Fall 12-20-2013

Rocket Motor Diagnostics using Tunable Diode Laser Spectroscopy for Chemically Non-Reacting Air/Water Vapor Mixture in Internal Flow

Wesley Carleton
wcarleto@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td
Part of the Mechanical Engineering Commons

Recommended Citation
https://scholarworks.uno.edu/td/1729

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UNO. It has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. The author is solely responsible for ensuring compliance with copyright. For more information, please contact scholarworks@uno.edu.
Rocket Motor Diagnostics using Tunable Diode Laser Spectroscopy for Chemically Non-Reacting Air/Water Vapor Mixture in Internal Flow

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
In partial fulfillment of the
Requirements for the degree of

Master of Science
In
Engineering
Mechanical Engineering

by
Wesley Carleton
B.S., University of Colorado at Colorado Springs, 2010
December 2013
Dedicated to my parents, Kim Campbell and Kurt Carleton
Acknowledgements

I would like to emphasize the contribution from my major professor Dr. K. Akyuzlu. Without his knowledge and mentorship this work could not be completed. I would also like to thank my committee members Dr. T. Wang, Dr. B. Taravella, Dr. Dr. D. Hui, and Dr. U. Chakravarty.

Additionally, I would like to thank Dr. StCyr for facilitating the donation of the TDLAS equipment and D. Coote from Stennis Space Center for donating this equipment to the UNO Combustion Lab. A. Fahrland was also instrumental in the operation and understanding of the TDLAS equipment and M. Chidurala was indispensible in the construction of the experimental setup.
Table of contents

List of Tables .. vi
List of Figures ... vii
Nomenclature .. ix
Abstract .. x

1. Introduction .. 1

2. Literature Survey .. 3

3. Experimental Setup .. 7
 3.1. Theory of Absorption Spectroscopy ... 7
 3.2. Theory of Tunable Diode Laser Absorption Spectrometry .. 10
 3.3. Testbed and Data Acquisition System/Instrumentation ... 13

4. Experimental Procedure ... 22
 4.1. TDLAS Settings ... 22
 4.2. Operating Conditions ... 23

5. Numerical Solutions .. 24
 5.1. CFD Mathematical Model .. 24
 5.2. CFD Settings .. 27

6. Results .. 28
 6.1. Experiment 1, Run 1 ... 28
 6.2. Experiment 2, Run 2 ... 31
 6.3. Experiment 2, Run 6 ... 33
 6.4. Selection Criteria for Results .. 34
 6.5. Modifications for Improvement .. 36
6.6. TDLAS Results...38
6.7. Numerical Results..41
6.8. Comparison of Results..43
6.9. Error Analysis...44
7. Conclusion ...46
8. Recommendations...47

References ...48

Appendices ...52

A. Results from Numerical Studies ...52
B. Hybrid Rocket Motor Simulator Pictures ..55
C. Hybrid Rocket Motor Simulator Models ...58
D. Hybrid Rocket Motor Simulator Engineering Drawings ...60
E. Instrument Calibration Curves ...68
F. Mass Flow Rate in Relation to Pressure Difference ...71
G. Equipment List...73

Vita ...76
List of Tables

1. Candidate H_2O line intensity pairs for temperature measurements between 1-2 µm region from HITRAN 2004 ... 13
2. Matrix Showing Study to Determine Mesh Independence ... 25
3. Numerical Settings of Commercial Package (Fluent) ... 27
4. Experimental Matrix Showing Operating Conditions .. 28
5. Experiment 2 Operating Conditions ... 31
6. Tabulated Data for Figure 26 ... 35
7. Operating Conditions for Final 3 Cases ... 38
8. Tabulated Numerical Results ... 43
9. Result Comparison for Final 3 Chosen Cases .. 43
List of Figures

1. Absorption Spectra of Water Vapor at Room Temperature ...11
2. Expanded View of Absorption Spectra for H_2O in the 1.4μm region from the HITRAN 2004 database for $P=1$atm, 10% H_2O, 90% Air ..12
3. Flow Diagram ..14
4. Super Heated Water Vapor Generator ...15
5. Test Stand (Top View) ..15
6. Test Stand (Side View) ...16
7. Test Stand (Front View) ..16
8. Quartz Containment ..17
9. Data Acquisition System Instrumentation Diagram ...17
10. Tunable Diode Laser Absorption Spectrometer Instrumentation Diagram18
11. Pictorial View of Testbed ..18
12. Experimental layout showing placement of laser, rocket simulator, and DAQ19
13. Experimental layout showing test section, transmitter, and receiver (Top View)19
14. Experimental layout showing test section, transmitter, and receiver (Side View)20
15. Experimental layout showing instrumentation ...20
16. Experimental layout showing instrumentation ...21
17. Cross Sectional Mesh ...26
18. Isometric View of Mesh ...26
19. Experiment 1, Run 1: Temperature v. Time (TDLAS) ..29
20. Experiment 1, Run 1: Water Vapor Molar Fraction v. Time (TDLAS)30
21. Experiment 2, Run 3: Temperature v. Time (TDLAS) ..31
22. Experiment 2, Run 3: Water Vapor Molar Fraction v. Time (TDLAS)32
23. Experiment 2, Run 6: Temperature v. Time (TDLAS) ...33
24. Experiment 2, Run 6: Water Vapor Molar Fraction v. Time (TDLAS)34
25. Experiment 2, Run 7: Water Vapor Molar Fraction v. Time (TDLAS)35
26. DAQ thermocouple results for Experiment 2, Run 7 showing response to steam injector ..36
27. Experiment 3, Run 1: Water Vapor Molar Fraction v. Time (TDLAS)38
28. Experiment 3, Run 1: Temperature v. Time (TDLAS) ..39
29. Experiment 3, Run 5: Temperature v. Time (TDLAS) ..39
30. Experiment 3, Run 7: Temperature v. Time (TDLAS) ..40
31. Fluent Velocity Distribution before Observation Port ...41
32. Fluent Temperature Distribution before Observation Port42
33. Fluent Axial Temperature Profile ..42
34. Comparison of TDLAS and Thermocouples for 3 Chosen Cases44
Nomenclature

Symbols

\(A_c \) cross sectional area
\(AR \) channel aspect ratio (L/D)
\(C_f \) friction coefficient
\(c_p \) specific heat at constant pressure
\(D \) diameter of the pipe
\(t \) thickness of the pipe
\(F \) frictional losses, shape factor
\(I_v \) beam intensity
\(\nu \) wavelength
\(k \) thermal conductivity
\(c \) speed of light
\(l \) path length
\(S(T) \) line strength
\(N \) number density
\(h \) planck constant
\(L \) axial length of the channel
\(m \) mass flow rate
\(n \) Stoichiometric constant
\(p \) pressure of the gas
\(Pr \) Prandtl number
\(Ma \) Mach number
\(q \) heat flux
\(R \) gas constant
\(Re \) Reynolds number
\(T \) time
\(T \) temperature
\(u_x \) axial velocity
\(r \) radial coordinate
\(x \) axial coordinate

Greek Symbols

\(\varepsilon \) turbulence dissipation function, roughness factor
\(\mu \) absolute viscosity
\(\nu \) kinematic viscosity
\(\rho \) density
\(\tau \) shear stress
Abstract

This research is for the implementation of non-intrusive measurement techniques in the study of high temperature pipe flow. A low pressure, laboratory scale hybrid rocket motor simulator was built to achieve high temperatures with various gases. A quartz test section was designed, built, and implemented into the existing test setup to accommodate the laser beam of the existing Tunable Diode Laser Absorption Spectrometer (TDLAS) system which was designed to observe water vapor. A super-heated water vapor injector was designed to obtain the desired water vapor concentrations. Flow characteristics were simultaneously recorded using the existing TDLAS system and the DAQ system for temperatures for later comparison. A numerical study using a commercial CFD package was used to predict the flow characteristics at certain locations for experimental comparison. Based on this study, it is concluded that the TDLAS can be used to make real time temperature measurements of heated internal gas flows.

