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Abstract 

Chapter 1 presents the basic principles of Controlled Thermonuclear Fusion, and 

the approaches to achieve nuclear fusion on Earth. Furthermore, the basic components 

of the Tokamak, the reactor which will house the fusion reaction, are analyzed. Finally, 

the chapter ends with a discussion on how the present thesis is related to the Controlled 

Thermonuclear Fusion. Chapter 2 introduces briefly the basic concepts of the 

Electromagnetic and Magnetohydrodynamic theories as well as MHD turbulence. 

Chapter 3 presents a first glance in OpenFOAM CFD library. Chapter 4 introduces the 

Orszag-Tang vortex flow, which is a benchmark test case for MHD numerical models. 

Also, the results obtained by the model developed in this thesis are presented and 

discussed. Chapter 5 describes an analytical solution method for the MHD natural 

convection in an internally heated horizontal shallow cavity. Also, a finite volume 

numerical model is presented for solving the aforementioned problem and properly 

validated. The results of the numerical model are compared with the analytical solutions 

for a range of Rayleigh and Hartmann numbers. Finally, conclusions based on this work 

are drawn and recommendations for future work are made.
 
 
 
 
 
 
 
 
 
KEYWORDS:
 
magnetohydrodynamics,  mathematics applied energy, fusion, 
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CHAPTER�1:�CONTROLLED�THERMONUCLEAR�FUSION�

In this chapter, the basic principles of fusion physics are presented since this 

master thesis deals mainly with the simulation of flows and heat transfer in the blankets 

of tokamaks. 

It is widely known that the world economy runs on fossil fuel. It heats our 

houses, it moves our cars and produces electricity. However, the world resources of oil, 

coal and gas are diminishing. If no action is taken, an energy crisis is imminent in the 

next couple of centuries, maybe decades. Apart from the inevitable fact that we will run 

out of fuel, the burning coal, oil and gas also has an impact on the environment. The 

signs of global warming due to carbon dioxide and the accompanying climate change 

become increasingly more alarming. 

Nevertheless, mankind will not give up the present standard of living, so the 

energy consumption is not expected to be reduced, it will rather be increased. Sources of 

energy, other than fossils, are therefore needed. Those that are presently available, 

however, are of very low energy density (solar, wind and bio-energy) or produce long 

term radioactive waste (nuclear fission). Thermonuclear fusion holds the promise of an 

abundant supply of energy, without affecting the climate and with minimal short-term 

radioactive waste.  

1.1 What is Fusion? 

Nuclear fusion is the reaction in which two or more nuclei combine together in 

order to form a new element with higher atomic number (more protons in the nucleus). 

The energy released in fusion is related to E=mc
2

(Einstein�s famous energy-mass 

equation). On Earth, the most likely fusion reaction is Deuterium�Tritium reaction. 

Deuterium and Tritium are both isotopes of Hydrogen. 

D + T ! He +n + 17.6 Mev        (1.1) 

In this reaction two Hydrogen isotopes, Deuterium and Tritium, fuse resulting in 

a Helium nucleus and a neutron. The produced energy is divided over the fusion 

products: the neutron receives kinetic energy of 14.1 MeV, the helium nucleus (also 

called á-particle) has energy of 3.5 MeV. Deuterium is largely available in the oceans of 

the Earth. Tritium is not freely available, but can be produced by a nuclear reaction of 

Lithium � also widely available � and an energetic neutron. The �waste� of this fusion 

reaction is Helium: a non-toxic, non-radioactive gas.  
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1.1.1 Fusion on the Earth 

In order to achieve fusion on the Earth, we must take into account some serious 

matters. First of all, the nuclei of Deuterium and Tritium do not fuse spontaneously. 

Since they both have a positive charge, the repelling Coulomb force prevents their

fusion. A sufficiently high kinetic energy of the nuclei is needed to overcome the 

Coulomb force, see Fig. 1.1. This high kinetic energy is achieved in a gas with 

temperature T of about 100 million degrees centigrade. At this level of temperature 

gases are ionized. We do no longer call them gas, but �plasma�. It is common to express 

temperatures in a plasma with eV, where 1 eV = 12000
o
C.  

Fig. 1.1 A sufficiently high kinetic energy of the nuclei is needed to overcome the Coulomb force

Unfortunately, a high temperature is not all that is needed to achieve the fusion 

of nuclei. In order to have enough collisions between the highly energetic nuclei, the 

density n of the particles must be also high enough. A third important parameter is the 

energy loss. If fusion plasma loses its energy to the outside world faster than it can gain 

energy from fusion reactions and/or from external heating, then the process will die out. 

The rate at which plasma loses its energy is given by 1/�E, where �E is the energy 

confinement time. A fusion reaction will be self-sustained if the product of the above 

three parameters � temperature T, density n and confinement time ôE is sufficiently 

high. For the Deuterium � Tritium fusion reaction the following relationship has been 

proposed: 

n T �E > 5 × 10
21

keVs/m
3                                                                    

(1.2) 
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The above inequality is the so-called Lawson criterion. The triple product nTôÅ

is a figure-of-merit for a fusion reactor: the higher it is the better.  

1.2 Approaches to Fusion 

It has been already been mentioned that in order to have a fusion reaction, the 

charged particles involved must have very large energies and velocities. This leads to 

the fact that these particles cannot be contained in an ordinary vessel but for a very 

small amount of time. There are two different lines of research that deal with this 

problem.  

One is based on the rapid compression and heating of a solid fuel pellet through 

the use of laser or particle beams. In this approach one tries to obtain a sufficient 

amount of fusion reactions before the material flies apart, hence the name, inertial 

confinement fusion (ICF).  

The other approach, known as magnetic confinement, uses a magnetic field to 

confine the plasma (see for example Peeters (2008)). Some commonly studied 

configurations for magnetic confinement are the magnetic mirror, the z-pinch, the 

stellarator, and the Tokamak.  

1.2.1 Magnetic Mirror 

The magnetic mirror was one of the first con nement!devices envisioned. Fig. 

1.2 shows!the!magnetic! eld!geometry!of!a!basic!magnetic!mirror.!The!main!idea!is!that!

the!magnetic! eld! is!weak!at!the!center!and!strong!at!either!end.!If! the!electric! eld! is!

zero, then the kinetic energy of the plasma particles is conserved since the magnetic 

 eld does no work. Thus, as the particle moves into a region of stronger magnetic  eld, 

the parallel velocity decreases as the perpendicular velocity accounts for more of the 

particle kinetic energy. In the transition region from the weaker to stronger magnetic 

 eld,!the!magnetic! eld!acquires a!radial!component.!This!radial!component!of!the! eld!

interacts with the perpendicular velocity of the particle and produces a force that directs 

the particle back into the region! of! low!  eld! strength.! Since! the!  eld! is! �pinched�! at!

both! ends,! the! particle! will! bounce! between! the! regions! of! increasing!  eld! strength,!

hence!the!name!�magnetic!mirror�.!

 

3



Fig. 1.2 Magnetic mirror plasma confinement configuration (Pasko (2009)) 

1.2.2 Z-Pinch 

This configuration relies on the interaction of a current�carrying plasma with the 

magnetic!  eld! it! creates. Firstly,! there! is! a! current! "ow! through! the plasma from the 

cathode to the anode. The Lorentz force accelerates the plasma along the z-axis and 

compresses it onto the z-axis in B and C. Because of the acceleration experienced, the 

plasma has a large particle velocity in addition to current. This creates a more stable z-

pinch!in!D!than!one!without!particle!"ow.!

Fig. 1.3 Z-Pinch configuration (Pasko (2009)) 

1.2.3 Stellarator 

A stellarator is another promising plasma confinement con guration.! It! uses!

toroidal!  eld! magnets! that! are! twisted! to! create! the! necessary! poloidal!  eld! without!

needing plasma current. Fig. 1.4 shows an example of the complex magnet coil 

structure! and! the! twisting! of! the! toroidal!  eld.! The! rotational! transform! angle! å is, 

therefore, provided! by! the! externally! applied!  elds. Today, an advanced stellarator 
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(Wendelstein 7-X) is under construction in Greifswald, Germany in the framework of 

the European Fusion program. Its magnetic coils are engineering masterpieces, twisted 

intricately to create the required magnetic field. They are superconducting devices in 

order to achieve strong magnetic fields that are required to confine the plasma. 

Fig. 1.4 Stellarator configuration (Pasko (2009)) 

1.2.4 Tokamak 

The Tokamak is! the!most!widely! studied!magnetic! con nement! con guration.

For! toroidal! plasma! con nement,! both! poloidal! (Bè) and toroidal (Bö) fields are 

necessary.!The!Tokamak! is! a! toroidal! con guration!with! a!poloidal!  eld! provided! by!

external coils and the plasma current. Fig. 1.5 shows the basic principles of magnetic 

confinement in a tokamak. 

Fig. 1.5 Tokamak configuration (Pasko (2009)) 

The movement of a charged particle parallel to the magnetic field is not 

restricted. Therefore, in order to confine plasma effectively, the field lines should close 

in themselves and, hence, they form a toroidal geometry. However, just a torus shaped 
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vacuum vessel with a toroidal magnetic field is insufficient to confine the plasma. The 

curvature of the magnetic field causes electrons and ions to drift to the bottom and top 

of the torus, respectively, resulting in an electric field. This electric field in its turn leads 

to an outward drift of all particles and, thus, to a loss of confinement. To neutralize this 

electric field, particles that drifted to the top of the machine should be brought to the 

bottom and vice versa. This can be achieved by adding a poloidal component to the 

magnetic field. In a tokamak configuration the poloidal magnetic field is generated by 

toroidal plasma current. This plasma current is induced by a transformer, using the 

plasma as the secondary winding. On top of these poloidal and toroidal field 

components radial and vertical components are added to the magnetic field by external 

positioning and shaping coils.  

1.2.5 Basic components of the �okamak 

Vacuum vessel: The plasma is contained in a vacuum vessel, Fig. 1.6, with 

vacuum maintained by external pumps. The plasma is created by introducing a small 

amount of gas, which is then heated by driving a current through it.  

Fig. 1.6 Vacuum vessel (Diagnostics ITER (2010)) 

Magnets: The hot plasma is contained by magnetic fields, Fig. 1.7, which keep it 

away from the machine walls. The combination of two sets of magnetic coils � known 

as toroidal and poloidal field coils � creates a field in both vertical and horizontal 

directions, acting as a magnetic �cage' to hold and shape the plasma. 
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(a) (b) (c)

Fig. 1.7 Magnet systems: a) toroidal field, b) poloidal field, c) central solenoid (Diagnostics ITER (2010)) 

Blanket: A blanket, Fig. 1.8, is placed around the fusion plasma (for a review on 

blanket designs see Ihli et al. (2008)) in the vacuum vessel, surrounding the fusion 

plasma like a blanket. Within the blanket, the fusion-produced neutrons are slowed 

down, heat is transferred to a primary coolant, and Tritium is bred from Lithium.  

Fig. 1.8 Blanket (Diagnostics ITER (2010)) 

Divertor: The divertor, Fig. 1.9, reduces the impurities in the plasma, removes 

alpha particle power and Helium ash.  

Fig. 1.9 Divertor (Diagnostics ITER (2010)) 

Cryostat: The cryostat, Fig. 1.10, is a single wall cylindrical vessel. It provides 

the vacuum environment to thermally insulate the superconducting magnets and cold 

structures. 
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Fig. 1.10 Cryostat (Diagnostics ITER (2010)) 

Diagnostics: About fifty (50) individual measuring systems drawn from the full 

range of modern plasma diagnostic techniques, Fig. 1.11, will be installed on the ITER 

machine to provide the measurements necessary to control, to evaluate and optimize the 

plasma performance in ITER and to extend the understanding of plasma physics. 

Fig. 1.11 Diagnostics (Diagnostics ITER (2010)) 

1.3 Plasma Heating 

In order to create plasma for fusion, heating of the fuels to 100-200 million 

degrees Celsius is required. In the case of JET, this entails putting tens of millions of 

watts of power � equivalent to about 10,000 fan heaters � into a mere couple of grams 

of fuel. Analytically, the external heating systems which are currently used and will be 

applied to ITER are the following ones: 

1.3.1 Ohmic Heating or Current Drive 

The coils around the central pole of the torus act as the primary coil for a huge 

transformer. The plasma itself is the secondary loop and, thus, it has a large current 

induced in it. This plasma current produces heat, just as a wire warms up when an 

electric current flows through it. Tokamaks largely rely on plasma current not only for 
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heating, but also for the poloidal magnetic field. At JET, approximately 1 MW of power 

is supplied by ohmic heating, which creates plasma currents of up to 5x10
6
 Amperes. 

1.3.2 Neutral Beam Heating  

High energy particle beams, injected into the plasma, transfer their energy as 

they collide with the plasma ions, Fig. 1.12a. A particle beam is generated by 

accelerating ions with high voltage. Since the charged particles cannot penetrate the 

magnetic field around the plasma, they are turned into neutral atoms just before 

injection. At JET, about 35 MW of energy (equivalent to 200 Porsche 944 turbos) can 

be provided by this system. 

(a) (b)

Fig. 1.12 (a) Neutral beam heating and (b) radio-frequency heating (Diagnostics ITER (2010)) 

1.3.3 Radio-Frequency Heating 

The moving plasma particles spiral along the magnetic field lines with 

frequencies, typically in the radio-frequency (RF) region of the electromagnetic 

spectrum. Hence, if one can inject radio waves into the plasma at exactly the right 

frequency, they will resonate with this rotation, and transfer their energy to the plasma 

particles, Fig. 1.12b. The plasma particles have different resonance frequencies, 

depending on their mass and charge and the magnetic field strength at their location. 

Therefore, the heating can be applied selectively to a predefined group of particles in a 

selected location in the plasma, by injecting radiation at just the right frequency. This is 

known as Ion-Cyclotron Resonance Heating (ICRH). JET has a number of ICRH 

antennae in the vessel wall, which can su plp y up to 20 MW of power when combined. 

1.3.4 Lower Hybrid Current Drive 

A second RF heating method is called Lower Hybrid Current Drive (LHCD). 

This involves sending microwaves around the vessel at just the right frequencies that 

�push� electrons travelling in one particular speed and direction. This effect is used to 
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add to the plasma current. In JET, the LHCD system generates 10 MW, creating plasma 

currents of up to 3x10
6
 Amperes. 

1.4 The Case of Fusion 

A secure and sustainable energy is required in order to maintain our standard of 

living. Researchers from all over the world are developing a range of environmentally 

acceptable energy technologies; nuclear fusion being the most promising of them. Our 

Sun has shown to us a �new and clear� energy that must be deeply investigated. In the 

long term, fusion will provide an option for a large-scale energy that has a low impact 

on the environment, is safe and with vast and widely distributed fuel resources.  

The knowledge that will be gained, as far as the physics of plasmas is 

concerned, will be beneficial to a wide variety of engineering applications such as high 

efficiency lighting, manufacturing of semiconductors for home computers, TVs and 

electronics, flat-panel displays and surface treatment of synthetic cloth for dye adhesion. 

In particular, plasma is used for surface cleaning, processing of plastics, gas treatment, 

spraying of materials, microwave generated plasma around a catalyst for removal of 

NOx and CO from engine exhausts, sterilization of medical tools and spacecrafts 

(NASA tests of electrostatic ion thruster in large vacuum chamber). Fig. 1.13 illustrates 

two examples of technological applications of plasma.  

(a) (b)

Fig. 1.13 (a) High efficiency plasma lighting and (b) robotically controlled plasma spraying of high-

temperature shielding tiles (Miyamoto (2004)) 

Furthermore, the research on the materials needed to withstand such high 

temperatures will be useful in several industrial applications. The vacuum technology 

will also take advantage from the studies related to rarefied gases which are 

implemented in the Tokamak vacuum vessel. Moreover, crystal growth techniques and 

geophysical applications which include magnetohydrodynamic phenomena will profit 
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from the studies which deal with convection generated by internal heat or by 

temperature differences of the walls surrounding the electrical conductive fluids.  

In conclusion, understanding the physics of the fourth state of mater (i.e. 

plasma) will help to comprehend matters that are related to Tokamak such as magnetic 

islands and resistive instabilities. This knowledge will lead to the understanding of 

space phenomena such as solar flares, the continual steaming of plasma from the Sun 

surface, known as solar wind and MHD waves. Finally, the use of plasmas as sources 

for energy-efficient lighting and their role in surface engineering through high speed 

deposition and etching may seem simple by comparison with fusion and space science.

However, these and other commercial applications have laid firm foundations for new 

plasma technologies.

Regardless of the success or not of the International Thermonuclear 

Experimental Reactor (ITER) which is being built in Cadarache of France, a promising 

message is the awareness of the huge ecological damage that has been done to our 

planet. In order to resolve the current environmental issues, cooperation is needed in 

both scientific and administrative level.  
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1.5 Fusion versus Fission 

Nuclear fusion and nuclear fission are two different types of energy releasing 

reactions in which energy is produced from high-powered atomic bonds between the 

particles within the nucleus. The main difference between these two processes is that 

fission is the splitting of an atom into two or more smaller ones while fusion is the 

fusing of two or more smaller atoms into a larger one. A comparison between fusion 

and fission is presented in Table 1.1. 

Table. 1.1 Comparison chart between nuclear fusion and nuclear fission 

Nuclear Fission Nuclear Fusion

Definition: Fission is the splitting of a large atom 

into two or more smaller ones.

Fusion is the fusing of two or more lighter 

atoms into a larger one.

Conditions: Critical mass of the substance and high-

speed neutrons are required.

High density, high temperature environment 

is required.

Energy 

requirement:

Takes little energy to split two atoms in a 

fission reaction.

Extremely high energy required to bring two 

or more protons close enough that nuclear 

forces overcome their electrostatic repulsion.

Natural 

occurrence 

of process:

Fission reaction does not normally occur 

in nature.

Fusion occurs in stars, such as the sun.

Byproducts 

of reaction:

Fission produces many highly 

radioactive particles.

Few radioactive particles are produced by 

fusion reaction, but if a fission "trigger" is 

used, radioactive particles will result.

