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ABSTRACT

Knowledge of the lane that a target is located in is of particular interest in on-road
surveillance and target tracking systems. We formulate the problem and propos two ap-
proaches for on-road target estimation with lane tracking. The first approach for lane
tracking is lane identification based on a Hidden Markov Model (HMM) framework. Two
identifiers are developed according to different optimality goals of identification, i.e., the
optimality for the whole lane sequence and the optimality of the current lane where the
target is given the whole observation sequence. The second approach is on-road target
tracking with lane estimation. We propose a 2D road representation which additionally
allows to model the lateral motion of the target. For fusion of the radar and image sen-
sor based measurement data we develop three, IMM-based, estimators that use different
fusion schemes: centralized, distributed, and sequential. Simulation results show that the
proposed two methods have new capabilities and achieve improved estimation accuracy for
on-road target tracking.

Key Words: Ground Target Tracking, HMM, Lane Identifier, 2D Road Coordinates,

IMM, Lane Estimator, Sensor Data Fusion
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CHAPTER 1

INTRODUCTION

In this thesis, we consider two main problems in on-road ground target traking-lane iden-
tification/estimation, and precision 2 dimensional (2D) tracking based on fusion of radar
and image sensor based measurements. In the project of on-road target tracking with lane
identification and lane estimation, we use the HMM framework to formulate and solve the
lane identification problem. The target motion across lanes is modeled in discrete-time
through a Markov chain with known initial and transition probabilities. The multiple lanes
of the road are the states of this Markov model. It is assumed that direct observations
of the lane of a target with some observation probability matrix (OPM) are available. We
derive the OPM based on the assumption that an image sensor (e.g., a camera) provides raw
observation data in an on-road target motion scenario. The lane tracking is done in terms
of both the optimal estimation of the lane sequence and of the current lane of the target,
given the observations from the starting time to the current time. We call the first esti-
mator the lane sequence estimator (LSE) or lane sequence identifier (LSI), and the second
one the lane filter (LF) or lane identifier (LI). Performance evaluation of both estimators
is done by Monte Carlo simulations. The estimators assume knowledge of the transition
probability matrix (TPM) of the motion model. Since in practice it is hard to come by with
an accurate value of this TPM, we also study the performance of the LSE and LF under
mismatch between the TPM used by the estimators and the true TPM (used for ground
truth generation) [1].

In the project of precision tracking/fusion, we first propose a 2D road representation
which allows to model the lateral motion of the target (the motion along the direction
transversal to the road) by accounting for the vehicle displacement from the road axis [2].

Based on this representation we describe the target longitudinal and lateral maneuvering



behavior in 2D road coordinates using multiple models. Additionally, for describing lon-
gitudinal maneuver modes of motion we utilize an improved, mean-adaptive acceleration,
model proposed originally in [3]. It is assumed that radar (e.g., ground moving target in-
dicator (GMTI)) and image sensor based measurements are available for the purpose of
tracking. For fusion of the radar and image sensor based measurement data we develop
three, IMM-based, estimators that use different fusion schemes: centralized, distributed,
and sequential. The centralized estimator (CE) processes all data jointly. The distributed
estimator (DE) uses radar based and image sensor based local estimates to provide a global
estimate of the target displacement from the road axis. The sequential estimator (SE) first
obtains an estimate of the target displacement based on the image sensor measurement,
and then feeds it into the radar based estimator to obtain an estimate of the longitudinal
motion (mileage) target state.

The remaining part of this thesis is organized as follows. Chapter 2 presents a literature
survey of on-road target tracking. Chapter 3 describes the proposed lane identifiers, and
their performance evaluation. Chapter 4 presents the algorithm development and Monte
Carlo simulation results of on-road target tracking using radar and image sensor based

measurement. Finally, Chapter 5 provides conclusions.



CHAPTER 11

LITERATURE SURVEY OF ON-ROAD TARGET
TRACKING

Surveillance of ground targets, including tracking of on-road targets, is important for many
civilian and military applications. A great deal of research in this area has been done in the
recent years, e.g., [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Ground target tracking with road
network information is much more difficult than tracking an aerial targets, due to the highly
nonlinear constraints on the target’s motion, the traffic density, the terrain observability,
the large number of false alarm, and so on. The central issue in tracking a target moving
on a road is to find good ways to account for the road network information.

The first problem is how to model targets traveling along a road. Targets traveling on a
road maintain nearly costant velocity for most of the time, while the target may slow down
when it is close to an intersection of the road, makes sharp turn or goes up-hill, and it may
speed up when it leaves the intersection or goes down-hill.

The second problem is how to use the information of the road network. This is one of
the most difficult problem for on-road target tracking, because of its high nonlinearity of the
road network. There are four categories of techniques to make use of the road network infor-
mation in target estimation [11]. The first class is the post-processing correction technique,
which does a correction uses traditional state estimation methods and move the estimation
on the road so that it is under the road network constraint [15]. The second class uses the
road information as the pseudo measurements. A pseudo measurement is the constrained
velocity vector by the direction of a road segment [8]. The third class is to incorporate
the road network into the tracking algorithm. There are two typical approaches for the
third class of methods. The first approach is that target motion is modeled adaptively by
tuning the covariance of the process noise according to the road information, but it can

not guarantee the target estimation always be on the road [16] [17]. The second approach



in this class is to treat the problem as constrained estimation with road network, which is
highly nonlinear [18]. The fourth class of using road network information is to represent
the road network as one dimension as (1D), so that the target motion model is just in one
dimension. 1D representation of road reduces the target motion model significantly, but
the measurement equations become highly nonlinear. This approach can easily model tar-
get interactions with the road network and with other targets at intersections for instance.
The 1D road representation achieves good performance comparing with other approaches
[11, 12].

Most often on-road target dynamics are modeled in Cartesian coordinates based on
traditional motion models, such as the constant velocity (CV), constant acceleration (CA),
Singer model, etc., and additional means are used to constrain the target motion to the
road. However, it is more natural and convenient to model the target motion directly in
road coordinates. A one dimensional (1D) representation of a road network was introduced
in [11] and the target motion on a road was described in terms of traveled distance (mileage)
coordinate. The same approach was also used in [12]. The 1D model is very convenient
for describing the longitudinal target motion (the motion along the direction of the road)
since it simplifies the kinematics considerably. However, it ignores the width of the road
which can lead to yielding significant biases of the target state estimates when the road
width is large, e.g., the road has multiple lanes. To overcome this deficiency we propose in
[2] a 2D road representation which additionally allows to model the lateral motion of the
target (the motion along the direction transversal to the road) by accounting for the vehicle
displacement from the road axis. This type of approach of lane tracking is lane estimation
which estimates the lateral location of the target (the location along the direction transversal
to the road).

