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Abstract 

 

Knowledge of sex allocation trade-offs with tree growth in insect-pollinated woody plants is 

limited, particularly in invasive plants.  This study examined patterns of growth and reproductive 

investment in a North American invasive plant species, Triadica sebifera, I hypothesized that the 

energy limitations of smaller trees may result in the production of more male reproductive 

structures that are energetically less costly.  Diameter at breast height was a significant predictor 

of seed and catkin mass and regression can describe these relationships across sites.  Seed and 

catkin mass were positively correlated across sites.  The relationship between the seed 

mass:catkin mass ratio and DBH was not significant, nor was seed mass:catkin mass and total 

investment.  Results showed a significant positive relationship between total reproductive 

investment and tree size across sites.  Seed mass:catkin mass ratio and reproduction investment 

showed substantial variation among individual trees of similar size within sites.   

 

 

 

 

 

 

 

 

Triadica sebifera; Chinese tallow; life history theory; invasion ecology; reproductive strategy; 

sex allocation
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Introduction 

 

Life history theory seeks to explain organismal growth, reproduction, and survivorship in 

an evolutionary and ecological context (Stearns, 1992).  With respect to polycarpic plants, traits 

such as dispersal method, seed number and size, and resource allocation to growth and 

reproduction are important characters that affect life history strategies (Campbell, 2000; Dorken 

and Pannell, 2008; Freeman et al., 1980; Freeman et al., 1981; Galen, 2000; Obeso, 2002).  The 

trade-offs presented by resource allocation across multiple life history traits have been the focus 

of numerous studies attempting to explain variation in fecundity, reproductive development, and 

behavior (e.g., Bell and Koufopanou, 1986; Bosner and Aarssen, 1996; Knops and Koenig, 2012; 

Reznick, 1985; Silvertown and Dodd, 1999).   

One way plants exhibit trade-offs in resources is through sex allocation, in which 

resources are differentially afforded to male versus female function in response to growth stage 

and environmental factors (Charnov, 1982; Charnov and Bull, 1977; Freeman et al., 1976; 

Freeman et al., 1980; Freeman et al., 1981; Galen, 2000; Obeso, 2002; Weiner et al., 2009).  A 

common pattern seen in angiosperms is the high cost of female reproduction relative to the lower 

cost of male reproduction (Iwasa, 1991; de Jong and Klinkhamer, 2005), and this may influence 

allocation to reproduction in plants differing in size and energy stores.  Most studies of size-

dependent patterns of reproductive investment have focused on herbaceous plants (Barret et al., 

1999; Bram and Quinn, 2000; Macnair and Cumbes, 1990; Sandmeier and Dajoz, 1997), while a 

few have explored sex allocation in wind-pollinated woody species (Fox, 1993; Knops and 

Koenig, 2012; Ne’eman et al., 2011; Santos-del-Blanco et al., 2012).  In studies of dioecious 

plants, males were significantly more abundant in stressed habitats, suggesting the allocation of 
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resources to less costly male function in disturbed habitats may be beneficial compared to 

expensive female function (Freeman et al., 1976; Obeso, 2002).  Conversely, a study by 

Ne’eman et al. (2011) of an invasive monoecious wind-pollinated conifer, Pinus halepensis 

(Pinaceae), showed that this short-lived woody conifer invested more in female function than 

male function at an early age; a shift in reproductive function expected in species with short life 

spans.     

Little is known about the effect of life history characters on sex allocation of insect-

pollinated woody tree species, particularly in invasive plants.  However, sex allocation is of 

particular interest in invasive plants because they often devote more resources to sexual 

reproduction (Burns et al., 2012) and reproduce earlier and at smaller sizes than non-invasive 

species (Rejmanek and Richardson, 1996; Kolar and Lodge, 2001).  Identifying patterns of 

resource allocation within invasive populations can target those individuals that are exceptional 

in producing propagules, and ultimately help reduce propagule pressure in an invaded ecosystem. 

This study investigates sex allocation of the invasive tree, Triadica sebifera (L.) Small 

(Euphorbiaceae), commonly known as Chinese tallow, which is primarily insect-pollinated 

(Siemann and Rogers, 2003), protogynous (Bruce et al., 1997), and monoecious.  Like many 

invasive species, Chinese tallow reproduces at an early age and has prolific seed production.  