Energy 

Ratios:

The energy released by fission is a 

million times greater than in chemical 
reactions; but lower than by fusion.

The energy released by fusion is three to four 

times greater than the energy released by 
fission.

Nuclear 

weapon:

One class of nuclear weapon is a fission 

bomb, known as atomic or atom bomb.

One class of nuclear weapon is the hydrogen 

bomb, using fission to "trigger" fusion.

1.6 Relation of Present Work to Controlled Thermonuclear Fusion

The heat which is produced inside the plasma by the exothermal nuclear 

reactions or by Joule heating or by other mechanisms of plasma heating increases the 

temperature of the Tokamak walls. Thus, there are temperature differences between the 

interior hot walls and the colder sidewalls of the blanket which contains liquid metals. 

These temperature differences can later act as a driving force of natural convection flow 

of the liquid metal. In this way, apart from conduction, heat transfer occurs via natural 

convection mechanisms. As a consequence, the energy that can be taken away from the 

blanket in order to heat the steam cycle of an electricity generating power plant is 

increased. 

In addition, the penetration and absorption of neutrons by the fluid contained in 

the blanket is a significant problem in fusion Tokamak devices. Therefore, the choice of 

the fluid is an important issue in the fusion technology. Liquid metals are the dominant 
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fluids in order to achieve good operation fusion blankets. The free neutrons cause an 

almost uniform distribution of the internal energy of the liquid metal and consequently a 

raise of its temperature. The solution of the energy equation demonstrates a temperature 

distribution with lower values near the walls and higher values in the core region of the 

blanket. Thus, the increase of the neutrons energy causes the split of the vortices formed 

when a temperature difference exists between the two walls, into smaller vortices. 

The liquid metals surround the Tokamak core and experience electromagnetic 

forces. The usage of liquid metals as fluids for the heat removal for the Tokamak 

blanket results in interaction with these forces due to their electrical conductivity. The 

electromagnetic forces which are produced by the strong magnets of the Tokamak 

decelerate the liquid which is already weak in the case of natural convention. The 

impact of the magnetic field on the energy absorption by the blanket is a technological 

issue with great interest for many researchers in nuclear fusion science and technology.

Summarizing, the magnetic field has a significant impact on the heat transfer in 

the blankets of fusion reactors. Specifically, the fluid motion tends to be suppressed by

the electromagnetic forces produced by the magnetic coils surrounding the Tokamak. 

Thus, the heat removal is reduced and consequently the energy transfer is decreased.  
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CHAPTER�2:�MAGNETOHYDRODYNAMICS�

2.1 Introduction 

Magnetohydrodynamics or MHD deals with the flow of electrically conducting 

fluids. The most important of these fluids occurring in both nature and the laboratory 

are ionized gases, called plasmas. These have the simultaneous properties of conducting 

electricity and being electrically charge-neutral on almost all length scales. The field of 

study of these gases is called plasma physics. MHD is the simplest theory of plasma 

dynamics. Nonetheless, MHD is an indispensable tool in all applications of plasma 

physics. Even the simplest experiment will not be built unless it has first been analyzed 

using MHD. The reason is that MHD deals with fundamental force balance concepts 

that are surprisingly subtle and complex. MHD also provides the vehicle for 

understanding the basic properties of global structure of magnetized plasmas, how they 

can sustain themselves, and why they share a number of global properties. 

While MHD is the simplest mathematical model of plasma, it is difficult to 

justify as a valid description of any interesting plasma. Plasmas are made of individual 

ions and electrons (or separate ion and electron fluids) and are so hot that collisions 

between particles are relatively rare events. MHD completely ignores both of these 

issues. However, it is a fact that MHD provides a remarkably accurate description of the 

low-frequency, long-wavelength dynamics of real plasmas. 

Generally speaking, MHD describes the dynamics of a continuum fluid that is 

capable of conducting an electric current, it can be characterized by a few parameters 

such as mass density, velocity and pressure, and that its material properties are 

independent of the physical size of the sample. Thus, plasma looks exactly the same no 

matter how finely it is subdivided, and the behavior arising from its atomic structure is 

not considered. This is precisely the approach taken in hydrodynamics, which is one of 

the most complex and difficult topics in classical physics. MHD is more complex, and 

even more difficult, primarily as a result of the spatial anisotropy introduced by the 

magnetic field. 

One of the areas where MHD has been useful is in the design and analysis of 

toroidally confined plasmas, in particular the tokamak configuration. The theory of 

these toroidal plasmas is extremely well developed mathematically. It is unfortunate 

that this theory has led to deficiencies that are difficult to resolve while providing few 
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additional physical insights. One exception is the equilibrium of axially symmetric 

toroidal plasma, which provides an introduction to the necessary concepts.

2.2 Basic concepts on electromagnetic theory 

The electromagnetic fields are the electric field, E, and the magnetic flux density 

or magnetic field, B. The sources of these fields are the electric charge density, �q, and 

the electric current density, J. These quantities must satisfy Maxwell�s equations:

Faraday�s law: ¶
= -Ñ´

¶t

B
E

(2.1)

Ampere�s law:
0 2

1
m

¶
=Ñ´ -

¶c t

E
J B

(2.2)

Gauss� law:

0

r

e
Ñ× = q

E
(2.3)

No magnetic monopoles: 0Ñ× =B (2.4)

These equations are written in MKS units and this convention will be used 

throughout the text. In these units, the square of the speed of light is: 

2

0 0

1

e m
=c (2.5)

where !0 is the permittivity of free space and "0 is the permeability of free space.

The dynamics of the electromagnetic fields and the fluid are coupled through 

Ohm�s law, 

` h=E J           (2.6)

where # is the electrical resistivity, which is considered a material property of the fluid, 

and E` is the electric field as seen by a conductor moving with velocity V. According to 

the theory of relativity, this is given by 

2 2` ( ) / 1 /= + ´ -V cE E V B (2.7)

where E is the electric field in the stationary frame. 

Maxwell�s equations and Ohm�s law are Lorentz invariant, i.e. they are 

physically accurate to all orders of V
2
/c

2
. However, the fluid equations are Gallilean 

invariant; they are physically accurate only to O(V/c). The two systems of equations are 

incompatible as presently formulated. Thus, we either need to make the fluid equations 

relativistic or need to render the Maxwell equations Gallilean invariant. In MHD we 
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consider only low frequencies, i.e., V
2
/c

2
= ($L/c)

2
<< 1. Therefore, we seek a form of 

Maxwell�s equations that is only accurate through O(V/c).

From Eq. (2.7), when V
2
/c

2
<< 1, we can write the electric field in the moving 

frame as 

2 2

2 2

1
` 1 ...

2

V V
O

c c

æ ö æ ö
= + ´ - + = + ´ +ç ÷ ç ÷

è ø è ø
E E V B E V B

(2.8)

Ohm�s law (equation 1.6) then becomes 

h+ ´ =E U B J (2.9)

which is the proper MHD form. It is sometimes called the resistive Ohm�s law. When !

= 0, it is called the ideal MHD Ohm�s law. It should be noted that for the ideal MHD, 

the electric field scales like E0~V0B0 or V0~E0/B0.

Now consider Ampere�s law expressed in equation (2.2). The ratio of the two 

terms on the right-hand side is, approximately, 

220
0 0

2 2 2

1
/ 1

w
w¶

Ñ´ » » » <<
¶ o

E V L Vc
Bc t c c

L

E
B

(2.10)

where we have set V0~"L. We can, therefore, ignore the second term (the displacement 

current) compared with the first, and the low-frequency version of Ampere�s law 

becomes then 

0m =Ñ´J B (2.11)

In Magnetohydrodynamics, this equation defines the current density.

Next, when Gauss� law in Eq. (2.3) is combined with the ideal MHD Ohm�s

law, we have  

( )0r e= - Ñ× ´q V B (2.12)

so that MHD allows for a non-vanishing charge density. This net charge must arise from 

a difference Än between the local number densities of positive and negative charges. 

Then, we can write Än/n0~E0#0/(n0Le)~#0V0B0/(n0Le), where n0 is the average number 

density of positive and negative charges. Thus, using equation (2.5) to eliminate #0, we 

find $n
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2

0 0

2

0 0 0 0

1

m
D M

»
M

V Bn

n c n eB L

(2.13)

where M is the mass of the individual positively charged particles (ions). The quantity 

VA = B0
2
/%0n0M as the Alfven velocity, and & = eB0/M is the ion gyro-frequency (i.e. the 

frequency at which the individual ions orbit the magnetic field lines). Then setting 

V0~VA, we have 

2

0 0

2

0 w
D

»
V Vn

n c L

(2.14)

Finally, setting VA/"L = di/L (where di = c/"pi is the ion skin depth and 

"pi
2
=n0e

2
/#0M is the square of the plasma frequency), we can estimate the size of the 

excess electric charge as 

2

0

2

0

D
» iV dn

n c L

(2.15)

which is << 2 2

0 /V c  since di /L << 1. This result is called quasi-neutrality and it is a 

consequence of the low-frequency assumption.

However, the charge density cannot be ignored when $n/n0 ~V0/c. This can 

occur if (di/L)(V0/c)~1 or, in length scales, L~(V0/c)di . If we estimate V ' Vthi ' (T/M)
1/2

,

then L ! (å0T/n0e
2
)

 1/2
= (D, the Debye length. Calculations using the Gauss law and the 

Boltzmann distribution law ( n~exp(-U/KT) ), where U is the potential energy) show 

that at large distances from the charge, q, the potential decreases exponentially and the 

electric field is high only in the sphere of radius of order ëD around the charge q. This is 

assumed to be much smaller than any macroscopic scale length. Debye was the first to 

introduce this characteristic length in his study of strong electrolytes and later on this 

concept was applied to plasma physics.

The virtual vanishing of the electric charge density does not imply that the 

electrostatic field vanishes. In steady state ()/)t=0), Faraday�s law requires 0Ñ´ =E  or 

E = -Ñ *, and so the electric field is completely electrostatic, and can be large. Instead, 

regions of smooth field (where 0Ñ× »E ) are �patched together� across layers with finite 

charge density and thickness that is vanishingly small, i.e. O((D). This reminds of 

(although not completely analogous) the role of shock waves in hydrodynamics. 

Finally, it can be shown that the ratio of the electric force to the Lorentz force is 
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2
1

r
= <<

´
q V

c

 

J B

(2.16)

so that it can be dropped from the equation of motion. The charge density, therefore, 

never enters the MHD equations. However, if someone ever wants to know what it is, 

all they have to do is compute ( )0r e= - Ñ× ´q V B  at least in ideal MHD.

In Eulerian form, the final equations of the MHD model are 

Continuity equation:
0

t

r
r

¶
+Ñ × =

¶
V

(2.17)

Momentum equation
2p

t
r m

¶æ ö+ ×Ñ = -Ñ - ´ + Ñç ÷¶è ø

V
V V J B V

(2.18)

Energy balance:

2

Rate of change of heat conduction Rate of change of work of viscous stresses Rate o
                 (viscous dissipation)

Rate of change of internal energy

:r t
¶æ ö+ ×Ñ = Ñ + Ñ - Ñ×ç ÷¶è ø

Ñtt Ñ:
Rateè ø¶p

T
C T k T p

t
V V V

2

f compression work
Joule heating

s
+p VÑ× +

J

          

(2.19) 

Note that for incompressible fluids, the term corresponding to the compression 

work vanishes since velocity is considered to be solenoidal ( 0Ñ× =V ).  

Introducing the Fourier law of heat conduction: 

k T= - Ñq (2.20)

we get: 

2
2 :

De J
k T p

Dt
r t

s
= Ñ - Ñ× + Ñ +V Vt +ÑÑ:t

(2.21)

Where D/Dt is the material derivative which is equal to 
t

¶
+ ×Ñ

¶
V

The equations for the electromagnetic fields are:

¶
= -Ñ´

¶t

B
E

(2.22)

0mÑ´ =B J (2.23)

Ohm�s law, which couples the fluid and the electromagnetic fields:

h+ ´ =E V B J (2.24)
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The law of conservation of energy (h) is obtained by adding the rate of change 

of internal (ñe), kinetic (
21

ñv
2

) and magnetic energy (
2

02

B

m
). Thus, we obtain: 

2

0

1 1

2
r r

m
ì ü¶ é ùæ ö= -Ñ× + + × + ´ +í ýç ÷ê ú¶ è øë ûî þ

h
e v q

t
J P V  !

(2.25)

where � is the number density, V is the bulk velocity, B is the magnetic field strength, E

is the electric field strength, p is the pressure,  is the viscosity, !=1/ 0" is the 

resistivity,  0 is the permeability, " is the electrical conductivity and J is the current 

density.  

2.3 Ideal MHD 

In ideal MHD, the medium is considered to be ideal with no thermal 

conductivity, and no viscosity. This is a highly idealized situation, not attainable in 

nature. However, it turns out that ideal MHD describes to a remarkably good 

approximation many of the dynamical properties of hot, strongly magnetized plasmas. 

This is primarily because most hot plasmas are excellent (although not perfect) 

conductors of electricity. Ideal MHD is thus of considerable interest. 

When ´V  is greater than !J or

0 1m

vLvB
R

J

m
h h

= = >>
(2.26)

Ohm`s law becomes 

0+ ´ =E V B (2.27)

Here L is the characteristic length of the system and Rm is called the magnetic 

Reynolds number which is an analog to the Reynolds number R=uL/í (where í is the 

kinematic viscosity and u is the velocity) in neutral fluid dynamics. Usually, v=vA, the 

Alfven velocity which has already been mentioned. Then, by ignoring the viscous 

forces and the charge q and setting ç=0 the model is simplified as follows:  

0
t

r
r

¶
+Ñ × =

¶
V

(2.28)

( )
0

1
p

t
r

m
¶æ ö+ ×Ñ = -Ñ - Ñ´ ´ç ÷¶è ø

V
V V B B

(2.29)

p
p p

t

¶
= - ×Ñ -G Ñ×

¶
V V

(2.30)

 

19



( )
t

¶
= -Ñ´ ´

¶
B

V B
(2.31)

= - ´E V B (2.32)

Let us now derive the most important property of ideal MHD. Consider a closed 

curve C within the fluid, and let every point on the curve be moving with the local fluid 

velocity. We say that C is co-moving with the fluid, in the Lagrangian sense. Let S be a 

surface bounded by C. Then defining 

S

dY = ×òB S (2.33)

as the flux through S, we ask how � changes as C moves with the fluid. The differential 

d� consists of two parts: 

1. d�1, due to the changes in B with C (and S) held fixed, i.e., 

1 S S c

d d d
t t

¶Y ¶æ ö = × = - Ñ´ × = - ×ç ÷¶ ¶è ø ò ò ò
B

S E S E ldòE ldd
(2.34)

2. d�2, the amount of magnetic flux swept out by C as it moves with the fluid which is 

calculated as follows: As S moves about, each line element moves a distance Vdt,

and sweeps out a lateral area dS = Vdt × dl. This is shown in Fig. 2.1. 

Fig. 2.1 Computing the magnetic flux through a volume element swept out by a surface moving 

with the fluid (Schnack (2009)) 

The flux through this area is d�2 = B dS = B V × dldt, so that 

2 C C

d d
t

¶Yæ ö = × ´ = - ´ ×ç ÷¶è ø ò òB V l V B ldò òd V B lddòddd× ´× dd
(2.35)

The total rate of change of flux through C is then 

( )
1 2

¶Y ¶Y ¶Yæ ö æ ö= + = - × - ´ × = - + ´ ×ç ÷ ç ÷¶ ¶ ¶è ø è ø ò ò ò ( )× - ´ × = - + ´ ×( )ò ò ò× - ´ × = -× - ´ × = -
c C c

d d d
t t t

E l V B l E V B l
(2.36)
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However, in ideal MHD, E+V × B = 0, so that dØ/dt = 0, and thus we conclude 

that in ideal MHD, the magnetic flux through any co-moving closed circuit remains 

constant. This important result is called the frozen flux condition. It means that the 

magnetic field lines can be thought of as being attached to the fluid (and vice versa); the 

fluid cannot move across the magnetic field. However, the fluid is free to slide along B. 

A perpendicular velocity will induce an electric field through E = �V×B. This will 

cause a change in B through Faraday�s law that is sufficient to make the field lines 

appear to move with the fluid. If there are both electric and magnetic fields, there will 

be a perpendicular velocity, which is sometimes called the MHD velocity, given by 

2
V

B
^

´
=

E B (2.37)

2.4 Resistive MHD 

We have proved above that the change in magnetic flux passing through a co-

moving closed circuit is 

( )
c

d
t

¶Y
= - + ´ ×

¶ ò E V B l( ) d(ò E V B) d+ ´ ×+ ´ ) (2.38)

Since in ideal MHD we have E+V×B=0, it follows that d!/dt=0, and we say that the 

flux is �frozen in� the fluid. Nevertheless, in the more general MHD case when the fluid 

is no longer a perfect electrical conductor, E + V × B = "J and  

0
C

d
t

h
¶Y

= × ¹
¶ ò J l

(2.39)

so that the frozen flux condition no longer applies in resistive MHD. In this case, the 

fluid can �move� separately from the field and the field lines can �slip across� the fluid. 

This can be an important effect, even when the resistivity is very small. In resistive 

MHD, the combination of Faraday�s law and Ohm�s law becomes

( )
0

Re mod

( )

IdealMHD

sistive ification

t

h
m

¶
= Ñ´ ´ -Ñ´ Ñ´

¶
B

V B B( )Ñ´ ( ´ Ñ´´ )
0m

(2.40)

The first term is just ideal MHD. The second term is a modification introduced 

when the electrical conductivity # = 1/" is finite (rather than infinite). When " is

constant, the last term can be written as 
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( ) 2 2

0 0 0 0

( )
h h h h
m m m m

é ùÑ´ Ñ´ = Ñ´Ñ´ = Ñ Ñ× -Ñ = - Ñë ûB B B B B
(2.41)

So that Eq. (2.36) becomes 

( ) 2

0t

h
m

¶
= Ñ´ ´ + Ñ

¶
B

V B  
(2.42)

The effect of resistivity is to introduce diffusion of the magnetic field, with a 

diffusion coefficient D� = �/ 0 (m
2
/s in SI units). The characteristic time-scale for the 

diffusion of structures with length scale L is

2
2 0/R

L
L Dh

m
t

h
= =

(1.43)

which is called the resistive diffusion time. 

