deg/s) (Kovaleski & Heitman, 2000). A different 

work:rest ratio was used in each experimental test session. Peak torque was used to quantify 

strength performance and recovery throughout testing.    

Participants 

 Twenty-seven healthy college-aged (18-35 years) male students (age 23 ± 3.7 years, and 

body weight 175 ± 24.4 lb.) from the University of New Orleans (UNO) were selected for 

voluntary participation. This was a sample of college-aged male students who were not sedentary 

and met the minimal requirements of physical activity of 30-minutes per day, 3 days per week 

(Franklin, Whaley, & Howley, 2000). Recruitment was accomplished in the following ways: 1) 

Mass population email; 2) Flyers posted on-campus (see Appendix E); and 3) Referral from 

participants who completed testing. Incentives for participation included a free exercise program. 

The setting for familiarization and experimental test sessions was initially held in the UNO 

biomechanics laboratory (5 males), but then relocated to the Metairie Orthopedic and Sport 

Therapy Clinic (22 males) due to the UNO Cybex NORM becoming permanently damaged from 

power outages caused by the after effects of Hurricane Katrina. Subjects were excluded under 

the following conditions: Current orthopaedic knee-related pathologies, past history of knee 

injury/surgery or previous problems with knee extensions and flexions, cardiovascular or 

neurological disorders, and ergogenic dietary supplementation intake. In addition, subjects were 
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pre-screened with a physical activity readiness questionnaire (PAR-Q) (see Appendix A) (Dwyer 

& Davis, 2005), health history questionnaire (see Appendix B) (Dwyer & Davis, 2005), and an 

informed consent (see Appendix C) prior to voluntary participation. Subjects were provided with 

pre-test guidelines (see Appendix D) (Dwyer & Davis, 2005), that included encouraging them to 

abstain from smoking, exercise, and alcohol consumption 24-hours prior to testing. Subjects 

were also required to wear exercise-conducive clothing that would allow freedom of movement 

in the legs and adequate thermoregulation. Approval for human subject testing was obtained 

from the University Institutional Review Board and ethics committee (see appendix F).  

Instrument 

 The Cybex NORM (Cybex International, Inc. Ronkonoma, NY) was used to measure the 

muscles involved in concentric knee extension and flexion. Prior to any testing, the Cybex 

NORM was calibrated once per month according to the manufacturer’s recommendations 

(Cybex NORM testing and rehabilitation user’s guide, 1996). Gravity correction was used in all 

testing sessions. Intraclass reliability has been reported to be high in the usage of the Cybex 

NORM in various test protocols and populations (Cotte & Ferret, 2003; Karatas, Gogus, Meray, 

2002; Kellis, Kellis, Gerodimos, & Manou 1999; Kellis, Kellis, Manou, & Gerodimos, 1998). 

Kellis et al. (1998) reported reliability to be 0.89-0.98 for concentric knee extension and 

0.89-0.90 for concentric knee flexion. Kellis et al. (1999) later reported reliability to be 0.92-0.99 



 58

in isokinetic knee extension and flexion. In this study, 2 subjects were pilot tested on three 

occasions (one familiarization session and two pilot test sessions) at each testing site to assess 

instrument reliability prior to the start of this investigation. Reliability of the Cybex NORM in 

the UNO biomechanics laboratory was 0.990 (P = 0.001) for concentric knee extension and 

0.975 (P = 0.001) for concentric flexion, while reliability of the Cybex NORM in the Metairie 

Orthopedic and Sport Therapy Clinic was 0.997 (P = 0.001) for concentric knee extension and 

0.966 (P = 0.002) for concentric knee flexion. 

Procedures 

 The subject’s weight was measured at the first session. Limb dominance was determined 

by asking the subject which leg he preferred to use to kick a ball (Keating & Matyas, 1996). 

Subjects met a maximum of five times, starting with two familiarization sessions followed by 

three experimental testing sessions. Since the Metairie Orthopedic and Sport Therapy Clinic only 

permitted usage of the isokinetic apparatus during lunch break, the arrangement of a similar 

testing time for each participant (e.g. 11 a.m. - 1 p.m.) was incorporated. 

      Subjects were fitted into the Cybex NORM with the lateral femoral condyle of the 

dominant knee (axis of rotation) aligned with the axis of rotation of the dynamometer by first 

locating three anatomical landmarks, then using a visual assessment and subjective feedback 

from the participant thereby ensuring no slippage occurring, which is an indirect indicator of axis 
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misalignment. Since the lateral femoral condyle is best palpated when the knee is flexed 

(Brunnstrom, 1966), identification of the axis of rotation was accomplished while the subject 

was seated in the dynamometer chair. The prominent fibular head was palpated first, followed by 

the epicondyle of the femur, and then the protuberance of the lateral tibial condyle was palpated 

with all three fingers forming an equilateral triangle (Brunnstrom, 1966). Axis of rotation 

alignment was then verified by checking for slippage in the complete ROM while the knee 

flexed and extended (Cybex NORM system testing and rehabilitation user’s guide, 1996; 

Keating & Matayas, 1996). Extensive standardization of the knee axis of rotation is warranted 

due to the significant increase in measurement error that occurs if the two axes are incongruent 

(Rothstein et al., 1987). 

      Lever arm length was standardized as being the most distal usable leg length (Keating & 

Matyas, 1996). This position corresponded to the dorsal surface of the ankle just above the 

medial malleolus, whereby the subject was still able to dorsiflex the ankle without any 

significant restriction. For proper body positioning and alignment, various dimensions of body 

positioning included the following: seat height, seat inclination angle, dynamometer height, 

dynamometer lever arm length, and seat back rest. Subjects were then stabilized with 

seatbelt-type straps used to secure the waist and trunk, while Velcro straps served to secure the 

lower leg to the dynamometer and the thigh of the leg being tested to the seat to prevent any 
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extraneous body movements that may have affected measurement (Weir et al., 1996). In addition, 

a contralateral leg pad was used to secure the contralateral leg to the dynamometer seat to 

prevent any extraneous movement as well. To maintain proper pelvic position, subjects were 

required to stabilize their body into the seat by grasping the seat handles. The recordings of body 

position were saved into the Cybex NORM computer software program for standardization for 

each subject. Any modifications of body position and stabilization were reconciled within the 

familiarization sessions.  

      Once body positioning and stabilization were established, subject set-up commenced. 

