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Abstract 

 In 2012 the net world electricity generation was 21.56 trillion kilowatt hours. 

Photovoltaics only accounted for only 0.1 trillion kilowatt hours, less than 1 % of the total 

power. Recently there has been a push to convert more energy production to renewable sources. 

In recent years, a great deal of interest has been shown for dye sensitized solar cells. These 

devices use inexpensive materials and have reported efficiencies approaching 12% in the lab. 

Here methods have been studied to improve upon these, and other, devices. Different approaches 

for the addition of gold nanoparticles to TiO2 films were studied. These additions acted as 

plasmonic and light scattering enhancements to reported dye sensitized devices. These 

nanoparticle enhancements generated a 10% efficiency in device performance for dye sensitized 

devices. Quantum dot (QD) sensitized solar cells were prepared by successive ionic layer 

adsorption and reaction (SILAR) synthesis of QDs in mesoporous films as well as the chemical 

attachment of colloidal quantum dots using 3-mercaptopropionic acid (3-MPA). Methods of 

synthesizing a copper sulfide (Cu2S) counter electrode were investigated to improve the device 

performance. By using a mesoporous film of indium tin oxide nanoparticles as a substrate for 

SILAR growth of Cu2S catalyst, an increase in device performance was seen over that of devices 

using platinum. These devices did suffer from construction drawbacks. This lead to the 

development of 3D nanostructures for use in Schottky photovoltaics. These high surface area 

devices were designed to overcome the recombination problems of thin film Schottky devices. 

The need to deposit a transparent top electrode limited the success of these devices, but did lead 

to the development of highly ordered metal nanotube arrays. To further explore these 

nanostructures depleted heterojunction devices were produced. Along with these devices a new 

approach to depositing lead sulfide quantum dots was developed. This electrophoretic deposition 

technique uses an applied electric field to deposit nanoparticles onto a substrate. This creates the 

possibility for a low waste method for depositing nanocrystals onto nanostructured substrates.  

 

 Keywords: quantum dots; solar cells; gold nanowire arrays; electrophoretic deposition; 

SILAR 
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Chapter 1 Introduction and background 

1.1 Energy 

With an increasing demand for power, there is an increasing demand to produce it. In 

2012 the global energy consumption was 549.28 quadrillion British thermal units (qBtu). Of this 

63.77 qBtu came from renewable sources such as hydrothermal, solar, and wind.1 Of the 

renewables, solar is less than 1% of the power produced.2 Renewable energies are defined as 

those coming from naturally replenishing resources on a human timescale.3 The source with the 

highest potential for growth of these sources is solar. The sun produces 120,000 terawatts of 

energy, or 6000 times the amount currently consumed globally.4 An alternative to utilizing 

renewable energies would be to sequester the approximate 25 billion metric tons of CO2 

emissions annually, or the equivalent to the volume of Lake Superior.5  

1.2 Solar devices 

 While solar devices currently supply less than 1% of renewable energy, they receive 53% 

of the investments.2-3 Solar cells, also known as photovoltaics, absorb light and convert it into 

electricity. The commercial costs for these devices are higher upfront than traditional methods, 

but have lower long-term operating costs.6 Solar cells are currently divided into four 

generations.7 

 The first generation are the crystalline silicon (c-Si) photovoltaics.8 These devices are 

based on high purity silicon doped to create pn-junctions. These are the devices currently being 

used in solar farms and on the roofs of homes. While these commercial cells have efficiencies of 

15-21% depending on quality, they require a large amount of energy to produce. These are the 

most widely studied.3, 8-9 

 The second-generation devices are the thin film technologies. These include 

hydrogenated amorphous silicon (a-Si:H)10-11, cadmium telluride (CdTe)12-14, and copper indium 

gallium diselenide (CIGS)15-17 With better light absorption abilities than c-Si devices, this 

generation requires less material for similar results and therefore costs less. These devices have 

reported efficiencies of 12-15%7 but suffer from high sensitive to water and oxygen. They also 

contain toxic and scarce materials. 
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 The third-generation devices are multi-junction devices. These devices are very costly 

and complex. There are no commercial cells available, but are studied for applications where 

cost is less of a factor than performance. Such as in space. Laboratory efficiencies are reported to 

reach 46%.3, 7, 18 

 The final, and current, generation are the “emerging photovoltaics”. These are devices 

that utilize nanostructures and lower cost materials.9 The most widely known of these devices are 

the dye sensitized solar cells (DSSC).4, 19-39 Also included are quantum dot (QD) solar cells,6, 40-

51, perovskite devices,3, 52 and organic polymer devices.53 According to the National Renewable 

Energies Laboratory (NREL) best research-cell efficiencies chart, these newer devices have 

efficiencies from 10-12%.18 

1.3 Fundamentals of device testing 

 To test devices in the lab they are connected to a variable voltage source, illuminated 

under A.M. 1.5 light (1000 W/m2)35, and the photo induced current is measured. The current per 

area is then graphed against the applied bias. This is known as a J-V curve. Figure 1.1 is a 

sample curve with important points labeled.  
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Figure 1.1 Sample J-V curve labeled with shunt resistance (RSH), series resistance (RS), maximum power (Pmax), 

theoretical power (PTheo.), short-circuit current density (JSC), and open circuit voltage (VOC) 

 

From the curve the first data point is the open circuit current density or Jsc. This is the maximum 

current output for the device per area. The point the curve crosses the x-axis is the open circuit 

voltage or Voc. This is the maximum voltage of the device. Together these are the theoretical 

maximum power of the device (PTheo). The inverse slope of the top part of the graph is the 

device’s short circuit or shunt resistance (RSH). The inverse slope of the side of the graph is the 

transport or series resistance of the device (RS) or the resistance of the electron’s pathway in the 

device. The maximum power (Pmax) is found using a power vs voltage curve (Figure 1.2). 
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Figure 1.2 Graph of device power as a function of applied voltage with maximum device power (Pmax) labeled 

 

The efficiency of the device is the ratio of Pmax/Pin where Pin is the power input. The last piece of 

information obtained using a J-V curve is the fill factor (FF). This is the ratio of Pmax/PTheo and is 

used as a measure of the “squareness” or how close a curve is to ideal. 

1.4 Dye sensitized solar cell fundamentals 

 Dye sensitized solar cells begin as a transparent conductive oxide (TCO). This is a piece 

of glass coated on one side with indium tin oxide (ITO) or fluorine tin oxide (FTO) to make it 

conductive. To this a film of titanium dioxide (TiO2) particles is deposited and sintered to create 

a pathway for injected electrons and adhere it to the TCO. This film then has a dye attached to 

the surface. This dye can be a naturally occurring dye like those found in berries,38 or one 

specifically designed for this purpose.35, 54-56 The sensitized substrate is then sealed to the 

catalytic cathode using a thermoplastic, or held together with binder clips. This cathode is often a 

thin layer of platinum, but can also be carbon57-59, or copper zinc tin sulfide (CZTS).3, 60 The gap 

between the contacts is then filled with a redox mediator. This is most commonly an I-/I3
- 

electrolyte,20, 22, 25-28, 30-31 but can also be a cobalt complex,4, 35 or a solid hole transporter.19 

 As a photon of light enters the device an electron in the dye is excited. This electron is 

then injected into the conduction band of the TiO2 film and out of the device to do work. The dye 
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is then returned to the ground state by redox mediator, which is then in turn recovered by the 

catalytic cathode.  

 

Figure 1.3 Cartoon of DSSC band diagram showing electron path started excitation in the dye, injection into the 

TiO2 film, through a circuit to the catalyst, reduction of the electrolyte, ending with regeneration of the dye 

 

 Yella et. al reported dye sensitized devices of 12.1% using a cobalt based electrolyte and 

porphyrin dye.35 The authors designed zinc based porphyrin dyes to increase the spectrum of 

absorbance to better match the solar spectrum. The use of the cobalt based dye also increased 

their device performance from 7.6% to 11.9%. The champion performance was reached by using 

this electrolyte and two sensitizers in tandem. 
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1.5 Quantum Dots 

 Quantum dots (QDs) are semiconductor nanocrystals whose electrons are confined in 

three dimensions.61 This confinement is when the dimensions are smaller than the Bohr exciton 

radius, or average distance of electron-hole pairs. This confinement gives them characteristics 

between the bulk material, and a discrete molecule. Because of these properties the band gap of 

the QDs is dependent on the size. As the diameter of the QD decreases the bandgap increases. By 

choosing an appropriate material and diameter the band gap energy can be tuned to absorb the 

full solar spectrum.  

1.6 Schottky barrier devices 

 A Schottky barrier is formed at the interface of a semiconductor and a metal with a 

shallow work function. As a solar cell the inherent bias of the system causes the photo-generated 

electrons to travel towards the metal and the holes towards the ohmic contact.40, 62  

 

Figure 1.4 Creation of exciton in the semiconductor material of a Schottky barrier device with the positive exciton 

traveling towards the ohmic contact and the negative exciton traveling towards metal contact. 
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 Devices of these design suffer from high recombination. Since the exciton is generated at 

the ohmic contact then travels via the semiconductor to the Schottky contact, there is a high 

probability of recombination. This is reduced by making thinner devices.40 While the thinner 

device have lower recombination they have a reduced ability to trap light if too thin. 

 Tang et. al48 studied Schottky devices produced by depositing thin films of lead sulfide 

QDs onto a TCO using a dip coating approach and measured device performance with different 

metals. They reported that devices with aluminum contacts had a current density twice as high as 

devices with silver contacts. These devices had lifetimes that were significantly shorter than 

those with silver lasting 4 hours before declining to 80% of the original measured photon to 

current efficiency. In contrast silver devices lasted a full 50 hours before reaching the same level 

of degradation. This loss of efficiency is due to the higher reactivity of aluminum compared to 

silver. While that reactivity creates a superior Schottky contact, it also increases the rate of 

degradation of the semiconductor film. The authors solved this degradation by introducing a 

lithium fluoride layer between the semiconductor and metal. This stabilizing layer increased 

aluminum device lifetime to 24 hours and an efficiency of 2%. This increased performance 

comes at the cost of higher device toxicity. Devices that are dangerous to produce are less likely 

to have significant commercial applications. 

 A similar study was performed by Luther et. al using lead selenide quantum dots.49 These 

authors reported an champion efficiency of 2.1%. The devices were tested using metal contacts 

made from gold, silver, aluminum, magnesium, or calcium and particles of varying size to 

measure their impact on Voc.  

1.7 Depleted heterojunction device 

 A depleted heterojunction device is a combination of the structure for a Schottky barrier 

device and DSSC.40 In this case both the dye and redox mediator of the DSSC are replaced by 

the semiconductor absorber of the Schottky device. As the electrons are excited to the 

conduction band of the absorber they are injected into the TiO2 film. The electron then travels 

through the TCO and out of the device to do work. The hole is transported through the absorber 

material to the metal contact where it recombines with an electron. This cycle constantly 

regenerates the absorber under illumination preventing degradation and photo bleaching. 
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Figure 1.5 Exciton generation in QD film of a depleted heterojunction device with the negative exciton injecting into 

the conduction band of the TiO2 and the positive exciton traveling into the metal contact 

 

 Pattantyus-Abraham et. al performed a study of performance for depleted heterojunction 

devices using varying PbS QD sizes. The authors reported a champion efficiency of 5.1% for a 

device fabricated using 3.7 nm QDs. By using a mesoporous film of TiO2 the authors were able 

to create an insulating barrier to short circuits that was an electron acceptor and hole-blocking 

layer. 

1.8 Overview of this dissertation 

 This dissertation is presented in two halves. Chapters 2 and 3 focus on improving the 

efficiency of sensitized solar cells. Chapters 4 and 5 focus on new approaches to making solid 

state photovoltaics. A short abstract for each chapter is presented below. 

