The Interacting Multiple Models Algorithm with State-Dependent Value Assignment

Rastin Rastgoufard
University of New Orleans, rrastgou@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td
Part of the Artificial Intelligence and Robotics Commons, Signal Processing Commons, and the Statistical Models Commons

Recommended Citation
https://scholarworks.uno.edu/td/1477

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UNO. It has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. The author is solely responsible for ensuring compliance with copyright. For more information, please contact scholarworks@uno.edu.
A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the
requirements for the degree of

Master of Science
in
Engineering
Electrical

by
Rastin Rastgoufard

B.Sc. Tulane University, 2008

May, 2012
Acknowledgements

I had a lot of fun in the three and a half years of my master’s degree. For that, I would like to thank all of the professors of UNO’s Department of Electrical Engineering and the students who were with me.

I would like to make special mention of the three professors in the Information Systems Lab: Dr. Jilkov, Dr. Chen, and my advisor, Dr. Li. Your continuous instruction and encouragement shaped my coursework, provided the path to my master’s thesis, and radically expanded the boundaries of my mind.

Also, I would like to thank my parents. Mom, Dad, you two take really good care of me.
Contents

List of Figures .. iv
Abstract ... v

Introduction
- Toy Problem ... 1
- Goals ... 2
- Brief Overview of Existing Literature 5
- Brief Overview of Proposed Methods 7

Kalman Filter
- Algorithm ... 8
- Small Visual Example 9

Interacting Multiple Models
- Step 1, Mix ... 11
- Step 2, Run Individual Filters 12
- Step 3, Remix ... 14
- Prediction ... 14
- Small Visual Example 15

State-Dependent Value Assignment
- A State’s Value 18
- SD Model Probabilities 19
- SD Transition Probabilities 20
- Small Visual Example 21

Experiment and Results
- Experimental Design 23
- Results .. 26

Discussion
- State-Dependent Performance 29
- State-Dependent Comparison 30
- The Value Function 32

Conclusion .. 34

References ... 36

Appendices
- Simulation Results 37
- Code Listing ... 49

Vita .. 83
List of Figures

<table>
<thead>
<tr>
<th>#</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle passes beside two obstacles.</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Vehicle enters an obstacle.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>One entire player-controlled trajectory.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Another entire trajectory.</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>KF, One Step</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>KF, One Step, Two Models</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>A first step using the IMM algorithm.</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>A second step using the IMM algorithm.</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>IMM’s prediction for the third step.</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>The value function $s(x)$, two different β.</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>SD TPM Example</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Mode sequences over two time steps.</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>Performance Summaries</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>Truth and Predictions.</td>
<td>31</td>
</tr>
<tr>
<td>15</td>
<td>SD cases with good behavior.</td>
<td>31</td>
</tr>
<tr>
<td>16</td>
<td>SD MPs sometimes better than SD TPM.</td>
<td>33</td>
</tr>
<tr>
<td>17</td>
<td>Inaccurate TPM.</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>2011.10.17.11.36.22, 0.08 to 74.15</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>2011.10.17.11.36.22, 10.00 to 15.00</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>2011.10.17.11.36.22, 10.00 to 50.00</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>2011.10.17.11.36.22, 15.00 to 20.00</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>2011.10.17.11.36.22, 25.00 to 30.00</td>
<td>41</td>
</tr>
<tr>
<td>23</td>
<td>2011.10.17.11.36.22, 30.00 to 35.00</td>
<td>42</td>
</tr>
<tr>
<td>24</td>
<td>2011.10.17.11.36.22, 30.00 to 60.00</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>2011.10.17.11.36.22, 35.00 to 40.00</td>
<td>44</td>
</tr>
<tr>
<td>26</td>
<td>2011.10.17.11.36.22, 45.00 to 50.00</td>
<td>45</td>
</tr>
<tr>
<td>27</td>
<td>2011.10.17.11.36.22, 50.00 to 55.00</td>
<td>46</td>
</tr>
<tr>
<td>28</td>
<td>2011.10.17.11.36.22, 55.00 to 60.00</td>
<td>47</td>
</tr>
<tr>
<td>29</td>
<td>2011.10.17.11.36.22, 65.00 to 70.00</td>
<td>48</td>
</tr>
</tbody>
</table>
Abstract

The value of a state is a measure of its worth, so that, for example, waypoints have high value and regions inside of obstacles have very small value. We propose two methods of incorporating world information as state-dependent modifications to the interacting multiple models (IMM) algorithm, and then we use a game’s player-controlled trajectories as ground truths to compare the normal IMM algorithm to versions with our proposed modifications. The two methods involve modifying the model probabilities in the update step and modifying the transition probability matrix in the mixing step based on the assigned values of different target states. The state-dependent value assignment modifications are shown experimentally to perform better than the normal IMM algorithm in both estimating the target’s current state and predicting the target’s next state.

Keywords: IMM, state-dependent, constraints, penalty function, waypoints, obstacles
Introduction

Toy Problem

We created a “game” that allows the player to generate ground truth trajectories. The user controls a vehicle, in real time, through a two-dimensional world which contains several obstacles, circular regions of varying radii. The vehicle is not supposed to enter the obstacle regions as it navigates around. Consider Figures 1 to 4 for visual reference during the following explanation.

The vehicle itself is shown in blue. The open blue circle shows the location of the vehicle, and the blue dot shows the direction that the vehicle is facing. The player controls both the direction of the vehicle, using the left and right arrow keys, and the forward speed of the vehicle, using the space-bar key. In the game, the vehicle’s rotation and forward speed are not coupled, meaning that the vehicle can rotate while stopped. The maximum turn rate is constant regardless of the vehicle’s forward speed.

The black dots indicate the boundary of an obstacle. In Figure 1, two obstacles are visible. One has a large radius and is located up and to the left of the vehicle. The other is small and is centered at (2,2). In the same figure, the small red X shows where the center of the (2,2) obstacle is located.

The playing world contains a total of four obstacles. There is one small red dot for each of the obstacles. The location of each red dot is an indication of where each corresponding obstacle’s boundary is located with respect to the vehicle. In Figure 1, there are two red dots immediately to the left of the vehicle that indicate the vehicle is close to two obstacle boundaries. There is another red dot located up and to the right of the vehicle that indicates there is a slightly distant obstacle in that direction. There is a final red dot below and to the left of the vehicle that indicates there is an obstacle very far from the vehicle in that direction.

Figures 1 to 4 were created after the player controlled the vehicle for approximately 75 seconds. The black line shows a sliding window of the vehicle’s trajectory. The green circles show snapshots of the vehicle’s trajectory taken every $T = 0.35$ seconds. Neither of these was visible to the player before the run was completed, as both would have required knowledge of the future.

The player can drive the vehicle anywhere in the toy world. The obstacles do not have hard boundaries, and the only penalty for entering an obstacle is the appearance of a heavy red X in place of an obstacle’s
red dot. Figure 2 shows the vehicle inside of an obstacle. The position of the heavy red X with respect to the vehicle shows the direction of the nearest exit point from the obstacle. If this toy world were a game that distributed points, then the player would always choose to exit toward the heavy red X in order to minimize the amount of points lost for being in an obstacle.

Goals

Three main goals form the basis for this thesis. It is important to use a real world target, to incorporate the obstacle information into a tracking algorithm, and to track (both estimate and predict) the motion of that target.

1. Real World Target

 The vehicle that is controlled by the player behaves like a “real world” target. The target has a very wide array of possible maneuvers, and the player can make decisions of how to move the target in real time. This is in contrast with an algorithmically determined target that is often used in computer simulations. This goal is important because a real world target’s behavior cannot be neatly captured in a small set of models and as such creates a realistic and challenging tracking problem.

2. Obstacle Information

 The presence of the obstacles changes where the vehicle is allowed to travel. Figure 3 and Figure 4 show entire player-controlled trajectories. It is quite obvious that specific areas of the world were avoided due to the obstacles. Knowledge of the obstacles should improve the performance of tracking algorithms. In this thesis, we incorporate the obstacle information into the interacting multiple models (IMM) algorithm.

3. Estimation and Prediction

 There are at least two different ways to evaluate the performance of a tracking algorithm. One involves estimating the state of a target using all currently available data points. Another involves predicting the state of the target at a future time using all currently available data points. Varying the measurement noise level has the effect of focusing on either one or the other. When there is very little measurement noise,
the estimation error is negligible and the focus shifts toward prediction. When there is larger measurement noise, the estimation performance becomes the focal point.

The goal is not necessarily to find the best estimator or predictor for the toy problem; the goal is to show that even with very crude assumptions, embedding the world information into the tracking algorithms yields better results than not incorporating it.

The first point, using a real world target, is a fundamental underlying assumption. The second point, incorporating the obstacle information, is addressed mathematically in the section titled **State-Dependent Value Assignment**. The third point, evaluating the performances of the proposals, is covered in the **Experiment and Results** and **Discussion** sections.
Figure 1: Vehicle passes beside two obstacles.

Figure 2: Vehicle enters an obstacle.

Figure 3: One entire player-controlled trajectory.

Figure 4: Another entire trajectory.
Brief Overview of Existing Literature

The **Toy Problem** would be a typical target tracking with noisy measurements problem, but the presence of obstacles makes it relatively unique.

Target tracking problems are often modeled as “hybrid systems” [1] in which the target’s state is continuous, but the target moves according to only one of a finite number of modes or models at any time. This modeling is applicable to the **Toy Problem**. A very popular algorithm to solve this hybrid estimation problem is the Interacting Multiple Models (IMM) algorithm which runs several Kalman filters [2] in parallel and merges their results depending on measurements. The IMM algorithm is popular because it is very cost-efficient [3–5], meaning it performs relatively well and is computationally inexpensive to calculate.

An application of the IMM algorithm is demonstrated in [6] in which a vehicle is driving along a highway. Two conditions are of interest – maintaining a lane or changing lanes. There is a motion model and associated “directional” process noise that corresponds to maintaining a lane, and there is a different motion model with a different type of process noise associated with the lane change maneuver. [6] shows that the IMM algorithm tracks the vehicle well under both conditions and quickly determines when lane changes happen. A complex behavior is captured neatly by two models.

The **Toy Problem** is a simple problem that is well suited to the normal IMM algorithm – with some assumptions on the behavior of the target, the system can be modeled using only five modes of operation. (Refer to **Experiment and Results**.) However, problems often require many more modes of operation to characterize a target’s range of motion. The IMM algorithm’s performance suffers when there are too many motion models that overlap and compete [7]. As a result, researchers developed variable-structure multiple model (VSMM) algorithms that perform better than the normal, fixed-structure IMM algorithm [7–11].

While the **Toy Problem** is not a very complicated problem that requires variable-structure algorithms, those algorithms are of interest in this problem because of the fact that the set of models can be adapted based on the target’s current state. For example, [7] describes a problem in which the acceleration of the target cannot change rapidly. An overarching set of models is designed to cover all of the possible target accelerations, but at any time the VSMM algorithm uses the set of accelerations that are “near” the target’s
current acceleration. As the target’s acceleration changes, the VSMM algorithm chooses different sets of models accordingly.

Some researchers have implemented VSMM algorithms with model selection or switching rules that are based not only on the target’s internal state but also on the properties of the world around the target. For example, [12] and [13] limit the available modes of operation based on the presence of roads and whether or not the target is on a road. [12] describes a general ground target tracking problem where a target might be navigating in an unconstrained environment (off-road), it might be near a road, or it might be constrained to be on a piece-wise linear road. Furthermore, roads might have junctions, in which case the target can choose from different branches. Each condition, including motion at a junction, is captured by a different set of models, and there is a very intricate method of selecting which models are applicable. [13] expands the on-road condition and describes how to incorporate the actual curvature of road segments as constraints.

In existing VSMM methods, the state-dependent information is captured by the strategic selection and omission of models. The work in this thesis, in [14, 15], and in [16] consider how to embed state-dependent information even deeper into the IMM algorithm. These methods could complement the VSMM methods and would operate after the set of models is selected. All of these methods modify the modes’ transition probability matrix and the modes’ likelihoods based on the target’s state.

[16] considers a problem in which a target can choose to stop randomly as an evasive maneuver. The authors make the argument that real world targets cannot instantaneously cease their motion, and thus the probability that the target will stop is small when its speed is large. The transition probability matrix governing the switching of motion models depends on the speed of the target.

Guard conditions [14, 15] use a transition probability matrix that depends on the proximity to a waypoint. An example is given in [14] where an airplane should turn toward a new destination when it arrives at a waypoint. There are two guard conditions to model this desired behavior. The first is to switch from constant velocity to coordinated turn when the plane’s position is near the waypoint. The second is to switch away from coordinated turn back to constant velocity when the plane’s heading is near a specific angle.
The work in this thesis is most similar to [14]. A very large difference is that their work is derived theoretically when the guard conditions are of specific forms. The method described here does not have theoretical support but is instead slightly more flexible.

Brief Overview of Proposed Methods

There are two locations in the IMM algorithm that allow the world information to be incorporated. The first is in the model probabilities (MPs) update/remix step that uses the likelihoods of each mode. The second is in the transition probability matrix (TPM) that tells the probability of transitioning from one mode of operation to another mode of operation.

Just before the end of one cycle of the IMM algorithm there is one estimated state for each of the models in the algorithm. Each of these states is assigned a value, and the values then modify the weights of their respective models during the final update/remix step of the algorithm. This process is described in **SD Model Probabilities**. Those same estimated states will interact in the mixing step to obtain the next cycle’s initialization. Before that happens, each estimated state is propagated by all of the modes of motion to determine “what-if” predicted states. The number of these predicted states is equal to the number of elements in the transition probability matrix. The assigned values of these predicted states characterize the values of the transitions, and thus they are used to modify the transition probability matrix, as described in **SD Transition Probabilities**.

The value assignment is problem specific and up to the designer in the same way as the choice of models. The section titled **A State’s Value** shows how value assignment is defined in this thesis. Value assignment has an effect that is similar to penalty functions in constrained optimization problems – that is, it can convert a tracking problem with constraints into an unconstrained one.

The layout of this thesis follows the order of building blocks. First, the Kalman filter is described, followed by the IMM algorithm which is based on the Kalman filter. Then comes state-dependent value assignment, the main novelty of this thesis, which modifies parts of the IMM algorithm. Finally the experiment that implements the original problem and tests the performance of the value system is followed by an analysis and discussion of the results.
Kalman Filter

Algorithm

Consider the following dynamics and measurement model. \(x_k \) is the state of the system at time \(k \). \(A_k \) is the dynamics matrix that advances the state from time \(k \) to time \(k + 1 \). \(w_k \sim \mathcal{N}(0, Q_k) \) is the process noise. \(z_k \) is the measurement at time \(k \). \(H_k \) is the sensing matrix. \(v_k \sim \mathcal{N}(0, R_k) \) is the sensor noise.

\[
x_{k+1} = A_k x_k + w_k \tag{1}
\]
\[
z_{k+1} = H_{k+1} x_{k+1} + v_{k+1} \tag{2}
\]

Beginning with a state estimate at time \(k \), the Kalman filter first predicts the state at time \(k + 1 \) then updates the prediction when the measurement at time \(k + 1 \) arrives. The result is an estimate of the state at time \(k + 1 \).

Given : \(\hat{x}_k|k, \hat{P}_k|k, A_k, Q_k \)

\[
\hat{x}_{k+1|k} = A_k \hat{x}_k|k \tag{3}
\]
\[
\hat{P}_{k+1|k} = A_k \hat{P}_k|k A_k' + Q_k \tag{4}
\]

The variables in Equations (3) and (4) with time index \(k + 1|k \) are predictions. When the \(k + 1 \)th measurement arrives, the Kalman filter first computes the filter gain \(K_{k+1} \).

Given : \(\hat{x}_{k+1|k}, \hat{P}_{k+1|k}, z_{k+1}, H_{k+1}, R_{k+1} \)

\[
y_{k+1} = z_{k+1} - H_{k+1} \hat{x}_{k+1|k} \tag{5}
\]
\[
S_{k+1} = H_{k+1} \hat{P}_{k+1|k} H_{k+1}' + R_{k+1} \tag{6}
\]
\[
K_{k+1} = \hat{P}_{k+1|k} H_{k+1}' S_{k+1}^{-1} \tag{7}
\]

After the filter gain has been computed, the Kalman filter updates the state and uncertainty estimates.

\[
\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1} y_{k+1} \tag{8}
\]
\[
\hat{P}_{k+1|k+1} = \hat{P}_{k+1|k} - K_{k+1} S_{k+1} K_{k+1}' \tag{9}
\]

The final result of the Kalman filter is the state estimate \(\hat{x}_{k+1|k+1} \) along with an estimate of its uncertainty \(\hat{P}_{k+1|k+1} \).
Small Visual Example

Figure 5 shows one step of the Kalman filter. Figure 6 shows one step of the Kalman filter for two different dynamics models.

The state variable contains two quantities: a linear displacement x and a linear velocity \dot{x}. The measurement z contains only displacement information; it does not directly measure the velocity. The velocity part of the state is not shown in the two figures so that both the state and the measurement can be displayed in the same space.

Figure 5 shows a black line that has its peak centered at \hat{x}_0. The width of the curve is a measure of the uncertainty of the initialization, \hat{P}_0. The dynamics model A_0 helps to predict the state, $\hat{x}_{1|0}$, and uncertainty, $\hat{P}_{1|0}$, at the next time step. This pair is depicted by the green curve.

A new measurement, z_1, arrives at time $k = 1$. The measurement has a noise level, and thus the value and uncertainty of the measurement are shown as a (red) curve instead of a single point. The actual value of the measurement is the center of the curve. Note that there is a disparity between the green curve, the predicted state, and the red curve, the current measurement. The Kalman filter’s role is to weigh and appropriately combine the two.

The uncertainties of the predicted state and the measurement are weighed against each other in order to obtain the filter’s gain. The gain is a measure of how much “correction” the predicted state requires now that the newest measurement has arrived. The updated state, $\hat{x}_{1|1}$, has been “corrected” by the filter and is shown as the orange curve. Just like the other variables, this state has its value at the center of the curve, and the width of the curve is a measure of its uncertainty.

