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Abstract 

Text classification is used in information extraction and retrieval from a given text, and text 

classification has been considered as an important step to manage a vast number of records given in 

digital form that is far-reaching and expanding. This thesis addresses patent document classification 

problem into fifteen different categories or classes, where some classes overlap with other classes 

for practical reasons. For the development of the classification model using machine learning 

techniques, useful features have been extracted from the given documents. The features are used to 

classify patent document as well as to generate useful tag-words. The overall objective of this work 

is to systematize NASA’s patent management, by developing a set of automated tools that can assist 

NASA to manage and market its portfolio of intellectual properties (IP), and to enable easier 

discovery of relevant IP by users. We have identified an array of methods that can be applied such 

as k-Nearest Neighbors (kNN), two variations of the Support Vector Machine (SVM) algorithms, 

and two tree based classification algorithms: Random Forest and J48. The major research steps in 

this work consist of filtering techniques for variable selection, information gain and feature 

correlation analysis, and training and testing potential models using effective classifiers. Further, the 

obstacles associated with the imbalanced data were mitigated by adding synthetic data wherever 

appropriate, which resulted in a superior SVM classifier based model. 

 

KEY WORDS 

Machine learning algorithms, Patent classification, imbalanced data, SVM, Multi-class 

classification.



1 
 

1. Introduction 

Document classification is the process of classifying a document into a predefined category. It 

plays a vital role in managing large number of text documents by automating the document 

classification task. The two main approaches in machine learning for document classification are 

supervised learning [1], where the model is trained with labeled documents, and unsupervised 

learning, where the predefined category or training data is not available for the classification task, 

rather clusters are made to observe the natural grouping of the documents. Further, the given 

document in supervised approach can be labeled as a single-class document as well as multi-class 

documents. Multi-class labeled document classification is relatively challenging compared to the 

single-class labeled document [2].   

Supervised learning models are widely applicable because often the possible categories are 

predetermined based on business activities. Document classification mainly consists of document 

representation (vector form), feature selection, feature extraction, application of machine learning 

algorithm on the data for evaluation. 

In this study we performed classification task on NASA’s patent documents, available in html 

format and downloaded from the U.S. Patent Office [3]. We applied five machine learning methods 

k‐ Nearest Neighbors (kNN), two variations of Support Vector Machine (RBF and PolyKernel), and 

two tree‐ based classification algorithms (Random Forest and J48), to carry out the initial 

classification on NASA patent data. We have assessed the accuracies of the initial classification with 

5 fold cross‐ validation. Based on the results, we conclude that the SVM performed well on the 

available patent data compared to other algorithms. 

Along with the classification of top level categories, we have proposed a way to further proceed 

with second level of classification of a document in the same category i.e., providing a sub category 
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to which top category the document belongs. For example, a document, which is classified as 

“Aeronautics”, can be further classified into “Aircraft” or “Control” depending on its content. Thus, 

the sub category classification enhances user’s visual discovery of intellectual property content of 

the documents. 

Tag words can be generated from the training files as well as from the input files based on the 

information gain [4] of the useful word or term calculated from the given document. The generation 

of these tag words will provide further fine-grained details about patents combining the 

subcategories information, which will assist in search activities and document management.  

To perform the entire document classification and management task, we have developed the 

proposed tool in Java. This tool uses the training data samples that are provided, builds model and 

then predicts the category of the input document. Along with the classification, probability 

distribution of the document could be viewed in pie chart by utilizing the probability values which 

is generated by the classifier. This helps user predict multi-labeled document and enable to place the 

document in the most appropriate category. 

One of the challenges in this project was the existence of the imbalanced datasets. Imbalance in 

training dataset implies significant difference in the number of samples present in the classes.  

Imbalance dataset is problematic, because the total error of the majority-class biases the decision 

boundary in favor of the majority class by almost masking the minority-class [5]. In such cases the 

classification would tend to over adapt the classes with high number of samples ignoring the smaller 

classes [6]. To overcome the problem of document classification involving imbalanced and low 

training dataset, we have implemented a solution by adding synthetic data to the minority class.  