Height and body weight were entered into the subject profile on the Cybex NORM computer 

software program. Then, the position of anatomical zero was identified as 0-degrees at full knee 

extension. Thereafter, ROM was standardized at 90-degrees with software and mechanical stops 

set in place for every subject to ensure approximately the same contraction time. ROM was 

standardized at 90 degrees because this controlled for workload in addition to this ROM being 

commonly implemented by other researchers (Bilcheck et al., 1993; Pincivero et al., 1997; 

Pincivero et al., 1998; Pincivero et al., 1999; Pincivero & Campy, 2004). Next, gravity 

correction took place with the subject extending the leg to 45-degrees, whereby the weight of the 

limb at this position was used to estimate the effects of gravity throughout the entire ROM. 

Subjects were instructed to remain relaxed and not to move during this procedure. The 
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importance of subject compliance was very important, as Kellis (2002) illustrated in his findings 

that excessive movements during gravity correction on the Cybex NORM can have a significant 

effect on test reliability. Lastly, the rest periods were entered into the Cybex NORM computer 

software program by creating three protocols labeled, 1:3, 1:8 and 1:12. The respective rest 

periods were entered for each work:rest ratio, while a seconds clock was visually seen on the 

computer screen between sets showing the length of the rest period. 

Warm-up protocol. 

      Two familiarization sessions were conducted in an effort to minimize the test learning 

effect among inexperienced subjects thereby enhancing reliability of measurement. Research has 

shown that 1 day of familiarization is sufficient (Johnson & Siegal, 1978), but 2 days of 

familiarization were found to enhance reliability of isokinetic measurement more effectively than 

1 day (Kues et al., 1992).  

      In this investigation, subjects underwent two familiarization sessions prior to any 

experimental testing. In each familiarization session, subjects were initially oriented to a general 

warm-up on a Monark 818E model cycle ergometer (Monark exercise AB, Varberg, Sweden) at 

the UNO biomechanics laboratory, but later, were oriented to a warm-up on a Cybex Metabolic 

100 cycle (CYBEX, A Division of Lumex, Inc. Ronkonkoma, New York) at the Metairie 

Orthopedic and Sport Therapy Clinic in which they pedaled at a comfortable pace at a sufficient 
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wattage (60-100 watts) for 5-minutes. A comfortable pace was used because research has shown 

a pedal rate slightly higher than most economical (50-60 RPM) to be preferred irrespective of 

cycling experience (Foss & Hallen, 2004; Marsh & Martin, 1993; Marsh & Martin, 1997). Seat 

height was adjusted for each subject in order to have a 5-degree knee bend during pedaling 

(Franklin et al., 2000). Once a comfortable seat height was determined, it was recorded. Subjects 

were instructed to abstain from stretching prior to any exercise. Although stretching has been a 

common pretest practice, many studies have indicated that stretching may be detrimental to 

strength and power performance (Kokkonen, & Nelson, 1996; Nelson, Guillory, Cornwell, & 

Kokkonen, 2001; Schilling & Stone, 2000; Young & Behm, 2002). However, stretching of the 

quadriceps and hamstrings was encouraged and recommended after every testing session to 

ensure safety, proper post-exercise recovery, and maintenance of flexibility.  

      Immediately following the general warm-up on the cycle ergometer, a specific warm-up 

followed, in which subjects performed 1 set of 3 (2 submaximal & 1 maximal) concentric 

reciprocal knee extension/flexion repetitions at each velocity of 60, 180, and 300 deg/s in 

ascending order. However, more repetitions were permitted only during the warm-up repetitions 

in the familiarization sessions to help subjects completely understand the required execution of 

maximal efforts during testing (Brown & Weir, 2001). During the warm-up repetitions, the level 

of subjective effort was progressed from 50% (half-effort) during the first repetition to 75% 
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(three-quarter effort) during the second and finishing at 100% (maximal effort) for the third and 

final repetition. Subjects were also provided with visual feedback to facilitate a better 

understanding of isokinetic resistance (Perrin, 1993). To ensure a staircase order of submaximal 

repetitions (50-100% subjective effort), subjects were given instantaneous visual feedback from 

the overlap tracing on the computer screen of the 3 warm-up repetitions. Additionally, subjects 

were instructed to establish a comfortable breathing pattern for safety precautions in avoiding the 

performing of a valsalva maneuver (Fleck & Kraemer, 2004).  

      Each test velocity was separated by a work:rest ratio of 1:3. Although this 1:3 work:rest 

ratio allocation is likely to prevent full muscle PCr recovery in some subjects, it was not the 

intent of a warm-up to maximally emphasize strength, but instead, to promote adequate blood 

flow to the knee musculature reducing the possibility of muscle strain and to effectively prepare 

the working muscles for optimal test performance (Osternig, 1986). Furthermore, since the first 2 

repetitions are submaximal, this work:rest ratio was ideal.  

      With respect to the number of repetitions and intensity progression from submaximal to 

maximal, this warm-up sequence has been found to be adequate in producing stability of 

measurement (Mawdsley & Knapik, 1982; Osternig, 1986). An ascending order and a concentric 

reciprocal knee extension and flexion test protocol was used to accurately reflect the prevalent 

methodologies in the literature and to enhance external validity, whereby the results can be of 
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greater benefit to practicing clinicians (see Table 1). In addition, reliability has been shown to be 

higher when following this order from slower-to-faster velocities (Wilhite, Cohen, & Wilhite, 

1992). 

Familiarization protocol. 

     After warm-up procedures, subjects rested 3-minutes before performing 1 set of 5 

repetitions at each of the velocities of 60, 180, and 300 deg/s in ascending order at maximal 

effort. This 3-minute rest period used after the warm-up and before experimental testing has been 

found to be adequate in the complete replenishment of PCr stores and resultant strength (Foss & 

Keteyian, 1998) and very time effective in the confines of a busy physical therapy clinic. The 

rationale to performing 5 repetitions is based on the observation that it takes more repetitions to 

attain peak torque at faster velocities (Baltzopoulos & Brodie, 1989). Thus, 5 repetitions would 

be ideal across the velocity-spectrum because it encompasses an adequate number of repetitions 

for peak torque to be attained at slow velocities, while providing an acceptable number of 

repetitions for peak torque to be reached at fast velocities (Sale, 1991). Visual and verbal 

feedback were provided to subjects to promote maximum performance during testing 

(Campenella, Mattacola, & Kimura, 2000; Hald & Bottjen, 1987; Perrin, 1993). Additionally, 

each test velocity was separated by a 1:12 work:rest ratio. This work:rest ratio was selected for 

its effective management of test time, but more importantly, it was founded on the substrate 



 65

recovery times of PCr and ATP as dictated by the intensity of the exercise bout (Bompa, 1999b; 

Conley, 2000; Harris et al., 1976; Hultman et al., 1967). 