Lane tracking of on-road target is a new problem that attracted our interest—we have
not found any paper published on this problem. Knowing the lane that a target is located
in is of particular interest in on-road surveillance and target tracking systems. In addition,
if a good estimate of the lane that a target is located in is available it could help improve

the estimate of the location and motion of the target.



We proposed in [1] the HMM framework to formulate and solve the lane identification
problem. The Hidden Markov Model (HMM) has been heavily researched and used over
the past several decades [19, 20, 21, 22, 23], and successfully applied to a wide variety
of applications, especially in the speech recognition area [24, 25, 26]. HMM is usually
used to solve three problems. The first problem is that given the model A = (A, B, 7),
how to computer P (O|)), the probability of occurrence of the observation sequence O =
01,04, ...,Op; The second problem is that given the model A = (A, B,7), how to choose
the state sequence I = 41,12, ...,i7, so that the joint probility of the state sequence I and
observation sequence O = O1, O3, ...,Or is maximized, e.g., maximizing P (O, I|\). The
third problem is how to adjust the parameters A = (A, B, 7), so that P (O|\) or P (O, I|)\)
is maximized. For our problem of lane identification, we proposed to solve the problem
which is to maximize the joint probability of the current state ¢p and the observation

sequence O = 01, Oy, ..., Or, e.g., maximizing P (O,ir|\) .



CHAPTER III

LANE IDENTIFICATION

3.1 Problem Formulation and Lane Estimation
3.1.1 Target Motion Model

It is assumed that a target is moving on a road with N lanes. The target motion across
lanes is modeled by a Markov chain {l;};—12,.. as follows.
Let Iy € {1,2, ..., N} denote the lane in which the target is at discrete time ¢ =

1,2, ..., T. The initial probability vector and the transition probability matriz (TPM) of

)

the chain are 77 = {m;} , and A = {aij}szl, respectively. In the context of motion across
lanes m; = P(l; = i) denotes the a priori probability of the target being in lane i at the
beginning (at time ¢t = 1) and a;; = P(l;41 = j|l; = i) denotes the probability of the target
being in lane j at time ¢ + 1 given that it was in lane ¢ at time ¢. We assume that the

TPM A is time invariant.

3.1.2 Observation Model

It is assumed that direct observations of the lane of a target are available. An observation,
O = O4(i), denotes that the target is declared by the sensor to be in lane ¢ at time ¢. The
observation mechanism is statistically modeled by an observation probability matriz (OPM)
B = {b; (Ot(i))}é\;:l where b; (O(i)) = P (Oy (9) |l; = j) is the probability of observing the
target in lane ¢ given that the target is in lane j at time t. We assume that the OPM B is

time invariant.
3.1.3 Lane Sequence Estimator

Given an HMM model A = (A, B, 7) and an observation sequence O = {O1,Oq, ...,Or} we

aim at choosing a lane sequence L = Iy, s, ..., 7 so that the joint probability P(O, L|)) is



maximized.}
Since

P(O|L) = by, (O1) bi, (O2) -.biy- (Or) (1)

and

P(L) = w101 y1 (2)

we have

P(O,L) = P(O|L)P(L)

= 7y (01) ayiybiy (O2) -waip_y14:01, (Or) (3)
After defining the weight
T
U(ll, lg, ey ZT) =—|In (ﬂ'llbll (01>) + Z In (a’lt—lltblt (Ot)) (4)
t=2
it can be obtained that
P(O,L) = exXp [*U(ll,ZQ,...,lT)] (5)

The optimal lane sequence estimation is to find

(1,05, ....17) = arg max [P(O,l1,la,...,1l7)] (6)
{lt}tzl
which is equivalent to
(1,05, ...,1p) = arg miTn [U(ly,la,....17)] (7)

l}i=1
Finding the optimal lane sequence is done through the well known Viterbi algorithm
given below. The term —In (alt—lltblt (Ot)) is the weight associated with the transition

lt—l — lt.

Viterbi LSE algorithm
For T'=1,2,... recursively compute the optimal lane sequence:

1. Initialization:

'The conditioning on A, common in the HMM literature, is dropped in the sequel to simplify the notation.



For 1 <i <N,

01(1) = —In(m,) = In(by (O1)) (8)

p1(i) = 0 9)

2. Recursive Computation:

For2<t<T,and1<j<N

S = min [a(d) — Infag)] I (01) (10)
o) = arg min [5e-1(0) ~ In(ay) (1)
3. Termination:
Wmin = 1£ISHN5T(Z) (12)
Ir = arglglgnNéT(z) (13)

4. Tracking back the optimal lane sequence:

Fort=T-1,T—-2,...,1,

Iy = @rr1(lia)- (14)
It can be easily seen that L% = {I],[3,...,l%-} is the optimal lane sequence from time
t=1totimet="1T.
3.1.4 Lane Filter
The variable ap(7) is defined as
ar(i) = P(0O1,04,...,Op,lp = 1) (15)

By Bayes’ rule the probability of the target being in lane ¢ at time ¢ given the observation

sequence O = 01, 0s, ...,Op is

P(lT = i, O) . aT(z')
P(O)  P(0)

Py =i|0) =



Further, we have subsequently

N
= Z[P(OTJrl)lTJrl = j|01,02, ., O, lp = 2)
=1

- P(01,0s,...,O7,lp = )]
N
- Z[P(OT+1|01, OQ, ...,OT,lT - ’i, ZT+1 = ])
=1

. P(ZT+1 = j|01, 02, ceey OT, ZT = z)aT(z)]

[P(Ors1llryr = ) P(lry1 = jllr = i)ar(i)]

I
,MZ

@
Il
—

[P(Or41llrs1 = j)aijar(i)]

I
,MZ

s
Il
—

N
= b;(Or41) Y aijor(i) (17)

i=1

The probability of the observation sequence O = {01, Oa, ...,Or} is

N
P(O) = ) P(O,ir =1i)
=1

N
= Z ar(i) (18)

The algorithm of optimal estimation of the lane at the current time which we call the

lane filter is given as follows.