 Chapter 2 will discuss plasmonic enhancements to dye sensitized solar cells. Gold 

nanoparticles were integrated into mesoporous TiO2 films. Different techniques for preparing 

this film and adding the gold particles were studied. The enhancements to light absorbance and 

device performance were characterized and discussed. 
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 In Chapter 3 the techniques used with dye cells was applied to quantum dot sensitized 

cells. Quantum dots were both synthesized directly in the film using SILAR methods, and 

colloidal QDs were attached using small organic ligands. Methods of preparing a copper sulfide 

cathode were also investigated. The device performance using these difference conditions was 

analyzed. 

 Chapter 4 focused on integrating nanostructures into Schottky barrier devices. A method 

of growing gold nanowire and nanotube arrays was studied. Different methods for depositing 

quantum dots onto wire arrays and flat substrates were studied. Methods for making transparent 

conductive contacts on the top of devices using solution and physical based deposition 

techniques of indium tin oxide were explored. These devices were characterized by device 

performance and imaged using scanning electron microscopy. 

 Chapter 5 focused on improving devices from the previous chapter using depleted 

heterojunction techniques. The use of titanium dioxide and zinc oxide as hole blocking layers 

was studied. A new method for depositing ultra-small PbS QDs using an applied electric field 

was analyzed. While still in development, this technique could reduce waste of material 

significantly.  
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Chapter 2 Plasmonic Solar Cells 

2.1 Introduction 

Current energy needs are met primarily by the consumption of fossil fuels. These 

processes release large amounts of greenhouse gasses that in turn cause global climate change. 

The U.S. energy information administration reported 549 quadrillion British thermal units (Btu) 

of energy consumed in 2012 and projects an increase to 629 quadrillion Btu by 2020.1 In an 

effort to reduce carbon emissions some governments have begun the shift to all renewable 

energy sources. For example, Germany has implemented an energy transition policy to transition 

to all renewable sources. With a goal to reduce greenhouse gas emissions by 95% of 1990 levels 

by 2050 and a phase out of nuclear power by 2022.2 

 Dye sensitized solar cells (DSSCs) are an active area of interest for inexpensive solar 

energy. With costs of less than $1/peak watt, DSSCs have the potential to meet the global 

demand of over 14 terawatts.3 Current DSSCs report conversion efficiencies of 10% or higher at 

AM 1.5 irradiation.4-10 Most DSSCs are composed of a transparent conducting oxide (TCO), a 

mesoporous semi-conductor layer, dye sensitizer, electrolyte, and a platinum counter-electrode. 

In these systems, a dye sensitizer is excited and injects an electron into the mesoporous film. The 

dye is then regenerated by the electrolyte, which is then regenerated in turn by the counter-

electrode. To maximize photon to current efficiency, each component has been studied for 

optimize their effect. Some studies replace the rigid fluorine doped tin oxide (FTO) TCO with a 

flexible conductive polymer.11 Other studies have been done on the mesoporous oxide replacing 

the commonly used titanium dioxide (TiO2) with zinc oxide (ZnO)12, or substituting a 

nanostructured anode for the mesoporous film.12-16 Different electrolyte systems6, 17 and 

replacements for the platinum counter-electrode have also been studied.18 Arguably the most 

studied aspect of DSSCs is the dye. Modifying these structures allows for broader absorption 

range, enhanced extinction coefficient, greater electron injection speed, and many other factors.4-

5, 10, 19-23 

 The efficacy of solar devices is measured using a current density vs. applied voltage plot 

also known as a J-V curve. At the y-axis, the short-circuit current (Jsc) is the maximum current of 

the device. As a voltage is applied the curve creates a rounded box shape. The inverse slope of 
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the top of this box is controlled by the recombination or shunt resistance (Rsh). Ideally this 

resistance is infinite, preventing the recombination of electrons. The inverse slope of the side of 

the curve is the series resistance (Rs). This is the resistance to the electron passing through the 

system. Ideally this would be zero and electrons would travel freely. Where the curve intersects 

the x-axis is the open-circuit voltage (Voc). This is the point where no more current can pass 

through the device. Ideally a J-V curve would be perfectly rectangle. To measure how 

rectangular a curve is, the ratio of the maximum power over the theoretical power is used and 

called the fill factor (FF). The biggest measure of performance is cell efficiency. This is ratio of 

the power output over the power input. This input is standardized at 1000 W/m2 and referred to 

as AM 1.5 or air mass 1.5. This represents the path length of solar light in the atmosphere over 

the corresponding vertical. At AM 1.5 the sun is at 48.19° from the vertical.10 A reference J-V 

curve with relevant labels can be seen in Figure 2.1 

 

Figure 2.1 Sample J-V curve labeled with shunt resistance (RSH), series resistance (Rs), maximum power (Pmax), 

theoretical power (PTheo.), short-circuit current density (JSC), and open circuit voltage (VOC) 

 

 



16 

 

 In an attempt to increase the absorption of light by DSSCs, plasmonic nanostructures 

have been studied.8, 10, 14-15, 17, 24-28 Plasmonic structures have already been shown to aid in 

imaging29-30, nano-lithography31, and other techniques.32-34 The local surface plasmon resonance 

(LSPR) of metal nanoparticles is dependent on the refractive index of the surrounding medium.15, 

35-37 With the optimization of these conditions, the LSPR can be tuned to complement the 

absorption of the dye in a DSSC. 

 In a study performed by Jeong et. al27 TiO2 films were decorated with silver nanoparticles 

via photoreduction. This was achieved by drop casting a silver nitrate solution on the 

mesoporous TiO2 substrates and exposing them to UV light. Due to the reactive environment 

presented by the I-/I3
- electrolyte, they protected their particles by refluxing in a titanium 

isopropoxide solution followed by calcining. This process is similar to the TiCl4 treatment of 

traditional dye-sensitized solar cells to generate a higher surface area for dye adsorption. Devices 

made with these silver nanoparticles showed an overall increase in current density and a 25% 

improvement in overall performance. Increases in current density are attributed to increases in 

light absorption. To compare enhanced dye loading to plasmonic enhancements dye desorption 

studies were performed. The reported increase in dye concentration was attributed to half of the 

efficiency increase in silver enhanced devices. This extra loading is caused primarily by the 

added surface area generated by titanium isopropoxide treatment. While this was not studied by 

Jeong et. al, similar studies14 have shown that increased surface area from nanoparticle addition 

does not significantly increase dye loading. This approach to plasmonic enhancement provides 

well bound particles distributed throughout the mesoporous film. However, the technique is not 

easily scalable to larger devices. 

 A similar study was performed by Cramer et. al at the Army Research Laboratory.28 

These devices were prepared by soaking anthocyanin dyed mesoporous TiO2 films in gold 

nanoparticle suspensions. The devices were assembled by clamping on a platinized counter 

electrode with binder clips and filling the gap with I-/I3
- electrolyte by capillary action. This 

open-air style device is very unstable and only viable for a few minutes before the volatile 

electrolyte solvents evaporate. Reported devices all showed efficiencies less than 1%. While 

anthocyanin is a natural dye obtained from blackberry juice, dyes with better absorption 

capabilities are available. The use of inferior dye and assemble techniques are responsible for 
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these comparatively low efficiencies. Additionally, gold particles are not strongly bound to the 

mesoporous film. Despite these pitfalls, Cramer et. al did see an increase in JSC with increased 

gold loading. Even with an unexplained loss of Voc, an increase in efficiency can be seen. With 

enhanced technique, these trends would likely be more obvious.  

 To this end, the inclusion of purchased gold nanoparticles into a TiO2 paste was studied. 

These plasmonic films showed an enhanced absorbance versus bare and dyed TiO2 films. DSSCs 

fabricated using these plasmonic films showed enhanced efficiency compared to reference 

devices. 

2.2 Experimental  

2.2.1 Preparation of TiO2 paste.  

The unmodified paste was made by dissolving 100 µL Triton X-100 (Sigma) and 0.2 g 

20,000 MW PEG (Fluka) in 3.0 mL 0.1 M aqueous acetic acid in a 15 mL centrifuge tube. Once 

the PEG had dissolved completely, 0.5 g TiO2 nanopowder (Sigma, anatase nanopowder) was 

mixed in to make a thick paste. The tube was then sealed and left in an ultrasonic bath for 

approximately 60 minutes. A citric acid paste was also made replacing the acetic acid with 

2.23x10-3 M aqueous citric acid. Gold modified pastes were made by substituting 1.5 mL 10 nm 

gold nanoparticles in pH 7.4 citrate buffer (Ted Pella) for 1.5 mL of the acetic acid total volume. 

2.2.2 Preparation of Mesoporous Film.  

Pieces of FTO glass (Sigma, 8 Ω/sq) were cut into approximately 3x2 cm pieces. They 

were cleaned by submersion in a 1% Alconox solution and sonicating for 60 minutes. They were 

then washed with Nanopure (deionized 18 Ω/sq, 0.02 µm filtered) water and sonicated for 

another 60 minutes in Nanopure water to remove any remaining Alconox. Finally, the substrates 

were sonicated for 60 minutes in isopropyl alcohol and stored in alcohol until use. After drying, 

the glass was placed in a petri dish conductive side up and covered with 0.04 M TiCl4 solution 

that was prepared by diluting pure TiCl4 (Sigma) with Nanopure water at 0°C. The substrates 

were then heated at 60°C for 1 hour, rinsed with Nanopure water, dried, and annealed at 500°C 

for 30 minutes. The cooled substrates were taped to the bench, conductive side up, using 

Scotch™ brand tape leaving a 6 mm wide strip of exposed glass. The tape acted to immobilize 

the glass and as a spacer for uniform film deposition. A small amount of prepared TiO2 paste was 
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deposited along the top edge of the glass, and pulled across the surface by a microscope slide 

edge held flush to the substrate. This is often referred to as the doctor blade method. After drying 

the films their thickness was measured with a profilimeter (Dektak). Films less than 12 µm had a 

second layer of TiO2 deposited. Films were sintered at 450°C for 30 minutes then allowed to 

cool to room temperature. Once cooled the films were soaked in a 0.6 mM solution of N719 dye 

(Solaronix) dissolved in a 1:1 ratio of methanol:tert-butanol (both Fisher, HPLC grade). 

 

Figure 2.2 Structure of N719 dye  

 

2.2.3 Assembly of Solar Cells.  

Cleaned pieces of FTO glass had a thin layer of organo-metallic platinum precursor, 

Platisol (Solaronix), applied with a cotton applicator and were annealed at 400°C for 30 minutes. 

The cooled platinized glass had a 0.4 mm diameter hole drilled through for later electrolyte 

filling. The dyed TiO2 films were rinsed with methanol, then scraped down to a 6 x 8 mm area. 

The two pieces of FTO were sealed together with a 60 µm thick Surlyn thermoplastic (Solaronix) 

gasket. The two electrodes were offset to allow easy electrode attachment for testing. The I-/I3
- 

electrolyte was prepared in an 85:15 v/v acetonitrile:valeronitrile containing 0.6 M 

butylmethylimidazolium iodide, 0.3 M I2, 0.1 M guanidinium thiocyanate, and 0.5 M 4-tert-

butylpyridine (Solvents Fisher HPLC grade, all others Sigma). The devices were placed in a 
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vacuum desiccator with a drop of electrolyte over the hole. The desiccator was pumped down 

pulling the air out of the void space of the devices. Once the atmosphere was returned to the 

desiccator, the electrolyte was pulled into the void. The devices were sealed using a small square 

of Surlyn and square of microscope slide, and the edges painted with silver paint (Ted Pella) for 

better testing electrode contact. 