The synthetic data has been collected from well‐ known [7] taxonomical repositories and articles, 

and fed into the respective classes by generating files having chunk of dataset within them. In this 
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paper we analyze the accuracy of SVM classifier with data imbalance problem in classes and also 

describe how synthetic data addition to the training data set have improved the accuracy of the 

classifier.  
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2. Literature Review 

In this section, a relevant literature related to the proposed research work has been discussed.  

2.1 Review of multi-class document classification 

In a pioneering approach, Fabrizio Sebastiani mechanized automated classification (or 

classification) of texts into predefined classes, this approach had seen an expanding enthusiasm in 

recent years, because of the expanded accessibility of documents in digital form and the subsequent 

need to classify them [8]. The predominant way to deal with these text-classification problems are 

popularly and manageably done using machine learning techniques, a general inductive process that 

naturally builds a text classifier by learning from a set of labeled text documents, the attributes of 

the categories. The benefits of this approach over the knowledge engineering approach (manual 

classification and annotation by domain specialists) are a decent viability, and direct movability to 

various domains. The success story of automated text classification is expanding to neighboring 

fields of application. For example, noisy text classification resulting from the optimal character 

recognition and speech transcripts are available and inspiring [8]. 

Text classification has advanced from a minor research field in late '80s, into a completely 

bloomed investigation field, which has produces proficient, powerful, and generally useful 

classifications with many application areas. This achievement has been based on two aspects of 

modernization: first, the continually expanding inclusion of the machine learning group in text order, 

which has of late brought about the utilization of the latest machine learning innovation in text 

classification applications, and second, the accessibility of standard benchmarks, (for example, 

Reuters-21578 and OHSUMED) [9], which has supported research by giving a setting in which 

distinct research endeavors could be contrasted with each other, and in which the best techniques 

and calculations could emerge.  
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2.2 Review of approaches in document classification 

Currently, text classification has become one of the key methods to handle and organize text data 

[10]. Documents, which generally contains strings of characters, have to be transformed into a 

suitable representation that usable in learning algorithms and classification problems. Information 

retrieval research suggests that word stems work very well as representation units leading to attribute 

value representation of text, which is used in implementing this project. The word stem is derived 

from the form of a word by removing case and derived information [11]. For example “machine”, 

“machining” are all mapped to the same stem “machin”. This leads to an attribute value 

representation of the text data. For each unique word, its count 𝜔𝑖 in the data corresponds to a feature 

as term frequency (𝜔𝑖, d), in corresponding text document d. To overcome the unnecessarily large 

feature vectors, words are represented as features if they have occurred in the training data set usually 

at least 3 times. Based on this representation, scaling the dimensions of the feature vector with their 

respective inverse document frequency (IDF, which is applied as the log inverse of 𝜔𝑖) leads to an 

improved performance. IDF is calculated from the total number of training documents (n) and the 

document frequency of the particular word 𝜔𝑖 as shown in equation (1): 

 𝐼𝐷𝐹 (𝜔𝑖) =𝑙𝑜𝑔 (
𝑛

𝐷𝐹(𝜔𝑖)
) (1) 

   

Here, 𝐷𝐹(𝜔𝑖) is the number of those documents in the collection, which contain the term 𝜔𝑖. Based 

on the standard feature vector representation of the text data, it was argued in [3] that the support 

vector machines are more appropriate for this type of setting. Different classification methods such 

as Bayes, SVM, C4.5 and kNN were applied on the Reuters-21578 and Ohsumed corpus [2] among 

which, SVM was found to have superior prediction with considerable performance gains. 
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Rennie Jason [12] in his work indicated that, SVMs performed better than Naïve Bayes for the 

multiclass text classification problems. 20 Newsgroups is a data set collected and originally used for 

text classification by [13]. Datasets from 20 Newsgroups and Industry-Sector [14, 15] were used for 

the experimental setup. Empty documents that are generated after preprocessing (23 for 20 

Newsgroups, 16 for Industry Sector) were filtered out. The code and pre-processed data used in 

experiments can be obtained from [16, 17]. It contained 19,997 documents evenly distributed across 

20 classes. All headers, UU-encoded blocks, stop words and words that occur only once were 

removed from further consideration. The vocabulary resulted into 62,061 words. Randomly selected 

80% of documents per class for training and the remaining 20% for testing. This is the same pre-

processing and splitting as McCallum and Nigam used in their 20 Newsgroups experiments [14]. 