On the other hand, the characteristic time-scale associated with ideal (� = 0) 

MHD processes is the Alfven time

/A AL Vt = (2.44)

The ratio of the resistive and ideal MHD time scales is called the magnetic 

Reynolds number or as it is usually referred to in plasma physics as the Lundquist 

number. 

/R AS t t= (2.45)

It turns out that for many (but not all) MHD situations, S >> 1. The Lundquist 

number plays an important role in describing the dynamics of hot magnetized plasmas. 

For high temperature laboratory plasmas, S is typically 10
6 

-10
8
 and several orders of 

magnitude greater still for astrophysical plasmas.  

Although the plasma relevant to fusion can normally be treated as being 

collisionless, the collisional resistivity, however small, often plays a crucial role in the 

macroscopic processes of plasma. In fact, the convection term vanishes somewhere in 

the plasma and there will be a local region in which the diffusion term, however small, 

comes into play. Thus, the significance of large S is not that resistivity is entirely 

negligible but rather that, compared with LH (the hydrodynamic length scale), the length 

scale of the region in which it need be considered is very small. In other words, 

although ideal MHD may be valid for most of the plasma, there can be narrow boundary 

layers such as current sheets, in which we must apply resistive MHD. Within such 
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regions plasma relaxation involves the reconnection of magnetic field lines, generally 

reducing a complex field topology to one with simpler connectivity, thereby enabling 

the system to arrive at a lower energy state. These topological changes in the magnetic 

field take place on a time-scale between ôA and ôR. Such fast reconnections taking place 

at current sheets are vital for violent events such as solar flares and major disruptions in 

tokamaks. Indeed, the resistivity causes a �reconnection�� of different magnetic field 

lines, which never happens in an ideal MHD plasma because of the already mentioned 

�frozen-in� condition of the fluid. 

To understand how magnetic field changes occur in real plasmas with small but 

finite resistivity let us consider the simplest model of a slab plasma, as in Fig. 2.2, 

whose magnetic field is slowly varying with y, decreasing in magnitude, reversing sign, 

and then increasing again. The plane (y=0) in which B=0 is called the neutral sheet. If 

the field lines define the z-axis, the current j is parallel to the x-axis and the Lorentz 

force jxB acts downwards for y>0 and upwards for y<0. In ideal MHD, either these 

forces are opposed by a plasma pressure gradient maintaining equilibrium or plasma 

and field lines will move together towards the y=0 plane until these forces are in 

balance. However, with the introduction of finite resistivity, no matter how small, the 

field is no longer frozen into the plasma and slippage of field lines across the plasma 

allows breaking of the field lines with reconnection to line of opposite polarity as shown 

in Fig.2.2. 

The above may happen at various points along the neutral lines (see Fig.2.3), 

giving rise to so-called magnetic islands, i.e. sets of nested magnetic surfaces each with 

its own magnetic axis. The dashed line in Fig. 2.3 is the seperatrix marking the 

boundary between the regions of different field topology. The topological change takes 

place because the magnetic energy associated with the magnetic islands is less than that 

in the original, MHD configuration. We can readily imagine this if we think of the field 

lines as stretched strings; the tension in them has been reduced because breaking and 

reconnecting allows them to contract around the island axes. The stored energy 

(potential) in the final configuration is less than in the original one. The null points of 

the magnetic define O-points, at the axes of the magnetic islands, and X-points, at the 

intersections of the seperatrix.  
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Fig. 2.2 Magnetic reconnection in a slab plasma (Schnack (2009))

Fig.2.3 Flow pattern in the vicinity of a magnetic island (Schnack (2009)) 

To sum up, the magnetic island has a separatrix, which separates field lines of 

different topologies (open outside and closed inside the island). The magnetic 

reconnection occurs at the X-points. The center of the island is called the O-point. All 

the above features are illustrated in Fig. 2.3. 

Magnetic reconnection can occur as a steady-state process in which two 

opposite directed magnetic fields are pushed together by external means. The 

reconnection then occurs at a constant rate �. Magnetic reconnection can also occur 

spontaneously as a resistive instability. The magnetic island then grows at a rate e
�t
. 

Magnetic reconnection is an important phenomenon because ideal MHD 

constraints trap energy in the magnetic field. Resistive MHD relaxes those constraints 

and allows a new source of free energy to drive instabilities. Magnetic reconnection is 

thought by some to be responsible for �energizing the universe� by means of solar and 

stellar flares, heating of diffuse plasmas, the formation and evolution of astrophysical 

jets. Unfortunately, for most cases of interest S >>1 (for a tokamak S 10
7!10

, and it is 
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even larger in astrophysical settings). Since �!" 0, when "!" 0, we expect (and we 

find) that �! S
!#

 with 0 # #!# 1.  

It is difficult to account for the observed rate of energy release with these slow 

growth rates. The quest for a cause of �fast� magnetic reconnection has been alive for 

five decades, and it still goes on. Undoubtedly, it will continue for many more years in 

the future. Further analysis is beyond the scope of this thesis, but for a complete 

discussion on these phenomena the reader is referred to the work of Sweet and Parker 

(Sweet-Parker model for steady reconnection) and Petschek�s model (see at Schnack 

(2009)). Finally, the instabilities driven by resistivity can be found in any plasma 

physics book such as those by Boyd & Danderson (2003) and Schnack (2009). 

Today, one still relies primarily on resistive MHD to study the global dynamics 

of plasmas, with appeals to artificially enhanced �anomalous� resistivity to obtain 

sufficient rates of reconnection. 

2.5 MHD turbulence 

Let us suppose that we set up an experiment in which we can control all the 

mean parameters. An example might be steady flow through a pipe, where we can 

control the mean velocity. Now insert a probe or some kind of measuring device, at a 

fixed location far from the boundaries and measure the flow velocity as a function of 

time. The result of this measurement might look something like Fig. 2.4. All 

measurements are taken under identical conditions. Nevertheless, the results of the 

measurements at different times are not the same. Instead, we find that the velocity 

takes on random values. Although the mean velocity is determined precisely by the 

controllable conditions, the random values are not. Fluctuating motions of this kind are 

said to be turbulent. The random fluctuations in V have a probability distribution with a 

mean value Vav, as shown in Fig. 2.4.
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Fig. 2.4 Measurement of a fluctuating velocity field (Schnack (2009))

The function P(V) is called the probability distribution function (PDF). If the 

fluctuations are truly random, the PDF is Gaussian. If the PDF and Vav are independent 

of the position, the turbulence is said to be homogeneous. If the PDF is independent of 

arbitrary rotations of the system, and of reflections about any plane, the turbulence is 

said to be isotropic. Isotropic turbulence has no preferred direction in space. If the 

random flow looks the same on all spatial scales, the turbulence is said to be self-similar 

(or scale invariant). A rigorous theoretical study of turbulence requires a statistical 

description.  

Now, let us initialize the system with long wavelength, steady, smooth 

conditions. For example, consider the stirring of a perfect cup of coffee with a perfect 

spoon. The perfect cup is an infinitely long cylinder of radius, a, with no boundary 

perturbations, and the perfect spoon excites only a single circular eddy with velocity 

Vstir and radius a. The stirring is continued until the system reaches steady state. Then, 

the velocity is measured at the probe position. The result looks like in Fig. 2.4, with Vav

= Vstir. The question is how did these small-scale random fluctuations come about if 

only the longest wavelength is excited by the stirring of the spoon? The answer is that 

the fluctuations arise because of the non-linearities in the fluid motion as reflected in 

the flow equations. In the absence of pressure forces, and with constant density, the 

evolution of the velocity is governed by the equation of motion 

2v
t

¶
+ ×Ñ = Ñ

¶
V

V V V
(2.46)
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The second term on the left-hand side is nonlinear, containing the product of the 

velocity and its derivative.

At each step, new eddies with shorter wavelength and smaller amplitude are 

generated. If continued indefinitely, eddies with arbitrarily small wavelengths (large 

wave numbers) will be generated. This is inevitable and accounts for the small-scale 

random velocities that occur in the measurements. Since the amplitude of the small 

eddies decreases with wave number k, a plot of $(k), the energy contained in an eddy 

with wave number k, versus k might look like in Fig. 2.5. 

Fig. 2.5 Illustration of the cascade of energy from large to small wavelength as a result of nonlinear 

mode coupling (Schnack (2009))

Kinetic energy is continually fed at a specific wave number k0. It is continually 

spread to higher and higher k (smaller and smaller eddies) as a result of the nonlinear 

interactions described above, called a cascade. The cascade of energy to higher k will 

continue indefinitely unless other processes intervene. The cascade will be unable to 

continue when the magnitude of the viscous term becomes comparable with the 

nonlinear term. 

The qualitative picture of steady-state turbulence is therefore as follows. Kinetic 

energy is continuously input at a small wave number, k0. As a result of nonlinearities in 

the governing dynamical equations, this energy cascades to higher and higher wave 

number, producing eddies with smaller and smaller amplitude. The cascade will cease 

when k approaches kD, where dissipation can compete with the nonlinearity. All the 
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energy that is input at k $ k0 is dissipated near k $ kD; this is called the dissipation 

range. The energy simply moves through the intervening wave numbers. The range k0 <

k < kD is called the inertial range, for it is dominated by dV/dt $ 0 (the Lagrangian 

derivative) and dissipation plays no role. We may, therefore, expect the kinetic energy 

spectrum to look like as sketched in Fig. 2.5. This plot is said to display the spectrum of 

turbulence. 

2.5.1 Relation of Turbulence to MHD 

Now, how are all these related to MHD? There is no definitive answer, although 

there are many ideas. MHD turbulence certainly may have different properties than 

hydrodynamic turbulence. For one thing, the magnetic field provides a preferred 

direction in space, so the turbulence will no longer be isotropic. Motions, or eddies, 

tend to stretch out along field lines, so that / /k k^ >> , as sketched in Fig. 2.6.

Fig. 2.6 In MHD turbulence eddies tend to elongate along the magnetic field (Schnack (2009))

When the mean field is much larger than the fluctuating field, we might expect 

the turbulence to be approximately two-dimensional on the plane perpendicular to the 

vector B. MHD turbulence does not appear to be self-similar. In MHD we know that 

eddies are stretched out along the magnetic field and that this anisotropy increases at 

smaller scales. Thus, the small scales are more �stretched� than the large scales, and the 

stretching changes with increasing wave number k. This is manifested in the structure of 

the current density J at small scales. At these scales, the magnetic flux tends to get 

�squeezed� by eddies to form long thin current filaments. An example of filamentary 

spatial structures in MHD turbulence is illustrated in Fig. 2.7. We might expect the 

current filaments in MHD turbulence to look like in this figure. Furthermore, someone 

could distinguish the coherent structures.
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Fig. 2.7 The spatial structure at small scales in intermittent turbulence (Schnack (2009))

For self-similar turbulence the variation would be random. However, in MHD 

the current appears as semi-discrete sheets or spikes. The energy is, therefore, dissipated 

in discrete reconnection events at small scales, rather than as a continuous process. The 

turbulence is said to be intermittent. The structures at small scales are not space filling, 

and the turbulence at this scale ceases to be self-similar.

Numerical simulations indicate that the MHD fluid tends to form into small 

regions where the velocity and the magnetic field are either positively or negatively 

aligned. The details of this state depend on the amount of energy and cross-helicity in 

the initial conditions (see at Schnack (2009)).

The approach in this section has been theoretical. It only becomes real physics 

when it is compared with what occurs in nature. This can be determined from 

experiment, as in the case of hydrodynamic flow in a pipe or a wind tunnel or from 

observations of astrophysical plasmas, such as the interstellar medium or the solar wind. 

The most striking thing about these data is that they display the general form of the 

Kolmogorov spectrum, i.e. an input range, an inertial range, and a dissipation range, as 

sketched in Fig. 2.6.

While the power law in the inertial range often appears to be close to the 

Kolmogorov value (-5/3), closer examination of data for both hydrodynamic and MHD 

turbulence shows that small deviations from the value -5/3 exist and are real. This 

deviation is often attributed to the intermittency or the lack of self-similarity at small 

scales, as discussed above. A clear example of this phenomenon in MHD turbulence is 
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demonstrated in Fig. 2.8, which shows the spectrum of the fluctuating magnetic energy 

in a region of the Earth�s magnetosphere as measured in situ by a constellation of 

satellites. The horizontal axis is the wave number normalized to the ion Larmor radius. 

The separation between the satellites was about 100 km. The exponent for the power 

law in the inertial range is approximately -8/3, much steeper than Kolmogorov�s.

Fig. 2.8 Spectrum of magnetic energy in a Earth�s magnetosphere as measured by the CLUSTER mission

(Schnack (2009)) 

MHD turbulence is a fascinating physical phenomenon that has been attracting 

the interest of experimenters and theoreticians for many decades. Nevertheless, it still 

defies deep understanding in spite of considerable progress that has been made.  
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CHAPTER�3:�MAIN�CHARACTERISTICS�OF�OPENFOAM�

3.1 History 

OpenFOAM (Open Field Operation And Manipulation, see Weller (2004a,b)) 

started as FOAM around 1993 at Imperial College, London, as a collaboration of Weller 

and Jasak, who started working on his PhD thesis at that time, Jasak (1996). The 

motivation to develop CFD software from scratch was mainly dissatisfaction with codes 

in FORTRAN and the goal to create something reusable by others. For a few years,

FOAM was developed as closed-source commercial software, before becoming open 

source in December 2004 with OpenFOAM 1.0. Since then, six major releases were 

launched; the latest version is OpenFOAM 2.1.1 released in 2012. OpenFOAM is used 

by a lot of R&D teams in academic institutions and industry. 

3.2 Features of OpenFOAM 

The OpenFOAM CFD Toolbox is a free, open source CFD software package.

OpenFOAM has an extensive range of features to solve anything from complex fluid 

flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and 

electromagnetics. It includes tools for meshing, notably «snappyHexMesh», a 

parallelized mesher for complex CAD geometries, and for pre- and post-processing. 

Almost everything (including meshing, and pre- and post-processing) runs in parallel as 

standard, enabling users to take full advantage of available computer hardware. 

OpenFOAM offers users complete freedom to customize and extend its existing 

functionality. It is highly modular code in which collections of functionality (e.g. 

numerical methods, meshing and physical models) are each compiled into their own 

shared library. Executable applications are then created that are simply linked to the

library. OpenFOAM includes over 80 solver applications that simulate specific 

problems in engineering mechanics and over 170 utility applications that perform pre- 

and post-processing tasks such as, for example, meshing and data visualization. 

3.3 Standard Solvers 

OpenFOAM is fundamentally a tool for solving partial differential equations 

rather than a CFD package in the traditional sense. Table 3.1 presents a list of solvers 

that are available to users. 
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Table 3.1: OpenFOAM solver descriptions

3.4 Creating Solvers 

The success of verbal language and mathematics is based on efficiency, 

especially in expressing abstract concepts. For example, in fluid flow, OpenFOAM uses 

the term �velocity field�, which has meaning without any reference to the nature of the 

flow or any specific velocity data. The term encapsulates the idea of movement with 

direction and magnitude and relates to other physical properties. In mathematics, we can 

represent velocity field by a single symbol, e.g. U, and express certain concepts using 

symbols, e.g. �the field of velocity magnitude� by |U|. The advantage of mathematics 

over verbal language is its greater efficiency, making it possible to express complex 

concepts with extreme clarity. 

The problems that OpenFoam wants to solve in continuum mechanics are 

usually presented first in verbal language, then as partial differential equations in three 

dimensions of space and time. The equations contain the following concepts: scalars, 

vectors, tensors, and fields; tensor algebra; tensor calculus; dimensional units. The 

solution to these equations involves discretization procedures, matrices, solvers, and 

solution algorithms. 

Precompiled solvers Description

icoFoam Transient solver for incompressible, laminar flow of Newtonian 

fluids 

laplacianFoam Solves a simple Laplace equation, e.g. for thermal diffusion in a 
solid 

SonicFoam Transient solver for transonic/supersonic, laminar or turbulent flow 

of a compressible gas 

bubbleFoam Solver for a system of 2 incompressible fluid phases with one phase 

dispersed, e.g. gas bubbles in a liquid 

dnsFoam Direct numerical simulation solver for boxes of isotropic turbulence 

nonNewtonianIcoFoam Transient solver for incompressible, laminar flow of non-Newtonian 

fluids

reactingFoam Solver for combustion with chemical reactions

buoyantBoussinesqPisoFoam Transient solver for buoyant, turbulent flow of incompressible 

fluids 

dsmcFoam Direct simulation Monte Carlo (DSMC) solver for 3D, transient, 

multi- species flows 

solidDisplacementFoam Transient segregated finite-volume solver of linear-elastic, small-

strain deformation of a solid body, with optional thermal diffusion 

and thermal stresses 

financialFoam Solves the Black-Scholes equation that governs the price of the 

option over time (1997 Nobel Prize in Economics)

mhdFoam Solver for magnetohydrodynamics (MHD): incompressible, laminar 

flow of a conducting fluid under the influence of a 

magnetic field
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Programming languages that are object-oriented such as C
++

 provide the 

mechanism (classes) to declare types and associated operations that are part of the 

verbal and mathematical languages used in science and engineering. For example, the

velocity field introduced earlier can be represented in programming code by the symbol 

U and �the field of velocity magnitude� can be mag(U). The velocity is a vector field 

for which there should exist, in an object-oriented code, a «vectorField» class. The 

velocity field U would then be an instance or object of the «vectorField» class; hence 

the term object-oriented. 

