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Abstract 

The maintenance or replacement of deteriorated pipes and culverts is a constant 

and significant concern for municipalities and transportation agencies in the United States 

(Donaldson and Wallingford, 2010). Trenchless technologies and especially the Cured-

in-place pipe (CIPP) method have become increasingly common ways to preserve 

infrastructures owing to their feasibility, cost-effectiveness, and fewer social impacts 

(Jung and Sinha, 2007). Therefore, there is a growing need to understand the direct and 

indirect effects of pipeline rehabilitation activities on the environment. Nearly all past 

CIPP studies have focused on its mechanical properties, and its environmental impacts 

are poorly investigated and documented (Allouche et al. 2012). Sewer pipelines and 

storm-water culverts are administered by municipalities and transportation agencies who 

bear the responsibility for rehabilitation and renewal of these infrastructures. In 

consequence, they rarely allow sampling and research projects in the field due to liability 

issues. This is a main obstacle to conducting comprehensive, precise, and unbiased 

research on CIPP environmental impacts and to date, the degree of relevant health effects 

and related environmental impacts have remained unknown.   

Numerous building indoor air contamination incidents indicate that work is needed 

to understand the magnitude of styrene emission from CIPP sanitary sewer repairs. The 

main goal of this study was to better comprehend Volatile Organic Compounds emission 

at three CIPP sanitary sewer installation sites in one U.S. city. Results showed that CIPP 

chemical emissions may be a health risk to workers and nearby building inhabitants. 

Additional testing and investigations regarding chemical emissions from CIPP should be 

commissioned to fill in the environmental and public health knowledge gaps. The acute 

and chronic chemical exposure risks of CIPP chemical steam constituents and styrene to 

sensitive populations should be further examined. 
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Other goals of this study were to estimate the magnitude of solid waste generated 

as well as the amount of certain criteria air pollutants and greenhouse gases emitted from 

onsite heavy equipment for both CIPP and open-cut sites in a U.S city. The results 

indicated that the amount of open-cut related solid waste, criteria air pollutants, and 

greenhouse gases were greater than those during CIPP activities. Additional work is 

needed to quantify pollutant emissions from CIPP and open-cut activities and consider 

emissions from a cradle-to-grave standpoint.  

 

Key words: CIPP air emission; sanitary sewer pipe rehabilitation; criteria air 

pollutants at CIPP and open-cut sites; solid waste generation at CIPP and open-cut sites, 

health effects of styrene, health effects of criteria air pollutants and GHGs
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1. Introduction 

Most sewer collection systems in the USA were built in the early 20th century and 

their condition is becoming a substantial maintenance concern (Tafuri et al. 2001). 

Replacement of crumbling sewer pipes using open-trench excavation techniques can pose 

public inconvenience and safety challenges especially in megacities. Instead, many cities 

are choosing to rehabilitate sewer pipes in-situ using the cured-in-place-pipe (CIPP) 

“trenchless” renewal technique. The CIPP renewal technique involves the installation of a 

resin impregnated fabric into the deteriorating pipeline. This material is then cured in-situ 

by heat (hot water or steam) or ultraviolet light. CIPP is created in-situ by the 

crosslinking of a polymer resin, such as an unsaturated polyester. Studies have shown 

CIPP rehabilitated sewer pipes have reduced inflow/infiltration and emergency repair 

costs (Najafi 2011). 

While the CIPP renewal method for wastewater industry has been used in the U.S. 

for more than 40 years (Matthews et al. 2012), CIPP mechanical properties have been the 

focus of nearly all past CIPP studies, not its environmental impacts (Allouche et al. 

2012). In 2011 and 2013, researchers compiled a number of environmental contamination 

incidents from the past 15 years associated with CIPP sanitary sewer and storm water 

culvert installations (Whelton et al. 2013; Tabor et al. 2014). These incidents involved the 

discharge of hot water and condensate from CIPP sites directly into waterways and 

sanitary sewer systems causing fish kills and activated sludge process inhibitions. Other 

incidents have involved chemical emission from nearby CIPP sanitary sewer pipes which 

traveled through sewer pipes and entered nearby residences through their premise 

plumbing. In some cases, emitted chemicals traveled above-ground and entered building 

ventilation systems. Emission of Volatile Organic Compounds (VOCs) into the air from 

CIPP operations is poorly documented and understood. Hence, the main focus of this 

dissertation is to characterize and quantify VOCs which are emitted from CIPP sewer 

pipe rehabilitation activity. Long-term VOC inhalation of workers and short-term 
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exposure for building residents have the potential to impact the quality of their life and 

may cause health effects which need to be investigated and elucidated.  

1.1 Sewer System History 

With a population of 35,000 in the Indus River Valley of Pakistan, Mohenjo-Daro 

is considered to be the birthplace of sewers. Cut stone or man-made masonry units were 

being used to build open-topped drains and became the prototype used throughout the 

ancient world (History of Sanitary Sewers, 2016).  

1.1.1 Pipes 

At about the same time (4,000 BCE) the first pipes made from terracotta were 

invented in Iraq, and the sewer pipe idea spread far into Asia, the Middle East, and 

Europe. Paris was among the first cities that developed a comprehensive sewer system, 

and a sewer was built under almost every street from the 1860’s to the 1890’s. The Paris 

sewer system included several new ideas, including devices to clean the sewers, a 

sidewalk area for sewer workers, and low flow channels. In the 1860’s a new sewer 

system was built because of deplorable sanitation conditions, and egg-shaped and 

separate sewers were constructed in England. In Europe large sewers were usually made 

from cut stone or brick, and the smaller pipes were built of cast iron, clay, and wood. In 

the United States after the civil war, diseases such as cholera posed problems, and 

American civil engineers followed strategies from England and Europe to deal with the 

situation (History of Sanitary Sewers, 2016).  

The birthplace of the first new separate sanitary sewer system was in Memphis, 

Tennessee. Initially, six-inch internal diameter (ID) clay pipes without maintenance holes 

were used for the sewer system, and afterward they were converted to eight inches ID 

with maintenance holes. Clay was the major material for pipe factories across the United 

States although other materials including wood, cast iron, and concrete were in use as 

well. Wood in particular was in common use due to its wide availability.  However, wood 
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is not good for sewage because of sulfides and sulfuric acid. Salt-glazed and vitrified clay 

brick was used extensively and is still in effective service for sewer systems throughout 

the United States. Since the late 1800’s, the basic sewer system design has not changed 

for the most part, but new pipe materials have been added to the previous selections. 

Steel was another option for pipe material but was less common owing to its cost. The 

first cast iron foundry emerged in New Jersey, and Philadelphia was the first place to 

utilize cast iron pipes (History of Sanitary Sewers, 2016).  

1.1.2 Manholes and Lampholes  

In the primary sewer collection system, a narrow hole, named lamphole, was 

encased for visual sewer inspections.  However, it was found to be cumbersome as a 

maintenance access point. Because of that, manholes or maintenance holes were 

developed to provide access to the sewers for inspection and cleaning. People also 

recognized that sewers had to be ventilated, and manholes could play a major role in 

sewer ventilation. Originally, manhole covers were made from slabs of stone or pieces of 

wood, and in the 19th century modern manhole covers were built. In the United States, 

cast iron manhole covers were very popular and were made in various shapes, including 

rectangular and square, but largely round. The oldest existing foundry catalog for 

manhole covers was published in 1860 (History of Sanitary Sewers, 2016).  

1.1.3 Flush Tanks 

In the United States at the early stage of sewer system design, the necessity of 

sewage flushing was recognized, particularly in the areas where sewer reaches had a low 

slope and low tributary sewage flow. Because of this, flush tank mechanisms, commonly 

installed in upstream manholes, were constructed to assist the periodic flushing of 

downstream reaches. Both manual and automatic versions of flush tanks were used. A 

considerable amount of water was accumulated and released into the downstream and, 

generally, the water source was public potable water (History of Sanitary Sewers, 2016). 
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1.1.4 Combined and Separate Sewer Systems 

As early as 1842 the concept of establishing separate systems for conveyance of 

human wastes was proposed in England by Edwin Chadwick, well-known as the “Father 

of Sanitation.” American engineers such as Colonel George Waring pursued the British 

systems. In America’s cities, based on precipitation volume and terrain characteristics, 

two different options were feasible: a combined system or a separate system. Generally, 

cities with heavy precipitation and flat terrain were selected for the combined system, 

which can flush and facilitate sewage conveyance. The separate system was used for 

cities with steep terrain and/or low volume of precipitation. In the late 1800’s, engineers 

from various locations proposed comprehensive sewer systems designed to handle certain 

difficulties of the existing system, especially flow and odor problems. For these reasons, 

Shone in London, Berlier in Paris, and Liernur in Holland created pneumatic systems 

which were applied in several areas. American designs for similar problems were not 

fulfilled due to the high cost.  Progress elsewhere in sewer design systems eventually 

made them obsolete (History of Sanitary Sewers, 2016).  

1.2 Sewer System in USA  

It seems, sewer systems are nothing new, and the use of sewer pipes dates from 

ancient times. The United States began developing its own sewer system and most of the 

wastewater collection mains were expanded in the early part of the last century (Tafuri 

and Selvakumar, 2001). One challenge to infrastructure systems is that pipeline networks 

require sequential inspection and maintenance which can help repair deteriorated pipes 

early on and save time and money.   

In the U.S. most of the water and wastewater infrastructures are aging, and repair 

and rehabilitation of these systems are the first priority for municipalities. This exigent 

situation has given rise to an emerging and extensive body of research on how best to 

manage the situation with an engineering-based and cost-effective design, construction, 

and repair. The United States wastewater network, with large sections buried 
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underground and beneath buildings, is a complex and broad infrastructure that increases 

the difficulty and cost of inspection and repair. Numerous factors, including geology, 

climate, and topography affect the design, construction, function, and potential failure of 

the system. Other factors such as age, size, location, deterioration rate, management 

practices, financial resources, hydraulic capacity, and regulatory requirements influence 

the repair and rehabilitation approaches (Tafuri and Selvakumar, 2001). 

In 2012 the EPA’s Clean Watersheds Needs Survey (CWNS) announced that a 

capital investment of $271 billion is essential to meet the nation’s wastewater and 

stormwater treatment and collection requirements for the next 20 years (2032). This 

includes $197.8 billion for wastewater pipes and treatment facilities, $48.0 billion for 

combined sewer overflow correction, $19.2 billion for stormwater management, and $6.1 

billion for recycled water treatment and distribution. To meet the water quality 

requirements of the Clean Water Act, the CWNS is conducted every four years to 

evaluate the capital investment required nationwide for wastewater collection and 

treatment plants. Figure 1-1 illustrates the expected costs by each category (EPA, 2016). 
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Figure 1.1: CWNS 2012, Required Capital Investment by Each Category 
(Source: Clean watersheds Needs Survey, US EPA 2016) 

 

1.3 Pipeline Deterioration 

Random events may lead to pipe deterioration, and drastic defects do not always 

result instantly in collapse. The complicated interactions of different mechanisms that 

happen through and surrounding the pipeline can cause a pipe’s failure. It is nearly 

impossible to predict the time of a pipe’s collapse, but it is possible to estimate the 

collapse probability based on deterioration levels (Najafi, 2011). 

Two main classifications apply to pipeline defects: built-in and long-term. 

Damages and defects, which generate within piping construction and influence the 

functionality of the pipe after installation, belong in the built-in category.  However, 

long-term defects emerge from the sequence of the deterioration and disintegration 

process. Built-in defects consist of flattened or ovaled pipes, offsets in alignments, sags 
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because of soil settlement, overburdened compaction, stresses due to dynamic loadings of 

backfills, removal of trench sheathing, loose-fitted joints, pinching of gaskets, joints 

gasket misalignment, etc. Long-term disintegrations take place over long periods of time 

and include hydraulic overflows, infiltration and inflow, structural fractures, erosion, and 

sulfate corrosion. In the wastewater stream, bacteria transform sulfate to hydrogen 

sulfide, which is then converted to sulfuric acid by the oxidation process when it is 

released to the pipe’s air space. The sulfuric acid causes corrosion to some pipe materials 

due to its reactivity, which can affect the pipe’s structural integrity and accelerate the 

failure process (Najafi, 2011). 

Pipeline defects and collapse are environmental, economic, functional, and safety 

matters (Najafi, 2011); thus, the constant inspection and maintenance of pipelines is 

necessary. Appropriate renewal techniques and/or repair methods should be fulfilled to 

fix the defects or extend the service life of the pipe at the lowest cost.  

1.4 Pipeline Renewal Methods 

Any technology which enhances the useful life of an existing, old, and defective 

infrastructure system is called “service life extension,” and the threshold of a new service 

duration for a pipe is generally determined at 50 years as a default.  However, in some 

cases a service life of up to 100 years for certain methods and pipe supplies is possible 

(Najafi, 2011). 

In the past, the “open-cut” method, which involves the excavation of the buried 

pipe, was the solution for renewing or repairing pipe. Digging has to be performed with a 

high level of accuracy due to the existence of other utilities, such as cables, electrical 

power, gas pipes, water pipes, and other obstacles adjacent to the wastewater pipe, which 

makes the work time-consuming and difficult. Furthermore, restoring the existing 

surfaces, including pavement, landscaping, and sidewalks, is a lengthy and costly 

approach. Road or lane closure of main streets is another consequence of the 

conventional open-cut technique, which negatively affects the daily life and activity of 
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nearby residents. The resulting traffic delays can cause air pollution and other 

environmental impacts related to the open-cut procedure, which should also be 

considered. In addition, the settlement of trench backfill materials has the potential to 

damage other existing underground utilities (Jung and Sinha, 2007). 

Since the 1980’s, several methods have become available to renew and rehabilitate 

sewage pipes in-situ as a solution to the above mentioned problems; these methods are 

called “trenchless technology,” which comprises the replacement or installation of a new 

pipe or the rehabilitation of an existing defective pipe with minimal surface disruption 

and excavation. Trenchless methods can minimize social and environmental costs, extend 

the service life of the pipe, decrease operation and maintenance (O&M) costs, increase 

productivity and workers’ safety, and save money in repair and replacement expenses 

(Najafi, 2011; Jung and Sinha, 2007). 

Making a decision about a pipe renewal method requires considerable technical 

and engineering knowledge. The age of the pipe is the most important parameter that 

needs to be considered, but other factors such as deterioration level and its sequel, pipe 

location (under a private building or easy to access, for example), environmental 

concerns, hydraulic capacity, pipe depth, costs, and regulatory requirements should also 

be weighed (Najafi, 2011).  

Within the family of “trenchless technology,” numerous techniques have been 

developed or are under progress to rehabilitate, renovate, replace, or enlarge the existing 

deteriorated pipe. Najafi has classified the basic trenchless renewal methods in the 

following categories: 

1) Cured-in-place pipe (CIPP) 

2) Sliplining (SL) 

3) Modified sliplining (MSL) 

4) In-line replacement (ILR) 

5) Close-fit pipe (CFP) 
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6) Spray-in-place pipe (SIPP) 

7) Thermoformed pipe (ThP) 

8) Sewer manhole renewal (SMR). 

Decision makers choose one of the renewal methods accordance with certain 

parameters, such as pipeline length and depth, pipe material, size, age, hydraulic capacity 

of the pipe, type and number of maintenance holes and service connections (laterals), 

level of the defect, nature of the problem, renewal method constructability, durability, 

and cost (Najafi, 2011).  

In this dissertation research, the focus is on the environmental impacts of the first 

option, the cured-in-place pipe (CIPP) method, owing to its popularity globally and 

specifically in the United States. CIPP is by far the leading method of the trenchless 

family for the rehabilitation of gravity sewer pipes (EPA, 2012). Hence, the following 

chapter will be limited to the discussion of CIPP history and procedure.  
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2. Scope and Objective 

Numerous building indoor air contamination incidents indicate that research is 

needed to understand the magnitude of chemical emissions from CIPP sanitary sewer 

repairs. The lack of a comprehensive and non-biased study to investigate CIPP air 

emissions poses an environmental challenge and hinders the public and workers from 

truly understanding the potential and magnitude of exposures when they occur. Evidence 

suggests that the CIPP technique has potentially significant environmental, ecological, 

and health impacts that desire further study. Limited knowledge in this matter and the 

importance of understanding CIPP technique outcomes has clearly established a need and 

led to this dissertation research. 

The first goal of this study was to better understand VOC emission at three CIPP 

sanitary sewer installation sites in one U.S. city. Specific objectives were to: (1) 

Characterize the steam temperature, flowrate, and velocity being emitted from CIPP 

installation, (2) Chemically identify and quantify VOCs emitted into air at three sites, and 

(3) Provide recommendations for future research. 

The second goal of this study was to estimate the magnitude of solid waste 

generated and the contribution of criteria air pollutants (VOC, CO, SOx, NOx, PM2.5, 

PM10) and greenhouse gas (GHG) emissions from heavy equipment usage during open-

cut (remove and replace) and CIPP procedures for sanitary sewer rehabilitation. 

Emissions were measured for both CIPP and open-cut excavation activities during 2015. 

Specific objectives were to: (1) Collect information regarding the CIPP installation 

process and open-cut excavation sites studied, (2) Document the amount of waste 

generated by each process, and (3) Using equipment usage data, hours of equipment 

operation onsite, and emission factors, calculate GHG and criteria pollutants emissions 

per project.  
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2.1 CIPP History 

In 1971, a man named Eric Wood was faced with a leaky pipe under his garage in 

London. To avoid difficulties from excavation and pipe replacement, he came up with the 

idea to insert a flexible fabric tube inside the deteriorated pipe, allowing it to cure and 

harden. Wood titled his initiative “insituform,” which originates from the Latin meaning 

“form in place” (Kozman, 2013) 

London was the first municipality that used Wood’s idea when they lined Marsh 

Lane sewer in Hackney, East London in 1971. The pipe was 100 years old, 230 feet in 

length, egg-shaped, and made from brick. In this procedure, the liner was pulled in and 

inflated inside the pipe. The work was performed by Wood himself, supported by Doug 

Chick and Brian Chandler. After this successful experiment, they established a company 

named “Insituform Pipes and Structures, Ltd.”  (EPA, 2012) 

In 1975, Wood applied for a patent, and in 1977 was granted a U.S. patent for his 

CIPP process. Insituform Technologies manufactured and developed the technology until 

1994 when the patent entered the public domain, which resulted in a newly competitive 

market in the CIPP trenchless industry (Kozman, 2013; Heinselman, 2012).  

In 1976, a 12-inch diameter pipe in Fresno, California was the first pipe in the 

United States that underwent a CIPP process, and Insituform was the manufacturer of the 

liner. Since then, Insituform contractors have installed nearly 19,000 miles of CIPP in the 

United States. Other municipalities which were early adopters of CIPP rehabilitation 

include the Washington suburban sanitary commission, Denver, St. Louis, Memphis, 

Indianapolis, Little Rock, Houston, and Baltimore (EPA, 2012). 
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2.2. CIPP Procedure 

The procedure begins with a resin-impregnated fabric tube, which is inserted into 

the defective pipe from an upstream manhole. Water or pressurized air inversion or 

winching is used for tube installation and pushes forward the tube inside the host pipe. 

The fabric is flexible and made from polyester material, fiberglass-reinforced or similar 

materials. The flexibility characteristic of the resin-filled fabric helps to occupy the 

cracks, connect the gaps, and move through curves in the pipe. After that, hot water, hot 

steam, or ultraviolet (UV) light is applied for curing the resin. After curing, the fabric 

becomes hard in the host pipe. CIPP has been utilized for both structural and non-

structural purposes (Najafi, 2011). Table 2.1 presents the major specifications of different 

CIPP installation methods.  

Table 2.1: Major Specifications of CIPP Installation Methods 

Installation 

method 

Diameter 

inch (mm) 

Maximum insertion 

feet (m) 
Liner material Applications 

Inverted in place 4-108 (100-2700) 3000 (1000) 
Thermoset resin/ 
Fabric composite 

Gravity and 
pressure pipelines 

Winched in place 4-54 (100-1500) 1000 (300) 
Thermoset resin/ 

Fabric composite 

Gravity and 

pressure pipelines 

(Source: Pipeline Rehabilitation Systems for Service Life Extension, Najafi, 2011) 

 

Commonly, resin impregnation of the liner (also known as “wet out”) is carried 

out in a factory. After the wet out process, the liner is kept in refrigerated storage or in a 

chilled unit to prevent premature curing of the liner. Curing characteristics such as time 

and temperature are key factors in properly curing of the liner. After curing, the laterals 

(house connections) must be reinstated by a cutting robot. Liner dimpling can assist in 

identifying the laterals location. However, dimpling of higher strength liners is less 

distinguishable (EPA, 2012). 
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2.3 Literature Review  

Many of the reported CIPP caused air contamination incidents were detected first 

by building inhabitant odor reports (Whelton et al. 2013). Many of these reports included 

building evacuations to contain the affected schools, childcare centers, office buildings, 

single-family and multi-family buildings, and hospitals. Those reported to have been 

affected included adults, toddlers, and infants. Chemical exposure symptoms such as 

dizziness, eye irritation, headache, shortness of breath, confusion, and groggy feeling 

were reported by the people who were exposed in addition to emergency and public 

health officials who responded to each incident. Unfortunately, nearly all of the air 

contamination incident investigations anecdotally attributed the odor detected in affected 

buildings to styrene without any analytical confirmation. The code of Federal 

Regulations, Title 40 defines VOCs as follows: 

 “Volatile organic compounds (VOC) means any compound of carbon, excluding 

carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and 

ammonium carbonate, which participates in atmospheric photochemical reactions.” This 

includes any such organic substances but there are several compounds which have been 

designated by the EPA to have negligible photochemical reactivity. These compounds are 

also in the VOC category (e-CFR; EPA, 2015). Volatile organic compounds quickly 

evaporate at room temperature, and some have perceptible odors at certain 

concentrations; however, other VOCs have no smell. Odor is not an indicator for the level 

of risk from inhalation of VOCs. The health effects of any chemical exposure varies 

based on chemical concentration, exposure duration, and how often a person breathes it 

in. Moreover, VOCs belong to a group of chemicals in which the toxicity and ability of 

each chemical to produce adverse health effects are different (Minnesota Department of 

Health).  
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2.3.1 Previous Studies in Air Contamination of CIPP 

An investigation of a CIPP air contamination building in Milwaukee, Wisconsin 

by the U.S. Department of Health and Human Services, Agency for Toxic Substances and 

Disease Registry (ATSDR) in 2005 has been performed. A large diameter brick-made 

sewer pipe located beneath an old brewery building, which had been converted to an 

office building, went under the CIPP installation process and styrene vapor penetrated 

inside the building through foundation cracks. Briefly after lining initiation, the 

occupants started complaining about a strong odor and irritant respiratory effects which 

made the building nearly uninhabitable. Air sampling and testing were conducted and 

styrene levels above 200 ppb were detected more than one month after installation, as 

well as other VOCs at low concentrations. The measured styrene concentrations exceeded 

the acceptable ATSDR long term exposure levels on several occasions during and after 

the lining project and the problem solvers classified the past conditions at the site as a 

public health hazard. Ventilation was applied which assisted in accelerated dissipation of 

air borne styrene (Department of Health and Human Services, 2005). 