 

Figure 2.3 Schematic for the assembly of dye sensitized solar cells 

 

2.2.4 Characterization 

 Film thickness was measured with a Sloan Dektak IIA profilimeter. Particle addition was 

confirmed using a JOEL 2010 transmission electron microscope (TEM). Diffuse reflectance was 

measured with a Cary 500 UV-Vis spectrometer with a diffuse reflectance stage attached. 

Photovoltaic measurements were performed using a Newport® 50-500 W 67005 solar simulator 

set at 100 mW/cm2. The light intensity of the xenon lamp was calibrated using a National 

Renewable Energy Laboratory (NREL) calibrated silicon photodiode (Hamamatsu S1787-08 for 

visible to IR range). Current density-voltage (J-V) curves were measured with a Keithley 2400 

source meter.  
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2.3 Results and discussion 

2.3.1 Effects of paste composition 

 Films made using pastes containing either acetic acid or citric acid were compared for 

their mechanical and photovoltaic properties. Mechanical properties were assessed by the ability 

of the films to stay intact during thickness measuring and dye adsorption. Films with poor 

adhesion are readily removed by the probe of the profilimeter generating a measurement at or 

near zero micrometers for thickness and a visible line through the film. Poor adhesion can also 

be seen by flaking during the overnight soaking in dye solution. Films made with both acids 

showed excellent adhesion to the TCO substrates during both measurement and soaking phases. 

To compare the effects of paste composition on final devices, comparable films were made using 

both acids. Typical current density-voltage (J-V) curves can be seen in Figure 2.4. Both devices 

had an efficiency of 4.31%. The acetic acid device had a Jsc of 7.39 mA/cm2, Voc of 0.8205 V, 

and a FF of 0.71. In comparison the citric acid device had a Jsc of 8.84 mA/cm2, a Voc of 0.78 V, 

and a FF of 0.62. These differences can be attributed to variance is device fabrication between 

cells. Even devices considered identical have been shown variances similar to these.  

 

 

Figure 2.4 Characteristic photocurrent density-voltage curves for (a) devices made with citric acid and (b) devices 

made with acetic acid both showing similar results 

 

(b) (a) 
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2.3.2 Plasmonic enhancement effects 

 Suspensions of the 10 nm gold particles from Ted Pella are a red color as purchased. 

When mixed into a TiO2 paste the mixture is a light purple color. To study the enhancement to 

light absorption diffuse reflectance was performed on bare TiO2 films, TiO2-gold films, dyed 

TiO2 films, and dyed TiO2-gold films. As can be seen in Figure 2.5(a) bare TiO2 reflects 100% of 

the light until it begins absorbing in the UV. Addition of the gold sees a decrease in the 

reflectance over range of the scan with a peak around 550 nm. This peak corresponds to the 

characteristic absorbance maximum for gold nanoparticles of this size. This LSPR peak overlaps 

well with the absorbance of the free dye in solution as seen in Figure 2.5 (b). Such overlap is 

desirable to maximize the dye absorbance, and hopefully allow for thinner films with higher 

efficiency. Thinner films mean shorter path lengths for excited electron transport, increasing 

recombination resistance, and decreasing series resistance. These changes would then lead to 

potentially higher device efficiencies. 

 

Figure 2.5 (a) Diffuse reflectance of films composed of bare TiO2 (blue), bare TiO2 mixed with 10 nm Au 

nanoparticles (red), N719 dyed TiO2 (grey), and N719 dyed TiO2 with 10 nm Au nanoparticles. (b) Absorbance of 

N719 in ethanolic solution. 

 

Figure 2.5 (a) shows a distinct decrease in reflectance over the measured spectrum for films 

mixed with gold nanoparticles. To confirm the presence of the gold nanoparticles in the film, 

TEM images were taken. Both samples were prepared from film scrapings taken during shaping 

of the anodes for cell assembly. Figure 2.6 (b) shows the spherical gold nanospheres absent from 

(a) (b) 
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(a). The higher density particles gold particles appear darker than the TiO2 due to the increased 

electron deflection.  

 

 

Figure 2.6 TEM images of (a) bare TiO2 nanoparticles with an average size of 20 nm compared to (b) with the 

addition of 10 nm Au nanoparticles (red arrows) 

 

 Dye-sensitized solar cells were created using both types of films. The average device 

efficiency for TiO2 only devices was 4.5% (15 devices +/- 0.2%). The representative J-V curve 

in Figure 2.7 for TiO2 only devices has an efficiency of 4.5%, Jsc of 8.02 mA/cm2, a VOC of 

0.794 V, and a FF of 0.701. In comparison, the average efficiency for Au nanoparticle modified 

films was 5.0% (10 devices +/- 0.4%). The representative cell in Figure 2.7 has an efficiency of 

5.13%, Jsc of 10.54 mA/cm2, Voc of 0.752 V, and FF of 0.648. This change corresponds to an 

11% increase in overall device efficiency by adding plasmonic Au nanoparticles. There is a clear 

increase in current density for devices containing Au nanoparticles. This effect was observed in 

all cases when comparing Au modified devices with unmodified devices of the same thickness. 

There is also a drop in Voc in modified devices compared to the unmodified. These findings are 

in agreement with those published by Choi et al..8 This increase in photo current is the expected 

(b) (a) 
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result from plasmonic enhancement of the devices. The loss in potential can be explained as a 

charging effect in the gold.8  

 Gold modified solar cells did suffer from a loss of efficiency over time. This is thought to 

be caused by dissolving of the gold by the I-/I3
- electrolyte and forming AuI2

-
 as can be seen in 

equation (1).8, 38 

2𝐴𝑢 +  𝐼3
− +  𝐼−  ↔  2𝐴𝑢𝐼2

− (1) 

 

 

Figure 2.7 Representative J-V curves for cells made with TiO2 (blue) and TiO2 mixed with 10 nm gold 

nanoparticles (red) showing an increase in current density and corresponding loss in potential 

 

 To prevent this loss of gold over time, the particles could be protected with a thin oxide 

layer. Films would have to be exceedingly thin as plasmonic effects are diminished significantly 

as the dye moves away from the metal particles. This protection was studied by Choi et al., who 

found that shells of TiO2 around 2 nm maintained stability and the 11% plasmonic efficiency 

enhancement.8 Another approach would to be to use a non-corrosive electrolyte. Jung et al. 

replaced the corrosive I-/I3
- electrolyte with non-corrosive cobalt(II/III) tris(2,2’-bipyridine) 

([Co(bpy)3]
2+/3+) system. Their devices also showed an 11% increase in efficiency.17  
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 These systems could be maximized with the use of enhanced engineering techniques 

published by Gratzel et al. Devices using these techniques have been shown to have efficiencies 

exceeding 10%.7 In theory these techniques, combined with the newest dyes and electrolyte 

systems, could allow dye-sensitized devices to reach 15% efficiency or higher. According to the 

National Renewable Energies Laboratory independently confirmed results, the highest laboratory 

tested single crystal silicon solar cell has an efficiency of 25%.39 These devices are widely 

studied and similar to current commercial devices. This efficiency comes at the high cost of 

refining high quality, single crystal silicon. As silicon quality decreases, and devices become 

polycrystalline, efficiencies decrease to 18.5%.40 Reducing the silicon for these polycrystalline 

cells is still more energy intensive than the oxidation of titanium into particles for mesoporous 

devices as this process is energetically favorable. Additionally, mesoporous devices lend 

themselves well to existing reel-to-reel mass production techniques.  

2.4 Conclusions 

 By creating devices using metal nanoparticles in the starting TiO2 paste a balance was 

reached between colloidal synthesis size control, and intimate particle contact between oxide and 

metal. This approach allows for possible scaling to industrial fabrication. While the gold 

particles in these devices are unstable in the current system, suspensions of oxide coated particles 

are commercially available. The use of such particles could prevent device degradation, and 

increase enhancements further.  
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Chapter 3 Quantum dot sensitized solar cells 

3.1 Introduction 

 Dye sensitized solar cells have been a major focus of research in recent years for their 

stability, lost cost of production, and overall efficiency.1 These devices employ a mesoporous 

titanium dioxide (TiO2) film attached to a fluorine doped tin oxide glass substrate. These 

mesoporous films are then sensitized with organo-metallic dye molecules that absorbs photons 

and injects their excited electrons into the TiO2 network. The dye is then brought back to the 

ground state with an electron from a redox shuttle, which is then in turn regenerated by a 

platinum counter-electrode. 1-6 

 There have been multiple studies on improving this system to increase overall cell 

efficiency. New dyes with improved absorbance ranges, less toxic metals, or higher stability are 

all commonly studied.3, 7-15 There have also been studies on the redox shuttle used. Both 

changing the composition of the liquid electrolyte13, 16, or using a solid material.17 The platinum 

catalyzed counter electrode is not only expensive, but also a fairly rare metal. Because of this 

there have also been studies to replace it with cheaper and more abundant alternatives.18-21 

 To measure the efficiency of a solar cell, a J-V curve is recorded at A.M. 1.5 light or 

1000 W/m2. This is the current density (J, mA/cm2) graphed against the applied voltage (V). 

Figure 3.1 shows a typical J-V curve with the important details highlighted. With an applied 

back-voltage of 0 V the maximum current of the cell is the short-circuit current density (JSC) of 

the device. At the other extreme of the data is the point where the applied back-voltage is equal 

to the voltage of the device, this is known as the open-circuit voltage (VOC). This maximum 

current density and voltage together equal the theoretical maximum power (PTheo) whereas Pmax 

is the actual maximum power output. When analyzing the slope of the line that intersects JSC, the 

inverse is equal to the short circuit or shunt resistance (RSH). This is how resistant the device is to 

having electrons traveling in the wrong direction. Ideally this resistance is infinite and the slope 

is zero. The inverse of the slope of the line intercepting VOC is the transport or series resistance 

(RS). This is the resistance the electrons encounter traveling through the device. Ideally this 

resistance is zero, and the line is perpendicular to the x-axis. The ratio of the Pmax/PTheo is known 

as the fill factor (FF) is a measure of the “squareness” of the graph or how close to the ideal 
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shape it is. The final, and most important, piece of information obtained from this graph is the 

device efficiency. This is the ratio of the maximum power over the power of the input or Pmax/Pin.  

 

Figure 3.1 Sample J-V curve labeled with shunt resistance (RSH), series resistance (Rs), maximum power (Pmax), 

theoretical power (PTheo.), short-circuit current density (JSC), and open circuit voltage (VOC) 

 

 Not surprisingly, the mesoporous film has also received attention22-32. The serpentine 

pathway presented electrons by a mesoporous film creates an extended path length. This 

increases the likelihood for recombination of the electrons with defect sites. The grain 

boundaries created by sintering nanoparticles creates an increased series resistance to the system 

as well. To reduce the resistance due to grain boundaries Wijnhoven et al. proposed the use of 

their “air sphere” reverse opal system as a suitable substrate, although they did not actually 

prepare devices.27 Despite this, a highly porous network created around a sacrificial support via a 

chemical deposition method would have fewer grain boundaries and therefore less transport 

resistance. Ohsaki et al. proposed using a solution synthesized nanotube paste to replace the 

traditional nanoparticles.23 Others have reported highly ordered arrays of vertically aligned TiO2 

nanotubes as cathodes.22, 24, 30-31  
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 As an alternative to organometallic dyes semiconductor nanocrystals with tunable 

bandgaps, known as quantum dots (QDs), could be employed. As these particles decrease in size 

approaching their Bohr exciton radius, their bandgaps begin changing from that of bulk material. 

As the particle size decreases, the bandgap of the particle increases.33 With careful size control 

and composition these nanoparticles can be tuned to absorb more of the solar spectrum. These 

materials are also well studied with protocols for varying sizes and compositions available.10, 34-44 

These materials do have some drawbacks. Since the majority of QDs are produced with a 

combination of elements from groups II-VI of the periodic table, they often contain elements that 

are either rare, toxic, or both. This balance between control, cost, and toxicity all should be 

considered when choosing a material. 