Keywords: Tunable Diode Laser Absorption Spectroscopy, Water Vapor temperature measurements in the 1.4μm near infrared
Chapter 1

Introduction

Absorption spectroscopy has been around since the early 1970’s for CO emission values in automobiles and industrial plants. Soon this technology was turned towards academic research in high-speed flow fields. Diode lasers became the main focus of absorption spectroscopy due to their robust nature, low cost, versatility, and ability to integrate with a fiber optic system. They are also able to achieve consistent measurements in harsh flow environments generally associated with turbulent chemically reacting flows.

Diode-laser absorption spectroscopy techniques have recently become of interest to a multitude of high-temperature combustion applications due to the technique’s ability to capture parameters without affecting flow behavior. Studies have been performed on external flows simulating of PDE’s, methane combustion, wind tunnels, etc.

The goal of this thesis is to adopt this technique in internal pipe flow where high temperatures and high velocities are experienced. Previous studies have not found any application of the measurement of temperature and density for internal flows. This will be achieved by measuring temperature, velocity and concentration of species of pipe flow using Plexiglas and quartz to limit optical disturbances. An experimental setup was built equipped to measure velocity, temperature, and density using pressure transducers and thermocouples upstream and downstream of the observation port to verify and calibrate the tunable diode laser system.

First, a literature survey was conducted to assess the range of applications and limitations of absorption spectroscopy. A thorough summary of successful techniques in various
applications is explained as well as a detailed discussion of the appropriate theory behind absorption spectroscopy. Next a description of the experimental setup and the governing techniques associated with the equipment is discussed. In chapter 5, a numerical study is described with the results to follow in Chapter 6 and Appendix A. Finally, the experimental results are examined and compared with intrusive measurement techniques and a 3D computational model.
Chapter 2

Literature Survey

There are a variety of non-intrusive measurement techniques for a wide range of applications. For simple temperature measurements, where thermocouples either cannot withstand the extreme temperatures or the exposure of the thermocouple to a sensitive system is too intrusive for accurate results, a non-intrusive measurement system is warranted. If temperature is the only parameter of interest, a pyrometer is often used to measure the irradiance of a medium by using the Stefan-Boltzmann law of radiation. Pyrometers have been used since the early 1900’s and are still prevalent today. This technology is tried and true but is limited in its ability to measure temperature alone.

For measuring velocity there are several existing technologies that can measure the fluid flow non-intrusively. Laser Doppler Anemometry (LDA) has been around for a long time and uses the Doppler shift to measure the velocity of a fluid flow. The system requires seeded particles with roughly the same buoyancy and density as the medium being observed. The system consists of two beams, usually one beam split to ensure coherence, that cross at a point of interest in the fluid flow. Although proven to be accurate, the LDA can only observe the fluid locally where the beams cross one another.

The other predominant system used to measure velocity in a fluid flow is the Particle Image Velocimeter (PIV). The PIV is the successor of the LDA and can observe particles in a flow globally in 2 dimensions. This system requires seeded particles that very closely match the properties of the flow of interest otherwise they will not follow the behavior of the flow closely and results will be inaccurate. A laser is transmitted to the fluid and is scattered from the seeded
particles and a camera is used to capture the scattered light. The system is heavily reliant on a camera that has the ability to capture multiple frames at very high speeds. A highly synchronized system of lazing and digital capturing of the system is used to achieve an analysis that produces vectors and a time history of the particles movements. The drawbacks to this system are the requirement of seeded particles that closely match the medium of interest and the expense of the system itself with a costly high speed camera.

The third parameter of interest is concentration of species within a medium. A mass spectrometer has been useful in determining the concentration of a medium but is limited in its applications. The particles must first be ionized then after exposure to a predetermined electromagnetic field its radiation is measured to determine the matter associated with that specific electrical charge. This requires a long post processing time and limits the accuracy of an external flow due to the necessity to divert flow to be analyzed.

Finally absorption spectroscopy became of interest due to its versatility and advantages in a range of applications. Early conceptual experiments for combustion gases in-situ measurements were performed in the mid-infrared range [Arroyo et al, 1993 & 1994]. In the 1980’s, it was demonstrated that high powered, tunable lasers could measure concentration of species, velocity, and temperature in combustion flow for 1, 2, and 3 dimensional geometries [Baer et al, 1994 & 2009]. Suddenly the prospect of measuring a variety of parameters with a single system sparked large interest among government, commercial, and academic research.

Early restrictions of absorption spectroscopy were due to the relatively weak diode lasers being produced at the time. Extremely weak power outputs of these lasers yielded complications with noise, beam distortion, difficulty in alignment, and low sensitivity for reacting and non-
reacting flows. However, due to the compact nature, cost, and reliability of diode lasers, research continued to solve these early problems.

It has been shown that using external cavity diode lasers could increase the accuracy of measuring combustion particles, $H_2O \& CO_2$, in open flame combustion of C_2H_4 [Mihalcea et al, 1997 & 1998]. Due to the relatively weak vibrational overtones associated with spectral regions of commercially available tunable diode lasers in the $0.63-1.8 \mu m$, high frequency wavelength modulation was developed to increase sensitivity.

One limitation that arose with absorption spectroscopy was the noise associated with combustion particles interfering with the wavelength of interest. A scanned wavelength approach utilizes ratios of integrated absorbance helps get around this issue [Zhou et al, 2005 & 2007]. Their research uses wavelength modulation with $2f$ detection to isolate the second harmonic of the initial transmitted frequency.

All of absorption spectroscopy can only be utilized if the line strength and corresponding rovibrational frequencies are known. An extensive research into the fundamental absorption characteristics of a given species was investigated and catalogued into the US Air Force HITRAN database [Veale et al, 1992].

For unique combustion particles of interest, studies have shown the technique for determining line position and line strengths in $1.63 nm$ region [Chou et al, 1997]. They also showed how to determine the minimum detectable concentration of the observed medium required in this spectral region. They further demonstrated how to calibrate the diode lasers to determine critical line strengths [Chang et al, 2010].
Another way to ebb the noise due to combustion particles is to apply optical technology to the measurement system. [Allen et al, 2002] showed that refracting lenses can help separate combustion particles with similar frequencies to that of the transmitting laser. This was achieved by changing the angle of the beam as it leaves the transmitter and enters the detector in order to essentially filter out unwanted disturbances.

It has been demonstrated that using line-of-sight absorption techniques to measure non-uniform flows by scanning over broad wavelengths with vertical cavity surface-emitting lasers have successfully measured temperature and concentration of species [Furlong et al, 1998]. This showed that by extending the path length of the laser through the absorbing medium thus increasing the magnitude of absorption and limiting the possibility of disturbances improves accuracy [Liu et al, 2004 & 2007].