LF algorithm
Recursively compute the optimal lane estimation at time 7" for T'=1,2,...:
1. Initialization:

Oq(’L)ITFZbZ(Ol),lSZSN (19)

2. Recursion:

Fort=1,2,...,T—1,1<j3 <N,

N
ar1(f) = bj (Or41) D _[agjau(i)] (20)
i=1
3. Observation sequence probability:
N
P(O) =Y ar(i) (21)
i=1



4. Optimal estimate of the lane at current time T

Iy = arg 1r<nia<>§VP(lT =1,0)

= arg max ar (i)

1<i<N P(O) (22)

The sequence L}, = {I},13,...,[}-} is the estimation result we obtain at times T' = 1,2, ...

3.2 Observation Probability Matrix

Here we propose a method for deriving the observation probability matrix B for a particular
scenario.

It is assumed that a signal processor can provide the displacement d of the target center
from the left edge of the road. For example, if a surveillance system uses raw image data
(provided, e.g., by a camera on a satellite), a measurement z = d + v of this displacement
can be extracted by using image processing techniques. We assume that the measurement

error v is zero-mean with Gaussian distribution, truncated outside the road. Then

IN(zd,02) if0<z<2NA
z~ f(z) = (23)

0 otherwise

where N is the number of lanes, 2A is the width of each lane, ¢ = ® (%) -0 (;d) is
a normalization constant, and ®(-) denotes the standard Gaussian cumulative distribution
function (cdf).

When a target is in a lane we assume that the central point of the vehicle is on the

central line of this lane. Given that a target is in lane j, the probability density function

fj(z) of a measurement originating from the target is (Fig.1)

LNz (2 - DA 02) if0<z<2NA

fi(z) = (24)

0 otherwise

where

Oy

S ((2(N—j) = 1)A> e <—(2j - 1)A> 5)

10



/\ truncated Gaussian

O
Lane # 1 j i N z g
Figure 1: Measurement PDF
Then, after some straightforward calculation, we have the final result
P (Oi)lle = J) (26)
= P23 —1)A <z < 2iA) (27)
1 26— 7))+ DA 2(i—j)— DA
Cj (o) Oy

Clearly, the idea of the above derivation is not limited to Gaussian distribution of the
error at the output of the image processing.

For N =3, A =2m and 0, = 2 m we obtained that

B = {b(0:(i)}?,_,
0.8114 0.1870 0.0016
= | 0.1577 0.6845 0.1577 (29)
0.0016 0.1870 0.8114

This OPM was used in the simulations described next.

3.3 Swimulation and Performance FEvaluation

3.3.1 Performance Measures

In the simulation we applied the following measures for performance evaluation.

Probability of being in the correct lane at the current time

1 X
H=E;% (30)

11



0.92

0.9r

0.84 1

0.82

0.8

0.78

50

100 150 200
time

Figure 2: Average probability of being correct of LSE. 200 runs.

where ST = 1 or 0. S = 1 when the lane identified at the current time 7 is correct, and

St = 0 otherwise. N, is the number of runs.

Time-average probability of being in the correct lane

where for each single run r

1
P,.=— P’ 1
Nr ; C (3 )

k
pr=" (32)

is the percentage of times the identified lane is correct and n is the number of observations

in this run.

Error probability matrix.

It is calculated via normalization of the confusion matrix, i.e.,

lane j.

N
o
c=—X _ 33
(Zf\il Cij)i,j:l &

where c;; is the number of times that the target is declared in lane ¢ while it is actually in

12



3.3.2 Simulation

The parameters of the ground truth are as follows.

N = 3. Initial lane probabilities

77:[0.3 0.4 0.3]-
Lane transition probability matrix

0.92 0.07 0.01
A={ai} =004 092 0.04
0.01 0.07 0.92

The observation probability matrix B in this case is given by (29), as derived in Sect.
I11.

The performances of the LSE and LF are illustrated in Figures 2 and 3, respectively.
From Figure 2 we can see that the LSE provides good performance. After about 50 time
steps the probability of being correct on the lane sequence is around 0.92 and it tends to
increase as time goes. From Figure 3, we can also see good performance using the LF
algorithm. Note that the performance measures used in Figure 2 and Figure 3 are different:
The first one is the average probability of being correct on the lane sequence from time 1
to the current time; The second one is the probability of being correct on the lane at the
current time over all the runs.

The error probability matrix of the LSE at T = 200 is

0.8600 0.1400 0
C'= 0.0485 0.8738 0.0777
0 0.1702 0.8298

For the LF at T = 200 it is

0.8800 0.1200 0
C=0.0388 0.8932 0.0680
0 0.1702 0.8298

13



0.94

0.881

0 50 100 150 200
time

Figure 3: Probability of being correct of LF. 200 runs.

Comparing these error probability matrices we see that, as it should be, the LF has

better performance concerning the lane at the current time than LSE.
3.3.3 Unknown Lane TPM

In order to see the effect of mismatch between the true TPM used in the simulation and the
one used by the estimators, we analyze the sensitivity of the elements of the TPM using a

3 by 3 matrix defined as
A = (Aajj) = (aij) — (af}) , 1< 4,5 <3

where A = {a;;},; ;<3 is the ground truth, and A, = {a“A is the transition matrix

ij }19’,]53
used by the HMM estimators. A is chosen as the matrix A defined in Sect. IV B. Due to
the symmetry of the TPM we analyze the sensitivity of the elements ai1, a12, ass.

First, we analyze the effect of a1; on the performance of LSE and LF by comparing the

performance of four cases given in Table 1.
Secondly, we analyze the effect of a2 of four cases given in Table 2.

Thirdly, we analyze the effect of a1; with respect to a2 on the performance of LSE and

LF by comparing the performance of four cases given in Table 3.

14



Case 1: Case 2:
[0 0 0] 1 0 —.1]
Ai=]10 00 Ai=]10 0 0
| 0 0 0 | | 0 0 0 |
Case 3: Case 4:
[ 2 0 —2 [ 4 0 —4 ]
A= 0 0 0 A= 0 0 0
| 0 0 0 | | 0 0 0 |

Table 1: TPM mismach analysis of a11

Case 1: Case 2:

[0 0 0] [0 .03 —.03
Ao=10 0 0 Ay=110 0 0

| 0 0 O | | 0 0 0 |
Case 3:

[0 .06 —.06
NAy=1[0 0 0

000 o0 |

Table 2: TPM mismach analysis of a1
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Figure 4: Average probability of being correct of LSE for A1.200 runs.
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—-— casel
case2
case3

100 150 200

time

Average probability of being correct of LSE for AA5.200 runs.