Whelton et al. (2013) compiled numerous indoor air contamination anecdotal 

reports form building residents nearby the CIPP sites (Table 2.2). A major takeaway from 

this work was that indoor air contamination incidents have occurred, but quantitative air 

monitoring data is lacking. 
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Table 2.2: Indoor Air Contamination Incidents Compiled by Whelton et al. (2013) 

Incident Location 
Styrene, 

ppm 
Description of Events from Reference 

Ottawa, Canada 

(Bauer 2012) 
Air: nr Odors detected kilometers from worksite 

Fayetteville, New 

York 

(Doran 2012) 

Indoor 

Air: nr 

Odors permeated into nearby residences; residents 

complained and evacuated their homes 

Worcester, 

Massachusetts 

(Dayal 2011) 

Indoor 

Air: 60-70 

Fumes caused daycare center evacuation; headaches 

reported; emergency responders called to site 

Minnesota 

(Marohn 2011) 

Indoor 

Air: nr 
Odor caused building evacuations 

Southfield, 

Michigan 

(Banovic 2011) 

Indoor 

Air: nr 

Hazardous materials response team (HAZMAT) responded; 

vapors from nearby CIPP operation entered school 

ventilation system; building evacuated; children transported 

to hospital for chemical exposure symptoms 

Saugus, 

Massachusetts 

(Tempesta 2011) 

Indoor 

Air: nr 

Firefighters ordered evacuation of elementary school 

because of strong odor; dizzy and light-headed symptoms 

reported 

Pittsburgh, 

Pennsylvania 

(Hayes & Biedka 

2011) 

Indoor 

Air: nr 

Elementary and high school students were evacuated for fear 

of gas leak; odors from nearby CIPP operation were the 

cause 

Helena, Montana 

(Banks 2010) 

Indoor 

Air: nr 

Fire department evacuated nearby affected building because 

of complaints of strong odors, nausea, and headaches 

Arlington, Virginia 

(ARLnow.com 

2010) 

Indoor 

Air: nr 

Nearby CIPP installation caused odor; fire department 

responded 

Pittsburgh, 

Pennsylvania 

(WPXI-TV 2009) 

Indoor 

Air: nr 

Firefighters evacuated nearby apartment buildings; initially 

suspected cyanide gas, but styrene was ultimately detected 

from nearby CIPP 

Somerset, United 

Kingdom (Wills 

2007) 

Indoor 

Air: nr 

Foul CIPP styrene odor permeated into residence through 

drain because of nearby installation 

Brooklyn, New 

York 

(Lysiak 2007) 

Indoor 

Air: nr 

Foul CIPP styrene odor permeated into buildings through 

drain because of nearby installations 
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(Table Continued) 

Ottawa, Canada 

(Bauer & 

McCartney 2004) 

Indoor 

Air: 20, 

115 ppm 

Venting determined to be necessary to prevent air backup 

into nearby residences/ buildings 

Alexandria, Virginia 

(Gowen 2004) 

Indoor 

Air: 500 

ppm 

HAZMAT team responded because of styrene vapor backup 

into nearby buildings; illness symptoms reported 

St. Petersburg, 

Florida 

(Saewitz 2001) 

Indoor 

Air: nr 

Styrene odor detected; hospital evacuated; HAZMAT team 

responded 

nr= not reported 

As demonstrated in the table, for the limited data available, the highest indoor air 

styrene concentration found was 500 ppm.  

Another notable CIPP air contamination study was commissioned by the City of 

Toronto Works and Emergency Services (2001). Researchers examined the presence of 

styrene and 24 other VOCs above manholes; at the breathing zone of installation 

personnel, and inside eight nearby buildings. The researchers detected only styrene near 

manholes (0.16-3.2 ppm), the personnel breathing zone (0.08-0.5 ppm), and in some, but 

not all, nearby residences tested (0.1-0.2 ppm). Unfortunately, it is unclear if testing was 

carried-out during CIPP curing, cooling, or after the cooling period. A major conclusion 

of this study, however, was that styrene concentrations were enhanced significantly 

during installation in the buildings with dry premise plumbing p-traps, and researchers 

recommended that p-traps include water seals to limit chemical intrusion (NASSCO, 

2008). A detailed description of premise plumbing in building was not provided.  

Another indoor air contamination incident occurred in Birmingham, UK and 

prompted the federal health agency to investigate. People living nearby CIPP 

rehabilitation activities complained of noxious fumes inside their homes and CIPP 

contractors advised some residents to evacuate their homes. Some residents, however, did 

not evacuate. Initial air testing by the health agency showed styrene at 15 ppm inside a 

home, and a 20 ppm and 100 ppm health exposure limits were deemed important 
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toxicological thresholds. Some residents sought medical attention for their families 

(children, baby) and relocated for multiple days. After odor complaints, CIPP contractors 

reportedly continued construction on 24-hr. shifts. Two days after the incident, the 

contractor notified the health agency that their own commissioned indoor air test results 

from a few days earlier showed 200 ppm styrene levels in a home (CRCE, 2012).  

Emission of VOCs into the air from CIPP operations is poorly documented and 

understood. Regulatory styrene exposure levels have been developed for healthy adults 

primarily, although the public health exposure limits cited by the CIPP industry do not 

consider infants or children who would be more susceptible to chemical exposure. 

Styrene exposure limits for these vulnerable populations range from 20-25 ppm 

according to the International Toxicity Estimates for Risk (TOXNET 2015). The main 

route of styrene exposure for the general public is indoor air inhalation. Average levels 

are in the range of 0.0002 to 0.0021 ppm and is ascribed to emissions from consumer 

products, building materials, and tobacco smoke. Styrene also can be found in ambient air 

in urban areas (6.8 x 10-5 to 0.0008 ppm) and in rural locations (6.5 x 10-5 to 7.9 x 10-5 

ppm) (EPA, 2000). 

Numerous building indoor air contamination incidents confirmed by public health 

agencies and others indicate that work is needed to understand the magnitude of chemical 

emission, duration, and how variable emissions can be across similar CIPP installations. 

More specifically, the National Association of Sewer Service Companies (NASSCO) 

previously concluded that air emission of 0.5 ppm styrene is typical during CIPP activity 

and styrene emitted by the CIPP process (Salem et al. 2008). Based on the growing 

number of indoor air contamination incidents (Table 2.2), this conclusion is not 

supported. 
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2.3.2 Previous Studies about Other Environmental Impacts of CIPP  

A separate study investigated styrene and other contaminants resulting from CIPP 

of stormwater culverts and characterized its generated condensate. The researchers 

detected endocrine disrupting chemicals, volatile and nonvolatile organic contaminants, 

and several carcinogens downstream from CIPP sites. Some of these contaminants were 

present in culvert outlets, downstream, and CIPP condensates. Room temperature 

condensate had a very high chemical oxygen demand (COD) of around 36,000 ppm, 

which is greater than those of regular landfill leachate (22,000 to 27,000 ppm). Multiple 

VOCs were recognized in the diluted condensate (1:10) containing methyl ethyl ketone, 

isopropylbenzene, n-propylbenzene, and 1,3,5-trimethylbenzene, but these chemicals 

were not detected in further dilution (1:100). Furthermore, the condensate contained 

different heavy metals with concentrations greater than those detected in stormwater. 

Numerous solvents such as styrene and benzene, degraded products of Perkadox®, 

dibutyl phthalate, and diisoocytal phthalate, known plasticizers, and endocrine disrupting 

compounds were recognized in condensate both in culvert outlets and downstream. The 

condensate totally dissolved Daphnia magna (the study’s indicator species) over a 24-

hour period, and 100% mortality happened in 48 hours. Condensate dilution by a factor 

of 10,000 showed styrene levels at 1.53 ppm, which implies that raw condensate had a 

styrene level of 15,300 ppm. In fact, the condensate expressed a complex mixture of 

solvents and compounds. However, in 2009, a NASSCO guideline report described that 

“the condensate concentration based on measurements made to date of the report, is 

around 30 ppm” (probably styrene; since the report did not indicate the substance 

directly). Also, the report mentioned the condensate may be released to the receiving 

waterways “once it has cooled to near ambient temperature”. 

Furthermore, COD and total organic carbon (TOC) was measured at the culvert 

outlet and downstream as well, and demonstrated that organic compounds remained in 

the environment at least 35 days after CIPP installation. Initially after installation, 

concentrations were higher at outlets but declined with time, and after seven days 



21 
 

concentrations downstream were greater than those at the outlet. The highest styrene 

concentrations were found instantly post-installation and seven days afterwards. In 

addition, other aliphatic and aromatic contaminants of an unknown origin were detected 

in the culvert outlet and downstream. While these studies are informative, important 

questions remain. Because of the need for comprehensive research in CIPP formulation, 

further experimental work is required to determine contaminants’ persistence, origin, and 

ecological and environmental impairment (Tabor et al. 2014). 

In 2012, another study was conducted to investigate the environmental impacts of 

Ultraliner and Troliner technologies which are applied to repair storm water pipes. Steam 

and grout are applied for installation of Ultraliner and Troliner technologies respectively. 

The liner that is used in these techniques includes three plasticizers that are believed to be 

of potential environmental concern: benzyl butyl phthalate (BBP), di-(2-ethyl-hexyl) 

phthalate (DEHP), and bisphenol A (BPA). The analytes mentioned were selected based 

on a review of the material safety data sheets (MSDS) of each liner product. In order to 

examine the release of other organic compounds, a gas chromatography and flame 

ionization detector (GC-FID) was utilized for samples collected at different times. The 

study sought to determine whether the contaminants were leaching from liners and grout 

into water. The result of the GC-FID scan showed that negligible trace organics 

penetrated from the products into water during a 48-hour incubation period. The research 

resulted in no detection of the three plasticizers and other organic solutes leaching from 

the liner materials into water. However, the possibility of leaching concentrations below 

the method detection limit should be noted (Ren and Smith, 2012). 

Furthermore, a mathematical model was also developed to better estimate the 

possible range of penetration. Leaching rates of the three plasticizers were assumed to be 

proportional to the surface area of the material in contact with water and the duration of 

contact time. The results of the model revealed that the concentration of the plasticizers 

were meager and less than regulatory limits. Even so, the bioaccumulation of low levels 

of these plasticizers in aquatic organisms might be possible.  Appreciable levels of BBP 
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and DEHP are more likely to bioconcentrate in the lipid reservoirs of aquatic organisms. 

BPA is least likely to bioaccumulate due to its relatively high water solubility (Ren and 

Smith, 2012). 

In Virginia, a one-year study was performed to evaluate the environmental 

implications of hot-steam CIPP technology in surface water and storm water 

conveyances. To that end, seven styrene-based, steam-cured CIPPs were selected, and 

water samples were collected before and after CIPP installation at various time intervals 

over one year. None of the sites were directly linked to sources of drinking water. The 

EPA has not determined regulatory standards for ecological toxicity of styrene 

concentrations in waterbodies, but the EPA’s maximum contaminant level (MCL) of 0.1 

mg/L for styrene can be a good indicator for comparison. Styrene levels at five sites were 

more than 0.1 mg/L, and these concentrations were seen a minimum of 5 days to 71 days 

after installation. In addition, some measurements were higher than the concentration 

required for the mortality of 50 percent of multiple freshwater aquatic indicator species. 

Emergence of algal blooms were also observed at three sites within 6 to 8 days after CIPP 

installation with observation continuing for at least 50 to 55 days. Commonly, nitrogen or 

phosphorus pollution in water can lead to algal blooms, which is an indication of poor 

water quality and can impair ecological life. This implies that some aspects of CIPP 

activity could contribute to algal blooms, but the specific reason is unknown. The study 

proposed one or a more of the following causes for the high styrene concentrations of 

water samples: some amount of permeability in the lining substances, the release of 

uncured resin from the liner during installation, the absence of condensate capturing 

practices which are generated during the CIPP process, and inadequate curing of the resin 

(Donaldson, 2009). 
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24 
 

3. Methodology 

In order to achieve the objectives discussed in Chapter 2, the following agenda 

was established for this research:  

 Select three sites (pipes) which have been scheduled for CIPP activity 

during the course of a one-year study for this dissertation. 

 Collect relevant data for these three sites, such as pipe age, length, depth, 

material, a list of the heavy equipment used, operation hours, etc.  

 Devise an air monitoring procedure for different stages of the CIPP activity 

and performing VOC analysis for each sample for all three sites.  

 Compare of laboratory analysis results with regulatory requirements for 

contaminant concentration limits and with the result of other studies about 

CIPP impacts on water bodies. 

 Calculate the generated excavation waste of the open-cut method for certain 

pipes which have been slated for repair during the one-year study of the 

research.  

 Collect all related data such as above-mentioned parameters for CIPP pipes 

and for the pipes targeted for the open-cut method.  

 Calculate criteria air pollutant emissions and waste generation amount for 

58 sites containing both CIPP and open-cut programs.  

The first section of the methodology will describe the CIPP air emission analysis 

procedure.  In the second section, the method for waste and criteria air pollutant 

calculation of CIPP and open-cut will be explained.  

3.1 Case Study  

In cities containing various wastewater basins which accommodate numerous 

sewer pipes, all the sewage from each basin heads to a particular destination. For mega 

cities with several wastewater treatment plants (WWTP), the destination of various basins 
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can be different WWTPs, but in small cities, the sewage of all basins usually flows to the 

same plant.  

One of the basins of one U.S. city was used as a case study for this research. At 

the time these data were collected, this basin contained 58 pipes designed for 

rehabilitation and replacement between May and November 2015. Of the 58 sanitary 

sewer pipes identified for rehabilitation, 22 were targeted for CIPP lining, 36 were 

targeted for replacement, and 7 were to undergo both spot repair and CIPP lining. In total, 

the 58 pipes were 13,516 ft. (4,119.6 m) in length; 6,561 ft. (1,999.7 m) (48.5%) were 

targeted for CIPP rehabilitation, and 6,955 ft. (2,119.8 m) (51.5%) were targeted for 

open-cut method/replacement. Only four pipes were found to be concrete, and all others 

were vitrified clay. Most pipes were 8 inches in diameter; however, a few pipes were 10, 

12, and 14 inches in diameter. The oldest and newest pipes were installed in 1908 and 

1957, respectively. Sanitary sewer pipes were buried 7 ft. (2.1 m) to 16 ft. (4.8 m) below 

ground surface. Table 3.1 presents the specifications of all 58 sanitary sewer pipes.  

 

Table 3.1: Characteristics of the Pipes in the Basin 

No. 

Pipe 

Length 

(FT) 

Pipe Size 

(inch) 

Pipe 

Material 

Year 

Built 

Open-Cut 

Length                       

(LF) 

CIPP 

Length                      

(LF) 

1 235 8 VCP 1912 35 235 

2 225 8 VCP 1912 225 
 

3 290 8 VCP 1915 292 
 

4 290 8 VCP 1915 292 
 

5 333 10 VCP 1911 25 333 

6 323 10 VCP 1911 
 

323 

7 226 8 VCP 1913 
 

226 

8 312 8 VCP 1911 
 

312 

9 368 10 VCP 1913 367 
 

10 397 10 VCP 1911 396 
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(Table continued) 

11 336 12 VCP 1911  336 

12 313 8 VCP 1912 313 
 

13 313 8 VCP 1912 18 
 

14 328 10 VCP 1913 328 
 

15 315 8 VCP 1912 14 
 

16 328 12 VCP 1913 330 
 

17 254 8 VCP 1910 
 

254 

18 304 12 VCP 1910 
 

304 

19 309 8 VCP 1910 16 309 

20 422 8 VCP 1911 
 

422 

21 422 8 VCP 1910 20 
 

22 232 8 VCP 1910 16 232 

23 305 8 VCP 1915 
 

305 

24 300 8 VCP 1913 300 
 

25 329 12 VCP 1910 33 329 

26 239 8 VCP 1910 241 
 

27 305 8 VCP 1913 34 305 

28 246 8 VCP 1910 21 
 

29 328 8 VCP 1910 
 

328 

30 192 8 VCP 1910 
 

192 

31 304 8 VCP 1908 306 
 

32 308 8 VCP 1912 310 
 

33 308 8 VCP 1912 310 
 

34 308 8 VCP 1912 
 

308 

35 247 8 VCP 1908 249 
 

36 304 8 VCP 1908 24 
 

37 293 8 VCP 1913 
 

293 

38 293 8 VCP 1913 295 
 

39 293 8 VCP 1913 20 
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(Table Continued) 

40 293 8 VCP 1913 30  

41 326 14 VCP 1908 34 
 

42 304 8 VCP 1908 6 
 

43 304 8 VCP 1913 18 
 

44 296 8 VCP 1913 28 
 

45 93 8 VCP 1957 93 
 

46 304 8 VCP 1908 32 
 

47 342 10 VCP 1957 18 342 

48 291 8 VCP 1913 6 
 

49 304 8 VCP 1908 
 

304 

50 143 8 VCP 1957 42 
 

51 292 8 VCP 1913 294 
 

52 245 8 VCP 1957 
 

245 

53 331 8 CON 1919 331 
 

54 326 8 CON 1919 326 
 

55 231 8 VCP 1915 231 
 

56 296 8 CON 1919 296 
 

57 341 8 CON 1919 340 
 

58 324 8 VCP 1911 
 

324 

 

3.2 Analysis of CIPP Air Emissions  

3.2.1 Field Sites and CIPP Installation 

Of the 22 CIPP projects, three CIPP sanitary sewer installation sites were the 

subject of air emission sampling. CIPP activities were conducted between September and 

November 2015. All three rehabilitated pipes in the present study were vitrified clay 

(VCP). After the sanitary sewer pipes were cleaned by high-pressure water, the fabric 

containing the uncured CIPP liner was inverted to the pipe by 80 psi (551.5 kPa) 
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pressurized air. For all pipes, CIPP was installed using hot steam curing reportedly at 

60⁰C, though no measurements by the author were conducted to verify this initial 

condition. The curing durations for each CIPP installation differed on each site. After the 

curing process, a cooling down period commenced for 15 minutes on all three sites. 

Within the cooling down course, pressurized air with no heat was blown through the pipe 

to complete the CIPP installation activity and to allow the temperature to decrease. 

During both curing and cooling procedures, air emissions were observed from two 

locations per site: manholes and steam hoses. At each site the steam hose was installed by 

the contractor during the curing and cooling down periods and connected to a ventilator 

located at the bottom of the maintenance hole. This unit facilitated the emission of a 

vapor-like substance into the ambient air. CIPP pipes were allowed to cool for 15 min. 

Next, contractors released the generated condensate waste into the collection system. The 

condensate was not characterized. It is presumed this condensate mixed with sewage and 

traveled to the wastewater treatment plant with 300+ million gallons per day capacity. 

Table 3.2 shows pipe characteristics and the condition of CIPP installations for the three 

sites. Figure 3.1 illustrates the profile view of the air emission pathways from CIPP 

installation for sanitary sewer pipes. 

Table 3.2: Pipes Characteristics and CIPP Installation Conditions 

Site 

No. 

Pipe 

Year 

Built 

VCP Characteristics CIPP Installation Conditions 

Diameter 

(inch , cm) 

Length   

(ft, m) 

Curing 

(min.) 

Cooling 

(min.) 

Date 

Ambient air temp (⁰F, ⁰C) 

wind velocity (mph , m/s) 

1 1908 (8 , 20.32) (304 , 92.6) 60 15 9/25/2016 (83.8 , 28.8)    (0.04 , 0.02) 

2 1912 (8 , 20.32) (235 , 71.6) 55 15 11/9/2016 (73.4 , 23)       (0.11 , 0.05) 

3 1910 (8 , 20.32) (309 , 94.1) 45 15 11/10/2016 (71.6 , 22)       (0.65 , 0.29) 
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Figure 3.1: Profile View of the Air Emission Pathways from a Steam Cured-in-

Place-Pipe (CIPP) Used for Sanitary Sewer Pipe Repair 
(Courtesy of Dr. Andrew Whelton, Purdue University) 

 

3.2.2 Resin Type 

The resin used by the installers was Alpha Owens Corning L010-PPA-38 Vinyl 

Ester. The resin material safety data sheet reported 40-43% styrene, 1-5% amorphous 

fumed silica, and the remaining 50% unreported ingredients (AOC 2000). The resin 

manufacturer’s product literature reported the presence of 1.0% Di-(4-tert-butyl-

cyclohexyl) peroxydicarbonate and 0.5% tert-butyl peroxybenzoate (AOC 2009). A 
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multiple layer polyester felt liner with an “impermeable” polyurethane coating was used 

to limit styrene permeation.  

3.2.3 Sampling Equipment  

Sampler Box 

Air samples were collected with a Xitech 1060H high vacuum bag sampler 

Manufactured by Xitech Instruments, Inc. (Placitas, NM). This device can easily collect 

an air sample from an air stream by applying a high vacuum to the outside of the sample 

bag with up to 22 inches of mercury direct vacuum force. This instrument weighs 9 

pounds and is 9 inches in height, 7 inches in depth, and 10 inches in length. The 

instrument’s rechargeable battery can run continuously for 8 hours; a see-through 

window is provided to help an operator monitor the amount in the sample bag.  

There is a sample inlet on the wall of the box which accepts any ¼-inch outer 

diameter (OD) tubing. The tubing passes through the inlet port, then one head of a tubing 

is attached to the 1 or 2-liter sampling bag (Tedlar bag) inside the chamber, and another 

end is placed to the air stream by an operator. The vacuum pump filling rate is adjustable 

between 1 to 6.5 L/min. The air inside the chamber evacuates by pump operation and the 

interior pressure drop leads to sample bag inflation. In fact, the Xitech sampler box unit 

generates a negative pressure to allow air to flow into the isolation unit which is 

connected to the Tedlar bag.  

The most important feature of Xitech is its zero pump contamination design 

(Xitech Instrument Inc.). The air enters the bag directly without passing through the 

pump, which results in protection of the pump and samples from cross contamination 

(SKC Inc.). Figure 3.2 depicts the different sections of the Xitech 1060H sampler box. 

When the air sampling transits across the pump, there is a possibility for the residue of 

substances in the air stream to attach to the pump and affect the concentration of the 

pollutants in the samples being taken after the previous ones.  
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Calibration was performed by the rental company before each application, and 

calibration certificates of the devices are provided in Appendix A of this dissertation.  

 

 

Figure 3.2: Xitech 1060H 
(Source: Xitech Instrument Inc.) 

 

Sampling Bag 

A one-liter (7-inch × 7-inch) capacity Tedlar(R) T.O. Plus Air/Gas Sampling Bag 

w/Polypropylene 2-N-1 Combination Fitting (San Leandro, CA) manufactured by 

Environmental Sampling Supply, Inc. (ESS) was used for the sampling. The bag was 

filled up to 75% of its maximum capacity according to the manufacturer’s instructions 

(Environmental Sampling Supply Inc., San Leandro, CA). Each Tedlar bag was filled in 

approximately 20 sec. and at a flowrate of 3 L/min. The bag contains a side port/stem 

with a 3/16-inch OD, which facilitates the filling process with tubing and pump. The top 

section of the valve rotates clockwise and counter clockwise for closing and opening 

purposes, respectively. An orifice is provided in the top of the valve for injection or 

extraction through a septum with a syringe (Environmental Sampling Supply Inc., San 

Leandro, CA). Figure 3.3 demonstrates the utilized tedlar bag and inflation.  
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Figure 3.3: Tedlar Bag and Inflation 
(Source: SKC Inc. and ESS Inc.) 

Tubing 

Tubing (TB10145) with a 0.17-inch ID and a 0.25-inch OD made from low-

density polyethylene (LDPE) provided by Pine Environmental Services Inc. was used for 

sampling. LDPE is an inexpensive polymer with broadly desirable mechanical and 

chemical resistance attributes. It is a flexible homopolymer formed by ethylene 

monomers. LDPE tubing is translucent, corrosion resistant, and stable which results in 

wide utilization of this kind of tubing for chemicals, gasses, and water transmissions.  

(TBL Performance Plastics Co. New Jersey; USP United States Plastic Corp. Ohio). 

Figure 3.4 shows the tubing used for this study.  

 

 

 

 

 

 

Figure 3.4: LDPE Tubing (TB10145) 
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Thermometer, Flow Rate, and Velocity Meter 

In order to measure the flow rate, velocity, and temperature of the steam emitted at 

the sites, the VelociCalc Plus model 8384 manufactured by TSI Inc. was applied. The 

main compartments of the device include a keypad, a display window which shows the 

measurements, and an adjustable probe with a maximum length of 40 inches. The probe’s 

base diameter is 0.395 inch with a smaller diameter at the tip (0.276 inch). The length of 

the probe helped the author locate the sensor in the steam with a sufficient distance to 

avoid steam heat and exposure.  This device is powered by battery and shows 

temperature ranges of 0 to 200⁰F.  Figure 3.5 illustrates this instrument. 