The clarity of having objects in programming that represent physical objects and 

abstract entities should not be underestimated. The class structure concentrates 

development to contained regions of the code, i.e. the classes themselves, thereby 

making the code easier to manage. New classes can be derived or inherit properties 

from other classes, e.g. the «vectorField» can be derived from a vector class and a Field 

class. C
++

 provides the mechanism of template classes such that the template class 

Field<Type> can represent a field of any <Type>, e.g. scalar, vector, tensor. The 

general features of the template class are passed on to any class created from the 

template. Templating and inheritance reduce duplication of code and create class 

hierarchies that impose an overall structure on the code. 

A central theme of the OpenFOAM design is that the solver applications, written 

by using the OpenFOAM classes, have a syntax that closely resembles the partial 

differential equations being solved. For example the equation: 

p
r

j m
¶

+Ñ× -Ñ× Ñ = -Ñ
¶t

U
U U

(3.1)

           is represented by the code: 

    solve 

    ( 

        fvm::ddt(rho, U) 

      + fvm::div(phi, U) 

      -  fvm::laplacian(mu, U) 

        ==

      -  fvc::grad(p) 

    );

This makes OpenFOAM an excellent choice for customization, compared to 

closed source software. More specifically: 

ü Users have total freedom to create or modify a solver. 
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ü Users can easily reuse functionality that is pre-compiled into shared libraries. 

ü Compiled solvers can be tailored by a user for a specific need rather than �bolt-

on� subroutines, making OpenFOAM ideal for research and development.

ü All applications, including those for CFD simulation, pre-/post-processing and 

meshing are compiled using common functionality in the collection of libraries 

included in OpenFOAM. This ensures consistency across the whole of 

OpenFOAM, rather than having a suite of packages compiled from entirely 

separate source code. 

ü Transparent solution algorithms which can be viewed by the user, encouraging 

better understanding of the underlying physics. 

The use of advanced level C
++

 as core programming language brings major 

benefits to users: 

ü Advanced error-checking at both compile and run time. 

ü Extremely robust solver and utility executables. 

ü High speed calculation with efficient memory management and fast linear 

equation solvers. 

ü Parallel processing with linear speed up with number of processors. 

In this way, the understanding of the actual algorithm, the implemented models 

and equations are supposed to be much more important than a deep knowledge of object 

orientation and C
++

 programming. 

3.5 File structure of OpenFOAM cases 

Every OpenFOAM case has a similar structure with slight differences stemming 

only from the particular choice of solver. The basic file structure corresponds to that of 

Fig. 3.1. 
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Fig. 3.1: File structure of an ordinary OpenFOAM case 

The various steps to be undertaken when setting up a simulation in OpenFOAM 

are as follows: Boundary conditions have to be set, fluid properties must be selected, 

numerical schemes and algorithms for the solution of systems of equations must be 

chosen, and finally general simulations settings must be fixed. More specifically: 

· «constant directory»: It contains a full description of the case mesh in a 

subdirectory «polyMesh» and files specifying physical properties for the 

application concerned, e.g. transport Properties.

· «system directory»: For setting parameters associated with the solution procedure 

itself. It contains at least the following three files: 

- «controlDict» where run control parameters are set including start/end 

time, time step and parameters for data output; 

- «fvSchemes» where discretization schemes used in the solution may be 

selected at run-time; and 

- «fvSolution» where the equation solvers, tolerances and other algorithm 

controls are set for the run.

· «time directories»: They contain individual files of data for particular fields. The 

data can be either initial or boundary values that the user must specify to define 

the problem or results written to file by OpenFOAM.  

3.6 Numerical schemes 

OpenFoam can support the following discretization methods of the governing 

equations: 

· Second and fourth-order finite volume with mesh motion and topological changes 

· Polyhedral Finite Element solver (mesh motion) 

· Lagrangian particle tracking (discrete particle model); Diesel spray model 

· Finite Area Method: FVM on a curved surface in 3-D 

· A-posteriori error estimation 
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· Dynamic mesh handling and topology changes; automatic mesh motion  

In this thesis, the solution of the equations was obtained using a Finite Volume 

discretization. Therefore, our analysis below is focused on the Finite Volume method of 

discretization (for further details and information see Weller (2004b)). 

The «fvSchemes» dictionary in the system directory sets the numerical schemes 

for terms, such as derivatives in equations, which appear in specific applications. A

brief description of how to specify the schemes in the «fvSchemes» dictionary follows. 

OpenFOAM offers complete freedom to choose from a wide selection of interpolation 

schemes for all terms. 

The user first has a choice of discretization practice where standard Gaussian 

finite volume integration is the common choice. Gaussian integration is based on 

summing values on cell faces, which must be interpolated from cell centers. The user 

again has a completely free choice of interpolation scheme, with certain schemes being 

specifically designed for particular derivative terms, especially the convection 

divergence terms. 

The set of terms, for which numerical schemes must be specified, are subdivided 

within the «fvSchemes» dictionary into the categories listed in Table 3.2. Each keyword 

in Table 3.2 is the name of a sub-dictionary which contains terms of a particular type, 

e.g. «gradSchemes» contains all the gradient derivative terms such as, for example, 

grad(p) which represents the gradient of p. 

The «interpolation Schemes» sub-dictionary contains terms that are 

interpolations of values typically from cell centers to face centers. A selection of 

interpolation schemes in OpenFOAM are listed in Table 3.3. 

The «gradSchemes» sub-dictionary contains gradient terms. The discretization 

scheme for each term can be selected from those listed in Table 3.4. 

The «divSchemes» sub-dictionary contains divergence terms. For example, the 

syntax of the entry of a typical convection term found in fluid dynamics Ñ× (ñUU), in 

OpenFOAM applications is commonly given the identifier div(phi,U), where phi refers 

to the momentum flux ! = ñU.

The Gauss scheme is the only choice of discretization and requires a selection of 

the interpolation scheme for the dependent field, i.e. U in our example. To summarize,

the entries required are: Gauss «interpolationScheme». 
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The first time derivative ("#"t) terms are specified in the «ddtSchemes» sub-

dictionary. The discretization scheme for each term can be selected from those listed in 

Table 3.2. 

There is also an off-centering coefficient ø with the Crank-Nicholson scheme 

that blends it with the Euler scheme. A coefficient of ø = 1 corresponds to pure Crank-

Nicholson and ø = 0 corresponds to pure Euler. The blending coefficient can help to 

improve stability in cases where pure Crank-Nicholson is unstable. 

Table 3.2: Main keywords used in «fvSchemes»

Keyword Category of mathematical terms

interpolationSchemes Point-to-point interpolations of values

snGradSchemes Component of gradient normal to a cell face

gradSchemes Gradient Ñ

Ñ× Ñ×
2Ñ 2Ñ

"#"t, "2#"t2 "#"t, "2#"t2

fluxRequired Fields which require the generation of a flux

Table 3.3: Interpolation schemes 

Centred schemes

linear Linear interpolation (central differencing)

cubicCorrection Cubic scheme

midPoint Linear interpolation with symmetric weighting

Upwinded convection schemes

upwind Upwind differencing

linearUpwind Linear upwind differencing

skewLinear Linear with skewness correction

filteredLinear2 Linear with filtering for high-frequency ringing

TVD schemes

limitedLinear limited linear differencing

vanLeer van Leer limiter

MUSCL MUSCL limiter

limitedCubic Cubic limiter

NVD schemes

SFCD Self-filtered central differencing

Gamma ø Gamma differencing
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Table 3.4: Discretization schemes available in «gradSchemes»

Discretisation scheme Description

Gauss <interpolationScheme> Second order, Gaussian integration

leastSquares Second order, least squares

fourth Fourth order, least squares

cellLimited <gradScheme> Cell limited version of one of the above schemes

faceLimited <gradScheme> Face limited version of one of the above schemes

Table 3.5: Discretization schemes available in «ddtSchemes»

Scheme Description

Euler First order, bounded, implicit

localEuler Local-time step, first order, bounded, implicit

CrankNicholson ø Second order, bounded, implicit

backward Second order, implicit

steadyState Does not solve for time derivatives

3.7 Mesh generation with the blockMesh utility 

This section describes the mesh generation utility «blockMesh» supplied with 

OpenFOAM. The «blockMesh» utility creates parametric meshes with grading and 

curved edges. The mesh is generated from a dictionary file named «blockMeshDict»

located in the «constant/polyMesh» directory of a case. The utility «BlockMesh» reads 

this dictionary, generates the mesh and writes out the mesh data to points and faces, 

cells and boundary files in the same directory. 

The principle behind «blockMesh» is to decompose the domain geometry into a 

set of one or more three dimensional, hexahedral blocks. Edges of the blocks can be 

straight lines, arcs or splines. The mesh is ostensibly specified as a number of cells in 

each direction of the block, sufficient information for «blockMesh» to generate the 

mesh data. 

Each block of the geometry is defined by 8 vertices, one at each corner of a 

hexahedron. The vertices are written in a list so that each vertex can be accessed using 

its label, remembering that OpenFOAM always uses the C
++

 convention that the first 

element of the list has label �0�. It is also possible to generate blocks with less than 8 

vertices by collapsing one or more pairs of vertices on top of each other. 

The «blockMeshDict» file is a dictionary using keywords described in Table 3.6. 

The «convertToMeters» keyword specifies a scaling factor by which all vertex 

coordinates in the mesh description are multiplied. For instance, «convertToMeters 
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0.001» means that all coordinates are multiplied by 0.001, i.e. the values quoted in the 

«blockMeshDict» file are in mm. The vertices of the blocks of the mesh are given as a

standard list named vertices. 

Each edge joining 2 vertex points is assumed to be straight by default. However 

any edge may be specified to be curved by entries in a list named «edges». The list is 

optional; if the geometry contains no curved edges, it may be omitted. Each entry for a 

curved edge begins with a keyword specifying the type of curve from those listed in 

Table 3.6. The keyword is then followed by the labels of the 2 vertices that the edge 

connects. 

The block definitions are contained in a list named «blocks». Each block 

definition is a compound entry consisting of a list of vertex labels, a vector giving the 

number of cells required in each direction, the type and list of cell expansion ratio in 

each direction. Then the blocks are defined as follows for example: 

    blocks 

    ( 

        hex (0 1 2 3 4 5 6 7)       // vertex numbers 

        (10 10 10)                    // numbers of cells in each direction 

        simpleGrading (1 2 3)    // cell expansion ratios 

    );

Table 3.6: Edge types available in the blockMeshDict dictionary 

Keyword selection Description Additional entries

arc Circular arc Single interpolation point

simpleSpline Spline curve List of interpolation points

polyLine Set of lines List of interpolation points

polySpline Set of splines List of interpolation points

line Straight line �

3.8 Linear solver control 

The equation solvers, tolerances and algorithms are controlled from the 

«fvSolution» dictionary in the system directory. Below is an example of a set of entries 

from the «fvSolution» dictionary required for the «mhdFoam» solver that was used in 

this thesis. 

solvers 

{

    p 

    { 

        solver          PCG; 
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        preconditioner  DIC; 

        tolerance       1e-06; 

        relTol          0; 

    } 

    U 

    { 

        solver          PBiCG; 

        preconditioner  DILU; 

        tolerance       1e-05; 

        relTol          0; 

    } 

    B 

    { 

        solver          PBiCG; 

        preconditioner  DILU; 

        tolerance       1e-05; 

        relTol          0; 

    } 

    pB 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-05; 

        relTol          0; 

    } 

}

PISO 

{

    nCorrectors     3; 

    nNonOrthogonalCorrectors 0; 

}

BPISO 

{

    nCorrectors     3; 

}

The dictionary «FvSolution» contains a set of subdictionaries that are specific to 

the solver being run. However, there is a small set of standard subdictionaries that cover 

most of those used by the standard solvers. These subdictionaries include solvers, 

relaxation Factors, PISO and SIMPLE algorithms.  

The first sub-dictionary in our example, and one that appears in all solver 

applications, is «solvers». It specifies each linear-solver that is used for each discretised 

equation. It should be noted that the term linear-solver refers to the method of number-

crunching to solve the set of linear equations, as opposed to application solver which 

describes the set of equations and algorithms to solve a particular problem.  
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The syntax for each entry within «solvers» uses a keyword that is the word 

relating to the variable being solved in the particular equation. For example, 

«mhdFoam» solves equations for velocity U, magnetic field B, pressure p and a 

magnetic pressure pB. The keyword is followed by a dictionary containing the type of

solver and the parameters that the solver uses. The solver is selected through the 

«solver» keyword from the choice in OpenFOAM, listed in Table 3.7. The parameters, 

including tolerance, relTol, preconditioner, etc. are described in following sections. 

Table 3.7: Linear solvers (*PCG for symmetric, PBiCG for asymmetric matrices) 

Solver Keyword

Preconditioned (bi-)conjugate gradient PGG/PBiCG*

Solver using a smoother smoothSolver

Generalised geometric-algebraic multi-grid GAMG

The sparse matrix solvers are iterative, i.e. they are based on reducing the 

equation residual over a succession of solutions. The residual is a measure of the error 

in the solution so that the smaller it is, the more accurate the solution. More precisely, 

the residual is evaluated by substituting the current solution into the equation and taking 

the magnitude of the difference between the left and right hand sides; it is also 

normalized in order to make it independent of the scale of problem being analyzed. 

Before solving an equation for a particular field, the initial residual is evaluated based 

on the current values of the field. The residual is re-evaluated after each iteration. The 

solver stops if either of the following conditions is reached: 

· the residual falls below the solver tolerance, tolerance;

· the ratio of current to initial residuals falls below the relative tolerance, relTol; 

The solver tolerance represents the level at which the residual is small enough 

that the solution can be considered sufficiently accurate. The solver relative tolerance 

limits the relative improvement from initial to final solution. Furthermore, there is a 

range of options for the preconditioning of matrices in the conjugate gradient solvers, 

represented by the «preconditioner» keyword in the solver dictionary. The 

preconditioners are listed in Table 3.8. 
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Table 3.8: Preconditioner options 

Preconditioner Keyword

Diagonal incomplete-Cholesky (symmetric) DIC

Faster diagonal incomplete-Cholesky (DIC with caching) FDIC

Diagonal incomplete-LU (asymmetric) DILU

Diagonal diagonal

Geometric-algebraic multi-grid GAMG

No preconditioning none

Finally, most fluid dynamics solver applications in OpenFOAM use the 

pressure-implicit split operator (PISO) or semi-implicit method for pressure-linked 

equations (SIMPLE) algorithms developed at Imperial College, London. These 

algorithms are iterative procedures for solving equations for velocity and pressure, 

PISO being used for transient problems and SIMPLE for steady-state. Both are based on 

evaluating some initial solutions and then correcting them. SIMPLE only makes one 

correction whereas PISO requires more than one, but typically not more than four. 

3.9 Post-processing 

OpenFOAM is supplied with a post-processing utility «paraFoam» that uses 

«ParaView», an open source visualization application. In addition, the other programs 

which are offered are «EnSight», «Fieldview» and post-processing supplied with the 

commercial CFD package «Fluent». 

Epilogue 

The aim of OpenFOAM is to produce a C
++

 class library in which it is easy to 

develop Computational Fluid Dynamics (CFD) codes in order to investigate modeling 

and simulation of fluid flows. In essence, OpenFOAM is a high-level meta-language, 

which closely parallels the mathematical description of continuum mechanics. As well 

as simplifying the implementation of new models, this makes checking the modeling 

more straightforward. This aspect is enhanced by the inclusion of features such as 

automatic dimension checking of operations. In addition to this, object-orientation 

techniques enable the creation of data types that closely mimic those of continuum 

mechanics, and the operator overloading possible in C
++

 allows normal mathematical 

symbols to be used for the basic operations. Thus, the use of object-oriented 

programming (OOP) methodology has enabled the dissociation of different levels of the 

code. This minimizes unwanted interaction, and permitting research into the numerics 

(differencing schemes and matrix-inversion techniques) to be separated from modeling. 
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In conclusion, OpenFOAM demonstrates that it is possible to implement a

mathematically oriented metalanguage. More information about object-oriented 

techniques and applications in OpenFOAM are referred in Weller et al. (1998). 
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CHAPTER�4:�THE�ORSZAG-TANG�VORTEX�MHD�FLOW�

4.1. Literature survey 

In this chapter a brief literature review about the Orszag-Tang vortex and its 

modeling is presented. The cited references are often quoted by other authors who are 

working on this problem. 

The Orszag-Tang vortex is a well-known test for magnetohydrodynamic (MHD) 

numerical models which was first studied by Orszag & Tang (1979). In their work, they 

investigated the formation of singularities in two-dimensional MHD flow by direct 

numerical simulations (DNS). In brief, the Orszag-Tang vortex flow is an initial value 

MHD problem occurring in a square box with periodic boundary conditions in both x 

and y directions. Its frequent use in many studies is because it contains many important 

features of MHD turbulence. 

The governing equations of the present incompressible, constant property fluid 

flow are: 

Mass continuity: 0Ñ× =v                                                                         (4.1)

Momentum:    2p
t

r m
¶æ ö+ Ñ = -Ñ + ´ + Ñç ÷¶è ø

v
v v J B v                           (4.2)

Maxwell equations: 0Ñ× =B                                                                         (4.3)

                       (4.4)

assuming

<J

                                                                        (4.5)

                             (4.6)

Charge continuity: 0Ñ× =J                                                                         (4.7)

Ohm`s law:
                                                     (4.8)

Combining the Equations (4.4), (4.6) and (4.8) and taking the curl, the following 

equation is derived 
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¶
 

v B B                                                       (4.9)

where, � is the number density, v is the fluid velocity, B is the magnetic field strength, 

E is the electric field strength, p,  , !=1/ 0", ì0, ó, are the fluid pressure, viscosity, 

resistivity, magnetic permeability, and electric conductivity, respectively, J is the 

current density and D the electric flux density.  
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The first term on the right hand side of Eq. (4.9) is the convective term and the 

second is the diffusion term. The relationship between these two terms allows to obtain 

the magnetic Reynolds number, Rm = ì0óLu, where L and u are the characteristic length 

and velocity, respectively. This is a parameter that must be considered in the modeling 

assumptions for MHD flows. In the case of Rm ! 1 the electromagnetic forces are ruled 

by the flow field and the convective and dissipative terms must be retained in the 

induction equation. In the case of a high magnetic Reynolds number, Rm >>1, we may 

neglect the diffusion term, but we end up with a strong coupling, so the momentum, 

Ohm�s law, energy equation and induction equation cannot be treated independently. 