—-—-casel
case2
case3
— — —case4

100 150 200
time

Figure 6: Average probability of being correct of LSE for A3.200 runs.

o O O
o O O

o O O

Case 2:
1 —1 0]
A= 0 0 0
| 0 0 O |
Case 4:
[ 4 —4 0]
As=| 0 0 0
| 0 0 0|

Table 3: TPM mismach analysis of a1; with respect to a2
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— - — casel
case2
0.95- case3
— — —case4

0.65

0 50 100 150 200
time

Figure 7: Average probability of being correct of LSE for A4.200 runs.

Case 1: Case 2:

[0 0 0] 0 0 0 ]
Ay=10 0 0 Ay=| —.05 0.1 -.05

| 0 0 0 | | 0 0 0 |
Case 3: Case 4:

0 0 0 ] [0 0 0 ]
A= -1 2 -1 Ay=1| -2 4 -2

| 0 0 0 | . 0 0 0 |

Table 4: TPM mismach analysis of the effect of a9

Lastly, we analyze the effect of ags of four cases given in Table 4.

Figure 4 - 7 shows the performance of the LSE with different TPMs A,. It is seen from
Figure 4, 5, and 6 that Aai; and Aais have some effect on the performance of the LSE, but
not very significant. From Figure 7 we can see that the performance of LSE is affected by
agg very strongly. Figure 8 - 11 shows similar results for the LF. It seems that the element
az2 of TPM has much greater impact on the performance. If the ground truth, especially
the true age of TPM, is unknown, the choice of lane TPM will affect the lane tracking
performance heavily. How to identify the lane transition probability matrix appears to be

an important problem that we intend to address in the future.
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CHAPTER IV

ON-ROAD TARGET TRACKING USING RADAR AND
IMAGE SENSOR BASED MEASUREMENTS

4.1 2D Road Coordinates Representation

A 1D representation of a road network was introduced in [11]. This 1D model is very
convenient for describing the longitudinal motion' of an on-road vehicle since it simplifies
the kinematics considerably. However, it ignores the width of the road which can lead to
yielding significant biases of the target state estimates when the road width is large, e.g., the
road has multiple lanes. To overcome this deficiency we propose a 2D road representation
which additionally allows to model the lateral motion® of the target by accounting for the
vehicle displacement from the road axis. The 2D road — vehicle geometry is illustrated in
Fig.12

A segment of a road is represented by the curve of its axis (center line) and by its width.
With respect to a global Cartesian coordinate system Oxy the axis curve C is assumed

known, e.g., given in natural parametric form [27] by

C: To = @e(s) 0<s<sy (34)
Ye = Ye(s),
where z.(s) and y.(s) are known functions of the natural parameter—the arc length s. It
is assumed that the road segment under consideration has N lanes and the width of each
one is A.
A point V' = (x,y) on the road (the location of a vehicle center) can be represented

as V = (s,d) where d is the signed displacement of V' from the center line C (the signed

distance between the orthogonal projection C of V onto C)3, and s is the curve length of

'The motion along the direction the road.

2The motion along the direction transversal to the road.

3d > 0if V is to right-hand side of the axis curve CoCy and d < 0 if V' is to left-hand side of the axis
curve CoCy .
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Figure 12: Road — Vehicle Geometry

the center line segment from the known segment initial point Cy = (2.(0),y.(0)) and the
projection point C' = (z.(s),y.(s)) (Fig.12 ). Vice versa, given s, point C' = (z.(s),yc($))
is uniquely determined through (34). Furthermore, given point C' and displacement d,
point V' is uniquely determined on the road since the road width NA is much smaller
than the radius of curvature of C. The displacement is actually subject to the constraint
|d| < w = NA/2—§, where § is an offset determined, e.g., by (half) of the vehicle width.
Thus each point V' = (z,y) on the road can be represented in road coordinates s and d
as V = (s,d), where s is referred to as the mileage coordinate and d is referred to as the

displacement coordinate. Formally, we can write

x = gu.(s,d)
0<s<sy, —w<d<w
y = gy(s,d)
where the mapping g = (¢x,gy) is the transformation from road coordinates to Cartesian
coordinates. In general, obtaining g may not be easy for curve segments with arbitrary
shapes. However, most often a road can be approximated with a sufficient accuracy through

straight line segments and circular arc segments. Next we determine the road-to-Cartesian

coordinate transformation ¢ for linear and circular road segments. It is assumed in the
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Figure 13: Linear Road Segment

sequel that the width of the road within a segment is constant.
4.1.1 Linear Segment

The geometry of the target on a linear road segment CoC' is shown in Fig.13. Let

—1 Y9 — Y% (35)

p = tan
ij—x()

and consider the case 0 < ¢ < 7/2. The other three cases for p: 7/2 < p <7, 1< <
37/2, and 37/2 < ¢ < 27 can be considered in the same way.

It is easily seen from Fig.13 that

xr = xz.+sgn(d)dsing

y = y.—sgn(d)dcosgp
and
T = o+ Scose
Ye = Yo+ ssing
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Thus

r = gz(s,d) =x0+ scosp+sgn(d)dsing (36)
y = gy(s,d) =yo+ ssing —sgn(d)dcos ¢ (37)

where
0<s<sf, —NA/2<d<NA/2, (38)

4.1.2 Circular Arc Segment

The geometry of the target on a circular arc road segment CoC is shown in Fig.14. The

center M = (xa,yn), radius R, initial point Cp, and final point Cy are known. Let

_ 3 39
v = 2 (39)
Yy = tan~! M = 9o (40)
Tp — To
It is easily seen from Fig.14 that

s
x = gu(s,d)=zpy — (R—d) cos(ﬁ — 1) (41)

.8
y = gy(s,d) =yu + (R = d)sin( — o) (42)

There are several types of circular arc segment according to the road direction and the

orientation of the circular arc. In all cases g can be derived in same way.

4.2 Target Motion Models in Road Coordinates

The main reason of introducing the 2D road coordinates in Sec. 4.1 is that motion of a
target on a road is modeled more naturally in road coordinates than in the usual Cartesian

coordinates.
4.2.1 Longitudinal Motion

The motion along a given road can be conveniently described by the acceleration §(t) = a®(t)
where s(t) is the road segment arc length (mileage coordinate) at time ¢. The acceleration

function a®(t) is in general unknown because it depends on largely unknown factors—most
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Figure 14: Circular Road Segment

notably, on the vehicle control (driver behavior) and on the vehicle performance character-
istics. It is common to model a®(t) as a random process. The reader is referred to [3] for a
comprehensive survey on the available techniques. Below we briefly summarize the models
used in this thesis.