 Considering these variables, zinc sulfide coated cadmium selenide (CdSe/ZnS) and PbS 

quantum dots (QDs) were used independently to sensitize TiO2 mesoporous substrates. In 

addition, different counter electrode architectures and materials were studied to explore 

optimization routes. 

3.2 Experimental 

3.2.1 Preparation of TiO2 paste.  

The unmodified paste was made by dissolving 100 µL Triton X-100 (Sigma) and 0.2 g 20,000 

MW PEG (Fluka) in 3.0 mL 0.1 M aqueous acetic acid in a 15 mL centrifuge tube. Once the 

PEG had dissolved completely, 0.5 g TiO2 nanopowder (Sigma, anatase nanopowder) was mixed 

in to make a thick paste. The tube was then sealed and left in an ultrasonic bath for 

approximately 60 minutes. 

3.2.2 Preparation of Mesoporous Film.  

Pieces of FTO glass (Sigma, 8 Ω/sq) were cut into approximately 3x2 cm pieces. They were 

cleaned by submersion in a 1% Alconox solution and sonicating for 60 minutes. They were then 

washed with Nanopure (deionized 18 Ω/sq, 0.02 µm filtered) water and sonicated for another 60 

minutes in Nanopure water to remove any remaining Alconox. Finally, the substrates were 

sonicated for 60 minutes in isopropyl alcohol and stored in alcohol until use. After drying, the 

glass was placed in a petri dish conductive side up and covered with 0.04 M TiCl4 solution that 

was prepared by diluting pure TiCl4 (Sigma) with Nanopure water at 0°C. The substrates were 
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then heated at 60°C for 1 hour, rinsed with Nanopure water, dried, and annealed at 500°C for 30 

minutes. The cooled substrates were taped to the bench, conductive side up, using Scotch™ 

brand tape leaving a 6 mm wide strip of exposed glass. The tape acted to immobilize the glass 

and as a spacer for uniform film deposition. A small amount of prepared TiO2 paste was 

deposited along the top edge of the glass, and pulled across the surface by a microscope slide 

edge held flush to the substrate. This is often referred to as the doctor blade method. After drying 

the films their thickness was measured with a profilimeter (Dektak). Films less than 12 µm had a 

second layer of TiO2 deposited. Films were sintered at 450°C for 30 minutes then allowed to 

cool to room temperature. 

3.2.3 Successive ionic layer adsorption and reaction (SILAR) 

3.2.3.1 Lead sulfide SILAR 

 Solutions of 0.01 M lead nitrate (Pb(NO3)2) (Fisher, certified ACS) in methanol (Fisher, 

ACS grade) and 0.01M sodium sulfide (Na2S) (Alfa Aesar, anhydrous) in 1:1 (v/v) methanol: 

Nanopure water were prepared. FTO substrates with mesoporous TiO2 films were first 

submerged in the lead solution for 1 minute, rinsed, then dried with nitrogen. These dried films 

were then submerged in the sulfur solution for 1 minute, rinsed, and dried with nitrogen. This 

was one SILAR cycle. 

3.2.3.2 Cadmium sulfide SILAR 

  A solution of 0.05 M cadmium sulfate (Fisher, ACS) in a 1:1 (v/v) ratio of ethanol (200 

proof, Aaper Alcohol) to Nanopure water and a solution of 0.05M Na2S in 1:1 (v/v) ratio of 

methanol: Nanopure water. Substrates were soaked in the cadmium solution for 1 minute, rinsed 

with 200 proof ethanol, then dried with nitrogen. The substrates were then soaked in the sulfur 

precursor for 1 minute, rinsed with methanol, then dried with nitrogen. This was one SILAR 

cycle. 

3.2.3.3 Zinc sulfide SILAR 

 Solutions of 0.1 M zinc acetate (Fisher, certified) solution in water and 0.1 M Na2S in 1:1 

(v/v) methanol: water were prepared. Previously sensitized substrates were soaked first in the 

zinc solution, rinsed with water, and dried with nitrogen. The substrates were then soaked in the 
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sulfur precursor, rinsed with methanol, and dried with nitrogen. This was a full SILAR cycle for 

the ZnS capping layer. 

3.2.4 QD synthesis 

3.2.4.1 CdSe/ZnS QD synthesis 

 CdSe/ZnS QDs were prepared using a modified version of a previously published 

method.45 In a 100 mL 3-neck flask 30 mg cadmium oxide (CdO, Sigma) and 180 mg lauric 

acid(Sigma). The system was connected to a condenser, the other two necks closed with septa, 

and the flask was evacuated for 10 minutes. The flask was then flushed with ultra-high purity 

argon (UHP Ar), and the flow was adjusted so a very small flow remained (approximately 1 

bubble per second). The system was heated to 80°C and 2 g hexadecylamine (Sigma, Tech. grade 

90% pure) and 2 g trioctylphosphine oxide (TOPO, Sigma, Tech. grade 90% pure) were added. 

The system was then purged and flushed with UHP Ar three times to remove any oxygen and 

returned to a slow flow of blanket UHP Ar. The system was heated to 280°C over 1 hour and 

stirred until the solution turned clear. While the Cd solution was heating, 80 mg selenium (Se) 

was dissolved in 2 mL trioctylphosphine (TOP, Sigma, Tech. grade 90% pure) and stored under 

flowing UHP Ar until use. Once the Cd solution was clear it was cooled to 225°C and stirred 

vigorously. The Se solution was then rapidly injected under the surface of the Cd solution. The 

mixture quickly changes color as the crystals grow. The solution was immediately quenched in 

an ice bath after the color began appearing (approximately 30 seconds from injection). The 

solution was then brought back up to 180°C for the shell growth. A solution containing 2 mL 

TOP, 250 µL hexamethyldisilathiane, and 1 mL diethyl zinc (Sigma, 1.0 M solution in heptane) 

was then dripped into the CdSe QD solution. The system was held at 180°C for 1 hour to allow 

for shell growth. The CdSe/ZnS QDs were allowed to cool to room temperature. The QDs were 

precipitated using methanol and centrifuged at 4000 rpm for 10 minutes. This was repeated 3 

more times for a total of 4 washes. The QDs were then suspended in hexanes at 25 mg QDs per 

mL chloroform. This QD solution was then used in some cases to replace the chloroform used in 

TiO2 shell growth. 

3.2.4.2 PbS QD synthesis 

 PbS QDs were prepared using a modified version of a published method.44 In a 100 mL 

3-neck flask 18.8 mmol octadecene (Acros, 90% Technical grade), 28.5 mmol oleic acid (Acros, 
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97%), and 12 mmol lead oxide (Acros, 99.9+%) were heated to 100 °C under vacuum and 

vigorous stirring. After 1 hour the solution became clear, and ultra-high purity argon (UHP Ar) 

was flushed over the reaction at a low rate (1 bubble/sec in the bubbler). The temperature was 

decreased to 80°C. As the solution was heating, 4 g octadecene and 6 mmol 

hexamethyldisilathiane (Sigma, synthesis grade) were sealed into a conical 10 mL flask and 

purged with UHP Ar. After the lead solution had stabilized at 80°C the sulfur solution was 

rapidly injected. The mixture quickly turned from clear to black and was allowed to stir for 2 

minutes. The reaction was then quenched in an ice bath to bring it to room temperature. The 

particles were then precipitated with acetone and separated by centrifugation at 3000 rpm for 5 

minutes. The pellets were then suspended using minimal hexanes and ultra-sonication to break 

up larger agglomerates. These suspensions were then precipitated with acetone and centrifuged. 

This was done three times to remove any unreacted precursors. QDs were suspended in hexanes 

at 25 mg/mL. After depositing onto TiO2 substrates, films were treated with one cycle of ZnS 

SILAR to protect QDs from the electrolyte. 

3.2.5 Chemical binding of colloidal QDs to TiO2 films 

 A 10% (v/v) solution of 3-mercaptopropionic acid (3-MPA, Sigma) was prepared in 

methanol. The substrate had a drop of 3-MPA added, reacted for 1 minutes, then it was rinsed 

with methanol and dried with a nitrogen stream. A drop of QD solution was added, allowed to 

react for 1 minute, then excess rinsed with hexanes and dried with nitrogen. 

 Alternatively, substrates were submerged in the 3-MPA solution overnight to ensure 

maximum surface modification. The substrates were then rinsed with methanol and nitrogen 

dried. They were then submerged in QD solutions up to 24 hours in a sealed container in the 

refrigerator.  

3.2.6 Copper sulfide counter electrodes 

3.2.6.1 Sputtered copper electrode  

 Cleaned and dried pieces of FTO glass were arranged in the sputtering instrument 

(Denton Vacuum Desk V), and it was set to 40 amps and 600 s. Copper was sputtered onto FTO 

glass. These substrates were then soaked in a portion of electrolyte solution for 30 minutes. 
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3.2.6.2 Mesoporous ITO Film electrode 

A paste identical to the TiO2 substrate precursor for the QDs was made using indium tin 

oxide (ITO) nanoparticles (Alfa Aesar, NanoTek 99.5%, product # 44927). After sintering and 

cooling these films were deposited with copper sulfide (Cu2S) using a SILAR process. The 

copper precursor was aqueous 0.1 M copper nitrate (Fisher, certified ACS), and the sulfur 

precursor was an aqueous 0.1 M Na2S solution. For each element the substrate was soaked in the 

precursor for 1 minute, rinsed then nitrogen dried. Each film was deposited for 12 cycles. 

3.2.6.3 Brass electrode  

 Following published protocols39-40 pieces of brass from the local hardware store were cut 

to approximately 3x2 cm sizes. These metal substrates then were then exposed to a 30% HCl 

(Fisher, certified ACS Plus) aqueous solution for 10 minutes. The substrates were then rinsed 

with Nanopure water, dried with nitrogen, and soaked in a portion of electrolyte for 30 minutes. 

The substrates were again rinsed, and dried, then immediately used to prevent possible oxidation. 

3.2.7 Device assembly 

Cleaned pieces of FTO glass had a thin layer of organo-metallic platinum precursor, 

Platisol (Solaronix), applied with a cotton applicator and were annealed at 400°C for 30 minutes. 

The cooled platinized glass had a 0.4 mm diameter hole drilled through for later electrolyte 

filling. The sensitized TiO2 films were scraped down to a 6 x 8 mm area. The two pieces of FTO 

were sealed together with a 60 µm thick Surlyn thermoplastic (Solaronix) gasket. The two 

electrodes were offset to allow easy electrode attachment for testing. The polysulfide electrolyte 

was prepared in water, and contained 1.0 M Na2S, 1.0 M sulfur (EM Science, sublimed), and 0.1 

M NaOH (Fisher, ACS pellets). The devices were placed in a vacuum desiccator with a drop of 

electrolyte over the hole. The desiccator was pumped down pulling the air out of the void space 

of the devices. Once the atmosphere was returned to the desiccator, the electrolyte was pulled 

into the void. The devices were sealed using a small square of Surlyn and square of microscope 

slide, and the edges painted with silver paint (Ted Pella) for better testing electrode contact. 

3.2.8 Characterization 

 Film thickness was measured with a Sloan Dektak IIA profilimeter. Absorbance 

measurements were performed using a Cary 500 UV-Vis spectrometer. Photovoltaic 
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measurements were performed using a Newport® 50-500 W 67005 solar simulator set at 100 

mW/cm2. The light intensity of the xenon lamp was calibrated using a National Renewable 

Energy Laboratory (NREL) calibrated silicon photodiode (Hamamatsu S1787-08 for visible to 

IR range). Current density-voltage (J-V) curves were measured with a Keithley 2400 source 

meter.  