 

 

 

 

 

 

 

 

Figure 3.5: VelociCalc Plus Model 8384 

 

Calibration of the VelociCalc Plus model 8384 was performed by the rental 

company before each usage, and calibration certificates of the device are provided in 

Appendix A of this dissertation.  
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3.2.4 Sampling Procedure 

Air sampling was conducted at all job sites in different stages. Control air samples 

at each job site were also collected before construction activities began. These samples 

help establish the air quality of the area before work initiation, and serve as a criterion for 

comparison of the air quality before and after work commencement. Each Tedlar bag was 

filled in approximately 10 sec. at a flowrate of 3 L/min.  For each air sample, a new 

length of tubing was used to eliminate the potential of sample cross-contamination. 

During the operation of Xitech, the author monitored the Tedlar bag through the 

transparent lid of the device, and when the inflation of the bag reached around 70-75% of 

the total capacity, the author turned off the instrument, opened the lid, closed the bag’s 

valve to prevent sample loss, and detached the bag. All samples were stored out of 

sunlight in a cool and dry place. 

During CIPP installation, the author detected a sharp odor in the surrounding area 

and experienced a slight burning sensation when the wind directed the plume of steam 

toward her location. None of the workers were seen wearing a respirator, and in most 

cases, no gloves. Images of air sample collection and steam plumes can be found in 

Figure 3.6. All activities were conducted in public spaces.  
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Figure 3.6: (Left) Air Sample Being Collected During the Curing Period (Site #1),            

(Right) Steam Being Emitted through a Hose and Downstream Manhole During the 

Curing Period (Site #3)  

(Pictures were taken in public area) 

 

3.2.5 Sites 

Volatile Organic Compound (VOC) air sampling was conducted at three CIPP 

installation sites. Eleven air samples were collected during this investigation. One 

ambient air sample was collected at each site before construction began and was treated 

as a background control. Because the greatest visible amount of chemical steam was 

emitted through downstream manholes, not upstream manholes, only manholes 

downstream of each CIPP installation site were sampled for VOC testing.  

Site 1 was located in Street A, and a total of five air samples were collected. Site 1 

was the only site where air sampling was also carried out on a sidewalk next to a private 

residence. During time when the uncured fabric CIPP liner was inverted into the VCP 

pipe using 80 psi pressurized air (5 min.) another sample from ambient air near the job 

site was collected. Once curing began, two samples were collected. The first sample was 

collected from the downstream manhole 15 minutes after curing started, and the second 

sample was grabbed from ambient air next to the nearest residential building to the 

project site 45 minutes after curing began. CIPP cooling began after 1 hour of curing, and 
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a final air sample was collected from the downstream maintenance hole 10 minutes after 

cooling down started, with 5 minutes left before cooling was completed.  

At Site 2 a total of three air samples were collected, including one control sample 

from ambient air before construction began. At Site 2 air sampling was conducted at a 

downstream manhole located in B Avenue. One air sample was collected during the 

curing procedure after 25 minutes from the curing start point and another during the cool 

down process after 10 minutes of cooling down.  

For Site 3, a total of three air samples were also collected on C Avenue. One 

control sample was collected before construction commencement. Another air sample 

was collected during the curing after 20 minutes from curing initiation, and a sampling 

from the cool down process was taken after 10 minutes from the starting point at the 

downstream manhole.  

In an effort to limit the potential wind or other uncontrolled environmental 

conditions that could affect the results, air samples were collected approximately 10 

inches inside each manhole. Twenty feet of tubing was used for sampling from the 

manholes. This approach enabled the author to avoid exposure to this hot and potentially 

hazardous vapor. Also, if vapors escape into nearby sewer laterals, air results inside the 

sewer network would be more representative than above manhole.  

The temperature, flow rate, and velocity were measured exiting the downstream 

manhole and hose for Sites 2 and 3 during the curing and cooling procedures. Air 

measurements at the manhole and hose were challenging because the displayed number 

on the flowrate meter was increasing very quickly. When the probe was located in the 

steam exiting the hose, the probe could not be maintained at the very first location of the 

emission due to the high energetic force of the steam. Therefore, the probe was inserted 

to the steam immediately above the hose in an effort to stabilize the probe inside the 

steam. Each reading was collected by keeping the probe in the vapor for 4 seconds, and 

the first number at the 4-second mark was reported. Every 5 minutes measurements were 
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conducted for each phase, and the average of the measurements reported as a single 

number for that phase.  

3.2.6 Chemical Analysis 

Air samples were sent to and characterized by a commercial laboratory for VOC 

analysis the same day that they were collected. EPA method 8260B was applied for 

concentrations measurement.  

3.2.6.1 Method 8260B 

Numerous methods have been developed by the EPA to analyze and quantify 

VOCs. The concept behind almost all VOC methods is to concentrate the volatiles from 

the sample matrix by utilizing purge and trap techniques (RESTEK Corp., 2003). Method 

8260B is applicable to approximately all types of samples such as air sampling trapping 

media, waste solvents, surface and ground water, caustic or acid liquors, oily waste, 

aqueous sludge, etc. This method is appropriate for most volatile organic analytes which 

have boiling points below 200 °C and can determine the concentration of 108 compounds 

(EPA, 1996). The complete list of 108 compounds has been provided in Appendix B.  

3.2.6.1.1 Gas Chromatography  

Instruments utilized for the test are gas chromatography (GC) and mass 

spectrometry (MS) which can separate, identify, and quantify the complicated mixture of 

chemicals. A gas chromatograph contains an injection port located at one end of a packed 

metal tube column with the other end attached to the detector. An operator injects the 

sample into the port, and a carrier gas propels the sample down the column. The carrier 

gas should not react with the sample or column. Argon, helium, hydrogen, and nitrogen 

can be utilized for a carrier gas; however, helium is more common due to its inert nature. 

While the sample travels through the column, each compound in the sample interacts 

with the column surface and the partition itself. Substances are transported through the 

column at different speeds based on the mass and shape of the molecules and the 
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interactions between the samples’ molecules and the column surface. Substances which 

are reluctant to attach to the column move through the column quickly, and components 

that stick to the column remain but finally elute from the column. A detector which is 

attached to the other end of the column quantifies the various compounds as they exude 

from the column (Douglas, 2016). 

3.2.6.1.2 Mass Spectrometry  

A mass spectrometer is a detector, and when connected to gas chromatography, 

the detection system itself is referred to as a mass selective detector or simply the mass 

detector (Chasteen, 2009). Mass spectrometry electrically charges the sample molecules 

and speeds them up through a magnetic field. Molecules are divided into charged 

segments, and different charges can be detected by MS.  A spectral plot will be depicted 

by the device and presents the mass of each segment. A compound’s mass spectrum helps 

an operator with qualitative identification. The masses of segments are like puzzle pieces 

to assemble together to determine the mass of the original molecule since each substance 

has a unique mass spectrum. A combination of gas chromatography and mass 

spectrometry for chemical analysis works more efficiently (Douglas, 2016). Figure 3.7 

displays the main compartments of GC/MS.  
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Figure 3.7: Main Compartments of GC/MS 
(Source: Donald Poe, Quantitative Analysis Laboratory; University of Minnesota Duluth) 

 

3.2.6.1.3 Internal Standards 

Usually, prior to direct injection of the samples into a gas chromatography, they 

need to undergo preparation. Some of the reasons are as follows: 

 The concentration of target analytes is very low and pre-concentration prior 

to analysis helps to detect them 

 Samples may have an incompatible solvent such as water or a solvent 

which is problematic with gas chromatography, which needs to be 

exchanged 

 



40 
 

 Samples that are unstable and vulnerable to disintegration from exposure to 

gas chromatography temperature need derivatization to make them more 

stable  

 Overcomplicated samples which cannot be analyzed swiftly (Klee, 2015). 

The following errors are associated with sample preparation: 

 Errors in weight or volume measurements, 

 Contamination, 

 Errors in transfer, 

 Losses due to evaporation or container’s surface (Klee, 2015). 

Furthermore, other errors can be introduced from the analysis method and gas 

chromatography system (sample introduction to the device including injection, 

volatilization, and transition to the column). In an effort to compensate these potential 

errors and to determine the concentrations of the substances in a mixture, the Internal 

Standards (ISTD) method is applied. By adding a known amount of a compound (which 

is similar to the target analyte and is named surrogate) to the sample, the change in 

surrogate and the target analyte should be the same. The selection of internal standards is 

very important, and physical and chemical characteristics of the ISTD should be as 

similar as possible to the target analyte. In general, a deuterated analog of each analyte of 

interest is the best option for the internal standard. Generally, however, the cost and 

accessibility of deuterated standards hinder them from everyday use (Klee, 2015). 

Owing to the broad variation in physical and chemical specifications of analytes of 

interest, several internal standards must be exerted. The similarity level between target 

substances and internal standards affects the responses of the test. If deuterated standards 

are applied, each compound would have its own unique internal standard. An operator 
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can mix stable internal standards together and keep them in sealed containers in a 

refrigerator or freezer. Unstable ISTDs are commonly prepared freshly before application 

(Klee, 2015). Figure 3.8 is one of the spectral plots produced by the gas chromatography 

in this dissertation research. The spectral plots for all samples are provided in Appendix 

C. 

 

 

 

 

 

 

Figure 3.8: One of the Spectral Plots Produced by the Gas Chromatography 
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In order to calculate the concentration of certain compounds, the following steps 

and formulas are employed. 

As discussed earlier, a known amount of internal standards and the target 

substances should be analyzed, and then we need to add a known amount of the internal 

standards to the sample which consists of compounds of unknown concentrations. From 

the first analysis the Internal Response Factor (IRF) can be obtained using equation 3-1 

(Alltech Associates, Inc. 1998): 

Equation 3-1:                        IRF = 
𝑎𝑟𝑒𝑎 (𝐼𝑆𝑇𝐷)  ×  𝑎𝑚𝑜𝑢𝑛𝑡 (𝑇𝐴)

𝑎𝑚𝑜𝑢𝑛𝑡 (𝐼𝑆𝑇𝐷) ×  𝑎𝑟𝑒𝑎 (𝑇𝐴)
 

Where:  

ISTD = Internal Standards 

TA = Target Analytes 

From the second analysis the amount of the unknown analyte will be calculated 

using equation 3-2 (Alltech Associates, Inc. 1998): 

 

Equation 3-2:  Amount of specific substance =
 𝑎𝑚𝑜𝑢𝑛𝑡 (𝐼𝑆𝑇𝐷)×𝑎𝑟𝑒𝑎 (𝑇𝐴)×𝐼𝑅𝐹 (𝑇𝐴)

𝑎𝑟𝑒𝑎 (𝐼𝑆𝑇𝐷)
 

Where: 

ISTD = Internal Standards 

TA = Target Analytes 

IRF = Internal Response Factor  
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Below is an example that demonstrates the procedure. 

An operator injects a sample containing 2,000 µg/mL of toluene (as an internal 

standards) and 1,000 µg/mL of benzene as the analyte. The peak areas in the spectral plot 

are 120,000 for toluene and 67,000 for benzene.  

From this analysis we can obtain the internal response factor for benzene: 

IRF = 
120,000 ×1,000

2,000 ×67,000
 = 0.89552 

Then, the operator injects the sample consisting of 2,000 µg/mL of toluene and an 

unknown amount of benzene using the same chromatography circumstances. The peak 

areas in the plot are 122,000 for toluene and 43,000 for benzene.  

Now, from the second analysis the concentration of benzene (target analyte) can 

be calculated as follows (Alltech Associates Inc. 1998): 

Amount of benzene (target analyte) = 
2,000 ×43,000 ×0.89552

122,000
 = 631.268 µg     

3.2.6.1.4 Tentatively Identified Compounds (TICs) 

Substances which are not in the target compounds list, but appeared in the analysis 

are considered to be unknown compounds. They can be detected, but their identification 

is not confirmed until a known standard for the dubious chemical can be analyzed on the 

same device. The GC/MS system comprises a library of more than 250,000 compounds, 

and can repeatedly render a tentative identification to the unknown compounds while 

searching for the unknown chemical. The concentration of TIC is always an 

approximation when further investigation is required to corroborate the identity of the 

chemical. Sometimes, only a class of compounds is recognizable (e.g., alkane). When a 

TIC is detected, an appropriate standard can be applied and compared to the sample 
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outcome. If they match, the TIC can be added to the list of the target analytes in the 

sample (EPA, 2006). 

In this research, a GC model Agilent 6890N and Network Mass Selective Detector 

(MS) model Agilent 5973 with 4560 OI Analytical Sample Concentrator and 4552 OI 

Analytical Autosampler were used to quantify VOCs. Each sample (20 mL) was injected 

into the GC port, and helium was the carrier gas. Oven temperature was held between 

45°C to 225°C while the purge temperature was at 20°C, desorb temperature at 190°C, 

and bake temperature was 210°C. The GC column was Agilent J&W, and the dimension 

was 20.0 m × 180 μm × 1.00 μm. Chromatograms were analyzed for tentatively identified 

compounds in addition to internal standards, including pentaflourobenzene, 1,4-

diflourobenzene, chlorobenzene–d5, and 1,4–dichlorobenzene-d4, and system monitoring 

compounds such as dibrompflouromethane, toluene-d8, and bromoflourobenzene. The 

GC/MS analysis condition is summarized in Table 3.3. 

Table 3.3: GC/MS Analysis Condition in This Study 

Sample Injection volume 20 mL 

Carrier Gas Helium 

Oven Temperature 45 °C to 225 °C (113 °F to 437 °F) 

Purge Temperature 20 °C   (68 °F) 

Desorb Temperature 190 °C  (374 °F) 

Bake Temperature 210 °C   (410 °F) 

Column dimension 20.0 m × 180 μm × 1.00 μm 

Internal Standards Pentaflourobenzene   / 1,4-diflourobenzene 

chlorobenzene–d5  /  1,4–dichlorobenzene-d4 
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3.2.6.1.5 Method Reporting Limit (MRL) and Method Detection Limit (MDL) 

There are always limitations to the sensitivity, accuracy, and precision of 

analytical instruments. It is essential to obtain data which is both accurate and precise. 

The terms “reporting limits” and “detection limits” represent the various limits that 

announce the lowest concentrations of compounds with a different degree of confidence. 

They describe the performance of a laboratory, operator, and test method. Figure 3.9 

explains the concepts of accuracy and precision.  

Figure 3.9: Concepts of Accuracy and Precision 
(Source: Florida Department of Environmental Protection, 2009) 

 

The method reporting limit (MRL) is the lowest amount of a chemical which can 

be quantitatively specified with acceptable accuracy and precision under stated analytical 

circumstances (ALS Environmental Lab). In fact, if a laboratory does not discover a 

substance in a sample, it does not indicate the absence of that substance in a sample. It 

only indicates that the amount of the substance is below the instrument sensitivity. 

Therefore, the smallest concentration of the compound which a laboratory can report is 

denominated MRL (LCS Laboratory Inc.). Sometimes, scientists use the phrase 

“Practical Quantitation Limit (PQL)” instead of MRL.  

Giving an example can be useful.  A water sample is tested for compound A and 

the regulatory limit for A is 0.5 µg/L. The method reporting limit for the laboratory is 1.0 

µg/L. Then if the sample is contaminated by compound A with a concentration of 0.7 
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µg/L, the experiment result shows the sample as clean, even though the amount of 

chemical A is above the regulatory limits and can be a health risk. Hence, it is important 

that an investigator initially informs the laboratory what MRL (PQL) is desired for the 

research; in this case, the laboratory may be able to select a more suitable test method to 

fulfill an investigator’s need (EPA, 2011).  

The method detection limit (MDL) is the lowest concentration of a compound 

which can be quantified and reported with 99% confidence that the substance amount is 

greater than zero in the sample matrix (EPA, 2009). Therefore, MDL concentrations are 

not accurate or precise (USGS 1999). Figure 3.10 depicts the difference between MRL 

(PQL) and MDL. 

 

Figure 3.10: Relationship between MRL (PQL) and MDL 
(Source: Florida Department of Environmental Protection, 2009) 

 

When an analytical instrument analyzes the samples, it produces a signal even for 

a blank sample (matrix without analytes). This signal for a blank sample is called the 
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instrument background level. Measurement of the fluctuation of the background level is 

referred to as noise. In the background signal, fluctuation measurement can be achieved 

by calculating the standard deviation of successive point measurements (Wells et al., 

2011). The adequate concentration of the analyte in the matrix must exist to generate an 

analytical signal which can be recognized from analytical noise (Shrivastava and Gupta, 

2011). Indeed, in situations when noise and analyte signal are indiscernible, MDL 

protects against faulty reporting of the availability of the analyte at low concentrations. 

When the instrument reports a detection of a chemical which is absent in the matrix, it is 

known as a “false positive.” Reporting the discovery of a compound at MDL amounts in 

a blank specimen or a sample which does not have the substance is rare. Thus, such a 

reporting is not presumably in error (USGS, 1999). 

The United States EPA has developed a procedure to calculate the method 

detection limits. In this method, a minimum of seven replicate (n) spikes at low 

concentrations, usually 1 to 5 times the anticipated MDL, should be prepared and 

processed via the full analytical method (Figure 3.11) (USGS, 1999).  

 

 

 

 

 

 

 

Figure 3.11: Relation between Spike Concentration and MDL 
(Source: United States Geological Survey (USGS) 1999) 
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Analysis of the spike samples is usually performed over a few days, and reagent 

water is typically the spiked matrix. By gathering data points at the spike concentration, a 

distribution of measured concentrations will be generated. Figure 3.12 shows an example 

which is related to distribution of measured concentrations of chlorobenzene for 50 

injections spiked at 0.05 µg/L. The EPA procedure considers this distribution to be a 

normal distribution and is displayed by the bell-shaped curve. (USGS, 1999) 

 

 

 

 

 

 

Figure 3.12: Frequency Distribution of Measured Concentrations of Chlorobenzene 

Spiked at 0.05 µg/L  
(Source: United States Geological Survey (USGS) 1999) 
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It is assumed that the frequency of the distribution and, therefore, the standard 

deviation of the distribution will be constant at some low concentration and stays 

constant down to zero concentration. Figure 3.13 represents the standard deviations for 

various spike concentrations. The EPA method suggests an iteration approach to decrease 

the spike concentration to lower concentrations in order to approximate the region of 

constant standard deviation to MDL (USGS, 1999).  

 

 

 

 

 

 

 

 

Figure 3.13: Standard Deviations for Spike Concentrations, Presenting a Zone of 

Constant Standard Deviation at Low Concentrations 
(Source: United States Geological Survey (USGS) 1999) 

 

It is unfeasible to measure noise signal in repetitive blank samples. In an effort to 

simulate the distribution of measuring the noise signal or actual unspiked analyte or both 

in a series of blank samples, the frequency distribution of low concentration spikes will 
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be centered on zero concentration and can be considered to be a hypothetical blank 

samples frequency distribution (Figure 3.14) (USGS, 1999). 

 

 

 

 

 

 

 

Figure 3.14: Frequency Distribution of Spike Measurements is Superimposed on 

Zero Concentration 
(Source: United States Geological Survey (USGS) 1999) 

 

These hypothetical blank measurements are employed to compute the 

concentration at which no more than 1 percent of the blank samples will result in the 

reporting of a false positive, and that concentration is called the MDL. Accordingly, 

reported detections at concentrations equal to or greater than MDL concentrations should 

be real detections 99 percent of the time. The following formula is used to calculate EPA 

MDL (USGS, 1999).  

 

Equation 3-3:                    MDL = S ×𝑡(𝑛−1,1− ∝ =0.99)  
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Where:  

n = number of replicate spike (1 to 5 times the estimated MDL) 

s = standard deviation of measured concentrations of n spike  

t = student’s t value at n-1 degrees of freedom and 1- ∝ (99 percent)      

confidence level. Student’s t value can be seen at Table 3.4. 

∝ = level of significance 

 

Table 3.4: Student’s t Value for Different Replicates and Degrees of Freedom 

Number of Replicates Degrees of Freedom (n-1) 𝑡(𝑛−1,0.99) 

7 6 3.143 

8 7 2.998 

9 8 2.896 

10 9 2.821 

(Source: Environmental Protection Agency (EPA) 2009) 

 

For this dissertation research, the method reporting limits (MRL) of each target 

analyte are presented in Appendix F.  
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3.3 Solid Waste Generation 

The United States EPA (EPA 2016) has a specific definition for solid wastes, as 

follows (EPA, 2016):  

Any garbage or refuse, sludge from a wastewater treatment plant, water supply 

treatment plant, or air pollution control facility and other discarded material, 

including solid, liquid, semi-solid, or contained gaseous material resulting from 

industrial, commercial, mining, and agricultural operations, and from community 

activities.  Nearly everything we do leaves behind some kind of waste.  

A considerable portion of solid waste is “industrial waste,” even in small cities. 

Unlike residential waste, which is collected by municipalities, industrial waste is 

commonly managed by the private sector. The EPA has provided numerous topical 

websites which can help communities to handle their industrial waste successfully and 

guide them to select environmentally responsible options to better address the 

management of the waste (EPA, 2016).  

In the 1980s, American industrial facilities including 17 various industry 

categories, generated and disposed of almost 7.6 billion tons of industrial waste per year. 

Standard Industrial Classification (SIC codes) represents these 17 industries. The SIC 

codes are a set of codes which are applied to categorize the economic activities of the 

industries or types of business formations in America’s economy. The SIC classification 

includes 10 divisions (A to J) with multiple subdivisions. Sewer construction and sewage 

collection are under division C (Major Group 16) and E (Major Group 49), respectively. 

Plastic resins are under division D, Major Group 30 (EPA, 2016; OSHA, 2016).  

3.3.1 Open-Cut or Remove and Replace Method 

Construction and demolition (C&D) debris produced within the construction, 

reconstruction, and demolition of structures, including buildings, bridges, and roads was 

considered as C&D waste by the EPA. Most of C&D material is disposed in two types of 

landfills: 1) Municipal solid waste landfills, where household wastes are managed and 



53 
 

handled. 2) C&D landfills, the places which are assigned particularly for C&D materials. 

Combustion facilities and unpermitted landfills are other destinations for some of the 

C&D materials. The EPA believes that roughly 1,900 C&D landfills were established 

throughout the nation in 1994. The EPA regulates municipal solid waste landfills, while 

C&D landfills are mainly regulated by state and local governments (EPA, 2016) 

Fulfilment of waste management policies such as recycling, reduction, and reusing 

of C&D materials can reserve landfill space, indirectly diminish methane gas emission, 

minimize the extraction and consumption of virgin resources, decrease environmental 

impacts of new material production, provide business opportunities, and save money by 

avoiding disposal costs (EPA, 2016). 

As mentioned earlier, 36 pipes in the basin were removed and replaced, and 7 

pipes had a small section of open-cut followed by CIPP (total of 43 pipes). For this 

purpose, the contractor excavated along the designated pipes and replaced them with new 

VCP pipe in the same size as the old one. The contractor completed an average of 60 - 70 

linear feet for removal and replacement per day.  

A variety of data was collected from each project site. Where data were not readily 

available, these values were estimated. Trench dimensions were used to estimate the 

amount of waste/material produced as a result of land disturbance during removal and 

replacement (R&R). Land disturbances for 43 pipe removal and replacement activities 

generated a large amount of dirt and crushed asphalt and road base, which is referred to 

as excavation waste. Since the depth of each pipe differed, trench volume varied per 

excavation site.  

Waste management practices implemented during the project resulted in a 

significant reduction in the amount of waste transported to the landfill. The excavated dirt 

was in most cases backfilled into the trench created during excavation. According to the 

contractor, old pipe which was targeted for removal and replacement was crushed into 

small pieces approximately 4 inches in size and mixed with the dirt used to backfill the 
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trench. Only road base and asphalt material were considered to be generated solid waste 

and transported to a recycling center and landfill. Asphalt and road base thickness were 

roughly 8 inches, and the width of the trenches was around 2.5 feet.  

All buried pipes require an appropriate bedding case which protects the pipe 

against loading pressures and provides rigid pipe support. In general, granular material 

that is uniformly compacted to an equal extent is used to build the bedding case. 

Sometimes for good practice, over-excavation of the trench, the substitution of a flat 

foundation, and the implementation of the bedding case over the foundation are 

employed (Gabriel, 1998). Various types of bedding cases are available based on the 

depth of the pipe. Each bedding case may differ in materials and dimensions. All pipes in 

this case study had the same bedding case, and the pipes’ depth were between 7 to 16 feet 

below the ground surface.  