Part of Figure 6 contains the same content as Figure 5. The other part is a repeat of the previous example, except the dynamics matrix A_0 is different. For the same measurement, there are two different updated state estimates. The **Interacting Multiple Models** algorithm is a way to combine together the two estimates.
Figure 5: One step of the Kalman filtering algorithm. The initial estimate is \hat{x}_0, and its uncertainty \hat{P}_0 is depicted by the Gaussian curve centered at \hat{x}_0 (shown in black). The green curve is $\hat{x}_{1|0}$, the filter’s prediction of the next state. The red curve is the measurement z_1. The orange curve is the updated estimate $\hat{x}_{1|1}$.

Figure 6: One step of the Kalman filtering algorithm, but showing two different dynamics models. The colors are the same as in Figure 5. There is only one measurement z_1, but since there are two dynamics models, there are two sets of $\hat{x}_{1|0}$ and $\hat{x}_{1|1}$. Both models are initialized at the same point \hat{x}_0.
Interacting Multiple Models

The Interacting Multiple Models (IMM) algorithm runs several Kalman filters in parallel. The individual filters are initialized using a mixture of results from the previous step’s filters. The output of the IMM algorithm, the overall state estimate, is also a mixture of the individual filters’ estimates.

The IMM algorithm requires three items. The first is a set of Kalman filters, one for each of \(M \) models or modes of operation. The second is a probability vector, \(\mu_k \), that contains the set of probabilities that the \(i \)th model is in effect at the current time step, \(k \). The third is a transition probability matrix (TPM) that tells how probable it is to jump from model \(i \) at time \(k \) to model \(j \) at time \(k + 1 \).

The IMM algorithm itself consists of three main steps.

1. Mix the model probabilities \(\mu_{i,k} \) based on the TPM, and initialize several \(\hat{x}_{j,k+1}^0, \hat{P}_{j,k+1}^0 \) based on the mixed probabilities.

2. Run \(M \) separate Kalman filters starting on each \(\hat{x}_{j,k+1}^0, \hat{P}_{j,k+1}^0 \) to obtain \(\hat{x}_{j,k+1}, \hat{P}_{j,k+1} \).

3. Mix the estimates \(\hat{x}_{j,k+1}, \hat{P}_{j,k+1} \) based on the model probabilities and the likelihoods of obtaining the innovations \(y_{j,k+1} \).

Step 1, Mix

For this step, the IMM algorithm requires three sets of components. It requires a vector of model probabilities at the current time \(k \). In addition, it requires a transition probability matrix for the current time. Finally, it requires the \(M \) individual filters’ estimates at time \(k \). All of these are required in order to begin the IMM algorithm for time \(k + 1 \). Note that this mixing step occurs before \(z_{k+1} \) has arrived.

Let the column vector \(\mu_k \) denote the probabilities of the \(M \) models such that the \(i \)th entry is the probability that model \(i \) is in effect at time \(k \). Then, let \(T_k \) be the TPM that tells the probabilities of transitioning from model \(i \) to model \(j \) at time \(k \). The elements of the TPM are \(T_{j,i,k} = P(m_{j,k+1}|m_{i,k}) \). Note that each column of \(T_k \) must sum to one, and that

\[
\mu_{k+1}^p = T_k \mu_k
\]

(10)
where μ_{k+1}^p is the vector of predicted mode probabilities at time $k+1$ given only T_k and μ_k.

The mixing step begins by calculating the probabilities

$$
\mu_{ij,k} = T_{ji,k} \mu_{i,k} / \mu_{j,k+1}^p
$$

Each $\mu_{ij,k}$ is the probability that mode i was in operation at time k given that mode j is in operation at time $k+1$. Note that z_{k+1} has not yet arrived, so μ_{k+1}^p is a prediction.

The next part of this mixing step is to create M initializations for the individual Kalman filters. From the previous iteration, the ith Kalman filter had a state estimate $\hat{x}_{i,k|k}$ and uncertainty estimate $\hat{P}_{i,k|k}$. These estimates are mixed together to form new $\hat{x}_{j,k+1}^0$ and $\hat{P}_{j,k+1}^0$.

$$
\hat{x}_{j,k+1}^0 = \sum_{i=1}^M \hat{x}_{i,k|k} \mu_{ij,k}
$$

$$
\hat{P}_{j,k+1}^0 = \sum_{i=1}^M \hat{P}_{i,k|k} \mu_{ij,k} + X_{j,k}
$$

The term after the second summation is $X_{j,k}$, the so called “spread of the means” [5]. Define $d_{ij,k}$ and use it to compute $X_{j,k}$.

$$
d_{ij,k} = \hat{x}_{i,k+1}^0 - \hat{x}_{j,k+1}^0
$$

$$
X_{j,k} = \sum_{i=1}^M d_{ij,k} d_{ij,k}^T \mu_{ij,k}
$$

The final results of this mixing step are the filter initializations $\hat{x}_{j,k+1}^0$, $\hat{P}_{j,k+1}^0$ and the predicted model probabilities μ_{k+1}^p. The sets of $\mu_{ij,k}$ and $X_{j,k}$ are not used outside of this first mixing step.

Step 2, Run Individual Filters

The first step of the IMM algorithm resulted in $\hat{x}_{j,k+1}^0$ and $\hat{P}_{j,k+1}^0$. This step combines those quantities with z_{k+1} to obtain $\hat{x}_{j,k+1}$ and $\hat{P}_{j,k+1}$. This step also produces $\lambda_{j,k+1}$, the likelihood of the measurement z_{k+1} given the jth model is in effect. These likelihoods will be combined with μ_{k+1}^p in the next step of the IMM algorithm to find updated model probabilities μ_{k+1}.

Each of the M models has its own dynamics and measurement equations similar to Equations (1) and (2). The dynamics, sensing, process noise, and measurement noise matrices have model dependencies in addition
to time dependencies. However, the same measurement z_{k+1} is used by all M models. Equations (14) and (15) show the dynamics and measurement equations from the point of view of the jth model.

\begin{align*}
x_{j,k+1} &= A_{j,k}x_{j,k} + w_k \quad (14) \\
z_{k+1} &= H_{j,k+1}x_{j,k+1} + v_{k+1} \quad (15)
\end{align*}

The process noise is $w_k \sim \mathcal{N}(0, Q_{j,k})$. The measurement noise is $v_{k+1} \sim \mathcal{N}(0, R_{j,k+1})$.

This second step of the IMM algorithm is to apply the M Kalman filters. Each filter uses the same measurement, but each filter begins at a unique $\hat{x}_{0,j,k} + 1$ and $\hat{P}_{0,j,k} + 1$. The Kalman filter algorithm is detailed in Equations (3) to (9). Equations (3) and (4) are replaced by the following equations.

\begin{align*}
\hat{x}_{j,k+1|k} &= A_{j,k}\hat{x}_{j,k+1|k} \quad (16) \\
\hat{P}_{j,k+1|k} &= A_{j,k}\hat{P}_{j,k+1|k}^T + Q_{j,k} \quad (17)
\end{align*}

The remainder continues as normal with the modification that every variable (except for z_{k+1}) has a model j dependence. That is, the algorithm uses or calculates the following values.

\begin{align*}
\hat{x}_{j,k+1|k}, \hat{P}_{j,k+1|k} \\
z_{k+1}, H_{j,k+1}, R_{j,k+1} \\
y_{j,k+1}, S_{j,k+1} \\
K_{j,k+1} \\
\hat{x}_{j,k+1|k+1} \\
\hat{P}_{j,k+1|k+1}
\end{align*}

As soon as $y_{j,k+1}$ and $S_{j,k+1}$ are obtained, the IMM algorithm calculates the likelihood of $y_{j,k+1}$ using the covariance matrix $S_{j,k+1}$. The likelihood is called $\lambda_{j,k+1}$.

\begin{align*}
\lambda_{j,k+1} &= \mathcal{N}(y_{j,k+1} | 0, S_{j,k+1}) \\
&= \frac{1}{\sqrt{\det 2\pi S_{j,k+1}}} \exp \left(-\frac{1}{2} y_{j,k+1}' S_{j,k+1}^{-1} y_{j,k+1} \right) \quad (18)
\end{align*}

The combination of the updated state and uncertainty estimates, $\hat{x}_{j,k+1|k+1}$ and $\hat{P}_{j,k+1|k+1}$, with the state likelihoods, $\lambda_{j,k+1}$, is the end result of this step.
Step 3, Remix

The third and final step of the IMM algorithm combines the predicted mode probabilities μ_{k+1}^p, the measurement likelihoods $\lambda_{j,k+1}$, and the individual state estimates $\hat{x}_{j,k+1|k+1}$ and $\hat{P}_{j,k+1|k+1}$.

The updated mode probabilities are μ_{k+1} and take into account all of the models’ likelihoods. The jth element of μ_{k+1} is $\mu_{j,k+1}$.

$$\mu_{j,k+1} = \frac{\mu_{j,k+1}^p \lambda_{j,k+1}}{\sum_{i=1}^{M} \mu_{i,k+1}^p \lambda_{i,k+1}}$$ \hspace{1cm} \text{(19)}$$

The denominator of Equation (19) is a normalizing factor and is the same for all j.

The overall state estimate given by the IMM algorithm is a weighted combination of the individual filters’ estimates. The final state and uncertainty estimates $\hat{x}_{k+1|k+1}$ and $\hat{P}_{k+1|k+1}$ do not have model dependencies.

$$\hat{x}_{k+1|k+1} = \sum_{j=1}^{M} \mu_{j,k+1} \hat{x}_{j,k+1|k+1}$$ \hspace{1cm} \text{(20)}$$

$$\hat{P}_{k+1|k+1} = \sum_{j=1}^{M} \mu_{j,k+1} \hat{P}_{j,k+1|k+1} + X_{k+1}$$ \hspace{1cm} \text{(21)}$$

The term after the second summation is another “spread of the means.” As before in Equation (13), define $d_{j,k+1}$ and use it to calculate X_{k+1}.

$$d_{j,k+1} = \hat{x}_{k+1|k+1} - \hat{x}_{j,k+1|k+1}$$

$$X_{k+1} = \sum_{j=1}^{M} d_{j,k+1} d'_{j,k+1} \mu_{j,k+1}$$

Prediction

The IMM algorithm can be used to obtain state and uncertainty predictions $\hat{x}_{k+1|k}$ and $\hat{P}_{k+1|k}$. The previously-described second and third steps of the IMM algorithm are modified slightly in order to obtain those predictions.

The first step of the algorithm, mixing, obtains μ_{k+1}^p along with $\hat{x}_{0,j,k+1}$ and $\hat{P}_{0,j,k+1}$. The second step begins as normal so that Equations (16) and (17) give individual filter predictions $\hat{x}_{j,k+1|k}$ and $\hat{P}_{j,k+1|k}$. The remainder of the second step is omitted as there is no new measurement.
The main difference in the third step is that all $\lambda_{j,k+1} = 1$ are equal. Therefore, $\mu_{j,k+1} = \mu^P_{j,k+1}$ in Equations (19) to (21). The variable $\hat{x}_{j,k+1|k+1}$ is replaced by $\hat{x}_{j,k+1|k}$ and $\hat{P}_{j,k+1|k+1}$ is replaced by $\hat{P}_{j,k+1|k}$ inside Equations (20) and (21). Instead of obtaining $\hat{x}_{k+1|k+1}$ and $\hat{P}_{k+1|k+1}$, the result is $\hat{x}_{k+1|k}$ and $\hat{P}_{k+1|k}$.

The result of the three steps, after all modifications have been made, is $\hat{x}_{k+1|k}$ and $\hat{P}_{k+1|k}$. These two are the IMM algorithm’s one-step prediction.

Small Visual Example

Consider a simple problem that uses an IMM filter with $M = 5$ models. Suppose that initially all models’ probabilities are equal.

$$\mu_{j,0} = 1/M$$

Suppose also that the transition probability matrix is constant over time and tends to favor remaining in the current mode. That is, the diagonal elements of the TPM are much larger than the off-diagonal elements.

The initial state is \hat{x}_0, shown in Equation (22). \hat{P}_0 is very small to indicate that the initialization is accurate. Figure 7 shows the beginning of this example.

$$\hat{x}_0 = [10 \text{ (m)}, 10 \text{ (m)}, 0 \text{ (m/s)}, 10 \text{ (m/s)}]' \quad (22)$$

The five green circles of Figure 7 show the endpoints of the five models’ trajectories. These endpoints are the position parts of the individual models’ predicted state estimates $\hat{x}_{j,1|0}$.

The red circle is the measurement z_1. The blue crosses represent the individual filters’ updated state estimates $\hat{x}_{j,1|1}$. Note that each of the crosses is on a line that connects a green circle $\hat{x}_{j,1|0}$ to the red circle z_1.

The blue circle is the IMM algorithm’s final state estimate $\hat{x}_{1|1}$. It is a linear combination of the individual filters’ estimates. Because all of the model probabilities are equal initially, the only factor that controls the mixing weights is the likelihood of each model given the measurement. The measurement fits the two left-turn models much better than the straight or right-turn models. Between the two left-turn models, the measurement is more likely to have come from the shallower turn. Thus, the blue circle is closest to the individual state estimate of the shallow-left-turn model.
Figure 8 shows the continuation of the example. Another measurement, z_2, is shown as a red circle. It is connected to the measurement z_1 using a thin red line. There are five blue crosses (two of them are almost stacked) that correspond to the five individual filters’ updated state estimates $\hat{x}_{j,2|2}$. The blue circle near the new measurement is the IMM algorithm’s updated state estimate $\hat{x}_{2|2}$. This new state estimate is connected to the previous step’s estimate using a thin blue line.

Figure 9 shows a one-step prediction using the IMM algorithm. The example continues from before, and now there is no new measurement z_3. The blue crosses, which now represent the individual models’ predicted states $\hat{x}_{j,3|2}$, fan out and are not reined in by a measurement. The blue square shows the IMM algorithm’s predicted state $\hat{x}_{3|2}$. It is connected to the previous state estimate using a dashed blue line.

Note that the predicted state is very close to the shallow-left-turn model’s estimate. This is because of the TPM which favors the continuation of the motion. In going from time $k = 1$ to $k = 2$, the IMM algorithm estimated that the target performed a shallow-left-turn, and thus the algorithm predicts that the same turn will continue when transitioning from time $k = 2$ to $k = 3$.

16 of 83
Figure 7: A first step using the IMM algorithm.

Figure 8: A second step using the IMM algorithm.

Figure 9: IMM’s prediction for the third step.
State-Dependent Value Assignment

To every possible state that the target can take needs to be assigned a penalty or benefit value. In our Toy Problem, for example, we could define a simple mapping such that every location inside of an obstacle is assigned a zero and every other location is assigned a one. The state-to-value mapping will be used to modify Equation (19) in SD Model Probabilities and Equations (10) and (11) in SD Transition Probabilities.

A State’s Value

The state-to-value mapping described in this section is only one of many possible mappings for our very specific toy problem. Every problem will have many mappings, and the design of the state-to-value mapping is something that must be carefully considered.

In our toy problem, there are two factors that give hints towards the design of a state-to-value mapping. The first is that the obstacles are circles with known radii. The second is that in the toy world, a player is “allowed” to drive the vehicle inside an obstacle, but such a maneuver is discouraged. (See Figure 2.) These two factors can be handled by a sigmoid function, as shown in Equation (23).

Assume there are N circular obstacles, each with radius r_i and with center (x_i, y_i), where $i \in [1..N]$. Then, consider only the position part, (x, y), of a state x. The distance between the state x and the ith obstacle is $d_i(x)$.

$$d_i(x) = \sqrt{(x - x_i)^2 + (y - y_i)^2}$$

If $d_i(x) > r_i$, then the state x is outside of the ith obstacle.

Define the function $s(x, i)$ as follows.

$$s(x, i) = \frac{1}{1 + \exp\left(-\beta(d_i(x) - r_i)\right)}$$

The function $s(x, i)$ has a sigmoidal shape. A state that is outside of the ith obstacle will have $d_i > r_i$ and $s(x, i)$ will be approximately one. A state that is inside the ith obstacle will have $d_i < r_i$ and $s(x, i)$ will be approximately zero. The parameter β controls the steepness of the transition between the outside region and the inside region. One minor but nice property of this sigmoidal shape is that the gradient always points
away from the center of an obstacle. Figure 10 shows the values of all states \((x, y)\) with respect to an obstacle centered at \((x_i, y_i) = (0, 0)\) with radius \(r_i = 2\).

The function \(s(x, i)\) is the value of the state \(x\) with respect to the single obstacle \(i\). In order to find the overall value of the state \(x\) with respect to the world, define \(s(x)\) as the minimum of all \(N\) of the functions \(s(x, i)\).

\[
s(x) = \min_i s(x, i)
\]

SD Model Probabilities

The function \(s(x)\) gives the value of every state \(x\). This information can be incorporated into the model probabilities’ update step, Equation (19), with the assumption that an intelligent target will want to maneuver toward high-valued states.

The IMM algorithm has \(M\) modes, each of which runs a separate Kalman filter. Suppose the \(j\)th mode’s state estimate at time \(k + 1\) is \(\hat{x}_{j,k+1}\). The IMM algorithm would calculate the mode probabilities and then mix together the \(M\) estimates weighted by those probabilities in order to obtain an overall state estimate. The procedure does not change when the states’ value information is incorporated. However, the mode probabilities are updated as follows.

\[
\mu_{j,k+1}^* = \frac{\mu_{j,k+1}^p \lambda_{j,k+1} s_{j,k+1}}{\sum_{i=1}^{M} \mu_{i,k+1}^p \lambda_{i,k+1} s_{i,k+1}}
\]

For notational convenience, let \(s_{j,k+1} = s(\hat{x}_{j,k+1})\).

Figure 10: The function \(s(x, i)\), shown in Equation (23), for an obstacle with \(r = 2\) and two values of \(\beta\).
SD Transition Probabilities

The function $s(x)$ gives a value to every state x. The states’ value information can be embedded into the transition probability matrix under the assumption that an intelligent target will want to maneuver toward high-valued states.