Experimental protocol. 

     The pre-test warm-up procedures were the same as during the familiarization sessions. 

The experimental test protocol included 1 set of 5 repetitions at 60, 180, and 300 deg/s. The 

work:rest ratios administered were 1:3, 1:8, and 1:12 in a counterbalanced fashion, with a 

different work:rest ratio being assigned for each of the three test sessions. In order to prevent 

ambiguity between treatment effects of the work:rest ratios and test learning effects related to 

peak torque variance, work:rest ratios were randomly assigned to each subject. This 

randomization of the work:rest ratio tested per session eliminated the confounding variable of 

test order effects that may have masked a treatment effect of the rest periods within the work:rest 

ratios. These work:rest ratios were selected based on their prevalence in the literature (Bompa, 

1999b; Clark, 2001; Conley, 2000; Fox & Matthews, 1974; Pincivero et al., 1999) as well as 

their capability in managing test time efficiently, but also for their capacity to permit optimal 

strength recovery specific to each subsequent workload.  
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Statistical Analysis 

 This study was a 3 x 3 repeated measures ANOVA design with the factors of velocity and 

work:rest ratio as the independent variables. The dependent variable was peak torque and all 

tests used a significance level of p ≤ 0.05.  
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Chapter 4 

Results 

 The peak torque of all subjects was tested at velocities in the order of 60, 180 and 300 

deg/sec. Rest periods within each work:rest ratio (See Table 4) were randomized for each 

subject.  

 To test the research hypothesis a repeated measures ANOVA (p < 0.05) was computed. 

Analysis of the data revealed a significant difference in knee extensor peak torque between 

velocities (F = 498.239, P < 0.001) (See Figure 1). Secondly, there was no significant interaction 

between rest and velocity (F = 0.896, P = 0.468) and there were no significant differences in 

knee extensor peak torque between each work:rest ratio (F = 0.031, P = 0.969) (See Table 5 & 

Figure 2). Therefore, the research hypothesis that there would be a difference in knee extension 

peak torque between work:rest ratios is rejected.  

Analysis of the data also revealed a significant difference in knee flexor peak torque 

between velocities (F = 1049.166, P < 0.001) (See Figure 1). However, there was no significant 

interaction between velocity and rest (F = 1.867, P = 0.119) and there were no significant 

differences in knee flexor peak torque between each work:rest ratio (F = 0.041, P = 0.960) (See 

Table 6 & Figure 3). Therefore, the research hypothesis that there would be a difference in knee 

flexion peak torque between work:rest ratios is rejected.   
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 In summary, rest periods did not have a significant effect on strength output. However, 

there was a trend of lower mean knee extensor and flexor peak torques for the 1:3, 1:8 and 1:12 

work:rest ratios at 300 deg/s, respectively (See Table 7). This trend was more noticeable 

graphically in knee extensor peak torque (See Figure 2). 
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Figure 1. Torque-velocity curves from mean peak torque isokinetic knee extension and 

flexion contractions (P < 0.001). 
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Table 5 

Means for Knee Extensor Peak Torque 

 
Knee Extensor Peak Torque (Nm) 

 
Work:Rest Ratio 60 deg/sec 180 deg/sec 300 deg/sec 
1:12 228.1 ± 39.3  174.9 ± 28.9 129.9 ± 23.1 
1:8 229.2 ± 37.8 176.8 ± 30.1 127.3 ± 19.5 
1:3 233.5 ± 41.6 172.2 ± 25.3 121.1 ± 21.0 
 

Note. Data values are reported as means with standard deviations. 

 

 

 

 

 

 

 



 71

 

 

 

 

Force-Velocity Curve (Knee Extension)

100

130

160

190

220

250

60 180 300

Velocity (deg/sec)

Pe
ak

 T
or

qu
e 

(N
m

)

1:3 Work:Rest Ratio
1:8 Work:Rest Ratio
1:12 Work:Rest Ratio

 

Figure 2. Torque-velocity curves from mean peak torque isokinetic knee extension 

contractions with three different work:rest ratios. 
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Table 6 

Means for Knee Flexor Peak Torque 

 
 

Knee Flexor Peak Torque (Nm) 
 
Work:Rest Ratio 60 deg/sec 180 deg/sec 300 deg/sec 
1:12 139.8 ± 30.2 111.7 ± 24.3 82.9 ± 20.7 
1:8 140.0 ± 30.2 111.1 ± 21.7  80.7 ± 19.2 
1:3 144.9 ± 29.1 111.9 ± 22.0 79.5 ± 21.9 
 

Note. Data values are reported as means with standard deviations 
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Figure 3. Torque-velocity curves from mean peak torque isokinetic knee flexion contractions 

with three different work:rest ratios. 
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Table 7 

Descending Order Trend of Lower Mean Knee Extensor and Flexor Peak Torques at 300 

deg/sec 

 

300 deg/sec Knee Flexion Peak 

Torque (Nm) 

Knee Extension Peak 

Torque (Nm) 

1:12 82.9 ± 20.7 129.9 ± 23.1 

1:8 80.7 ± 19.2 127.3 ± 19.5 

1:3 79.5 ± 21.9 121.1 ± 21.0 

 

Note. Notice the nonsignificant trend of peak torque declining the shorter the rest period. Data 

values are reported as means with standard deviations. 
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Chapter 5 

Discussion 

     The purpose of this study was to establish an optimal rest period that would allow 

consistent reproducibility of strength during a common isokinetic strength-testing protocol. With 

the software stops in place and the mechanical stops as a back-up in usage of the Cybex NORM, 

peak torque manifestation was optimal in achieving valid and reliable data [UNO biomechanics 

laboratory - 0.990 (P = 0.001) for concentric knee extension and 0.975 (P = 0.001) for concentric 

flexion; Metairie Orthopedic and Sport Therapy Clinic - 0.997 (P = 0.001) for concentric knee 

extension and 0.966 (P = 0.002) for concentric knee flexion]. In further support of reliability of 

the data, the peak torque values of the male population in this study were in close agreement with 

the peak torque values of the male population in the Parcell et al. (2002) study. Hence, the 

well-known force-velocity relationship was also observed in the present study (Foss & Keteyian, 