For the case of a low magnetic Reynolds number, Rm << 1, we may neglect the 

convective term and we can treat each equation separately introducing the contributions 

of the magnetic field only as a source term.  

The flow domain is specified as: 0! x ! 2ð, 0 ! y ! 2ð with periodic boundary 

conditions in both x and y directions. Moreover, non-random initial conditions are 

imposed at t=0, as follows: 

-2siny +2sinx y= xv e e                                                          (4.10)

-2siny +2sin2x y= xB e e                                                          (4.11)

As time increases, the MHD flow with the initial conditions (4.10, 4.11) 

becomes increasingly complicated due to the nonlinear interaction of the governing 

equations. Thus, an analytical solution does not seem possible. Orszag & Tang (1979) 

solved equations (4.1) to (4.9) using a pseudospectral method with a truncated Fourier 

series expansion of the flow variables. Their computer code was a modification of the 

KILOBOX code used for high resolution two-dimensional turbulence calculations 

Orszag (1976). Furthermore, they showed that two-dimensional (2-D) MHD turbulence 

is not as singular as three-dimensional (3-D) hydrodynamic one, but it is more singular 

than 2-D hydrodynamic turbulence. In fact, as Pouquet (1978) suggested, 2-D MHD 

turbulence is dynamically very similar to 3-D hydrodynamic turbulence. He also 

proposed that the flow singularities, which appear in 2-D MHD turbulence, imply that 

the small scale structures are more intermittent than the small-scale structure of 2-D

hydrodynamic flow. 

The behavior occurring in 2-D MHD flow is quite different from that in 2-D

hydrodynamic flow. In 2-D hydrodynamic flow, nonlinear interaction conserves mean-

square vorticity (enstrophy), so that the dissipation rate in free dissipation turbulence 
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satisfies that å(t) ! å(0) for t " 0. In contrast, å(t) /å(0) can achieve values much larger 

than one in MHD flow. In Fig. 4.1, the total energy dissipation å(t) is plotted versus t for 

í=ç=0.08, 0.04, 0.02, 0.01 and 0.005. When í=ç is halved, the peak of energy 

dissipation rate is decreased by about 20 %. 

Moreover, according to Orszag & Tang (1979), v=ç=0 is the limit where three 

invariants of motion exist: total energy (Eq. 4.12), mean-square magnetic vector 

potential (Eq. 4.13) and cross helicity (Eq. 4.14). Cross helicity measures the degree of 

correlation between velocity and magnetic fluctuations in the turbulent state. Together 

with energy, cross-helicity undergoes a turbulent cascade from large to small scales. 
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When v>0 or ç>0, the rate of total energy dissipation is given by Eq. 4.15 
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In fact, the initial vortex, which rapidly evolves into fully developed highly 

nonlinear turbulence, can be used as a test case for the problem of dissipation in 

collisionless plasmas (Parashar, 2009). Although Tokamak plasmas are compressible, 

they can be represented in terms of incompressible MHD turbulence for Mach numbers 

less than unity (Biskamp & Welter, 1989). Thus, an incompressible flow model has 

been implemented which illustrates the emergence of small scale structures through 

magnetic reconnection and current sheet formation. 

The Orszag-Tang vortex has been extensively studied by Biskamp & Welter 

(1989) and by Friedel et al. (1997). The compressible MHD version has also been 

studied by Dahlburg & Picone (1989, 1991). It has been used as a numerical test 

problem for test for a numerous magnetohydrodynamic (MHD) numerical models such 

as by Wu (2007). Wu (2007) performed the calculations using a high order accurate 
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weighted essentially non-oscillatory (WENO) finite difference scheme for solving the 

equations of incompressible fluid dynamics and magnetohydrodynamics. 

As í and ç are reduced, the current strength increases as does the intensity of the 

vorticity. These indicate the convergence of the results with respect to the spatial 

resolution. They also show that the convergence depends strongly on the spatial 

location. In regions around 0 < x < 0.5ð and 1.5ð< x < 2ð, the solution converges 

quickly, while in the region around 0.5ð<x<1.5ð, a high spatial resolution is required 

for convergence. This is because a strong current sheet forms near the 0.5ð<x<1.5ð

region. Fig. 4.2 shows the energy distributions up to t=4 for the case with ù=ç=0. 

Although kinetic energy (EK) and magnetic energy (EB) are equal initially, EB becomes 

much larger than EK at later times. 
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Fig. 4.1. The Orszag-Tang problem: Plot of energy dissipation rate �(t) of 2-D MHD flow.  

(a)  =!="0.08"(Ra=36)," =!="0.04"(Ra=92),  =!="0.02"(Ra=232),  =!="0.01"(Ra=585),  

(b)  =!="0.005"(Ra=1474), (Orszag & Tang (1979)) 

Fig. 4.2 The Orszag-Tang problem. Distributions of energy (kinetic (EK), magnetic (EM), their sum ET)

and cross helicity (Hc), normalized by 8#2, for v=!= 0 with 1024x 1024 grid, (Orszag & Tang (1979)) 
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4.2. Orszag-Tang vortex modeling in the OpenFoam CFD library 

Generally, fluid flow is mathematically described by the conservation of mass 

and momentum. The general form of a conservation equation for a flow quantity ö is

( ) ( ) S
t

j j

rj
r j r j

¶
+Ñ -Ñ G Ñ =

¶
v                                                (4.16)

where ñ is fluid density, v its velocity, Ãö its diffusivity, t is time, and Sö a source term. 

The transport equation for the conservation of mass (continuity equation) is 

derived by setting ö=1 in Eq. 4.16 and not having mass source terms. This leads to 

( ) 0
t

r
r

¶
+Ñ× =

¶
v                                           (4.17)

The momentum equation, neglecting gravitational effects, according to Bird et 

al. (2002) is 

( )
( ) p

t

r
r t

¶
+Ñ -Ñ = -Ñ

¶
v

vv                                                (4.18)

where ô is viscous stress tensor given by 

( )( ) 2

3
t m mT
= - Ñ + Ñ + Ñ×v v � v                                           (4.19)

where ì is the viscosity of a Newtonian fluid.

All calculations were performed within the OpenFOAM package which employs 

the finite volume method. The finite volume method subdivides the flow domain into a 

finite number of smaller non-overlapping control volumes. The transport equations are 

then integrated over each these control volumes by approximating the variation of flow 

properties between mesh points with differencing schemes. This section gives only a 

brief overview on the FVM. For a complete discussion on the FVM the reader is 

referred to Versteeg & Malalasekera (1995).

4.2.1 Discretization of the Solution Domain 

The desired solution domain is broken up, discretised, into a number of cells, or 

control volumes. These cells do not overlap one another and completely fill the 

computational domain. Generally variables are stored at the cell centroid, although they 

may be stored on faces or vertices. A cell is bounded by a set of flat faces with no 

limitation on the number of faces or their alignment, which can be called arbitrarily 

unstructured. Two neighboring cells must only share one face, which is then called an 
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internal face. A face belonging only to one cell is called a �boundary face�. The 

minimum information required to define a mesh consists of: 

Points which are defined by their position in three-dimensional space 

Faces which are defined by a list of points 

Cells which are defined by a list of faces and 

Boundary patches which are defined by a list of boundary faces, with each face 

being a member of only one boundary patch. The boundary patches have to contain 

all boundary faces.

4.2.1.1 Discretization of the equations  

The partial differential equation (4.16) is transformed into an algebraic equation,

which can be expressed as 

= x b                                 (4.20)

where M is a square matrix, x the vector of the dependent variable and b is the source 

vector. Finite Volume (FV) discretization of each term is formulated by first integrating 

the term over a cell volume. Most spatial derivatives are converted to integrals over the 

cell surface S bounding the volume using Gauss�s theorem

V S

dV dj jÑ =ò ò S                              (4.21)

where S is the surface area vector and ö can represent any variable. Implicit terms 

constitute the matrix M, explicit terms constitute the source vector b.

4.2.1.2 The Diffusion Term 

The diffusion term in Eq. 4.16 is integrated over a control volume and linearised 

as follows: 

( ) ( ) ( )j j jÑ× GÑ = GÑ = G × Ñåò ò f f f
fV S

dV dS S                                 (4.22)

This can be discretisized when the length vector d between the centre of the cell 

of interest P and the centre of a neighboring cell N is orthogonal to the face:

( ) j j
j

-
× Ñ = N P

f ff d
S S                              (4.23)
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4.2.1.3 The Convection Term 

The convection term is integrated over a control volume and linearised as 

follows:

( ) ( ) ( )r j r j r jÑ× = =åò ò f f f

fV S

dV dS Sv v v                                 (4.24)

The face field value, öf, can be evaluated using a variety of schemes, as follows: 

Central differencing which is used in the present work is second-order accurate but 

unbounded, meaning that the error of discretization reduces with the square of the grid 

spacing and that the limits of ö are not necessarily preserved. One of the major 

inadequates of the central differencing scheme is its inability to identify flow direction. 

The value property ö at a cell face is always influenced by both surrounding values in 

central differencing. In a strongly convective flow the above treatment is unsuitable 

because the upstream value should have stronger influence on the node P. The upwind 

differencing takes into account the flow direction when determining the value at a cell 

face: the convected value of ö at a cell face is taken to be equal to the value at the 

upstream node. These two schemes can be blended in order to preserve boundedness 

with reasonable accuracy and there are many more schemes implemented which might 

be investigated. 

4.2.1.4 The Gradient Term 

The gradient term described here is an explicit one. Usually it is evaluated using 

the Gauss integration by applying the Gauss theorem to the volume integral: 

j j jÑ = =åò ò f f

fV S

dV dS S                                 (4.25)

There are more ways to evaluate the gradient term which can be found in the 

Programmer�s Guide of OpenFOAM (Weller, 2004b). 

4.2.1.5 The Time Derivative 

The time derivative 
t

¶
¶  is integrated over a control volume as follows: 

V

dV
t
rj

¶
¶ ò

This is discretised by using the following methods: 
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new values, ö
n
 ö(t=Ät) at the time stem being solved for,

old values ö
0
 ö(t) that were stored from the previous time step, or

Euler implicit which is first order accurate in time, meaning that the discretization 

error reduces with smaller time steps.  

Thus, the time derivative is discretised as follows 

0( ) ( )n

P P P P

V

V V
dV

t t

r j r j
rj

-¶
=

¶ Dò                                (4.27)

Again, more ways to evaluate the time term are in the! Programmer�s Guide 

(Weller, 2004b). 

4.2.1.6 Temporal Discretization 

The treatment of time derivatives was explained in the previous section. 

However, the spatial derivatives in a transient problem also need some consideration as 

ö is a function of space and time and the spatial derivatives are averaged over one or 

more time steps. If all spatial terms are denoted as Aö, where A is any spatial operator, 

e.g. Laplacian, then a transient partial differential equation (PDE) can be expressed as 

0

t t

t V

dV A dV dt
t
rj j

+D é ù¶
+ =ê ú¶ë û

ò ò                                       (4.28)

Using the Euler implicit method of eq. 4.27, the first term can be expressed as 

0( ) ( )
t t n

P P P P

t V

V V
dV dt t

t t

r j r j
rj

+D é ù -¶
= Dê ú¶ Dë û

ò ò                                       (4.29)

The second term of equation 4.28 can be expressed as  

[ ] *

t t t t

t t

A dV dt A dtj j
+D +D

=ò ò                                    (4.30)

where A* represents the spatial discretization of A. That integral can be discretised as: 

Euler implicit taking only current values ö
n
, is first order accurate in time, 

guarantees boundedness and is unconditionally stable. 

* *

t t

n

t

A dt A tj j
+D

= Dò                                    (4.31)
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Explicit taking only values ö0 from the previous timestep, guarantees 

boundedness and is first order accurate in time. 

0* *

t t

t

A dt A tj j
+D

= Dò                                   (4.32)

It is unstable if the Courant number Co is greater than one. The Courant number 

is defined as 

2

f
Co t

×
= D

v d

d
                                  (4.33)

where vf is the velocity of the flow or velocity of a wave front for the acoustic Courant 

number and d is the length vector between two neighboring cell centers. 

Crank Nicholson taking a mean of current values ön and old values ö0. It is 

second order accurate in time, unconditionally stable, but does not guarantee 

boundedness.

0

* *
2

t t n

t

A dt A t
j j

j
+D æ ö+

= Dç ÷
è ø

ò                                      (4.34)

4.2.2 Numerical Setup 

For the present calculations, the «mhdFoam» solver (Weller, 2004b) of the 

OpenFOAM package was used, which is a solver for the flow of an incompressible 

electrically-conducting liquid with constant properties in a magnetic field and it is 

governed by the Navier�Stokes equations together with Maxwell�s! equations!  and 

Ohm�s! law!(eq. 4.1-4.9 ). Assuming that  
t

¶
¶
D

 is negligible for non-relativistic plasma 

computations, then  

( )
2

0 0 0

1 1

2m m m
B

´ = Ñ´ ´ = -Ñ + ÑJ B                                     (4.35)

so the momentum equation (4.2) takes the form 

2
2

0 02
p

t
n

m m
æ ö æ ö¶ B

+ Ñ = -Ñ + +Ñ× + Ñç ÷ ç ÷¶ è ø è ø

v   
v v v                                 (4.36)

The overall pressure is given by Ptotal = p+B
2
/2ì0, in which the second 

contribution corresponds to the magnetic pressure. The latter acts like a pressure in the 

direction transverse to the magnetic field, the magnetic field resists to compressibility 
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just! like!the!fluid!pressure.!The!term!BB/ì0 in equation (4.36) is called the hoop stress 

and acts like a tension along the lines of magnetic force, bearing some similarity with 

the viscous stresses. It represents tension along field lines when they are curved, similar 

to the force exerted by a stretched elastic band. 

As far as the induction equation (4.9) is concerned, we retained the diffusion and 

convective terms in the induction equation, thus solving for the more general case of a 

strong coupling between equations. 

4.2.3 Results of the Orszag-Tang flow 

As a next step, the incompressible Orszag-Tang vortex flow was simulated. The 

non-random initial conditions of the Orszag-Tang problem are illustrated in Fig. 4.3.  

Concerning the numerical process, Eqs. (4.1) and (4.2) together with the initial 

conditions (Eqs. 4.10 and 4.11), are solved by using a finite volume technique based on 

the transient pressure-velocity coupling algorithm PISO, Issa (1986). PISO relies on the 

splitting of the solution process into a series of steps where operations on pressure are 

decoupled from those on velocity at each step. Furthermore, a fictitious magnetic-flux 

pressure is introduced into the magnetic-field equation, Eq. (4.9), to facilitate the 

obeyance of the divergence-free constraint on B (Eq. (4.3)) in the same manner as the 

pressure equation is used in PISO. The resulting field pH has no physical meaning, 

Weller et al. (1998). The numerical schemes, which were used in the simulations, are 

the Crank-Nicolson scheme for the transient terms, central discretization for the 

laplacian and grad terms and gamma differencing for the convection terms, Jasac 

(1996). At each step, the solution is iterated until the residuals of the mass, momentum, 

and temperatures equations become smaller than 10
-7

. Finally, the MHD numerical 

model used the conjugate-gradient method, with incomplete Cholensky preconditioning 

(ICCG) (Jacobs (1980)), in order to solve the symmetric matrices and the Bi-CGSTAB 

method (Van der Vost (1992)) for the asymmetric matrices.  

Solutions obtained at time t=1 using a 512x512 grid are presented in Fig. 4.4. 

Fig. 4.4a and 4.4b demonstrate that, over time, there occurs dynamic alignment of the

velocity and magnetic fields. In addition, this two-dimensional MHD turbulence is to a 

great extent more intermittent than the hydrodynamic one, as indicated by the S-shaped 

structure in Fig. 4.4c. The results show that dissipation arises primarily in the regions of 

weak magnetic field, where large current densities can be generated. Such localized 
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dissipation of magnetic energy involves mass transport from outside regions (where the 

�frozen-in� condition is satisfied) into the dissipative region. 

Furthermore, the results show that the region of large current density is highly 

correlated with the region of large vorticity (Fig. 4.4c and 4.4d). This occurs because 

large gradients in the flow and magnetic fields can take place only at the Alfven wave 

fronts. A total view of the time evolution of the velocity field, the magnetic field, the 

current density and the vorticity can be seen in Fig. 4.5a and 4.5b. Note the dynamic 

alignment of the velocity and magnetic fields that has already been pointed out. Finally, 

in Fig. 4.6, the variation of kinetic, magnetic and total energy over time indicates that 

there is an important energy transfer between the kinetic and magnetic components.  

A simple physical explanation for the production of small-scale motion by MHD 

flows may be as follows: When í and ì0 are small, an initial weak magnetic field is 

stretched and convected by the velocity field and thus wrapped into tight �ropes� that 

follow closely the large-scale fluid flow. When neighboring lines of magnetic force are 

thus stretched close to each other, magnetic diffusion can break the lines of force and 

locally reconnect them. When the lines of force brake, their tension force reacts back on 

the flow field to reproduce small eddies on top of the larger ones convected, giving an 

enhanced cascade process. The above explanation was given by Orszag & Tang (1989) 

and it is adopted in this thesis. For further details the reader is referred to section 2.4 

where an analysis on magnetic lines reconnection in resistive MHD is provided.

Finally, it should be noted that reconnection events may occurs only in resistive 

MHD where the effect of resistivity is to diffuse the magnetic field. On the other hand, 

in ideal MHD, where the medium is considered to be a perfect electrical conductor, the 

magnetic field lines can be thought of as being attached to the fluid and vice versa. This 

so called �frozen-in� condition was analyzed comprehensively in section 2.3. An

extensive examination on the dynamics of decaying two-dimensional MHD turbulence 

is elaborated by Biskamp & Welter (1989).  