With a state vector ° = [s, 3, 5]" we consider the following generic discrete-time model
zi = Faj +Tu, + Gug, (43)

where wi ~ N(0,Qs) is white process noise, and the matrices F' and G are defined below

to model different modes of motion.
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4.2.1.1 Nearly CV Model

The nearly constant velocity (CV) model is intended to describe nonmaneuvering mode of

motion. The model is given by (43) with ux = 0 and system matrices

1 T 0 T2/2
Fov=10 1 0|, Gov= T (44)
0 00 0

. . . . . . _ 2 _ 2
where T is the sampling interval, and with process noise variance Qs = o5 = o5, -

4.2.1.2 Nearly CA Model

The nearly constant acceleration (CV) model is intended to describe maneuvering mode
motion with nearly constant acceleration. The model is given by (43) with u; = 0 and

system matrices

1 T T?%)2 T?%/2
Fea=|10 1 1T |, Gea= T (45)
00 1 1

2

and process noise variance Qs = 02 = Tsonr

4.2.1.8 Mean-Adaptive Acceleration Model

The nearly CA model has very limited capability for describing various maneuvering modes
of motion. A better choice is the first-order correlated acceleration model (best known as
the Singer model) and, furthermore, its extension known as the “current” model [3]. The
mean-adaptive acceleration (MAA) model, originally proposed in [3], is an improvement

over the “current” model. The MAA model is given by (43) with u; = a; and system
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matrices

1 T (aT —1+4e°T)/a?
Fyaa = 0 1 (1- e 1) Ja (46)

0 0 e~

(aT -1+ e*aT) /a2
Lapaa = Geoa— (1-eT) Ja (47)

efaT

Guaa = I3 (48)

where a = 1/7 where 7 is a maneuver specific time constant.
: : _ So081\ 2 — 113 :
The process noise covariance @, = E(wjw;') = 2a0;Q where Q = [qw]m:1 is a sym-
metric matrix with

1—e 20T 4 20T + 720‘;T3 —2a2T? — 4aTe T

q11 =

2a°
e 20T 41 2T 4 2aTe T — 20T + o*T?
Q12 = 2ol
«
B 1 —e 22T _9nqTeoT
_ qe=oT _ 3 _ =221 4 94T
QQQ - 2043
B e2aT 4 | _ 9e—T
1— e—2aT
q33 = ——(F——

2

and
4 . a . 2
Tﬂ— (aﬁnax — Sk|k) if Sklk >0

A R (49)
4—T7r (aimax + 3k|k> if Sk\k <0

S

where Sy, is the filter estimate and a? .y, apax

are lower and upper bounds of the accel-
eration §, respectively.
The mean acceleration aiy1 is computed adaptively, before the state prediction step

k — k + 1, by the following recursion

Ap41 = eiaTgk“C + (1 — efaT) ag (50)
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4.2.1.4  Multiple Model

Let M7 denotes the nonmaneuver CV model, M3 denotes a maneuvering motion model
(either CA or MAA), and mj denotes the target model of motion at time k. The tar-
get maneuvering behavior—model sequence {mj},_,, ——is assumed to be a homogeneous

Markov chain mj € {M7, M5} with transition probabilities

P{mp = Mj|mj_, = M’} =3, 4,5 = 1,2 (51)

and initial probabilities p,; = P{mj=M?}, i =1,2. The transition probability matric
(TPM) II* = [ﬂ'ij]?,j:l and initial probability vector pg = [uf 1, 115 »]" are assumed known.
In practice they are design parameters. The corresponding hybrid system model can be

written as follows

T = F(mi)zj, + T(mp)uy, + G(mi)wi(my) (52)

In the sequel we consider two multiple model (MM) configurations to model the along-
road maneuver behavior of the target: CV-CA MM—with Mj = C'A and CV-MAA with
M5 = MAA.

4.2.2 Lateral Motion

Let dj, be the displacement of the target center, as defined in Sec. 4.1, at time k. The target

motion across the road is described by the following multiple model
dpy =d™ +wl k=0,1,... (53)

where d®) = (21 — 1)A/2 is the displacement of the center of the /th lane, [ = 1,2,..., N,
from the road axis, and w,@l ~N (O, Ui}d) is white process noise sequence. The process of
changing lanes—sequence {lk}kzo,lw—is modeled as a homogeneous Markov chain with

transition probabilities

Plly=jlly=i}=n}, i,j=1,...,N (54)

and initial probabilities ufii = P{ly=14}, i =1,...,N. The TPM II¢ = [77%]%-:1 and

initial probability vector ud = [/inl, o, pd ) are assumed known.
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4.2.3 Joint Longitudinal & Lateral Motion

Based on (52) and (53) a hybrid system model for the compound base state vector x =

[x7/, di]" is as follows.

F(m3) 0 I'(mg) 0 U,
Tht1 = T B
0 0 0 1 d(lx)
(55)
N G(my) O wi (my)
0 1 wy,

The modal state is (my, lx) € {M7, M5} x {1,2,..., N}. The joint transition probabilities
PA{(my, le) = (j1,42) | (mpp—1, lp—1) = (i1,42)} (56)

for i1,j1 = 1,2;42,50 = 1,..., N, and initial probabilities
P{(mg,lo) = (i1,i2)} fori;z =1,2, i3=1,...,N (57)

complete the model definition. It should be noted the above hybrid model has a nice
capability—to model joint maneuvers, both along-road and across-road, by appropriately

designing the joint transition probabilities (56).

4.3 Measurement Models

We consider two types of sensors available: radar and image sensor.
4.3.1 Radar Measurements

A radar, e.g., ground moving target indicator (GMTI), provides measurements of the range

r and bearing b of the target in the global coordinate system Ozy (Fig.4.1). If the vehicle
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center in road coordinates is (s,d) then the radar measurement model is given by

ar || Pelga(s,d),gy(s, ) L
2 (g (s,d), gy(s, d)) vy
' (58)
| V9a(s,d)? + gy(s, d)? e
N I tan~! (%) Up

where z, and z, denote the range and bearing measurements, respectively; v, ~ N (0, a%) ,
vy ~ N (O, O'g) are mutually uncorrelated and white noise measurement error processes; and
(92(s,d), gy(s,d)) is the (known) road-to-Cartesian coordinate transformation, described in
Sec. 4.1.

The partial derivatives associated with this model are as follows

xS 0 y S
hated) = S DZED Lol d) T (59)
’ \/gx (s,d)? + gy(s,d)?

09z (s, Ogy(s,d
h (S d) _ gx(sa d) ga(s 4 _ Qy(s)d) gyﬁ(s ) (60)
A 9z(s,d)? + gy(s,d)?