1998; Hill, 1938) (See Figure 1). With no significant differences occurring among work:rest 

ratios and constituent rest periods (See Figures 2 & 3), it may appear that the findings are 

counterintuitive to the expected hypothesis of shorter rest periods leading to premature fatigue 

and subsequent differences in peak torque. However, upon further investigation, the findings are 

quite revealing. 
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Energy-System Specificity 

      Recall that the main energy system being utilized during strength testing is the ATP-PC 

system. Accordingly, with the appropriate energy system being identified, the correspondent 

energy system recovery time can be practically applied. This was indeed the case in the present 

study. Research has shown that the replenishment of the ATP-PC system is very rapid with 

50-87% being restored in approximately 20-60-s (Fleck & Kraemer, 2004; Harris et al., 1976; 

Hultman et al., 1967; Kraemer, 1983). Foss & Keteyian (1998) suggested that 70% of the energy 

stores in the ATP-PC system can occur in as little as 30-s. The reason this physiological scenario 

is intriguing concerning the current findings, is that a likely explanation for fatigue not being a 

confounding factor can be found in the incredible resiliency of the human energy systems 

working cohesively. For example, it is well understood that energy system utilization works 

collaboratively rather than exclusively (Serresse et al., 1988). Thus, a specific energy system is 

emphasized while others contribute slightly or are trivial in contribution (Serresse et al., 1988). 

In the present study, it is plausible that although PCr stores may have been reduced, they were 

not depleted. Secondly, it has been shown that in spite of PCr depletion, ATP concentration does 

not decline below 60% of initial value (Conley, 2000). Hence, the incredible resiliency of the 

ATP-PC system to replenish energy stores in a very short period of time.  
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      In Balsom et al's study (1992), overground sprinting was the test mode, however, the 

same physiological energy system was targeted. Their study design consisted of 15 x 40 m 

sprints on an indoor track with randomized rest periods of 30, 60 and 120-s. With the exception 

of overground sprinting being more metabolically costly than a single-leg isokinetic strength test 

(Fleck & Kraemer, 2004), an important fatigue pattern was found in their study (Balsom et al., 

1992). There were four relevant components that were reported in their results (Balsom et al., 

1992). Out of 15 total sprints, acceleration times were significantly different after the 7th sprint 

in the 30-s group only, total 40 m times were significantly different after only the 5th sprint in 

the 30-s group, while total 40 m times were significantly different after the 11th sprint in the 60-s, 

whereas in the 120-s group, there were no significant differences throughout the entire 15 sprints 

(Balsom et al., 1992). Furthermore, in the mean running speed from 30-40 m, fatigue 

commenced in the 3rd sprint in the 30-s group, the 7th sprint in the 60-s group and in the 11th 

sprint in the 120-s group. Additionally, post-exercise lactate concentration in the 30-s group was 

significantly higher than the 120-s group, but there were no significant differences between the 

120-s and 60-s groups (Balsom et al., 1992). The logical deduction drawn from these findings is 

in accordance with the present study rationale of PCr levels plummeting to suboptimal levels 

thereby encouraging earlier signs of fatigue in subsequent test sets (Dawson et al., 1997). This 

rationale is based on the concept of PCr gradually declining to a lower starting level after each 
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set, whereby the duration of power output will only be dictated by the PCr levels. This rationale 

was impressively seen in the findings of Balsom et al. (1992). Again, workload was certainly a 

factor, and when workload is demanding enough to elicit fatigue, rest periods become of greater 

importance. Recall that it is only when inadequate recovery occurs that lactic acid begins to 

accumulate due to the inadequate replenishment of PCr stores, thus the natural transition from 

the ATP-PC energy system to the glycolytic energy system and ultimately a concomitant drop in 

peak torque due to a declined rate of energy expenditure and power output.  

      In many of Pincivero et al's (1997b, 1998, 1999, 2004) protocols, repetitions were on the 

higher end of the repetition continuum (10-20 reps). Hence, it could be logically presumed that 

perhaps longer rest periods would be required to preserve test reliability or maximal strength for 

these higher metabolically challenging protocols. This was the benefit of this study using three 

different work:rest ratios (1:3, 1:8, 1:12). Furthermore, no other study has used a work:rest ratio 

as high as 1:12, which was actually eluded to in Pincivero's (2001) editorial implicating that a 

1:8 work:rest ratio may not have been adequate in optimizing strength recovery in strength tests.  

      In a further study, Spendiff et al. (2002) detected greater reductions in peak and mean 

torque in all test velocities (30, 60, 120, & 180 deg/s) following fatiguing exercise at low test 

velocities (30 & 60 deg/s). However, it should be disclosed that the isokinetic strength test was 

preceded by a fatigue task consisting of a range of reps from 15-26 (Spendiff et al., 2002). This 
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lends support to the suggestion of workload being a primary determinant of fatigue. Additionally, 

it is ultimately when fatigue becomes more apparent that rest period duration will become more 

applicable for investigation and elucidation. Conversely, the goal of this study was to compare 

strength recovery responses spanning over three different work:rest ratios and ideally find an 

optimal work:rest ratio. Although there were no significant differences among work:rest ratios, 

there was a trend of lower mean knee extensor and flexor peak torques for the 1:3, 1:8 and 1:12 

work:rest ratios at 300 deg/s, respectively (See Table 7). The implication is that although the 

values were not significantly different, fatigue was just beginning to commence at this point.  

      In fact, research has shown that after only 24-s of maximal exercise, fatigue begins to 

commence (Gaitanos et al., 1993). In their study, participants performed ten 6-s maximal cycle 

sprints of which each was separated by a 30-s rest period (Gaitanos et al., 1993). Mean power 

output was significantly lower than the peak value after the 4th cycle sprint. However, in the 

present study, the total time of maximal exercise was 23-s, and at that point, there was a 

nonsignificant decline in peak torque that arose in the last set (See Table 7). A study by Barnes 

(1981) investigated the specific effects of isokinetic resistance on fatigue. The protocol consisted 

of performing 10 reps at one velocity (60, 120, 150 or 300 deg/s) on different occasions (Barnes, 

1981). It was found that after 5 reps, at least ~86% of peak value was still sustained, but only 

~71% of peak value was sustained after 10 reps at each velocity (Barnes, 1981). In fact, Dvir 
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(2003) suggested that no real difference occurs unless there is a 20% difference in strength 

values. Based on this suggestion, only after 8-10 reps does fatigue appear to have a negative 

impact on peak torque (Barnes, 1981). Furthermore, their study mathematically described the 

isokinetic fatigue curve as producing a linear decline in peak torque (Barnes, 1981).       