3.3 Results and discussion 

 The first cell design to be tested were the SILAR sensitized devices. These devices had 2 

cycles of PbS, 7 of CdS, and 3 of ZnS as a protective layer. Since the SILAR process creates a 

thin film of material across the entire area of the substrate, instead of individual particles like 

colloidal synthesis, an incident photon to current efficiency analysis was performed. This is the 

efficiency of a device at each wavelength to convert incident light to power. In Figure 3.2 a 

representative cell can be seen to extend the range of effect for a device well outside the range of 

the bare TiO2 reference device. The reference device was assembled identically, only the film 

was not sensitized. 

 

Figure 3.2 Incident photon to current efficiency vs wavelength for a device with only TiO2 (blue) and a device 

coated in PbS-CdS quantum dots (red) 
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 While these devices showed an improvement in light harvesting, the efficiencies were 

low. The J-V curve for the champion cell can be seen in Figure 3.3.  

 

Figure 3.3 Photocurrent density as a function of applied voltage for a champion SILAR device 

 

 This champion cell had an efficiency of 0.49%. While the low short-circuit current was a 

factor, the low recombination resistance is also a major contributor. The band gaps of the 

semiconductors in a photovoltaic are tuned to reduce recombination. As can be seen in Figure 

3.4 the conduction band align so the electrons flow towards the TiO2 film. They are also aligned 

so the holes travel to the electrolyte. 
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Figure 3.4 Representative cartoon of band-gap alignment for layered semiconductor sensitizer on TiO2 substrate 

 

 While this cartoon is an ideal case, in practice the bandgaps are dependent on the size and 

shape of the material. As the semiconductors become smaller than their Bohr exciton radius, 

their bandgap increases in energy and shifts. As an example PbS shifts from the bulk value of 

0.40 eV with the conduction band at -4.50 eV vs vacuum46 to 1.4 eV with the conduction band at 

-3.7 eV vs vacuum for 2 nm quantum dots.41 In comparison bulk TiO2 has a bandgap of 3.2 eV 

and a conduction band at -4.1 eV vs vacuum. The smaller PbS QDs will readily give up their 

electrons, while the bulk PbS would be unable.  

 With this in mind, an approach was devised to have better control of this gap alignment. 

To do this, colloidal CdSe/ZnS QDs were synthesized to sensitize fabricated mesoporous films. 

These QDs were found to have a first absorption maximum at 500 nm as can be seen in Figure 

3.5. Using Planck’s constant in eV·s and the speed of light in nm/s, the bandgap was calculated 

to be 2.48 eV with a conduction band at -3.22 eV vs vacuum.  



38 

 

 

Figure 3.5 Absorbance of CdSe/ZnS QDs suspended in hexanes 

 The champion cell for of this type had an efficiency of only 0.0145% which is very low 

for a device of this type. Like the SILAR device, these devices had a Voc of 0.5 V. However, the 

Jsc for these devices were lower by a factor of nearly 100. As can be seen in Figure 3.6, the 

device has improved recombination resistance compared to SILAR devices. The low current 

density can be contributed to low light absorbance, or poor catalytic activity at the counter 

electrode. To increase light absorbance films were soaked for longer periods of time in the QD 

solution. However, any soaking longer than overnight, and some even overnight, caused the TiO2 

films to flake off the FTO. To increase loading, improved adhesion of the TiO2 film will needed 

to be studied. 

 

Figure 3.6 Photocurrent density vs voltage curve for champion CdSe/ZnS device 
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 Gimenez et. al studied the effect of the catalytic electrode composition on device 

performance. Their studies found a 3-fold increase in efficiency from platinum to copper sulfide 

(Cu2S). Their studies also support a theory of low Jsc due to poor QD loading into the 

mesoporous film.40 To make this Cu2S electrode, published results used a piece of brass soaked 

in HCl then soaked in a batch of electrolyte.39-40 Since brass is an alloy of copper and zinc with 

trace other metals, the HCl removes the zinc leaving behind a high surface area copper substrate. 

While these have been shown to work, a transparent alternative was desired. 

 The first attempt to reproduce this was to sputter copper onto FTO substrates. This 

process had poor results. The biggest problem being the sputtering step. While some batches 

produced a reflective copper colored coating, other produced a matte black and uneven film. Due 

to this non-reproducible nature, and poor results, other methods were investigated. 

 To maintain a high surface area, ITO mesoporous films were sensitized using a SILAR 

process. These films were produced to be approximately 6 µm thick. This was to allow for 

sufficient catalytic surface area without causing an electron transport problem. After deposition, 

films presented as a dark gray color but were still optically transparent when held to a light 

source. To test film resistance, a probe was place on the top of the mesoporous film and another 

at the edge of the glass. They produced a resistance from 10-15 Ω, meaning the films were not 

insulating. Devices created in this manner had very low photocurrents. On the order of 0.01 

mA/cm2 in the best-case devices. The J-V curves did show the characteristic diode behavior 

expected from a device with no shorts. This low photocurrent could be contributed to poor QD or 

catalyst performance.  

 To compare the catalytic performance against published results, devices were created 

using modified brass as the counter electrode. These devices presented a fabrication problem. 

The thermoplastic used in other devices was unable to bind reliably to the metal surface. 

Different techniques for improving adhesion were studied, all with little effect. To test these 

devices, the two halves were instead held together with binder clips. This device assembly 

process leads to leaking of the electrolyte and is not ideal. Unfortunately, even the best devices 

showed results well below those previously published. The J-V curve for the highest efficiency 

brass device can be seen in Figure 3.7.  
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Figure 3.7 Photocurrent density vs voltage curve for device made with modified brass counter electrode 

  

 The Jsc for this device is 20 times lower than devices reported by Gimenez et. al40 with a 

proportional loss of Voc and efficiency. With an optimum efficiency of only 0.01% these devices 

are far from optimized. 

 To analyze the effects of QD type on current density, PbS QDs were used as a sensitizer 

with the ITO mesoporous counter electrodes. Since PbS QDs are reported to be sensitive to the 

polysulfide electrolyte46 the sensitized films were treated with one SILAR cycle of ZnS to create 

a thin protective coating. From Figure 3.8 it can be seen that the best PbS sensitized device had 

10 times the current density of the best CdSe device in Figure 3.6.  
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Figure 3.8 Photocurrent density vs voltage curve for PbS sensitized device with ITO counter electrode 

 

 This increase in current density can be attributed to higher loading of the smaller PbS 

QDs and a broader absorption spectrum. From the absorbance spectrum in Figure 3.9 it is clear 

that the PbS absorbs much more broadly than the CdSe/ZnS QDs that do not begin absorbing 

until around 550 nm.  

 

Figure 3.9 Absorbance spectrum for PbS QDs suspended in hexanes with maximum at 800 nm. 
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 While these PbS devices are still not optimized, they show potential to surpass the 

CdSe/ZnS devices. PbS QDs have their sizes controlled by the molar ratios of the precursors 

with a number of protocols published for well controlled size production.42, 44, 47 In contrast CdSe 

QD size is controlled by reaction time and quenching speed.  

3.4 Conclusions 

 With an understanding of how each component of the solar cell effects the overall 

performance, future studies can focus on optimizing each. To improve low current density results 

techniques to improve mesoporous film adhesion and more efficient methods for quantum dot 

sensitization are under way. It is possible that a new substrate design, such as a core-shell 

nanowire array, could provide similar surface area while also providing a more direct path for 

QDs to diffuse during sensitizing and for electrons during device functioning. With an easily 

controlled bandgap, QDs have a promising future as photovoltaic sensitizers. 
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Chapter 4 Schottky Devices 

4.1 Introduction 

 With global energy demands ever increasing, so must green methods of producing it. In 

1990 the world energy consumption was 350 quadrillion British thermal units (Btu). This 

increased to just over 400 quadrillion Btu in 2000, and is projected to exceed 800 quadrillion Btu 

by 2040.1 Current power production techniques depend heavily on petroleum. With 84% of the 

549.3 quadrillion Btu coming from petroleum sources in 2012 and 83% of the 575.4 quadrillion 

Btu in 2015.1 While a meager decline in petroleum consumption, nuclear and other techniques 

saw a combined growth from 88.3 quadrillion Btu to 96.3 quadrillion Btu.1 While promising, 

there is an even cleaner method of energy production that does not produce radioactive waste. 

Just 1 hour of energy from the sun reaching the Earth is the equivalent of 1 year of global power 

needs.2 This means that with efficient solar collection, and energy storage, the global dependence 

on petroleum based energy could be resolved. 

 Schottky solar cells are assessed using current density vs. applied voltage graphs, also 

known as J-V curves. At the y-axis, the short-circuit current (Jsc) is the maximum current of the 

device. As a voltage is applied the curve creates a rounded box shape. The inverse slope of the 

top of this box is controlled by the recombination or shunt resistance (Rsh). Ideally this resistance 

is infinite preventing the recombination of electrons. The inverse slope of the side of the curve is 

the series resistance (Rs). This is the resistance to the electron passing through the system. Ideally 

this would be zero and electrons would travel freely. Where the curve intersects the x-axis is the 

open-circuit voltage (Voc). This is the point where no more current can pass through the device. 

Ideally a J-V curve would be perfectly rectangular. To measure how rectangular a curve is, the 

ratio of the maximum power over the theoretical power is used and called the fill factor (FF). 

The biggest measure of performance is cell efficiency. This is ratio of the power output 

(electrical) over the power input (light flux). This input is standardized at 1000 W/m2 and 

referred to as AM 1.5 or air mass 1.5. This represents the path length of solar light in the 

atmosphere over the corresponding vertical. At AM 1.5 the sun is at 48.19° from the vertical.3 A 

reference J-V curve with relevant labels can be seen in Figure 4.1. 
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Figure 4.1 Sample J-V curve labeled with shunt resistance (RSH), series resistance (Rs), maximum power (Pmax), 

theoretical power (PTheo.), short-circuit current density (JSC), and open circuit voltage (VOC) 

 A very simply designed device to collect solar energy is known as a Schottky barrier 

solar cell. This barrier is found at the interface of a semiconductor and a metal. In a photovoltaic 

this barrier induces an inherent bias in the cell and causes electron-hole pairs to travel in opposite 

directions under illumination.4 Since the electron-hole pairs are generated at the ohmic contact 

for the device, the electrons must travel the thickness of the semiconductor film to the Schottky 

contact.5 This means that the electrons are more susceptible to recombination as the film 

thickness increases. Conversely, films that are too thin are unable to absorb light efficiently and 

are more likely to develop shorts during fabrication. Furthermore, the shallow work function 

metals ideal for these devices are readily oxidized. 
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Figure 4.2 Creation of exciton in the semiconductor material of a Schottky barrier device with the positive exciton 

traveling towards the ohmic contact and the negative exciton traveling towards metal contact 

 Tang et. al studied these types of devices and ways to improve upon them.6 While 

aluminum provides a device with higher Voc, the efficiency of the devices declines at twelve 

times the rate of silver devices. This decline in cell performance was directly proportional to the 

rate of oxidation of the Schottky contact. Tang et. al studied the use of a stabilizing layer to 

prevent the oxidation of the metallic contacts. Their results showed that a thin, less than 1 nm, 

film of lithium fluoride (LiF), could significantly improve device efficiency and lifetime. This 

material had already been proposed to work by forming a dipole layer at the electrode interface7, 

and shown to block the reaction of Al with an organic film.7 After applying this technique the 

researchers found that aluminum contact devices had a 6-fold increase in lifetime. LiF treated 

devices also showed an increase in RSH and decrease in RS. While this technique did improve the 

device stability, the use of a fluorinated compound can be problematic. The safety data sheet 

(SDS) for LiF lists it as acutely toxic.8 This ionic compound is readily soluble in water, making it 

an environmental hazard.  