Trees may begin reproduction in three years (Scheld et al., 1984) and produce more than 100,000 

seeds annually, all of which may be viable (Huang et al., 2012; Renne, 2000). 

Chinese tallow was introduced to Georgia and South Carolina in the late 18th century as 

an ornamental and for cultivation due to the high vegetable oil content of the seeds (Chen et al., 

2013).  In the early 20th century there was a second introduction of Chinese tallow to Louisiana, 

Texas, and Florida, initiated by the USDA for the soap making industry (Siemann and Rogers, 
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2001), after which time it escaped from cultivation and invaded native forests of the southeastern 

United States (Siemann and Rogers, 2001; Chen et al., 2013).  Negative impacts of this tree in its 

introduced range are well documented (Cameron and Spencer, 1989; DeWalt et al., 2011; Meyer, 

2011; Siemann and Rogers, 2001, 2003a, and 2003b).  Chinese tallow may reach a height of 15 

m within 10 years (Godfrey, 1988) and forms dense monospecific stands that effectively exclude 

native flora (Siemann and Rogers, 2003a).  Chinese tallow has relatively low rates of herbivory 

compared to native species (Siemann and Rogers, 2003b), and it alters soil nutrient dynamics 

through rapid leaf decomposition (Cameron and Spencer, 1989).  Additionally, it has a high 

tolerance for drought, flooding, and salinity (DeWalt et al., 2011), giving it a competitive 

advantage over many native species after a disturbance event (Henkel et al., 2016; Howard, 

2012; Meyer, 2011). 

To understand the impact of an invasive species on biodiversity and devise effective 

eradication methods, we must first understand the fundamental aspects of reproduction and 

growth patterns of the study organism.  Negative impacts caused by invasive species like 

Chinese tallow present significant ecological and economic challenges world-wide (Simberloff, 

1996).  Control efforts applied to invasive species cost the United States billions of dollars 

(Pimentel et al., 2005; Zhang et al., 2013), and the detrimental effects of invasive species on 

ecosystem services require improved management strategies that provide adequate control 

measures across all life stages.  The success of Chinese tallow as an invader appears to be 

directly related to its high seed production (Siemann and Rogers, 2003b).  Understanding these 

factors that influence investment in reproduction can provide insights into potential control 

strategies.   
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 In this study, I examined size-dependent patterns of reproductive investment in Chinese 

tallow in its introduced range in the southeastern United States.  Although Chinese tallow can 

produce seeds at an early age, I hypothesized that smaller trees would be more energy limited 

than large trees, and would invest significantly more in male than in female reproductive 

structures compared to larger trees.  Trade-offs of sex allocation in plants may be identified using 

the mass of reproductive structures, since mass is a quantifiable measurement of reproductive 

investment that may be altered based on available resources (Sandmeier and Dajoz, 1997).  I 

predicted that the total mass of male flowers would exceed that of seeds in small trees, and that 

investment in seeds relative to catkins would increase with increasing diameter at breast height 

(DBH).  To test this, I measured the total mass of seeds and male catkins of varying sized trees 

and asked if sex-specific reproductive investment was related to tree size. 
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Methods 

 

Study sites 

 Three sites in southeastern Louisiana (Fig. 1) with mature Chinese tallow populations 

were chosen for this study.  Sites appeared to vary in species composition, and flooding occurred 

at one location during the study, in which the inundation of water lasted several months. 

 

 

Figure 1: Aerial view of study sites in southeast Louisiana. 

 (Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 

swisstopo, and the GIS User Community) 

 

The first sampling site was a 5-hectare plot of unmanaged forest in poorly drained soil 

located in Kenner, Louisiana (Fig. 2).  This area was inundated after Hurricane Katrina in 2005 

and likely lost a number of salt intolerant native species.  It has since become dominated by 

Chinese tallow with only a few Quercus individuals.  The understory lacked species diversity as 

Lake Ponchartrain 

 Boutte 

Kenner 

  Belle 

Chasse 
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well, containing mostly Rubus fruticosus and Juncus effusus.  The soil is categorized as Kenner 

muck, drained, which is herbaceous organic material over fluid clayey alluvium (USDA Web 

Soil Survey, 2016).  The site is at sea level with a depth to the water table of approximately 0.3 

to 1.2 m (USDA Web Soil Survey, 2016).   