More importantly, this 86% peak torque value after only 5-reps also coincides with the 87% level 

of PCr stores commonly suggested as being optimal in strength restoration (Harris et al., 1976; 

Hultman et al., 1967; McCann et al., 1995). Thus, it is understandable that no significant 

difference in peak torque would occur in this study after only 5-reps since the level of PCr stores 

would still be adequate to produce maximal strength (Barnes, 1981). However, when a multitude 

of sets (60, 120, 180, 240 & 300 deg/s) are performed, such as in most isokinetic knee strength 

test protocols (Parcell et al., 2002; See Table 1), the interset rest periods will ultimately have an 

influence on PCr restoration and ultimately, peak torque.  

      The implications from the data suggest that fatigue is dependent not only on time-course 

of exercise (Barnes, 1981), but also whether the exercise is a multi- or single-joint movement 

(Fleck & Kraemer, 2004; Gaitanos et al., 1993). In essence, the two key variables that will 

ultimately determine fatigue and subsequent recovery duration are time-course of exercise and 

rate of energy expenditure. It is clear that multi-joint movements with correspondingly more 

active muscle groups being worked are more metabolically demanding than single-joint 
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exercises (Fleck & Kraemer, 2004; Kraemer, W.J., Adams, K., Cafarelli, E., Dudley, G.A., 

Dooly, C., Feigenbaum, M.S., et al., 2002). Thus, for protocols with multi-joint protocols, sets 

and/or reps, significant differences may become more apparent. However, the purpose of this 

study was to use a protocol that eliminated fatigue as a variable to preserve test reliability in a 

common isokinetic strength test. Therefore, a 1:3 work:rest ratio is optimal in preserving test 

reliablility for a commonly used knee-strength testing protocol and very time efficient for a busy 

clinical setting, while the 1:8 and 1:12 work:rest ratios are available for higher workload 

protocols. More research needs to be conducted utilizing the following suggestive study designs: 

1)  Higher repetition and/or set protocols. 

2)  Different exercise modalities (multi- and/or single joint). 

3)  The same (1:3, 1:8, 1:12) or shorter work:rest ratios (1:1, 1:2). 

The results of these suggestions would confirm or refute the present study findings and further 

elucidate the complexity of the human physiological system from an energy depletion and 

repletion standpoint. 

Practical Applications 

      As suggested by Ariki et al. (1985), isokinetic testing with long rest periods lacks 

ecological validity since it would take up too much time in a busy clinical setting. In further 

support, it was apparent that the goal in the Parcell et al. (2002) study was to establish a 
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minimum rest period that would permit reliable data in isokinetic strength testing. They were 

able to establish this rest period to be 60-s. However, as indicated earlier in this study, this 

restrictive rest period does not accomodate to the metabolic effect for each different workload for 

each set (Palmieri, 1983). Furthermore, this rest period actually had a longer total testing time 

when compared to the rest periods within the proposed work:rest ratios (See Table 3). Recall that 

in this study, the test protocol utilized was essentially the status quo not only in the predominant 

literature (Parcell et al., 2002), but also among practicing clinicians (Brown & Weir, 2001; Dvir 

2004). Thus, the results of this study have the potential for significant bearing and impact on 

current testing practices.  

      The findings of this study are enlightening in that they have reached the goal of being 

practically applicable, time-efficient and reliable. They are practically applicable since a 

work:rest ratio of 1:3 can be used in a busy clinical setting with the confidence among clinicians 

that they will be accruing reliable data (See Figures 2 & 3). The impact of this reliable data on 

exercise program design and reliable reassessment, which tracks true and unbiased change in 

strength, is very encouraging. Furthermore, it should be noted that all work:rest ratios permitted 

reliable strength data (See Figures 2 & 3). Therefore, in consideration of differing test protocols 

and until more research in this area is conducted, a higher work:rest ratio can be implemented 

with the discretion of each practicing clinician, physical therapist and/or researcher. Additionally, 
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the reliability of data would not be compromised since in the current study, all work:rest ratios 

were optimal in allowing adequate strength performance. 

A New Approach to Standardizing Rest Periods 

      The work:rest ratio would be a great way to begin standardizing rest periods for 

isokinetic strength test protocols. Recall that with this method, there is a clear and established 

relationship between the workload and rest interval, which has not been the case up to this point 

in rest period establishment among many strength test protocols (Parcell et al., 2002). Although 

it was argued in this study that longer rest periods (1:12-1:20) would be needed due to the 

elusive nature of intensity of contraction, which would largely be influenced by participant 

motivation, the current findings strongly suggest a need to re-evaluate this position. On the 

contrary, shorter rest periods would be adequate in sustaining strength during a common 

isokinetic strength test (Parcell et al., 2002). Although the leg muscles in the current strength test 

protocol are being maximally loaded throughout the entire range of motion at a high intensity, 

the metabolic demands are not as high when considering this is a single-joint exercise with only 

two muscle groups being exercised (Fleck & Kraemer, 2004; Kraemer et al., 2002) and there is 

truly only one heavy set (60 deg/s) in this common isokinetic strength testing protocol (Brown & 

Weir, 2001; Parcell et al., 2002). Furthermore, when testing for strength, there is no need to 

retest repetitively. This is the difference between training and testing. When testing, the objective 
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is to obtain a peak value and to obtain this value consistently in the early stages of rehabilitation 

or training progession. Thereafter, when a reassessment commences, a true change can be 

detected as a result of strength improvement and functional progression occurring from an 

exercise training intervention. Thus, when the objective is to ensure test reliability, the rest 

period can be minimal to not only promote adequate recovery, but also to maximize test time in a 

busy clinical setting. Only when the objective is to ensure maximal strength production (exercise 

training) for every repetition of each set does the rest period need to become more than minimal 

and perhaps optimized to specify a direct training effect on improving strength. With strength 

being such an ambiguous entity (Weiss, 1991), rest periods can be manipulated in a multitude of 

ways. For example, by shortening the rest periods, this would create a training stimulus by 

overloading the recovery systems thereby promoting improved recovery efficiency (Rooney, 

Herbert & Balnave, 1994). Another method would be to keep rest periods optimal to focus on 

quality of strength training, whereby different training adaptations would take place. However, 

with the goal of standardizing rest periods to ensure test reliability, these other effects of rest 

periods are irrelevant to the purpose of this study.  