The first step of each iteration of the IMM algorithm is a mixing step in which mode probabilities are predicted based on the system’s transition probability matrix. At the end of the previous step, the IMM algorithm had M state estimates $\hat{x}_{i,k|k}$ that were updated by using the measurement z_k. To incorporate the world information, the IMM algorithm will use the transition probability matrix T_k^* to predict the model probabilities at time $k + 1$, where T_k^* is a modification of the original T_k shown in Equation (10).

The mixing step in the IMM algorithm mixes together mode estimates. It considers the possibility that mode i was in effect previously when mode j is in effect currently. Embedding the states’ value information into the transition probability matrix relies on those “what-if” state estimates. Define the state $\hat{x}_{j,k+1|i,k}$ as follows.

$$\hat{x}_{j,k+1|i,k} = A_{j,k} \hat{x}_{i,k|k} \quad (26)$$

The state $\hat{x}_{j,k+1|i,k}$ is a prediction of the state of the target that would arise if mode i were in effect at time k but mode j is used to propagate the state to time $k + 1$.

There are M^2 states $\hat{x}_{j,k+1|i,k}$, one for each possible transition. The value of each state is $s_{ji,k}$.

$$s_{ji,k} = s(\hat{x}_{j,k+1|i,k}) \quad (27)$$

These states’ values are merged together with the original transition probability matrix T_k to obtain T_k^*. T_k is the matrix of elements $[T_{ji,k}]$. Suppose that $[s_{ji,k}]$ is a matrix that contains all of the values of $s_{ji,k}$.

$$T_k^* = \text{col_norm}\left([s_{ji,k}] \cdot^* [T_{ji,k}]\right) \quad (28)$$

The “dot-star” operation means element by element multiplication and in this case results in a matrix. Each of the transition probability matrix’s columns must sum to one, thus the col_norm function is applied to the resulting matrix.

The matrix T_k^* is obtained before Equations (10) and (11). Those two equations are modified to use T_k^* in place of T_k. The remainder of the IMM algorithm is unchanged.
Small Visual Example

Figure 11 is a small visual example that shows a change in the estimated state due to the presence of an obstacle. Figure 11a shows the initial location and orientation of the target, specified by the **blue circle** and **blue dot**, as well as the first two measurements that will arrive, shown as **red circles**. There is no ground truth for this case, as the purpose of this example is not to track the target. Actual tracking will be examined in more detail in **Experiment and Results**.

Figure 11b shows five individual modes’ estimates after the first measurement has arrived. The **blue squares** correspond to the normal IMM algorithm’s estimates while the **green X’s** correspond to SD TPM, the IMM algorithm with world information incorporated into the transition probability matrix. The normal TPM is fixed and has large diagonal elements, while the SD TPM modifies the normal TPM at every time step. The initial location of the target and the first measurement are not close to any obstacles, and thus the normal and SD TPM modes’ estimates match exactly. Figure 11c shows that the overall normal and SD TPM state estimates also coincide. The normal estimate is shown as a **heavy blue square**, and the SD TPM estimate is shown as a **heavy green X**.

Figure 11d takes place during the second time step. The blue squares and green X’s have the same meaning as before, except now they are calculated using the second measurement. Notice that the normal estimates and the SD TPM estimates are different now due to the proximity of an obstacle. Figure 11e shows the overall normal estimate as a heavy blue square and the overall SD TPM estimate as a heavy green X. The SD TPM estimate lies just outside the obstacle.

The measurement noise is assumed to be relatively small in this example, and thus the IMM algorithm’s estimates hug the measurements. Incorporating the world information makes a difference despite the small measurement noise.
Figure 11: Refer to Small Visual Example on Page 21 for explanations.
Experiment and Results

The section titled Toy Problem describes how ground truth trajectories are created. Samples come from the position part of the ground truth every $T = 0.35$ seconds, and these samples are used as the basis of the tracking experiment. The purpose of the experiment is to compare the performance of the IMM algorithm under the normal case with no state-dependent features to the IMM algorithm with state-dependent modifications.

Experimental Design

The first step of designing the experiment is to design the IMM algorithm’s model set. This model set should capture the possible maneuvers that the target can take while simultaneously being as simple as possible. In order to simplify the design, we chose sections of ground truth in which the speed of the target is constant, thus avoiding the need to model linear accelerations. This simplification would be an acceptable assumption in a real game, because generally a skilled player would maneuver without slowing down in order to gain the maximum number of points.

We chose to track the position and the velocity of the target. The state variable is \mathbf{x}. The variables x and y represent coordinates.

$$
\mathbf{x} = [x, y, \dot{x}, \dot{y}]'
$$

The model set that we chose consists of five constant turn models with varying turn rates. Two left-turn models have $\omega_1 = 1.42 \times 2\pi \text{ rad/s}$ and $\omega_2 = 0.71 \times 2\pi \text{ rad/s}$. Two right-turn models have $\omega_4 = -\omega_2$ and $\omega_5 = -\omega_1$. A final model has $\omega_3 = 0$, which corresponds to going straight. The dynamics matrix of a constant turn model, adapted from [5], is as follows.

$$
A(\omega, T) = \\
\begin{pmatrix}
1 & 0 & \frac{\sin(\omega T)}{\omega} & \frac{\cos(\omega T) - 1}{\omega} \\
0 & 1 & \frac{1 - \cos(\omega T)}{\omega} & \frac{\sin(\omega T)}{\omega} \\
0 & 0 & \cos(\omega T) & -\sin(\omega T) \\
0 & 0 & \sin(\omega T) & \cos(\omega T)
\end{pmatrix}
$$
Figure 12 shows the possible combinations of the five models after two time steps. The green circles represent the end position, and each black line shows the trajectory that the target would have taken to get to an endpoint. Even though the mode sequences $[\omega_2, \omega_2]$ and $[\omega_1, \omega_5]$ have the same endpoint, the resulting orientations are different.

The second step of the design of the experiment is to design various filters. We implemented and tested four variations of the IMM algorithm, all of which use the same model set. The first two variations have a constant transition probability matrix with large diagonal elements. The first variation is the standard IMM algorithm with no state-dependent features. This case is called “Normal.” The second algorithm is the IMM algorithm with the world information embedded into the model probabilities, as described in the section **SD Model Probabilities.** This case is called “SD MPs.”

The third and fourth variations have a new transition probability matrix at every time step. The third algorithm is the IMM algorithm with the world information embedded into the transition probability matrix, as described in the section **SD Transition Probabilities.** This case is called “SD TPM.” The fourth variation is the IMM algorithm with world information embedded into both the model probabilities and the transition probability matrix. This case is called “SD Both.”

All three of the state-dependent variations use the value function $s(x)$ described in Equation (24). The function $s(x)$ knows the locations and sizes of the obstacles in the toy world.

![Figure 12: Possible sequences over two time steps. The initial state is $[x, y, \dot{x}, \dot{y}] = [10, 10, 0, 10]'$. Each time step is $T = 0.35$ seconds long. The green circles indicate a possible position (x, y) at each time step.](image-url)
The final step of the design of the experiment is to prepare true trajectory samples with corresponding noisy measurements. Figures 18 to 29 show the snippets of true trajectories that were chosen. Each green circle in those figures represents the truth at a particular time step. Those serve as the reference samples and are corrupted by noise of varying degree to obtain the measurements.

The measurement model used in the IMM algorithms matches the mechanism by which the measurements are created. The measurement model, shown in Equation (31), uses position-only measurements and has additive Gaussian noise v_{k+1}.

$$z_{k+1} = H_{k+1}x_{k+1} + v_{k+1}$$ \hspace{1cm} (31)

$$H_{k+1} = H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

The noise v_{k+1} has a parameter σ_z^2, as shown in Equation (32).

$$v_{k+1} \sim \mathcal{N}(0, R_{k+1})$$

$$R_{k+1} = R = \begin{pmatrix} \sigma_z^2 & 0 \\ 0 & \sigma_z^2 \end{pmatrix}$$ \hspace{1cm} (32)

The experiment runs all of the filters for each value of σ_z^2 in order to see if a varying noise level affects the filters in different ways. For example, Figure 18 has within it Figure 18a to Figure 18g, one set of results for each noise level.
Results

Four variations of the IMM algorithm try to estimate and predict the motion of the target. There are several ground truth trajectories, one for each of Figures 18 to 29.

Suppose one of the ground truth trajectories has $N + 1$ true samples, samples that are not corrupted by noise. The first sample is used as the initialization of the algorithms. (The first sample is the sample, green circle, that is “behind” the blue circle.) The remaining N samples are corrupted by additive Gaussian noise with a specific σ^2_z.

The measurements z_1 to z_N have corresponding true states x_1 to x_N. The filters use those measurements to obtain state estimates $\hat{x}_{1|1}, \hat{x}_{2|2}, ..., \hat{x}_{N|N}$. The difference between the truth and the estimate is $\tilde{x}_{k|k}$.

$$\tilde{x}_{k|k} = x_k - \hat{x}_{k|k}$$ (33)

The filters also use those measurements to obtain state predictions $\hat{x}_{1|0}, \hat{x}_{2|1}, ..., \hat{x}_{N|N-1}$. The difference between the truth and the prediction is $\tilde{x}_{k|k-1}$.

$$\tilde{x}_{k|k-1} = x_k - \hat{x}_{k|k-1}$$ (34)

The estimation error, e_e, is defined as the average distance between the true position and the estimate of the position.

$$e_e = \frac{1}{N} \sum_{k=1}^{N} \sqrt{(H\hat{x}_{k|k})'(H\hat{x}_{k|k})}$$ (35)

The prediction error, e_p, is defined as the average distance between the true position and the prediction of the position.

$$e_p = \frac{1}{N} \sum_{k=1}^{N} \sqrt{(H\hat{x}_{k|k-1})'(H\hat{x}_{k|k-1})}$$ (36)

Note that both e_e and e_p are scalars.

There is one value of e_e per trial for each of the four algorithms in the experiment, plus there is one value of e_e for the measurements themselves for each trial. Similarly, there is one value of e_p per trial for each of the four algorithms. Conversely, there is no e_p for the measurements. Figures 18a to 29g show the average results, averages of e_e and e_p called \bar{e}_e and \bar{e}_p, over 300 trials for each value of σ^2_z.
The value of \bar{e}_e that corresponds to the measurements is related to the noise level σ_z^2. Since the variable $\tilde{x}_{k|k}$ is a zero-mean Gaussian random variable with covariance matrix $R = \text{diag}(\sigma_z^2, \sigma_z^2)$, the magnitude of $\tilde{x}_{k|k}$ is a Rayleigh distributed random variable with mean $\mu = \bar{e}_e$.

$$\mu = \sqrt{\frac{\pi}{2}}\sigma_z^2$$ \hfill (37)

This relationship gives a relative scale to the estimation and prediction errors.

In Figures 18a to 29g, the measurements’ estimation error is always bolded because it is the baseline reference, and there is at most one other value in each column that has been bolded. The other bolded value corresponds to the filter that had the lowest error, on average, for a specific level of σ_z^2.
Discussion

Figures 18a to 29g show the results of the experiment described in Experiment and Results. There are twelve ground truth cases, each of which contains cases for seven different measurement noise levels. Thus, the experiment contains a total of eighty-four parameter combinations. One purpose of this section is to try to identify patterns in the results, and to that end two major questions need to be addressed.

1. Does knowledge of the environment actually make a difference in tracking performance?

2. Is there a difference between implementing the world information in the model probabilities as opposed to the transition probability matrix?

Figure 13 provides some counts that might help to answer those questions.

Figure 13: Performance Summaries. The entry in the ith row and jth column shows how many times algorithm i was better than algorithm j. Refer to State-Dependent Performance for details of how the values are obtained.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>SD TPM</th>
<th>SD MPs</th>
<th>SD Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>84</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SD TPM</td>
<td>73</td>
<td>84</td>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>SD MPs</td>
<td>52</td>
<td>7</td>
<td>84</td>
<td>5</td>
</tr>
<tr>
<td>SD Both</td>
<td>74</td>
<td>48</td>
<td>72</td>
<td>84</td>
</tr>
</tbody>
</table>

(a) Estimation

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>SD TPM</th>
<th>SD MPs</th>
<th>SD Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>84</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SD TPM</td>
<td>76</td>
<td>84</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>SD MPs</td>
<td>77</td>
<td>56</td>
<td>84</td>
<td>41</td>
</tr>
<tr>
<td>SD Both</td>
<td>76</td>
<td>67</td>
<td>36</td>
<td>84</td>
</tr>
</tbody>
</table>

(b) Prediction
State-Dependent Performance

The experiment contains four variations of the IMM algorithm. In addition to calling them “Normal,” “SD TPM,” “SD MPs,” and “SD Both,” we can refer to them as the first, second, third, or fourth algorithm, respectively. This is the order in which the algorithms were implemented as well as the order in which the results are displayed. Figure 13 counts how many times algorithm \(i \) was better than algorithm \(j \) over the eighty-four cases. Consider Figure 18a, reproduced here for convenience.

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.08827</td>
<td>1.57677</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.08811</td>
<td>1.43514</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.08826</td>
<td>1.40860</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.08811</td>
<td>1.41925</td>
</tr>
</tbody>
</table>

The Estimation column shows the values of \(\bar{e}_{i,i} \), and the Prediction column shows the values of \(\bar{e}_{p,i} \) for the case of 18a. (Add an algorithm subscript \(i \) to Equations (35) and (36).) For every pair \(i, j \in [1..4]^2 \), add one to the \(i,j \)th entry of Figure 13a if \(\bar{e}_{e,i} \) is less than \(\bar{e}_{e,j} \). Also add one to the \(i,j \)th entry if \(i \) is equal to \(j \). Note that \(\bar{e}_{e,i} \) is never less than itself. This process is performed over all eighty-four cases to obtain Figure 13a. The process is repeated again using \(\bar{e}_{p,i} \) to obtain Figure 13b.

Figure 13 shows that the three state-dependent variations of the IMM algorithm very frequently perform better, on average, than the “Normal” algorithm both for estimation and for prediction. This can be seen in two ways. In the first column of Figures 13a and 13b, the entries that correspond to the state-dependent algorithms are very high, with the exception of “SD MPs” in the Estimation case, meaning that the state-dependent variations frequently perform better than the “Normal” case. A similar conclusion comes from the first row of each of the two figures; the “Normal” case is almost never better than the state-dependent cases. In Estimation, “SD MPs” is better than “Normal” 52 times, “Normal” is better than “SD MPs” 2 times, and the remaining 30 times the two were equal (within five decimal places). Seven of the equivalent performances come from Figure 25 because there are no obstacles.

It is important to note that Figure 13 does not give an indication of how much better the state-dependent algorithms performed. It merely counts how many times the state-dependent algorithms performed better by any amount. In Figure 18a, for example, all of the estimation errors \(\bar{e}_{e,i} \) are the same up to the thousandths
place. When the measurement noise σ_z^2 is very low, there is not much room for improvement. Even in 18g, the highest σ_z^2 of Figure 18, the estimation performance of the state-dependent algorithms is not much better than that of the “Normal” algorithm.

Examining the actual numbers in Figures 18a to 29g shows that the state-dependent predictors perform better than the “Normal” predictor by a qualitatively discernible amount. Further evidence is given by Figure 14 and Figure 15 in which the state-dependent algorithms predict correctly that the target will maneuver to avoid the obstacles.

State-Dependent Comparison

According to Figure 13a and Figure 13b, there are differences between using “SD MPs,” “SD TPM,” and “SD Both.” The effects of the differences can be seen by carefully examining Figure 13, but the causes of the differences are not clear yet. The relative differences between the variations depend as much on the choice of the state-to-value mapping as they do on the methods of incorporating that information.

Figure 13a shows that “SD TPM” performs better than “SD MPs” a majority of the time in estimation. Further, it shows that “SD Both” is at least as good as, if not better than, “SD TPM” in the majority of cases. Conversely, Figure 13b shows that “SD MPs” often predicts better than “SD TPM.” It also shows that “SD MPs” is roughly equivalent in performance to “SD Both.” The combination algorithm, “SD Both,” can take both the good parts and the bad parts of the individual variations “SD TPM” and “SD MPs,” thus the challenge becomes to differentiate between “SD TPM” and “SD MPs.”

It seems that “SD TPM” is not as good as “SD MPs” for prediction, but it is better for estimation. Generally, the IMM algorithm at the $k + 1$th time step has the ability to lessen the strength of the kth measurement because of the mixing step, as shown in Equations (11) to (13). The “SD TPM” algorithm has even more of that power because of the fact that the transition probability matrix can be very heavily modified, as in Equation (28), before the mixing step takes place. I believe this causes the predictions of the “SD TPM” algorithm to be more wild than the predictions of the “SD MPs” algorithm, evidenced by Figure 16 and Figure 17. Even though the predictions of “SD TPM” are wild, they appear to be good mixing candidates once a new measurement arrives to tame them.
(a) Window of ground truth around \(k = 151 \).

(b) Four predicted states \(\hat{x}_{152|151} \).

(c) Four predicted states \(\hat{x}_{153|152} \).

Figure 14: Truth and Predictions.

Figure 15: SD cases with good behavior.
In particular cases, the aforementioned general tendencies do not occur. In the case of Figure 19, “SD TPM” is often better than “SD MPs” for both estimation and prediction. Alternatively, Figure 23 shows that the best estimator depends on the noise level. It is not clear whether these differences are inherent properties of the world information embedding methods or if they are more due to the specific choice of state-to-value mapping.

The Value Function

There are certain valid maneuvers in this specific world that the specific choice of value function deems as very improbable. Figure 17 is an example of a case in which the target continues to maneuver inside of an obstacle’s boundary. It is clear that the state-dependent algorithms behave correctly according to the choice of value function but incorrectly with respect to the actual rules governing the toy problem. This causes large estimation and prediction errors for all of the state-dependent algorithms.

The inaccuracy of the value function also might explain why the performance rankings of the algorithms vary so much in Figure 23. Determining whether the performance variations are due to the value function or to the method by which the world information is incorporated requires more research.