 

 

Figure 2: Aerial view of Kenner, Louisiana study site. 

(Source: USDA Natural Resources Conservation Service, Web Soil Survey, National Cooperative Soil Survey) 

 

The Woodlands Conservancy in Belle Chasse, Louisiana was the second sampling site in 

this study (Fig. 3).  The research area was located within 104 hectares at an elevation of -6 to 0 m 

(USDA Web Soil Survey, 2016).  This is a species-rich location with native canopy trees such as 

Quercus virginiana, Acer rubrum, Magnolia grandiflora, and Taxodium distichum, and an 

understory containing several species of Rubus, Toxicodendron, Iris, and Sabal.  The soil at the 

Woodlands Conservancy is Westwego clay, 0 to 0.5 percent slopes, which is a semifluid clayey 

alluvium over herbaceous organic material (USDA Web Soil Survey, 2016).  The depth to the 

water table is approximately 0.5 to 0.7 m (USDA Web Soil Survey, 2016).  
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Figure 3: Aerial view of the Woodlands Conservancy study site in Belle Chasse, Louisiana.  

(Source: USDA Natural Resources Conservation Service, Web Soil Survey, National Cooperative Soil Survey) 

 

The third sampling site was located in Boutte, Louisiana on 66 hectares of private 

property adjacent to prime farmland (Fig. 4).  This area is 1 to 4 m above sea level with soil 

composed of Cancienne silty clay loam, frequently flooded (USDA Web Soil Survey, 2016).  

The depth to the water table is approximately 0.5 to 1.2 m (USDA Web Soil Survey, 2016).  This 

study site is relatively undisturbed and species rich in flora and fauna.  The overstory is 

composed of several species of Quercus, Acer, Taxodium, Platanus, and Liquidambar.  The 

understory contains species of Typha, Cirsium, Rubus, Toxicodendron, Sabal, and numerous 

Pteridophytes.   
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Figure 4: Aerial view of Boutte, Louisiana study site. 

(Source: USDA Natural Resources Conservation Service, Web Soil Survey, National Cooperative Soil Survey) 

 

Construction and placement of seed and catkin traps 

 Seed and male catkin traps were constructed from 2.54 cm PVC pipe and mesh window 

screen (Fig. 5).  A 50.8 cm x 50.8 cm PVC square was wrapped with mesh and placed atop 76.2 

cm tall PVC legs.  Traps were placed with restricted random measures based on the size and 

direction of the canopy, with one or two traps per tree placed randomly within the canopy cover.   

 

 

Figure 5: Seed/catkin collection traps. 
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Data collection 

 Twelve Chinese tallow trees of varying size classes that bore evidence of previous seed 

production were selected within each field study site.  Each tree was tagged and the GPS 

coordinates were logged.  Measurements of tree height, diameter at breast height (DBH), crown 

spread, and trap-to-trunk distance were recorded for the 36 trees.  The elliptical area of each tree 

canopy was calculated from the crown spread.   

The apetalous female flowers of Chinese tallow contain a three-lobed ovary and three 

styles, producing capsular fruits which split open to release three wax-coated seeds.   Fruits 

generally ripen from September through October but may remain on a tree through early spring.  

Immature green capsules were identified on selected study trees in September 2015.  Seeds and 

capsules were collected weekly at all sites from November 2015 through July 2016.   

Inflorescences are spicate with reduced pistillate flowers located at the base, leading to 

numerous clusters of staminate flowers, or male catkins.  Flowers typically mature beginning in 

April and terminate by July, thus catkins were collected during those months in 2016.  Of the 36 

tagged Chinese tallow study trees, five were lost at the Kenner site after the commencement of 

seed collection, three due to unintentional felling and two due to possible death from brackish 

water intrusion.  Consequently, male catkins were collected from the 31 remaining trees across 

all three study sites.  After both seed and catkin collection was completed, one tree was felled at 

the Belle Chasse site which allowed measurement of overstory density from 30 trees with a 

spherical densitometer.         

  For each tree, seed fall/m² and catkin fall/m² were calculated using the total of samples 

collected per tree divided by trap area.  The number of seeds and catkins produced by each tree 

was calculated from seed fall/m2 and catkin fall/m2 multiplied by the crown area (m²) for each 
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tree.  Estimates of total seed mass per tree were obtained using the mean mass of 10 seeds 

randomly selected per tree, multiplied by the estimated total number of seeds.  Estimates of total 

catkin mass per tree were obtained by calculating the mean mass of a random sample of 16 

catkins collected from each tree, multiplied by the estimated total number of catkins produced.  