The versatility associated with diode lasers allows a practical way to achieve observation of a wide variety of molecules associated with all kinds of flows. Common molecules studied extensively include CO, \(O_2 \), \(H_2O \), \(CO_2 \) and \(CH_4 \).
Chapter 3

Experimental Setup

The following sections explain the theory associated with the experimental setup and equipment used for measuring temperature non-intrusively. Section 3.1 describes the basic theory and equations for absorption spectroscopy. Section 3.2 describes the operational theory of the TDLAS used in this research. The data acquisition system and experimental drawings are shown in section 3.3.

3.1 Theory of Absorption Spectroscopy

Absorption spectroscopy is based on the change in intensity correlated between the detector and diode laser across a medium of interest. The absorption is quantified by the Beer-Lambert relation:

\[
I_v = I_{v,0} \exp \left[-S(T)g(v-v_0)N\ell \right] \tag{1}
\]

where \(I_v \) is the laser intensity, \(v \) is the frequency, \(\ell \) is the path length through the medium and \(N \) is the number density of the absorbing species. The strength of the absorption is determined by the temperature dependent line-strength \(S(T) \), and the line shape function, \(g(v-v_0) \) [Allen et al, 2002].

The line strength is determined by the temperature and pressure based line shape function. The line shape function describes the molecular transition frequency which broadens during collisional and thermal processes. Line strength is shown to be temperature dependent by Boltzmann’s population statistics which defines the distribution of the internal energy-level of
the absorbing species. It has been shown from Baer et al that the line strength of the absorption transition is a fundamental spectroscopic property of the absorbing species. There are various databases that tabulate this spectral property for common atoms and molecules. The most extensive and commonly used database is provided by the US Air Force HITRAN database.

The line strength can be calculated from the known line strength at temperature $S(T_0)$ using:

$$S(T) = S(T_0) \frac{Q(T_0)}{Q(T)} \exp \left[-\frac{h c E}{k} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right] \times \left[1 - \exp\left(\frac{-h c E}{k T_0}\right) \right]$$

(2)

where Q is the total molecular internal partition function, E is the energy of the lower transition state, h is Planck’s constant, k is Boltzmann’s constant and c is the speed of light. For near atmospheric pressure and the equipment used in this experiment, a Voigt profile that takes into account the frequency broadening due to thermal and collisional processes is used to describe the line shape function. Therefore with knowing or obtaining the line strength and line shape function, the change in intensity can be used to directly calculate the temperature of the observing species using the Beer-Lambert relation.

If the temperature of the gas is known, along with the line strength and absorption path, the number density of the absorbing species can be calculated by the measured transmission. One or two absorption transitions may be probed in order to determine number density. The ratio of absorbance of each transition is a pure function of temperature and calculated by:

$$R = \left(\frac{S_1}{S_2} \right)_{T_0} \exp \left[-\frac{h c \Delta E}{k} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right]$$

(3)
Where S_1 and S_2 are the line strength values at some reference temperature, $S(T_0)$, and ΔE is the energy separation of the absorbing states.

Lastly using the Doppler-shift, velocity of a given medium can be measured as the laser beam propagates across a flow field and calculated by:

$$\Delta \nu_{\text{Doppler}} = \frac{v}{c} \nu_0 \cos \theta$$

(4)

where theta is the angle between the laser propagation and bulk flow directions. Two lasers separated by a given angle must be used to capture the shift in frequency between the two transmitting lasers.

When measuring small differences in intensity across combustion particles certain techniques have to be utilized in order to limit interference from beam steering and scattering due to refraction, combustion interference, soot and fuel spray that plagued early experiments of reacting flows. Several approaches are practiced to help overcome some of these difficulties. Wavelength modulation is used to minimize interference from emission and beam steering by scanning across the absorption profile continuously. The signal is then detected at a harmonic of the modulation frequency. The second form of wavelength modulation is to increase the lasing frequency in order to minimize noise and increase sensitivity.

Cavity modulation such as ECDL and VCSEL are two techniques used to decrease ambient noise by increasing the absorption length of the exposed medium. However this limits the application of the system and makes in-situ measuring of real world combustion flows not practical due to the necessity to divert flow to an external cavity.
Digital feedback lasers have been used extensively for their reliability and low cost. DFB lasers provide a precise and stable wavelength. Grating of the device controls diffraction and sends a constant wavelength output controlled by the initial grating. There are two ways to modify the fixed wavelength of DFB lasers. Providing heat or current to the DFB will change the grating through thermal expansion thus causing a measured change in the output wavelength. Altering the wavelength with temperature is relatively slow (a few Hz) due to thermal inertia and makes high frequency sampling difficult. The advantage is in its scanning capabilities in the 100cm⁻¹ range. Applying current to the DFB can successfully manipulate the output frequency and make it sensitive to high frequency tuning up to 10GHz but a relatively narrow scanning capability of 1-2cm⁻¹.

3.2 Theory of Tunable Diode Laser Absorption Spectrometry

For the purpose of this equipment, there are 4 diode lasers that are tuned to 1343nm, 1388nm, 1392nm, and 1469nm. These wavelengths were chosen due to the low cost and availability of existing diode lasers tuned to these frequencies and the abundant information of the spectroscopic properties of water vapor at these wavelengths. This system uses distributed feedback lasers for their advantages described above. The equipment uses high frequency wavelength modulation at a rate of 10 kHz or greater to limit noise from combustion particles and the relatively weak absorption lines of water vapor associated with these wavelengths.

The four DFB lasers are combined into a single fiber optic cable and sampled at 2MHz. The four DFB lasers are scanned over the absorption features of interest by ramping the voltage to each laser. The results are a line-of-sight averaged reading of the medium of interest.
Figure 1 shows the multitude of absorption features in the near infrared spectrum. There are a variety of absorption lines to choose from depending on the temperatures of the desired application. Figure 2 shows the expanded view for the range of interest in this study which is in the 1.4µm region. Figure 3 shows the absorption lines chosen for the TDLAS equipment used in this study along with additional physical characteristics.
Figure 2 – Expanded View of Absorption Spectra for H_2O in the 1.4µm region from the HITRAN 2004 database for $P=1\text{ atm}$, $10\% \ H_2O$, $90\% \ air$
Table 1 – Candidate H_2O line intensity pairs for temperature measurements between 1-2µm region from HITRAN2004