Later, the experiments were conducted on 10 fold cross-validation (FCV) [1, 18]. To gauge 

performance for different amounts of training documents, the authors created nested training sets of 

800, 250, 100 and 30 documents per class for 20 Newsgroups and (up to) 52, 20, 10 and 3 

documents/class for Industry Sector. Empirical calculation of error for different sizes of data sets and 

their classification using SVMs and Naïve Bayes are also provided. Based on the experimental 

results, the support vector’s improved ability in performing the binary classification have given lower 

errors compared to Naïve Bayes. 

As indicated in [19], machine learning for text classification is best available tool for document 

classification, news filtering, document routing, etc. In text classification, effective feature selection 

is very important to make the learner model effective and more precise. Commonly known metrics 

such as Chi Squared, Bi-normal Separation, Information Gain, Probability Ratio, etc. have been 

applied on the data to extract the features. Information Gain (IG) measures the decrement in entropy 

when the feature is given versus the feature is absent.  
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Information gain (IG): In Machine learning field Information gain is commonly employed as a 

term-goodness criterion [20]. By knowing the presence and absence of a term in a document, IG 

measures the number of bits of information obtained for the category prediction. Let {𝑐𝑖}𝑠𝑠𝑖=1
𝑚  denote 

the set of categories in target space, and the information gain of a term t is calculated as 

 𝐺(𝑡) = − ∑ 𝑃𝑟(𝑐𝑖
𝑚
𝑖=1 )𝑙𝑜𝑔𝑃𝑟(𝑐𝑖)+𝑃𝑟(𝑡) ∑ 𝑃𝑟(𝑐𝑖

𝑚
𝑖=1 /𝑡)log𝑃𝑟 (

𝑐𝑖

𝑡
) 

               + 𝑃𝑟(𝑡)̅ ∑ 𝑃𝑟(𝑐𝑖
𝑚
𝑖=1 /𝑡̅) log𝑃𝑟(𝑐𝑖/𝑡̅) 

 

(2) 

Here, m is the target space dimension, and 𝑃𝑟 is the probability of occurrence of term t in document 

corpus. In a given training corpus, the information gain is computed for each unique term and the 

terms were removed from the attribute space if the information gain is less than the predetermined 

threshold value. In [20] the authors performed evaluation of feature selection techniques like IG, 

Chi-squared, Document frequency thresholding, and Mutual information [20] using Reuters [21] and 

Ohsumed [9] data and found Chi-squared and IG were more effective in aggressive term removal 

without losing categorization accuracy. 

The work [19] introduced an observational examination of twelve-element choice techniques (i.e., 

Information Gain) assessed on a benchmark of 229 text classification issue occasions that were 

assembled from Reuters, TREC, OHSUMED [9], and so forth. The outcomes are investigated from 

numerous objective point of view such as exactness, F-measure, accuracy, and review since each is 

suitable in various circumstances. The overall feature selection procedure is to measure each 

potential feature according to available metrics like Chi Squared, Bi-normal Separation, Information 

Gain, and Probability Ratio and to consider the best k-features. Scoring the features involves counting 

the occurrences of the feature in positive and negative class in a training datasets separately and to 

compute the feature selection metrics. In this proposed research of patent classification, we are 



8 
 

motivated to investigate and implement the IG based approach because of its proven effectiveness 

[19]. 

Text classification has been considered a much needed technique to oversee and handle an nearly-

unlimited amount of documents in digital forms that are far reaching and ceaselessly expanding [22]. 

A document can be represented as an array of words, however, not all words in a document can be 

used for training the classifier, and those words to be ignored are called stop words. For example 

auxiliary verbs, conjunctions, articles can be classified into stop words. In a preprocessing task, stop 

words are often removed from consideration.  

Stemming is another common task in preprocessing step. A stemmer algorithm replaces the words 

with the same stem with their respective stem-word. The removal reduces unrealistic feature 

variations, increases frequency count for the important feature and reduces the input-features 

dimension. This reduction of the curse of dimensionality [1] yields in improved classification 

accuracy.  