Regardless, a better value function would improve the tracking performance for this specific player in this specific toy problem. For example, Figure 16a shows that the “SD MPs” prediction stays close to the boundary of the obstacle while the “SD TPM” and “SD Both” predictions push away from the edge. A slightly modified value function could give more value to the area that hugs the boundaries, because this specific player (the author) has a tendency to follow the walls while playing.
Figure 16: The combination of the value function, the transition probability matrix, and the methods of embedding the world information sometimes allows SD MPs to perform better than SD TPM.

Figure 17: This case shows that the value function $s(x)$ from Equations (23) and (24) is not entirely accurate for the toy problem, because, though unlikely, the target can maneuver inside an obstacle region.
Conclusion

All three of the **Goals** have been accomplished. The target is controlled by a human player in real time in order to generate the ground truth trajectories for the simulations. The player generally avoids certain obstacle regions in the world, and this world information is incorporated into the IMM algorithm. Knowledge of the world information allows state-dependent variations of the IMM algorithm to estimate and predict the motion of the target better than the normal version.

There are three state-dependent variations of the IMM algorithm. State-dependent model probabilities, “**SD MPs**,” embeds the world information into the final remixing step of the IMM algorithm. State-dependent transition probability matrix, “**SD TPM**,” incorporates the world information into the transition probability matrix before the first mixing step of the IMM algorithm. A combination, “**SD Both**,” modifies both the model probabilities and the transition probability matrix.

Based on the set of ground truth trajectories and the simulation results, “**SD TPM**” seems to perform **better** than “**SD MPs**” for estimation but **worse** for prediction. The combination, “**SD Both**,” often performs at least as well as the other two. All three of the variations almost always perform **better** than the “**Normal**” algorithm. The estimation performance increase is not always significant, but the prediction performance is almost always qualitatively better.

The value function presented in **A State’s Value** is relatively simple and does not accurately capture the states’ values from the point of view of the specific player in this specific toy world. A better value function certainly would improve the tracking performance of the state-dependent IMM algorithms. Regardless, the simple value function is enough to improve the performances of the state-dependent algorithms when compared to the normal algorithm.

The value function must be tailored to a specific problem, but the method of incorporating the world information into the IMM algorithm is generally applicable. Specific performance details depend on both the problem and the choice of value function.
References

Appendices

Simulation Results

![Simulation Results](image)

<table>
<thead>
<tr>
<th></th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.08873</td>
<td>-</td>
</tr>
<tr>
<td>Normal</td>
<td>0.08827</td>
<td>1.57677</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.08811</td>
<td>1.43514</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.08826</td>
<td>1.40860</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.08811</td>
<td>1.41925</td>
</tr>
<tr>
<td>(a) Averages of 300 Runs, $\sigma_z^2 = 0.005$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurements	0.12572	-
Normal	0.12439	1.61050
SD TPM	0.12407	1.46384
SD MPs	0.12438	1.44233
SD Both	0.12407	1.44316
(b) Averages of 300 Runs, $\sigma_z^2 = 0.010$		

Measurements	0.19813	-
Normal	0.19462	1.69597
SD TPM	0.19352	1.53771
SD MPs	0.19451	1.52323
SD Both	0.19347	1.51042
(c) Averages of 300 Runs, $\sigma_z^2 = 0.025$		

Measurements	0.27937	-
Normal	0.27229	1.78459
SD TPM	0.27028	1.62484
SD MPs	0.27196	1.61392
SD Both	0.27012	1.59280
(d) Averages of 300 Runs, $\sigma_z^2 = 0.050$		

Measurements	0.39631	-
Normal	0.38525	1.93268
SD TPM	0.38058	1.77883
SD MPs	0.38448	1.76810
SD Both	0.38066	1.74156
(e) Averages of 300 Runs, $\sigma_z^2 = 0.100$		

Measurements	0.62607	-
Normal	0.60578	2.20458
SD TPM	0.59379	2.07286
SD MPs	0.60353	2.04680
SD Both	0.59263	2.02831
(f) Averages of 300 Runs, $\sigma_z^2 = 0.250$		

Measurements	0.88759	-
Normal	0.85571	2.51311
SD TPM	0.83711	2.39872
SD MPs	0.84918	2.34708
SD Both	0.83372	2.34748
(g) Averages of 300 Runs, $\sigma_z^2 = 0.500$		

Figure 18: c2011.10.17.11.36.22_0.08_74.15 with 7 different measurement noise variances.
Figure 19: c_2011.10.17.11.36.22_10.00_15.00 with 7 different measurement noise variances.
Figure 20: c_2011.10.17.11.36.22_10.00_50.00 with 7 different measurement noise variances.
Figure 21: c_2011.10.17.11.36.22_15.00_20.00 with 7 different measurement noise variances.
<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.27659</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.26681</td>
<td>2.05942</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.26155</td>
<td>1.70887</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.26145</td>
<td>1.70155</td>
</tr>
<tr>
<td>(d) Averages of 300 Runs, $\sigma^2_z = 0.050$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.39701</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.37047</td>
<td>1.79007</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.38000</td>
<td>1.91415</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.37001</td>
<td>1.78327</td>
</tr>
<tr>
<td>(e) Averages of 300 Runs, $\sigma^2_z = 0.100$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.61771</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.56932</td>
<td>2.01657</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.58752</td>
<td>2.11496</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.56744</td>
<td>1.98977</td>
</tr>
<tr>
<td>(f) Averages of 300 Runs, $\sigma^2_z = 0.250$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.87141</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.77543</td>
<td>2.20806</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.79386</td>
<td>2.24909</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.76850</td>
<td>2.17802</td>
</tr>
<tr>
<td>(g) Averages of 300 Runs, $\sigma^2_z = 0.500$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 22: c_2011.10.17.11.36.22_25.00_30.00 with 7 different measurement noise variances.
<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.28095</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.25983</td>
<td>1.69305</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.25995</td>
<td>1.65060</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.25983</td>
<td>1.67878</td>
</tr>
</tbody>
</table>

(d) Averages of 300 Runs, $\sigma_z^2 = 0.050$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.39790</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.36128</td>
<td>1.84582</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.36128</td>
<td>1.75973</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.36306</td>
<td>1.81455</td>
</tr>
</tbody>
</table>

(e) Averages of 300 Runs, $\sigma_z^2 = 0.100$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.63932</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.58376</td>
<td>2.09806</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.58273</td>
<td>2.06564</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.58377</td>
<td>2.13788</td>
</tr>
</tbody>
</table>

(f) Averages of 300 Runs, $\sigma_z^2 = 0.250$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.88006</td>
<td>-</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.81110</td>
<td>2.43763</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.81864</td>
<td>2.43675</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.81951</td>
<td>2.59175</td>
</tr>
</tbody>
</table>

(g) Averages of 300 Runs, $\sigma_z^2 = 0.500$

Figure 23: c_2011.10.17.11.36.22_30.00_35.00 with 7 different measurement noise variances.
Figure 24: c_2011.10.17.11.36.22_30.00_60.00 with 7 different measurement noise variances.

Table 2

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.26659</td>
<td>1.50339</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.26457</td>
<td>1.42209</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.26638</td>
<td>1.40522</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.26442</td>
<td>1.41222</td>
</tr>
</tbody>
</table>

(d) Averages of 300 Runs, $\sigma_z^2 = 0.050$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.36480</td>
<td>1.65082</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.36067</td>
<td>1.57223</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.36436</td>
<td>1.55515</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.36034</td>
<td>1.55580</td>
</tr>
</tbody>
</table>

(e) Averages of 300 Runs, $\sigma_z^2 = 0.100$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.57278</td>
<td>1.97299</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.56488</td>
<td>1.89882</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.57157</td>
<td>1.86502</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.56391</td>
<td>1.87572</td>
</tr>
</tbody>
</table>

(f) Averages of 300 Runs, $\sigma_z^2 = 0.250$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.79246</td>
<td>2.28963</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.77400</td>
<td>2.21799</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.78808</td>
<td>2.17406</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.77168</td>
<td>2.18650</td>
</tr>
</tbody>
</table>

(g) Averages of 300 Runs, $\sigma_z^2 = 0.500
Figure 25: c_2011.10.17.11.36.22_35.00_40.00 with 7 different measurement noise variances.
(a) Averages of 300 Runs, $\sigma^2_z = 0.005$

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.08827</td>
</tr>
<tr>
<td>Normal</td>
<td>0.08728</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.08729</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.08728</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.08729</td>
</tr>
</tbody>
</table>

(b) Averages of 300 Runs, $\sigma^2_z = 0.010$

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.12497</td>
</tr>
<tr>
<td>Normal</td>
<td>0.12206</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.12203</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.12206</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.12203</td>
</tr>
</tbody>
</table>

(c) Averages of 300 Runs, $\sigma^2_z = 0.025$

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.20052</td>
</tr>
<tr>
<td>Normal</td>
<td>0.19358</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.19255</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.19358</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.19255</td>
</tr>
</tbody>
</table>

(d) Averages of 300 Runs, $\sigma^2_z = 0.050$

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.27952</td>
</tr>
<tr>
<td>Normal</td>
<td>0.26470</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.26324</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.26470</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.26324</td>
</tr>
</tbody>
</table>

(e) Averages of 300 Runs, $\sigma^2_z = 0.100$

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.39712</td>
</tr>
<tr>
<td>Normal</td>
<td>0.37484</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.37484</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.36866</td>
</tr>
</tbody>
</table>

(f) Averages of 300 Runs, $\sigma^2_z = 0.250$

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.62400</td>
</tr>
<tr>
<td>Normal</td>
<td>0.58950</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.56593</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.58948</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.56593</td>
</tr>
</tbody>
</table>

(g) Averages of 300 Runs, $\sigma^2_z = 0.500$

<table>
<thead>
<tr>
<th>Estimation</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurements</td>
<td>0.87100</td>
</tr>
<tr>
<td>Normal</td>
<td>0.82380</td>
</tr>
<tr>
<td>SD TPM</td>
<td>0.76880</td>
</tr>
<tr>
<td>SD MPs</td>
<td>0.82175</td>
</tr>
<tr>
<td>SD Both</td>
<td>0.76820</td>
</tr>
</tbody>
</table>

Figure 26: c_2011.10.17.11.36.22_45.00,50.00 with 7 different measurement noise variances.
Figure 27: c.2011.10.17.11.36.22.50.00,55.00 with 7 different measurement noise variances.
Figure 28: c.2011.10.17.11.36.22,55.00,60.00 with 7 different measurement noise variances.
<table>
<thead>
<tr>
<th>Measurements</th>
<th>Normal</th>
<th>SD TPM</th>
<th>SD MPs</th>
<th>SD Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27979</td>
<td>0.25982</td>
<td>0.25983</td>
<td>0.25954</td>
<td>0.25975</td>
</tr>
<tr>
<td>0.20578</td>
<td>1.71123</td>
<td>1.72944</td>
<td>1.71643</td>
<td></td>
</tr>
</tbody>
</table>

(d) Averages of 300 Runs, $\sigma^2_z = 0.050$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Normal</th>
<th>SD TPM</th>
<th>SD MPs</th>
<th>SD Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.39797</td>
<td>0.36408</td>
<td>0.36105</td>
<td>0.36247</td>
<td>0.36027</td>
</tr>
<tr>
<td>2.08411</td>
<td>1.81593</td>
<td>1.82540</td>
<td>1.81364</td>
<td></td>
</tr>
</tbody>
</table>

(e) Averages of 300 Runs, $\sigma^2_z = 0.100$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Normal</th>
<th>SD TPM</th>
<th>SD MPs</th>
<th>SD Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63031</td>
<td>0.58074</td>
<td>0.56693</td>
<td>0.57429</td>
<td>0.56450</td>
</tr>
<tr>
<td>2.33641</td>
<td>2.07605</td>
<td>2.11834</td>
<td>2.06558</td>
<td></td>
</tr>
</tbody>
</table>

(f) Averages of 300 Runs, $\sigma^2_z = 0.250$

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Normal</th>
<th>SD TPM</th>
<th>SD MPs</th>
<th>SD Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89369</td>
<td>0.81435</td>
<td>0.80130</td>
<td>0.80126</td>
<td>0.79624</td>
</tr>
<tr>
<td>2.63839</td>
<td>2.38905</td>
<td>2.44028</td>
<td>2.35231</td>
<td></td>
</tr>
</tbody>
</table>

(g) Averages of 300 Runs, $\sigma^2_z = 0.500$

Figure 29: c_2011.10.17.11.36.22_65.00_70.00 with 7 different measurement noise variances.
Code Listing

callbacks/comparing_reset_button.m 51
callbacks/comparing_save_button.m 51
callbacks/comparing_save_function.m 51
callbacks/comparing_window_button.m 51
callbacks/comparing_window_function.m 51
callbacks/comparing_wsave_button.m 52
callbacks/viewing_close_button.m 52
callbacks/viewing_open_button.m 52
callbacks/viewing_run_button.m 52
callbacks/viewing_save_button.m 52
closing/close_fig.m 52
closing/close_measurement_savefile.m 52
closing/close_state_savefile.m 52
closing/driving_close.m 53
closing/viewing_close.m 53
closing/write_last_run.m 53
comparing.m .. 53
comparing_db.m .. 53
driving.m .. 53
init/init_comparing.m 54
init/init_fig.m .. 55
init/init_filter.m 55
init/init_imm.m .. 56
init/init_listeners.m 56
init/init_measurements.m 56
init/init_obstacles.m 56
init/init_passenger.m 57
init/init_state_savefile.m 57
init/init_target.m 57
init/init_time.m 57
init/init_truth.m 57
init/init_truth_meas.m 58
init/init_truth_state.m 58
init/init_truths.m 58
init/init Viewing.m 58
init/init_viewing_plot.m 59
math/compute_errors.m 59
math/evaluate_state.m 59
math/evaluate_trans.m 60
math/filter_both.m 60
math/filter_normal.m 60
math/filter_mdmp.m 60
math/filter_sdtpm.m 61
math/filtering_test.m 61
math/gauss.m .. 61
math/get_P.m .. 61
math/get_Q.m .. 61
math/get_R.m .. 61
math/get_Rhalf.m 61
math/get_distance.m 61
math/get_turn_matrix.m 62
math/get_ws.m ... 62
math/get_z.m .. 62
math/imm_filter.m 62
math/imm_kf.m ... 62
math/imm_kf_predict.m 62
math/imm_mix.m .. 63
math/imm_predict.m 63
math/imm_remix.m 63
math/imm_set_R.m 63
math/imm_set_z.m 63
math/imm_update.m 63
math/immobj_test.m 64
math/init_tpm.m .. 64
math/kalman_filter.m 64
math/kobi_test.m 64
math/make_tpm.m 65
math/report_results.m 65
math/structure_test.m 65
math/update_mp.m 65
math/update_tpm.m 65
passengering.m ... 65
tests/adjacent_count_test.m 66
tests/distance_test.m 66
tests/evaluate_state_test.m 66
tests/evaluate_state_test_f.m 66
tests/gen_figures.m 68
tests/imm_test.m 68
tests/imm_test2.m 69
tests/kf_test.m ... 70
tests/tpm_test.m ... 71
tests/turn_test.m 71
tests/z_test.m .. 71
update/check_screenshot.m 72
update/draw_axes.m 72
update/draw_driver.m 72
update/draw_filter.m 72
update/draw_measurement.m 73
update/draw_objects.m 73
update/draw_obstacles.m 73
update/draw_passenger.m 73
update/draw_target.m 73
update/draw_tracks.m 74
update/draw_view.m 74
update/save_measurement.m 74
update/save_state.m 75
callbacks/comparing_reset_button.m

1 function comparing_reset_button(hObject, edata)
2 fig = get(hObject, 'Parent');
3 handles = guidata(fig);
4 case_time = handles.case_time;
5 write_last_run(case_time);
6 update_viewing_plot(fig);

callbacks/comparing_save_button.m

1 function comparing_save_button(hObject, edata)
2 fig = get(hObject, 'Parent');
3 comparing_window_function(fig, 1);
4 comparing_save_function(fig);

callbacks/comparing_save_function.m

1 function comparing_save_function(fig)
2 resdir = 'results/';
3 handles = guidata(fig);
4 case_time = handles.case_time;
5 nrns_def = get(handles.ph_nrns, 'Title');
6 nrns = sscanf(nrns, '%d');
7 NF = 1;
8 zes = zeros([nrns, 1]);
9 xes = zeros([nrns, NF]);
10 zps = zeros([nrns, NF]);
11 enable_all(fig, 'button', 'off');
12 enable_all(fig, 'edit', 'off');
13 for(i = 1:nrns)
14 it = sprintf('%d', i);
15 set(handles.edit_nrns, 'String', it);
16 itt = sprintf('%d', i, nrns);
17 set(handles.ph_nrns, 'Title', itt);
18 drawnow;
19 init_filter(fig);
20 handles = guidata(fig);
21 if(num_filters is not known until init_filter happens.)
22 NF = handles.num_filters;
23 zes = zeros([nrns, 1]);
24 xes = zeros([nrns, NF]);
25 zps = zeros([nrns, NF]);
26 end
27 zes(i) = handles.filter_ze;
28 xes(i,:) = handles.filter_xe(:)';
29 xps(i,:) = handles.filter_xp(:)';

callbacks/comparing_window_button.m

1 function comparing_window_button(hObject, edata)
2 fig = get(hObject, 'Parent');
3 comparing_window_function(fig);

callbacks/comparing_window_function.m

1 function comparing_window_function(fig, varargin)
2 save = 0;
3 if(size(varargin, 2) == 1)
4 disp('Saving Parameters to DB File');
5 save = varargin(1);
6 end
7 handles = guidata(fig);
8 case_time = handles.case_time;
9 tmin = get(handles.edit_tmin, 'String');
10 tmin = sscanf(tmin, '%f');
11 tmax = get(handles.edit_tmax, 'String');
12 tmax = sscanf(tmax, '%f');

51 of 83
nruns = get(handles.edit_nruns, 'String');

% In the db, we want to repeat each case for multiple sensor noise values. Thus, do not append the sensor noise to the database file.
s = sprintf('%s,%4.2f,%4.2f,%s', ... case_time, tmin, tmax, nruns);

if(save)
 append_db(s);
end

% In the last_run file, we need the sensor noise (or we could use the default) in order to have the filtering program recognize the non-default value.
zrhalf = '';
if(isfield(handles, 'zrhalf'))
 zrhalf = sprintf(',%4.3f', handles.zrhalf);
end
s = sprintf('%s%s', s, zrhalf);
write_last_run(s);

update_viewing_plot(fig);

function comparing_wsave_button(hObject, edata)
 fig = get(hObject, 'Parent');
 comparing_window_function(fig, 1);

function viewing_close_button(hObject, edata)
 fig = get(hObject, 'Parent');
 close(fig);

function viewing_open_button(hObject, edata)
 fig = get(hObject, 'Parent');
 handles = guidata(fig);
 case_time = handles.case_time;
 s = ['states/', case_time, '.csv'];
 [filename,path] = uigetfile('*.csv', ... 'Choose a Ground Truth Set', s);
 filename = filename(1:(end-4));
 if(~isempty(filename))
 write_last_run(filename);
 end
 update_viewing_plot(fig);

function viewing_run_button(hObject, edata)
 fig = get(hObject, 'Parent');
 close(fig);
 passengering;

function viewing_save_button(hObject, edata)
 fig = get(hObject, 'Parent');
 handles = guidata(fig);
 case_time = handles.case_time;
 s = ['saves/viewing_', case_time, '.eps'];
 fig2 = figure('visible', 'off');
 ax = copyobj(handles.axes_main, fig2);
 set(ax, ... 'units', 'normalized', ... 'position', [0.1 0.1 0.8 0.8]);
 axis(ax, 'tight');
 axis(ax, 'equal');
 save_fig(fig2, s);
 close(fig2);

function close_fig(fig)
 handles = guidata(fig);
 write_last_run(handles.case_time);
 fprintf('%s
', handles.case_time);
 fprintf('%3.3f seconds have elapsed.
', ... handles.T_since_start);
 fprintf('%d points saved.