<table>
<thead>
<tr>
<th>Line pair</th>
<th>λ [nm]</th>
<th>ν [cm$^{-1}$]</th>
<th>$10^5 S$ @1000K [cm$^{-2}$ atm$^{-1}$]</th>
<th>E'' [cm$^{-1}$]</th>
<th>$\Delta E''$ [cm$^{-1}$]</th>
<th>Max I'' [um]</th>
<th>Line Spacing [cm$^{-1}$]</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1442.67</td>
<td>6931.592</td>
<td>4.604E-4</td>
<td>1813.22</td>
<td>1259.73</td>
<td>2.2</td>
<td>0.760</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>1442.51</td>
<td>6932.352</td>
<td>4.604E-7</td>
<td>3072.73</td>
<td>763.82</td>
<td>3.7</td>
<td>0.606</td>
<td>B, E</td>
</tr>
<tr>
<td>3</td>
<td>1397.87</td>
<td>7153.748</td>
<td>5.504E+6</td>
<td>2552.86</td>
<td>1789.04</td>
<td>3.7</td>
<td>0.417</td>
<td>A, C, D</td>
</tr>
<tr>
<td>4</td>
<td>1397.75</td>
<td>7154.355</td>
<td>3.852E+4</td>
<td>3210.45</td>
<td>3190.45</td>
<td>5.0</td>
<td>0.394</td>
<td>A, C, D</td>
</tr>
<tr>
<td>5</td>
<td>1337.44</td>
<td>7476.949</td>
<td>1.421E-4</td>
<td>1890.01</td>
<td>1420.44</td>
<td>5.0</td>
<td>0.745</td>
<td>B, C</td>
</tr>
<tr>
<td>6</td>
<td>1337.37</td>
<td>7477.366</td>
<td>5.403E-7</td>
<td>847.01</td>
<td>847.01</td>
<td>5.0</td>
<td>0.745</td>
<td>B, C</td>
</tr>
<tr>
<td>7</td>
<td>1337.44</td>
<td>7476.949</td>
<td>1.421E-4</td>
<td>1890.01</td>
<td>847.01</td>
<td>5.0</td>
<td>0.745</td>
<td>B, C</td>
</tr>
<tr>
<td>8</td>
<td>1337.30</td>
<td>7477.743</td>
<td>3.954E-6</td>
<td>2746.02</td>
<td>2746.02</td>
<td>5.0</td>
<td>0.394</td>
<td>A, C, D</td>
</tr>
<tr>
<td>9</td>
<td>1982.87</td>
<td>5043.193</td>
<td>9.927E-7</td>
<td>3058.40</td>
<td>811.52</td>
<td>2.8</td>
<td>0.545</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>1982.66</td>
<td>5043.738</td>
<td>9.267E-5</td>
<td>2246.88</td>
<td>2246.88</td>
<td>5.0</td>
<td>0.745</td>
<td>B, C</td>
</tr>
<tr>
<td>11</td>
<td>1981.83</td>
<td>5045.831</td>
<td>2.242E-6</td>
<td>2915.89</td>
<td>2915.89</td>
<td>8.0</td>
<td>0.745</td>
<td>B, C</td>
</tr>
<tr>
<td>12</td>
<td>1981.54</td>
<td>5046.576</td>
<td>5.555E-5</td>
<td>2105.87</td>
<td>2105.87</td>
<td>8.0</td>
<td>0.361</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>1975.41</td>
<td>5062.250</td>
<td>6.234E-6</td>
<td>2060.43</td>
<td>944.22</td>
<td>5.9</td>
<td>0.767</td>
<td>B, C</td>
</tr>
<tr>
<td>14</td>
<td>1975.11</td>
<td>5063.017</td>
<td>1.141E-4</td>
<td>1960.21</td>
<td>1960.21</td>
<td>5.9</td>
<td>0.361</td>
<td>B</td>
</tr>
<tr>
<td>15</td>
<td>1967.46</td>
<td>5082.697</td>
<td>5.504E-6</td>
<td>2690.59</td>
<td>847.56</td>
<td>3.7</td>
<td>0.545</td>
<td>B</td>
</tr>
<tr>
<td>16</td>
<td>1967.32</td>
<td>5083.058</td>
<td>1.611E-4</td>
<td>1843.03</td>
<td>1843.03</td>
<td>3.7</td>
<td>0.545</td>
<td>B</td>
</tr>
<tr>
<td>17</td>
<td>1852.38</td>
<td>5398.473</td>
<td>3.941E-4</td>
<td>1908.02</td>
<td>1908.02</td>
<td>3.7</td>
<td>0.361</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td>1852.06</td>
<td>5399.396</td>
<td>1.531E-6</td>
<td>3032.69</td>
<td>1124.67</td>
<td>3.7</td>
<td>0.545</td>
<td>B, C</td>
</tr>
<tr>
<td>19</td>
<td>1764.78</td>
<td>5666.434</td>
<td>7.666E-7</td>
<td>3211.21</td>
<td>889.40</td>
<td>1.2</td>
<td>0.685</td>
<td>D</td>
</tr>
<tr>
<td>20</td>
<td>1764.57</td>
<td>5667.119</td>
<td>9.486E-6</td>
<td>2321.81</td>
<td>2321.81</td>
<td>3.4</td>
<td>0.370</td>
<td>D</td>
</tr>
<tr>
<td>21</td>
<td>1764.78</td>
<td>5666.434</td>
<td>7.666E-7</td>
<td>3211.21</td>
<td>889.40</td>
<td>1.2</td>
<td>0.685</td>
<td>D</td>
</tr>
<tr>
<td>22</td>
<td>1764.51</td>
<td>5667.305</td>
<td>2.843E-5</td>
<td>2321.81</td>
<td>2321.81</td>
<td>3.4</td>
<td>0.370</td>
<td>D</td>
</tr>
<tr>
<td>23</td>
<td>1764.57</td>
<td>5667.119</td>
<td>9.486E-6</td>
<td>3211.06</td>
<td>889.25</td>
<td>1.5</td>
<td>0.370</td>
<td>D</td>
</tr>
</tbody>
</table>

The fiber optic output laser and detector are integrated into a motorized mount housed inside of separate boxes. The transmit module is fiber optically coupled to a collimation lens followed by a refractive lens to filter combustion particles with similar absorption features as described above. The receiver module also contains a collimation lens and refractive lens before reaching the detector. This is designed to be insensitive to beam steering through the rocket plume. The equipment was designed to mitigate beam steering due to shock structures associated with up to a 4 meter rocket plume which could cause beam deflection up to 60mm.

3.3 Testbed and Data Acquisition System/Instrumentation

The testbed was built to use a variety of inlet gases. For the purposes of this thesis due to best results, air was chosen as the operating medium. The tube is resistively heated to warm the air to maintain operating conditions using a high amperage electrical power source. Directly
upstream of the heater, a water reservoir is resistively heated into steam and injected into the air flow as water vapor. At the end of the resistively heated chamber the mixture flows through the quartz pipe where the flow behavior is observed non-intrusively before exiting the nozzle. The testbed is instrumented with thermocouples and pressure transducers as shown in Figure 3. All the instrumentation equipment is recorded on a separate PC based data acquisition system that was calibrated for this unique experiment to compare TDLAS results.

Figure 4 shows the super heated water vapor injector. Figures 5-7 show the initial configuration of the TDLAS system. Figure 8 shows the observation test section. Figures 9 and 10 show the instrumentation of the data acquisition system and the TDLAS system, respectively. Figures 11-16 show pictorial views of the experimental setup. Further pictures, models and drawings for the experimental setup can be found in Appendices B-D.

Figure 3 - Flow Diagram
Figure 4 - Super Heated Steam Generator

Figure 5 - Test Stand (Top View)
Figure 6 - Test Stand (Side View)

Figure 7 - Test Stand (Front View)
Figure 8- Quartz Containment (Observation Test Section)

Figure 9 - Data Acquisition System Instrumentation Diagram
Figure 10 – Tunable Diode Laser Absorption Spectrometer Instrumentation Diagram

Figure 11- Pictorial View of Test Stand
Figure 12- Experimental Layout showing Placement of Laser, Rocket, and DAQ

Figure 13- Experimental Layout showing Placement of Laser, Rocket, and DAQ
Figure 14- Experimental Layout showing Placement of Laser, Rocket, and DAQ

Figure 15- Experimental Layout showing Placement of Laser, Rocket, and DAQ
Figure 16- Experimental Layout showing Placement of Laser, Rocket, and DAQ
Chapter 4

Experimental Procedures

In order to capture accurate readings from the TDLAS, it must be verified that the laser and receiver are aligned optimally. The procedure for optical alignment is described in section 4.1 TDLAS Settings. In section 4.2 the operating conditions for the hybrid rocket motor simulator are monitored with the intrusive measurement devices.