      The goal of the Parcell et al. (2002) study was to eliminate the arbitrary nature of rest 

period allotment in isokinetic strength testing and to hopefully promote standardization in this 

important, yet overlooked aspect in strength testing. Their study sparked an interest for our 
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research to replicate their protocol and purpose. Although we had two abstracts published on 

female participants (Warren & Blazquez 2004; Warren & Blazquez, 2005), the data was 

unreliable due to overshoot resulting from the software stops not being enabled. Recent data 

from Warren (2007) including the present findings offer further insight into the effects of rest 

period manipulation during a common isokinetic knee strength test protocol. The findings of 

Warren (2007) were based on an athletic female population and it was shown that the rest 

periods had no effect on torque reproduction. These results further support the present study 

findings of commonly used and physiologically-based rest periods not having an impact on 

torque reproduction. However, this should not support the continual arbitrary nature of assigning 

rest periods between sets in isokinetic testing. Being that most of the data entry on isokinetic 

machines is standardized (i.e. range of motion, repetition range, speeds, body alignment settings), 

rest periods deserve the same level of standardization procedures. This is the reason the 

work:rest ratio method should be considered a viable method in rest period standardization. The 

work:rest ratio is a relationship that will remain consistent, which is what defines standardization 

in the first place. With many different variables such as speed, range of motion, contraction 

mode (e.g. discrete or reciprocal) that change protocols, the work:rest ratio accommodates all 

these changes by providing a basis for sound judgment. The logic is founded on the idea that 

with the work bout being available to calculate (See Table 4), the corresponding rest period can 



 86

then be calculated as well due to the coherent relationship within the work:rest ratio (Conley, 

2000). Furthermore, this coherent relationship within the work:rest ratio is based on the 

physiological behavior of the ATP-PC system, which is the exact energy system of which 

maximum strength and power are produced (Conley, 2000). Therefore, the work:rest ratio should 

be implemented as the method of standardization of rest periods in isokinetic strength test 

protocols.   

      Recent research has shown that shorter rest periods (30-s and 60-s) and their 

corresponding work:rest ratios of 1:1 (30-s rest period) and 1:2 (60-s rest period) were sufficient 

enough in preserving reliablity in peak torque in older and younger women (Theou, Jones, 

Brown & Vandervoort, 2007). Although their protocol was different, it was actually more 

metabolically demanding than the present protocol since it consisted of 3 sets of 8 repetitions at 

60 deg/s. In addition, they found that mean torque reproducibility was preserved with the 1:2 

work:rest ratio and not the 1:1/2 or 1:1, while peak torque was preserved with the 1:1 and 1:2 

work:rest ratio, but not a 1:1/2 work:rest ratio (Theou et al., 2007). The 15-s rest period (1:1/2 

work:rest ratio) had a negative influence on mean and peak torque (Theou et al., 2007). The 

interesting implication from these findings is that peak torque may not require much rest between 

sets to remain preserved in isokinetic strength testing since peak torque is essentially one 
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repetition out of the total number used (i.e. 3-6 reps). Thus, perhaps shorter work:rest ratios such 

as 1:1 and/or 1:2 may have sustained peak torque reliability in the present study. 

      In summary, the results of the present study indicate that a work:rest ratio as short as 1:3 

ensures test reliability for a universal isokinetic knee-strength testing protocol among a 

college-aged male population. The basis for such ambiguity among the literature (Parcell et al., 

2002) on rest periods can be explained by the principle of specificity (Fleck & Kraemer, 2004). 

With so many different factors involved (i.e. gender, population diversity, contraction mode, rep 

range, etc.) strength recovery becomes a very elusive entity that can be influenced by many of 

these factors. In fact, the influence of population diversity was similarly supported by Keating 

and Matyas (1996) who stated that muscle-fiber composition has an influence on fatigue and 

recovery patterns. Essentially, individuals with a higher proportion of fast-twitch muscle fibers 

tend to fatigue faster and recover slower than individuals with a higher proportion of slow-twitch 

muscle fibers (Colliander, Dudley & Tesch, 1988). In further support, Patton, Hinson, Arnold & 

Lessard (1978) found that males with high strength fatigued faster than females with low 

strength. It was rightfully concluded that the rest period between sets in isokinetic testing may 

vary in individual subjects (Keating & Matyas, 1996). Therefore, future research might include a 

greater number of participants, shorter work:rest ratios, different populations, gender comparison, 

different contraction modes, different muscle groups and more repetitions and/or sets. 
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PAR-Q Form 
Name: __________________________________ 
Date:  __________________________________ 

 
Many health benefits are associated with regular exercise, and the completion of PAR-Q is a 
sensible first step to take if you are planning to increase the amount of physical activity in your 
life. 
For most people physical activity should not pose any problem or hazard. PAR-Q has been 
designed to identify the small number of adults for whom physical activity might be 
inappropriate or those who should have medical advice concerning the type of activity most 
suitable for them.  
Common sense is your best guide in answering these few questions. Please read them carefully 
and check YES or NO opposite the question if it applies to you. 
 
YES  NO 
 
□  □ 1.    Has your doctor ever said you have a heart condition and                
                        that you should only do physical activity recommended by a  
                        doctor? 
□  □ 2.    Do you feel pain in your chest when you do physical activity? 
 
□  □ 3.    In the past month, have you had chest pain when you were not                 
                        doing physical activity? 
□  □ 4.    Do you lose balance because of dizziness or do you ever lose  
                        consciousness? 
□  □ 5.    Do you have a bone or joint problem that could be made worse by a   
                        change in your activity? 
□  □ 6.    Is your doctor currently prescribing drugs (for example, water pills)  
                        for your blood pressure or heart condition? 
□  □ 7.    Do you know of any other reason why you should not do physical  
                        activity? 
 
If you answered NO honestly to all PAR-Q questions, you can be reasonably sure that 
you can: 
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             1. Start a graduated exercise program    
             2. Take part in a fitness appraisal 
However, if you have a minor illness (e.g., cold) you should postpone activity. 
 
If you answered YES to one or more PAR-Q questions, you should consult your 
physician if you have not done so recently before starting an exercise program and/or 
having a fitness appraisal. 
 