3.3.2 CIPP Method 

While the pipe replacement method generates some waste that must either be 

recycled within the site or go to the landfill, CIPP generates a different kind of waste. 

Commonly CIPP curing is performed by circulating hot water or steam inside the pipe to 

polymerize the resin material followed by a cooling down period. These two actions lead 

to the generation of processed water or steam condensate which contains a high 

concentration of chemicals. (Donaldson, 2009; Tabor et al., 2014). The processed water 

or condensate is considered to be liquid or semi-solid wastes which should be managed 

appropriately. However, a few states take active steps to handle this matter and have 

implemented restricted specifications to their CIPP projects (Caltrans, 2012). The liquid 

and semi-solid wastes were not evaluated in this study.  

The CIPP activity produces some solid waste as well, such as the excess cured 

resin liner and other material. Some of these materials are classified in the plastic group 

and can be recycled. The recycling rate for various kinds of plastic varies significantly. 

Plastics have two major classifications: thermosets and thermoplastics. Heat stiffens a 
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thermoset type plastic irreversibly, and their strength and durability make them a suitable 

choice for application in automobiles, construction, adhesives, inks, and coatings (EPA, 

2015). 

In contrast, heat softens a thermoplastic which reverts to its original condition at 

room temperature. Because of this characteristic, thermoplastics can readily be shaped 

and molded and they are useful for manufacturing of products such as carpet fibers, floor 

covering, and credit cards (EPA, 2015). 

Businesses for recycling of some kinds of plastic resins such as high density 

polyethylene (HDPE) are active and developing in the United States. The U.S. capacity 

for recycling of post-consumer plastics and the market demand for plastic resins recovery 

are larger than the amount of post-consumer plastics obtained from the waste stream 

(EPA, 2015).  

 

3.4 Criteria Air Pollutants and Greenhouse Gases Emissions 

3.4.1 Criteria Pollutants 

The Clean Air Act (CAA) is the federal law that was first enacted in 1955, with 

major revisions in 1970 and 1977, and last amended in 1990 which established the basis 

for the nationwide air pollution control effort (California Environmental Protection 

Agency, 2015). The act requires the EPA to determine criteria for healthy ambient air 

quality and set emission standards for ubiquitous sources of air pollution, such as power 

plants and motor vehicles (McCarthy, et al., 2011). 

In response, the EPA set National Ambient Air Quality Standards (NAAQS) (40 

Code of Federal Regulations part 50) for management of pollutants noxious to public 

health and the environment. Two types of ambient air quality standards are recognized by 

the act: primary standards and secondary standards. Primary standards relate to human 

health and provide protection to public health. Secondary standards prevent damage to 
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the environment, such as animals, vegetation, and buildings, and provide protection to 

public welfare. The NAAQS was set for six common and principal air pollutants which 

are called “criteria pollutants.” These pollutants are listed below (EPA, 2015): 

 Carbon monoxide, 

 Nitrogen oxides, 

 Sulfur dioxide, 

 Particulate matter, 

 Ozone, and 

 Lead. 

 Human health-based and environmentally-based criteria are used to regulate 

mentioned pollutants, the reason for using the word “criteria” for these pollutants. 

Exposure to these pollutants can cause numerous human health effects containing 

respiratory symptoms, heart and lung diseases, asthma, chronic bronchitis, child IQ loss, 

hypertension, stroke, and premature death (EPA, 2015). Health effects associated with 

each of the criteria pollutants are discussed in Chapter 6. 

Numerous monitors located across the U.S. measure the concentration of 

pollutants in different areas. The EPA uses these data to generate air quality trends. In 

2014, air pollution emissions into the atmosphere in America were estimated near 89 

million tons and these emissions played the major role in ozone and particulate 

formation, the deposition of acids, and visibility impairment. The effectiveness of the 

EPA program can be evaluated by the estimation of annual emissions. Tracking the 

changes in different aspects of society between 1980 until 2014 can provide a better 

understanding of the EPA’s endeavor. Figure 3.15 depicts the trends for different areas.  
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Figure 3.15: Comparison of Growth Areas and Air Pollutant Emissions (1980-2014) 
(Source: EPA, 2015) 

 

It is notable that since 1980 the gross domestic product, vehicle miles traveled, 

U.S. population, energy consumption, and CO2 emissions enhanced 147, 97, 41, 26, and 

17 percent, respectively, while, total emissions of criteria pollutants decreased by 63 

percent. Air quality benefits will result in health improvement and enhanced quality of 

life. As a result of this air quality improvement, many regions in the United States meet 

the NAAQS requirement. For instance, 41 areas had an unhealthy concentration of 

carbon monoxide in 1991, and, currently, all those areas meet the standards. The main 

reason for this progress is the evolution of the motor vehicle fleet. The new motor 

vehicles are much cleaner owing to CAA standards. Airborne lead resulting from motor 

vehicle gasoline was another widespread health concern prior to the EPA banning the 

usage of lead in gasoline under the CAA authority, and now, most regions of the country 

meet the national standard. Also, for other pollutants dramatic amelioration is remarkable 

(EPA, 2015). 
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In contrast with such a great improvement in air quality, in 2014 around 57 million 

people throughout the United States were the residents of places where the pollution 

concentrations are above the primary NAAQS and efforts need to be continued to bring 

more areas under the coverage of the healthy air umbrella (EPA, 2015). 

3.4.2 Greenhouse Gases (GHGs) 

Gases that ensnare heat in the atmosphere and make the earth warmer are entitled 

greenhouse gases (EPA, 2015). These gases allow sunlight to pass through the 

atmosphere unimpeded and reach the earth’s surface. When the sunlight warms the 

surface, infrared energy (heat) is emitted to the atmosphere. GHGs almost block the 

escape of a large section of this heat from the atmosphere and trap it in the lower 

atmosphere. Some GHGs occur naturally, like methane, carbon dioxide, nitrous oxide, 

and water vapor, whereas others are anthropogenic, including chlorofluorocarbons 

(CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride 

(SF6). Because of the industrial revolution, the concentration of several important GHGs 

has been increased by about 25 percent over the last few centuries. Within the past 20 

years, approximately three-quarters of anthropogenic carbon dioxide emissions are 

related to burning fossil fuels. Although carbon dioxide occurs naturally in the 

atmosphere, human interference with the carbon cycle led to an artificial shift of carbon 

from solid storage to its gaseous state and thus enhancing atmospheric concentrations 

(Figure 3.16) (NOAA, 2016; U.S. Energy Information Administration, 2004).  

 

 

 

 

 

https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=cfc
https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php?section=cfc
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Figure 3.16: Atmospheric and Human-Made Concentrations of Carbon Dioxide 

Emissions 
(Source: U.S. Energy Information Administration 2004) 

 

The main sources of GHG emissions in the United States are as follows (Figure 3.17): 

 Electricity generation: About 67 percent of electricity comes from fossil 

fuels burning, especially coal and natural gas. 

 Transportation: Production of gasoline and diesel primarily depends on 

fossil fuel burning. 

 Industry: Required energy is provided by fossil fuel burning. 

 Commercial and residential: heat for homes and businesses come from 

fossil fuel burning and waste handling, which result in GHG emissions. 

 Agriculture: emission from this source comes from livestock, including 

cows, rice production, and agricultural soils.  

 Land use and forestry: this source can both absorb CO2 and emit GHG. But 

with proper management absorbing can be higher than emission.  
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Figure 3.17: Share of Each Source in 2013 Total GHG Emissions 
(Source: EPA 2015) 

 

3.4.3 Pollutant Emissions for Open-Cut Method 

Understanding the emission of criteria air pollutants and GHGs from different 

repair methods is helpful for environmental effects comparison. In this study, pollutants 

(criteria and GHG) from heavy equipment usage during installation at work sites were 

evaluated. Criteria air pollutants that are likely emitted by heavy equipment used for 

pipeline rehabilitation constriction activities include VOCs, CO, SOx, NOx, and 

particulate matter of 2.5 and 10-micron size (PM2.5, PM10). GHG emissions have also 

been the focus of several studies because GHGs have a significant contribution in global 

warming and climate change. 

To calculate pollutant air emissions in this research, the number of onsite work 

days, types of heavy equipment onsite, daily hours of heavy equipment operation, and 

emission factors for equipment were obtained. During this project, 110 work days were 
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considered for R&R activities. The California Air Resources Board’s emission factors 

were obtained to calculate the quantity of emitted pollutants (AQMD, 2015). A list of the 

emission factors for various equipment is provided in Appendix D.  

The following equipment and vehicles were used during this process: air 

compressor, dump truck, utility truck, signal board, mini excavator, bypass pump, 

concrete saw, crushing machine, chipping gun, backhoe, roller, and paver. 

3.4.4 Pollutant Emissions for CIPP Method 

In order to calculate pollutant air emissions during CIPP, the same parameters for 

the R&R method were investigated, including the number of onsite work days, types of 

heavy equipment onsite, daily hours of heavy equipment operation, and emission factors 

for equipment. 

For the CIPP process the following equipment and vehicles were used in this 

study: jetter (truck for cleaning the sewer line), television truck, boiler, air compressor, 

refrigerated truck, utility truck, diesel engine, and generator. Some equipment was turned 

on continuously for different purposes during the installation. The contractor installed on 

average 300 linear feet of CIPP liner in one day and 22 work days were considered for 

CIPP activities. 
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4. Results and Discussion 

4.1 CIPP Air Emission 

As previously mentioned, the first part of this study focused on VOC emissions 

from a CIPP sanitary sewer installation, and three CIPP installation sites in one U.S. city 

were examined. During the CIPP curing period for all three sites, a white vapor-like 

substance was emitted from the hose and immediate downstream and upstream manholes 

(U/S MH). Emissions from the upstream manholes were apparent but much less visible 

than those from the downstream manholes (D/S MH). A distinct sweet chemical odor was 

also detected once CIPP installation activities began. During the CIPP cooling period 

however, no white-vapor was visible exiting the hoses and a very slight white vapor-like 

substance was seen exiting the manholes (Figure 4.1).  

 

 

Figure 4.1: Chemical Emission from Downstream Manhole During the Cooling Period 

 (Picture was taken in public area) 
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The temperature and flowrate characteristics of the vapor-like substance, referred 

hereto as steam, exiting downstream manhole and the hose setup by the contractor were 

measured in this study. The greatest steam temperatures (43 - 64°C) and flowrates (0.05 - 

0.08 m3/s) were detected during the CIPP curing period. During the cooldown period, 

steam exiting the hose was substantially cooler (20 - 25°C) but had a similar flowrate 

(0.05 - 0.06 m3/s); (Tables are provided in Appendix E). While the emission of white-

vapor like substances from CIPP installations is commonly reported, unfortunately no 

other steam emission monitoring data was found in the literature for comparison. Steam 

was also observed by the author from upstream manholes and temperature, flowrate, and 

velocity characteristics of those emissions were not measured. 

VOC air sampling results indicated that the CIPP activities emitted chemicals into the air 

during both curing and cooling periods. Styrene was the only chemical detected using 

EPA Method 8260b at any point during the study, although the laboratory reported MRLs 

were highest during curing and cooling samples. Thus, the analytical method inhibits a 

determination of VOCs detected in water previously by Tabor et al. (2014) in CIPP 

condensate. Acetone, benzene, chloroform, isopropylbenzene, methylene chloride, 

methyl ethyl ketone, N-propylbenzene, 1,2,4-trimethylbenzene (TMB), and 1,3,5-TMB 

were emitted during the present study. The method reporting limit (MRL) for each 

analyte can be found in Appendix F. Generally, MRLs were 0.5 ppm for all air samples 

except for curing and cooling period air samples. These were Site 1 (10, 0.5 ppm), Site 2 

(20, 2.5 ppm), and Site 3 (5, 0.5 ppm), respectively.  

The analytical method was also unable to detect semi-volatile organic compounds 

(SVOCs), while SVOCs are known to be emitted by CIPP steam curing (Tabor et al. 

2014). The highest styrene levels were detected during the curing process at all sites 

(Table 4.1), and styrene was also detected during the cooling process.  

The chain of custody forms for all samples can be found in Appendix G.  
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The Occupational Safety and Health Administration (OSHA), the National 

Institute for Occupational Safety and Health (NIOSH), and the American Conference of 

Governmental Industrial Hygienists (ACGIH) have developed regulatory styrene 

exposure levels for healthy adults primarily because of its wide use in the plastics and 

composites industry (Table 4.2). 

Table 4.1: Site Characteristics and Measured Styrene Air Concentration 

Site Characteristics CIPP Installation Site 

Characteristics of Pipe Being 

Rehabilitated 
1 2 3 

Pipe length (meters) 92.6 71.6 94.1 

Pipe size (cm) 20.3 20.3 20.3 

Number of laterals along pipe 

section 
13 8 9 

Location and Distance from Fabric 

Insertion Point (U/S MH)(meters) 
 

Ambient control sampling before 

construction began (The middle 

point between U/S and D/S) 

46 36 47 

Downstream manhole sampling 

during curing 
92.6 71.6 94.1 

Downstream manhole sampling 

during cooling 
92.6 71.6 94.1 

Nearest private property to the 

downstream manhole 
89 - - 

Upstream manhole during liner 

inversion into the manhole 
1 - - 

Styrene Concentration in 

Downstream Manhole (ppm) 
 

During curing 289 1,070 250 

During cooling 5.26 76.7 3.62 

During liner inversion and private 

property 
nd - - 

Results shown represent one replicate per sample and are presented exactly as reported by the 

laboratory; Dash (-) represents sampling not conducted at that location; nd = contaminant not 

detected above the MRL which was 0.5 ppm for samples were taken during liner inversion and 

near private property.  
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Table 4.2: Regulatory Styrene Exposure Limits for Healthy Adults 

Agency Standard Conditions Value, ppm 

OSHA 
PEL 

TWA (8 hr workday); Workers should not 

experience adverse effect 
100 

Ceiling Not to be exceeded 200 

NIOSH 

REL TWA (8-10 hr); Not to be exceeded 50 

STEL TWA (15 min); Not to be exceeded 100 

IDLH 

Immediately dangerous to life or health; 

likely to cause death or immediate or 

delayed permanent adverse health effects 

or prevent escape from the environment  

700 

ACGIH 
TLV 

TWA which most workers can be exposed 

without adverse effects 
20 

STEL TWA (15 min); Not to be exceeded 40 

OSHA: Occupational Safety and Health Administration; NIOSH: National Institute for Occupational Safety 

and Health; ACGIH: American Conference of Governmental Industrial Hygienists; PEL: Permissible 

Exposure Limit; REL: Recommended Exposure Limit; STEL: Short-Term Exposure Limit; IDLH: 

Immediately Dangerous to Life or Health; TLV: Threshold Limit Value; TWA: Time Weighted Averages 

acronyms] 

The magnitude of styrene detected inside manholes indicates that an 

environmental as well as health and safety concern may exist at the worksite. A styrene 

concentration immediately dangerous to life and health (for healthy adults) was detected 

near the source in a manhole. The highest previously reported worksite styrene level 

found in the literature was 3.2 ppm (NASSCO, 2008). However, the previous data are not 

directly comparable because the measurements were conducted at different site locations, 

and the roles of the contractors, worksite, installation processes, and environmental 

conditions on measured styrene levels have not been investigated. Because additional air 

monitoring was not conducted during the present study, it is unknown if workers were 

exposed to styrene concentrations during the construction activity or if styrene migrated 

through sewer pipes away from the CIPP activity. Odor control units, styrene air 

monitoring devices, air treatment equipment, and personal respirators were not present at 

any of the sites. Results indicate that CIPP sewer pipe installation can generate chemical 

steam that contains styrene at levels in the hundreds of ppm. Table 4.3 presents the 

laboratory results of three sites for all 67 target analytes. 
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Table 4.3: Laboratory Reported Concentrations for Target Analytes at Three Sites 

No. Analytes 

Site 1 Site 2  Site 3 

Control Inversion  
Cure 

(MH) 

Cure               

(near private 

residence) 

Cool 

(MH) 
Control 

Cure 

(MH) 

Cool 

(MH) 
Control 

Cure 

(MH) 

Cool 

(MH) 

1 Acetone  ND ND ND ND ND ND ND ND ND ND ND 

2 Benzene  ND ND ND ND ND ND ND ND ND ND ND 

3 Bromobenzene   ND ND ND ND ND ND ND ND ND ND ND 

4 Bromochloromethane ND ND ND ND ND ND ND ND ND ND ND 

5 Bromodichloromethane  ND ND ND ND ND ND ND ND ND ND ND 

6 Bromoform  ND ND ND ND ND ND ND ND ND ND ND 

7 Bromomethane  ND ND ND ND ND ND ND ND ND ND ND 

8 2-Butanone  ND ND ND ND ND ND ND ND ND ND ND 

9 n-Butylbenzene  ND ND ND ND ND ND ND ND ND ND ND 

10 sec-Butylbenzene  ND ND ND ND ND ND ND ND ND ND ND 

11 tert-Butylbenzene  ND ND ND ND ND ND ND ND ND ND ND 

12 Carbon disulfide  ND ND ND ND ND ND ND ND ND ND ND 

13 Carbon tetrachloride  ND ND ND ND ND ND ND ND ND ND ND 

14 Chlorobenzene  ND ND ND ND ND ND ND ND ND ND ND 

15 Chloroethane  ND ND ND ND ND ND ND ND ND ND ND 

16 2-Chloroethyl vinyl ether  ND ND ND ND ND ND ND ND ND ND ND 

17 Chloroform   ND ND ND ND ND ND ND ND ND ND ND 

18 Chloromethane   ND ND ND ND ND ND ND ND ND ND ND 
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(Table Continued) 

19 4-Chlorotoluene  ND ND ND ND ND ND ND ND ND ND ND 

20 2-Chlorotoluene  ND ND ND ND ND ND ND ND ND ND ND 

21 
1,2-Dibromo-3-

chloropropane  
ND ND ND ND ND ND ND ND ND ND ND 

22 Dibromochloromethane  ND ND ND ND ND ND ND ND ND ND ND 

23 1,2-Dibromoethane  ND ND ND ND ND ND ND ND ND ND ND 

24 Dibromomethane  ND ND ND ND ND ND ND ND ND ND ND 

25 1,2-Dichlorobenzene   ND ND ND ND ND ND ND ND ND ND ND 

26 1,3-Dichlorobenzene  ND ND ND ND ND ND ND ND ND ND ND 

27 1,4-Dichlorobenzene  ND ND ND ND ND ND ND ND ND ND ND 

28 Dichlorodifluoromethane ND ND ND ND ND ND ND ND ND ND ND 

29 1,1-Dichloroethane  ND ND ND ND ND ND ND ND ND ND ND 

30 1,2-Dichloroethane  ND ND ND ND ND ND ND ND ND ND ND 

31 1,1-Dichloroethene  ND ND ND ND ND ND ND ND ND ND ND 

32 cis-1,2-Dichloroethene  ND ND ND ND ND ND ND ND ND ND ND 

33 trans-1,2-Dichloroethene  ND ND ND ND ND ND ND ND ND ND ND 

34 1,2-Dichloropropane ND ND ND ND ND ND ND ND ND ND ND 

35 1,3-Dichloropropane ND ND ND ND ND ND ND ND ND ND ND 

36 2,2-Dichloropropane ND ND ND ND ND ND ND ND ND ND ND 

37 1,1-Dichloropropene  ND ND ND ND ND ND ND ND ND ND ND 

38 cis-1,3-Dichloropropene  ND ND ND ND ND ND ND ND ND ND ND 

39 
trans-1,3-
Dichloropropene  

ND ND ND ND ND ND ND ND ND ND ND 

40 Ethylbenzene  ND ND ND ND ND ND ND ND ND ND ND 
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(Table Continued) 

41 Hexachlorobutadiene  ND ND ND ND ND ND ND ND ND ND ND 

42 2-Hexanone  ND ND ND ND ND ND ND ND ND ND ND 

43 Isopropylbenzene  ND ND ND ND ND ND ND ND ND ND ND 

44 p-Isopropyltoluene  ND ND ND ND ND ND ND ND ND ND ND 

45 MTBE  ND ND ND ND ND ND ND ND ND ND ND 

46 4-Methyl-2-pentanone  ND ND ND ND ND ND ND ND ND ND ND 

47 Methylene chloride  ND ND ND ND ND ND ND ND ND ND ND 

48 Naphthalene  ND ND ND ND ND ND ND ND ND ND ND 

49 n-Propylbenzene  ND ND ND ND ND ND ND ND ND ND ND 

50 Styrene  ND ND 289 ND 5.26 ND 1,070 76.7 ND 250 3.62 

51 1,1,1,2-Tetrachloroethane  ND ND ND ND ND ND ND ND ND ND ND 

52 1,1,2,2-Tetrachloroethane  ND ND ND ND ND ND ND ND ND ND ND 

53 Tetrachloroethene  ND ND ND ND ND ND ND ND ND ND ND 

54 Toluene  ND ND ND ND ND ND ND ND ND ND ND 

55 1,2,3-Trichlorobenzene  ND ND ND ND ND ND ND ND ND ND ND 

56 1,2,4-Trichlorobenzene  ND ND ND ND ND ND ND ND ND ND ND 

57 1,1,1-Trichloroethane  ND ND ND ND ND ND ND ND ND ND ND 

58 1,1,2-Trichloroethane  ND ND ND ND ND ND ND ND ND ND ND 

59 Trichloroethene  ND ND ND ND ND ND ND ND ND ND ND 

60 Trichlorofluoromethane  ND ND ND ND ND ND ND ND ND ND ND 

61 1,2,3-Trichloropropane  ND ND ND ND ND ND ND ND ND ND ND 

62 1,2,4-Trimethylbenzene ND ND ND ND ND ND ND ND ND ND ND 



70 
 

(Table Continued) 

63 1,3,5-Trimethylbenzene  ND ND ND ND ND ND ND ND ND ND ND 

64 Vinyl acetate  ND ND ND ND ND ND ND ND ND ND ND 

65 Vinyl chloride   ND ND ND ND ND ND ND ND ND ND ND 

66 o-Xylene  ND ND ND ND ND ND ND ND ND ND ND 

67 m- & p-Xylenes ND ND ND ND ND ND ND ND ND ND ND 
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The CIPP installations in the present study were outfitted with special liners reported to 

be “impermeable.” These liners are intended to reduce chemical permeation and release 

into the environment (Lubrizol Corp., OH). No studies, however, were found regarding 

the efficacy of their performance in reducing chemical permeation. It is unknown if these 

liners were installed correctly or the liners had been mechanically compromised before or 

during installation. Results nonetheless indicated that styrene can be emitted at levels 

immediately dangerous to life and health from CIPP installation sites even when a liner is 

used and additional work is needed to better understand conditions that resulted in these 

data. 

Myriad literature reports indicate that CIPP sanitary sewer activities using styrene 

resin can contribute to styrene present inside nearby buildings. No indoor air monitoring 

was conducted during the present study for nearby sewer laterals and a limited number of 

samples on-site were collected. Evidence from the present study indicates that the 

greatest styrene concentration occurred during the curing process. No studies were found 

that have examined the physics of what takes place inside the CIPP tube during curing to 

define which conditions can result in chemical steam entering nearby sewer pipes and 

chemical transport to and into nearby buildings.  

It is important to recognize that air styrene regulatory exposure limits established 

by OSHA and NIOSH are not protective of infants, children, or immunocompromised 

individuals who would be more susceptible to chemical toxicity. In accordance with risk 

assessments by the U.S. and the Netherlands, the International Toxicity Estimates for 

Risk (ITER) values for these susceptible populations range from 20 - 25 ppm (Table 4.4). 