Extension of this picture to three dimensions is more delicate. However, the 

most intense current structures might develop in the limit of high Reynolds numbers, 

which relates to the heating of the solar corona, or the dynamics of flux transfer events 

in the magnetospheric environment. Many articles refer to the 3D Orszag-Tang vortex 

such as Mininni et al. (2006), Grauer & Marliani (2000) and Politano et al. (1995). 

Work on 3D flows such as that of Greene (1988) showed that the topology of a 

reconnecting region is more complex than in 2D and can lead to more varied behavior. 
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It should be noted that many turbulent media, such as nonconducting neutral 

gases and tokamak plasmas, are compressible and the relevance of incompressible 

results is questionable. In the compressible Orszag-Tang vortex, the interaction of the 

non-linear terms leads to supersonic MHD turbulence, making this problem a good test 

of the algorithm's ability to handle such MHD turbulence and shock waves. Thus, the 

turbulence can produce acoustic and shock waves which interact with each other and 

with the turbulent field itself. As in the incompressible case, the magnetic field is still 

constrained to be solenoidal. In addition, the magnetic field can evolve differently in a

compressible fluid; for example, magnetic flux can accumulate in compressed regions. 

Since the current sheets dissipate magnetic energy at early times, the 

reconnection is weaker as the initial supersonic Mach number increases. Therefore, the 

evolution and structure of the "supersonic" Orszag-Tang flow differs significantly from 

those of its subsonic and incompressible counterparts as shown by Picone & Dahlburg 

(1989, 1991).

Magnetic fields play an important dynamical role in the solar wind, in stars, or 

the interstellar medium. The associated flows have large but finite Reynolds numbers, 

and nonlinear mode coupling leads to the formation of intermittent structures. Viscosity

and magnetic diffusivity also play a role. Tearing mode behavior develops and 

reconnection takes place as has already been mentioned. Questions arise as to how 

rapidly dissipation occurs as the Reynolds numbers increase, what the origin of the 

intermittent structures is, and how fast they form. 

For these long-standing problems, e.g. in the context of reconnection events in 

the magnetopause or in heating of stellar coronas, many other phenomena may play an 

important part, such as compressibility or ionization. These can lead to a more complex 

Ohm�s law with, e.g. a Hall current, or to the inclusion of radioactive or gravitational 

processes. 
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CHAPTER�5:�MHD�NATURAL�CONVECTION�IN�SHALLOW�CAVITIES�

5.1. Literature survey 

In this chapter, the two-dimensional MHD natural convection flow of an 

electrically conductive fluid in an internally heated horizontal shallow cavity with 

electrically insulated walls is studied for the case where the horizontal walls are 

adiabatic and the vertical sidewalls are isothermal. An external uniform magnetic field 

is applied in the vertical direction of the cavity. The main feature of the present flow is a 

symmetric double-cell Hadley circulation with the fluid ascending in the centre of the 

cavity and descending near the end walls. The method of the matched asymptotic 

expansions is used to obtain solutions of the flow and heat transfer problem. This 

analysis which is valid for large cavity aspect ratios and for any magnetic field strength 

is particularly helpful for the determination of the flow field without expensive 

simulations. In addition to the analytical solution, the laminar flow is also studied 

numerically for a range of Hartmann, Prandtl and Rayleigh numbers in order to verify 

the analytical results, to calculate the constants which arise by the analytical approach 

and to study the non-linear regions of the flow.  

Fluid convection generated by internal heat arises in a variety of technological 

and geophysical applications. Some of the most important fields are the Czochralski and 

the horizontal Brigman crystal growth techniques (Hjellming (1990), Oreper and 

Szekely (1983), Miller and Pernell (1982)), the fusion liquid metal blanket (see, for 

example, Proust et al. (1993)), and the Earth dynamo convection magnetic fields (see, 

for example, Kuang et al. (1999)). The working fluids of most of these applications of 

MHD natural convection are electrically conductive liquid metals. The basic feature of 

liquid metal flows in cavities is the initialization of strong non-linear effects throughout 

the cavity that makes difficult any analytical approach of the flow above a critical 

Rayleigh number, Racr. For Rayleigh numbers above Racr, the basic double Hadley cell 

flow structure develops instabilities or stationary multicellular convective patterns. 

These effects have been studied primarily in laterally heated shallow cavities by, for 

example, Hart (1972, 1983) and Cormack et al. (1974). Garandet et al. (1992) solved 

analytically the MHD problem of the laterally heated rectangular cavity with a 

transverse magnetic field corresponding to the horizontal Brigman technique. They 

showed that the core solution, dropping the nonlinear inertial term, was valid 

everywhere in the cavity except inside the boundary layer of thickness Ha
-1/2

 formed 

 

57



along the cold wall. The flow recirculating region was studied separately by means of 

series expansions. 

In the present work, the MHD natural convection flow in shallow cavities due to 

internal heating is studied analytically by means of matched asymptotic expansions and 

numerically by solving the full Navier-Stokes equations. The hydrodynamic part of the 

flow has already been solved by Daniels and Jones (1998), including the study of both 

conduction and convection heat transfer mechanisms. Their work is extended here for 

the case where the cavity contains an electrically conductive fluid which is subjected to 

a uniform transverse magnetic field. The geometry and the boundary conditions are 

similar to those of Daniels and Jones (1998). Thus, the shallow rectangular cavity 

consists of two adiabatic horizontal walls and two isothermal vertical walls, held at the 

same uniform temperature. The natural convection flow is driven by a uniform internal 

heating.  

5.2 Geometry and mathematical formulation 

Consider a shallow cavity of height h and large aspect ratio L where the flow is 

assumed to be steady, two-dimensional, subject to the Oberbeck-Boussinesq 

approximation for the fluid density variations due to temperature. The quasi-static (or 

low magnetic Reynolds number, Rm) approximation is also assumed for the fluid 

magnetic induction-momentum connection. The magnetic Reynolds number (Rm=ìóuL) 

represents the ratio of advection to diffusion in the magnetic field. Sarris et al. (2006) 

have determined the limits of the validity of this approximation in natural convection 

flows. In laboratory MHD natural-convection flows, it is generally accepted that Rm <<

1, which allows to ignore the solution of the magnetic induction equation. This results 

in a significant reduction of the equations to be solved and in reduction of the 

computational costs. Finally, Joule heating and viscous dissipation are also neglected. 

The flow configuration and boundary conditions are illustrated in Figure 5.1. 

Fig. 5.1 Flow configuration and boundary conditions 
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Based on the above assumptions, the equations which describe the present 2-D steady-

state, incompressible MHD flow (x, z are the Cartesian coordinates in the horizontal and vertical 

directions, respectively) are as follows: 

where, ñ is the mean density of the fluid, ì its dynamic viscosity, cp its specific heat at 

constant pressure, â its volumetric expansion coefficient, ó its electric conductivity, and 

Q is the constant volumetric heat generation rate. 

By elimination of the pressure terms in equations 5.2 and 5.3, the vorticity and

energy equations are derived. In fact, the streamfunction ø describes the flow field. 

Taking the derivative of (5.2) and (5.3) with respect to z and x, respectively, the 

following equations are derived: 
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The streamfunction �(x,z) is related by definition to velocity components u and 

w through the following relationships: 
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Substituting (5.8) in energy equation (5.4) it turns out that: 
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The streamfunction and energy equations can become dimensionless through the 

following dimensionless magnitudes: 
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Taking into account these dimensionless magnitudes it turns out that: 
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where Pr
a

=
�

is the Prandtl number of the fluid, 5 2a / ab r= pR g Qh c �  is the Rayleigh 

number and 2 2 2a /s r= oH B h �  is the Hartmann number. In fact, Pr is the ratio of 

momentum diffusivity to thermal diffusivity. Ra is a dimensionless number associated 

with buoyancy driven flow (also known as free or natural convection). When the 

Rayleigh number is below the critical value for a specific fluid, heat transfer is primarily 

in the form of conduction; when it exceeds the critical value, heat transfer is primarily in 

the form of convection. Furthermore, Ra is defined as the product of the Grashof 

number, Gr, describing the relationship between buoyancy and viscous forces in a fluid, 

and the Prandtl number of the fluid, i.e. Ra=GrPr. Hence, the Rayleigh number itself 

may also be viewed as the ratio of buoyancy and viscous forces times the ratio of 

momentum and thermal diffusivities. Finally, the Hartmann number (Ha) is the ratio of 

electromagnetic to viscous forces. 

Symbolizing the dimensionless coordinates, the dimensionless streamfunction 

and the dimensionless temperature as x, z, ø and T, respectively, the dimensionless 

equations (5.12) and (5.13) result in: 
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The boundary conditions at the horizontal walls are  
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( ) ( ) 021,21, =-= xx yy                           (5.16)

( ) ( ),1 2 , 1 2 0x x
z z

y y¶ ¶
= - =

¶ ¶

                          (5.17)

       
( ) ( ),1 2 , 1 2 0

T T
x x

z z

¶ ¶
= - =

¶ ¶
                                                         (5.18)

On the other hand, the boundary conditions at the vertical walls are  

           ( ) ( ) 0,,0 == zLz yy                                                          (5.19)

          
( ) ( ) 0,,0 =

¶
¶

=
¶
¶

zL
x

z
x

yy
                                                         (5.20)

          ( ) ( ) 0,,0 == zLTzT                                                          (5.21)

The symmetric nature of the flow and temperature fields with respect to the 

middle plane of the cavity, which is not affected by the Lorentz force, can also be 

described by the relations: 

),(),( zxLzx --= yy                                    (5.22)

),(),( zxLTzxT -=                                    (5.23)

Daniels and Jones (1998) discussed successively the order of magnitude of the 

Rayleigh number above which convection effects are significant in this flow. They 

showed that when Ra is of order of L
-1

, the temperature field due to conduction is

1
( )

2
T x L x= -

                                   (5.24)

no longer is valid. They introduced the scaled Rayleigh number Rs = Ra�L, which is of 

order of one as L��, a dimensionless parameter that is also used here. Moreover, from 

Eq. (5.14) follows that the magnitude of Ha
2
 is of order one, so that the magnetic field 

effects are competitive to the buoyancy effects. 

5.3 Analytical solutions with matched asymptotic expansions 

The main parameter of the present problem is � º L
-1

 << 1, where L is the aspect 

ratio of the cavity which is considered to be very large. The core flow covers most of 

the cavity and thus its solution depends on the length scales: 

,x L z zx = =                                 (5.25)

The streamfunction and the temperature fields can be expanded as L�� with respect to 

î, z in the form: 
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These expansions are substituted into the flow and energy equations (Eqs. 5.14a 

and 5.15a) and their boundary conditions (Eqs. 5.16 to 5.21) to obtain a system of 

coupled equations for the streamfunction and temperature for every order of magnitude 

of L. From the energy equation (5.15a) at order L
2
, L and 1 it is obtained, respectively: 
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From Eq. (5.14a) at order 1 and L
-1

 it is obtained, respectively: 
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The solution of Eq. (5.28) with the adiabatic boundary conditions 0 / 0¶ ¶ =T z at

z=± 0.5 is:

0 0( )T q x=                        (5.33)

where è0 is a function of î, independent of z. The solution of ø0 can be calculated from 

Eq. (5.31) with the boundary conditions 0 / 0y¶ ¶ =z at 0.5= ±z as: 

0 02
( )

a

sR
f z
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y q ¢=                                   (5.34)
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Based on ø0 and T0, the solution of Eq. (5.29) gives for T1: 
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and è1 is an arbitrary function of î that must be determined. 

From Eq. (5.32) with the boundary conditions 1
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From Eq. (5.30) for the energy at order one, integration in z and the use of 

boundary conditions 2 0
T

z

¶
=

¶
at 

1

2
z = ± it appears that the only consistent solution has 

to satisfy the following equation for è0: 
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where 
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The limit of am when Ha � 0 is a good test in order to check the equivalence of 

the current solutions with those obtained by Daniels and Jones (1998), therefore 

a 0

1
lim

120960
m

H
a

®
=

                                                         (5.42)

which is exactly the result without the magnetic field, as provided by Daniels and Jones 

(1998). For è0, the end wall boundary conditions indicate that: 

è0 = 0 at î = 0, 1                                                          (5.43)

The first integration of Eq. (5.40), taking into account the symmetry condition of 

the solution, gives: 
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2 2 2 2
m m s m m sy a R y a Rx x- é ùæ ö æ ö= - Û = -ç ÷ ç ÷ê úè ø è øë û

.

Using the term ym, with a further integration and using the boundary conditions of Eq. 

(5.44) gives: 
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From Eq. (5.31) the core streamfunction is given by 

m

m y
Ha

zfa

3

1
sinh
)(

2
2

2/1

0

-

-=y                                                          (5.48)

and the vertical velocity in the core region is given by 
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The core solution must be continued one stage further in order to determine the 

unknown function è1(î) which arises in the solution of T1 and is needed also for the 

determination of ø1. Thus, the solution of Eq. (5.30) for T2 provides the way of 

determining è1(î). Solving for T2 and using the symmetry condition of Eqs. (5.22, 5.23), 

Daniels and Jones (1998), proved for the hydrodynamic case that the only possible 

solution is è1(î) = C, where C is a constant related to the temperature of the end walls. 

Using the same type of analysis, one can prove that the same value for è1(î) is not valid 

for the MHD case. Finally, the core solution for the flow and temperature fields has 

been obtained in the form 
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Daniels and Jones (1998) concluded that for the hydrodynamic limit C is 

determined as C!"!2.2!#!10
-7

 Rs
2
, Rs�0.!This!approximation!corresponds!to!the!fact!that!

the flow near the end walls is dominated by conduction. 

The numerical simulations showed that the aforementioned function C, which 

serves in order to correct the core solution of the temperature field, must be revised in 

order to be also valid for larger Rayleigh number values. However, a relationship which 

describes the temperature field due to conduction, when Rs�0, already exists (Eq. 

5.24). Thus, the usage of C according to Daniels and Jones (1998) is not adequate in the 

present analysis since it is valid only for Rs�0, i.e. for pure conduction heat transfer. 

Furthermore, concerning the magnetohydrodynamic case, the contribution of the 

Lorentz force in the value of C must be considered. Therefore, numerical simulations 

were performed in order to assess the value of C for a range of Ra, Ha and Pr values. 
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5.4 Numerical simulation of MHD natural convection in an internally 

heated horizontal shallow cavity with OpenFOAM CFD library 

Natural-convection heat transfer of electrically conducting fluids such as liquid 

metals in enclosures has been the subject of several works as already mentioned in 

section 5.1. The purpose of the numerical models used in the majority of the studies was 

to determine the influence of the Grashof, Reynolds, Prandtl or Hartmann numbers on 

the flow and heat transfer. A common simplification in all these studies was the use the 

low-Rm (or quasi-static) approximation (Moreau, 1990, Davidson, 2001) instead of the 

full magnetic induction equations. It is reminded that the dimensionless magnetic 

Reynolds number Rm of the flow represents the ratio of advection to diffusion in the 

magnetic field. At the limit when Rm�0, magnetic diffusion dominates over 

convection, thus the fluid motion has no influence on the magnetic field distribution. 

Then, the latter can be calculated as if the fluid were at rest and the Lorentz force of the 

magnetic field can be evaluated through a damping term, which includes only the 

velocity and the external magnetic field. The magnitude of Rm in laboratory-scale 

experiments (e.g. molten metals) does not exceed the value of 10
-2

, and in industrial 

applications the value of several tenths, Moreau (1990). 

It is generally accepted in MHD natural-convection studies that Rm << 1, which 

allows overcoming the solution of the magnetic induction equation, thus resulting in a 

significant reduction of the equations to be solved and in reduction of the computational 

cost. Most works adopted the low magnetic Reynolds number approximation (low-Rm

model) for the simulations, without any further investigation of the validity of the model 

for the specific configuration and the range of operational parameters used. Sarris et al.

(2006) have assessed the limits of validity the low-Rm model for natural convection 

flows in a square cavity.  

Numerical simulations of buoyancy-driven flows in cubic enclosures subject to a 

static homogeneous magnetic field (Ozoe & Okada, 1989, Shigemitsu et al., 2003, 

Tagawa & Ozoe, 1997) have led to some interesting results. However, and despite their 

limited physical significance, investigations of two-dimensional flows, because of their 

simplicity, permit us to analyze in more detail the dependence of the flow on parameters 

of the problem which are varied in a relatively broad range.  
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5.4.1 The Low-Rm Approximation 

As it has already been mentioned, Ohm`s law can determine the electric current 

density. 

                                (3.8)

Assuming negligible perturbations for the electric and magnetic fields, Eq. (3.8) 

can be written as 

0 0( )s= + ´J E U B                                (5.52)

where E0 and B0 are the electric and magnetic fields, respectively, when the fluid is at 

rest. Moreover, due to the neglecting of displacement current, since 
D

t

¶
<<

¶
J  , the 

electric charge conservation 0Ñ× =J  implies that E0 is irrotational. Therefore, E0 can 

be expressed as j-Ñ× , where ö is the electrostatic potential. Thus, for a two-

dimensional cavity without externally supplied electric field, the divergence of Ohm�s 

law gives 
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                          (5.53)

where vx and vy are the fluid velocities in the x- and y-directions, respectively.  

As pointed out by Garandet et al. (1992), the harmonic equation for the electric potential 

( 2 0jÑ = ) in the case of enclosures with electrically insulating boundaries has a unique 

constant solution and thus the electric field vanishes everywhere. Then, the associated 

Lorentz force can be reduced to 2s ^- 0B v , where ^v is the velocity component 

perpendicular to the direction of B0. 

Considering the above, the momentum equation takes the following form: 

2 2

op B v
t

r m r b s ^

¶æ ö+ ×Ñ = -Ñ + Ñ - DT-ç ÷¶è ø

U
U U U g                     (5.54)

This form of the momentum equation, called low-Rm approximation, is 

commonly used in MHD natural-convection problems. The advantage of using this 

reduced model instead of the full MHD equations is mainly the reduced number of 
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equations required to be solved, resulting in less computational cost. The errors in the 

predictions based on this model will be presented and discussed below. 