Since catkin mass varied with length, I used the relationship between catkin length and mass to 

calculate a mean mass for the 16 catkins from each tree.  A random sample of 101 mature male 

catkins were cut from trees from the three study sites to obtain the relationship between catkin 

length and dry mass.  Catkins were dried overnight at 100 degrees C and placed in a Secador 

Desiccator for 90 minutes where they were allowed to come to room temperature, after which 

dry length and mass were recorded for each catkin.    

  

Data analysis 

 All statistical analyses were performed using SYSTAT v 13 (SYSTAT Software Inc., 

Richmond, CA).  Exploratory analyses using ordinary least squares regressions were conducted 

to determine which allometric parameters provided the best fitted model to explain seed and 

male catkin variables using independent variables of DBH, tree height, and overstory density.  

One tree at the Belle Chasse study site was identified as an outlier for all regressions and was 

removed from all analyses.  I used ANCOVA to determine how seed and catkin production 

varied with tree size across sites, followed by regression to derive equations for the relationships 

among reproductive parameters and tree characteristics.  The relationship between seed mass and 

catkin mass was explored using Pearson product-moment correlation. 
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Results 

 

Predictors of seed and catkin mass 

 Regression analysis showed that DBH was a significant predictor of seed mass (r2 = 0.58; 

P < 0.001) and catkin mass (r2 = 0.281; P = 0.003) (Table 1).  Tree height also showed a 

significant relationship with seed mass (r2 = 0.136; P = 0.029), but this relationship was much 

weaker than that between seed mass and DBH.  The relationship between catkin mass and tree 

height was not significant (r2 = 0.008; P = 0.639).  Overstory density was not a significant 

predictor of either seed mass or catkin mass (Table 1).  Multiple regression using both DBH and 

height did not significantly improve predictive power for seed mass (DBH regression r2 = 0.58, 

multiple regression r2 = 0.59), therefore I used DBH as the sole predictor of reproductive 

investment in all subsequent analyses. 

 

Table 1:  Predictor variables for seed and catkin mass. 

Measurement Seed Mass (r2) Catkin Mass (r2) 

DBH 0.580 (P < 0.001) 0.281 (P = 0.003) 

Height 0.136 (P = 0.029) 0.008 (P = 0.639) 

Overstory Density 0.006 (P = 0.687) 0.005 (P = 0.700) 

 

  

Female reproductive investment and tree size 

 Seed mass was significantly related to DBH across all sites (F1,29 = 44.82, P < 0.001).  

The three sites did not differ significantly in seed production (site effect:  F2,29 = 0.30, P = 

0.745), and there was no significant interaction between the site and DBH effects (F2,29 = 0.496, 
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P = 0.614).  The regression of seed mass on DBH was given by Mass = 0.295 (DBH) – 3.32 

(Fig. 6). 

 

Figure 6:  Relationship between seed mass and DBH in Triadica sebifera (N = 35).   

Mass = 0.295 (DBH) – 3.32 (r2 = 0.58; P < 0.001). 

 

Catkin mass estimation 

 I found a significant relationship between catkin dry mass and length (F1,95 = 152.78, P < 

0.001).  Catkin dry mass was unrelated to site (F2,95 = 1.56, P = 0.215) but there was a significant 

interaction between site and length (F2,95 = 7.41, P < 0.001).  The regression for catkins collected 

at the Kenner site differed significantly from those collected at the Belle Chasse and Boutte sites 

(Tukey’s HSD test, Kenner vs. Belle Chasse: P = 0.001; Kenner vs. Boutte: P < 0.001), but Belle 

Chasse and Boutte did not differ significantly (P = 0.74) (Fig. 7).  Based on these results, I 

combined catkins collected at the Belle Chasse and Boutte study sites into a single regression 

and calculated a separate regression for the Kenner site. 

 The regression for Belle Chasse and Boutte was given by Mass = 0.042 (length) - 0.076 

(r2 = 0.742; P < 0.001), which was then used to estimate catkin mass for each tree within these 
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study sites.  For the Kenner site, I used the relationship Mass = 0.069 (length) – 0.177 (r2 = 

0.720; P < 0.001) to estimate catkin mass for each tree. 