Physical Activity Readiness Questionnaire Note. From ACSM’s health-related physical fitness assessment manual (p. 162), by G.B. Dwyer & 

S.E. Davis, 2005, Baltimore: Lipponcott Williams & Wilkins. Copyright 2005 by ACSM. Reprinted with permission.    
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Health History Questionnaire 

 
NAME___________________________________________  AGE _____  DATE _______  
       First  M.I.            Last                                                 day/month/yr 
DATE OF BIRTH ____________________________________________________________ 
                     day/month/yr                                            
 
ADDRESS-____________________________________________________________________
______________________________________________________________________________ 
   Street   City   State   Zip 

 

TELEPHONE (home) __________________________________ (Business) 
______________________________________________________________________________ 
 
OCCUPATION ____________________________ PLACE OF EMPLOYMENT 
______________________________________________________________________________ 
 
MARITAL STATUS: (circle one) SINGLE MARRIED    DIVORCED    
WIDOWED    SPOUSE:  ______________________________________________________ 
 
EDUCATION: (check highest level)    ELEMENTARY _____    HIGH SCHOOL _____    
COLLEGE _____    GRADUATE _____ 
 
PERSONAL PHYSICIAN _______________________________________ LOCATION 
______________________________________________________________________________ 
 
Reason for last doctor visit? ______________________________________ Date of last physical 
exam _________________________________________________________________________ 
 
Have you previously been tested for an exercise Program? YES _____    NO _____    
YEAR (s) _____________________________________________________________________ 
 
LOCATION OF TEST __________________________________________________________ 
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Person to contact in case of an emergency ________________________ Phone # 
__________________ (relationship) ________________________________________________ 
 

PAST HISTORY 
(Have you ever had?)                   

                                        

                                        

YES    NO          

 

High blood pressure……….         □  

□ 

 

Any heart trouble…………          □  

□ 

 

Disease of the arteries……..         □  

□ 

 

Varicose veins…………….          □  

□ 

 

Lung disease………………          □  

□ 

 

Asthma……………………           □      

□ 

 

Kidney disease……………           □      

□ 

 

Hepatitis………………….            □     

□ 

 

Diabetes…………………..           □      

□ 

 

FAMILY HISTORY 
(Have any immediate family or grandparents 

had?)                                  

                                        

YES    NO 

 

Heart attacks…………………      □        

□ 

 

High blood pressure…………       □        

□ 

 

High cholesterol…………….        □       

□ 

 

Stroke………………………         □       

□ 

 

Diabetes……………………         □       

□ 

 

Congenital heart defect…….         □       

□ 

 

Heart operations…………….        □       

□ 

 

Early death………………..           □      

□ 

 

Other family illness _____________________ 

 

_____________________________________ 

PRESENT SYMPTOMS 
(Have you recently had?) 

 

                                       

YES    NO          

 

Chest pain/discomfort….            □       

□ 

 

Shortness of breath………          □        

□ 

 

Heart palpitations………….       □        

□  

 

Skipped heart beats………         □        

□ 

 

Cough on exertion………..         □        

□ 

 

Coughing of blood……….         □        

□ 

 

Dizzy spells………………         □        

□ 

 

Frequent headaches………         □        

□ 

 

Frequent colds…………..           □       

□  
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Heart murmur……………..          □       

□ 

 

Arthritis………………….            □      

□ 

 

 

_____________________________________   

Back pain………………             □      

□ 

 

Orthopedic problems….              □      

□                   

 
(FOR STAFF) 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________ 
 
HOSPITALIZATIONS: Please list recent hospitalizations (Women: do not list normal 
pregnancies) 
Year   Location    Reason 

______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________ 
______________________________________________________________________________
______________________________________________________________________________   
 
Any other medical problems/concerns not already identified?  Yes ___    No ___ (Please 
list below) 
______________________________________________________________________________
______________________________________________________________________________ 
______________________________________________________________________________
______________________________________________________________________________ 
 
Have you ever had your cholesterol measured?   Yes ___   No ___;   IF yes, (value) 
_____ (Date) _____ Where? 
______________________________________________________________________________
______________________________________________________________________________ 
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Are you taking any Prescription or Non-Prescription medications?   Yes ___   No ___ 
(include birth control pills) 
Medication    Reason for Taking   For How Long? 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________ 
 
Do you currently smoke?  Yes ___   No ___   If so, what?   Cigarettes ___  Cigars ___   
Pipe ___ 
 
How much per day:  <.5 pack ___   0.5 to 1 pack ___   1.5 to 2 packs ___   > 2 packs ___ 
 
Have you ever quit smoking?   Yes ___   No ___   When? _______   How many years 
and how much did you smoke? 
______________________________________________________________________________
______________________________________________________________________________ 
 
Do you drink any alcoholic beverages?    Yes ___   No ___   If Yes, how much in 1 
week? 
Beer _______ (cans)   Wine _______ (glasses)   Hard liquor _______ (drinks) 
______________________________________________________________________________
______________________________________________________________________________ 
 
Do you drink any caffeinated beverages?   Yes ___   No ___   If Yes, how much in 1 
week? 
 
Coffee _______ (cups)   Tea _______ (glasses)   Soft drinks _______ (cans) 
______________________________________________________________________________
______________________________________________________________________________ 
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ACTIVITY LEVEL EVALUATION 
 
What is your occupational activity level?   sedentary ___;   light ___;   moderate ___;   
Heavy ___ 
 
Do you currently engage in vigorous physical activity on a regular basis?   Yes ___   No 
___ 
If so, what type? 
______________________________________________________________________________     
How many days per week? _______________________________________________________ 
 
How much time per day?   (check one)   < 15min ___   15-30 min ___   30-45 min ___   
> 60 min ___ 
 
Do you ever have chest discomfort during exercise?   Yes ___   No ___   If so, does it go 
away with rest?   ___ 
 
Do you engage in any recreational or leisure-time physical activities on a regular basis?   
Yes ___   No ___ 
 
If so, what activities? 
______________________________________________________________________________
______________________________________________________________________________ 
 
On average:  How often? ________________ times/week;   For how long? 
________________ time/session 
 
FOR STAFF USE: 
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
______________________________________________________________________________
________________________________________________ 
Note. Modified from ACSM’s health-related physical fitness assessment manual (p. 163-164), by 
G.B. Dwyer & S.E. Davis, 2005, Baltimore: Lipponcott Williams & Wilkins. Copyright 2005 by 
ACSM. Reprinted with permission.    
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Informed Consent 
1.  Title of Research Study 
AN OPTIMAL INTERSET REST PERIOD FOR STRENGTH RECOVERY DURING A 
COMMON ISOKINETIC TEST 
      
2.  Project Director 
Barbara L. Warren   (253) 879-3710 blwarren@ups.edu 
Professor and Chair 
University of Puget Sound 

 
3.  Purpose of the Research 
The purpose of this study is to determine the optimal rest period between sets in muscle strength 
testing. In previous research, the rest period times between sets have not been consistent. With 
rest periods having an affect on one’s muscle strength performance, it is important that rest 
periods be long enough to allow one to perform to optimally in every given set. 
 