5.4.2 Validation of the low-Rm and full MHD models applied in OpenFOAM 

First of all, in order to validate the low-Rm model applied in OpenFOAM, the 

results of Al-Najem et al. (1998) were compared with the present results by using 

OpenFOAM. Al-Najem et al. (1998) studied numerically the laminar natural convection 

in a tilted enclosure filled with an electrically conducting fluid. The horizontal walls of the 

cavity were perfectly insulated, while the vertical ones were isothermal with the left wall at 

high temperature TH and the right one at low temperature TC. The fluid was permeated by a 

uniform external magnetic field. The resulting convective flow is governed by the 

combined mechanism of the driving buoyancy forces and the electromagnetic retarding 

forces. The magnetic Reynolds number is assumed to be small so that the induced magnetic 

field produced by the motion of the electrically conducting fluid is negligible compared to 

the applied magnetic field B0. The flow is considered laminar and incompressible, with 

constant physical properties. The density variation is implemented only in the buoyancy 

force term according to the Boussinesq approximation. Pressure work, Joule heating and 

viscous dissipation are considered negligible. The flow configuration is illustrated in Fig. 

5.2. 

Fig. 5.2 Flow configuration of Al-Najem et al (1998) 

The system of governing equations in dimensionless form is as follows:

0Ñ× =U                               (5.55)
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Pr
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( ) ( )21

mR
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( )mR=Ñ´ = ´J B U B                               (5.59)

0Ñ× =B                             (5.60)

The dimensionless parameters of the problem are the Grashof number 

(Gr=gâÄTh
3
/v

2
), the Prandtl number (Pr=v/a), the magnetic Reynolds number (Rm=óìí)

and the Hartmann number (Ha=B0 h (ó/ñí)
-1/2

).  

In the case of the low-Rm model, the magnetic induction equation (Eq.5.58) is 

dropped. Then, the momentum equation (5.56) may be written as 

( )
22 2p Gr Ha ^×Ñ = -Ñ +Ñ + Q-U U U B U                                       (5.61)

Furthermore, the current density is obtained from the modified Ohm`s law  

( )s j= -Ñ + ´J U B                        (5.62)

while the electrostatic potential is obtained from Eq. 5.63 

( )2

0jÑ =Ñ× ´U B                                (5.63)

The non-dimensional quantities were derived using the enclosure height (h) as 

reference length, and the quantity v/h as reference velocity: 
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where ptot is the total pressure which includes both the mechanical and magnetic 

pressure. Then, the circumflex is neglected in order to simplify our study.  

The present OpenFOAM-based numerical model used the above low-Rm model 

equations together with the corresponding boundary conditions and a finite volume 

method. Specifically, the coupling between the momentum (Eq. 5.56) and continuity 

(Eq. 5.55) equations was performed by using PISO (Weller, 2004a&b, Jasak, 1996, 
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Weller et al., 1998). The nonuniform grid of 41x41 was adequate in this study as shown 

by Al-Najem et al. (1998). Further increase in the number of grids produced essentially 

the same results. For the present validation only the case with an enclosure angle 

inclination equal to 0 was selected. The flow configuration and the boundary conditions 

of the problem are illustrated in Fig. 5.3. 

Fig. 5.3 Flow configuration and boundary conditions of the present model 

The energy equation (Eq. 5.57) was handled according to the instructions 

provided in the Internet (http://openfoamwiki.net/index.php/How to add temperature to 

icoFoam). Concerning the numerical schemes, which were used in the simulations, 

central discretization was used for the laplacian and grad terms and gamma differencing 

for the convection terms, Jasac (1996). A finer distribution for the grid nodes close to 

the walls was used in both directions in order to resolve better the flow and Hartmann 

boundary layers and to predict efficiently the heat transfer at the side walls. 

Convergence was established when the sum of the absolute relative errors for each 

solved quantity in the entire flow field was less than 10
-7

. 

In general, the results of the present low-Rm model were in good overall 

agreement with those of Al-Najem et al. (1998) and Sarris et al. (2006). Specifically,

streamfunction contours and isotherms at the middle of a vertical cavity for a liquid with 

Pr = 0.733, Gr = 10
6
 and for various values of Hartmann were compared in Figs. 5.4 and 

5.5. The application of a transverse magnetic field results in a force opposing the fluid 

motion. This magnetic force becomes greater as the strength of the magnetic field 
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increases. Moreover, the conduction heat transfer mechanism becomes dominant as the 

Hartmann number is increased.  

For a better comparison between the results of low-Rm MHD model of Al-Najem 

et al. (1998) and those of the OpenFOAM CFD library, velocity profiles at the cavity 

mid-section for the case with Ha=10 and Gr=10
4
 are shown in Fig. 5.6. The present 

results are in good agreement with those of the Al-Najem et al. (1998). 

In addition, the same flow was computed applying the full MHD model with an 

Rm value equal to 10
-3

. The results are compared with those of Sarris et al. (2006) in 

Fig.5.7 showing a good agreement. In Fig. 5.8, the comparison of the mid-section 

velocity profile between the low-Rm and full MHD models applied in OpenFOAM at Ha

= 10 and Gr=10
4
 is shown. The full magnetic induction model with Rm = 10

-3
 predicts 

approximately 12.8% higher mid-section maximum velocity at y=0.06 where the 

maximum difference is located. Sarris et al. (2006) showed that there is an increasing 

difference between the solutions of the full MHD equations and low-Rm approximation 

with increasing the Hartmann number. This difference decreases for higher Grashof 

numbers, while for low Prandtl numbers like those of liquid metals, the difference 

increases. Moreover, Figs. 5.9 and 5.10 present temperature and velocity profiles at the 

mid-section of the cavity for different values of Ha at Gr=10
6
, using the low-Rm model, 

showing the influence of the Lorentz forces on retarding the fluid flow. 

 Finally, in order to demonstrate the validity of the low-Rm model, the values of 

the horizontal component of the dimensionless velocity Uc for both the model of Al-

Najem et al. (1998) and that of the OpenFOAM library, for several values of y, are 

illustrated in Table 5.1. In addition, Uc values for both the full MHD model by Sarris et. 

al (2006) and that of the OpenFOAM are presented in Table 5.2. As a last test, the effect 

of the choice of the magnetic induction model on fluid motion is demonstrated in Table 

5.3. For all the above cases discussed in this paragraph, the case Pr = 0.733, Gr = 10
4

and Ha = 10 was considered as a reference study. The last column in all Tables 

corresponds to the relative error between the two models studied in each Table. It is 

noticed that overall the error in all occasions is small.  
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Table 5.1 Comparison of the present low-Rm model calculations with those of Al-Najem et al. 

(1998) for the case of Pr=0.733, Gr = 104 and Ha=10 

y
Al-Najem et al. 

(1998)

low-Rm 

(OpenFOAM)

( ) ( )
100

( )

U Al Najem U OpenFOAMc ce
U Al Najemc

- -
= ×

-

0 0 0 0.000

0.06 -0.085 -0.086 1.176

0.11 -0.125 -0.122 2.400

0.175 -0.140 -0.135 3.571

0.25 -0.126 -0.121 3.968

0.325 -0.095 -0.098 3.158

0.412 -0.050 -0.048 4.000

0.56 0.034 0.033 2.941

0.63 0.075 0.074 1.333

0.72 0.110 0.110 0.000

0.83 0.135 0.135 0.000

0.92 0.105 0.104 0.952

1 0 0 0.000

Table 5.2 Comparison of the present full MHD model calculations with those of Sarris et al. (2006) for 

the case of Pr=0.733, Gr = 104 and Ha=10. 

y
Sarris et al. 

(2006)

full MHD

(OpenFOAM)

( ) ( )
100

( )

U Sarris U OpenFOAMc ce
U Sarrisc

-
= ×

0 0 0 0

0.06 -0.095 -0.097 2.105

0.11 -0.139 -0.137 1.439

0.175 -0.150 -0.151 0.667

0.25 -0.140 -0.135 3.571

0.325 -0.100 -0.099 1.000

0.412 -0.050 -0.048 4.000

0.56 0.037 0.036 2.703

0.63 0.078 0.077 1.282

0.72 0.127 0.123 3.150

0.83 0.155 0.151 2.581

0.92 0.115 0.116 0.870

1 0 0 0
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Table 5.3 Comparison of the full MHD calculations with those of low-Rm applied in OpenFOAM for the 

case of Pr=0.733, Gr = 104 and Ha=10. 

y
low-Rm 

(OpenFOAM)

full MHD

(OpenFOAM)
[ ] [ ]

100%

[ ]

U U
c low R c fullMHDm

e
U

c low Rm

--
= ´

-

0 0
0

0

0.06 -0.086
-0.097

12.791

0.11 -0.122
-0.137

12.295

0.175 -0.135
-0.151

11.852

0.25 -0.121
-0.135

11.570

0.325 -0.098
-0.099

1.020

0.412 -0.048
-0.048

0.000

0.56 0.033
0.036

9.091

0.63 0.074
0.077

4.054

0.72 0.110
0.123

11.818

0.83 0.135
0.151

11.852

0.92 0.104
0.116

12.539

1 0
0

0
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5.5.3 Numerical study of the two-dimensional MHD natural convection flow in an 

internally heated horizontal shallow cavity 

The next step was to implement the low-Rm model for the case of the two 

dimensional MHD natural convection flow in an internally heated horizontal shallow 

cavity which was analyzed in detail in the beginning of this chapter.  

The flow configuration and the boundary conditions are shown in Fig. 5.1 while

the grid which was used (one quarter because of symmetry) is shown in Fig. 5.11. 

Fig. 5.11 One fourth of the grid used for the 2-D MHD natural convection flow 

More specifically, the system of dimensionless governing equations is:

0Ñ× =u             (5.65a)

( ) 2 2Pr Pr Prp Ra T Ha
t

¶
+ ×Ñ = -Ñ + Ñ + + ´

¶
u

u u u J B
          (5.66a)

( ) 2 1
T

T T
t

¶
+ ×Ñ =Ñ +

¶
u

        (5.67a)

2 ( ) 0fÑ =Ñ× ´ = × =u B B �              (5.68a)

0Ñ =J             (5.69a)

= -Ñj+ ´J u B             (5. 70a)

The nondimensional quantities were derived using the enclosure height (h) as 

reference length. Thus, the nondimensional quantities are the following: 

The procedure in order to make the governing equations dimensionless was as 

follows: 

hÑ =ÑhÑ =Ñ 2 2 2hÑ =Ñ2 2 2h2 2 2 r=p p a 0/j j a= B/j j a0/B//j //

0/= 0/= BB B 0h /s a= Bh /= Bh /ssJ J 0( ) /Q= T-T DT

2h /DT =Q k h/= h/= aU U
2/t ta h= 2/t ta h/               (5.71)
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Continuity equation 

1
0 0 0

h h

/ /Ñ× = Þ Ñ× = ÞÑ× =
/ /

0 000
a

U U U                (5.65b)

Momentum equation 

( )

( )

2

0

2

2 2

22
2 0

2 2

1 1
( )

1

1 1 1 1

b
r r

sr
b

r r

¶
+ ×Ñ = - Ñ + Ñ + - + ´ Þ

¶

¶
Þ + ×Ñ =

¶
B/- Ñ + Ñ + QDT+ ´ Þ

/

(
2 1 )×Ñ =)(2

+ (2

01 12 ss 0Ñ Ñ +21 11 2 s
bb

B
2

Ñ
2

1
+ Ñ

2

1

(( 0) Bs 0

2
×Ñ = -Ñ) sb B)Ñ) + Ñ2+ Ñ2( )+ ×Ñ( )×Ñ)

(( ) 0sBs) 0

2

b B)Ñ) + Ñ2+ Ñ2( )+ ×Ñ( )×Ñ)

(( ) 2 2×Ñ = -Ñ + Ñ + Q+ ´) 2 2Pr PrPr2 2)Ñ) + ÑPr 2+ Ñ2PrPr 2( )+ Ñ( )Ñ)
p

hv g Qh v v
p

t a a k v a v

hv g Qh v v
p

t a a C v a v a

p Ra Ha
t

U
U U U J B

U
U U U J B

U
U U U J B

(5.66b)

Energy equation 

( )

( )

( )

( ) ( )

2

2 2 2
2

2 2

2 2 2
2

2 2

2 2

1 1

1 1

1

r

r

r

¶
+ ×Ñ = Ñ + Þ

¶

¶Q
Þ + ×Ñ Q = Ñ Q+ Þ

¶

/ / /¶Q/ / / /Þ + ×Ñ Q = Ñ Q+ Þ
/ / / /¶

¶Q ¶Q/ / / /Þ + ×Ñ Q = Ñ Q+ Þ + ×Ñ Q =Ñ Q+
/ / / /¶ ¶

21)×Ñ Q = Ñ Q+ Þ) 2) 1)

/2/1)×Ñ Q = Ñ Q+ Þ) 2) / //) 2/) 1)

( ) 2( ) 1
¶Q) 2×Ñ Q = Ñ Q+ Þ + ×Ñ Q =Ñ Q+) ( )2 22 2( )//) 2) 2

p

p

p

T Q
T a T

t C

QH a a Qh Qh Q
a

k h t h h k h k C

Qh a a Qh Qh Q
a

k h t h h k h k C

a a a a

k t k k k t

U

U

U

U U

   (5.67b)

Potential equation 

2 2

0 02

2

1 1
( ) ( )

( ) 0

a
B a B

h h h
f f

f

/Ñ = Ñ× ´ Þ / Ñ = / Ñ× ´ Þ/
/ / /

ÞÑ =Ñ× ´ =

u B u B

u B

1 /aa
(22

00

22 aaa1
00

1
)Þ)Þ)))

2 Ñ (Ñ2 ((((( )))
(5.68b)

01
0 0 0

h h

sB a/ //Ñ = Þ Ñ = ÞÑ =
/ /

j j j 0j 000 0j j00
(5.69b)
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Ohm`s law: 

          

( )

( )0 0

h h

= s -Ñj+ ´ Þ

sB a sB a/ // // /Þ = -Ñj+ ´ Þ
/ /

Þ = -Ñj+ ´

J u B

J u B

J u B

( )aB aa0sB0ss (aa00= -Ñj(0a/a000 j+j+ )j++ ´ Þ)Þ´ Þ)´ )Þ)B´́

J = -Ñjj+j+j+ B´B´

                                                                          

                                                      (5.70b)

Then, the circumflex is neglected for simplicity. Hence, the equations 5.65b to

5.70b reduce to equations 5.65a to 5.70a which are presented above.  

As far as the numerical process is concerned, Eqs. (5.65)-(5.67) together with 

the boundary conditions, which are illustrated in Fig. 5.1, are solved by using a finite 

volume technique based on the transient pressure-velocity coupling algorithm PISO, 

Issa (1986). PISO relies on the splitting of the solution process into a series of steps 

where operations on pressure are decoupled from those on velocity at each step. 

Moreover, Gaussian integration was used in order to sum the values on cell faces. 

Concerning the numerical schemes which were used in the simulations, the Crank-

Nicolson scheme was used for the transient terms, central discretization for the laplacian 

and grad terms and gamma differencing for the convection terms (see Jasac (1996)). At 

each step, the solution is iterated until the residuals of the mass, momentum, 

electrostatic potential and temperatures equations become smaller than 10
-7

. Finally, the 

in-house MHD numerical model used the conjugate-gradient method, with incomplete 

Cholensky preconditioning (ICCG) (Jacobs (1980)), in order to solve the symmetric 

matrices and the Bi-CGSTAB method (Van der Vost (1992)) for the asymmetric 

matrices.  

A nonuniform and second order finite volume staggered grid of 400x80 lines in 

the horizontal and vertical directions, respectively, with a finer distribution of nodes 

close to the walls was considered adequate for the present study. Special attention to the 

distribution of grid lines was given because the Hartmann boundary layers are narrow 

and must be adequately covered by the numerical grid. A fruitful discussion for the 

thickness of Hartmann layers in buoyancy-driven convection flows could be found in 

Alboussiere et al. (1993). The simulations were carried out in the CFD library 

OpenFOAM and the solutions were compared with the analytical ones. 

5.5.4 Comparison of the analytical and numerical solutions 

In this section the core solutions which were obtained by using the method of the 

matched asymptotic expansions (subchapter 5.3) are compared with the numerical ones 
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which cover also the regions in the vicinity of the vertical walls. The comparisons are 

limited only for low scaled Rayleigh numbers and for the indicative values Rs=200,

3000 and 5000 and for a range of Hartmann numbers from 0 to 50. Finally, the cavity 

aspect ratio was equal to 5 similar to Daniels and Jones (1998) analysis. 

Concerning, the numerical analysis, the differences in the temperature fields for 

the same Ha and Rs numbers are proven to be almost independent of the Prandtl number 

used for large Ha or small Rs. The maximum differences between the temperatures 

profiles of different Pr arise for convective flows, i.e. for small Ha and large Rs.

However, these differences seem to diminish by increasing Ha (or decreasing Rs) as 

indicated by the results of Figs. 5.12a to 5.12c where, for brevity, only temperature 

profiles for Rs=3000 and Ha=5, 15 and 50 are presented.  

Thereon, only numerical results for Pr=0.7 were selected to be compared with 

the analytical ones. In Figs. 5.13 and 5.14 the analytical temperature profiles è0 are 

shown for a range of different values of Ha and Rs. The maximum fluid temperature is 

located, as expected, in the middle of the cavity while both Ha and Rs can influence 

notably the heat transfer mechanism. More specifically, as Ha decreases, convection 

dominates and the upward motion in the double cell becomes stronger in the core 

region. On the contrary, when Ha increases (or Rs decreases) the profiles coincide, 

indicating that the dominant mechanism of heat transfer is conduction. The comparison 

of the analytical temperature profiles with those of the low-Rm numerical model 

demonstrates the initial hypothesis that the method of the matched asymptotic 

expansions is valid only for low Rs. 