4.1 TDLAS Settings

There are two programs that operate this gas analyzer. The programs allow the user to adjust input and output settings and write the receiver signals into the hardware from the DAQ system. The second program uses the relations described above to analyze and produce results for temperature, velocity, and concentration. The TDLAS uses 2 channels of 4 distributed feedback diode lasers and multiplexes each channel into 2 fiber optic cables capable of transmitting the frequency of the lasers. The settings on this equipment is set to observe spectral absorption lines of water vapor at 1343nM, 1388nM, 1392nM, and 1469nM. The lasers operate at frequency of 2MHz per channel.

The second program takes the recorded data which is measured in mV from the detector and uses a multi-peak Voigt fitting algorithm to return the integrated area under each transition for each data set per time. These results are then used to calculate the temperature and concentration of species as described above. For longer runs, data averaging is available to expedite computational time.
4.2 Operating Conditions

The rocket testbed has a multitude of flow variations to allow for a thorough parametric study. The main flow medium consists of bottled air and set to pressurize the system between 0-2 atm. The mass flow rate of the main line was calculated using pressure calibration correlations in Appendix E and equations found in Appendix F. Once the system is pressurized, the steam generator is resistively heated up to a desired constant temperature and injected into the main flow, which is then turned on. The pressure regulator in the air cylinder is then adjusted to achieve the desired velocity. The pipe upstream to the observation test section and nozzle is resistively heated to achieve a constant desired temperature. Once all parameters are constant and stable, the pre-aligned TDLAS is turned on to record the experiment. A parametric study is performed by holding the flow pressure constant and varying the temperature of the pipe and alternatively, holding the pipe temperature constant while varying the pressure source.
Chapter 5

Numerical Simulations

The heated section of the pipe upstream of the observation test section was modeled in 3D using a commercial CFD package (Fluent). The heat flux, inlet temperature, operating pressure, and mass flow rate are inputted into the 3D model to predict the flow behavior in the system. In Chapter 7 the results of the TDLAS measurements will be compared to the measurements of the thermocouples. The integrated average of the temperature profile will be the only condition compared to the TDLAS results. The axial distributions, profiles, and contour plots of these cases will be given in Appendix A.

5.1 CFD Mathematical Model

The goal of the numerical study was to provide additional simulations for comparison and calibration of the TDLAS. The physical model is the resistively heated test section leading to the observation port. The stainless steel pipe was given a constant heat flux along the length of the pipe corresponding to the operating conditions in the experimental setup. The boundary condition for the inlet of the pipe is the mass flow rate that was calculated from the data acquisition system in the experimental setup. The temperature upstream was given from the observed temperature read by the thermocouple. The outlet boundary condition assumes the pressure to be zero because the end of the pipe is open to the atmosphere.

A mesh independence study was performed to determine the consistency of the mesh cell sizes. The final mesh size is shown in figures 17-18. The following table shows the grid sizes and number of layers in the radial direction for the mesh independence study compared to the
exit velocity. The final mesh size was chosen for computational time and consistency with the higher mesh size cases and is shown in Table 2.

Table 2 – Matrix Showing Study to Determine Mesh Independence

<table>
<thead>
<tr>
<th></th>
<th>Maximum Cell Size</th>
<th>Axial Thickness (m)</th>
<th>Number of Cells</th>
<th>Inlet Pressure (psig)</th>
<th>Outlet Pressure (psig)</th>
<th>Inlet Velocity (m/s)</th>
<th>Number of Iterations</th>
<th>Exit Velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh 1</td>
<td>0.01</td>
<td>0.01</td>
<td>325422</td>
<td>151</td>
<td>0</td>
<td>1.05</td>
<td>237</td>
<td>1.52</td>
</tr>
<tr>
<td>Mesh 2</td>
<td>0.01</td>
<td>0.005</td>
<td>385423</td>
<td>1.51</td>
<td>0</td>
<td>1.05</td>
<td>325</td>
<td>1.53</td>
</tr>
<tr>
<td>Mesh 3</td>
<td>0.01</td>
<td>0.001</td>
<td>423014</td>
<td>1.51</td>
<td>0</td>
<td>1.05</td>
<td>414</td>
<td>1.55</td>
</tr>
</tbody>
</table>

The governing differential equations for this mathematical model use the Navier-Stokes equation, the energy equation, and the standard k-ε turbulence model equations. Fluent solves the following equations:

The continuity equation is given by:

\[
\frac{1}{r} \frac{\partial}{\partial r} (rv) + \frac{\partial}{\partial z} (u) = 0
\]

(5)

The momentum equation in the r-direction is given by:

\[
(V \cdot \nabla) v_r = -\frac{1}{\rho} \frac{\partial p}{\partial r} + g_r + \nu \left(\nabla^2 v_r - \frac{v_r}{r^2} \right)
\]

(6)

Where: \(\nabla^2 \approx \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{\partial^2}{\partial z^2} \)

(7)

The momentum equation in the z-direction is given by:

\[
(V \cdot \nabla) v_z = -\frac{1}{\rho} \frac{\partial p}{\partial z} + g_z + \nu (\nabla^2 v_z)
\]

(8)

The energy equation is given by:

\[
\rho c_p \left[\frac{\partial}{\partial t} + (V \cdot \nabla) T \right] = k \nabla^2 T + \mu [2 (\varepsilon_{rr} + \varepsilon_{zz}) + \varepsilon_{rz}^2]
\]

(9)

Where: \(\varepsilon_{rr} = \frac{\partial v_r}{\partial r} \), \(\varepsilon_{zz} = \frac{\partial z}{\partial z} \), \(\varepsilon_{rz} = \frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \)

(10)
The equation of state is:

\[P = \rho RT \]

(11)

The previous equations are for a Newtonian fluid, steady-state, cylindrical, 3-dimensions, axisymmetric, and follow Stokes’ assumptions.

Figure 17- Cross Sectional Mesh

Figure 18- Isometric View of Mesh
5.2 CFD Settings

The following settings were used throughout the numerical simulations. Best results were found using pressure corrected method as opposed to the mass flow rate method. Convergence was improved by using 2nd order upwind discretization schemes for the momentum, energy, and k-epsilon equations.