 An alternate method to improve device performance would be to provide a shortened 

path-length for charge carriers without making the film thinner. Yu et. al used nanostructured 
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zinc oxide with platinum tips as Schottky diodes for gas sensing.9 While this is not a 

photovoltaic application, the underlying theory is similar. The nanoscale features provided a 

different response than a bulk material.  

With this in mind, gold nanowire arrays were studied for their potential in Schottky type 

solar cells using lead sulfide (PbS) quantum dots (QDs) as the semiconductor.  

4.2 Experimental 

4.2.1 Gold nanowire growth 

 Anodized aluminum oxide (AAO) membranes (Whatman 6809-7023, 13 mm diameter 

200 nm pore size) were inverted onto microscope slides and attached with minimal 

 Scotch™ tape. Membranes were then sputtered with silver for 600s at 40 amps (Denton Vacuum 

Desk V). Sputtered membranes were then attached to a piece of microscope slide using double-

sided copper tape (TedPella). The tape was cut down so none was exposed to the plating solution 

and only a small strip for electrical contact remained. Substrates were then immersed in a gold 

plating solution (Technic, OROTEMP ® 24 RTO RACK, 210927) with a platinum wire as a 

counter-electrode and a Ag/AgCl reference electrode. Wires were grown at 9 mA for varying 

lengths of time. After deposition the substrates were rinsed with Nanopure water, dried, and 

soaked in 3 M NaOH for 30-60 minutes to dissolve the membrane. After soaking, the films were 

rinsed with Nanopure water and dried for further use. A schematic of this process is shown in 

Figure 4.3 Schematic . 
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Figure 4.3 Schematic of membrane directed electrophoretic growth of metal nanowires 

 

4.2.2 Lead sulfide quantum dot growth 

 PbS QDs were prepared using a modified version of a published method.10 In a 100 mL 

3-neck flask 14 g octadecene (Acros, 90% technical grade), 1.3 g oleic acid (Acros, 97%), and 

450 mg lead oxide (Acros, 99.9+%) were heated to 100 °C under vacuum and vigorous stirring. 

After 1 hour the solution became clear and ultra-high purity argon (UHP Ar) was flushed over 

the reaction at a low rate (1 bubble/sec in the bubbler). The temperature was increased to 180°C. 

As the solution was heating 4 g octadecene and 210 µL hexamethyldisilathiane (Sigma, synthesis 

grade) were sealed into a conical 10 mL flask and purged with UHP Ar. After the lead solution 

had stabilized at 180°C the sulfur solution was rapidly injected. The mixture quickly turned from 

clear to black and was allowed to stir for 2 minutes. The reaction was then quenched in an ice 

bath to bring it to room temperature. The particles were then precipitated with acetone and 

separated by centrifugation at 3000 rpm for 5 minutes. The pellets were then suspended using 

minimal hexanes and ultra-sonication to break up larger agglomerates. These suspensions were 

then precipitated with acetone and centrifuged. This was done three times to remove any 

unreacted precursors. The PbS QDs were then suspended in hexanes at 25 mg QDs/mL.  
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4.2.3 Depositing QD films 

4.2.3.1 Drop casting 

 A drop of QD suspension was added to the substrate and the hexanes allowed to 

evaporate. Then a 10% (v/v) solution of 3-mercaptopropionic acid (3-MPA) in methanol was 

deposited onto the substrate. This was then rinsed off with methanol and dried using nitrogen. 

This was considered one cycle of deposition. Cycles were repeated until the films were thick 

enough to not transmit light (approximately 20 cycles) on FTO substrates. For nanowire 

substrates the same number of cycles was used for uniformity of technique. 

4.2.3.2 Dip coating 

 Clean and dry substrates were first dipped into a 10% (v/v) solution of 3-MPA in 

methanol. The excess was then rinsed off by pipetting methanol over the surface then drying 

with nitrogen. The substrates were then dipped into the QD solution. They were then similarly 

rinsed with hexanes and dried with nitrogen. This was considered one cycle. This was repeated 

for 20 cycles creating a film that is not optically transparent when deposited on FTO. The 

dipping angle and speed were not controlled. 

4.2.3.3 Spin coating 

 Clean and dry substrates were placed into a spin coater (Laurell, WS-400A-6NPP/LITE). 

The surface was covered with a 10% (v/v) 3-MPA in methanol solution and the lid closed. The 

device was then spun at 2500 rpm for 10 seconds. To rinse, the substrates were spun at 2500 rpm 

and ~ 2 mL methanol was deposited using a Pasteur pipette then allowed to spin for ~25 seconds 

to dry. This was done again with QD solution and hexane. This was considered one deposition 

cycle. This was repeated for 20 cycles. 

4.2.4 Conductive films 

 To produce a conductive top layer for solar devices, two approaches were used. The first 

was by masking the devices and sputtering (Kurt J. Lesker PVD 75) them with an indium doped 

tin oxide (ITO) film. For a solution processable approach, silver nanowires dispersed in 

isopropyl alcohol (Seashell Technologies) were deposited onto the films by drop casting or spin 

coating followed by an ITO nanoparticle paste. To make the ITO paste 1.0 g ITO (30-50 nm 
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Sigma) was sonicated in 3 mL isopropyl alcohol. Simultaneously 0.1 g poly-vinyl alcohol 

(Fisher) was dissolved in 4 mL Nanopure water in a separate container. The two solutions were 

then mixed and sonicated for 30 minutes prior to use. This produced a 30% (w/v) ITO paste. 

This layer was drop cast or spin coated (2500 rpm, 30 s) on top of the silver nanowire layer. 

Unused paste was sealed in a tube and stored in the refrigerator. It was then warmed to room 

temperature and sonicated for 1 hour prior to use.  

4.2.5 Characterization 

Absorbance was measured with a Cary 500 UV-Vis spectrometer. FESEM images were 

taken using a Carl Zeiss 1530 field emission scanning electron microscope (FESEM). 

Photovoltaic measurements were performed using a Newport® 50-500 W 67005 solar simulator 

set at 100 mW/cm2. The light intensity of the xenon lamp was calibrated using a National 

Renewable Energy Laboratory (NREL) calibrated silicon photodiode (Hamamatsu S1787-08 for 

visible to IR range). Current density-voltage (J-V) curves were measured with a Keithley 2400 

source meter. 

4.3 Results and Discussion 

 Gold nanowires grown using electrodeposition were analyzed by FESEM to assess their 

length. Figure 4.4 shows FESEM images of two different samples grown under the optimized 

conditions of 9 mA for 1800 s. This long, slow process allows for uniform wires with a high 

level of control with respect to length. Depositing at higher current for shorter times results in the 

growth of weak multi-crystal chains of varied length and crystal size. 

 

Figure 4.4 FESEM micrographs of two separate 4.5 µm gold nanowires grown under optimized conditions 
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 It was found that if the wires were grown for only 400 seconds, metallic tubes could be 

grown. Their outer diameters were controlled by the walls of the template, however their inner 

diameters varied. In Figure 4.5 this difference can be seen within a single sample. While after 

sufficient deposition all samples become wires, these short deposition times all create tubes. It is 

thought that even after a long sputtering period the pores of the templates never fully seal with 

silver. So as the wires grow they begin by plating along the sputtered edges of the template 

creating a tube. The areas with smaller inner diameters are those with heavier deposition due to 

their position inside the chamber. This theory was never tested, and template imperfections could 

also be responsible.  

 

Figure 4.5 FESEM micrograph of Au nanotubes showing two distinct regions within the same sample 

 

 This theory is supported however, when comparing images from other samples. As an 

example, images taken of a second sample can be seen in Figure 4.6. This sample was from the 

same set of sputtered templates, but a different position in the instrument. The close up of the 

tubes in Figure 4.6 a) shows that the tubes are shaped like the original membrane all with 

similarly sized pores in the center. Figure 4.6 b) shows the larger area where a) was observed. 

All the observed areas of this sample were identically sized. This would seem to support the 

theory of uneven sputtering effecting the final tube size. Further studies of this phenomenon are 

needed for any definitive proof. 
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Figure 4.6 FESEM micrograph of gold nanotube (a) high magnification for size and (b) far away to show uniformity 

across the sample 

 

 These high surface area tubes are of interest for photovoltaic applications. The increased 

surface area could lead to better absorber loading and higher current densities. These do suffer 

from the inability to reach significant length. Any sample imaged that had reached 1 µm or 

longer was a fully developed wire.  

 Initial studies into the fabrication of these Schottky devices was performed by depositing 

quantum dots directly onto FTO glass. After a full deposition the glass substrates became a matte 

black and were not transparent to light. Figure 4.7 shows a PbS QD film deposited by spin 

coating. Layer a), demarked by the red highlighting bars, shows the compact PbS QD that is 

approximately 1 µm thick and uniform across the length of the sample. The grey area labeled b) 

is the support soda lime glass, and the bright line between the two areas is the thin layer of 

fluorine-doped tin oxide.  

a) b) 
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Figure 4.7 FESEM cross section of spin-coated (a) PbS QD film on (b) ITO coated glass 

 

Films formed by dip coating are nearly identical to those formed by spin coating. This is due to 

the fact that both techniques deposited one layer of particles at a time. The difference is that dip 

coating covers all sides of the substrate. This results in the absorption of light by the QDs 

adsorbed to the non-conducting side of the glass. Dip coating also requires much larger volumes 

of solution, and has a tendency for contamination of the QD solution with 3-MPA. This leads to 

irreversible flocculation of the particles. However for depositing onto textures substrates, such as 

nanowire arrays, spin coating can deposit unevenly where dip coating can infiltrate the irregular 

surface. In contrast to these films, drop casting leads to very thick yet uneven films. This can be 

seen in Figure 4.8. The darker grey PbS film measures as thick as 10 µm in some areas, and 

presents holes in other areas. In theory, this technique would penetrate a nanowire array via 

capillary action and deposit a nice film. In practice all devices created with drop casting, whether 

on glass or wires, created a shorted device and had no photovoltaic activity. 
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Figure 4.8FESEM cross section of drop cast PbS QD films on ITO coated glass 

 

 To test the spin coated devices, pixelated anodes of ITO (Ossila) were used as a baseline 

device. These substrates, along with the associated accessories, allow for creation and testing of 

6 devices on one substrate. After spin coating the films the substrates were loaded into a mask 

and silver was thermally deposited as a back contact. Under A.M. 1.5 illumination these devices 

showed low photocurrent. The J-V curve for a representative device with Voc of 0.314 V, Jsc of 

0.137 mA/cm2, fill factor of 0.25, and overall efficiency of 0.1% can be seen in Figure 4.9. None 

of these devices showed the expected diode behavior. The films preferentially deposited on the 

ITO areas while leaving the bare glass mostly devoid of particles. This uneven deposition likely 

exposed the edges of the ITO film and allowed for shorts to develop. The poor photovoltaic 

activity can also be attributed to a high level of recombination. Chang et. al found that their PbS 

QD/cadmium sulfide heterojunction devices had a loss of current density after the film thickness 

exceeded 200 nm.11  
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Figure 4.9 Photocurrent density vs voltage curve for representative patterned ITO device 

 

 To simulate the cell design for nanowires as a planar device, gold sputtered copper tape 

on a microscope slide was used. The gold was deposited for 600 s to create a thick gold layer. 

After deposition of the QD layer, these devices were either sputtered with an ITO layer or the Ag 

nanowire/ITO nanoparticle layer was deposited. After depositing the QD layer on these devices 

the resistance was tested in multiples places along the device to test for shorts by piercing the 

film at one end then touching the other probe to the surface. All films had a resistance in the 

megohm range before deposition of the conductive top layer. After sputtering or spin coating of 

the top layer, all the devices had a resistance of ~8 ohms. This loss of resistance was also seen in 

devices fabricated using nanowire arrays. The source of this shorting may be contact with the 

edges of the conductive substrate.  