Furthermore, the numerical results show that the function C in Eq. (5.51)

depends on L, Rs and Ha, as follows: 

{ }8 2 5 4 0.11
3 10 25 10 6 10 Ha

s sC R R e
L

- - - -» - × + × + ×                (5.71)

Considering this approximating value of C for the core region of the flow the 

errors between the numerical and the analytical results become very small. Table 5.4 

indicates that the values of T at î=1/2 and z=0 for Pr=0.0321, Pr=0.7 and Pr=7 are the 

same for low Rs, while the error is larger for higher values of Rs, especially for 

Pr=0.0321. Thus, the initial assumption, that the temperature profiles are independent of 

the Prandtl number, seems not to be valid for convective flows. The error between the 

analytical and numerical results diminishes as Ha increases regardless the value of Rs.
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The relative error for each case is defined as 100x(T0penFOAM- TAnalytical)/ T0penFOAM.

Table 5.4 demonstrates again that the analytical solution for temperature is more 

accurate for combinations of low Rs and large Ha values.  

Table 5.4 Values of both analytical and numerical temperatures at �=1/2 and z=0, for various 

combinations of Ha and Rs and Pr. 

Rs TAnalytical 

TOpenFOAM

Pr=0.0321
Error 

(%)
Pr=0.7 Error (%) Pr=7 Error (%)

Ha=0

200 3.134 3.110 -0.77 3.110 -0.77 3.110 -0.77

3000 2.263 2.491 9.15 2.253 -0.44 2.252 -0.49

5000 1.905 2.262 15.78 1.909 0.21 1.908 0.16

Ha=5

200 3.138 3.118 -0.64 3.118 -0.64 3.118 -0.64

3000 2.437 2.590 5.91 2.510 2.91 2.508 2.83

5000 2.052 2.326 11.78 2.172 5.52 2.170 5.44

Ha=15

200 3.135 3.123 -0.38 3.123 -0.38 3.122 -0.42

3000 3.023 3.011 -0.40 3.009 -0.47 3.010 -0.43

5000 2.805 2.865 2.09 2.862 1.99 2.863 2.03

Ha=30

200 3.127 3.123 -0.13 3.123 -0.13 3.122 -0.16

3000 3.124 3.111 -0.42 3.111 -0.42 3.010 -0.45

5000 3.085 3.088 0.10 3.088 0.10 2.863 -7.75

Ha=50

200 3.125 3.125 -0.00 3.123 -0.06 3.123 -0.06

3000 3.124 3.120 -0.13 3.120 -0.13 3.120 -0.13

5000 3.118 3.119 0.03 3.116 -0.06 3.116 -0.06

According to Daniels and Jones (1998), an average Nusselt number for the 

system based on the heat transfer through the end wall at x=0 relative to the maximum 

difference in the cavity can be estimated from:

1/2

1/2
0

1 1 1
(0, ) ,

1 1 1 1 1
, 2 , 2

2 2 2 2 2

avNu z dz L

T L T L L

T

q
x-

= = ®¥
¶

=
¶æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷
è ø è ø è ø

ò      

(5.72)

The appropriateness of Eq. (5.72) was assessed by the present results showing that 

the analytical average Nusselt numbers, Nuav, were in good agreement with the 

numerical ones. This is confirmed in Figs. 5.15a and 5.15b where the analytical and the 

numerical values of the average Nusselt numbers are compared. The differences in the 

analytical and numerical solutions are small especially for the smaller Rs and larger Ha 

numbers, where the values of the average Nusselt number were the smallest indicating 
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the domination of conduction heat transfer. The errors increase for bigger Rs and lower 

Ha number but in any case the differences are limited and not significant.  

Figure 5.15a shows also that as Ha increases the average Nusselt number 

decreases exponentially approaching the limiting value 0.8 of heat conduction. This 

indicates again that the increase of Hartmann number reduces the contribution of 

convection heat transfer while the variation of Rs can also influence significantly the 

fluid heat transfer. Fig. 5.15b shows that as Rs increases, Nuav also increases because 

convection heat transfer starts dominating. Conversely, when Rs diminishes Nuav

decreases indicating that heat conduction dominates. 

The above relation of Rs and Ha to the dominant heat transfer process is also 

demonstrated in Figs. 5.16 and 5.17, where the local Nusselt,
1/2

1/2

(0, )lNu z dz
T

x-

=
¶
¶ò , is 

presented. It is observed that heat conduction is predominant near the horizontal walls, 

while within the cavity there is no pure heat transfer mechanism. It is shown again that 

for large values of Ha (or small values of Rs) heat conduction is dominant. As a 

consequence in these cases, the profiles are almost perpendicular to the horizontal 

adiabatic walls and near the axis z=0. 

While the analytical solution of the streamfunction cannot be applied near the 

walls, it is in good agreement in the core region of the cavity as shown in Figs. 5.18 and 

5.19. The numerical results also show that the symmetry boundary condition of Eq. 5.22 

is valid for both hydrodynamic and magnetohydrodynamic flows. Furthermore, Figs. 

5.20a and 5.20b show that the maximum value of the analytical core stream function, 

ø0,max increases with increasing Rs, whereas ø0,max decreases for stronger external 

magnetic field. This remark, however, has no physical meaning since the true value of 

maximum stream function at î=0, L is always equal to zero as the numerical results 

confirmed.  

The analytical solutions of the velocity profiles seem to be valid for low Rs and 

large Ha values as can be seen in Figs. 5.21 and 5.22. However, the analytical solutions 

for the core velocity cannot approach, as expected, the negative values of the vertical 

velocity near the vertical walls which indicate the downward fluid motion in this region. 

Figs. 5.21 and 5.22 indicate again that convection becomes stronger as Rs increases or 

Ha decreases.  
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The deceleration of the fluid flow and the heat transfer process is clearly 

illustrated in Figs. 5.23 and 5.24 where the temperature and streamlines contours are 

shown. Fig. 5.23 shows the aforementioned contours for Ha = 5 and for scaled Rayleigh 

numbers equal to 200, 3000 and 5000 whereas Fig. 5.24 shows the contours for Rs =

3000 and for Hartmann numbers equal to 5, 15 and 50. A physical explanation of Figs. 

5.23 and 5.24 has as follows. 

 Heat production generates temperature gradients in the cavity, thus it further 

increases the effect of buoyancy in the flow arrangement. As a consequence, as Rs

increases the temperature isolines became curved upwards  indicating the tendency of 

the hot material to occupy the upper portion of the cavity which is demonstrated also by 

the temperature field distribution which acquires its maximum value at î = 1/2, z = -1/2. 

As the effect of the buoyancy diminishes, by increasing the external magnetic field or 

by decreasing the heat production, the temperature isolines become nearly parallel to the 

magnetic field and the temperature field distribution seems to be horizontally stratified 

indicating that conduction is the predominant heat transfer mechanism. In addition, the 

streamlines indicate that as the buoyancy is intensified the upward motion in the double 

cell becomes significantly stronger at the middle of the horizontal cavity. Also the value 

of the streamfunction is increased as convection dominates as it has already been 

mentioned. 

The symmetric fluid circulation becomes complicated at large Rayleigh 

numbers. Moreover, instabilities are expected to arise at sufficiently large Rayleigh 

numbers similar to the analysis of Hart (1972) who investigated the instabilities in 

laterally heated cavities. 

In brief, all the analytical results were in good agreement with the numerical 

ones for the range of Rs, Pr and Ha numbers studied. The maximum errors arise for the 

convection dominated flows whereas for small Rayleigh numbers and large values of 

external magnetic field the errors are minimized. From the numerical simulations, the 

value of the constant C for the temperature core solutions was estimated, thus, 

improving the accuracy of the analytical results. 

An important finding of the numerical results is the circulating fluid motion near 

the end walls. For the analytical solutions, the fluid motion at the end walls must be 

considered separately, and serves in order to determine the value of C. In the 

hydrodynamic limit, Wang and Daniels (1994) developed a methodology to deal with 

the end region flow based on the work of Cormack et al. (1974) for Rs�0 and the works 
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of Pohlhausen (1921) and Ostrach (1952). The global expansions must be replaced by 

local expansions in those regions that describe the turning motion. The solution of the 

end wall regions was discussed separately by Daniels and Jones (1998) and their 

analysis was based on matching the global with the local expansions at the interface. It 

should be noted that although the nonlinear buoyancy effects are important at the end 

walls, the heat source term is too small to contribute and, thus, the flow is driven by the 

thermal gradient and the recirculating flow of the core.  

5.5.5 Conclusions 

The method of the matched asymptotic expansions was used in order to study 

laminar steady two-dimensional MHD natural convection of an electrically conductive

fluid in a horizontal internally heated shallow cavity for a range of Prandlt, Rayleigh 

and Hartmann numbers. This analysis is valid for large cavity aspect ratios and low 

Rayleigh numbers. In addition, numerical simulations were carried out by using in-

house numerical models in order to verify the analytical core solutions and to 

characterize the fluid motion near the vertical walls.  

The resulting flow consists of a symmetric double-cell Hadley circulation with 

the fluid ascending in the center of the cavity and descending in the regions near the 

vertical walls. For low Rayleigh numbers (i.e. low internal heating) or high Hartmann 

numbers (i.e. strong external magnetic fields), conduction heat transfer dominates 

resulting in a horizontally stratified flow. As the Rayleigh number increases and the 

Hartmann number decreases, non-linear convective effects become important and 

modify the stratification.  

Both the analytical and numerical results demonstrate that the fluid is 

decelerated by the external magnetic field leading to the dominance of conduction over 

convection and, therefore, reducing the heat transfer. As a consequence, the fluid 

temperature is kept high and, thus, the vertical walls lose their ability to cool the 

enclosed fluid. While the core flow features remain the same, low magnetic fields lead 

to non-linear effects at higher Rayleigh numbers. The present study, however, is limited 

to laminar flows before any unstable convection or multicellular flow structures 

develop. 

The comparison between the numerical and analytical results showed, as 

expected, that the latter are not accurate for convective flows. Nevertheless, they are in 

good agreement for combinations of low Rayleigh and large Hartmann numbers. 
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Finally, instabilities are expected to arise at sufficiently large Rayleigh numbers but it is 

not clear to what extent any instability will exist, since the present work deals only with 

low Rayleigh numbers ensuring laminar flow.  

Although the present analysis is limited to two-dimensional flows and cannot 

also handle the downward fluid motion near the vertical walls, it permits a detailed 

assessment of the effect of Prandtl, Rayleigh and Hartmann numbers on the flow field. 
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CLOSURE�AND�FUTURE�WORK�

The main objective of the present thesis, which was to study MHD natural 

convection flow in shallow cavities due to internal heat analytically by means of 

matched asymptotic expansions, was successfully fulfilled. Moreover, in the limits 

where the magnetic field vanishes, the results were the same as those of Daniels and 

Jones (1998). The present study was limited to laminar flows before any unstable 

convection or multicellular flow structures develop. It is hoped to investigate the 

stability properties of the internally heated system in future work. 

The numerical simulations for the purpose of this thesis were carried out by 

using in-house numerical models within the OpenFOAM CFD library. The governing 

equations together with the boundary conditions were solved using the control volume 

method. Furthermore, a finer distribution of the grid nodes close to the walls was 

implemented in order to better resolve the flow inside the boundary layers.

Concerning the validation of the numerical models, the low-Rm model, which 

ignores the induced magnetic field produced by the motion of the electrically conducting 

fluid, was successfully compared with the work of Al-Najem et al. (1998). Then, the full 

MHD model was at first validated using the work of Orszag and Tang (1989), and after 

adding the energy equation and the Boussinesq approximation, with Sarris et al. (2006). 

The development of this validated full MHD numerical model, which is capable 

to deal with MHD natural convection flows, could be useful in order to compare a 

number of numerical simulations, which have been carried out in the past using the low-

Rm approximation, pointing out the errors and revealing some interesting physics. 

Finally, the transition from laminar to turbulent flows of electrically conducting 

fluids in cylinder and toroidal geometries, for the purpose of simulating the transport 

phenomena within blankets, which are used in TOKAMAK fusion devices, is going to 

be the subject for the author`s futu er  researc esh . Except from the finite volumes 

method, which was analyzed in detail, other approaches will be used such as spectral 

methods for better accuracy of the numerical simulations. 

 Furthermore, cooling process of low-Pr fluids and how they are affected by a 

uniform magnetic field will be investigated. The above processes are of great interest, 

for example in the case of an accident in nuclear plants.  
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Appendix�

A. Orszag-Tang vortex 

Fig. 4.3 Initial distribution of the Orszag-Tang problem using a 512x512 grid: (a) Velocity and (b) 

Magnetic field 

 

(a)

 

(b) 

 

 
(c) 

 
(d) 

Fig. 4.4 Distributions of the Orszag-Tang problem at t=1 using a 512x512 grid: (a) Velocity field, (b) 

Magnetic field, (c), Current density and (d) Vorticity 

 
(a)

 
(b) 
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Fig. 4.5a Distributions of the Orszag-Tang problem at t=1 using a 512x512 grid: (a) Velocity field, (b) 

Magnetic field, (c) Current density and (d) Vorticity from 0 to 1 with a 0.2 time step 
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Fig. 4.5b Distributions of the Orszag-Tang problem at t=1 using a 512x512 grid: (a) Velocity field, (b) 

Magnetic field, (c) Current density and (d) Vorticity from 1.2 to 2 with a 0.2 time step 
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Fig. 4.6 Evolution of kinetic, magnetic and total energy for �=�=0.02 using a 512x512 grid 
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B. Magnetohydrodynamic natural convection in a differentially heated shallow 

cavity with transverse magnetic field (numerical results) 

Al-Najem et al. (1998) OpenFoam (low-Rm)

Ha=0

Ha=15

Ha=50

   

Fig. 5.4 Profiles of the streamfunction field for various values of Ha and Gr=106. OpenFOAM  ̀s profiles 

represent the streamfunction in the middle area of the cavity 
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Al-Najem et al. (1998) OpenFoam (low-Rm)

Ha=0

Ha=15

Ha=50

Fig. 5.5 Comparison between the isotherms conducted by Al-Najem et al (1998) 

and OpenFOAM for various values of Ha at Gr=106
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Fig. 5.6 Comparison of the midsection velocity between the present low-Rm model and Al-Najem 

et. Al (1998) at Ha=10 and Gr=104 

Fig. 5.7 Comparison of the midsection velocity between the present full MHD model and Sarris 

et. al at Ha=10 and Gr=104

Fig. 5.8 Comparison of the midsection velocity between the low-Rm and full MHD models 

applied in OpenFOAM at Ha=10 and Gr=104
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Fig. 5.9 Velocity profiles at the midsection of the cavity for different values of Ha at Gr=106 with

the low-Rm model applied in OpenFOAM

Fig. 5.10 Temperature profiles at the midsection of the cavity for different values of Ha at 

Gr=106with the low-Rm model applied in OpenFOAM
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C. Two dimensional magnetohydrodynamic natural convection flow in an 

internally heated shallow cavity (comparison of the analytical and 

numerical results)   

(a) Ha=5 (b) Ha=15

(c) Ha=50 

Fig. 5.12 Temperature profiles obtained by the low-Rm numerical model for Pr=0.0321, 0.7 and 7, and 

Rs=3000: (a) Ha=5, (b) Ha=15, (c) Ha=50 
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(a) Ha=0 (b) Ha=5

(c) Ha=15 (d) Ha=30

(e) Ha=50

Fig. 5.13 Core temperature profiles for various values of Rs: (a) Ha=0, (b) Ha=5, (c) Ha=15, (d) 

Ha=30, (e) Ha=50 
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(a) Rs=200 (b) Rs=1000

(c) Rs=3000 (d) Rs=5000
Fig. 5.14 Core temperature profiles for various values of Ha: (a) R s=200, (b) Rs=1000, (c) Rs=3000, (d) 

Rs=5000 

(a) (b)

Fig. 5.15 Variation of the average Nusselt number with (a) Rs and (b) Ha 
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(a) Ha=0 (b) Ha=5

(c) Ha=15 (d) Ha=30

(e) Ha=50

Fig. 5.16 Distribution of the local Nusselt number for various values Rs: (a) Ha=0, (b) Ha=5, (c) Ha=15, 

(d) Ha=30, (e) Ha=50 
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(a) Rs=200 (b) Rs=1000

(c) Rs=3000 (d) Rs=5000
Fig. 5.17 Distribution of the local Nusselt number for various values of Ha: (a) Rs=200, (b) 

Rs=1000, (c) Rs=3000, (d) Rs=5000 

 

101



(a) Ha=0 (b) Ha=5

(c) Ha=15 (d) Ha=30

(e) Ha=50

Fig. 5.18 Distribution of the core streamfunction �0 at mid-cavity height (z=0) for various values of Rs:

(a) Ha=0, (b) Ha=5, (c) Ha=15, (d) Ha=30, (e) Ha=50
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(a) Rs=200 (b) Rs=1000

(c) Rs=3000 (d) Rs=5000

Fig. 5.19 Distribution of the core streamfunction �0 at mid-cavity height (z=0) for various values of Ha: 

(a) Rs=200, (b) Rs=1000, (c) Rs=3000, (d) Rs=5000 

(a) (b)

Fig. 5.20 Distribution of the maximum analytical core streamfunction �0 for various values of (a) Rs and 
(b)Ha 
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(a) Ha=0 (b) Ha=5

(c) Ha=15 (d) Ha=30

(e) Ha=50

Fig. 5.21 Distribution of the vertical velocity at mid-cavity height (z=0) for various values of Rs : (a) 

Ha=0, (b) Ha=5, (c) Ha=15, (d) Ha=30, (e) Ha=50 
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(a) Rs=200 (b) Rs=1000

(c) Rs=3000 (d) Rs=5000

Fig. 5.22 Distribution of the vertical velocity at mid-cavity height (z=0) for various values of 

Ha: (a) Rs=200, (b) Rs=1000, (c) Rs=3000, (d) Rs=5000 
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Rs Temperature contours Streamlines contours
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Fig. 5.23 Temperature and streamlines contours for Ha=5 and Rs=200, 3000 and 5000 

Ha Temperature contours Streamlines contours

5

15

50

Fig. 5.24 Temperature and streamlines contours for Rs=3000 and Ha=5, 15 and 50 
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