Table 3 – Numerical settings of commercial package (Fluent)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residuals</td>
<td>1.00E-06</td>
</tr>
<tr>
<td>Solution Method</td>
<td>Coupled</td>
</tr>
<tr>
<td>Numerical Method</td>
<td>Pressure Corrected</td>
</tr>
<tr>
<td>Discretization Scheme</td>
<td>2nd order upwind</td>
</tr>
<tr>
<td>Turbulent Model</td>
<td>K-epsilon</td>
</tr>
<tr>
<td>Energy Equation</td>
<td>On</td>
</tr>
<tr>
<td>Viscous Heating</td>
<td>On</td>
</tr>
<tr>
<td>Fluid</td>
<td>Air</td>
</tr>
</tbody>
</table>

To assure a fully developed flow in a relatively short pipe with a low mach number, the flow velocity was increased incrementally. The velocity was started uniform at a lower velocity and allowed to develop to the exit. The exit flow properties were then saved and inputted back into the inlet and the computational model was run again at the targeted velocities. This technique allows the inlet flow to be fully developed at the operating conditions of the experimental data.
Chapter 6

Results

There are 3 cases shown with increasing improvement in TDLAS measurements in sections 6.1-6.3. Section 6.1 shows the initial poor responses with the unaltered system and no super-heated steam injector. Sections 6.2 and 6.3 demonstrate the TDLAS response to the super-heated steam injector. Section 6.4 shows the requirements of water vapor concentration and the procedure required to obtain that concentration. Section 6.5 summarizes all modifications made to the testbed and measurement system to ensure better results. Section 6.6.1 shows the TDLAS results and operating conditions for 3 chosen cases of increasing temperature. Section 6.6.2 shows the numerical results for 1 of these cases. Finally, section 6.7 compares the results between the TDLAS and thermocouples.

6.1 Experiment 1 Run 1

The following table shows the experimental run sheet for the data that was recorded for each experiment. The operating conditions shown were recorded using the CP based DAQ system at the start of each run.

Table 4- Experimental Matrix Showing Operating Pressure, Mass Flow Rate, and Thermocouple Temperatures

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Parameter held constant</th>
<th>Wall Temperature or Upstream Pressure</th>
<th>Mass flow rate (lbm/s)</th>
<th>Run Number</th>
<th>Temp. Upstream (C)</th>
<th>Temp. Downstream (C)</th>
<th>Duration (s)</th>
<th>Attenuation (dB)</th>
<th>File name</th>
<th>Steam Temp. (C)</th>
<th>Steam Pressure (psig)</th>
<th>Steam Valve Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Wall Temperature 138 C</td>
<td>4 psi</td>
<td>0.0002</td>
<td>1</td>
<td>98</td>
<td>211</td>
<td>30</td>
<td>10</td>
<td>143</td>
<td>50 psi</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>101</td>
<td>220</td>
<td>33</td>
<td>10</td>
<td>2</td>
<td>144</td>
<td>50 psi</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>105</td>
<td>215</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>144</td>
<td>50 psi</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>103</td>
<td>212</td>
<td>32</td>
<td>10</td>
<td>4</td>
<td>144</td>
<td>50 psi</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>102</td>
<td>216</td>
<td>31</td>
<td>10</td>
<td>5</td>
<td>155</td>
<td>82 psi</td>
<td>60%</td>
</tr>
</tbody>
</table>
The results of Experiment 1 Run 1 are presented in the following figures. TDLAS settings were kept consistent and a time-averaged method was used to decrease post-processing time. This allows the two million sample readings per second to be time averaged by 100, which reduces the readings rate down to 20,000 measurements per second.

Figure 19- Experiment 1, Run 1: Water Vapor Molar Fraction v. time (TDLAS)
The results in this experiment showed a small response to the introduction of steam into the system. However, the corresponding temperature is random and chaotic. This is mostly likely due to the low presence of water vapor molecules that the laser is observing. When the laser does not see enough molecules to observe, the change in intensity is so negligible that the smallest amount of ambient noise will overwhelm the system. There is a minimum concentration of water vapor for the TDLAS to make accurate readings. The design and implementation of the superheated water vapor injector is for in the increase of water vapor concentration to meet this minimum requirement.

Figure 20- Experiment 1, Run 1: Temperature v. time (TDLAS)
6.2 Experiment 2 – Run 3

In this experiment, the steam generator was heated to achieve superheated steam at 80 psi. This increase in differential pressure causes an increase in flow and thus concentration of steam into the system. The results for some of these experiments are shown below. The operating conditions are shown below as well.

Table 5 – Experiment 2 Operating Conditions

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Parameter held constant</th>
<th>Wall Temperature or Upstream Pressure</th>
<th>Mass flow rate (lbm/s)</th>
<th>Run Number</th>
<th>Temp. Upstream (C)</th>
<th>Temp. Downstream (C)</th>
<th>Duration (s)</th>
<th>Attenuation (dB)</th>
<th>File name</th>
<th>Steam Temp. (C)</th>
<th>Steam Pressure (psig)</th>
<th>Steam Valve Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wall Temperature 138 C</td>
<td>2 psi</td>
<td>0.0001</td>
<td>1</td>
<td>105</td>
<td>215</td>
<td>40</td>
<td>10</td>
<td>6</td>
<td>155</td>
<td>82</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>107</td>
<td>220</td>
<td>45</td>
<td>10</td>
<td>7</td>
<td>168</td>
<td>86</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>103</td>
<td>217</td>
<td>51</td>
<td>10</td>
<td>8</td>
<td>168</td>
<td>82</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>100</td>
<td>216</td>
<td>55</td>
<td>10</td>
<td>9</td>
<td>180</td>
<td>80</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>105</td>
<td>211</td>
<td>45</td>
<td>10</td>
<td>10</td>
<td>180</td>
<td>84</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>107</td>
<td>214</td>
<td>56</td>
<td>10</td>
<td>11</td>
<td>175</td>
<td>80</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>110</td>
<td>215</td>
<td>60</td>
<td>10</td>
<td>12</td>
<td>179</td>
<td>82</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 21- Experiment 2, Run 3: Temperature v. time (TDLAS)
The response to the steam is evident at 5 seconds when the steam valve was opened and steam was introduced into the system. Immediately the temperature consolidates as each laser sampling observes more steam particles and limits the signal to noise ratio. The super-heated water vapor pressure directly accounts for the concentration for water vapor in the system. Therefore, much experimentation was performed with the operating pressure of the injection system to optimize the amount of water vapor in the main flow line.

![Figure 22- Experiment 2, Run 3: Water Vapor Molar Fraction v. time (TDLAS)](image)

As with the plot of temperature, the introduction of steam is evident at 5 seconds. The molar fraction seems to smooth out between 8 and 12 seconds. This corresponds to an oscillating temperature around 37° Celsius. When comparing this to the tabulated thermocouple results for this experiment, the magnitudes are ± 1° C. This result achieved a valid response to the injected steam. However, the oscillations in concentration and temperature may be due to the periodic
absence of water vapor. Therefore, the steam generator was modified by increasing pressure to allow a higher density of steam to enter the system.

6.3 Experiment 2 – Run 6

Run 5 was repeated with the same operating conditions for a longer period of time to observe the oscillations over a longer period and are presented below. It can be seen that these oscillations continue over time and continue to hover around 37°C Celsius. Again, the concentration of water vapor is speculated to be too low for an accurate reading.