4.4 Conclusions 

 New techniques need to be studied for assembling these devices without the generation of 

shorts. The use of lower energy physical deposition techniques may prevent penetration of the 

thin devices. Current studies are underway using the physical attachment of the top contact to 

devices using compression. While sandwiching the PbS QD layer between the conductive oxide 

and support for the metal contact does not provide a high level of binding, it does make the 
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development of shorts nearly impossible. The use of other templates to increase inter-wire 

distances and possible light harvesting need to also be studied. The use of polycarbonate 

membranes may allow for the synthesis nanowires using aluminum. Efficiency of Schottky 

barrier devices could be greatly increased by using nanostructures if a method could be devised 

for their production.  
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Chapter 5 Depleted heterojunction solar cells 

5.1 Introduction 

 As society’s dependence on technology increases, so does it’s need for electricity. 

Current production techniques rely heavily on fossil fuels to produce electricity. These 

techniques burn fuel, primarily coal, to produce steam that then turns turbines and produces 

electricity. This method then releases large amounts of CO2, and other greenhouse gasses, into 

the atmosphere. According to the U.S. Energy Information Administration the world net 

electricity generation was 21.56 trillion kilowatt hours (tkWh) in 2012. Of this 14.49 tkWh, or 

67.2 %, came from liquid petroleum, natural gas, and coal. While 2.34 tkWh (10.88%) came 

from nuclear and 4.73 tkWh (22%) came from renewables. Of the world generation only 0.1 

tkWh (0.48%) came from solar.1 

 Despite the low utilization, solar energy has huge potential as a renewable replacement to 

petroleum products. The sun produces 120,000 terawatts or 6000 times the amount currently 

used globally.2 With improved photovoltaics, and energy storage devices, the transition to fully 

renewable energy is a certainty. Recently, depleted heterojunction devices have been studied as a 

source of solar energy.3 This structure is a sort of hybrid of sensitized solar cells and Schottky  

barrier devices.  

 A sensitized solar cell uses a mesoporous titanium dioxide (TiO2) film and a sensitizer to 

absorb light. This light absorber can be an organic dye or quantum dot (QD). With both 

sensitizers, they are excited by a photon of light. The excited electron is then transported into the 

oxide layer and out of the cell to perform work. The hole is then recovered by a redox species. 

This redox material can either be a liquid electrolyte like I-/I3
-4-5, or a solid hole transport 

material such as CsSnI3.
6 These devices then use a catalytic counter electrode such as platinum,4-

9 graphene,10 or copper sulfide in the case of QD sensitized devices.11-12 These devices are robust 

due to the rapid charge separation cause by the injection of electrons into the TiO2 which reduces 

recombination potentials 

 Schottky barrier devices are much simpler. They consist of a semiconductor light 

absorber, a Schottky contact, and an ohmic contact. At the Schottky contact the absorber and 

shallow work function metal create a depletion zone. The electrons are then injected into the 
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metal and the holes travel through the material to the ohmic contact, which is normally a 

transparent conductive oxide like indium tin oxide (ITO) or fluorine tin oxide (FTO) on glass. 

This structure does suffer from higher recombination rates since the transport medium is also the 

light absorbing material. To rectify this, devices are often very thin and do not maximize their 

light absorbing abilities.3, 13-16 

 Depleted heterojunction devices combine these two architectures. By using QDs with 

conduction bands above that of the oxide layer, the electrons are injected into the oxide. The 

holes then travel through the material, like in the Schottky devices, to a metal contact such as 

gold.3, 17 By using a high surface area oxide layer, the light absorption can be maximized while 

using a thin layer of QD material above the film to transport holes and prevent shorting of the 

metal to the TiO2. An example of bandgap alignment for a PbS sensitized depleted 

heterojunction device can be seen in Figure 5.1. 

 

Figure 5.1 Band alignment of PbS QD depleted heterojunction devices vs vacuum. 

 

 These devices are assembled primarily using spin coating.3, 14-18 This technique holds the 

substrate to a chuck often using vacuum and spins at a variable speed. The resulting thin film 

thickness is dependent on rotation speed and deposited solution viscosity. These techniques are 



62 

 

reproducible though wasteful as the bulk of the deposited material is removed from the device.19 

While this technique is efficient for flat surfaces, it cannot deposit well on textured surfaces such 

as nanowire arrays. To do this a technique for depositing nanoparticles using an applied field, 

known as electrophoretic deposition, was studied for use in these applications. Additionally, as a 

submersion technique little if any material is wasted. Unused QDs can be recovered, dried, and 

resuspended in solvent. This would not only decrease cost of fabrication, but also the 

environmental impact of disposing of heavy metals.  

 To analyze test devices, they are irradiated with A.M. 1.5 (1000 W/m2) light and a 

reverse voltage is applied. The current density (J, mA/cm2) of the device is plotted as a function 

of this applied voltage and a graph similar to Figure 5.2 is produced.  

 

Figure 5.2 Sample J-V curve labeled with shunt resistance (RSH), series resistance (RS), maximum power (Pmax), 

theoretical power (PTheo.), short-circuit current density (JSC), and open circuit voltage (VOC) 

 

The current density with no applied voltage is known as the short-circuit current density (JSC) 

and is the maximum current the device can supply. When the applied voltage is equal to the 

voltage of the device, and the current is therefore zero, this point is known as the open-circuit 
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voltage (VOC) and is the maximum voltage of the device. The inverse of the slope that intersects 

the JSC is the recombination or shunt resistance (RSH). This is how resistant the electrons are to 

recombining with the generated holes. Under ideal conditions this resistance is infinite and the 

slope of the line is zero. The inverse of the slope of the line intersecting VOC is the series 

resistance (RS) or the device. This is the path resistance of electrons in the device. Under ideal 

conditions this resistance is zero and the line is perpendicular to the x-axis creating a perfect 

rectangle. The point of this rectangle is the theoretical power (PTheo.) of the device. A measure of 

this “squareness” is known as the fill factor (FF) which is the maximum power output of the 

device (Pmax) over the theoretical power. The final, and arguably most important, piece of 

information obtained from a J-V curve is the device efficiency. This is the Pmax/Pin or the 

percentage of power produced from energy put in from the light source. 

5.2 Experimental 

5.2.1 Preparation of substrates 

 Pieces of either indium tin oxide (ITO, Sigma 8 Ω/sq) or fluorine tin oxide (FTO, sigma 8 

Ω/sq) coated glass were cut into 1 x 2.5 cm pieces They were cleaned by submersion in a 1% 

Alconox solution and sonicating for 60 minutes. They were then washed with Nanopure 

(deionized 18 Ω/sq, 0.02 µm filtered) water and sonicated for another 60 minutes in Nanopure 

water to remove any remaining Alconox. Finally, the substrates were sonicated for 60 minutes in 

isopropyl alcohol and stored in alcohol until use. 

 After cleaning some substrates were dried and masked with Scotch™ tape. A small 

amount of zinc powder was added to the area that the ITO/FTO was to be removed and spread 

with minimal ethanol (195 proof, Aaper Alcohol) and the tip of a microspatula to create a film 

over the entire area. After the Zn films dried 1-2 drops of 1.0 M aqueous HCl (Fisher, certified 

ACS Plus) were added. The etching progressed for 5 minutes, was rinsed with water, then the 

cleaning and storing process was repeated. 

For TiO2 coated substrates, the glass pieces were dried and placed in a petri dish 

conductive side up. The substrates were then covered with 0.04 M TiCl4  solution that was 

prepared by diluting pure TiCl4 (Sigma) with Nanopure water at 0°C. The substrates were then 
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heated at 60°C for 1 hour, rinsed with Nanopure water, dried, and annealed at 500°C for 30 

minutes. 

ZnO coated substrates were deposited using a Kurt J. Lesker PVD 75 thin film deposition 

system. 

5.2.2 Synthesis of 2 nm PbS QDs 

 In a 100 mL 3-neck flask 9,960 µL octadecene (Acros, 90% technical grade), 640 µL 

oleic acid (Acros, 97%) and 0.22 g lead oxide (PbO, Acros, 99,9+%) were stirred and put under 

vacuum. The system was set to heat from room temperature to 150 °C over 1 hour then 

maintained at 150 °C until the solution turned clear. As the heating started the system was 

flushed with ultra-high purity argon (UHP Ar) then purged three times. The system was left 

under flowing argon at a rate of 1 bubble every 2-3 seconds. After the solution becomes clear the 

temperature was reduced to 75 °C. After stabilizing 1 mL 1,2-dichloroethane was added and the 

solution was allowed to stir for 1 hour. During this time 6 mL octadecene was mixed with 126 

µL hexamethyldisilathiane (Sigma, synthesis grade) and vacuum purged with UHP Ar then left 

under slowly flowing Ar for later use. After reacting for 1 hour the lead precursor solution was 

cooled to 50 °C. After the temperature stabilized, 5 mL of the sulfur solution was rapidly 

injected below the surface of the lead precursor. The solution slowly changed from clear, to light 

yellow, the progressively darker red until appearing a deep red or black. The reaction was then 

quenched in an ice bath to bring it to room temperature. The particles were precipitated with 

acetone and separated by centrifugation at 3000 rpm for 5 minutes. The pellets were then 

suspended using minimal hexanes and ultra-sonication to break up larger agglomerates. These 

suspensions were then precipitated with acetone and centrifuged. This was done three times to 

remove any unreacted precursors. 

5.2.3 Synthesis of CdSe QDs. 

CdSe QDs were prepared using a modified version of a previously published method.20 In 

a 100 mL 3-neck flask 30 mg cadmium oxide (CdO, Sigma) and 180 mg lauric acid(Sigma). The 

system was connected to a condenser, the other two necks closed with septa, and the whole thing 

evacuated for 10 minutes. The flask was then flushed with ultra-high purity argon (UHP Ar) and 

the flow was adjusted so a very small flow remained (approximately 1 bubble per second). The 
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system was heated to 80°C and 2 g hexadecylamine (Sigma, Tech. grade 90% pure) and 2 g 

trioctylphosphine oxide (TOPO, Sigma, Tech. grade 90% pure) were added. The system was 

then purged and flushed with UHP Ar three times to remove any oxygen and returned to a slow 

flow of blanket UHP Ar. The system was heated to 280°C over 1 hour and stirred there until the 

solution turned clear. While the Cd solution was heating 80 mg selenium (Se) was dissolved in 2 

mL trioctylphosphine (TOP, Sigma, Tech. grade 90% pure) and stored under flowing UHP Ar 

until use. Once the Cd solution was clear it was cooled to 225°C and stirred vigorously. The Se 

solution was then rapidly injected under the surface of the Cd solution. The mixture quickly 

changes color as the crystals grow. The solution was immediately quenched in an ice bath after 

the color began appearing (approximately 30 seconds from injection). 

5.2.4 QD spin coating 

 Colloidal PbS QDs were suspended 25 mg/mL in hexanes. Clean and dry substrates were 

placed into a spin coater (Laurell, WS-400A-6NPP/LITE). The surface was covered with a 10% 

(v/v) 3-MPA in methanol solution and the lid closed. The device was then spun at 2500 rpm for 

10 seconds. To rinse the substrates were spun at 2500 rpm and ~ 2 mL methanol was deposited 

using a Pasteur pipette then allowed to spin for ~25 seconds to dry. This was done again with 

QD solution and hexane. This was considered one deposition cycle. This was repeated for 5-20 

cycles. After deposition an area of film was removed using a razor to allow for electrode 

placement.  

5.2.5 Electrophoretic deposition of QDs 

 Quantum dots were suspended at 20 mg/mL in a 14% (v/v) acetonitrile in chloroform 

solution. This was done by first suspending the particles in the chloroform and sonicating for 5 

minutes to break up agglomerated particles. The acetonitrile was then added to reach the desired 

ratio. Substrates were separated from a copper counter electrode using microscope slides and 

held together using Scotch™ tape. The area of deposition was defined by aligning the bottom of 

the counter electrode with the etching line of the substrate and the fill level of the beaker. The 

assembly was then suspended in a 10 mL beaker using a custom holder pictured in Figure 5.3. 