', handles.count);
 fprintf('Average FPS was %.2f

', ... handles.count/handles.T_since_start);
 delete(fig);

function close_measurement_savefile(fig)
 handles = guidata(fig);
 fclose(handles.measurement_savefile);

function close_state_savefile(fig)
 handles = guidata(fig);
 fclose(handles.state_savefile);
closing/driving_close.m
1 function driving_close(fig)
2 set_running(fig, false);

closing/viewing_close.m
1 function viewing_close(fig)
2 handles = guidata(fig);
3 rmpath(handles.addedpath);
4 delete(fig);

closing/write_last_run.m
1 function write_last_run(case_time)
2 fout = fopen('last_run.csv', 'w+');
3 fprintf(fout, '%s
', case_time);
4 fclose(fout);

comparing.m
1 close all
2 clear all
3 clc
4 addedpath = genpath('.');
5 addpath(addedpath);
6 fig = figure();
7 set_addedpath(fig, addedpath);
8 set(fig, 'CloseRequestFcn', ...
9 'viewing_close(fig)');
10 init_comparing(fig);
11 update_viewing_plot(fig);

comparing.db.m
1 clear all
2 clc
3 addedpath = genpath('.');
4 addpath(addedpath);
5 fin = fopen('runs.db.csv');
6 Aorig = textscan(fin, '%s');
7 Aorig = Aorig{1};
8 v = [.005, .01, .025, .05, .1, .25, .5];
9 for(i = 1:numel(Aorig))
10 A = Aorig{i};
11 sf = strfind(A, ',');
12 if(numel(sf) == 3)
13 for(j = 1:numel(v))
14 An = sprintf('%s,%4.3f', A, v(j));
15 end
end
16 Atotal{end+1} = An;
17 end
18 else
19 Atotal{end+1} = A;
20 end
21 end
22 for(i = 1:numel(Atotal))
23 A = Atotal{i};
24 params = A;
25 nstar = strfind(A, '*');
26 if(numel(nstar) == 0)
27 fprintf(...'
Parameters: %s
', ...
28 params);
29 write_last_run(params);
30 end
end
31 rmpath(addedpath);

comparing_save_function.m
1 close(fig);

comparing.m
1 clear all
2 close all
3 clc
4 addedpath = genpath('.');
5 addpath(addedpath);
6 fig = figure();
7 set_addedpath(fig, addedpath);
8 set(fig, 'CloseRequestFcn', ...
9 'viewing_close(fig)');
10 init_comparing(fig);
11 update_viewing_plot(fig);
12 comparing_save_function(fig);
13 close(fig);

driving.m
1 clear all
2 close all
3 clc
4 addedpath = genpath('.');
5 addpath(addedpath);
6 fig = figure();
7 set_addedpath(fig, addedpath);
8 set(fig, 'CloseRequestFcn', ...
9 'viewing_close(fig)');
10 init_comparing(fig);
11 fig = figure();
12 init_comparing(fig);
13 init_target(fig);
14 init_state_savefile(fig);
15 init_measurements(fig);
16 init_time(fig);
17 while(get_running(fig))
18 update_key_changes(fig);
19 update_target(fig);
20 if(key_down(fig, {'escape'}))
21 set_running(fig, false);
22 end
23 clf;
24 draw_driver(fig);
25 drawnow;
31 save_state(fig);
32 save_measurement(fig);
33 end
34 close_state_savefile(fig);
35 close_measurement_savefile(fig);
36 close_fig(fig);
37 rmpath(addedpath);
38
39 function init_comparing(fig)
40 set(fig, 'Name', 'Select Ground Truth Case');
41 handles = guidata(fig);
42 if(~isfield(handles, 'nruns'))
43 handles.nruns = '2';
44 end
45
46 % Set up the basic controls section
47 handles.axes_main = axes('Parent', fig, ...
48 'Position', [.1, .3, .53, .6]);
49 handles.edit = uicontrol('Parent', fig, ...
50 'Style', 'edit', ...
51 'Units', 'Normalized', ...
52 'Position', [.1, .12, .2, .07]);
53 handles.button_open = uicontrol(...
54 'Parent', fig, ...
55 'Style', 'pushbutton', ...
56 'String', 'Change Track', ...
57 'Units', 'Normalized', ...
58 'Position', [.67, .12, .2, .07]);
59 handles.button_run = uicontrol(...
60 'Parent', fig, ...
61 'Style', 'pushbutton', ...
62 'String', 'Passengering', ...
63 'Units', 'Normalized', ...
64 'Position', [.67, .03, .2, .07]);
65 handles.button_close = uicontrol(...
66 'Parent', fig, ...
67 'Style', 'pushbutton', ...
68 'String', 'Close', ...
69 'Units', 'Normalized', ...
70 'Position', [.13, .03, .2, .07]);
71
72 % % Set up the monte carlo run controls
73 handles.button_save = uicontrol(...
74 'Parent', fig, ...
75 'Style', 'pushbutton', ...
76 'String', 'Make Runs', ...
77 'Units', 'Normalized', ...
78 'Position', [.67, .3, .2, .07]);
79 handles.ph_nruns = uipanel('Parent', fig, ...
80 'Title', 'N. of Runs', ...
81 'Units', 'Normalized', ...
82 'Position', [.67, .39, .2, .11]);
83 handles.edit_nruns = uicontrol(...
84 'Parent', handles.ph_nruns, ...
85 'Style', 'edit', ...
86 'String', handles.nruns, ...
87 'Units', 'Normalized', ...
88 'Position', [.1, .1, .8, .8]);
89
90 % % Set up the time control section
91 handles.button_window = uicontrol(...
92 'Parent', fig, ...
93 'Style', 'pushbutton', ...
94 'String', 'Set', ...
95 'Units', 'Normalized', ...
96 'Position', [.67, .58, .2, .07]);
97 handles.button_wsave = uicontrol(...
98 'Parent', fig, ...
99 'Style', 'pushbutton', ...
100 'String', 'Save', ...
101 'Units', 'Normalized', ...
102 'Position', [.78, .58, .9, .07]);
103 handles.button_reset = uicontrol(...
104 'Parent', fig, ...
105 'Style', 'pushbutton', ...
106 'String', 'Reset window', ...
107 'Units', 'Normalized', ...
108 'Position', [.43, .03, .2, .07]);
109 handles.ph_tmin = uipanel('Parent', fig, ...
110 'Title', 'Tmin (sec)', ...
111 'Units', 'Normalized', ...
112 'Position', [.67, .8, .2, .11]);
113 handles.edit_tmin = uicontrol(...
114 'Parent', handles.ph_tmin, ...
115 'Style', 'edit', ...
116 'Units', 'Normalized', ...
117 'Position', [.1, .1, .8, .8]);
118 handles.ph_tmax = uipanel('Parent', fig, ...
119 'Title', 'Tmax (sec)', ...
120 'Units', 'Normalized', ...
121 'Position', [.67, .67, .2, .11]);
122 handles.edit_tmax = uicontrol(...
123 'Parent', handles.ph_tmax, ...
124 'Style', 'edit', ...
125 'Units', 'Normalized', ...
126 'Position', [.1, .1, .8, .8]);
127
128 set(handles.button_open, 'CallBack', ...
129 @viewing_open_button);
130 set(handles.button_run, 'CallBack', ...
131 @viewing_run_button);
132 set(handles.button_close, 'CallBack', ...
133 @viewing_close_button);
134 set(handles.button_window, 'CallBack', ...
135 @comparing_window_button);
136 set(handles.button_wsave, 'CallBack', ...
137 @comparing_wsave_button);
138 set(handles.button_reset, 'CallBack', ...
139 @comparing_reset_button);
140 set(handles.button_save, 'CallBack', ...
141 @comparing_save_button);
142 guidata(fig, handles);
init/init_fig.m

1 function init_fig(fig)
2 3 handles = guidata(fig);
4 5 set_running(fig, true);
6 set(fig, 'CloseRequestFcn', ...
7 \texttt{'driving_close(fig)' });
8 9 s = get_datestr();
10 handles.case_time = s;
11 12 \texttt{s = 'Driving';}
13 14 set(fig, 'Name', \texttt{s});
15 set(fig, 'MenuBar', 'none');
16 17 handles.viewwidth0 = 5;
18 handles.viewwidth = handles.viewwidth0;
19 handles.offset_view = false;
20 handles.offset_amount = 0;
21 22 set(fig, 'Units', 'Normalized');
23 set(fig, 'Position', \[0, 0, .4, .6\]);
24 movegui('northeast');
25 26 guidata(fig, handles);

init/init_filter.m

1 function init_filter(fig)
2 3 handles = guidata(fig);
4 5 \texttt{\% One function for each filter that is running.}
6 funs = { \texttt{@filter_normal, ...
7 \texttt{@filter_sdtpm, ...
8 \texttt{@filter_sdmp, ...
9 \texttt{@filter_both};
10 names = { \texttt{'Normal', ...
11 \texttt{'SD TPM', ...
12 \texttt{'SD MPs', ...
13 \texttt{'SD Both'} };
14 colors = { \texttt{[0,0,1], ...
15 \texttt{[0,.8,0], ...
16 \texttt{[.8,5,0], ...
17 \texttt{[.8,0,8] \};
18 colnames=\{ \texttt{'Blue'}, ...
19 \texttt{'Green', ...
20 \texttt{'Orange', ...
21 \texttt{'Purple'} \};
22 23 NF = numel(funs);
24 handles.filters_funs = funs;
25 handles.filters_names = names;
26 handles.filters_colors = colors;
27 handles.filters_color_names = colnames;
28 handles.num_filters = NF;
29 30 \texttt{\% Initialize at the current time k}
31 zcount = handles.count_meas;
32 handles.filter_init_count = zcount;
33 trus = handles.\texttt{truth_meas};
34 handles.filter_t0 = trus(1)(zcount);
35 if(\texttt{isfield(handles, '\texttt{zrhalf}')})
36 handles.zrhalf = 0.1;
37 guidata(fig, handles);
38 handles = guidata(fig);
39 end
40 41 \texttt{\% The first measurement comes from time k+1}
42 if(zcount < handles.count_meas_max)
43 zcount = zcount + 1;
44 end
45 46 \texttt{\% Initialize imm object immo.}
47 immo = init_immo(fig);
48 x = immo.x;
49 P = immo.P;
50 mus = immo.mus;
51 tpm0 = immo.tpm;
52 53 \texttt{\% robj = struct(...
54 \texttt{'x', x, ...
55 \texttt{'P', P, ...
56 \texttt{'mus', mus, ...
57 \texttt{'tpm', tpm0 };
58 59 robj = struct(\texttt{'x', x });
60 handles.filter_x0 = x;
61 handles.filter_P0 = P;
62 handles.filter_tpm0 = tpm0;
63 64 \texttt{\% set of "true measurements"}
65 \texttt{\% these will be corrupted by noise to obtain}
66 \texttt{\% actual measurements.}
67 zs = [trus(2)(zcount:end), ...
68 \texttt{true(3)(zcount:end)];
69 nmeas = length(zs);
70 handles.filter_zs = zs;
71 72 \texttt{\% results of filter i, time k}
73 handles.filters_e = repmat(robj, NF, nmeas);
74 handles.filters_p = repmat(robj, NF, nmeas);
75 76 \texttt{\% set of current time's imm objects.}
77 handles.filters_immos = repmat(immo, NF, 1);
78 79 if(\texttt{isfield(handles, 'filter_zn')})
80 handles = rmfield(handles, 'filter_zn');
81 end
82 83 \texttt{\% Initialize at the current time k}
84 zcount = handles.count_meas;
init/init_immo.m

function immo = init_immo(fig)

handles = guidata(fig);
nummodes = 5;
Tsamp = handles.samp_time;
nummodes = 5;
Tsamp = handles.samp_time;

% The turnrate is seconds / turn
turnrate = 1.42;

zcount = handles.count_meas;

x = [trus{2}(zcount);
 trus{3}(zcount);
 trus{4}(zcount);
 trus{5}(zcount)];
P = get_P();
mu = ones([nummodes, 1]) / (nummodes);

if(zcount < handles.count_meas_max)
zcount = zcount + 1;
end

z = [trus{2}(zcount);
 trus{3}(zcount)];

kobj = struct(...
 'x', x, ...
 'P', P, ...
 'z', z, ...
 'H', [1, 0, 0, 0; 0, 1, 0, 0], ...
 'R', get_R());

if(isfield(handles, 'zrhalf'))
kobj.R = get_R(handles.zrhalf);
end

tpm0 = init_tpm(nummodes, nummodes^2);

immo = struct(...
 'modes', repmat(kobj, nummodes, 1), ...
 'tpm', tpm0, ...
 'mus', mu, ...
 'x', x, ...
 'P', P);

ws = get_ws(nummodes, turnrate);
for(i = 1:(nummodes))
immo.modes(i).A = ...
 get_turn_matrix(ws(i), Tsamp);
end

init/init_listeners.m

function init_listeners(fig)

handles = guidata(fig);
handles.running = true;

% tmin specifies the response time for
% switching between key pressed and key
% released
handles.tmin = 0.05;

% handles.keys is a list of all of the
% keys that we wish to monitor
handles.keys = {'a', 's', 'd', 'f', 'space', ...
 'uparrow', 'downarrow', ...
 'leftarrow', 'rightarrow', ...
 'escape', 't', 'p', ...
 'i', 'z', 'q', ...
 'pageup', 'pagedown', 'home'};
umkeys = numel(handles.keys);
handles.numkeys = numkeys;

for(i = 1:(nummodes))
immo.modes(i).A = ...
 get_turn_matrix(ws(i), Tsamp);
end

init/init_measurements.m

function savefile = init_measurement(fig)

handles = guidata(fig);

% s = datestr(now, 'yyyy.mm.dd.HH.MM.SS');
s = handles.case_time;
s = ['measurements/', s, '.csv'];
savefile = fopen(s, 'w');

handles.measurement_string = s;
handles.measurement_savefile = savefile;

handles.T_measurement = 0.35;
guidata(fig, handles);

init/init_obstacles.m

function init_obstacles(fig, filename)

handles = guidata(fig);