In the absence of any thorough styrene exposure limit established for CIPP-caused 

conditions, health officials and utilities should consider requiring contractors not to allow 

styrene to escape the sewer pipe rehabilitation site at or above this limit. Also, sewer 

laterals require frequent air testing during CIPP installations.  
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Table 4.4: Non-Cancer Inhalation Styrene Exposure Limits to be Considered for 

Sensitive Populations 

Agency Parameter Conditions 
Value 

(ppm) 

ATSDR LOAEL Lowest observed adverse effect level 20 

RIVM LOAEL Lowest observed adverse effect level 25 

EPA NOAEL No observed adverse effect level 22 

Results obtained from ITER TOXNET (2015); ATSDR = Agency for Toxic Substances and Disease 

Registry, Department of Health and Human Services, USA; RIVM = National Institutes for Public Health 

and the Environment, Ministry of Health, Welfare, and Sport, The Netherlands; EPA = Environmental 

Protection Agency, USA 

 

To prevent styrene intrusion into nearby buildings through sewer drains of a sewer 

pipe network, chemical transport phenomena in sewer pipes and premise plumbing 

configuration must be understood. There is some evidence of gas transport in normal 

operating sewer systems, primarily for H2S (EPA, 1991), but no data were found 

regarding transport of contaminants released by sewer pipe CIPP rehabilitation activities. 

CIPP activities are very different from normal gravity operated collection systems 

because CIPP installations involve high temperature, pressure, and air flow. Sewer pipes 

undergoing rehabilitation are many times bypassed, but not completely isolated from 

nearby sewer laterals.  

The presence of water seals in p-traps has been reported helpful in minimizing 

CIPP-caused styrene intrusion in the City of Toronto (2001). Water seals are required to 

be maintained in floor drains with trap primers in accordance with model plumbing codes 

(IPC, 2015; IAPMO, 2015). Discussions with homeowners in this study (outside the city 

where the testing was conducted) revealed that it is likely most homeowners are unaware 

that water seals are required for plumbing code compliance. Also important to note is that 

for most sinks and other fixtures that have water plumbed to the fixture and are used 

often enough to maintain trap seals, there are no requirements for a trap primer. In areas 

where emergency floor drains or similar fixtures do not have water piped to them, there 

should be a trap primer or other approved means of introducing a small amount of water 
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periodically to prevent p-trap evaporation and the escape of sewer gasses. In buildings 

where traps can dry out from long periods of non-use, a flexible seal without a liquid seal 

trap can be installed. Until additional VOC monitoring studies have been conducted, it is 

recommended that both CIPP contractors and sewer system owners warn and teach 

customers how to prevent CIPP generated chemicals from intruding into their buildings. 

Because of the serious public health risk, air monitoring in nearby sewer laterals is also 

recommended. 

Odor control units and air treatment equipment could also be employed to capture 

and remove chemicals from contaminated steam before emission to the ambient 

environment and work area. While styrene is defined as a hazardous air pollutant (HAP) 

by the Clean Air Act, there is no legal requirement to restrict HAP emission from 

rehabilitation sites. Because no air regulatory permit is needed for chemical emissions 

from CIPP installations, the environmental and public health risk to workers remains 

poorly understood.  

4.2 Solid Waste Generation 

As discussed earlier, another goal of this study was to evaluate solid waste 

generation in both methods: remove and replace and CIPP. The remove and replace 

method produces construction and demolition (C&D) waste and CIPP activity generates 

plastic type solid waste. The results of both techniques will be explained in detail in this 

section.  

4.2.1 Solid Waste from R&R Method  

Of the 43 pipes targeted for R&R, 36 pipes in the basin had the open-cut 

procedure and 7 pipes had a small section of R&R followed by CIPP. Because of land 

disturbances during open-cut activities, a large amount of construction and demolition 

(C&D) waste including dirt, crushed asphalt, and road base were generated (Figure 4.1).  
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Approximately 5,657 yd3 (4,325 m3) of dirt, road base, and asphalt were excavated 

for these removal and replacement sites. Of this volume, 4,901 yd3 (3,747 m3) were 

backfilled into trenches and 756 yd3 (578 m3) of road base and asphalt were sent to 

recycling centers or for landfill disposal. 

Information regarding trench dimensions and excavation waste volume can be 

found in Table 4.5.  

 

Figure 4.2: Excavation Waste Generated by R&R Method 
 (Pictures were taken in public area) 
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Table 4.5: Solid Waste Generated by Sanitary Sewer Line Removal and 

Replacement Method 

Pipe 

Number  

Trench Characteristics 
Excavation 

volume     

(yd3)  

Asphalt & 

road base 

(yd3) 

Dirt         

(yd3)  
Trench 

Dimensions    

(ft3) 

Pipe depth      

(ft) 

1 641 7 20.6 3.7 17 

2 4123 7 132.4 24.1 108 

3 6081 8 195.3 31.2 164 

4 6081 8 195.3 31.2 164 

5 1021 16 35.3 2.9 32 

6 11344 12 392.2 42.4 350 

7 14187 14 490.5 45.6 445 

8 7301 9 234.4 33.5 201 

9 541 8 17.4 2.8 15 

10 10111 12 349.6 37.8 312 

11 432 12 13.9 1.5 12 

12 9347 11 346.3 40.7 306 

13 413 10 13.3 1.7 12 

14 517 10 16.6 2.1 14 

15 493 12 15.8 1.7 14 

16 6248 8 200.6 32.1 169 

17 1182 14 43.8 4.1 40 

18 5621 9 180.5 25.8 155 

19 840 9 27.0 3.9 23 

20 479 8 15.4 2.5 13 

21 7137 9 229.2 32.7 196 

22 7231 9 232.2 33.2 199 

23 8006 10 257.1 33.2 224 

24 5808 9 186.5 26.6 160 

25 750 8 24.1 3.9 20 

26 7618 10 244.6 31.6 213 

27 467 9 15.0 2.1 13 

28 625 8 20.1 3.2 17 

29 963 11 38.1 4.5 34 

30 207 10 6.6 0.9 6 

31 330 7 10.6 1.9 9 

32 583 8 18.7 3.0 16 

33 208 8 6.7 1.1 6 

34 666 8 21.4 3.4 18 
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(Table Continued) 

35 680 11 23.5 2.8 21 

36 125 8 4.0 0.6 3 

37 1104 8 35.4 5.7 30 

38 6123 8 196.6 31.5 165 

39 9376 11 301.0 35.4 266 

40 8419 10 270.3 34.9 235 

41 4811 8 154.5 24.7 130 

42 6164 8 197.9 31.7 166 

43 7081 8 227.4 36.4 191 

TOTAL (yd3) 5657.5 756.2 4901 

 

4.2.2 Solid Waste from CIPP Method  

In this study, 22 pipes in the basin had the CIPP procedure, which also produces 

some solid waste. Some of these materials are considered in the plastic group and can be 

recycled.  

Waste generated during 22 CIPP activities was substantially less than that 

generated by removal and replacement activities. Specifically, CIPP activities did not 

require asphalt removal. For CIPP activities, approximately 3 yd3 (2.3 m3) of waste were 

generated per each installation for a total of 66 yd3 (50.4 m3). In this research, the waste 

generated during CIPP works included the excess cured resin liner, latex gloves, napkins, 

plastic wraps, and insulating fabrics (Figure 4.2). Although the amount of waste was 

slight, the ultimate disposal of this waste was not reported. Furthermore, the application 

of waste management policies, such as recycling and reusing approaches for the plastic 

type generated waste, was also not announced.  
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Figure 4.3: Solid Waste Generated by CIPP Method 

(Picture was taken in public area) 

 

4.3 Criteria Air Pollutants and Greenhouse Gas Emissions for Both Methods  

To review material from Chapter 3, GHGs and criteria pollutants from heavy 

equipment usage at job sites during both methods were measured. Air pollutants that are 

likely emitted by heavy equipment used for R&R constriction activities contain VOCs, 

CO, SOx, NOx, particulate matter of 2.5 and 10-micron size (PM2.5, PM10), CO2, and CH4. 

In an effort to calculate these pollutant emissions in this study, the following factors were 

considered for both techniques: 

 On site work days, 

 On site heavy equipment type, horsepower, and quantity, 

 Daily hours of heavy equipment operation, 

 Emission factors for each piece of equipment. 
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In both methods, the California Air Resources Board’s emission factors were used 

to calculate the quantity of emitted pollutants (South Coast Air Management District 

2015). A list of emission factors is provided in Appendix D. 

4.3.1 Air Pollutants from R&R Method 

In this research, 110 on-site work days were considered for 43 open-cut sites, and 

emissions calculations were conducted using equation 4-1:  

Equation 4-1: Emission (lb) = Total hours of operation × Emission factor (lb/hour) 

Table 4.6 shows information concerning equipment type and quantity, operation 

hours, related emission factors, and the amount of pollutants emitted during R&R 

activities.
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Table 4.6: Calculation of Pollutants Emitted from Equipment Used at R&R Sites 

 
Equip. list 

Air 

Compressor 

Dump 

truck 

Utility 

truck 

Signal 

board 

Mini 

excavator 

Bypass 

pump 

Concrete 

saw 

Crushing 

machine 
Backhoe Roller Paver 

 
Max 

horsepower 
250 500 250 50 120 175 120 250 250 120 120 

 

Operating 

hours per 

day 

2 2.5 1 8 1 4 2 1 4 2 2 

 
Construction 

days 
110 110 110 110 110 110 110 110 110 110 110 

 

Total onsite 

operating 

hours 

220 275 110 880 110 440 220 110 440 220 220 

 
Quantity 1 1 1 1 1 1 1 1 1 1 1 

E
m

is
si

o
n

 f
a
ct

o
rs

 (
lb

/h
o
u

r)
 

VOC (ROG) 0.0892 0.1960 0.1252 0.0931 0.0912 0.1158 0.0892 0.1646 0.1082 0.0857 0.1235 

CO 0.2803 0.5949 0.3702 0.3227 0.5102 0.7365 0.4759 0.5171 0.3566 0.4000 0.4969 

NOx 0.9294 1.4165 0.9818 0.3148 0.5787 1.0489 0.6249 1.6355 0.9047 0.5498 0.7477 

SOx 0.0015 0.0027 0.0019 0.0005 0.0009 0.0016 0.0009 0.0028 0.0019 0.0007 0.0008 

PM 0.0286 0.0505 0.0328 0.0243 0.0455 0.0502 0.0486 0.0506 0.0294 0.0454 0.0636 

CO2 131 272 167 36.2 73.6 140 74.1 245 172 59.0 69.2 
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(Table Continued) 

CH4 0.0080 0.0177 0.0113 0.0084 0.0082 0.0104 0.0080 0.0149 0.0098 0.0077 0.0111 

P
o

ll
u

ta
n

ts
 e

m
it

te
d

 (
lb

) 

VOC (ROG) 19.626 53.889 13.767 81.895 10.033 50.952 19.623 18.107 47.627 18.851 27.180 

CO 61.666 163.598 40.720 284.020 56.120 324.052 104.695 56.882 156.904 87.990 109.310 

NOx 204.463 389.525 107.995 277.011 63.657 461.497 137.467 179.908 398.078 120.947 164.501 

SOx 0.325 0.735 0.206 0.412 0.095 0.694 0.191 0.303 0.850 0.152 0.179 

PM 6.289 13.886 3.605 21.425 5.002 22.083 10.702 5.570 12.920 9.997 13.999 

PM10 6.038 13.331 3.460 20.568 4.802 21.199 10.274 5.347 12.403 9.597 13.439 

PM2.5 5.660 12.498 3.244 19.282 4.502 19.875 9.632 5.013 11.628 8.997 12.599 

CO2 28868.365 74891.813 18319.993 31847.896 8098.540 61654.291 16312.951 26898.573 75564.285 12977.525 15223.207 

CH4 1.771 4.862 1.242 7.389 0.905 4.597 1.771 1.634 4.297 1.701 2.452 

ROG = Reactive Organic Gas which is approximately similar to VOC. California Air Resources Board (ARB) defines ROGs as follow (ARB 2009): 

Total Organic Gas (TOG) – Exempt compounds (ARB list of methane, CFCs, etc.) = Reactive Organic Gas (ROG)  
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4.3.2 Air Pollutants from CIPP Method 

For CIPP activities, 22 work days were considered and emissions calculated in the 

same way as the R&R method. Results can be found in Table 4.7.  

Table 4.7: Calculation of Pollutants Emitted from Equipment Used at CIPP Sites 

 
Equip. list 

Air 

Compressor  
TV Truck 

Utility 

truck 

Jetter 

truck 

Signal 

board 

Generator 

sets 

Refrigerate

d Truck 

 
Max 

horsepower 
250 500 250 500 50 500 500 

 

Operating 

hours per 

day 

2 8 1 0.5 8 2 4 

 
Constructio

n days 
22 22 22 22 22 22 22 

 

Total onsite 

operating 

hours  

44 176 22 11 176 44 88 

 
Quantity 1 1 1 1 1 1 1 

E
m

is
si

o
n

 f
a

ct
o

rs
 (

lb
/h

o
u

r)
 

VOC 

(ROG) 
0.0892 0.1960 0.1252 0.1960 0.0931 0.1556 0.1960 

CO 0.2803 0.5949 0.3702 0.5949 0.3227 0.6639 0.5949 

NOx 0.9294 1.4165 0.9818 1.4165 0.3148 1.9429 1.4165 

SOx 0.0015 0.0027 0.0019 0.0027 0.0005 0.0033 0.0027 

PM 0.0286 0.0505 0.0328 0.0505 0.0243 0.0567 0.0505 

CO2 131 272 167 272 36.2 337 272 

CH4 0.0080 0.0177 0.0113 0.0177 0.0084 0.0140 0.0177 

P
o

ll
u

ta
n

ts
 e

m
it

te
d

 

(l
b

) 

VOC 

(ROG) 
3.925 34.489 2.753 2.156 16.379 6.845 17.245 

CO 12.333 104.702 8.144 6.544 56.804 29.212 52.351 

NOx 40.893 249.296 21.599 15.581 55.402 85.488 124.648 
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(Table Continued) 

SOx 0.065 0.470 0.041 0.029 0.082 0.145 0.235 

PM 1.258 8.887 0.721 0.555 4.285 2.494 4.444 

PM10 1.208 8.532 0.692 0.533 4.114 2.395 4.266 

PM2.5 1.132 7.999 0.649 0.500 3.856 2.245 3.999 

CO2 5773.673 47930.760 3663.999 2995.673 6369.579 14821.527 23965.380 

CH4 0.354 3.112 0.248 0.194 1.478 0.618 1.556 

 

From criteria air pollutant and GHG emission bases, it was concluded that the 

R&R technique emitted a greater amount of each pollutant than the CIPP operations did. 

The equipment used in both methods from the point of emission was relatively similar, 

but pollutant reductions were observed for CIPP activities due to the shorter period of 

construction duration. As mentioned earlier, CIPP activities were conducted for 22 days 

and R&R activities were conducted for 110 days. Table 4.8 compares total emissions of 

each pollutant during both methods.  

 

Table 4.8: Pollutants Total Emission for R&R and CIPP Rehabilitation Activities 

Method 
Total Mass of Pollutant Emitted, tons 

VOC CO NOx SOx PM PM10 PM2.5 CO2 CH4 CO2e 

Replacement 0.181 0.723 1.253 0.002 0.063 0.060 0.056 185.329 0.016 185.736 

CIPP 0.042 0.135 0.296 0.001 0.011 0.011 0.010 52.760 0.004 52.855 

(CO2e) is used to compare the emissions from various greenhouse gases on the basis of their global warming 

potential (GWP) and report the whole amount of GHGs in terms of carbon dioxide. GWP for CH4 is greater than 

25 over 100 years and it means that emissions of 1 part CH4 is equivalent to emissions of 25 parts carbon dioxide. 

In this study, emissions from two greenhouse gases (CO2 and CH4) were calculated and reported as a CO2e. 
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An estimated 187 tons of CO2 equivalent were generated as a GHG emission from 

R&R activities, and only 53 tons was estimated for CIPP activities.  The main reason for 

this difference was the longer duration of equipment operation for open-cut activities in 

contrast to CIPP. 
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5. Limitations and Recommendations 

This study has limitations, but overall, the results indicate that the chemicals 

emitted from steam-cured CIPP sewer pipe rehabilitation warrant further study. A follow-

up study should be conducted to fully describe chemical emissions during curing and 

cooling processes and determine if hazards to the CIPP workers and nearby population 

exist. Real-time air monitoring for styrene and other chemicals should be considered. 

Monitoring of air in nearby sewer pipes (i.e., laterals) would also provide insight into 

chemical emissions and migration from CIPP activity. Indoor air monitoring in nearby 

buildings would also provide insights, but these results would be subject to the condition 

of the infrastructure where gases would be transported and thus highly variable. 

Theoretically, styrene gas traveling through a highly degraded lateral with many cracks 

may enter the surrounding soil pores instead of moving in its entirety towards nearby 

buildings. In contrast, gas traveling through a sewer pipe lateral without cracks may 

proceed further towards and possibly into the building. There are many unknowns that 

must be investigated in order to describe the exact conditions that allow gases to travel 

from CIPP sites into nearby buildings through the sewer infrastructure. The first step in 

achieving a comprehensive understanding of chemical emissions would be to better 

understand chemical emissions at the source. 

Two major limitations of this work were that only three CIPP installation sites 

were monitored, and that simultaneous replicate samples were not collected. The results 

presented provide an initial step towards understanding the chemical concentration in the 

air caused by CIPP activity, so additional sampling data should be obtained. These data 

can provide a better context for interpreting the presented results. Styrene levels detected 

in the present study indicate a high variability in the concentration of styrene present at 

each site even when the CIPP formulation, liner type, contractor, pipe size, ambient air 

temperature, curing and cooling temperatures, manhole depths, installation process, and 

materials were almost the same. A more thorough and more frequent sampling regime 

should be applied in a follow-up study. Additional testing is needed to understand the 
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range of VOC levels present in manholes, in sanitary sewer pipes, and emitted into the 

work area. Also needed is a better understanding if VOC concentrations in the air differ 

during the installation processes, which would require a greater air sampling frequency 

than the present study. Breathing zone (BZ) concentration monitoring is also important, 

but factors that affect VOC generation by CIPP processes must be understood for BZ 

results to be interpretable and representative.  

Also important is that to date, no organization has fully characterized the chemical 

steam generated by CIPP activity. In the present study, air was only characterized for 67 

VOCs, yet SVOCs can also be released into condensate during CIPP (Tabor et al., 2014). 

It is unknown if SVOCs would be released in emitted chemical steam. Steam likely 

contains droplets and gases. Testing should be conducted to explore which factor(s) 

control chemical emissions and to more fully understand their composition as well as 

environmental and public health risks. In parallel, characterization of the CIPP generated 

condensate and hot wastewater could help describe the suite of chemicals emitted by the 

installation activity. 

The increasing need to rehabilitate sanitary sewer infrastructure, the increasing 

frequency of communities choosing CIPP, and the growing number of indoor air 

contamination incidents caused by CIPP activities underscores a need to better 

understand environmental emissions from in-situ rehabilitation activities. The results of 

this study indicate that CIPP chemical emissions may be a health risk to workers and 

nearby building inhabitants. Additional investigations regarding chemical emissions from 

CIPP should be commissioned to fill the environmental and public health knowledge 

gaps. The acute and chronic chemical exposure risks of CIPP chemical steam constituents 

and styrene to sensitive populations, if found to be significant, should be further 

examined. 
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Regarding the issue of waste generation, the results in this study showed that in 

total, 756 yd3 (578 m3) of solid waste were generated during R&R activities, while 

roughly 66 yd3 (50.4 m3) of solid waste were generated during CIPP activities. Waste 

generation was only considered during onsite construction activity and focused solely on 

solid waste. Liquid and semi-solid wastes were not evaluated in this study. Additional 

work is needed to more directly compare waste generation from CIPP and R&R 

procedures and consider waste generation for the entire process. In addition to the amount 

of the waste, the type and inherent characteristics of the waste are important as well and 

can greatly affect the selection of handling and management approaches. Styrene spill 

from excess sections of cured and uncured liners on the job site should be noted because 

it can complicate the transportation and handling of the waste.   

From criteria air pollutants and GHG emission bases, the R&R technique emitted 

a greater amount of each pollutant than CIPP operations. The reasons for this include the 

fact that more time is required for construction with the open-cut method compared to in-

situ pipeline rehabilitation, which results in a greater amount of emissions related to 

traffic congestion. The type of equipment utilized in both methods from the point of 

emission is relatively the same, but pollutant reductions were observed for CIPP activities 

owing to the shorter period of construction duration. The longer the duration of 

equipment operation, the greater amount of pollutants emitted. 

The second section of this study has the following limitations: 

a) Criteria pollutant and GHG emissions during CIPP installation were only 

estimated to include equipment and vehicle use during the installation period at 

the work site. Not included in this assessment were emissions generated by the 

manufacturer to produce the product, the transport of material and resin to and 

from the worksite, 24-hour refrigeration of the resin, emissions associated with 

condensate conveyance, or treatment in a wastewater treatment facility, and 

landfill and recycling center related emissions. Inclusion of this additional 
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activity would change the results, increasing the amount of pollutants emitted 

due to CIPP technology. A more life-cycle approach to examining pollutant 

emissions would result in a more representative comparison of CIPP and 

excavation pollutant emissions.  

b) Some of the data related to work days and operation hours were estimated 

based on information provided by contractors. 

While CIPP is estimated to emit a smaller amount of criteria pollutants and GHGs, the 

results do not show that CIPP overall produces less GHG and criteria pollutants than the 

open-cut method. Additional work is needed to monitor pollutant emissions in the field in 

order to validate the assumptions. Also needed is a greater understanding of emissions 

within the broader cradle-to-grave life cycle of both methods and of the economic aspect 

of GHG reduction incentives.  
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6. Health Effects 

“Air pollution” is used to refer to an array of anthropogenic chemical emissions 

such as gaseous combustion products, volatile chemicals, aerosols (particle), and their 

atmospheric reaction products (PSR, 2016). The primary purpose of this chapter is to 

provide the toxicology and health impacts of styrene, criteria air pollutants, and 

greenhouse gasses.  

6.1 Styrene 

Styrene is a colorless liquid that vaporizes quickly. Pure 

styrene has a sweet smell, although manufactured styrene may 

consist of aldehydes, which results in a sharp and unpleasant 

odor. Styrene can be generated naturally by plants, bacteria, and 

fungi, but the major source of styrene production is 

anthropogenic. Styrene is extensively used in the plastics and 

rubber industries. Consumer products, including packaging materials, insulation for 

electrical uses (i.e., wiring and appliances), insulation for homes, fiberglass, plastic pipes, 

automobile parts, and drinking cups, contain styrene. Furthermore, some amounts of 

styrene exist naturally in various consumables such as vegetables, fruits, nuts, meats, and 

beverages. Figure 6-1 compares the amount of styrene in various foods and the amount of 

migration from a foam cup to the inside food (ATSDR, 2012).  

Styrene can be present in air, soil, and water as a result of manufacturing and 

industrial activities and the consumption and disposal of styrene-based products. Usually 

it takes one or two days for styrene to break down in the air. Styrene can enter the air 

from shallow soils and surface water through the evaporation process. Bacteria and other 

microorganisms may be responsible for breaking down the remaining styrene in soil or 

water (ATSDR, 2012).  
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Figure 6.1: Amount of Styrene in Different Foods and Migration from a Foam Cup 
(Source: www.foamfacts.com) 

 

The main way that humans are exposed to styrene is inhalation. Commonly, rural 

and suburban areas contain styrene in lower concentrations than urban areas. Higher 

levels of styrene can be found in indoor air (0.07 - 11.5 ppb) than in outdoor ambient air 

(0.06 - 4.6 ppb) (ATSDR, 2012).  

Also, drinking or bathing in water containing styrene may expose individuals to 

this chemical. Ingestion of styrene is also toxic but occurrence of this route of exposure is 

extremely unlikely in the workplace (ATSDR, 2012).  

Many workers who are potentially exposed to styrene work in the reinforced-

plastics industry, rubber manufacturing, at styrene-polyester resin facilities, and in 

photocopy centers. These workers are at risk for inhalation exposure to considerable air 

concentrations of styrene or dermal exposure to liquid styrene or resins (ATSDR, 2012). 