Films were deposited for 20 minutes at 400 V (1000 V/cm). After deposition, the films were 

rinsed with chloroform to remove free quantum dots.  
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Figure 5.3 Image of custom electrophoretic deposition sample holder 

 

5.2.6 Device assembly and testing 

 After deposition of the QD layer devices were masked. Silver was thermally deposited 

(Cressington coating system 308 R) to a thickness of 20 nm. Contacts were made using copper 

tape with a length of wire soldered to it. One was place on the bare FTO/ITO and the second was 

attached to the silver/etched area. Both were carefully positioned to avoid touching the QD film. 

Figure 5.4 is a cartoon diagram showing what a finished device typically looked like and areas 

labeled for clarity. 

 

Figure 5.4 Labeled diagram of depleted heterojunction solar device 
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5.2.7 Characterization 

 Absorbance was measured with a Cary 500 UV-Vis spectrometer. Photovoltaic 

measurements were performed using a Newport® 50-500 W 67005 solar simulator set at 100 

mW/cm2. The light intensity of the xenon lamp was calibrated using a National Renewable 

Energy Laboratory (NREL) calibrated silicon photodiode (Hamamatsu S1787-08 for visible to 

IR range). Current density-voltage (J-V) curves were measured with a Keithley 2400 source 

meter.  

5.3 Results and discussion 

 The first cell design tested used FTO substrates with a thin layer of compact TiO2. Early 

devices used 5 spin coating cycles. This was to create devices that would have low transport 

resistance. These early devices had a high failure rate with 1 in 20 showing any photocurrent and 

all devices showing very low recombination resistance. To ensure that the shorts were not 

developing from the solution based oxide layer, 10 nm thick ZnO films were obtained from a 

collaborator. These films were deposited using magnetron sputtering and therefore should be 

even and hole free. These devices also showed similar behavior to the TiO2 devices with only 1 

in 20 showing any photo current and showing signs of short circuits. The J-V curve for the 

champion device for 5 cycle devices can be seen in Figure 5.5  

 

Figure 5.5 Photocurrent density vs voltage curve for best device made using 5 deposition cycles 
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 This device had a Jsc of 0.11 mA/cm2, Voc of 0.32 V, a fill factor of 0.25 and overall 

efficiency of 0.009%. The recombination resistance in this device is very low at 3 Ω. This device 

was tested in the dark to see if this low resistance was due to exciton recombination, or shorts in 

the device and to show the current was caused by illumination. The J-V curve for the 

measurement can be seen in Figure 5.6 

 

Figure 5.6 Photocurrent density vs voltage curve for 5 cycle QD deposition device in the dark 

 

 The stepped appearance is an artifact of the testing software. When the data exports very 

small changes are lost due to rounding of numbers after 10 decimal places. Despite this, a more 

diode like shape can be seen. This curve should ideally follow the x-axis until reaching the Voc of 

the device. What the shape of this curve implies is a mixture of recombination within the film, 

and shorts within the device. 

 To correct for this behavior, the number of cycles was increased until the maximum 

efficiency was achieved using 20 layers. Devices with more cycles began declining in 

performance. The J-V curve for a device made with 20 cycles can be seen in Figure 5.7. This 

device had a Jsc of 5.54 mA/cm2, a Voc of 0.17 V, fill factor of 0.25 and efficiency of 0.23%. This 

is a significant increase over the 5 cycle device.  
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Figure 5.7 Typical photocurrent density vs voltage curve for devices with 20 cycles spin coating 

 

 These 20 cycle devices still exhibit a low shunt resistance. For the device analyzed here 

the RSH is 6 Ω. While double that of the 5 cycle device, this is still far from ideal. To see how 

this is impacted by recombination, and therefore film thickness, an example device constructed 

using 15 layers can be seen in Figure 5.8. This device had a Jsc of 3.29 mA/cm2, a Voc of 0.14 V, 

a FF of 0.25, efficiency of 0.12% and RSH of 4 Ω. 

 

Figure 5.8 Typical photocurrent vs voltage curve for device with 15 cycles spin coating 
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For a point of comparison, the calibrated silicon cell used to adjust the light source was 

tested. As can be seen in Figure 5.9, the silicon cell has a similar current density as the QD 

devices, and it has an effectively infinite recombination resistance. This device had a Jsc of 4.4 

mA/cm2, a Voc of 0.56 V, fill factor of 0.66, and efficiency of 1.65%.  

 

Figure 5.9 Photocurrent density vs voltage curve for calibrated silicon solar cell 

 

 These results show that a technique that produces films with no pinholes for shorting 

during metal deposition is needed. Using published protocols for deposition of nanoparticles into 

mesoporous films, a protocol was developed to create hole free films.21-26 This method uses a 

high voltage to move particles through the solvent and deposit them onto the film. The 

deposition of the particles was dependent on particle concentration, solvent composition, 

electrode/substrate spacing, applied voltage, and time.  

If a higher concentration of acetonitrile was used the particles flocculated created a very 

uneven film. Lower concentrations did not remove enough ligands to adequately charge the 

particles and no films grew. The window for acetonitrile concentration was found to be 14-16% 

(v/v) with chloroform as the major solvent. As the spacing between the substrates was increased 

from 1 mm (1 microscope slide) up to 1 cm (10 microscope slides), only 4 mm showed even 

distribution. 1-3 mm showed deposition along the sides, but the centers were clear or lightly 

deposited. The spacing between the plates likely slowed diffusion of particles into these smaller 
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spaces. At each change of distance and solvent composition the voltage was tested at 50 V 

increments to the maximum of the source at 400 V. No set of conditions showed any deposition 

below 400 V. Until these factors were set, the time of each deposition was 1 hour. This did cause 

a problem with evaporation of solvent so a plastic container was fashioned into a lid and a 

solvent soaked lab wipe was introduced into the environment to saturate the head space and 

reduce evaporation. After optimization, 20 minutes was used for all subsequent films. Deposition 

longer than 30 minutes produced rough films. Films deposited for shorter times showed no 

resistance when tested with a multimeter.  

 Films made using this technique showed diode behavior during J-V testing, however 

there was no detectable photocurrent. The electrophoretic deposition was applied to CdSe QDs to 

see if a different material would have better photovoltaic results. These attempts resulted in no 

deposition of particles and a darkening of the QD solution.  

 To begin investigating this, the fluorescence of the pristine and used QDs was measured. 

In Figure 5.10 the original QD solution showed the characteristic sharp emission of QDs. The 

additional large peak starting around 600 nm would account for the darkening of the solution 

after exposure to the high voltage. These changes require further study to understand why they 

are happening.  
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Figure 5.10 Fluorescence spectra for CdSe QD solution before (blue) with major emission at 550 nm and after 

deposition attempt with decreased peak at 550 nm and broad peak centered around 700 nm 

 

 Planned studies of the CdSe particles include elemental analysis of the particles to 

account for doping of the particles caused by the high voltage. The CdSe particles and PbS films 

scraped after deposition need to be analyzed by IR to account for damage and/or loss of ligands, 

as this could create defects in the QDs and therefore trapping sites for excitons. PbS QD films 

fabricated through dip coating or spin coating need to be compared to electrophoreticly deposited 

films using diffuse reflectance to assess any changes to absorbance from the applied electric 

field. 

5.4 Conclusion 

 Depleted heterojunction thin film devices using ultra small PbS QDs have shown great 

potential as photovoltaic devices. The solution processable techniques presented here need to be 

characterized further then applied to higher surface area electrodes. These techniques, 

particularly electrophoretic deposition, could be applied to core-shell nanowire arrays. A 

substrate with this architecture would present much greater surface area for electron transfer than 

a thin-film design increasing current density. 
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Chapter 6 Concluding Remarks 

As the need for electricity increases, so does the need for clean methods of production. 

Currently less than 20% of this production comes from renewable sources. Of those techniques, 

solar harvesting provides the cleanest and most widely applicable. As these technologies progress 

from the bulky, high-crystalline silicone first-generation devices towards the emerging 

photovoltaics; there is a drive to produce smaller, higher efficiency devices. To enhance these 

emerging photovoltaics different components of the traditional devices have been studied. This 

dissertation looked at nanoarchitectures to enhance both electron transport and light absorption, 

along with alternate light absorbers and methods for their deposition. 

The first of these studies was the enhancement of dye sensitized solar cells with plasmonic 

nanoparticles. Dye cells are very inexpensive to make and compatible with existing mass 

production techniques. With the addition of gold nanoparticles, the existing absorbance spectrum 

of the dye was enhanced. Using particles instead of more rigid structures maintained the ability of 

the devices to be flexible and mass producible. This dissertation showed that using commercial 

particles and incorporating them into the devices before annealing maintained the gold structure 

and size. The plasmonic enhancement from these particles increased the efficiency of the overall 

device by an average of 10%. When combined with novel sensitizers and electrolyte systems, this 

has the potential to make commercial dye sensitized cell efficiencies competitive with the first and 

second-generation devices currently in use. 

To further improve upon these sensitized devices this dissertation considered the use of 

semiconductor nanoparticles, or quantum dots, to act as photosensitizers in place of the traditional 

organic dyes. This study began with the growth of semiconductor films directly onto the 

mesoporous TiO2 network using a SILAR deposition process. While these devices did produce 

photocurrent, even the best devices only had 0.5% efficiency. To improve upon this colloidal 

CdSe/ZnS and PbS quantum dots were synthesized using hot-injection techniques to produce size 

controllable nanoparticles. These were then chemically attached to the mesoporous TiO2 substrates 

using 3-mercaptopropionic acid. To find a catalytic counter-electrode that was compatible with the 

polysulfide electrolyte, two possible substrates were tested. The first was elemental copper sheets 

pre-soaked in a sample of electrolyte to produce a copper sulfide film. This was then compared to 

a much higher surface area electrode made of a mesoporous ITO nanoparticle film with copper 
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sulfide deposited using a SILAR technique. Both techniques showed promise for investigation as 

more stable alternatives to the platinum catalyst of dye sensitized devices. 

The next study performed in the dissertation was the enhancement of Schottky type thin 

film devices. These are typically a semiconductor material deposited on a transparent conductive 

oxide ohmic contact and a metal Schottky contact. These relatively simple devices balance light 

absorption with electron recombination. They must be thick enough to absorb light, but not so thin 

as to lose photocurrent due to recombination of excitons. To reduce this effect, we studied the use 

of a gold nanowire array as a high surface area Schottky contact. This nanoarchitecture allowed 

for short lateral electron transport with interwire distances of less than 10 nm, while allowing for 

thicker films to increase light absorption. We studied different methods of depositing PbS quantum 

dots onto both Au nanowires and nanotubes.  

The final investigation was into methods of assembling depleted-heterojunction devices 

with nanoarray substrates. These depleted-heterojunction devices are a hybrid of the dye sensitized 

and Schottky architectures. With a mesoporous large band-gap semiconductor, like TiO2, film on 

the TCO substrate acting as a Schottky contact for the quantum dot film. These devices add more 

of a blocking layer between the two contacts reducing short circuits and increasing the light’s path 

length. We worked on developing an electrophoretic technique that would allow for the even 

deposition of quantum dots onto a nanoarray without the shadowing of more traditional deposition 

methods. It was shown that even ultra-small PbS QDs could be deposited under an electric field.  

Overall these techniques gave us insight into the mechanics of a few of the emerging 

photovoltaic devices. Through further study of both the overall device architectures, and in the 

methods of assembly, it will be possible to produce highly efficient solar devices at a lower cost 

than those currently on the market. 
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