% s = datestr(now, 'yyyy.mm.dd.HH.MM.SS');
s = handles.case_time;
s = ['measurements/', s, '.csv'];
savefile = fopen(s, 'w');

handles.measurement_string = s;
handles.measurement_savefile = savefile;

handles.T_measurement = 0.35;
guidata(fig, handles);
\[y = f(2); \]
\[r = f(3); \]
\[\text{handles.obstacles_x = x; } \]
\[\text{handles.obstacles_y = y; } \]
\[\text{handles.obstacles_r = r; } \]
\[xo = []; \]
\[yo = []; \]
\[\text{for(} i = 1: \text{numel}(r) \text{) } \]
\[\text{thetaskip = } 1 / (2 + \text{ceil}(r(i))) ; \]
\[\text{thetas = } [0: \text{thetaskip}:(2 \pi)]'; \]
\[\text{xs = cos(thetas) * r(i); } \]
\[\text{ys = sin(thetas) * r(i); } \]
\[\text{xs = xs + ones(size(xs))*x(i); } \]
\[\text{ys = ys + ones(size(ys))*y(i); } \]
\[xo = [xo; xs]; \]
\[yo = [yo; ys]; \]
\[\text{end} \]
\[\text{guidata(fig, handles); } \]

init/init_passenger.m

```matlab
function init_passenger( fig )
open_last_run( fig );
handles = guidata( fig );
fprintf('%s

', handles.case_time);
s = 'Passengering';
set( fig, 'Name', s );
handles.filter_running = false;
guidata( fig, handles );
```

init/init_state_savefile.m

```matlab
function savefile = init_savefile( fig )
handles = guidata( fig );

s = datestr( now, 'yyyy.mm.dd.HH.MM.SS' ) ;
s = ['states/\', s, '.csv' ];
savefile = fopen( s, 'w' );

handles.state_string = s;
handles.state_savefile = savefile;
guidata( fig, handles );
```

init/init_target.m

```matlab
function init_target( fig )
handle = guidata(fig);

 handles.target\_x = 0;
 handles.target\_y = 0;
 handles.target\_v = 0;
 handles.target\_dv = 7.5;

 handles.meas\_last\_x = handles.target\_x;
 handles.meas\_last\_y = handles.target\_y;

 handles.target\_theta = 0;
 handles.target\_dtheta = 0;
 handles.target\_ddtheta = pi*8;

 handles.target\_cv = .75;
 handles.target\_cdtheta = pi*1.5;
guidata( fig, handles );
```

init/init_time.m

```matlab
function init_time( fig )
handles = guidata( fig );

 handles.T\_start = clock;
 handles.T\_since\_start = 0;
 handles.T\_last\_draw = clock;

 handles.T\_last\_measurement = clock;
 handles.count = 0;

if( ~isfield( handles, 'T\_simulation' ) )
 handles.T\_simulation = 0;
end

if( ~isfield( handles, 'T\_simulation\_min' ) )
 handles.T\_simulation\_min = 0;
end
handles.paused = true;
handles.T\_simulation\_multi = 0;

 handles.T\_window = .5;
guidata( fig, handles );
```

init/init_truth.m

```matlab
function truth = init_truth( fn, fmt, varargin )
fin = fopen( fn, 'r' );
truth = textscan( fin, fmt, 'Delimiter', ',' );
t = truth(1);
l = 1;
h = length( t );
```
if(size(varargin, 2) == 1)
 tl = varargin{1};
 l = find_adjacent_count(tl, t);
end
if(size(varargin, 2) == 2)
 tl = varargin{1};
 thigh = varargin{2};
 l = find_adjacent_count(tl, t);
 h = find_adjacent_count(thigh, t);
 tl = t(l);
 th = t(h);
end
for(i = 1:numel(truth))
 truth{i} = truth{i}(l:h);
end

function init_truth_meas(fig, varargin)
 handles = guidata(fig);
 fname = ['measurements/', ...
 handles.case_time, '.csv'];
 fmt = '%n%n%n%n%n%n';
 truth_meas = init_truth(...
 fname, fmt, varargin{:});
 handles.truth_meas = truth_meas;
 handles.count_meas = 1;
 handles.count_meas_max = length(truth_meas{1});
 handles.samp_time = truth_meas{1}(2) - ...
 truth_meas{1}(1);
 guidata(fig, handles);
end

function init_truth_state(fig, varargin)
 handles = guidata(fig);
 fname = ['states/', ...
 handles.case_time, '.csv'];
 fmt = '%n%n%n%n%n%n';
 truth_state = init_truth(...
 fname, fmt, varargin{:});
 handles.truth_state = truth_state;
 handles.count_state = 1;
 handles.count_state_max = length(truth_state{1});
 guidata(fig, handles);
end

function init_viewing(fig)
 handles = guidata(fig);
 handles.axes_main = axes('Parent', fig, ...
 'Position', [.1, .3, .8, .6]);
 handles.edit = uicontrol('Parent', fig, ...
 'Style', 'edit', ...
 'Units', 'Normalized', ...
 'Position', [.13, .12, .5, .07]);
 handles.button_open = uicontrol(...
function init_viewing_plot(fig)
 handles = guidata(fig);
 cla(handles.axes_main, 'reset');
 axes(handles.axes_main);
 gca;
 hold on;
 set(handles.axes_main, 'Position', [0.13, 0.17, 0.87, 0.7]);
 set(gca, 'Position', [0.13, 0.17, 0.87, 0.7]);
 case_time = handles.case_time;
 var_state = handles.truth_state;
 var_meas = handles.truth_meas;
 ttime = var_state{1}(end) - var_state{1}(1);
 s = sprintf('%s, Total Time: %.2f (sec)', case_time, ttime);
 title(s);
 plot(var_state{2}, var_state{3}, 'k-');
 plot(var_state{2}(1), var_state{3}(1), 'bo', 'LineWidth', 2);
 plot(var_meas{2}, var_meas{3}, 'go');
 xlabel('x (m)');
 ylabel('y (m)');
 axis manual;
 scale = .05;
 xw = get(gca, 'XLim');
 w = (xw(2) - xw(1)) * scale;
 xw = xw + [-w, w];
 set(gca, 'XLim', xw);
 ztimes = handles.filter_zt(2:end,:);
 zn = handles.filter_zn(2:end,:);
 nmeas = length(ztimes);
 ze = 0;
 for(k = 1:nmeas)
 d = ztimes(k,:) - zn(k,:);
 ze = ze + sqrt(d' * d);
 end
 handles.filter_ze = ze / nmeas;
 NF = handles.num_filters;
 xse = zeros([NF, 1]);
 xpe = zeros([NF, 1]);
 for(i = 1:NF)
 xs = cat(2, handles.filter_zs(i,2:end).x)';
 xp = cat(2, handles.filter_zm(i,1:end-1).x)';
 xse = 0;
 for(k = 1:nmeas)
 xe = ztimes(k,:) - xs(k,:);
 xse = xse + sqrt(xe' * xe);
 end
 xse = xse / nmeas;
 xpe = xpe + sqrt(xpe' * xpe);
 xpe = xpe / nmeas;
 end
 handles.filter_xe(i) = xse / nmeas;
 handles.filter_xp(i) = xpe / nmeas;
 guidata(fig, handles);
% input. It also takes in the centers of the obstacles (cs) and the radii of the obstacles (rs).
% It outputs the value of each of the imm object's modes' states.

function values = evaluate_state(immi, cs, rs)
beta = 12;
nummodes = length(immi.mus);
values = ones(size(immi.mus));
for(i = 1:nummodes)
 x = immi.modes(i).x(1:2);
 v1 = 1;
 for(k = 1:numel(rs))
 c = cs(k,:);
 v2 = get_distance(x, c, rs(k), beta);
 v1 = min(v1, v2);
 end
 values(i) = v1;
end

math/evaluate_trans.m

% This function takes an imm object as its input. It also takes in the centers of the obstacles (cs) and the radii of the obstacles (rs).
% It outputs the value of each of the imm object's modes' states' transitions.

function values = evaluate_trans(immi, cs, rs)
beta = 6;
nummodes = length(immi.mus);
values = ones(nummodes);
for(i = 1:nummodes)
 x0 = immi.modes(i).x;
 for(j = 1:nummodes)
 A = immi.modes(j).A;
 x = A * x0;
 x = x(1:2);
 v1 = 1;
 for(k = 1:numel(rs))
 c = cs(k,:);
 v2 = get_distance(x, c, rs(k), beta);
 v1 = min(v1, v2);
 end
 values(j,i) = v1;
 end
end

math/filter_both.m

function immo = filter_both(fig,immi,varargin)
immo = immi;
if(size(varargin, 2) == 1)
z = varargin{1};
 immo = imm_set_z(immi, z);
 immo = update_tpm(fig, immo);
 immo = imm_mix(immo);
 end
 likes = likes .* update_mp(fig, immo);
 [x, P, immo] = imm_remix(immo, likes);
 end
 immo.x = x;
 immo.P = P;
 else
 immo = update_tpm(fig, immo);
 immo = imm_mix(immo);
 immo = imm_kf_predict(immo);
 likes = update_mp(fig, immo);
 [x, P, immo] = imm_remix(immo, likes);
 immo.x = x;
 immo.P = P;
 end

math/filter_normal.m

function immo = filter_normal(fig,immi,varargin)
immo = immi;
if(size(varargin, 2) == 1)
z = varargin{1};
 [x,P,immo] = imm_filter(immo);
 immo.x = x;
 immo.P = P;
 else
 [x,P,immo] = imm_predict(immo);
 immo.x = x;
 immo.P = P;
 end

math/filter_sdmp.m

function immo = filter_sdmp(fig,immi,varargin)
immo = immi;
if(size(varargin, 2) == 1)
z = varargin{1};
 immo = imm_set_z(immi, z);
 immo = imm_mix(immo);
 immo = imm_kf_predict(immo);
 likes = update_mp(fig, immo);
 [x, P, immo] = imm_remix(immo, likes);
 immo.x = x;
 immo.P = P;
 end

[immo, likes] = imm_kf(immo);
likes = likes .* update_mp(fig, immo);
[x, P, immo] = imm_remix(immo, likes);
immo.x = x;
immo.P = P;
else
immo = imm_mix(immo);
immo = imm_kf_predict(immo);
likes = update_mp(fig, immo);
[x, P, immo] = imm_remix(immo, likes);
immo.x = x;
immo.P = P;
end

function immo = filter_sdtpm(fig, immi, varargin)
immo = immi;
if(size(varargin, 2) == 1)
z = varargin{1};
immo = imm_set_z(immi, z);
immo = update_tpm(fig, immo);
[x, P, immo] = imm_filter(immo);
immo.x = x;
immo.P = P;
else
immo = update_tpm(fig, immi);
[x, P, immo] = imm_predict(immo);
immo.x = x;
immo.P = P;
end

function P = get_P()
P = diag([0.03, 0.03, 0.003, 0.003]);

function v = get_distance(x, c, r, beta)
minval = 0.01;
scale = 1 - minval;
z = x - c;
d = sqrt(z' * z);
t = d - r;
v = 1 / (1 + exp(-beta*t));
v = v * scale + minval;
math/get_turn_matrix.m

% This function gives the constant turn motion model's matrix for a given rotational speed w and time duration T.
% The matrix produced assumes that the state vector is \(x = [x, y, xd, yd] \).
% NOTENOTE: \(w > 0 \) results in a left turn, \(w < 0 \) results in a right turn

function A = get_turn_matrix(w, T)

% w is the rotational speed (radians/sec)
% T is the duration of the turn (sec)

A = eye(4);

if(abs(w) > .0001)
 A(1,:) = [1, 0, sin(w*T)/w, (cos(w*T)-1)/w];
 A(2,:) = [0, 1, (1-cos(w*T))/w, sin(w*T)/w];
 A(3,:) = [0, 0, cos(w*T), -sin(w*T)];
 A(4,:) = [0, 0, sin(w*T), cos(w*T)];
else
 A = [1, 0, T, 0;
 0, 1, 0, T;
 0, 0, 1, 0;
 0, 0, 0, 1];
end

math/get_ws.m

% The turnrate should be specified as seconds per turn.
% The output is radians per second.

function ws = get_ws(nummodes, turnrate)

ws = 1:nummodes; % number of modes
ws = ws - ceil(nummodes/2); % separate modes into two groups
ws = 2 * ws / (nummodes - 1); % calculate the values
ws = ws * 2 * pi; % convert to radians
ws = ws(end:-1:1); % reverse the order
ws = ws / turnrate;

math/get_z.m

function z = get_z(zt, varargin)

v = 0.1;
if(size(varargin,2) == 1)
v = varargin{1};
end

z = get_Rhalf(v) * randn(size(zt));
z = z + zt;

math/imm_filter.m

% Following Table 1 of 1993_design
% This function takes an imm object as its input and returns a new imm object as its output along with the state estimate xkp1 and uncertainty estimate Pkp1.

function [xkp1, Pkp1, immo] = imm_filter(immi)

mix the modes together. Create separate z\(\bar{j} \) and P\(\bar{j} \) for each mode.
imo = imm_mix(immi);

% Filter each of the modes separately
[imo, likes] = imm_kf(immo);

% use the mixed result to find output estimates
[xkp1, Pkp1, immo] = imm_remix(immo, likes);

math/imm_kf.m

function [imo, likes] = imm_kf(immi)

likes = ones(size(immi.mus));
imo = immi;

% find the j independent filtered results along with the likelihoods of each result
for(j = 1:numel(imo.mus))
 x = kalman_filter(imo.modes(j));
 x = x(1:end);
 P = P(1:end);
end

math/imm_kf_predict.m

function immo = imm_kf_predict(immi)

imo = immi;

for(i = 1:numel(imo.mus))
 A = immo.modes(i).A;
 Q = immo.modes(i).Q;
 x = immo.modes(i).x;
 P = immo.modes(i).P;
 immo.modes(i).x = A * x;
 immo.modes(i).P = A * P * A' + Q;
end
function immo = imm_mix(immi)

immo = immi;

% predicted mode probabilities follow the transition probability matrix
muje = immo.tpm * immo.mus;

% mixing probabilities are the probabilities that we were in mode i given that we are now in mode j.
muij = zeros(size(immo.tpm));
for(i = 1:numel(immo.mus))
 for(j = 1:numel(immo.mus))
 muij(i,j) = immi.tpm(j,i) * immi.mus(i) / muje(j);
 end
end

for(j = 1:numel(immo.mus))
 immo.modes(j).x = zeros(size(immo.modes(j).x));
 immo.modes(j).P = zeros(size(immo.modes(j).P));
 for(i = 1:numel(immo.mus))
 immo.modes(j).x = immo.modes(j).x + immi.modes(i).x * muij(i,j);
 immo.modes(j).P = immo.modes(j).P + immi.modes(i).P * muij(i,j);
 end
end

% Another spread of the means
X = zeros(size(P1));
for(j = 1:numel(immo.mus))
 X = X + Xdiff * Xdiff' * immo.mus(j);
end
P1 = P1 + X;

% Update the mode probabilities
immo.mus = muje;

function [x1,P1,immo] = imm_predict(immi)

immo = imm_mix(immi);

P1 = zeros(size(immi.modes(1).P));
immo = immi;

likes = ones(size(immi.mus));
if(nargin == 2)
 likes = varargin{1};
else(nargin > 2)
 error('Too many inputs?');
end

% Combine the results from each of the filters to form the overall estimate of state and uncertainty.
for(j = 1:numel(immo.mus))
 immo.mus(j) = muje(j)*likes(j) / (muje'*likes);
 x1 = x1 + immo.mus(j) * immo.modes(j).x;
 P1 = P1 + immo.mus(j) * immo.modes(j).P;
end

math/imm_set_R.m

function immo = imm_set_R(immi, R)

immo = immi;
for(i = 1:numel(immo.mus))
 immo.modes(i).R = R;
end

math/imm_set_z.m

function immo = imm_set_z(immi, z)

immo = immi;
for(i = 1:numel(immo.mus))
 immo.modes(i).z = z;
end

math/imm_update.m

% This function has been replaced by imm_kf and imm_remix.
% This function tests to see if an interacting % multiple models object (immobj) has a valid % structure.
% Note: the modes of the immobj are stored % in an array. Each of the modes must be % a valid kalman filter object (kobj).

function immobj_test(immo)

 if(~isfield(immo, 'modes'))
 error('Mode set not found.');
 elseif(~isfield(immo, 'tpm'))
 error('Transition probability matrix not found.');
 elseif(~isfield(immo, 'mus'))
 error('Mode probabilities not found.');
 end

 for(i = 1:numel(immo.mus))
 kobj_test(immo.modes(i));
 end

 if(length(immo.mus) ~= numel(immo.modes))
 error(['Mode probabilities and ', ... 'number of modes do not match.']);
 end

 if(length(immo.mus)^2 ~= numel(immo.tpm))
 error(['Mode probabilities and ', ... 'transition probability matrix sizes.']);
 end

end

% This function ensures that a kobj, short % for a kalman filter object, has all of the % necessary parameters.

function kobj_test(kobj)

 kobj_test(kobj);
end

% This function takes a specially designed % kobj as its input.
% kobj must be a struct that has the following % fields:
% - x, current state estimate
% - P, current state uncertainty
% - A, the dynamics matrix
% - Q, covariance of process noise
% - z, next measurement
% - H, sensing matrix
% - R, sensor noise
% - y = z - xkp1e is the output
% The output is an updated x and P reflecting % the most recent data point z, given in the % input.
% The equations governing the problem are % as follows:
% zkp1 = A xk + w
% z = H xkp1 + v
% w ~ (0, Q)
% v ~ (0, R)
% The output will be zkp1, which is a fusion % between zkple and the new measurement z.
% Also, the likelihood of y = z - zkple is % reported in the variable l.

function [xkp1, Pkp1, l] = kalman_filter(kobj)

 x = kobj.x;
 P = kobj.P;
 A = kobj.A;
 Q = kobj.Q;
 z = kobj.z;
 H = kobj.H;
 R = kobj.R;

 I = eye(size(P));

 xkp1e = A*x;
 Pkp1e = A*P*A' + Q;
 y = z - H * xkp1e;
 S = H * Pkp1e * H' + R;
 l = gauss(y, zeros(size(z)), S);
 K = Pkp1e * H' * minv(S);
 xkp1 = xkp1e + K*y;
 Pkp1 = Pkp1e - K * S * K';
end

% This function takes a specially designed % kobj as its input.
% kobj must be a struct that has the following % fields:
% - x, current state estimate
% - P, current state uncertainty
% - A, the dynamics matrix
% - Q, covariance of process noise
% - z, next measurement
% - H, sensing matrix
% - R, sensor noise
% - y = z - xkp1e is the output
% The output is an updated x and P reflecting % the most recent data point z, given in the % input.
% The equations governing the problem are % as follows:
% zkp1 = A xk + w
% z = H xkp1 + v
% w ~ (0, Q)
% v ~ (0, R)
% The output will be zkp1, which is a fusion % between zkple and the new measurement z.
% Also, the likelihood of y = z - zkple is % reported in the variable l.

function [xkp1, Pkp1, l] = kalman_filter(kobj)

 x = kobj.x;
 P = kobj.P;
 A = kobj.A;
 Q = kobj.Q;
 z = kobj.z;
 H = kobj.H;
 R = kobj.R;

 I = eye(size(P));

 xkp1e = A*x;
 Pkp1e = A*P*A' + Q;
 y = z - H * xkp1e;
 S = H * Pkp1e * H' + R;
 l = gauss(y, zeros(size(z)), S);
 K = Pkp1e * H' * minv(S);
 xkp1 = xkp1e + K*y;
 Pkp1 = Pkp1e - K * S * K';
end

% This function ensures that a kobj, short % for a kalman filter object, has all of the % necessary parameters.