   

 

Figure 7: Relationship between catkin mass and length in Triadica sebifera at three sites (N = 101). 

 

Male reproductive investment and tree size 

 Catkin dry mass was significantly related to DBH across all study sites (F1,24 = 25.05, P < 

0.001).  Catkin dry mass did not differ significantly across sites (F2,24 = 0.95, P = 0.40), and the 

interaction between site and DBH was also not significant (F2,24 = 3.05, P = 0.66).  The 

regression for catkin mass was given by Mass = 0.216 (DBH) – 1.72 (Fig. 8).   
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Figure 8: Relationship between catkin dry mass and DBH in Triadica sebifera (N = 30). 

Mass = 0.216 (DBH) – 1.72 (r2 = 0.28; P = 0.003).  

 

Reproductive investment and tree size 

 Catkin mass and seed mass produced by individual trees were significantly and positively 

correlated (Pearson Product-Moment Correlation; r = 0.679, Chi-square = 16.9; df = 1; P < 

0.001) (Fig. 9).  As a result, total reproductive investment (seed mass + catkin mass) was also 

significantly related to DBH (Least-Squares regression; r2 = 0.48; t = 5.13; P < 0.001) (Fig. 10).  

I investigated the relationship between seed mass:catkin dry mass ratio and DBH to determine 

whether smaller trees invested more in male than female reproductive structures.  I also asked 

whether seed mass:catkin mass ratio was related to total reproductive investment.  The regression 

of seed mass:catkin mass ratio on DBH was not statistically significant (F1,28 = 2.95; P = 0.097).  

The regression of seed mass:catkin dry mass and total reproductive investment across all study 

sites was also insignificant (r2 = 0.023; P = 0.425).   

Individual trees of similar size showed substantial variation in seed mass:catkin mass 

ratio as well as total reproductive investment within study sites.  For example, trees with a DBH 
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between 20 – 24.99 cm varied in seed mass:catkin mass ratio from 0.21 – 5.56 (Table 2).  Within 

the same size class, individual trees varied in total investment from 0.83 – 11.95.  

  

 

Figure 9: Scatterplot of catkin dry mass and seed mass in Triadica sebifera. 

 

 

Figure 10:  Relationship between total reproductive investment and DBH.  Mass = 0.52 (DBH) – 5.25. 
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Table 2:  Mean values of estimated reproductive characteristics among Triadica sebifera size classes and estimated 

range of values among individual trees. 

 
DBH (cm)  N  Mean ± SD  Range 

       

< 15        

       Total seed mass (kg)   9  0.70 ± 0.42  0.21 – 1.49 

       Total catkin dry mass (kg)   6  1.01 ± 1.04  0.33 – 2.89 

       Seed mass:catkin dry mass  6  1.01 ± 0.48  0.51 – 1.89 

       Total investment (kg)           6  1.78 ± 1.48  0.64 – 4.37 

       

15 – 19.99       

       Total seed mass (kg)         12  1.53 ± 1.56  0.12 – 4.80 

       Total catkin dry mass (kg)    11  2.06 ± 1.60  0.22 – 4.88 

       Seed mass:catkin dry mass      11  0.80 ± 0.45  0.21 – 1.95 

       Total investment (kg)           11  3.71 ± 3.13  0.34 – 9.68 

       

20 – 24.99       

       Total seed mass (kg)  11  3.02 ± 1.77  0.14 – 5.16 

       Total catkin dry mass (kg)  10  3.09 ± 2.47  0.69 – 7.78 

       Seed mass:catkin dry mass  10  1.33 ± 1.58  0.21 – 5.56 

       Total investment (kg)  10  5.91 ± 3.59  0.83 – 11.95 

       

>25        

       Total seed mass (kg)      3  6.02 ± 2.42  3.31 – 7.97 

       Total catkin dry mass (kg)  3  4.59 ± 2.29  2.80 – 7.17 

       Seed mass:catkin dry mass   3  1.55 ± 1.12  0.87 – 2.84 

       Total investment (kg)    3  10.61 ± 3.43  7.10 – 13.95 
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Discussion 

 