Figure 6.2 illustrates the states in the U.S. that have the most styrene-related jobs. 
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Figure 6.2: U.S. States with the Most Styrene-Related Jobs 
(Source: Styrene Information & Research Center) 

 

When styrene enters the human body, it is mostly metabolized into styrene oxide 

by cytochrome P450 through the hepatic oxidation procedure. Then, styrene oxide is 

further metabolized into phenylglyoxylic acid, mandelic acid, and hippuric acid, which 

are excreted in the urine. Styrene oxide is the active metabolite, and is 

considered toxic, mutagenic, and possibly carcinogenic (Liebman, 1975). The presence of 

styrene metabolites in urine might be an indication of styrene exposure, but these 

metabolites can also be created from exposure to other substances. Moderate-to-high 

concentrations of styrene can be detected and measured in blood, urine, and body tissues 

only for a short period of time after exposure since these metabolites leave the body 

rapidly. Ideally, in order to recognize the exposure, medical tests should be performed 

within a few hours. Actual exposure levels can be estimated by measuring styrene 

metabolites in urine within one day of exposure (ATSDR, 2012).  

Factors that determine the effects of styrene on health include the dose (how 

much), the duration (how long), and the route of exposure. Laboratory animal studies 

https://en.wikipedia.org/wiki/Toxic
https://en.wikipedia.org/wiki/Mutagenic
https://en.wikipedia.org/wiki/Carcinogenic
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reported hearing loss, impaired learning, and sperm damage in animals exposed to high 

doses of styrene.  Also, animal studies showed that changes in the lining of the nose and 

damage to the liver occurred in cases of styrene inhalation. However, the greater 

sensitivity of animals in the nose lining and liver may indicate that effects on them may 

be more significant than in humans (ATSDR, 2012).  

The most common health impacts on workers exposed to styrene are related to 

nervous system dysfunction. These health problems include changes in color vision, 

fatigue, feeling drunk, slowed reaction time, decreased concentration, and balance 

problems (ATSDR, 2012).  

Respiratory effects include mucous membrane irritation, increased nasal secretion, 

wheezing and coughing, and eye irritation. Gastrointestinal effects have also been 

reported from acute exposure to styrene in humans. Chronic exposure to styrene in 

humans mostly affects the central nervous system with symptoms such as headache, 

depression, weakness, peripheral neuropathy, intellectual dysfunction, minor effects on 

some kidney enzyme functions, and short term memory impairment (DHHS 1993; EPA 

2000; ATSDR 2012). 

In addition, long term exposure can alter liver function, electrocardiogram (ECG) 

results, psychological performance, and contribute to occupational asthma. Repeated or 

prolonged dermal exposure to styrene in liquid or vapor form can produce persisting 

itching and erythematous papular dermatitis. (ATSDR 2012; CCOHS 1994). 

The Reference Concentration (RfC) is an estimate of the result of continuous 

inhalation exposure to the human population including sensitive subgroups, which is 

presumably without noticeable risk of non-cancer health effects during a lifetime.  The 

RfC for styrene is 1 milligram per cubic meter (mg/m3) according to studies of central 

nervous system (CNS) effects in workers with occupational exposure. Exposures greater 

than RfC increase the potential adverse health effects (EPA, 2000). 



94 
 

Reproductive and developmental effects of styrene on humans are unknown, and 

studies are inconclusive. Some studies reported no developmental effects in women who 

worked in the plastics industry, while an increased frequency of spontaneous abortions 

and decreased frequency of births were observed in another study. There have been no 

research studies to date evaluating the effects of styrene exposure on children or 

immature animals. There is a possibility that children would show the same health effects 

as adults. It is unknown whether children would be more susceptible than adults to the 

effects of styrene (ATSDR, 2012). 

An association between styrene exposure and an increased risk of leukemia and 

lymphoma have been suggested in several epidemiologic studies, but the evidence is not 

sufficient, and the result is inconclusive. The EPA has not officially included styrene in 

its list of carcinogens (EPA, 2000). 

Based on limited evidence of carcinogenicity from studies in humans, adequate 

evidence of carcinogenicity in experimental animals, and data on mechanisms of 

carcinogenesis, the United States Department of Health and Human Services’ National 

Toxicology Program listed styrene as “reasonably anticipated to be a human carcinogen” 

(NTP, 2014).  

The International Agency for Research on Cancer (IARC) has announced that 

there is limited evidence in humans for the carcinogenicity of styrene, and has determined 

that styrene is a possible carcinogenic to humans (group 2B) (IARC, 1994). 

 

 

 

 

http://www.atsdr.cdc.gov/PHS/PHS.asp?id=419&tid=74
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6.2 Criteria Air Pollutants  

The Environmental Protection Agency (EPA) has established National Ambient 

Air Quality Standards (NAAQS) under authority of the Clean Air Act (CAA). The 

NAAQS has singled out six principal pollutants (criteria pollutants) which are considered 

harmful to public health and the environment. These pollutants come from a variety of 

sources and are commonly found in outdoor air. Criteria air pollutants include ozone (O3) 

ground-level carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter (PM), 

sulfur dioxide (SO2), and lead (EPA, 2016). 

6.2.1 Ozone (O3) 

Ozone is a colorless gas that forms as a result of a complex 

series of chemical reactions between volatile organic compounds 

(VOCs), nitrogen oxides, and oxygen in the presence of solar ultraviolet (UV) irradiation 

(heat and sunlight). Ozone can be found in motor vehicles, electric utilities, landfills, 

industrial solvents, gas stations, lawn equipment, etc. Exposure to ozone can cause upper 

and lower respiratory irritative symptoms including coughing, wheezing, shortness of 

breath and chest tightness, restrictive and obstructive spirometric changes, and increased 

responsiveness to methacholine and allergen bronchoprovocation. Some epidemiological 

studies reported the association between ozone and hospitalization for people with 

asthma and respiratory disease.  Asthmatic children playing outdoors in high ozone 

concentration areas are approximately 20% to 40% more likely to suffer an asthmatic 

exacerbation. Animal studies observed an increase in susceptibility to bacterial infection, 

which can impair the macrophage function. Some other evidence supports increased daily 

mortality rates related to ozone exposure. Ozone is a very strong oxidant which reacts 

with biomolecules to produce ozonides, then free radicals. This initiates the inflammatory 

response by releasing cytokines such as prostaglandins (PGE2, PGF2, TXB2), 

neutrophils, fibronectin, interleukin-6, lactate dehydrogenase, elastase, plasminogen 

activator, coagulation factors, and other proteins, which lead to increased airway 
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permeability. Certain studies reported lung scarring, especially at the bronchoalveolar 

junction (DES 2012; PSR 2016). 

6.2.2 Carbon Monoxide (CO) 

Carbon monoxide is an odorless and colorless gas which comes 

from incomplete fossil fuel combustion. It can be found near motor 

vehicles, boilers and incinerators, in parking garages, poorly ventilated 

tunnels, and traffic intersections, particularly during peak hours (DES, 2012). 

Carbon monoxide causes a decrease in the oxygen carrying capacity of blood by 

attaching to the hemoglobin, creating a stable complex called carboxyhemoglobin. This 

decreases the hemoglobin available to transport oxygen to the tissues, causing hypoxemia 

and tissue hypoxia which can affect different organs in the body. Low level exposure 

may cause headache, fatigue, and flu-like symptoms, particularly in smokers and those 

with coronary artery disease (CAD), peripheral vascular disease, and chronic obstructive 

pulmonary disease (COPD) (PSR, 2016). 

Carbon monoxide can cause adverse cardiac effects such as reductions in exercise 

capacity, and arrhythmias can occur in individuals with CAD. COPD sufferers 

experience a decrease in ventilatory elimination of CO, and they experience earlier 

symptoms and reductions in exercise tolerance.  In addition, clinical manifestations of 

CO in the nervous system include changes in visual and auditory perception, 

psychomotor function, dexterity, vigilance, and time interval discrimination (PSR, 2016). 

Epidemiologic studies have reported an association between ambient CO exposure 

and hospitalization for cardiovascular disease and congestive heart failure. Limitations of 

these studies include poor individual exposure evaluation and confounding co-pollutants. 

Nevertheless, these associations have been observed in several cities, even in instances of 

very low concentrations of CO exposure (PSR, 2016).  
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6.2.3 Nitrogen Dioxide (NO2) 

Nitrogen dioxide is a brownish gas which forms from 

burning fuel at high temperatures. It participates in the 

formation of ground-level ozone and fine particle pollution. 

The sources of this gas include motor vehicles, electric utilities, off-road equipment, and 

industrial boilers. Transportation and deposition of nitrogen dioxide can negatively affect 

terrestrial and aquatic ecosystems. This gas causes lung damage and predisposes to 

respiratory infections such as influenza. Lower concentrations of NO2 impair mucociliary 

clearance, facilitate particle transport, and macrophage and local immunity dysfunction. 

Exposure to around 30 ppb has been associated with hyper reactivity of airways, and 

even lower concentrations (15 ppb) may cause stuffy nose and cough. Very high 

concentrations (more than 200 ppm) have significant adverse effects and result in lung 

injury, fatal pulmonary edema, and bronchopneumonia. Moderate exposure to 260 ppb 

(0.260 ppm or 0.490 mg/m3) for a duration of 30 minutes, results in the enhancement of 

nonspecific hyper-reactivity. Great increases in acute respiratory infections, sore throats, 

and colds have been reported in levels of about 80 ppb (DES 2012; PSR 2016).  

Animal studies detected increased mortality due to microbial pathogen exposure. 

In humans, exposure between 2 to 5 ppm for a period of 3 hours led to airway 

inflammation and higher levels of antigen-specific serum IgE, local IgA, IgG, and IgE 

antibody (PSR 2016).  

6.2.4 Particulate Matter (PM) 

Particulate matter is a heterogeneous classification of solid particles and liquid 

droplets in the air. It is formed from windblown dust, transportation, crushing, grinding, 

unpaved roads and construction, high temperature industrial processes, fuel combustion, 

wood stoves, and plowing (DES, 2012). Figure 6.3 compares diameter size of PM, human 

hair, and beach sand.  
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Exposure to PM may cause irritation of the eye, nose or throat, asthma 

exacerbation, arrhythmia, and premature death in people with underlying heart or lung 

disease. Particles in smaller sizes (usually less than 3 micron) encompass viruses and 

some bacteria and are produced from anthropogenic activities containing sulfate and 

nitrate aerosols and other combustion-derived atmospheric reaction products. Particles in 

larger sizes (3 to 30 micron) include pollen, spores, crustal dusts, and other mechanically 

generated dusts. The size of particles plays a major role in their deposition in target 

organs. Larger particles mostly deposit in the nasal and tracheobronchial regions, while 

smaller ones penetrate deeper into the lungs (PSR, 2016).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Particulate Matters Size in Comparison with Human Hair and Beach Sand 
(Source: U.S. EPA, http://www3.epa.gov/pm/basic.html) 
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The size of the particles and the structural and functional characteristics of the 

airways affect the particles’ airway distribution, and apparently their health impacts. 

Most smaller particles travel and can access the pulmonary system, and almost all 

particles greater than 10 microns are trapped in the upper airways by mucociliary 

mechanisms (Figure 6.4). A greater distal airway deposition of particles can occur in 

individuals with obstructive pulmonary disease, including smokers, asthmatics, and 

patients with small airway disease or COPD (PSR, 2016).  

 

 

 

 

Figure 6.4: Deposition of Particulate Matter in Respiratory System 
(Source: Alen Pure Air Corporation http://www.alencorp.com/ and www.nlm.nih.gov) 

 

Respiratory illnesses, pulmonary dysfunction, increased asthma medication use, 

increased hospitalization, increased cardiac and respiratory mortality, asthma 

exacerbations, and COPD have been reported for particulate exposure. Elderly 

individuals (65 years and over), and persons with chronic heart and lung diseases are at 

particular risk of acute illnesses. Chronic particulate pollution can cause respiratory 

disorders such as bronchitis, COPD, asthma exacerbations, decreased longevity, and lung 

cancer. Recent epidemiologic studies have focused on determining the size specificity of 

health effects, and have implicated the gasses and smaller particles as the more relevant 
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components of hazardous particulate exposure. The National Research Council has 

requested more research on the toxicology profile of the particulate chemical components 

and the association between monitored community exposures and personal exposure 

(PSR, 2016). 

6.2.5 Sulfur Dioxide (SO2)   

Sulfur dioxide is a colorless and odorless gas (at low 

concentrations) forming from burning of fuel containing sulfur in 

industrial activities. Sulfur dioxide is converted to H2SO4, an 

acid aerosol, in the atmosphere. The health effects of SO2 come 

from this substance. High concentrations of SO2 can affect the cardiovascular and 

respiratory systems resulting in respiratory distress, chronic obstructive lung disease, 

asthma exacerbation, and worsening of existing cardiovascular disease in susceptible 

people such as children, the elderly, and people with asthma, COPD, or cardiovascular 

disease. The odor threshold is about 0.5 ppm, and 6 - 10 ppm causes irritation of the eyes, 

nose, and throat. At concentrations as low as 0.25 ppm asthma exacerbations in some 

exercising asthmatics have been observed. Furthermore, acidification of lakes and 

streams, accelerated corrosion of buildings, and reduced visibility have been reported in 

studies (PSR 2016; DES 2012). 

6.2.6 Lead 

Lead exposure can occur in different work settings, such as the manufacturing or 

use of batteries, ammunition, paint, car radiators, cable and wires, certain cosmetics, 

ceramic ware with lead glazes, and tin cans. Moreover, coal combustion, smelters, car 

battery plants, transportation sources using lead in their fuel, and waste containing lead 

products are recognized as sources associated with lead pollution (ATSDR, 2007). 

Inorganic lead is absorbed by the lungs or gastrointestinal tract. In adults, the 

respiratory tract is the most significant route of entry for lead absorption. Activities such 

as scraping/sanding/burning leaded paint from surfaces can expose the individuals to 
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lead. Organic (tetraethyl) lead that is found in gasoline can be absorbed via the skin 

(Fischbein and Hu, 2007). 

Once absorbed, lead is then distributed to the blood, soft tissues, and skeleton 

(Rabinowitz, 1991). Lead can affect the hematologic system by disrupting the 

hemoglobin synthesis causing the production of free erythrocyte protoporphyrins. As a 

result, anemia can develop at very high blood lead levels (usually greater than 80 ug/dL) 

(Valentine et al., 1976).  

Acute exposure to lead can affect the gastrointestinal tract causing abdominal pain 

and constipation. Neurologic manifestations include headache, deficit in short term 

memory, difficulty concentrating, confusion, seizures, encephalopathy, and peripheral 

neuropathy which results in wrist/ankle drop.  It can also cause nephrotoxicity (Cullen et 

al., 1983; Friedman et al., 2014). There is also an association between bone lead level and 

blood pressure, and bone lead level is considered an independent risk factor for the 

development of hypertension (Hu et. al, 1996; Korrick, 1999).   

Chronic lead exposure can result in neuropsychiatric symptoms such as anxiety, 

depression, and hostility (Rajan et al., 2007; Eum et al., 2012) and lead exposure at low 

levels may be associated with an increased risk of cataracts, hearing loss, and tooth loss 

(Park et al., 2010; Schaumberg et al., 2004; Arora et al., 2009). 

Some studies have shown that men with chronic lead exposure, have increased 

sperm abnormality manifested as abnormal morphology, decreased sperm concentration, 

and decreased total sperm count (Lancranjan et al., 1975; Alexander et al., 1996; Robins 

et al., 1997). High lead exposure in pregnant women can result in miscarriages, stillbirths, 

and preterm delivery. It can also cause neurodevelopmental disorders in offspring from 

the mother’s exposure during the first trimester of pregnancy (Fischbein and Hu 2007; 

Taylor et al., 2015; Hu et al., 2006). 
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The National Toxicology Program of the U.S. Department of Health and Human 

Services classifies lead as a probable human carcinogen (NTP, 2011). The following 

picture demonstrates the health effects and target organs of all discussed pollutants.  

 

 

Figure 6.5: Health Effects and Target Organs of Common Pollutants 

(Source: Mikael Haggstrom, Medical Gallery of Mikael Haggstrom, Wikiversity Journal of Medicine) 
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6.3 Greenhouse Gases (GHGs) 

Climate change can affect human health through the following mechanisms:  

1- An increase in average temperatures can directly deteriorate human health. Heat 

waves and hot extremes can occur due to increased temperature. 

2- Changes in the frequency and severity of weather events such as hurricanes and 

severe floods can cause harm to human health.  

3- Higher temperatures may enhance the risk of certain infectious diseases that 

appear in warm regions and are spread by mosquitoes and insects, such as 

malaria, dengue fever, encephalitis, and yellow fever (EPA, 2016). 

4- Higher temperatures may also increase the frequency of warm-induced smog 

(ground-level ozone) events and particulate air pollution. Ozone is formed in 

higher temperatures with sunlight and a stable air mass. It is the primary 

ingredient of smog. This reactive gas can damage the lung tissue through 

chemical reactions. According to the EPA studies, global warming will probably 

cause an increase in peak ozone levels (American Lung Association of 

California, 2004). The following picture displays the impact of climate change on 

human health. 



104 
 

 

 

 

 

 

 

 

 

 

Figure 6.6: Incidents and Illnesses Associated with Global Warming 
(Source: Centers for Disease Control and Prevention, http://www.cdc.gov/climateandhealth/effects/) 

 

 

 

 

 

 

 

 

 

 

 

 



105 
 

References 

 

Alen Pure Air Corporation, http://www.alencorp.com/ 
 

Alexander BH, Checkoway H, van Netten C, et al. Semen quality of men employed at a 

lead smelter. Occup Environ Med, 1996  

 

Allouche, E.; Alam, S.; Simicevic, J.; Sterling, R. A Retrospective Evaluation of Cured-

in-Place Pipe (CIPP) Used in Municipal Gravity Sewers, Environmental Protection 

Agency, Trenchless Technology Center at Louisiana Tech University, Battelle Memorial 

Institute, Jason Consultants, Inc., New Jersey and Ohio, 2012 

 

Alltech Associates, Inc., Quantitation Methods in Gas Chromatography, GC Education, 

1998 

 

ALS Environmental Lab, Formerly Columbia Analytical Services, Inc. Houston, TX, 

Accessed December 2015 

 http://www.caslab.com/Method_Reporting_Limit_MRL_Meaning/ 

 

American Lung Association of California, Air Quality and Health Impacts of Greenhouse 

Gas Emissions and Global Warming, Fact Sheet, 2004 

 http://www.dnrec.delaware.gov/dwhs/Info/Regs/Documents/alac_impacts_fs.pdf 

 

AOC, LLC. Material Safety Data Sheet: Vinyl Ester Resin. Collierville, TN, USA, 2000 

 

AOC, LLC. Vipel Vinyl Ester Based Resin for Underground Sewer Pipe Liners. 

Collierville, TN, USA, 2009 
 

Arora M, Weuve J, Weisskopf MG, et al. Cumulative lead exposure and tooth loss in 

men: the normative aging study. Environ Health Perspect 2009 

 

ATSDR (Agency for Toxic Substances & Disease Registry), Public Health Statement for 

Styrene, 2012 http://www.atsdr.cdc.gov/PHS/PHS.asp?id=419&tid=74 

 

ATSDR (Agency for Toxic Substances & Disease Registry), Styrene, Toxic Substances, 

2011 http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=74 

 

ATSDR, Toxicological Profile for Lead. US Department of Health & Human Services, 

Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA 

2007 http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=96&tid=22 

 

California Environmental Protection Agency, Air Resources Board, The Federal Clean 

Air Act, Accessed November 2015 http://www.arb.ca.gov/fcaa/fcaa.htm 

file:///C:/contents/adult-lead-poisoning/abstract/87
file:///C:/contents/adult-lead-poisoning/abstract/87
file:///C:/contents/adult-lead-poisoning/abstract/91
file:///C:/contents/adult-lead-poisoning/abstract/91
http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=74


106 
 

Caltrans Division of Research and Innovation, Preliminary Investigation, Environmental 

Effects of Cured-in-Place Pipe Repairs, Produced by CTC & Associates LLC, August 

2012 

 

CCOHS (Canadian Centre for Occupational Health and Safety Styrene), Cheminfo, 1994 

 

Centre for Radiation, Chemical and Environmental Hazards (CREC), Log of CIPP 

Incident, Birmingham, UK, March 2012 

 

Chasteen, T. Coupling Gas Chromatography to Mass Spectrometry, Department of 

Chemistry, Sam Houston State University, Huntsville, Texas, Accessed January 2016 

http://www.shsu.edu/chm_tgc/primers/gcms.html 
 

Cullen MR, Robins JM, Eskenazi B. Adult inorganic lead intoxication: presentation of 31 

new cases and a review of recent advances in the literature. Medicine, Baltimore, 1983 

 

Department of Health and Human Services, Agency for Toxic Substances and Disease 

Registry, Division of Health Assessment and Consultation. Health Consultation, Schlitz 

Park Office Building, Milwaukee, Milwaukee County, Wisconsin. Atlanta, GA, 

September 13, 2005 

 

DES (New Hampshire Department of Environmental Services), Environmental Fact 

Sheet, 2012 

http://des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-41.pdf 

 

DHHS (U.S. Department of Health and Human Services), Registry of Toxic Effects of 

Chemical Substances, National Toxicology Information Program, National Library of 

Medicine, Bethesda, MD, 1993 

 

Donaldson B., Water Quality Implications of Culvert Repair Options: Vinyl Ester Based 

and Ultraviolet Cured-in-Place Pipe Liners, Virginia Center for Transportation 

Innovation & Research, Virginia, 2012 

 

Donaldson, B. Environmental Implications of Cured-in-Place Pipe Rehabilitation 

Technology, Virginia Transportation Research Council: Journal of the Transportation 

Research Board, 2009  

 

Donaldson, B.; Wallingford, ED. Creating Environmentally Sound Specifications for 

Culvert Rehabilitation. Virginia applies Findings for Cured-in-Place Pipe Repair. 

Virginia, 2010 

 

Douglas, F. GC/MS Analysis, Scientific Testimony, An Online Journal, Accessed January 

2016 http://www.scientific.org/tutorials/articles/gcms.html 

file:///C:/contents/adult-lead-poisoning/abstract/51
file:///C:/contents/adult-lead-poisoning/abstract/51


107 
 

Electronic Code of Federal Regulations (e-CFR), Title 40: Protection of Environment, 

Chapter 1, Subchapter C, Part 51, Subpart F, §51.100 Definitions. (S) Volatile Organic 

Compounds 

 http://www.ecfr.gov/cgi-bin/text-

idx?SID=8d8a879c9aff7b2279245d89b062646b&mc=true&node=se40.2.51_1100&rgn=

div8 

 

Environmental Sampling Supply Inc. (ESS), San Leandro, CA 
 

Eum KD, Korrick SA, Weuve J, et al. Relation of cumulative low-level lead exposure to 

depressive and phobic anxiety symptom scores in middle-age and elderly women. 

Environ Health Perspect, 2012 

 

Fischbein A, Hu H. Occupational and environmental exposure to lead. In: Environmental 

and Occupational Medicine, Rom WN, Markowitz SB (Eds), Lippincott Williams & 

Wilkins, Philadelphia, 2007 

 

Florida Department of Environmental Protection, Laboratory Data MDLs/PQLs, 

Pretreatment Program, March 2009 
 

Friedman LS, Simmons LH, Goldman RH, Sohani AR. Case records of the 

Massachusetts General Hospital. Case 12-2014. A 59-year-old man with fatigue, 

abdominal pain, anemia, and abnormal liver function. N Engl J Med, 2014 

 

Gabriel, L. Service Life of Drainage Pipes, Chapter 6: Installation and Construction, 

California State University, Sacramento, 1998 

 

Heinselman, W. The History of Cured-in-Place-Pipe Lining in the United States, Express 

Sewer & Drain, 2012 http://www.expresssewer.com/blog/bid/242423/The-History-Of-

Cured-in-Place-Pipe-Lining-in-the-United-States 

 

Herwijnen, R.; Vos, J. Environmental Risk Limits for Styrene, National Institute for 

Public Health and the Environment, Ministry of Health, welfare and sport (RIVM), The 

Netherland, 2009 

http://www.rivm.nl/dsresource?objectid=rivmp:16026&type=org&disposition=inline&ns

_nc=1 

 

History of Sanitary Sewers website, Sponsored by Arizona Water Association, NASSCO, 

and Collection Systems Committee of the Water Environment Federation. Accessed 

January 2016 http://www.sewerhistory.org 
 

Hu H, Aro A, Payton M, et al. The relationship of bone and blood lead to hypertension. 