function kobj_test(kobj)

 kobj_test(kobj);
end
% xkp1 = A xk + w
% z = H xkp1 + v
% w ~ (0, Q)
% v ~ (0, R)

function kobj_test(objin)
if(~isfield(objin, 'x'))
error('Current state estimate x not found.');
elseif(~isfield(objin, 'P'))
error('Current uncertainty P not found.');
elseif(~isfield(objin, 'A'))
error('Dynamics matrix A not found.');
elseif(~isfield(objin, 'Q'))
error('Process noise covariance Q not found.');
elseif(~isfield(objin, 'z'))
error('Next measurement z not found.');
elseif(~isfield(objin, 'H'))
error('Sensing matrix H not found.');
elseif(~isfield(objin, 'R'))
error('Sensor noise covariance R not found.');
end

function tpmo = make_tpm(tpm)
 s = size(tpmo);
 for(i = 1:s(2))
 colsum = sum(tpmo(:,i));
 tpmo(:,i) = tpmo(:,i) / colsum;
end

function report_results(fig)
 handles = guidata(fig);
 NF = handles.num_filters;
 fprintf('There are %d filters\n', NF);
 fprintf('Error', 'P.Error', 'Color');
 for(i = 1:NF)
 fprintf('%10.5f%10.5f%10s %s\n', ...
 handles.filter_xe(i), ...
 handles.filter_xp(i), ...
 handles.filters_color_names(i), ...
 handles.filters_names(i));
end

end

while(get_running(fig))
 update_key_changes(fig);
 if(key_down(fig, { 'escape' }))
 set_running(fig, false);
end
 clf;
 update_passenger(fig);
 draw_passenger(fig);
drawnow;
check_screenshot(fig);
end
delete(fig);

deleted(fig);

rmpath(added_path);

% Title information
s = sprintf(... ['Value Function', ...
' Using \beta = %0.2f and', ...
' %0.2f for a Single Obstacle'], ...
beta(1), beta(2));
title(s);

% Legend information
h = legend([p1(1), p2(1)], ...
sprintf('\beta = %0.2f', beta(1)), ...
sprintf('\beta = %0.2f', beta(2)), ...
'Location', 'SouthEast');

% Save file information
name = '../saves/distance_function.eps';
save_fig(fig, name);
close(fig);

rmpath(added_path);

tests/evaluate_state_test.m

close all
clear all
clc

added_path = genpath('../utility/');
addpath(added_path);

v0 = 10;
theta0 = 3*pi/4;
x = [1; -3; v0; theta0];

z1 = [-1;0];
z2 = [-4;1];
z = [z1'; z2'];

name = '../saves/case1';
evaluate_state_test_f(x, z, name);

rmpath(added_path);
legend_location = 'SouthWest';
nummodes = 5;
Tsamp = 0.35;

% The turnrate is seconds / turn
turnrate = 1.42;

fig = figure();
hold on;
init_fig(fig);
handles = guidata(fig);
handles.filter_running = true;
guidata(fig, handles);

draw_obstacles(fig);

v0 = x(3);
theta0 = x(4);

x0 = [x(1); x(2); v0*cos(theta0); v0*sin(theta0)];
z1 = z(1,:); z2 = z(2,:);
disp('The two green circles are z1 and z2.');
pmeas = plot(z1(1), z1(2), 'ro', 'LineWidth', 2);
plot(z2(1), z2(2), 'ro', 'LineWidth', 2);

handles.target_x = x0(1);
handles.target_y = x0(2);
handles.target_v = v0;

tpm0 = init_tpm(nummodes, nummodes^2);
handles.filter_tpm0 = tpm0;

handles.target_theta = theta0;
handles.filter_running = true;
handles.offset_view = true;
handles.offset_amount = 0.35;
guidata(fig, handles);
draw_target(fig);

draw_axes(fig);
disp('Press a key to show the initial range of motions.');
legend([pmeas, plegsmode, pthesmode], 'Measurements', 'Normal Modes', 'SD TPM Modes', 'Location', legend_location);
title('Initial Layout');
nameout = sprintf('%s_1_meas.eps', name);
save_fig(fig, nameout);
pause;

% Begin two steps of filtering.
% First, starting at x0, make a prediction
% using the normal tpm (contained in immol)
% and using the state-dependent tpm (in immot).
% Display the individual filters' results
% (one for each of nummodes).
% immol = immo;
immot = update_tpm(fig, immo);
[xpl, Ppl, immolplegs] = imm_predict(immol);
[xlt, Plt, immolphthes] = imm_predict(immot);
for(i = 1:nummodes)
plegsmode = plot(immolplegs.modes(i).x(1), immolplegs.modes(i).x(2), 'bs');
pthesmode = plot(immolphthes.modes(i).x(1), immolphthes.modes(i).x(2), 'gx');
end
draw_axes(fig);
disp('Press a key to show the first filtered result.');
title('Step 1, Individual Modes' Estimates');
legend([pmeas, plegsmode, pthesmode], 'Measurements', 'Normal Modes', 'SD TPM Modes', 'Location', legend_location);
nnameout = sprintf('%s_2_modes.eps', name);
save_fig(fig, nameout);
pause;

% Next, filter using z1 and z0.

tpm', tpm0, ...
'mus', ones([nummodes, 1]) / (nummodes));

% set the turn radii for each of the modes
% of the imm object
ws = get_ws(nummodes, turnrate);

% immo.modes(i).A is the dynamics matrix that
% advances the state by Tsamp (= 0.5) sec.
for(i = 1:(nummodes))
imo.modes(i).A = ...
from here, we predict again. Make sure
% to update immo1fothes based on the new
% state.
%]
160 [x2pl, P2pl, immo2plegs] = ...
161 imm_predict(immo1flegs);
162
163 immo1fothes = update_tpm(fig, immo1fothes);
164 [x2pt, P2pt, immo2pthes] = ...
165 imm_predict(immo1fothes);
166
167 %
168 % Show the individual filters’ results to see
169 % where the possible motions are.
170 %
171 for(i = 1:nummodes)
172 plot(immo2plegs.modes(i).x(1), immo2plegs.modes(i).x(2), 'bs');
173 plot(immo2pthes.modes(i).x(1), immo2pthes.modes(i).x(2), 'gx');
174 end
175
draw_axes(fig);
176 % disp(['Press a key to show ',...
177 % 'the second filtered result.']);
178 nameout = sprintf('%s_4_modes.eps', name);
179 title('Step 2, Individual Modes’ Estimates');
180 save_fig(fig, nameout);
181
182 % pause;
183 delete(fig);
184 end

tests/gen_figures.m

close all
clear all
clc

kf_test
evaluate_state_test
imm_test
imm_test2
distance_test

close all
clear all
clc

tests/imm_test.m

close all
clear all
clc

added_path = genpath('../');
addpath(added_path);

nummodes = 5;
T = 0.01;
NSec = 0.35;
% NSec = 0.5;
turnrate = 1.42;

kobj = struct(...
'x', [10; 10; 0; 10], ...
'P', diag([0.01, 0.03, 0.003, 0.003]), ...
'A', get_turn_matrix(0, 0.5), ...
'Q', diag([.1, .1, .1, .1]), ...
'z', [10.5; 10.5], ...
'H', [1, 0, 0, 0; 0, 1, 0, 0], ...
'R', [.3, .3]);

immo = struct(...
'modes', repmat(kobj, nummodes, 1), ...
'tpm', ones(nmmodes) / (nummodes), ...
'mus', ones([nummodes, 1]) / (nummodes));
For(i = 1:(nummodes))
 immo.modes(i).A = ...
end

immobj_test(immo);

fig = figure();
hold on;
axis equal;
grid on;
for(i = 1:length(immo.mus))
 xo = immo.modes(i).x;
 for(k = 1:round(NSec/Tdraw))
 alpha = k / round(NSec/Tdraw);
 xn = Adraws{i} * xo;
 plot([xo(1), xn(1)], [xo(2), xn(2)], ...
 'Color', alpha*[1,1,1]);
 xo = xn;
 end
end
plot(xo(1), xo(2), 'go', ...
 'LineWidth', 1.5);

rmpath(added_path);
for(i = 1:length(immo2.mus))
 x = immo2.modes(i).x;
 plot(x(1), x(2), 'bx', ...
 'LineWidth', 2);
end

plot(xkp1(1), xkp1(2), 'bo', ...
 'LineWidth', 2, 'MarkerSize', 10);
plot(
 [xkp2(1), xkp2(2)], ...
 [xkp3(2)], 'b--');
plot(
 [zold(1), znew(1)], ...
 [zold(2), znew(2)], 'r');
axis tight;
axis equal;
title('Third Step Predicted');
name = '../saves/three_step_predicted.eps';
save_fig(fig, name);
close(fig);
```matlab
kobjn = kobjs{modelnumber};

pk = zeros( size( xrange ) );
pkp1 = zeros( size( xrange ) );
pz = zeros( size( xrange ) );

xkp1e = kobjn.A * kobj.x;

for( i = 1:numel(xrange) )
    pk(i) = gauss( xrange(i), kobj.x(1), kobj.P(1,1) );
    pkp1(i) = gauss( xrange(i), xkp1e(1), Pkp1e(1,1) );
    pz(i) = gauss( xrange(i), kobjn.x(1), kobjn.P(1,1) );
end

plots( xrange, pk, 'k', 'LineWidth', 1.5 );
plot( xrange, pkp1e, 'g', 'LineWidth', 1.5 );
plot( xrange, pz, 'r', 'LineWidth', 1.5 );
plot( xrange, pkp1, 'Color', [1, .6, 0], 'LineWidth', 1.5 );

h = legend( '$\hat{x}_{~~0}$', '$\hat{x}_{~~1|0}$', '$z_{~~1}$', '$\hat{x}_{~~1|1}$', 'Location', 'best' );
set( h, 'Interpreter', 'Latex' );

xlabel( 'x' );
ylabel( 'P(x)' );
title( titlestring{modelnumber} );

name = sprintf( '../saves/kf_%d.eps', modelnumber );
save_fig( fig, name );

close( fig );

rmpath( added_path );
```

```matlab
tests/tpm_test.m
```

```matlab
tests/turn_test.m
```

```matlab
tests/z_test.m
```
function check_screenshot(fig)

handles = guidata(fig);
key_p = key_downed(fig, {'p'});
if(handles.paused && key_p)
 l = legend(handles.filters_ph, ...
 handles.filters_names);
 s = get_datestr;
 name = ['saves/', s, '.eps'];
 save_fig(fig, name);
 disp('Done!');
end

function draw_axes(fig)

handles = guidata(fig);
x = handles.target_x;
y = handles.target_y;
if(handles.offset_view)
t = handles.target_theta;
alpha = handles.offset_amount;
x = v * cos(t) * alpha + x;
y = v * sin(t) * alpha + y;
end
viewwidth = handles.viewwidth;
xl = x - viewwidth;
xr = x + viewwidth;
yd = y - viewwidth;
yu = y + viewwidth;
xticks = round(xl):round(xr);
xticks = xticks(find(mod(xticks, 2)));
yticks = round(yd):round(yu);
yticks = yticks(find(mod(yticks, 2)));
axis equal;
end

function draw_filter(fig)

handles = guidata(fig);
if(handles.filter_running)
 lw = 1;
 nmeas = length(handles.filter_zs);
x0count = handles.filter_init_count;
 offset = - x0count;
zlow = handles.count_meas_low + offset;
zcount = handles.count_meas + offset;
zhig = handles.count_meas_high + offset;
zlow = max(1, zlow);
zcount = max(1, zcount);
zhig = max(1, zhig);
zlow = min(nmeas, zlow);
zcount = min(nmeas, zcount);
zhig = min(nmeas, zhig);
if(zlow <= 1)
 x0 = handles.filter_x0;
 plot(x0(1), x0(2), 'ro', 'MarkerSize', 12);
end
zn = handles.filter_zn(zlow:zhig,:);
plot(zn(:,1), zn(:,2), 'ro');
plot(zn(:,1), zn(:,2), 'r');
ph = [];

function draw_driver(fig)

hold on;
draw_measurement(fig);
draw_target(fig);
draw_view(fig);
for(i = 1:handles.num_filters)
 xs = cat(2, ...
 handles.filters_e(i,zlow:zhigh).x);
 plot(xs(:,1), xs(:,2), 'x', ...
 'LineWidth', lw, ...
 'Color', handles.filters_colors{i});
 ph(i) = plot(xs(:,1), xs(:,2), ...
 'LineWidth', lw, ...
 'Color', handles.filters_colors{i});
end

dx = cat(2, ...
 handles.filters_p(i,zlow:zhigh).x);
plot(xp(zct,1), xp(zct,2), 's', ...
 'LineWidth', lw, ...
 'Color', handles.filters_colors{i});
plot([xs(zct,1), xp(zct,1)],
 [xs(zct,2), xp(zct,2)], '--', ...
 'LineWidth', lw, ...
 'Color', handles.filters_colors{i});
end
handles.filters_ph = ph;
end

guidata(fig, handles);

update/draw_measurement.m
function draw_measurement(fig)
handles = guidata(fig);
x = handles.meas_last_x;
y = handles.meas_last_y;
t = etime(clock, handles.T_last_measurement);
alpha = exp(- 3 * t / T);
plot(x, y, 'o', 'Color', [.25, 1, .25], ...
 'MarkerSize', 16+alpha, ...
 'LineWidth', 2);

update/draw_objects.m
function draw_objects(fig)
hold on;
draw_measurement(fig);
draw_target(fig);
draw_view(fig);

draw_obstacle_centers = false;
end

if(draw_obstacle_centers)
x_obs = handles.obstacles_x;
y_obs = handles.obstacles_y;
plot(x_obs, y_obs, 'rx');
end

x_marks = handles.obstacle_marks_x;
y_marks = handles.obstacle_marks_y;
plot(x_marks, y_marks, 'k.');

update/draw_passenger.m
function draw_passenger(fig)
hold on;
draw_obstacles(fig);
draw_tracks(fig);
draw_target(fig);
draw_filter(fig);
draw_axes(fig);

update/draw_target.m
function draw_target(fig)
handles = guidata(fig);
x = handles.target_x;
y = handles.target_y;
theta = handles.target_theta;
A = 1;
x_t = x + A*cos(theta);
y_t = y + A*sin(theta);
plot(x, y, 'bo', 'LineWidth', 2, ...
 'MarkerFaceColor', [1,1,1]);
plot(x_t, y_t, 'b.', 'MarkerSize', 12);

xs = handles.obstacles_x;
ys = handles.obstacles_y;
rs = handles.obstacles_r;
alpha = .2;
draw_obstacle_dists = true;
if(isfield(handles, 'filter_running'))
 draw_obstacle_dists = false;
end
end

if(draw_obstacle_dists)
for(i = 1:numel(rs))
dx = xs(i) - x;
dy = ys(i) - y;
d = sqrt(dx^2 + dy^2) - rs(i);
theta = atan2(dy, dx);
xp = x + d*alpha*cos(theta);
yp = y + d*alpha*sin(theta);
if(d < 0)
 plot(xp, yp, 'rx', 'LineWidth', 2, ...
 'MarkerSize', 12);
else
 plot(xp, yp, 'r.', 'MarkerSize', 10);
end
end

update/draw_tracks.m

function draw_tracks(fig)
handles = guidata(fig);
xm = handles.truth_meas{2};
ym = handles.truth_meas{3};
ml = handles.count_meas_low;
hm = handles.count_meas_high;
xs = handles.truth_state{2};
ys = handles.truth_state{3};
sl = handles.count_state_low;
hs = handles.count_state_high;
if(~handles.filter_running)
 plot(xm, ym, 'go');
end
plot(xs(sl:sh),ys(sl:sh), 'Color', .4*[1,1,1]);

update/draw_view.m

function draw_view(fig)
handles = guidata(fig);
s = ['Spacebar Accelerates. ', ...
 'Press the Escape Key to Exit.'];
xlabel(s);
age = handles.target_theta * 180 / pi;
s = sprintf('Velocity: %3.2f m/s at %.0f deg', ...
 handles.target_v, angle);
title(s);
draw_obstacles(fig);
draw_axes(fig);

update/save_measurement.m

% target_T_prev = tprev
% T_last_measurement + T_measurement = tnowm
% T_last_draw = tlastd
% function save_measurement(fig)
handles = guidata(fig);
tlastm = handles.T_last_measurement;
tprev = handles.target_T_prev;
tlastd = handles.T_last_draw;
tenum = etime(tlastd, tlastm);
if(tenum > handles.T_measurement)
 tnowm = adseconds(tlastm, ...
 handles.T_measurement);
 alpha = etime(tnowm, tprev) / ...
 etime(tlastd, tprev);
s = ['Time: %0.3f, tprev: %0.3f,', ...
 'tnowm: %0.3f, tlastd: %0.3f, ', ...
 'alphanum: %0.3f, alphaden: %0.3f
']
fprintf(s, ...
 etime(clock, handles.T_start), ...
 etime(tprev, handles.T_start), ...
 etime(tnowm, handles.T_start), ...
 etime(tlastd, handles.T_start), ...
 etime(tnowm, tprev), ...
 etime(tlastd, tprev));
 x1 = handles.target_x_prev;
y1 = handles.target_y_prev;
v1 = handles.target_v_prev;
theta1 = handles.target_theta_prev;
xd1 = v1*cos(theta1);
 yd1 = v1*sin(theta1);
x2 = handles.target_x;
y2 = handles.target_y;
v2 = handles.target_v;
theta2 = handles.target_theta;
xd2 = v2*cos(theta2);
yd2 = v2*sin(theta2);
x = (1-alpha)*x1 + alpha*x2;
y = (1-alpha)*y1 + alpha*y2;
xd = (1-alpha)*xd1 + alpha*xd2;
yd = (1-alpha)*yd1 + alpha*yd2;
fprintf(handles.measurement_savefile, ...
 '%03.3f,%f,%f,%f,%f
', ...
 etime(tnowm, handles.T_start), ...
 x, ...
 y, ...
 xd, ...
 yd);