Figure 23- Experiment 2, Run 6: Temperature v. time (TDLAS)
Figure 24- Experiment 2, Run 6: Water Vapor Molar Fraction v. time (TDLAS)

6.4 Selection Criteria for Results

The following figures show the TDLAS and DAQ system’s respective response to the steam injector. A clear step function is visible in Figure 26. Based on these results, steady state conditions were measured between 5 and 30 seconds when the steam injector is turned on and off. Figure 27 shows the same response to the steam injection in the DAQ’s recording of the thermocouples upstream and downstream of the heater. It can be seen from Figure 27, that the change in temperature is minimal, indicating the water vapor and air is at thermal equilibrium. The temperatures of the steam and the main air flow are at very similar magnitudes to ensure a homogenous mixture before the mixture reaches the heater.
Figure 25 – Experiment 2, Run 7: Molar Fraction Response to Steam Injector

<table>
<thead>
<tr>
<th>Time, t [s]</th>
<th>Temperature, T [K]</th>
<th>Molar Fraction, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>284.0747</td>
<td>0.0293</td>
</tr>
<tr>
<td>0.08</td>
<td>304.7902</td>
<td>0.0288</td>
</tr>
<tr>
<td>0.16</td>
<td>312.0698</td>
<td>0.0313</td>
</tr>
<tr>
<td>0.24</td>
<td>312.5909</td>
<td>0.0373</td>
</tr>
<tr>
<td>0.32</td>
<td>345.8293</td>
<td>0.0368</td>
</tr>
<tr>
<td>0.40</td>
<td>340.7448</td>
<td>0.0345</td>
</tr>
<tr>
<td>0.48</td>
<td>351.9142</td>
<td>0.0302</td>
</tr>
<tr>
<td>0.56</td>
<td>277.8810</td>
<td>0.0387</td>
</tr>
<tr>
<td>0.64</td>
<td>327.9833</td>
<td>0.0319</td>
</tr>
<tr>
<td>0.72</td>
<td>335.8402</td>
<td>0.0360</td>
</tr>
<tr>
<td>0.80</td>
<td>339.3231</td>
<td>0.0358</td>
</tr>
<tr>
<td>0.88</td>
<td>284.0903</td>
<td>0.0285</td>
</tr>
<tr>
<td>0.96</td>
<td>291.2771</td>
<td>0.0390</td>
</tr>
<tr>
<td>1.04</td>
<td>240.7534</td>
<td>0.0248</td>
</tr>
<tr>
<td>1.12</td>
<td>288.9693</td>
<td>0.0414</td>
</tr>
<tr>
<td>1.20</td>
<td>208.1705</td>
<td>0.0230</td>
</tr>
<tr>
<td>1.28</td>
<td>281.7013</td>
<td>0.0308</td>
</tr>
</tbody>
</table>

Table 6 – Tabulated Data for Figure 26
6.5 Modifications for Improvement

The equipment uses refracting lenses to filter out interference from combustion particles. The purpose of this application is to simulate combustion particles in a controlled and known manner for internal pipe flow. Therefore, alignment difficulties associated with these lenses was quickly theorized to limit the received intensity. The lenses were removed from the transmitter and receiver boxes and the experiments were performed again. While there was a measured increase in detected intensity, similarly chaotic results was recorded.

It was determined that the relatively weak signals were also due to the optical interference of the laser light passing through the quartz glass. The original quartz containment design used a round tube to maintain the integrity of the flow from the SS pipe to the observation...
area. The quartz chosen has a 90% optical transmittance; however, due to the geometric curvature of the cylinder some of the photons are refracted and not observed by the detector. A secondary quartz containment was designed to use flat viewing windows so that this geometric interference could be corrected. The viewing area has a square profile but the hydraulic diameter was adjusted to maintain the same cross sectional area as to not disrupt the flow behavior.

Next, it was determined that poor results were due to optical alignment and possibly not meeting the minimum concentration of water vapor for an accurate reading. The transmitter and receiver were both removed from their kinematic mounts and integrated into an in-house optical table designed for this application. The transmitter and receiver were mounted to optical slides and fixed to the optical table. The boxes also limited the proximity the equipment could be placed to the testbed and thus increasing interference from ambient water vapor. This new setup drastically decreased the optical path length and the chance for ambient interference. Simultaneously, the steam generator was modified with additional power to increase the concentration of water vapor in the system.
6.6 TDLAS Results

Below, results of three cases are shown where the heat input is increased incrementally to observe the trend in the change in temperature. Figure 28 shows that the water vapor molar fractions for these cases are at a sufficient level (10% water vapor). The temperature will be shown for each case between the time ranges corresponding to steady state conditions. Finally the results will be compared with tabulated thermocouple results recorded with the CPU based DAQ system.

Table 7 – Operating Conditions for Final 3 Cases

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Experiment</th>
<th>Heater Power (kW)</th>
<th>Velocity (m/s)</th>
<th>Mass Flow Rate (lbm/s)</th>
<th>Mach Number</th>
<th>Reynolds Number</th>
<th>Wall Temp. (K)</th>
<th>Upstream of heater Temp. (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Pressure: 2 psi Steam Restriction: Fully Open Steam Temperature: 140 C Steam Pressure: 46 psi</td>
<td>Exp. 2, Run 1</td>
<td>11</td>
<td>1.08</td>
<td>0.0002</td>
<td>0.19</td>
<td>4890</td>
<td>432</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>Exp. 2, Run 5</td>
<td>24</td>
<td>1.32</td>
<td>0.0002</td>
<td>0.21</td>
<td>4296</td>
<td>684</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Exp. 2, Run 7</td>
<td>36</td>
<td>1.52</td>
<td>0.0002</td>
<td>0.22</td>
<td>3957</td>
<td>721</td>
<td>371</td>
</tr>
</tbody>
</table>

Figure 27- Experiment 3, Run 1: Water Vapor Molar Fraction v. time (TDLAS)
Figure 28- Experiment 3, Run 1: Temperature v. time (TDLAS)

Figure 29- Experiment 2, Run 3: Temperature v. time (TDLAS)
It can be seen in the last 3 cases, the steady state temperature of the water vapor/air mixture was successfully observed to increase according to the heat flux prescribed to the heated section of the pipe. The water vapor concentration was successfully increased with the steam generator and injector system. The water vapor particles are essentially the seeded particles that are introduced into the system at the same temperature as the main flow to decrease mixing time and to achieve a homogenous flow. The molar fraction showed a strong correlation to the injected steam pressure as is predicted. As the pressure increases in the steam, the mass flow rate of water vapor into the main line increases.
6.7 Numerical Simulation of Exp. 2, Run 5

The following graphs show the predicted flow behavior of experiment 2, run 5. The results for the final 3 chosen cases are tabulated in Table 6. They will later be compared with the thermocouple data and the TDLAS results.

Figure 31- Fluent Velocity Distribution before Observation Port
Figure 32– Fluent Temperature Distribution before Observation Port

Figure 33– Fluent Axial Temperature Profile
The tabulated results show the predicted outlet average air temperature across the pipe for comparison with thermocouples and TDLAS results. Important flow characteristics are also shown in Figures 32-34 for further information on the behavior of the flow.

6.8 Comparison of Results

The following table shows the final 3 cases with increasing heat inputs to the heater before the temperature is observed in the test article. The TDLAS results are compared to the thermocouples and the integrated average temperature profile predicted by the numerical study.