99z (s, dgy(s,d
h14(8 d) _ gz(s,d) g ( d) +gy(S d) gy( ) (61)
s \/gz S,d —|—gy(8,d)

09z (s,d dgy(s,d
h24(8 d) — gI(SJ d) ga(d ) - gy(57 d) gya(d ) (62)
’ gz(s,d)Q +gy(37d)2

They are needed for the extended Kalman filters developed below.

4.3.2 Image-Based Measurements

It is assumed that a measurement z; of the displacement d of the target center from the
road axis (as defined in Sec 4.1, Fig.4.1) is available. Such a measurement can be extracted
by image processing techniques, based on high resolution raw image data provided by, e.g,
a surveillance camera located on a satellite, helicopter, UAV, etc. This measurement model
is given by

zqg =d+vg (63)

“The time index is dropped in this section for simplicity.
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CRED = IMM St

Radar
(s)

Figure 15: Structure of ME/AME

where the measurement error vy ~ N(0,02) is white noise process.

4.4  Tracking in 1D Road Coordinates using Radar

For 1D (mileage only) tracking it is assumed that the target center is always on the road
axis (i.e., the displacement coordinate d = 0).

The target motion model, for a state vector zf = [sg, $, 5x)/, is given by the hybrid
system model (52) with known p and II°.

Only radar measurements z, and z; are available, according to the measurement model

given by (58) with d = 0.
4.4.1 Mileage Estimator (ME)
The ME implements the IMM filter for the CV-CA multiple model defined by (52) with

M; = CV and M5 = CA. This estimator was proposed and investigated by [[?]]. It is

considered and implemented here for the purpose of comparison.
4.4.2 Adaptive Mileage Estimator (AME)

The AME implements the IMM filter for the CV-MAA multiple model (52) with M7 = CV
and M5 = MAA.

The structure of both estimators is illustrated in Fig.15.

Both ME and AME use extended Kalman filter for conditional filtering (under M7 and

M3, respectively) since the measurement model (58) with d = 0 is nonlinear. The Jacobian
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matrix Hj; matrix for the EKF is

Oh(x®)

H =
k oxs

S —pS j—
T —zk‘kil,d—o

(64)
h11(8kjk-1,0) 0 0
h21(8kk-1,0) 0 0

where hi1(s,d) and hgi(s,d) are given by (59) and (60), respectively, and 8j;_1 is the

prediction of a conditional EKF in the IMM .

4.5 Tracking in 2D Road Coordinates using Radar and Im-
age Sensor

In this section we propose three tracking filters in 2D road coordinates using three different

schemes for fusion of radar and image-based sensor measurements.
4.5.1 Centralized Estimator (CE)

This estimator, referred to as the centralized estimator (CE), is based on the centralized
fusion scheme—the measurements from the radar and the image sensor are processed jointly
at a fusion center (Fig.16). CE implements the IMM algorithm for the compound multiple
model of motion (55)—(57) using both radar and displacement measurements, according to
measurement models (58) and (63), respectively. The IMM state vector is « = [x7/,d}] =
[Sk, 8k, 8k, d|" and the filter is based on a total of 2N models—two for longitudinal motion
(viz., CV-MAA, given by (52) and (51)), each one combined with N models for lateral
motion (viz., (53)—(54)). Since the measurement model is nonlinear, extended Kalman filter

(EKF) is used for conditional filtering. The Jacobian, based on the coupled measurement
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Figure 17: Distributed Estimator

model (58), (63) is as given below.

Oh(x)
ox

T=Tk|k—1

(65)
hn(s, d) 0 0 h14(87 d)
= h21(8, d) 0 0 h24(8, d)

0 0 0 ]. S:§k|k71
d=dy|j_1

where hij(s,d), i = 1,2, j = 1,4 are given by (59)-(62), and Z;_; is the prediction of a

conditional EKF in the IMM.
4.5.2 Distributed Estimator (DE)

This estimator, referred to as the distributed estimator (DE), processes the measurements
from the radar and the image sensor separately, in a distributed manner as illustrated in
Fig.16. DE consists of two IMM filters—IMM(s,d) and IMM(d), and estimate fusion.
Filter IMM(s,d) provides and estimate Z;,;, = [:%Z"k, cil(f',)c]’of the state vector x = [z}, dj]' =
[Sky 8k, Sk, di|’. Tt implements the IMM algorithm for the compound multiple model of mo-
tion (55)-(57) using radar measurements according to measurement models (58). The

Jacobian, based on the measurement model (58) is as given below.
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Oh(x)
ox

T=Tk|k—1

hi1(s,d) 0 0 hia(s,d)

hzl(s,d) 0 0 h24(87d) s:ék“@,l

_ 72
d_dk|k—1

where h;j(s,d), i = 1,2, j = 1,4 are given by (59)-(62), and 2, is the prediction of a
conditional EKF in the IMM(s,d).
Filter IMM(d) implements the IMM algorithm for the latitudinal motion model (53)-

(54) with the displacement measurement model (63) and provides an estimate of the dis-

5(1)

placement, dk‘ ;.- This estimator is referred to as the lane estimator (LE) in the sequel.

The estimate fusion provides a fused estimate of the displacement dk‘k by fusing dAS“)C

andd® at each time-step, according to the following formulas

k|k
Pl = Pl 4P} 67
e = Lioy e (67)
-1 35 _ p-1451 -1 3(2)
Prodie = Pibdip+ Pra diy (68)
where the variances Pja) =var (d,ﬁ;) and Pj») = var (cifj,l) are provided by IMM(d) and
klk klk

IMM(s,d), respectively, and PJM = var (dk|k>
4.5.3 Sequential Estimator (SE)

The structure of this estimator, referred to as the sequential estimator (SE), is illustrated

in Fig.18. It consists of two IMM filters: IMM(d) and IMM(s).
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Filter IMM(d) implements the IMM algorithm for the latitudinal motion model (53)—
(54) with the displacement measurement model (63) and provides an estimate of the dis-
placement ci,g‘ r at each time step k.

Filter IMM(s) provides an estimate of the longitudinal motion (mileage) state vector
Thy = [§k|ka§k\k7§k\k]1- It implements the IMM algorithm for the longitudinal CV-MAA
motion model (52), (54) with M5 = M AA, and the radar measurement model (58) with
d= dk‘k where ci;dk is provided by IMM(d). Since the measurement model (58) with d = a?kug
is nonlinear IMM(s) uses EKFs for conditional filtering. The Jacobian matrix Hj matrix

for each conditional EKF's is

Oh(z*)

H =
k oxs

S_4pS —J
x _Ik\k—l’d_dk‘k

(69)

hi1(8kjk_1,dpr) 0 0

ha1 (Sgpk—1,dg) 0 0
where hi1(s, d) and hoi(s,d) are given by (59) and (60), respectively, §5_; is the pre-

diction of a conditional EKF in the IMM(s), and cik|k_1 is the estimate of IMM(d).