74 of 83
handles.T_last_measurement = tnowm;
handles.meas_last_x = handles.target_x;
handles.meas_last_y = handles.target_y;
end
guidata(fig, handles);

function save_state(fig)
handles = guidata(fig);
te = etime(handles.T_last_draw, ...
 handles.T_start);
handles.T_since_start = te;
handles.count = handles.count + 1;
fprintf(handles.state_savefile, ...
 '%03.3f,%f,%f,%f,%f,%f\n', ...
 te, ...
 handles.target_x, ...
 handles.target_y, ...
 handles.target_v, ...
 handles.target_theta, ...
 handles.target_dtheta);
guidata(fig, handles);

function update_camera_counts(fig)
handles = guidata(fig);
xwindow = handles.T_window;
zwindow = handles.samp_time / 2;
% %
% calculate counters
% %
zcount = find_adjacent_count(...
 handles.T_simulation, ...
 handles.count_meas, ...
 handles.truth_meas{1});
zcount_low = find_adjacent_count(...
 handles.T_simulation - 3*zwindow, ...
 handles.count_meas, ...
 handles.truth_meas{1});
zcount_high = find_adjacent_count(...
 handles.T_simulation + 1*zwindow, ...
 handles.count_meas, ...
 handles.truth_meas{1});

xcount = find_adjacent_count(...
 handles.T_simulation, ...
 handles.count_state, ...
 handles.truth_state{1});
xcount_low = find_adjacent_count(...
 handles.T_simulation - xwindow, ...
 handles.count_state, ...
 handles.truth_state{1});
xcount_high = find_adjacent_count(...
 handles.T_simulation + xwindow, ...
 handles.count_state, ...
 handles.truth_state{1});
if(home)
 handles.viewwidth = handles.viewwidth0;
end
handles.viewwidth = 5*T * (pgdn - pgup) + ...
 handles.viewwidth;
if(home)
 handles.viewwidth = handles.viewwidth0;
end
if(space > 0)
 handles.T_simulation_mult = ...
 T * (up - down) + ...
 handles.T_simulation_mult;
Tmult = exp(handles.T_simulation_mult);
if(space > 0)
handles.paused = ~handles.paused;
end
if(~handles.paused)
handles.T_since_start = T + ...
handles.T_since_start;
handles.T_simulation = handles.T_simulation + ...
T * Tmult;
else
handles.T_simulation = ...
handles.T_simulation + ...
T + (right - left) * Tmult;
if(key_i)
guidata(fig, handles);
draw_passenger(fig);
xlabel('Filtering!');
drawnow;
init_filter(fig);
handles = guidata(fig);
report_results(fig);
end
if(key_z)
update_filter(fig);
handles = guidata(fig);
end
if(handles.T_simulation < ...
handles.T_simulation_max)
handles.T_simulation = ...
handles.T_simulation_min;
elseif(handles.T_simulation > ...)
handles.T_simulation = ...
handles.T_simulation_max;
handles.paused = true;
end
if(key_t)
if(~handles.filter_running)
handles.T_simulation = ...
handles.T_simulation_min;
else
handles.T_simulation = ...
handles.filter_t0;
end
end
if(key_s)
handles.T_simulation_mult = 0;
end
if(key_f)
if(isfield(handles, 'filter_x0'))
handles.filter_running = ...
end
end
s = sprintf(...
[’%2.2f / %2.2f sec,’ ...
’ multiplier = %2.2f x’], ...
handles.T_simulation, ...
handles.T_simulation_max, ...
Tmult);
title(s);
handles.T_last_draw = clock;
guidata(fig, handles);
}

update/update_camera_view.m
function update_camera_view(fig)
handles = guidata(fig);
xcount = handles.count_state;
zcount = handles.count_meas;
sfilter = ’’;
s = sprintf(...
’State Count: %d, Meas Count: %d%s’, ...
xcount, zcount, sfilter);
xlabel(s);
ylabel(handles.case_time);
if(xcount < handles.count_state_max)
t = handles.truth_state{1}(xcount:xcount+1);
x = handles.truth_state{2}(xcount:xcount+1);
y = handles.truth_state{3}(xcount:xcount+1);
v = handles.truth_state{4}(xcount:xcount+1);
theta = handles.truth_state{5}(xcount:xcount+1);
alpha = (handles.T_simulation - t(1)) / ...
(t(2) - t(1));
handles.target_x = (1-alpha)*x(1) + alpha*x(2);
handles.target_y = (1-alpha)*y(1) + alpha*y(2);
handles.target_v = (1-alpha)*v(1) + alpha*v(2);
handles.target_theta = theta(1);
else
handles.target_x = ...
handles.target_y = ...
handles.target_v = ...
handles.target_theta = ...
end
end
if(key_s)
handles.T_simulation_mult = 0;
end
if(key_f)
if(isfield(handles, 'filter_x0'))
handles.filter_running = ...
end
end
update/update_filter.m
function update_filter(fig)
update_filter_meas(fig);

76 of 83
function update_filter_meas(fig)

handles = guidata(fig);

if(handles.filter_running)
 zn = handles.filter_zn;
 nmeas = length(zn);
 s1 = '';
 tstart = clock;
 for(i = 1:nmeas)
 s2 = sprintf('%.3f', i / nmeas);
 print_progress(s1, s2);
 s1 = s2;
 z = zn(i,:);
 for(f = 1:handles.num_filters)
 % get the imm object
 immo = handles.filters_immos(f);
 % filter the imm object
 immo = handles.filters_funs{f}(fig, immo, z);
 % save the imm object after filtering
 handles.filters_immos(f) = immo;
 % save the imm object's parameters
 handles.filters_e(f,i).x = immo.x;
 % handles.filters_e(f,i).mus = immo.mus;
 % handles.filters_e(f,i).P = immo.P;
 % handles.filters_e(f,i).tpm = immo.tpm;
 % predict the imm object
 immo = handles.filters_funs{f}(fig, immo);
 % save the predicted result's parameters
 handles.filters_p(f,i).x = immo.x;
 % handles.filters_p(f,i).mus = immo.mus;
 % handles.filters_p(f,i).P = immo.P;
 % handles.filters_p(f,i).tpm = immo.tpm;
 end
 end
 tend = clock;
 % s2 = sprintf(... ...
 % 'Filtered %d Measurements\n', nmeas);
 % s = '';
 % NF = handles.num_filters;
 % if(NF > 1) s = 's'; end
 % fprintf(['using %d filter%s\n', ...
 % 'in %.3f Seconds\n', ...
 % '(%d Seconds/Measurement)\n'], ...
 % NF, s, delta_t, delta_t/nmeas);
end
 % print_progress(s1, s2);
 % delta_t = etime(tend, tstart);
end
 % guidata(fig, handles);

function update_key_changes(fig)

handles = guidata(fig);
old_statuses = handles.key_statuses;
update_key_statuses(fig);
handles = guidata(fig);
new_statuses = handles.key_statuses;
handles.key_changes = new_statuses - old_statuses;
 % guidata(fig, handles);

function update_key_statuses(fig)

handles = guidata(fig);
tmin = handles.tmin;
tnow = clock;
for(i = 1:numel(handles.keys))
end

function update_filter_meas.m

function update_key_changes.m

function update_key_statuses.m
tu = handles.key_uptimes{i};

if(etime(td, tu) > 0)
 handles.key_statuses(i) = 1;
elseif(etime(tnow, tu) > tmin)
 handles.key_statuses(i) = 0;
end

guidata(fig, handles);

function update_passenger(fig)
update_camera_time(fig);
update_camera_counts(fig);
update_camera_view(fig);

function update_target(fig)
handles = guidata(fig);

T_last = handles.T_last_draw;
T = etime(clock, T_last);

x = handles.target_x;
y = handles.target_y;
v = handles.target_v;
dv = handles.target_dv;

theta = handles.target_theta;
dtheta = handles.target_dtheta;
ddtheta = handles.target_ddtheta;

handles.target_x_prev = x;
handles.target_y_prev = y;
handles.target_v_prev = v;
 handles.target_theta_prev = theta;
 handles.target_T_prev = T_last;

cv = handles.target_cv;
cdtheta = handles.target_cdtheta;

% Acceleration forces
if(space)
v = v + dv*T;
end

% Friction forces
v = v - cv*T*v;
dtheta = dtheta - cdtheta*T*dtheta;

% Updates
theta = theta + dtheta*T;
x = x + v*cos(theta)*T;
y = y + v*sin(theta)*T;

% Updates
handles.target_x = x;
handles.target_y = y;
handles.target_v = v;
handles.target_dtheta = dtheta;
handles.T_last_draw = addseconds(T_last, T);
guidata(fig, handles);

function update_viewing_plot(fig)
open_last_run(fig);
handles = guidata(fig);
set(handles.edit, 'String', handles.case_time);
guidata(fig, handles);

init_truths(fig);
init_viewing_plot(fig);

if(isfield(handles, 'edit_tmin'))
s = sprintf('%4.2f', handles.T_simulation_min);
set(handles.edit_tmin, 'String', s);
end

if(isfield(handles, 'edit_tmax'))
s = sprintf('%4.2f', handles.T_simulation_max);
set(handles.edit_tmax, 'String', s);
end
if(isfield(handles, 'nruns'))
 s = handles.nruns;
if(isfield(handles, 'edit_nruns'))
 set(handles.edit_nruns, 'String', s);
end
end

utility/addseconds.m

% %
% v = addseconds(t, T)
% t is a date vector
% T is the time in seconds to add
% v is the resulting date vector
% %
function v = addseconds(t, T)
 tnum = datenum(t);
vnum = addtodate(tnum, floor(1000*T), ...
 'millisecond');
v = datevec(vnum);

utility/append_db.m

function append_db(s)
 fname = 'runs_db.csv';
 A = '';
 if(exist(fname, 'file'))
 fin = fopen(fname);
 A = textscan(fin, '%s');
 fclose(fin);
 end
 A = unique({A{:}, s});
 fout = fopen(fname, 'w+');
 fprintf(fout, '%s
', A{i});
 fclose(fout);

utility/display_keys.m

function s = display_keys(fig)
 handles = guidata(fig);
 s = '';
 for(i = 1:numel(handles.keys))
 s = sprintf('%s %s is %d\n', s, ...
 handles.keys(i), ...
 handles.key_statuses(i));
 end

utility/enable_all.m

function enable_all(fig, b, state)
 handles = guidata(fig);
 f = fieldnames(handles);
 for(i = 1:numel(f))
 if(strfind(f(i), b))
 set(getfield(handles, f{i}), ...
 'Enable', state);
 end
 end

utility/find_adjacent_count.m

% %
% T is the current time.
% cin is a good guess of which index of
% ts is closest to Tnow.
% ts is a vector of times.
% The output is cout.
% cout has the property that
% ts(cout) < Tnow < ts(cout + 1)
% %
function cout = find_adjacent_count(T, cin, ts)
 if(cin < 1)
 cin = 1;
 elseif(cin > numel(ts))
 cin = numel(ts)
 end
 t = ts(cin);
cmax = length(ts);
tmax = ts(cmax);
for(i = 1:1:tnum(A))
 fprintf(fout, '%s\n', A{i});
end
fclose(fout);
if(cn < cmax)
 cn = cn + 1;
 tn = ts(cn);
end
if(T < tn)
 cin = cn;
 if(cin > 1)
 cin = cin - 1;
 end
elseif(T == tn)
 cin = cn;
end
end
else
 % Check if there is a previous data point, and check to see if the current time has preceded the current data point.
if(T < ts(1))
 cin = 1;
else
 while(tn > T && cn > 1)
 if(cin > 1)
 cn = cn - 1;
 tn = ts(cn);
 end
 if(T >= tn)
 cin = cn;
 end
 end
end
end
end
end
end
cout = cin;

utility/get_datestr.m
function s = get_datestr()
 s = datestr(now, 'yyyy.mm.dd.HH.MM.SS');

utility/get_running.m
function running = get_running(fig)
 handles = guidata(fig);
 running = handles.running;

utility/key_changed.m
function changed = key_changed(fig, keys)
 numkeys = numel(keys);
 handles = guidata(fig);
 changed = zeros(size(keys));
 for(i = 1:handles.numkeys)
 for(k = 1:numkeys)
 if strcmp(handles.keys{i}, keys{k})
 changed(k) = handles.key_changes(i);
 end
 end
 end
end
utility/key_down.m
function down = key_down(fig, keys)
 numkeys = numel(keys);
 handles = guidata(fig);
 down = zeros(size(keys));
 for(i = 1:handles.numkeys)
 for(k = 1:numkeys)
 if strcmp(handles.keys{i}, keys{k})
 down(k) = handles.key_statuses(i);
 end
 end
 end
end
utility/key_downed.m
function k = key_downed(fig, s)
k = key_down(fig, s) && key_changed(fig, s);
utility/key_tracker_down.m
function key_tracker_down(evt, down, fig)
 handles = guidata(fig);
 key_name = evt.Key;
 disp(key_name);
 for(i = 1:handles.numkeys)
 if strcmp(key_name, handles.keys{i})
 if(down)
 handles.key_downtimes{i} = clock;
 else
 handles.key_uptimes{i} = clock;
 end
 end
 end
 guidata(fig, handles);
function make_results_table(robj)

resdir = robj.resdir;
zes = robj.zes;
xes = robj.xes;
xis = robj.xps;
zhalf = robj.zhalf;
nruns = length(zes);
NF = robj.NF;
nbase = robj.namebase;
nbasez = sprintf('%s_%4.3f', ...
 namebase, zhalf);

foutname = sprintf('%s%s_mf.tex', ...
 resdir, namebasez);
figname = [namebase, '.pdf'];
tabname = [namebasez, '_tab.tex'];
tabnamef = [resdir, tabname];
nrunsname = [resdir, namebasez, '_nruns.tex'];

fout = fopen(foutname, 'w');

fprintf(fout, ...
 '\begin{minipage}{.45\textwidth}', ...
 '\begin{center}', ...
 '\includegraphics[width=.8\textwidth]', ...
 figname, ...
 '\end{center}', ...
 '\end{minipage}');

fprintf(fout, '\\ \medskip
');

fprintf(fout, ...
 '\begin{minipage}{.45\textwidth}', ...
 '\begin{tabular}{');

for(i = 1:(NF+2))
 fprintf(fout, ' c');
end

fprintf(fout, ' c c c');

fprintf(fout, '%s
%s', ...
 ' }', ' \toprule');

names = { 'midrule Measurements', ...
 robj.names{:});

s = {};
for(row = 1:(NF+2))
 for(col = 1:3)
 if(col == 1)
 s{row,col} = sprintf('s', ...
 'Estimation');
 elseif(row == 2)
 s{row,col} = sprintf('s%.7f\textbf{s}', ...
 '(bf ', mean(zes), ')');
 else
 s1 = '';
 s2 = '';
 x = mean(xes(:,row-2));
 if(nxes == 1)
 if(x == min(mean(xes), mean(zes)))
 s1 = '{bf ';
 s2 = '}';
 end
 s{row,col} = sprintf('s%.7f%s', ...
 s1, x, s2);
 end
 end
end
for(row = 1:nrow)
 for(col = 1:ncol)
 es = ' & ';
 fprintf(ftout, ' s');
end

fprintf(ftout, '
');

for(col = 1:ncol)
 if(col == ncol)
 es = ' \';
end
fprintf(ftout, 'c\\n\input{%s}
', tabname);

fclose(tfout);
utility/open_last_run.m

function open_last_run(fig)
1 handles = guidata(fig);
2 oldfields = { ...
3 'T_simulation_max', ...
4 'T_simulation_min', ...
5 'nruns', ...
6 'zrhalf' };
7 for(i = 1:numel(oldfields))
8 if(isfield(handles, oldfields{i}))
9 handles = rmfield(handles, oldfields{i});
10 end
11 end
12 d = ',';
13 last_run = fopen('last_run.csv', 'r');
14 scanned = fscanf(last_run, '%s');
15 case_time = scanned;
16 sf = strfind(scanned, d);
17 if(numel(sf) >= 1)
18 case_time = scanned(1:(sf(1)-1));
19 scanned = scanned((sf(1)+1):end);
20 end
21 A = textscan(scanned, '%f', 'Delimiter', d);
22 handles.T_simulation_min = A{1}(1);
23 if(numel(sf) >= 2)
24 handles.T_simulation_max = A{1}(2);
25 end
26 if(numel(sf) >= 3)
27 handles.nruns = sprintf('%d', A{1}(3));
28 end
29 if(numel(sf) >= 4)
30 handles.zrhalf = A{1}(4);
31 end
32 end
33 handles.case_time = case_time;
34 guidata(fig, handles);

utility/print_progress.m

function print_progress(s1, s2)
1 n = numel(s1);
2 for(i = 1:n)
3 fprintf('\b');
4 end
5 fprintf('%s
%s
%s
%s
%s', ...
6 '\bottomrule', ...
7 '\end{tabular}', ...
8 s, ...
9 '\end{center}', ...
10 '\bigskip', ...
11 '\end{minipage}');
12 fclose(fout);

utility/query_filter.m

% Nothing here anymore...

utility/save_fig.m

function save_fig(fig, name)
1 disp(name);
2 set(fig, ...
3 'PaperUnits', 'inches', ...
4 'PaperPosition', [0 0 6 4], ...
5 'PaperPositionMode', 'manual');
6 saveas(fig, name, 'epsc');
7 system(['epstopdf ', name]);
8 system(['rm ', name]);

utility/set_addedpath.m

function set_addedpath(fig, addedpath)
1 handles = guidata(fig);
2 handles.addedpath = addedpath;
3 guidata(fig, handles);

utility/set_running.m

function set_running(fig, val)
1 handles = guidata(fig);
2 handles.running = val;
3 guidata(fig, handles);

viewing.m

close all
clear all
clc
5 addedpath = genpath('.');
6 addpath(addedpath);
7 fig = figure();
8 set_addedpath(fig, addedpath);
9 set(fig, 'CloseRequestFcn', ...
10 'viewing_close(fig)');
11 init_viewing(fig);
12 update_viewing_plot(fig);

82 of 83
Rastin Rastgoufard has lived in New Orleans his whole life. He spent more time obtaining his Master’s degree (2012) than he did his undergraduate degree, but that was largely due to the fact that he finished his Bachelor’s degree (2008) at Tulane University in only three years. He learned a lot and very much enjoyed his time in the graduate program of the University of New Orleans. He spends his free time by dancing, playing music, playing video games, programming, or studying engineering.