<table>
<thead>
<tr>
<th>Experiment 3 Simulations</th>
<th>Operating Pressure (psig)</th>
<th>Inlet Temperature (K)</th>
<th>Inlet Velocity (m/s)</th>
<th>Outlet Pressure (psig)</th>
<th>Heat Flux (kw/m2)</th>
<th>Predicted Average Air Temperature at Outlet (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>1.05</td>
<td>370</td>
<td>1.08</td>
<td>0</td>
<td>11</td>
<td>385</td>
</tr>
<tr>
<td>Run 5</td>
<td>1.05</td>
<td>370</td>
<td>1.32</td>
<td>0</td>
<td>24</td>
<td>466</td>
</tr>
<tr>
<td>Run 7</td>
<td>1.05</td>
<td>370</td>
<td>1.52</td>
<td>0</td>
<td>36</td>
<td>532</td>
</tr>
</tbody>
</table>

Table 8 – Tabulated numerical results

Table 9 – Results for Final 3 Chosen Cases
Figure 34 – Comparison of TDLAS and thermocouple temperatures for 3 chosen cases

6.9 Error Analysis

Great care was taken to ensure steady state conditions for the internal flow to be homogenous and constant temperature. There is some uncertainty associated with line-of-sight measurements due to the possibility of ambient water vapor in the path of the laser beam. As explained earlier, this was limited by the placement of the transmitter and receiver in close proximity to the test article. Due to the relatively low water vapor concentration in the UNO combustion lab, this interference is thought to be less than 5%.
In the experimental setup, there are errors associated with the thermocouples used as well as the pressure transducers used to calculate mass flow rate. Due to the imperfections associated with the insulation and calibration of the thermocouples, a ± 0.2 degrees C uncertainty is predicted. From the accuracy of the DAQ system and the pressure transducers used that enables a mass flow rate calculation, an uncertainty of $\pm 0.5\%$ is assumed.

We are aware the measurement of flow temperature between the TDLAS and thermocouples in the center of flow are not measured at exactly the same place. But the relatively low flow rate and close proximity allows us to estimate an uncertainty of $\pm 5\%$.
Chapter 7

Conclusion

The goal of this study was to take a prototype tunable diode laser absorption spectrometer designed to measure high temperature water vapor combustion gases (rocket plume studies) and adapted for low temperature and low velocity internal flows.

Based on the present study, one can conclude that the TDLAS can be successfully adapted to measurement of low temperature internal gas flows. The present study results, for fluid temperature range of 300K-600K at velocities corresponding to 0.2 Mach number, indicate that the TDLAS measurements under estimate the gas temperature with a deviation of 20%. It is concluded that a calibration of the measurement system with an offset of 70K would be necessary to obtain accurate tunable diode laser absorption measurements. In order to properly calibrate the current TDLAS system, additional parametric studies would need to be performed.
Chapter 8

Recommendations

For improved results, it is recommended that the main flow line should be reduced in diameter. This reduction in pipe size would help improve the fluid’s response to the resistive heater. The maximum attainable temperature would be increased substantially as the fluid would have more surface area per unit volume of contact with the pipe. Ideally, the fluid temperature would be heated to combustion temperatures to verify similar results with combustion flow. Once, validated then it would be feasible to parametrically define the limitations of this equipment in a well-controlled flow behavior.

To assure a homogenous mixture, it is recommended to resistively heat a large portion of the main line prior to steam injection. This will assure that the two flows are at the same temperature during mixing. The homogenous mixture will assure consistent measurements downstream at the observation port.

Additionally, error associated with line-of-sight measurements could be limited by blowing nitrogen outside of the test article. This will eliminate the ambient water vapor that could cause added noise to the system.
List of References

Appendix A

Results of Numerical Studies

Figure A.1- Mesh for CFD Studies

Figure A.2- Predicted velocity distribution at the exit
Figure A.3- Predicted temperature distribution at the exit

Figure A.4- Predicted axial temperature distribution in the pipe
Appendix B

Rocket Motor Simulator Pictures

B.1- Quartz Containment

B.2- Quartz Containment
B.3- Test Setup

B.4- DAQ and TDLAS System
B.5 – Experimental Setup

B.6 – Steam Injector
Appendix C

Rocket Motor Simulator Models

C.1 – 3D Model of HRS

C.2 – 3D Model of HRS
C.3 – 3D Model of Test Section

C.4 – 3D Model of Test Section
Appendix D

Rocket Motor Simulator Engineering Drawings

D.1 – Downstream Flange
D.2 – Upstream Flange
D.3 – Base Plate
D.4 – Vertical Base Plate
D.5 – Copper Electrode
D.6- Exit Nozzle
D.7- Graphite Nozzle
D.8 – Assembly of Base Plate
D.9 – Assembly of HRS
Appendix E

Instrument Calibration Curves

Figure E-1: Calibration curve for Upstream Pressure Transducer in Channel 1 of DAQ.
Figure E-2: Calibration Curve for Downstream Pressure Transducer in Channel 2 of DAQ.

Figure E-3: Calibration Curve for Chamber Pressure Transducer in Channel 3 of DAQ.
Figure E-4: Calibration Curve for Differential Pressure Transducer DAQ

\[y = 3.082x + 0.093 \]
Appendix F

Mass Flow Rate in Relation to Pressure Difference

The mass flow rate of the GOx across the orifice is measured by considering gaseous oxygen as a compressible fluid where the specific weight of the fluid changes as it flows through the orifice. The mass flow rate for such a flow is given by the following equation [32]

$$\dot{m} = KA_2 \gamma_1 Y \sqrt{\frac{P_1 - P_2}{g_0 \gamma_1}} \quad \text{(F.1)}$$

where Y is expansion factor, K is flow coefficient.

The above equation was deduced to obtain the final equation for mass flow rate, which is given below

$$\dot{m} = \frac{1.87CA_2 P_1 g_c}{RT_1 g_0 \sqrt{1 - \varepsilon^2}} \left[\frac{\Delta P}{P_1} \right]^{1.4286} \cdot \left[\frac{1 - (1 - \Delta P / P_1)^{0.2857}}{1 - (1 - \Delta P / P_1)} \right]^{1/2} \cdot \left[\frac{2g_0^2 \Delta PRT_1}{P_1 g_c} \right]^{1/2} \quad \text{(F.2)}$$

where $\varepsilon = \frac{A_2}{A_1}$, A_2 is downstream area, A_1 is upstream area.
Based on the above equation a relation between the pressure gradient and mass flow rate was established. This relation is given in the plot below.

Figure F-1: Mass flow rate in relation to pressure gradient for the orifice.
Appendix G

Equipment List

Orifice Pressure Transducers:

Manufacturer: Omega
P/N: PX02C1-200GV
S/N: 135141 and 135147
Range: 0-200 psig

Chamber Pressure Transducer:

Manufacturer: Precise Sensors Inc.,
P/N: PX02C1-200GV
S/N: 25828
Range: 0-100 psig

Differential Pressure Transducer:

Manufacturer: Omega
P/N: PX821-010DV
S/N: 1503618
Range: 0-10 psid

DAQ Card:

Manufacturer: National Instruments

P/N: 18569A-01

Model: SCXI-1321

Thermocouples:

Manufacturer: Omega

P/N: GG-K-24-SLE

Material: + Yellow (Chromega) – Red (Alomega)

Deviation of Thermocouples: -1.4 °F at 800.0 °F

Pressure Gauges:

Manufacturer: Matheson

P/N: 63-2212

Ball Valves:

Manufacturer: Worcester

P/N: ½ in C466PMSE R60

Working Pressure: 1500 psig
Meter Valve:

Manufacturer: Whitey

P/N: ¼ in SS 31RS4

Software:

National Instruments Virtual Bench Version 2.6.2

NI-DAQ 6.9

TDLAS:

Los Gatos Research High Temperature Gas Analyzer
Vita

The author was born in Lafayette, Louisiana. He obtained his Bachelor’s degree in Mechanical Engineering from the University of Colorado at Colorado Springs. He has previously conducted research on ablation rates in stainless steel pipes for high temperature hydrogen flow at the University of New Orleans.