The Normative Aging Study. JAMA, 1996 

file:///C:/contents/adult-lead-poisoning/abstract/72
file:///C:/contents/adult-lead-poisoning/abstract/72
file:///C:/contents/adult-lead-poisoning/abstract/72
file:///C:/contents/adult-lead-poisoning/abstract/52
file:///C:/contents/adult-lead-poisoning/abstract/52
file:///C:/contents/adult-lead-poisoning/abstract/52
file:///C:/contents/adult-lead-poisoning/abstract/58
file:///C:/contents/adult-lead-poisoning/abstract/58


108 
 

Hu H, Téllez-Rojo MM, Bellinger D, et al. Fetal lead exposure at each stage of 

pregnancy as a predictor of infant mental development. Environ Health Perspect, 2006 

 

IAPMO (International Association of Plumbing and Mechanical Officials), Uniform 

Plumbing Code, 2015 

 

IARC (International Agency for Research on Cancer), Styrene, IARC MONOGRAPHS 

VOLUME 82, 1994 http://monographs.iarc.fr/ENG/Monographs/vol82/mono82-9.pdf 

 

IPC (International Plumbing Code), 1st Edition. International Code Council, 2015 

Jung, YJ.; Sinha SK. Evaluation of Trenchless Technology Methods for Municipal 

Infrastructure System, Journal of Infrastructure Systems, USA, 2007 

 

Klee, M. GC Solutions #20: Calibration Curves – Part 2, Internal Standard Approach, 

Separation Science, Accessed December 2015 

 http://www.sepscience.com/Techniques/GC/Articles/189-/GC-Solutions-20-Calibration-

Curves--Part-2-Internal-Standard-Approach?pageNo=1 
 

Korrick SA, Hunter DJ, Rotnitzky A, et al. Lead and hypertension in a sample of middle-

aged women. Am J Public Health, 1999 

 

Kozman, DP. Evaluation of Cured-in-Place Pipe Allows Structural Renewal of Drinking 

Water Pipe, R S Technik LLC, USA, 2013. 

 

Laboratory Connection Services (LCS) Inc. Ontario, Canada, Accessed December 2015 

http://www.labconserv.com/about_lcs/ 
 

Lancranjan I, Popescu HI, GAvănescu O, et al. Reproductive ability of workmen 

occupationally exposed to lead. Arch Environ Health, 1975  

 

Liebman, K. Metabolism and toxicity of styrene, Environmental Health Perspectives, 

1975 

Lubrizol Corporation, Ohio, USA https://www.lubrizol.com/ 

 

Matthews, J.; Condit, W.; Wensink, R.; Lewis, G. Performance Evaluation of Innovative 

Water Main Rehabilitation Cured-in-Place Pipe Lining Product in Cleveland, Ohio, 

Battelle Memorial Institute, EPA (Environmental Protection Agency). NJ and OH, 2012. 

http://nepis.epa.gov/Adobe/PDF/P100DZL3.PDF 

 

McCarthy, J.; Copeland, C.; Parker, L.; Schierow, L. Clean Air Act: A Summary of the 

Act and Its Major Requirements, Congressional Research Service, January 2011 

 

file:///C:/contents/adult-lead-poisoning/abstract/85
file:///C:/contents/adult-lead-poisoning/abstract/85
http://monographs.iarc.fr/ENG/Monographs/vol82/mono82-9.pdf
file:///C:/contents/adult-lead-poisoning/abstract/60
file:///C:/contents/adult-lead-poisoning/abstract/60
file:///C:/contents/adult-lead-poisoning/abstract/86
file:///C:/contents/adult-lead-poisoning/abstract/86
https://en.wikipedia.org/wiki/Environmental_Health_Perspectives
http://nepis.epa.gov/Adobe/PDF/P100DZL3.PDF


109 
 

Minnesota Department of Health, Volatile Organic Compounds in Your Home, Accessed 

January 2016 http://www.health.state.mn.us/divs/eh/indoorair/voc/ 

 

Najafi, M. Pipeline Rehabilitation Systems for Service Life Extension-Chapter 10, 

University of Texas at Arlington, USA, 2011 

 

National Association of Sewer Service Companies (NASSCO), Guideline for the Use and 

Handling of Styrenated Resins in Cured-in-place-Pipe, September, 2008 

 

National Centers for Environmental Information (NOAA), Greenhouse Gases, 

Introduction: What Are Greenhouse Gases, Accessed January 2016 

 https://www.ncdc.noaa.gov/monitoring-references/faq/greenhouse-gases.php 

 

National Toxicology Program, US Dept of Health and Human Services. 12th Report on 

Carcinogens, Lead and Lead Compounds (CAS No. 7439-92-1 (Lead)), 2011 

 

NIH, US National Library of Medicine, Toxicology data network 

http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~cW94vz:1 

 

NTP (National Toxicology Program), Report on Carcinogens, Thirteenth 

Edition. Research Triangle Park, NC: U.S. Department of Health and Human Services, 

Public Health, 2014 http://ntp.niehs.nih.gov/pubhealth/roc/roc13/ 

 

Occupational Safety and Health Administration (OSHA), SIC Division Structure, 

Accessed January 2016 https://www.osha.gov/pls/imis/sic_manual.html 

 

OSHA, United States Department of Labor, Styrene, Accessed September 2015 

https://www.osha.gov/dts/chemicalsampling/data/CH_268200.html 
 

Park SK, Elmarsafawy S, Mukherjee B, et al. Cumulative lead exposure and age-related 

hearing loss: the VA Normative Aging Study. Hear Res, 2010 

 

Poe, D. Quantitative Analysis Laboratory, Chemistry 2223 Home Page, Department of 

Chemistry, University of Minnesota Duluth, Accessed December 2015 

 http://www.d.umn.edu/~dpoe/index.htm 

 

PSR (Physicians for Social Responsibility), Dickey, J. Air Pollution and Primary Care 

Medicine, Massachusetts, Accessed January 2016 

 http://www.psr.org/chapters/boston/health-and-environment/air-pollution-and-

primary.html 

 

Rabinowitz MB. Toxicokinetics of bone lead. Environ Health Perspect, 1991 

http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~cW94vz:1
http://ntp.niehs.nih.gov/pubhealth/roc/roc13/
https://www.osha.gov/dts/chemicalsampling/data/CH_268200.html
file:///C:/contents/adult-lead-poisoning/abstract/74
file:///C:/contents/adult-lead-poisoning/abstract/74


110 
 

Rajan P, Kelsey KT, Schwartz JD, et al. Lead burden and psychiatric symptoms and the 

modifying influence of the delta-aminolevulinic acid dehydratase (ALAD) 

polymorphism: the VA Normative Aging Study. Am J Epidemiol, 2007  

 

Ren, D.; Smith, J. Evaluation of Environmental Impacts of Two Common Restoration 

Methodologies for Pipes that Convey Stormwater Runoff, Bulletin of Environmental 

Contamination and Toxicology, 2012 

 

Restek Corporation, Optimizing the Analysis of Volatile Organic Compounds, Technical 

Guide, 2003 
 

Robins TG, Bornman MS, Ehrlich RI, et al. Semen quality and fertility of men employed 

in a South African lead acid battery plant. Am J Ind Med, 1997 

 

Salem, O.; Najafi, M.: Use of Trenchless Technologies for a Comprehensive Asset 

Management of Culverts and Drainage Structures, Midwest Regional University 

Transportation Center, University of Wisconsin, Madison, Ohio and Texas, USA, 2008 
 

Schaumberg DA, Mendes F, Balaram M, et al. Accumulated lead exposure and risk of 

age-related cataract in men. JAMA, 2004  

 

Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit 

of quantitation of the analytical methods, Department of Pharmaceutical Analysis, B. R. 

Nahata College of Pharmacy, India, 2011 

 

South Coast Air Management District (AQMD), Off-Road-Model Mobile Source 

Emission Factors, Accessed December 2015 

 http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/off-road-

mobile-source-emission-factors 

 

Tabor, M.; Newman, D.; Whelton, A. Stormwater Chemical Contamination Caused by 

Cured-in-Place Pipe (CIPP) Infrastructure Rehabilitation Activities, Environmental 

Science & Technology, 2014 

 

Tafuri, A.; Selvakumar, A.Wastewater Collection System Infrastructure Research Needs 

in the USA, Urban Water, USA, 2001 

 

Tafuri, AN.; Selvakumar, A. Wastewater Collection System Infrastructure Research 

Needs in the USA, Urban Water, USA, 2001 
 

Taylor CM, Golding J, Emond AM. Adverse effects of maternal lead levels on birth 

outcomes in the ALSPAC study: a prospective birth cohort study. BJOG, 2015 

 

file:///C:/contents/adult-lead-poisoning/abstract/71
file:///C:/contents/adult-lead-poisoning/abstract/71
file:///C:/contents/adult-lead-poisoning/abstract/71
file:///C:/contents/adult-lead-poisoning/abstract/88
file:///C:/contents/adult-lead-poisoning/abstract/88
file:///C:/contents/adult-lead-poisoning/abstract/90
file:///C:/contents/adult-lead-poisoning/abstract/90
file:///C:/contents/adult-lead-poisoning/abstract/80
file:///C:/contents/adult-lead-poisoning/abstract/80


111 
 

TBL Performance Plastics Company, New Jersey, USA http://www.tblplastics.com/ 

TOXNET. International Toxicity Estimates for Risk (ITER). Accessed December 2015 

 

U.S. Energy Information Administration (EIA), EIA Brochures, What Are Greenhouse 

Gases, Last Modified 2004, Accessed October 2015 

 http://www.eia.gov/oiaf/1605/ggccebro/chapter1.html 

 

U.S. Geological Survey (USGS), Oblinger Childress, C.; Foreman, W.; Connor, B.; 

Maloney, T. New Reporting Procedures Based on Long-Term Method Detection Levels 

and Some Considerations for Interpretations of Water-Quality Data Provided by the U.S. 

Geological Survey National Water Quality Laboratory, Virginia, 1999 

 

USEPA, Air Trends, Air Quality Trends, Accessed November 2015 

 http://www3.epa.gov/airtrends/aqtrends.html#comparison 

 

USEPA, Clean Watersheds Needs Survey, 2012 Report to Congress, EPA-830-R-15005, 

January 2016 

 

USEPA, Hydrogen Sulfide Corrosion in Wastewater Collection and Treatment Systems, 

Report to Congress, Technical Report, 1991 

 

USEPA, Indoor Air Quality, Technical Overview of Volatile Organic Compounds, 

General Definition and Classification, Accessed October 2015 

http://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-

compounds#2 

 

USEPA, Method 8260B, Volatile Organic Compounds by Gas Chromatography/Mass 

Spectrometry (GC/MS), Revision 2, December 1996 

 

USEPA, National Center for Environmental Assessment, Integrated Risk Information 

System (IRIS), Chemical Assessment Summary, Styrene, CASRN 100-42-5, 1987 

http://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0104_summary.pdf 

 

USEPA, Particulate Matter (PM), Basic Information, Accessed January 2016 

 http://www3.epa.gov/pm/basic.html 

 

USEPA, Six Common Air Pollutants, What Are the Six Common Air Pollutants, 

Accessed November 2015 http://www3.epa.gov/airquality/urbanair/ 

 

USEPA, State and Local Climate and Energy Program, Health Impacts Associated with 

Climate Change, Accessed January 2016 

 http://www3.epa.gov/statelocalclimate/state/topics/health.html 

 



112 
 

USEPA, Swift J., Method Detection Limit (MDL) Development and Standardization, 

Eastern Research Group, National Ambient Air Monitoring Conference, Nashville, TN, 

2009 https://www3.epa.gov/ttnamti1/files/2009conference/swift.pdf 

 

USEPA, Technology Transfer Network - Air Toxics Web Site, Styrene, 100-42-5, 

Revised in January 2000 https://www3.epa.gov/airtoxics/hlthef/styrene.html 

 

USEPA, Technology Transfer Network, National Ambient Air Quality Standards 

(NAAQS), Accessed January 2016 http://www3.epa.gov/ttn/naaqs/ 

 

USEPA, Tentatively Identified Compounds, What are they and why are they important, 

Region III Quality Assurance Team, TIC Frequently Asked Questions, Revision No.:2.5, 

February 2006 

 

USEPA, Wastes-Non-Hazardous Waste – Industrial Waste, Accessed January 2016 

http://www3.epa.gov/epawaste/nonhaz/industrial/index.htm 

 

USEPA, Wastes-Non-Hazardous Waste – Industrial Waste, Guide for Industrial Waste 

Management, Accessed January 2016 

 http://www3.epa.gov/epawaste/nonhaz/industrial/guide/index.htm 

 

USEPA, Wastes-Non-Hazardous Waste, Accessed January 2016 

 http://www3.epa.gov/epawaste/nonhaz/ 

 

USEPA, Wastes-Resource Conservation-Common Wastes & Materials, Plastics, 

Accessed December 2015 

 http://www3.epa.gov/epawaste/wastes_archive/plastics.htm#recycle 

 

USEPA, Wastes-Resource Conservation-Reduce, Reuse, Recycle-Construction & 

Demolition Materials, Reducing C&D Materials, Accessed January 2016 

http://www3.epa.gov/epawaste/conserve/imr/cdm/reducing.htm 

 

USEPA, What are Detection Limits (DL) and Reporting Limits (RL), Placer Data 

Library, 2011 https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-17.pdf 

 

USP United States Plastic Corp., Ohio, USA 

 http://www.usplastic.com/catalog/default.aspx?catid=707 
 

Valentine WN, Paglia DE, Fink K, Madokoro G. Lead poisoning: association with 

hemolytic anemia, basophilic stippling, erythrocyte pyrimidine 5'-nucleotidase 

deficiency, and intraerythrocytic accumulation of pyrimidines. J Clin Invest, 1976 

 

file:///C:/contents/adult-lead-poisoning/abstract/41
file:///C:/contents/adult-lead-poisoning/abstract/41
file:///C:/contents/adult-lead-poisoning/abstract/41


113 
 

Wells, G.; Prest, H.; Russ IV, C. Signal, Noise, and Detection Limits in Mass 

Spectrometry, Agilent Technologies Inc., Technical Note, Chemical Analysis Group, 

2011 

Whelton, A.; Salehi, M.; Tabor, M.; Donaldson, B.; Estaba, J. Impact of Infrastructure 

Coating Materials on Storm-Water Quality: Review and Experimental Study, Journal of 

Environmental Engineering, USA, 2013 

 

 

 

 

 

 

 

 

 



114 
 

 

 

 

 

 

 

Appendices 

 

 

 

 

 



115 
 

Appendix A. Calibration Certificates of Devices Used at Three Sites 

(Xitech, Calibration for Site 1)  
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(Xitech, Calibration for Sites 2 & 3)  
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(Flowrate & Thermo Meter, Calibration for Sites 2 & 3)  
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(Flowrate and Thermo Meter, Annual Calibration)  
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Appendix B. Compounds Can be Determined by Method EPA8260B 

No. Compound  CAS No. No. Compound  CAS No. 

1 Acetone   67-64-1 55 1,4-Dioxane   123-91-1 

2 Acetonitrile  75-05-8 56 Epichlorohydrin  106-89-8 

3 Acrolein (Propenal)  107-02-8 57 Ethanol   64-17-5 

4 Acrylonitrile  107-13-1 58 Ethyl acetate  141-78-6 

5 Allyl alcohol  107-18-6 59 Ethylbenzene  100-41-4  

6 Allyl chloride  107-05-1 60 Ethylene oxide   75-21-8 

7 Benzene  71-43-2 61 Ethyl methacrylate  97-63-2 

8 Benzyl chloride  100-44-7 62 Fluorobenzene (IS)  462-06-6 

9 Bis(2-chloroethyl)sulfide  505-60-2 63 Hexachlorobutadiene   87-68-3 

10 Bromoacetone  598-31-2 64 Hexachloroethane 67-72-1 

11 Bromochloromethane   74-97-5 65 2-Hexanone  591-78-6 

12 Bromodichloromethane  75-27-4 66 2-Hydroxypropionitrile  78-97-7 

13 
4-Bromofluorobenzene 

(surr)  
460-00-4 67 Iodomethane  74-88-4 

14 Bromoform  75-25-2  68 Isobutyl alcohol  78-83-1 

15 Bromomethane  74-83-9 69 Isopropylbenzene  98-82-8  

16 n-Butanol  71-36-3 70 Malononitrile  109-77-3 

17 2-Butanone (MEK)  78-93-3 71 Methacrylonitrile  126-98-7 

18 t-Butyl alcohol   75-65-0 72 Methanol  67-56-1 

19 Carbon disulfide  75-15-0 73 Methylene chloride  75-09-2 

20 Carbon tetrachloride 56-23-5 74 Methyl methacrylate  80-62-6 

21 Chloral hydrate  302-17-0 75 
4-Methyl-2-pentanone 

(MIBK)  
108-10-1 

22 Chlorobenzene  108-90-7 76 Naphthalene   91-20-3 

23 Chlorobenzene-d (IS)   77 Nitrobenzene  98-95-3  

24 Chlorodibromomethane 124-48-1 78 2-Nitropropane  79-46-9 

25 Chloroethane  75-00-3 79 
N-Nitroso-di-n-

butylamine  
924-16-3 

26 2-Chloroethanol 107-07-3 80 Paraldehyde  123-63-7  

27 2-Chloroethyl vinyl ether  110-75-8 81 Pentachloroethane  76-01-7 

28 Chloroform   67-66-3 82 2-Pentanone  107-87-9 

29 Chloromethane  74-87-3  83 2-Picoline  109-06-8 

30 Chloroprene  126-99-8 84 1-Propanol   71-23-8 

31 3-Chloropropionitrile  542-76-7 85 2-Propanol  67-63-0 

32 Crotonaldehyde  4170-30-3  86 Propargyl alcohol  107-19-7 

33 
1,2-Dibromo-3-

chloropropane 
 96-12-8  87 β-Propiolactone 57-57-8  
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(Table Continued) 

34 1,2-Dibromoethane  106-93-4 88 
Propionitrile (ethyl 

cyanide)   
107-12-0 

35 Dibromomethane  74-95-3 89 n-Propylamine  107-10-8 

36 1,2-Dichlorobenzene  95-50-1 90 Pyridine  110-86-1 

37 1,3-Dichlorobenzene   541-73-1 91 Styrene  100-42-5 

38 1,4-Dichlorobenzene   106-46-7 92 1,1,1,2-Tetrachloroethane  630-20-6 

39 1,4-Dichlorobenzene-d (IS)    93 1,1,2,2-Tetrachloroethane  79-34-5  

40 cis-1,4-Dichloro-2-butene   1476-11-5 94 Tetrachloroethene  127-18-4 

41 trans-1,4-Dichloro-2-butene   110-57-6 95 Toluene  108-88-3 

42 Dichlorodifluoromethane  75-71-8  96 Toluene-d (surr)  2037-26-5  

43 1,1-Dichloroethane  75-34-3 97 o-Toluidine   95-53-4 

44 1,2-Dichloroethane  107-06-2 98 1,2,4-Trichlorobenzene  120-82-1 

45 1,2-Dichloroethane-d (surr)    99 1,1,1-Trichloroethane  71-55-6 

46 1,1-Dichloroethene 75-35-4 100 1,1,2-Trichloroethane  79-00-5  

47 trans-1,2-Dichloroethene  156-60-5 101 Trichloroethene  79-01-6 

48 1,2-Dichloropropane 78-87-5 102 Trichlorofluoromethane   75-69-4 

49 1,3-Dichloro-2-propanol  96-23-1 103 1,2,3-Trichloropropane  96-18-4 

50 cis-1,3-Dichloropropene  
10061-01-

5 
104 Vinyl acetate  108-05-4 

51 trans-1,3-Dichloropropene  
10061-02-

6 
105 Vinyl chloride  75-01-4 

52 1,2,3,4-Diepoxybutane  1464-53-5 106 o-Xylene  95-47-6 

53 Diethyl ether  60-29-7 107 m-Xylene   108-38-3 

54 1,4-Difluorobenzene (IS)  540-36-3 108 p-Xylene   106-42-3 
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Appendix C. Spectral Plots Produced by the Gas Chromatography for Three Sites 

(Site 1. Samples for Control, Liner Inversion, Near Private Property, Curing, and Cooling) 
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(Site 2. Samples for Control, Curing, and Cooling)  
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(Site 3. Samples for Control, Curing, and Cooling) 
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Appendix D. Emission Factors from California Air Resource Board’s Off-Road 

Model 2015 

Equipment MaxHP ROG CO NOX SOX PM CO2 CH4 
Aerial Lifts 15 0.0101 0.0528 0.0631 0.0001 0.0025 8.7 0.0009 

 
25 0.0155 0.0486 0.0902 0.0001 0.0046 11.0 0.0014 

 
50 0.0480 0.1641 0.1699 0.0003 0.0129 19.6 0.0043 

 
120 0.0460 0.2377 0.3272 0.0004 0.0246 38.1 0.0042 

 
500 0.1026 0.4261 1.2422 0.0021 0.0368 213 0.0093 

 
750 0.1912 0.7702 2.3263 0.0039 0.0680 385 0.0173 

Aerial Lifts Composite   0.0439 0.1837 0.2670 0.0004 0.0167 34.7 0.0040 

Air Compressors 15 0.0108 0.0466 0.0664 0.0001 0.0040 7.2 0.0010 

 
25 0.0229 0.0681 0.1247 0.0002 0.0069 14.4 0.0021 

 
50 0.0747 0.2360 0.2056 0.0003 0.0183 22.3 0.0067 

 
120 0.0691 0.3182 0.4334 0.0006 0.0375 47.0 0.0062 

 
175 0.0903 0.5019 0.7101 0.0010 0.0388 88.5 0.0082 

 
250 0.0892 0.2803 0.9294 0.0015 0.0286 131 0.0080 

 
500 0.1463 0.4915 1.4297 0.0023 0.0470 232 0.0132 

 
750 0.2285 0.7595 2.2932 0.0036 0.0743 358 0.0206 

 
1000 0.3551 1.1843 4.4558 0.0049 0.1239 486 0.0320 

Air Compressors Composite   0.0773 0.3257 0.5175 0.0007 0.0357 63.6 0.0070 

Bore/Drill Rigs 15 0.0120 0.0632 0.0754 0.0002 0.0029 10.3 0.0011 

 
25 0.0193 0.0658 0.1220 0.0002 0.0047 16.0 0.0017 

 
50 0.0234 0.2235 0.2240 0.0004 0.0075 31.0 0.0021 

 
120 0.0376 0.4676 0.3736 0.0009 0.0160 77.1 0.0034 

 
175 0.0618 0.7540 0.5364 0.0016 0.0198 141 0.0056 

 
250 0.0681 0.3425 0.4900 0.0021 0.0144 188 0.0061 

 
500 0.1118 0.5511 0.7692 0.0031 0.0236 311 0.0101 

 
750 0.2212 1.0888 1.5301 0.0062 0.0466 615 0.0200 

 
1000 0.3562 1.6528 4.9704 0.0093 0.1194 928 0.0321 

Bore/Drill Rigs Composite   0.0673 0.5022 0.6138 0.0017 0.0200 165 0.0061 

Cement and Mortar Mixers 15 0.0074 0.0386 0.0464 0.0001 0.0019 6.3 0.0007 

 
25 0.0251 0.0782 0.1456 0.0002 0.0074 17.6 0.0023 

Cement and Mortar Mixers 
Composite   0.0088 0.0419 0.0545 0.0001 0.0024 7.2 0.0008 

Concrete/Industrial Saws 25 0.0199 0.0678 0.1256 0.0002 0.0047 16.5 0.0018 

 
50 0.0782 0.2745 0.2652 0.0004 0.0206 30.2 0.0071 

 
120 0.0892 0.4759 0.6249 0.0009 0.0486 74.1 0.0080 

 
175 0.1340 0.8674 1.1593 0.0018 0.0585 160 0.0121 

Concrete/Industrial Saws 
Composite   0.0835 0.3982 0.4921 0.0007 0.0374 58.5 0.0075 