Sex ratios and total investment 

 I found no evidence that allocation to male vs. female reproductive function varied with 

size or reproductive effort in my study of Chinese tallow.  In woody perennial plants, resources 

allocated to growth at early stages of development determine thresholds that may maximize 

future reproduction (Thomas, 2011). Since age at first reproduction for Chinese tallow is early 

compared to other woody species, I expected to find evidence of a sex-allocation trade-off with 

tree size, with larger trees investing more in female function (Charnov, 1982).  Although studies 

of other species have shown that sex allocation varies with plant size (Freeman et al., 1976; 

Solbrig, 1981; McKone, 1990; Obeso, 2002), my results suggest that sex allocation in Chinese 

tallow may instead be regulated by environmental or genetic factors.  Since growth and 

reproduction are strongly influenced by available resources, it is possible that spatial or temporal 

variation in light, soil nutrients and water availability may account for the differences in 

reproductive investment I observed among individual trees.   

My results showed no support for light limitation as an explanation for differential 

investment in male vs. female function, but evidence from other studies suggests a potential role 

for nutrient and moisture availability.  For example, a study by Knops and Koenig (2012) found 

that variation in aboveground annual net productivity among individual trees of three California 

oak species was correlated with water availability and soil fertility, indicating an adaptive plastic 

response to abiotic variation, rather than a life history trade-off, was responsible for a negative 

correlation between male and female function.  Although data on reproductive responses to 

nutrient availability are lacking, Chinese tallow seedlings from invasive origins have been shown 
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to be P limited (Zhang et al., 2013) and exhibited significantly higher vegetative growth rates in 

response to increased levels of inorganic N compared to native seedlings (Zou et al., 2006).   

Additionally, inter- and intraspecific competition may exacerbate variation in resource 

availability, ultimately affecting growth and reproductive effort of Chinese tallow.  In a study of 

co-occurring native and invasive irises (Mopper et al., 2016), interspecific competition had no 

effect on the invasive I. pseudacorus, but a significant reduction of biomass was found in the 

native I. hexagona.  A study by Gabler and Siemann (2013) showed the length of time Chinese 

tallow experienced favorable moisture conditions before exposure to water-related stress and 

competition impacted final size, biomass, and abundance, but fertilization had weak effects.  The 

spatiotemporal availability of resources may affect patterns of reproduction in Chinese tallow, 

but long-term studies of individual trees will be needed to identify sources of variation among 

similar-sized trees. 

 

Size-dependent patterns of male and female reproduction 

 While both seed mass and catkin mass were related to DBH, the relationship between 

seed mass and DBH was stronger than that of catkin mass and DBH.  I speculate that Chinese 

tallow may prioritize seed production over catkin production, which may explain the tendency of 

small trees to produce seeds and to contribute to its success as an invader.  It is possible that the 

trees in this study may exhibit a proportional investment for female reproductive output and 

increased growth mediated by available resources within the study sites.  For example, a study of 

holm oaks revealed that nutrient addition increased shoot growth and male flower production but 

had no effect on the quantity of female flowers, suggesting that surplus nutrients may lead to 

differential allocation to less costly male function (Pulido et al., 2014).  Further investigation 
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would be required to establish how soil nutrients affect growth relative to male and female 

investment in Chinese tallow. 

 

Reproduction and invasion success 

 The ability of Chinese tallow to reproduce early and often under variable conditions is 

integral to its successful establishment.  In this study, the variation in the seed mass:catkin mass 

ratio was similar across size classes, indicating that early reproduction is not primarily focused 

on less costly male structures as would be expected from predictions of life history theory.  

Smaller trees do produce viable seeds which contribute greatly to the ability of this species to 

establish and spread in its introduced range.  The substantial amount of female investment from 

the first age of reproduction, coupled with an early onset of reproduction, may be a crucial 

difference between this invasive species and native plants in its invaded range.  Although the 

factors governing patterns of reproductive investment in Chinese tallow are still unclear, I expect 

that studies of environmental influences on reproductive allocation patterns will reveal the 

mechanisms underlying its success as an invader.  

        

Conclusion and future implications 

 The sources of variation in reproductive investment of Chinese tallow do not appear to 

arise directly from life history trade-offs.  Future research should focus on small-scale spatial and 

temporal variation of major resources, including water and soil nutrients, to reveal the reasons 

for differences in reproductive effort among individuals within populations.  Establishing 

relationships between growth, fecundity, and survival would benefit management strategies for 

effective control of this noxious plant. 
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