SE is a further simplification of the centralized estimator with reduced computational
load. Its main idea is to improve the AME (that assumes d = 0) via the more accurate
approximation d = cikwg based on utilizing additional information—the measurements of

displacement.

4.6 Simulation and Performance Evaluation

Performance evaluation and comparison of the proposed algorithms were done by Monte-

Carlo simulation.

4.6.1 Casel
4.6.1.1 Scenario

The simulated scenario includes three road segments (Fig.19): a vertical linear segment
starting at (1000m,0m) and ending at (1000m, 1000m), a circular segment with radius of

curvature 400m and center at (1400m, 1000m), and a horizontal linear segment starting at
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Figure 19: Road Geometry

the end of the circular segment (1400m, 1400m). The number of lanes of the road is N = 3,
and the width of each lane is A = 4m.

The ground truth for the target motion is fixed for both speed changes and lane changes
as follows. The target travels along the road, starting at (1000m,0m). The profiles of the
target speed and mileage are shown in Fig.20 and Fig.21, respectively. The target maintains
a constant speed of 30m /s from the start until approaching the turn segment, then it slows
down to bm/s, takes the turn with this constant speed, and after leaving the turn it speeds
up to 30m/s which is then kept constant till the end. The target changes lanes as shown in
Fig.23. A process noise wg ~N (O, oid) with variance Ui;d = 0.3%2m? is added to the target
center displacement (See (53)) which models the deviation from the center of the lane.

The measurements are generated according to the radar and image-based sensor models

(58) and (63), respectively. The variances of the measurement errors are o2 = 4%m?

O'g = 0.005%rad?, and 03 = 0.82m?, respectively. The sampling time period is 7' = 1s.

4.6.1.2 Estimators’ Parameters

The variance of process noise of the CV model is o2 oy = 0.012m? for all estimators using
this model. The variance of process noise of the CA model is O'ECA = 0.82m? for the

mileage estimator ME. For all estimators using the MAA model « = 1/7 = 1/15, and
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Umax = 4.8m /5%, a_ pax = —4.8 m/s2.

The variances of the measurement errors used in all estimators are the same as in the
ground truth: o2 = 4%2m?, ag = 0.005%rad?, and 03 = 0.82m2.

The mileage estimators ME/AME and the sequential estimator SE use the initial prob-

ability vector p§ = [0.5,0.5)" and the transition probability matrix

0.95 0.05

2
II* = [Wfﬂi,jzl =

0.05 0.95

The lane estimator IMM(d) uses the initial probability vector ud = [0.3,0.4,0.3]" and

the transition probability matrix

0.97 0.028 0.002

= [rd13 20 = | 0015 097 0.015

0.002 0.028 0.97
The centralized estimator CE and IMM(s,d) in the distributed estimator DE use six
models, enumerated as M; for j = 1,2, ...,6, where j = 1,2, 3 stands for CV model and lane
j, respectively, and j = 4,5,6 stands for MAA model and lane (5 — 3), respectively. The
initial probability vector pg = [0.15,0.2,0.15,0.15,0.2,0.15)’, and the transition probability

matrix IT = [Wij]?,jzl is

0.95 0.016 0.004 0.025 0.004 0.001
0.01 0.95 0.01 0.0025 0.025 0.0025
0.004 0.016 0.95 0.001 0.004 0.025
0.025 0.004 0.001 0.95 0.016 0.004
0.0025 0.025 0.0025 0.01 0.95 0.01

0.001 0.004 0.025 0.004 0.016 0.95

4.6.1.3 Results

All results are based on 200 Monte Carlo runs.
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Figure 22: RMS Errors for Mileage-OnlyTracking

First, we compare the proposed estimators CE, DE and SE for mileage only tracking with
the mileage estimator ME proposed previously in [2]. Fig.22 shows the RMS errors of the
mileage state estimates £2| i of the four algorithms. Clearly, all three proposed estimators
outperform the existing ME. Apparently, for CE and SE this improvement can be explained
partially by the fact that they use more data—the additional displacement measurement.
However, DE uses the same (radar only) measurements as ME for estimating the mileage
state, and DE is still considerably better than ME. This improvement can be explained by
the fact that DE uses the MAA model for longitudinal maneuvering while ME uses the CA
model. This is the only difference between these two estimators which indicates that using
the MAA model is better for longitudinal maneuvers than the CA model.

Next, we investigate the performance of the proposed estimators.

Fig.23 shows both the ground truth of lateral motion (lane changing) and the average
estimated target location (in terms of displacement coordinate only) based on the lane esti-
mator IMM(d), as an independent part of DE and SE. Fig.24 shows the IMM probabilities.
The position estimates and lane identification capabilities of IMM(d) are very good in this
case because the process and measurement noises are quite small. As this noises increase
(shown later) this estimation/identification performance degrades considerably.

Fig.25 compares the RMS error of the three lane estimates in DE: (jg‘ll produced by
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Figure 23: Lane Estimator IMM(d): True & Estimated States
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Figure 24: Lane Estimator IMM(d): IMM Probabilities
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Figure 25: RMSE of Lane Estimation in DE

IMM(d), d)

ik produced by the radar IMM(s,d), and the fused estimate cfk‘k produced by

(67)—(68). The image-sensor based estimate cZ,(:“)g is significantly more accurate than radar
based estimate ci,gz',)c Despite the better accuracy of the image-based direct measurements
of d as compared to the radar measurements, this is also due to the fact that the radar
measurement model of IMM(s,d) is highly nonlinear and the locally linear approximation
used by the EKF appears to be rather crude. More importantly, Fig.25 illustrates that the

fused estimate cik“g is considerably better than both local estimates dY and d®. This

result was consistently confirmed in all our simulations.

Fig.26 compares the RMS errors of lane estimation of CE, DE and SE. SE appears to
be slightly worse than CE and DE which are close themselves. This can be explained by
the fact that SE actually ignores the information about d which is contained in the radar
measurements—it only uses the information about d provided by the image-sensor based
measurements. Somewhat surprisingly, the distributed estimator DE has about the same
accuracy (even better, sometimes) as the fully coupled centralized estimator DE. There is
no theoretical contradiction here because the estimation problem is highly nonlinear and
both algorithms are very approximate.