4.  Procedures for this Research 
Each subject will be asked to come to the Metairie Orthopedic Sports Therapy Clinic a total of 5 
times. Each test session will be separated by at least 48 hours. At the beginning of all sessions, 
the participants will warm up for 5 minutes on a stationary bicycle. The first two sessions will 
involve the participant performing some maximal effort leg extensions and curls at different 
resistances on the CYBEX isokinetic machine. These first two sessions are to allow the 
participant to practice and understand how to use the CYBEX when performing the leg exercises. 
The four subsequent experimental testing sessions will be used to collect data when the 
participant is tested. On each of the four experimental test sessions, participants will perform 3 
sets of 5 maximal-effort repetitions of knee extensions and curls. Each set will follow a 
heavy-to-light progression in resistance. Rest periods will be counterbalanced across subjects. 
Each testing session should require approximately 10-30 minutes of the subject’s time. 
 
5.  Potential Risks of Discomforts 
Risks to the participant include possible knee muscle strain or possible discomfort from soreness, 
which might occur. However, the warm up before testing should reduce the possibility of a 
muscle strain or soreness. In the event that the subject experiences extreme discomfort or would 
like to discuss their discomfort after testing, please contact Dr. Barbara Warren at (253) 
879-3710 or blwarren@ups.edu 
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6.  Potential Benefits to You or Others 
The benefit to the participant is that they will have an evaluation of strength of their thigh 
muscles. Participants will also receive a free exercise program and nutritional consultation. To 
the greater good will be the ability of the investigator to establish a consistent rest period for 
strength evaluation when using a CYBEX for strength testing. As a result, rest periods for further 
investigations using a CYBEX can be standardized. 
 
7.  Alternative Procedures 
 
"Your participation is entirely voluntary and you may withdraw consent and 
terminate participation at any time without consequence." “Your decision to 
withdraw will not affect your grades or status at this university.”   
 
8.  Protection of Confidentiality 
All subjects will be assigned a number and the data will be organized according to the subject 
number to preserve the anonymity of the subjects.  The investigator will be the only person 
evaluating the information collected.  The confidentiality of the data files will be protected by 
being housed in the principal investigator’s office and after the study the subjects’ data will be 
removed from the computer files.  No names and only group information will appear on any 
publication or presentation which might take place at the completion of the study.   
 
9.  Who to Contact with Questions 
If you have any questions about your rights as a subject/participant in this research, or if you feel 
you have been placed at risk, you can contact Dr. Richard Speaker at the University of New 
Orleans at (504) 280-6534. 
 
10.  Signatures 
 
I have been fully informed of the above-described procedure with its possible 
benefits and risks and I have given permission of participation in this study. 
______________________ _____________________ ________ 
Signature of Subject  Name of Subject (Print)  Date 

 
______________________ Ivan Blazquez       ________ 
Signature of Co-investigator  Name of Person Obtaining  Date 
Ivan Blazquez                  Consent (Print) 
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Pre-Participation Checklist 

 
o Avoid strenuous physical activity 24-hours prior to testing. 
 
o Testing & retesting have to be separated by a 48-hour period. i.e. 

(Monday-Wednesday). 
 

o Do not eat a large meal before participating. i.e. (> 2 hours before testing).  
 

o Testing dates need to be scheduled at roughly the same time of day (Afternoons or 
Evenings only). i.e. (Monday @ 3 p.m. and Thursdays @ 4 p.m.). 

 
 

o Avoid smoking 12-24 hours prior to testing. 
 
o Abstain from caffeine and nicotine products before testing (12-24 hours). 

 
o Jeans are not allowed. Wear comfortable exercise-conducive clothing. i.e. (clothes 

that allow cooling). 
 

o Abstain from alcohol before testing(> 24 hours) 
 
o Properly hydrate by consuming an adequate amount of water. 

 
Following these pre-participation guidelines will not only ensure your safety, but they will 
also ensure improved test results. If you should have any questions in regard to these 
guidelines set forth as such, please feel free to ask.    
 
Note. Modified from ACSM’s health-related physical fitness assessment manual (p. 89), by G.B. Dwyer & S.E. Davis, 2005, Baltimore: 

Lipponcott Williams & Wilkins. Copyright 2005 by ACSM. Reprinted with permission.    
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   UNO STUDENTS… 

WANT TO LOOK LIKE THIS? 

HERE IS YOUR CHANCE. 

 
 

 The Department of Health Promotion and Human Performance is conducting a fitness 

research study. The purpose of this study is to look at the influence of rest periods between sets in 

resistance training. Ivan Blazquez is a graduate student who specializes in Exercise Physiology in 

the Department of Health Promotion and Human Performance. Blazquez is a certified personal 
fitness trainer at local health clubs and has been a competitive bodybuilder for 1-year. 

 

QUALIFICATIONS:  
Male students between the ages of 18-35 
WHAT: Participants will be required to meet a total of five times. Each session will last 

approximately 10-15 minutes.  
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WHERE: Training and testing sessions scheduled at Metairie Orthopedic and Sport 
Therapy clinic 
WHEN: Between 10:30 a.m. – 1:00 p.m. 
 

Each participant will receive a personalized exercise program upon completion of the study. 

Participants will also have an opportunity to win a free therapeutic massage. So what are you 

waiting for? Get that sultry look you’ve desired. The right time is right now to look your utmost 
best.  

Contact Information: 

Ivan Blazquez 

Cell 338-0749 

clinicaltrainer@hotmail.com 
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 Ivan Blazquez was born on August 15, 1979 in Metairie, Louisiana. He is a graduate of 

Crescent City Baptist High School of Metairie. He graduated from the University of New 

Orleans in May 2003, with a Bachelor of Science degree in Human Performance and Health 

Promotion. He will graduate from the University of New Orleans with a Master of Arts in 

Human Performance and Health Promotion on May 17, 2008.  
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