Cranes 50 0.0853 0.2729 0.2235 0.0003 0.0202 23.2 0.0077 

 
120 0.0800 0.3559 0.4822 0.0006 0.0415 50.1 0.0072 

 
175 0.0919 0.4794 0.6684 0.0009 0.0378 80.3 0.0083 

 
250 0.0925 0.2713 0.8284 0.0013 0.0286 112 0.0083 

 
500 0.1393 0.4663 1.1812 0.0018 0.0426 180 0.0126 

 
750 0.2358 0.7835 2.0490 0.0030 0.0729 303 0.0213 

 
9999 0.8682 2.8913 9.2743 0.0098 0.2775 971 0.0783 

Cranes Composite   0.1204 0.4395 1.0200 0.0014 0.0426 129 0.0109 

Crawler Tractors 50 0.1017 0.3087 0.2464 0.0003 0.0232 24.9 0.0092 

 
120 0.1143 0.4774 0.6815 0.0008 0.0579 65.8 0.0103 

 
175 0.1509 0.7384 1.0951 0.0014 0.0614 121 0.0136 

 
250 0.1582 0.4614 1.3531 0.0019 0.0514 166 0.0143 

 
500 0.2300 0.8352 1.8987 0.0025 0.0732 259 0.0207 

 
750 0.4140 1.4936 3.4863 0.0047 0.1327 465 0.0374 

 
1000 0.6278 2.3640 6.6574 0.0066 0.2075 658 0.0566 

Crawler Tractors Composite   0.1415 0.5650 1.0059 0.0013 0.0594 114 0.0128 

Crushing/Proc. Equipment 50 0.1392 0.4644 0.4024 0.0006 0.0346 44.0 0.0126 

 
120 0.1167 0.5646 0.7374 0.0010 0.0629 83.1 0.0105 

 
175 0.1654 0.9559 1.2783 0.0019 0.0700 167 0.0149 
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(Table Continued) 

 
250 0.1646 0.5171 1.6355 0.0028 0.0506 245 0.0149 

 
500 0.2358 0.7790 2.1722 0.0037 0.0722 374 0.0213 

 
750 0.3723 1.2184 3.5561 0.0059 0.1154 589 0.0336 

 
9999 0.9726 3.0901 11.5626 0.0131 0.3225 1,308 0.0878 

Crushing/Proc. Equipment 

Composite   0.1465 0.6549 0.9893 0.0015 0.0607 132 0.0132 

Dumpers/Tenders 25 0.0093 0.0315 0.0591 0.0001 0.0025 7.6 0.0008 

Dumpers/Tenders Composite   0.0093 0.0315 0.0591 0.0001 0.0025 7.6 0.0008 

Excavators 25 0.0198 0.0677 0.1253 0.0002 0.0047 16.4 0.0018 

 
50 0.0650 0.2683 0.2256 0.0003 0.0167 25.0 0.0059 

 
120 0.0912 0.5102 0.5787 0.0009 0.0455 73.6 0.0082 

 
175 0.1052 0.6653 0.7408 0.0013 0.0405 112 0.0095 

 
250 0.1117 0.3431 0.8935 0.0018 0.0297 159 0.0101 

 
500 0.1577 0.4964 1.1619 0.0023 0.0413 234 0.0142 

 
750 0.2630 0.8225 1.9926 0.0039 0.0698 387 0.0237 

Excavators Composite   0.1064 0.5248 0.7416 0.0013 0.0379 120 0.0096 

Forklifts 50 0.0324 0.1522 0.1324 0.0002 0.0092 14.7 0.0029 

 
120 0.0345 0.2143 0.2326 0.0004 0.0174 31.2 0.0031 

 
175 0.0486 0.3316 0.3442 0.0006 0.0189 56.1 0.0044 

 
250 0.0518 0.1582 0.4040 0.0009 0.0133 77.1 0.0047 

 
500 0.0724 0.2164 0.5170 0.0011 0.0185 111 0.0065 

Forklifts Composite   0.0459 0.2200 0.3163 0.0006 0.0156 54.4 0.0041 

Generator Sets 15 0.0135 0.0658 0.0929 0.0002 0.0051 10.2 0.0012 

 
25 0.0247 0.0831 0.1522 0.0002 0.0080 17.6 0.0022 

 
50 0.0706 0.2465 0.2628 0.0004 0.0193 30.6 0.0064 

 
120 0.0910 0.4811 0.6607 0.0009 0.0484 77.9 0.0082 

 
175 0.1120 0.7350 1.0463 0.0016 0.0485 142 0.0101 

 
250 0.1090 0.4148 1.3776 0.0024 0.0381 213 0.0098 

 
500 0.1556 0.6639 1.9429 0.0033 0.0567 337 0.0140 

 
750 0.2599 1.0718 3.2483 0.0055 0.0934 544 0.0234 

 
9999 0.6582 2.3655 8.9789 0.0105 0.2325 1,049 0.0594 

Generator Sets Composite   0.0640 0.2913 0.4717 0.0007 0.0268 61.0 0.0058 

Graders 50 0.0897 0.3082 0.2569 0.0004 0.0217 27.5 0.0081 

 
120 0.1081 0.5230 0.6726 0.0009 0.0555 75.0 0.0098 

 
175 0.1299 0.7319 0.9534 0.0014 0.0526 124 0.0117 

 
250 0.1326 0.4046 1.1596 0.0019 0.0400 172 0.0120 

 
500 0.1666 0.5739 1.3760 0.0023 0.0496 229 0.0150 

 
750 0.3549 1.2133 3.0011 0.0049 0.1066 486 0.0320 

Graders Composite   0.1277 0.5931 0.9795 0.0015 0.0489 133 0.0115 

Off-Highway Tractors 120 0.1905 0.7051 1.1159 0.0011 0.0952 93.7 0.0172 

 
175 0.1870 0.8216 1.3703 0.0015 0.0771 130 0.0169 

 
250 0.1489 0.4320 1.2644 0.0015 0.0520 130 0.0134 

 
750 0.5975 2.5165 5.0885 0.0057 0.2047 568 0.0539 

 
1000 0.9006 3.9378 9.2072 0.0082 0.3063 814 0.0813 

Off-Highway Tractors 

Composite   0.1893 0.7244 1.5085 0.0017 0.0717 151 0.0171 

Off-Highway Trucks 175 0.1259 0.7559 0.8596 0.0014 0.0477 125 0.0114 

 
250 0.1252 0.3702 0.9818 0.0019 0.0328 167 0.0113 

 
500 0.1960 0.5949 1.4165 0.0027 0.0505 272 0.0177 

 
750 0.3198 0.9645 2.3779 0.0044 0.0835 442 0.0289 

 
1000 0.4873 1.4801 5.2216 0.0063 0.1505 625 0.0440 

Off-Highway Trucks Composite   0.1924 0.5974 1.4932 0.0027 0.0516 260 0.0174 

Other Construction Equipment 15 0.0118 0.0617 0.0737 0.0002 0.0029 10.1 0.0011 

 
25 0.0159 0.0544 0.1008 0.0002 0.0039 13.2 0.0014 

 
50 0.0597 0.2506 0.2369 0.0004 0.0162 28.0 0.0054 

 
120 0.0827 0.5202 0.6012 0.0009 0.0441 80.9 0.0075 

 
175 0.0796 0.5864 0.6636 0.0012 0.0331 107 0.0072 

 
500 0.1310 0.4963 1.1867 0.0025 0.0394 254 0.0118 

Other Construction Equipment 
Composite 

   

0.0768 0.3645 0.6392 0.0013 0.0264 123 0.0069 
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Other General Industrial 

Equipment 15 0.0066 0.0391 0.0466 0.0001 0.0018 6.4 0.0006 

 
25 0.0185 0.0632 0.1170 0.0002 0.0044 15.3 0.0017 

 
50 0.0786 0.2532 0.2077 0.0003 0.0191 21.7 0.0071 

 
120 0.0987 0.4387 0.5864 0.0007 0.0521 62.0 0.0089 

 
175 0.1083 0.5684 0.7866 0.0011 0.0448 95.9 0.0098 

 
250 0.1050 0.3015 0.9812 0.0015 0.0312 136 0.0095 

 
500 0.1931 0.5811 1.6702 0.0026 0.0569 265 0.0174 

 
750 0.3208 0.9578 2.8569 0.0044 0.0959 437 0.0289 

 
1000 0.4546 1.4023 5.2482 0.0056 0.1513 560 0.0410 

Other General Industrial 

Equipment Composite   0.1355 0.4843 1.1215 0.0016 0.0475 152 0.0122 

Other Material Handling 

Equipment 50 0.1090 0.3501 0.2887 0.0004 0.0265 30.3 0.0098 

 
120 0.0959 0.4271 0.5727 0.0007 0.0509 60.7 0.0087 

 
175 0.1365 0.7201 0.9997 0.0014 0.0567 122 0.0123 

 
250 0.1109 0.3211 1.0483 0.0016 0.0332 145 0.0100 

 
500 0.1376 0.4182 1.2042 0.0019 0.0409 192 0.0124 

 
9999 0.6190 1.8527 6.9410 0.0073 0.1995 741 0.0558 

Other Material Handling 

Equipment Composite   0.1289 0.4698 1.0967 0.0015 0.0460 141 0.0116 

Pavers 25 0.0234 0.0780 0.1458 0.0002 0.0066 18.7 0.0021 

 
50 0.1198 0.3421 0.2775 0.0004 0.0271 28.0 0.0108 

 
120 0.1235 0.4969 0.7477 0.0008 0.0636 69.2 0.0111 

 
175 0.1608 0.7707 1.2155 0.0014 0.0673 128 0.0145 

 
250 0.1858 0.5585 1.6747 0.0022 0.0640 194 0.0168 

 
500 0.2059 0.8113 1.8097 0.0023 0.0697 233 0.0186 

Pavers Composite   0.1347 0.5203 0.7607 0.0009 0.0526 77.9 0.0122 

Paving Equipment 25 0.0152 0.0520 0.0963 0.0002 0.0037 12.6 0.0014 

 
50 0.1023 0.2901 0.2367 0.0003 0.0231 23.9 0.0092 

 
120 0.0969 0.3891 0.5874 0.0006 0.0503 54.5 0.0087 

 
175 0.1254 0.6025 0.9549 0.0011 0.0528 101 0.0113 

 
250 0.1140 0.3441 1.0498 0.0014 0.0394 122 0.0103 

Paving Equipment Composite   0.1023 0.4234 0.6842 0.0008 0.0469 68.9 0.0092 

Plate Compactors 15 0.0050 0.0263 0.0314 0.0001 0.0012 4.3 0.0005 

Plate Compactors Composite   0.0050 0.0263 0.0314 0.0001 0.0012 4.3 0.0005 

Pressure Washers 15 0.0065 0.0315 0.0445 0.0001 0.0024 4.9 0.0006 

 
25 0.0100 0.0337 0.0617 0.0001 0.0033 7.1 0.0009 

 
50 0.0251 0.0970 0.1183 0.0002 0.0077 14.3 0.0023 

 
120 0.0245 0.1416 0.1947 0.0003 0.0128 24.1 0.0022 

Pressure Washers Composite   0.0133 0.0590 0.0799 0.0001 0.0049 9.4 0.0012 

Pumps 15 0.0111 0.0479 0.0683 0.0001 0.0041 7.4 0.0010 

 
25 0.0309 0.0919 0.1682 0.0002 0.0094 19.5 0.0028 

 
50 0.0855 0.2910 0.2982 0.0004 0.0228 34.3 0.0077 

 
120 0.0949 0.4887 0.6710 0.0009 0.0508 77.9 0.0086 

 
175 0.1158 0.7365 1.0489 0.0016 0.0502 140 0.0104 

 
250 0.1088 0.3998 1.3270 0.0023 0.0376 201 0.0098 

 
500 0.1686 0.6929 2.0163 0.0034 0.0603 345 0.0152 

 
750 0.2872 1.1454 3.4529 0.0057 0.1018 571 0.0259 

 
9999 0.8773 3.1134 11.7387 0.0136 0.3072 1,355 0.0792 

Pumps Composite   0.0621 0.2825 0.4121 0.0006 0.0267 49.6 0.0056 

Rollers 15 0.0074 0.0386 0.0461 0.0001 0.0018 6.3 0.0007 

 
25 0.0161 0.0549 0.1018 0.0002 0.0039 13.3 0.0015 

 
50 0.0871 0.2754 0.2405 0.0003 0.0209 26.0 0.0079 

 
120 0.0857 0.4000 0.5498 0.0007 0.0454 59.0 0.0077 

 
175 0.1104 0.6166 0.8731 0.0012 0.0470 108 0.0100 

 
250 0.1107 0.3575 1.0948 0.0017 0.0368 153 0.0100 

 
500 0.1468 0.5595 1.3956 0.0022 0.0487 219 0.0132 

Rollers Composite   0.0851 0.3979 0.5706 0.0008 0.0386 67.1 0.0077 

Rough Terrain Forklifts 50 0.0942 0.3551 0.3066 0.0004 0.0243 33.9 0.0085 

 
120 0.0801 0.4260 0.5164 0.0007 0.0420 62.4 0.0072 
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175 0.1171 0.7240 0.8746 0.0014 0.0477 125 0.0106 

 
250 0.1168 0.3650 1.0385 0.0019 0.0338 171 0.0105 

 
500 0.1668 0.5337 1.3642 0.0025 0.0477 257 0.0150 

Rough Terrain Forklifts 

Composite   0.0850 0.4577 0.5588 0.0008 0.0423 70.3 0.0077 

Rubber Tired Dozers 175 0.1942 0.8333 1.3944 0.0015 0.0790 129 0.0175 

 
250 0.2209 0.6304 1.8273 0.0021 0.0762 183 0.0199 

 
500 0.2932 1.2456 2.3951 0.0026 0.0985 265 0.0265 

 
750 0.4423 1.8685 3.6712 0.0040 0.1494 399 0.0399 

 
1000 0.6883 3.0139 6.8297 0.0060 0.2311 592 0.0621 

Rubber Tired Dozers Composite   0.2721 1.0420 2.2344 0.0025 0.0924 239 0.0246 

Rubber Tired Loaders 25 0.0204 0.0697 0.1291 0.0002 0.0049 16.9 0.0018 

 
50 0.0993 0.3438 0.2888 0.0004 0.0242 31.1 0.0090 

 
120 0.0835 0.4090 0.5226 0.0007 0.0431 58.9 0.0075 

 
175 0.1094 0.6251 0.8077 0.0012 0.0445 106 0.0099 

 
250 0.1118 0.3444 0.9890 0.0017 0.0337 149 0.0101 

 
500 0.1678 0.5818 1.3980 0.0023 0.0499 237 0.0151 

 
750 0.3459 1.1905 2.9534 0.0049 0.1040 486 0.0312 

 
1000 0.4657 1.6412 5.2967 0.0060 0.1552 594 0.0420 

Rubber Tired Loaders 

Composite   0.1050 0.4615 0.7838 0.0012 0.0416 109 0.0095 

Scrapers 120 0.1665 0.6826 0.9915 0.0011 0.0846 93.9 0.0150 

 
175 0.1871 0.9030 1.3657 0.0017 0.0766 148 0.0169 

 
250 0.2021 0.5906 1.7470 0.0024 0.0665 209 0.0182 

 
500 0.2883 1.0688 2.4104 0.0032 0.0930 321 0.0260 

 
750 0.5001 1.8419 4.2634 0.0056 0.1624 555 0.0451 

Scrapers Composite   0.2513 0.9443 2.0647 0.0027 0.0854 262 0.0227 

Signal Boards 15 0.0072 0.0377 0.0450 0.0001 0.0018 6.2 0.0006 

 
50 0.0931 0.3227 0.3148 0.0005 0.0243 36.2 0.0084 

 
120 0.0970 0.5116 0.6762 0.0009 0.0525 80.2 0.0088 

 
175 0.1290 0.8300 1.1249 0.0017 0.0559 155 0.0116 

 
250 0.1416 0.5098 1.6229 0.0029 0.0474 255 0.0128 

Signal Boards Composite   0.0171 0.0925 0.1250 0.0002 0.0066 16.7 0.0015 

Skid Steer Loaders 25 0.0189 0.0601 0.1125 0.0002 0.0056 13.8 0.0017 

 
50 0.0378 0.2138 0.2052 0.0003 0.0113 25.5 0.0034 

 
120 0.0334 0.2710 0.2699 0.0005 0.0170 42.8 0.0030 

Skid Steer Loaders Composite   0.0352 0.2220 0.2198 0.0004 0.0128 30.3 0.0032 

Surfacing Equipment 50 0.0408 0.1333 0.1263 0.0002 0.0101 14.1 0.0037 

 
120 0.0840 0.4151 0.5756 0.0007 0.0439 63.8 0.0076 

 
175 0.0787 0.4705 0.6706 0.0010 0.0335 85.8 0.0071 

 
250 0.0891 0.3116 0.9338 0.0015 0.0309 135 0.0080 

 
500 0.1342 0.5759 1.3809 0.0022 0.0468 221 0.0121 

 
750 0.2139 0.9020 2.2264 0.0035 0.0745 347 0.0193 

Surfacing Equipment Composite   0.1116 0.4705 1.0675 0.0017 0.0389 166 0.0101 

Sweepers/Scrubbers 15 0.0124 0.0729 0.0870 0.0002 0.0034 11.9 0.0011 

 
25 0.0237 0.0808 0.1495 0.0002 0.0056 19.6 0.0021 

 
50 0.0782 0.3186 0.2828 0.0004 0.0211 31.6 0.0071 

 
120 0.0880 0.5056 0.5893 0.0009 0.0466 75.0 0.0079 

 
175 0.1193 0.7999 0.9051 0.0016 0.0488 139 0.0108 

 
250 0.1029 0.3286 0.9094 0.0018 0.0289 162 0.0093 

Sweepers/Scrubbers Composite   0.0913 0.5034 0.5746 0.0009 0.0387 78.5 0.0082 

Tractors/Loaders/Backhoes 25 0.0192 0.0653 0.1221 0.0002 0.0049 15.9 0.0017 

 
50 0.0702 0.3020 0.2646 0.0004 0.0186 30.3 0.0063 

 
120 0.0577 0.3480 0.3870 0.0006 0.0293 51.7 0.0052 

 
175 0.0854 0.5853 0.6331 0.0011 0.0335 101 0.0077 

 
250 0.1082 0.3566 0.9047 0.0019 0.0294 172 0.0098 

 
500 0.2085 0.7089 1.6070 0.0039 0.0559 345 0.0188 

 
750 0.3148 1.0631 2.4922 0.0058 0.0854 517 0.0284 

Tractors/Loaders/Backhoes 
Composite   0.0666 0.3716 0.4501 0.0008 0.0298 66.8 0.0060 

Trenchers 15 0.0099 0.0517 0.0617 0.0001 0.0024 8.5 0.0009 
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(Table Continued) 

 
25 0.0397 0.1355 0.2509 0.0004 0.0094 32.9 0.0036 

 
50 0.1390 0.3900 0.3235 0.0004 0.0313 32.9 0.0125 

 
120 0.1144 0.4600 0.7060 0.0008 0.0590 64.9 0.0103 

 
175 0.1770 0.8534 1.3767 0.0016 0.0748 144 0.0160 

 
250 0.2105 0.6510 1.9456 0.0025 0.0750 223 0.0190 

 
500 0.2694 1.1349 2.4560 0.0031 0.0947 311 0.0243 

 
750 0.5107 2.1334 4.7300 0.0059 0.1802 587 0.0461 

Trenchers Composite   0.1274 0.4541 0.6043 0.0007 0.0485 58.7 0.0115 

Welders 15 0.0093 0.0400 0.0571 0.0001 0.0034 6.2 0.0008 

 
25 0.0179 0.0532 0.0974 0.0001 0.0054 11.3 0.0016 

 
50 0.0801 0.2564 0.2346 0.0003 0.0200 26.0 0.0072 

 
120 0.0547 0.2606 0.3567 0.0005 0.0296 39.5 0.0049 

 
175 0.0936 0.5424 0.7713 0.0011 0.0405 98.2 0.0084 

 
250 0.0749 0.2483 0.8249 0.0013 0.0248 119 0.0068 

 
500 0.0968 0.3491 1.0171 0.0016 0.0325 168 0.0087 

Welders Composite   0.0534 0.1994 0.2301 0.0003 0.0187 25.6 0.0048 
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Appendix E. Temperatures and Flowrates of Steam Exiting the Hose and 

Downstream Manhole 

Steam Hose Curing Period Cooling Period 

Site No. Temp, ⁰F Q,  ft3/min Temp, ⁰F Q,  ft3/min 

2 134 142 73 115 

3 129 119 70 121.5 

 

Downstream 

Manhole 
Curing Period Cooling Period 

Site No. Temp, ⁰F Q,  ft3/min Temp, ⁰F Q,  ft3/min 

2 100 46.9 87.5 21.1 

3 162.5 55 97 23.3 
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Appendix F. Method Reporting Limits (MRL) for Each Sample and Site 

No. Analytes 

Site 1 (MRL) Site 2 (MRL) Site 3 (MRL) 

Control Inversion  
Cure 

(MH) 

Cure       

(near private 

residence) 

Cool 

(MH) 
Control 

Cure 

(MH) 

Cool 

(MH) 
Control 

Cure 

(MH) 

Cool 

(MH) 

1 Acetone  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

2 Benzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

3 Bromobenzene   0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

4 Bromochloromethane 0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

5 Bromodichloromethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

6 Bromoform  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

7 Bromomethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

8 2-Butanone  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

9 n-Butylbenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

10 sec-Butylbenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

11 tert-Butylbenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

12 Carbon disulfide  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

13 Carbon tetrachloride  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

14 Chlorobenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

15 Chloroethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

16 2-Chloroethyl vinyl ether  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

17 Chloroform   0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

18 Chloromethane   0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

19 4-Chlorotoluene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

20 2-Chlorotoluene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

21 
1,2-Dibromo-3-

chloropropane  
0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

22 Dibromochloromethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 
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(Table Continued) 

23 1,2-Dibromoethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

24 Dibromomethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

25 1,2-Dichlorobenzene   0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

26 1,3-Dichlorobenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

27 1,4-Dichlorobenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

28 Dichlorodifluoromethane 0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

29 1,1-Dichloroethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

30 1,2-Dichloroethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

31 1,1-Dichloroethene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

32 cis-1,2-Dichloroethene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

33 trans-1,2-Dichloroethene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

34 1,2-Dichloropropane 0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

35 1,3-Dichloropropane 0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

36 2,2-Dichloropropane 0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

37 1,1-Dichloropropene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

38 cis-1,3-Dichloropropene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

39 trans-1,3-Dichloropropene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

40 Ethylbenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

41 Hexachlorobutadiene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

42 2-Hexanone  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

43 Isopropylbenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

44 p-Isopropyltoluene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

45 MTBE  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

46 4-Methyl-2-pentanone  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

47 Methylene chloride  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

48 Naphthalene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

49 n-Propylbenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

50 Styrene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 
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51 1,1,1,2-Tetrachloroethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

52 1,1,2,2-Tetrachloroethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

53 Tetrachloroethene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

54 Toluene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

55 1,2,3-Trichlorobenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

56 1,2,4-Trichlorobenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

57 1,1,1-Trichloroethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

58 1,1,2-Trichloroethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

59 Trichloroethene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

60 Trichlorofluoromethane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

61 1,2,3-Trichloropropane  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

62 1,2,4-Trimethylbenzene 0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

63 1,3,5-Trimethylbenzene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

64 Vinyl acetate  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

65 Vinyl chloride   0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

66 o-Xylene  0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 

67 m- & p-Xylenes 0.500 0.500 10.0 0.500 0.500 0.500 20.0 2.50 0.500 5.00 0.500 
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Appendix G. Chain of Custody Forms for Air Samples 

(Samples Collected from Site 1)  
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(Samples Collected from Site 2) 
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(Samples Collected from Site 3) 
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