Feature transformation differs significantly from feature selection approaches however, like 

feature selection, its main purpose lies in reduction of feature set size. Principal component analysis 

(PCA) is a famous approach used for the feature transformation [23]. The aim of the usage of PCA 

is to generate a discriminative transformation matrix to reduce the initial feature space into a lower 

dimensional feature space which reduces the complexity of the classification without any (zero to a 

little) trade off in accuracy as a choice. Feature extraction or feature selection techniques like term 

frequency, inverse document frequency, information gain described in this paper are followed in the 

preparation of our data. 

As indicated by John Platt [24], in his new algorithm for the training of support vector machines: 

Sequential Minimal Optimization, or SMO, training a support vector machine requires the 
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classification of a huge quadratic programming (QP) improvement issue. SMO breaks this vast QP 

issue into a progression of smallest conceivable QP issues. These small QP issues are tackled 

analytically, which abstains from utilizing a tedious numerical QP enhancement as an inner loop. 

The measure of memory required for SMO is directly dependent on the preparation set size, which 

permits SMO to deal with large training sets. The data set used in the experiment to test SMO’s speed 

was the UCI "adult" data set, which is available at [25]. The SVM was given 14 attributes of a census 

form of a household. The training times of SVM and chunking algorithm were compared on the data 

set. SMO’s time scales for the training order is comparatively better than the chunking time. SMO's 

computation time is mainly dominated by evaluation of SVM subsequently, SMO is faster for linear 

SVMs and scanty information sets.  On real world data, SMO can be more than 1000 times quicker 

than the chunking algorithm. This motivates us to apply SMO classifier setting to perform the 

classification task in our project. 

Aurangzeb Khan et al. [26] reviewed a few machine learning approaches and text classification 

strategies. Data preprocessing is done using feature extraction and feature selection approaches. In 

feature extraction, stemming, tokenization, stop words removal is applied on the documents. After 

feature extraction, vector space is constructed using the Term Frequency/Inverse Document 

Frequency (TF-IDF) approach. TF-IDF captures relevancy among the words, text documents and 

particular categories. The statistics from information gain and chi square confirms that these are the 

mostly used and well performed techniques for feature selection. More than 100 variants of five 

major feature selection methods are tested using four popular classification algorithms: Naive 

Bayesian (NB) approach, Rocchio's-style classifier, kNN technique and Support Vector Machines. 

Among all the machine learning algorithms, Support Vector Machine, Naïve Bayes, kNN and their 

hybrid approaches with a combination of other algorithms have shown accuracy in the existing 
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literature. NB algorithm performed well in spam filtering and email classification or categorization, 

which requires a small amount of data for training to calculate the parameters useful for 

classification. On the other hand, SVM method was able to effectively collect the inherent 

characteristics and embed the structural risk management principle which reduces the upper bound 

on the generalization error. However, the main disadvantage of SVM lies in difficulty of parameter 

tuning and selection of kernels. 

Support vector machines (SVMs) were initially intended for binary classification of documents 

[27]. Step by step the algorithm has been extended for multiclass classification. A few strategies have 

been proposed where a multiclass classifier is built by combining many other binary classifiers [28]. 

Some researchers have proposed strategies that consider all the classes at once. The authors 

compared the methods performance and three techniques based on binary classifications: "one-

against-all, “one-against-one," and coordinated non-cyclic diagram SVM (DAGSVM). Their tests 

show that the "one-against-one" and DAG techniques are more reasonable for pragmatic use than 

alternate methods. From UCI Repository [29] the following datasets: iris, wine, glass, and vowel 

were collected. From Statlog collection [29], all multiclass datasets: vehicle, segment, dna, satimage, 

letter, and shuttle were collected. The data sets were trained using RBF kernel 𝐾(𝑥𝑖 , 𝑥𝑗) ≡

𝑒−𝛾||𝑥𝑖−𝑥𝑗||2
 parameters. The generalized accuracy is measured using different kernel parameters 𝛾 

and cost parameters C: 𝛾 = [24,23,22,…2-10] and C=[212,211,210,…2-2]. From these experimental 

results, authors concluded that the SVMs accuracy could be increased by changing the kernel and 

cost parameters. 