The overall position RMS errors in global Cartesian coordinates (obtained by converting

the errors in £° and d to Cartesian coordinates) are shown in Fig.27. The CE appears slightly
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Figure 26: RMSEs of Lane Estimation of CE, DE, and SE

better than DE and SE but the differences for this scenario are minor.

In order to illustrate the target motion mode identification capabilities of CE and DE,
Fig.28 and Fig.29 show the model probability of CE and DE, respectively. In both figures
the model probabilities change reasonably well when the target performs longitudinal and
lateral maneuvers (lane changing) but, overall, the model probability of CE in Fig.28 are
better than that of DE in Fig.29. The reason for this is that CE it uses measurements from
both radar and image sensor while the IMM(s,d) filter of DE uses only radar measurements.

When judging on the overall performance of CE, DE and SE it should be kept in
mind that DE requires much less computation than CE, and, furthermore, SE requires less
computation than DE. (The comparative execution times of the three algorithms will be
provided in the final version).

Next we present simulation results from another scenario.

4.6.2 Case 2

4.6.2.1 Senario and Estimators’ Parameters

In this scenario, a process noise wz ~N (O, crfvd) with variance O'i)d = 0.42m? is added to

the target center displacement which models the deviation from the center of the lane. The

variance of the measurement error in image sensor is a?l = 1.0m?2. Fig.31 shows both the
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Figure 27: Overall Position RMSEs in Cartesian Coordinates
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Figure 28: Model Probabilities of CE
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Figure 29: Model Probabilities of DE

ground truth of lateral motion (lane changing) and the average estimated target location (in
terms of displacement coordinate only) based on the lane estimator IMM(d). For estimators’
parameters, the variance of the measurement error from image sensor used in all estimators
is the same as in the ground truth: ¢% = 1.02m?. Other parameters in this senario and the

estimators are the same as that given in the above simulation.
4.6.2.2 Results

All results are based on 200 Monte-Carlo runs.

Fig.30 shows the RMS errors of the mileage state estimates oﬁzl i of the four algorithms.
With larger measurement errors from image sensor, it is obvious that all three proposed
estimators outperform the existing ME. Based on measurement only from radar, DE is still
considerably better than ME. This improvement is still obvious by using the MAA model
for longitudinal maneuvering.

Fig.31 shows both the ground truth of lateral motion (lane changing) and the average
estimated target location (in terms of displacement coordinate only). Fig.32 shows the IMM
probabilities. We can see that this estimation/identification performance of the position
estimates and lane identification capabilities of IMM(d) degrades considerably as the noises

increase.
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Figure 30: The RMS error of mileage estimate of four approaches
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Figure 31: True states and average lane estimate
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Figure 32: The model probability of lane estimator

Fig.33 compares the RMS error of the three lane estimates in DE: J,(:“)c produced by
IMM(d), ci,(f',)g produced by the radar IMM(s,d), and the fused estimate cik“c . Fig.33 illus-
trates that with larger measurement error, the fused estimate dk|k is considerably better
than both local estimates CZ,S‘,)C and cf,gz';

Fig.34 compares the RMS errors of lane estimation of CE, DE and SE. Clearly, SE
appears to be worse than CE and DE which are close themselves. The reason is that with
large observation errors from image sensor, the estimation/identification performance of
the position estimates and lane identification capabilities of IMM(d) degrades considerably
when lane changes.

The overall position RMS errors in global Cartesian coordinates (obtained by converting
the errors in #° and d to Cartesian coordinates) are shown in Fig.35. The CE still appears
slightly better than DE and SE but the differences for this scenario are minor.

Fig.36 and Fig.37 show the model probability of CE and DE, respectively to illustrate
the target motion mode identification capabilities of CE and DE. With larger measurement
errors from image sensor, in both figures the model probabilities change reasonably well

when the target performs longitudinal and lateral maneuvers (lane changing) but, overall,

the model probability of CE in Fig.36 are still better than that of DE in Fig.37.
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Figure 33: RMSE of Lane Estimation in DE
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Figure 34: The RMS error of lane estimate of three approaches
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Figure 35: The RMS error of fusion of mileage and lane estimates of three approaches

T— .
—+— Cv-L.1

—4— CV-L2 {
—=— CV-L3
CM-L1H
— — CM-L2
—e— CM-L3 H

TSN

0 "20 40 60 80 100 120
time step

Figure 36: The model probability of CE
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Figure 37: The model probability of DE

48



CHAPTER V

CONCLUSIONS

We use the HMM framework to formulate and solve the lane tracking problem. The lane
sequence estimator (LSE) is formulated in terms of the optimal estimation of the lane
sequence and the lane filter (LF) is formulated in terms of the optimal estimation of the
current lane of the target, given the observations from the start time to the current time.

From the simulation and analysis we can see that the implemented algorithms, viz., the
LSE and LF, provide reasonable performance for the lane tracking problem. After 50 time
steps the average probability of correct estimation of the LSE is around 0.92 which is much
larger than the probability of correct observation in the observation probability matrix.
The probability of being correct at the current time of the LF is also much larger than the
probability of correct observation in the observation probability matrix. To estimate the
lane sequence, the LSE is better than the LF. To identify the lane at the current time, the
LF is better than the LSE. The two algorithms can effectively identify the lane which an
on-road target is in. It has been established in the simulation that the choice of lane TPM
affects the lane tracking performance heavily. Identifying the lane transition probability
matrix is an important problem for further work.

A novel 2D road coordinate representation of an on-road moving target has been pro-
posed. It is very convenient in modeling longitudinal and lateral vehicle motions for target
tracking. A natural description of target maneuvering behavior in 2D road coordinates
has been given using multiple models. Three estimators have been developed by using dif-
ferent schemes for fusion of radar and image-based measurement data: centralized (CE),
distributed (DE), and sequential (SE).

The simulation results have demonstrated that

e All proposed algorithms (CE, DE and SE) significantly outperform the known ME for

mileage tracking.
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The proposed mean adaptive acceleration (MAA) model is better than the nearly con-

stant acceleration (CA) model for describing longitudinal maneuver modes of motion.

The estimate-based fusion in DE for displacement estimation is effective—it improves

both local estimates consistently.

The estimation/identification performance of the position estimates and lane identi-
fication capabilities of IMM(d) degrades considerably as the measurement noises of

image sensor increase.

Overall, CE is slightly more accurate than the simplified versions DE and CE, however,

they have considerably reduced computational load.
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