As indicated by Simon Tong [30], text classification have a vital role to play due to the recent 

expansion of readily available data. SVMs have gained remarkable success in solving number of real 

world problems. Usefulness of SVM based methods [31] has resulted in its widespread popularity. 
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In this work, authors represent the document as a stemmed, TD-IDF-weighted word frequency 

vector. Stop word consisting of list of common words were used to ignore the irrelevant features. 

Because of proven significance, stop words and TD-IDF preprocessing techniques are implemented 

in our project. 

As indicated by Edda Leopold [32], the decision of the kernel function is critical to most 

applications of support vector machines. Representation of texts in input space is performed by 

frequency transformations and inverse document frequency. In frequency transformation the term 

frequencies 𝑓(𝑤𝑘, 𝑡𝑗) is used and multiplied with inverse document frequency. IDF of term  in a 

text data collection consisting of N document is calculated suing equation (1). The vector of the IDF 

for all types in the document collection is given by  

  𝐼𝐷𝐹=(𝐼𝐷𝐹1, … 𝐼𝐷𝐹𝑛) (3) 

   

Thus, the product of frequency transformation and the IDF gives the vector of the text to be 

represented in the input space. Test input data were collected from Reuters-21578 dataset, 

Frankfurter Rundschau newspaper and Die Tageszeitung (German) newspaper [21]. SVM classifier 

with linear, polynomial and RBF kernel were applied on the data. The experimental results have 

shown that the kernel functions did not affect the precision and recall performance very much. 

Compared to polynomial and linear kernels, RBF kernel generated more support vectors. The 

experimental results have also shown that SVMs are capable of efficiently processing very high 

dimensional feature vectors. 

According to Kim [33], Support vector machines (SVMs) have been perceived as a standout 

amongst the best classification strategies for some applications including text categorization. The 

experimental data consists of a subset of MEDLINE database [34] with 5 categories. Each class has 

500 documents and divided into 1250 documents each for training and test set.  Using Centroid based 
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algorithms for dimensionality reduction of clustered data: For term document matrix A, the reduced 

dimensional representation is achieved by transforming each document vector in the m dimensional 

space to a vector in the l dimensional space for some l < m. Dimensional reducing transformation GT 

∈ 𝑅𝑙×𝑚 is computed explicitly or the dimensionality can be achieved by formulating as a rank 

reducing approximation where the given matrix A is decomposed into two matrices Y and B i.e. 

 𝐴 ≈ 𝐵𝑌 (4) 

 

Here, 𝐵 ∈ 𝑅𝑙×𝑚 with rank (B) = l and 𝑌 ∈ 𝑅𝑙×𝑛 with rank (𝑌) = l. 

The optimal separating hyperplane of one versus rest binary classifier could be obtained by 

conventional SVMs. The decision rule for SVM is  

 𝑦(𝑥, 𝑗) = 𝑠𝑖𝑔𝑛 ( ∑ 𝛼𝑖

𝑥𝑖∈𝑆𝑉

𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏 − 𝜃𝑗
𝑆𝑉𝑀) (5) 

 

Here y (x,j) ∈ {+1, -1} is the classification for the document x with respect to the class j, SV is the 

support vectors set,  𝜃𝑗
𝑆𝑉𝑀 is class specific threshold for the binary decision, ∑ 𝛼𝑖

𝑛
𝑖=1 𝑦𝑖 = 0, 0 ≤

𝛼𝑖 ≤ 𝐶, 𝑖 = 1, . . 𝑛 and the kernel function is represented with 𝐾(𝑥, 𝑥𝑖) =< ∅(𝑥𝑖), ∅(𝑥𝑗) > where <, 

> represents the inner product of two vectors, is introduced to handle nonlinearly separable cases 

without any explicit knowledge of the feature mapping ∅. This threshold is set so that a new 

document x should not be classified to belong to class j when it is located very close to the optimal 

separating hyperplane. After performing classification using algorithms like SVM and kNN, it was 

shown that the classification accuracy of the SVM is higher and it achieved a significant reduction 

in the time and space complexity. Despite the fact that the learning capacity and computational 

complexity of training in support vector machines might be independent of the dimension of the 

feature space, diminishing computational complexity is a fundamental issue to proficiently deal with 



13 
 

a large number of terms in solving the text classification problems. Novel dimension reduction 

strategies to lessen the dimension of the text vectors drastically were implemented. Decision 

functions for the classification algorithm and support vector classifiers to deal with the classification 

issue where a text document may have the probability of belonging to multiple classes were 

presented. The significant exploratory results in the paper demonstrate that several dimension 

reduction strategies that are composed particularly for clustered data, higher efficiency for both 

training and testing can be accomplished without giving up prediction accuracy of text categorization 

even when the dimension of the input space is essentially decreased [33]. 

2.3 Overcoming data imbalance issue 

According to R. Longadge et al. [5], imbalance data set is the greatest problem in data mining 

[35]. The authors have proposed three methods for classification of imbalance data set which is 

divided into three categories namely algorithmic, data preprocessing and feature selection approach. 

The paper demonstrates systematic study of these approaches and the right direction for the class 

imbalance (class imbalance occurs when one of the two classes having more sample than other 

classes) problem. Sampling methods are used in solving the data imbalance problems, which is 

known as data preprocessing method. Under-sampling and oversampling are the two methods 

described in this paper. The authors provided the methods to perform the feature selection and 

algorithmic approaches and concluded that the data preprocessing method provides much better 

solution than other methods as it allows the addition of new data into the existing data or the deletion 

of the redundant data, which is of less importance. Under-sampling is an efficient strategy to deal 

with class imbalance but the drawback of under sampling is that it loses many potential data as some 

of the data is deleted. In order to achieve good prediction over minority class and avoid necessary 
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information loss from the majority class, both k-means algorithm and random sampling approaches 

were implemented to generate balanced data sets. 

 
𝑆𝑖 = 𝑋𝑀𝑖𝑛×𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑘 (6) 

Here,  𝑅𝑖 = 𝑋𝑀𝑎𝑗_𝑖/𝑋𝑀𝑎𝑗 for 1 ≤ i ≤ k, 𝑋𝑀𝑎𝑗 is majority class samples, 𝑋𝑀𝑖𝑛 are minority class 

samples and 𝑋𝑀𝑎𝑗_𝑖  is the majority of samples in the ith cluster. The following algorithm 1 is proposed 

for implementing under-sampling technique. 

 

Algorithm 1: Implementation of under-sampling technique. 

INPUT: Majority class samples, minority class samples. 

OUTPUT: Balanced training set 

Step1: Cluster all the majority class samples into k clusters using k-means clustering. 

Step2: Compute the number of selected majority class samples in each cluster by using equation            

(6) and select Si majority samples in ith cluster. This is done by selecting Si majority class samples 

in ith cluster randomly. Thus, majority sample subsets C is obtained. 

Step3: Combine C with all the minority class samples respectively to obtain the training set B. 

 

The proposed approaches are tested on UCI data sets [29] and found that kNN has improved 

performance compared to SVM. According to the experimental results, SVM’s performance 

degraded as the class imbalance increased. 

According to Rehan [36], SVM has been widely considered and has indicated noteworthy 

accomplishment in numerous applications. The accomplishment of SVM is extremely constrained 

when it is applied to the problem of learning from imbalanced datasets in which negative cases 

intensely dwarf the positive cases (e.g. in gene profiling and distinguishing credit card fraud). 

Undersampling the majority instances and oversampling the minority instances were the main 
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approaches applied for imbalanced data sets. A new algorithm which needs to bias SVM in a way 

that will push the boundary away from the positive instances is introduced. The performance of 

proposed algorithm against the SMOTE algorithm by Chawla et al., consolidated with Veropoulos 

et al.'s different error costs calculation, alongside under-sampling and general SVM, demonstrate 

that the proposed algorithm works well. The main problem with imbalanced data sets is that they 

skew the boundary towards the minority class instances. The classification function for the hard 

margin linear SVM is as follows: 

  𝑆𝑖𝑔𝑛((𝑤. 𝑏) + 𝑏) (7) 

Here, 𝑤 is a vector that is normal to the separating hyperplane. The norm of w and variable b decide 

the distance of the hyperplane from the origin. This skew of the learning hyperplane is tested on UCI 

datasets [29]. Ideal boundary for this dataset is measured by testing balanced datasets which are 

linearly separable and noise free in the feature space. When SVM classifier is applied on the balanced 

UCI data [29], 100% accuracy is achieved. Upon repeating the experiment by keeping the positive 

instances same and reducing the negative instances, the results have shown a significant angles 

between ideal and learned hyperplane. Thus, this motivates us to reduce the data imbalance issue in 

our training set, while applying SVM with a good faith. 

According to Yanling Li, Guoshe Sun, Yehang Zhu [6], imbalance in training data set means a 

significant difference in the number of samples present in the classes. In such cases the classification 

would tend to over adapt the classes with high number of samples ignoring the smaller classes. In 

most of the text classification problems this data imbalance is common. For example in monitoring 

the public opinion data, information security and supervision, most of the cases the quantity of texts 

which holds a negative view will be very low compared to the positive views. Classification 

algorithms like Support vector machines, kNN, and neural network are not adaptive in handling the 
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imbalanced data sets. Their paper mainly focused on analyzing different forms of data imbalances 

including text distribution, class overlap, and class size and devised the conclusions based on 

experimental values. 

3. Preliminary Work 

3.1 Approaches to document classification using machine learning 

In supervised approach, single-label documents are those which are classified into one class only, 

multi-label documents are those which are classified into more than one class [2].  In this project we 

perform multi class classification, in which a file is predicted into one of the predefined categories.  

Supervised learning models are widely applicable and can offer the insight about how the 

explanatory variables are related to the categorical response variable. Document classification 

mainly consists of document representation (vector form), feature selection, feature extraction, 

application of machine learning algorithm on the data for evaluation. There are different types of 

supervised text classification techniques available in machine learning platform, which we applied 

to perform our preliminary assessment discussed below: 

kNN (k Nearest Neighbors): kNN algorithm is based on the assumption that the classification of 

a document is analogous to the classification of the other documents that are nearby in the vector 

space. “k” in kNN is a user-defined constant which is used to find the most frequent  label of k 

training samples (documents) nearest to the unlabeled vector or test document. 

Support Vector Machines: It is a supervised classification algorithm which is extensively 

implemented in text classification problems. SVM have the potential to handle large feature spaces 

as they use over fitting protection which does not depend on the number of attributes [37]. The task 

of SVM is to find the linearly separators for the available categories.  



17 
 

Random Forest: It is a robust and versatile algorithm, which is used for classification of 

documents. Random forest consists of many individual trees [38]. In this method, each tree votes on 

an overall classification for the given dataset and the random forest algorithm choses the most voted 

individual classification. 

J48 Decision Trees: A decision tree is a predictive machine learning model which decides the 

target value of a new sample based on several attribute values of the available training dataset. A 

binary tree is created based on the training dataset and it is applied to target instance in the dataset 

for the classification. 

We applied five machine learning methods on the experimental data [3] to carry out the initial 

classification. These five methods are k‐ Nearest Neighbors (kNN), two variations of Support 

Vector Machine (SVM), and two tree‐ based classification algorithms Random Forest and J48. We 

have assessed the accuracies of the initial classification with 5 fold cross‐ validation. The 

following Table shows training accuracies obtained from various methods using the full‐ text 

documents: 

    Table 1: Comparison of five machine learning methods’ training accuracies for the given 15 categories. 
 

 
kNN 

(w/ k=9) 

 
SVM 

(w/RBF‐kernel) 

 
J48 

 
Random Forest 

 

 
SVM 

(w / PolyKernel exp (1.0)) 

54% 55.4% 57.07%      61.04% 69.2% 

 

Based on the results from the above table, we have proceeded with SVM classifier algorithm to 

make the classification tool more robust for this experimental setup, because, in our preliminary 

assessment (see Table 1) SVM already has outperformed others. 
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3.2 A Dissection of Support Vector Machine in Classification 

  Support Vector Machines is a classifier formally defined by a separating hyperplane in other 

words, given labelled training data (supervised learning), the algorithm outputs categories. SVM is 

a relatively new class of machine learning techniques first introduced by Vapnik [37] and has been 

introduced in Text classification by Joachims. The Support vector machine classifier needs both 

positive and negative training set, which are uncommon for other classification problems. These 

positive and negative training set are needed for the SVM to seek for the decision boundary that 

separates the two classes in the n dimensional space, so called the hyperplane. The documents, which 

are closest to the decision surface, are called the support vectors. The accuracy or efficiency of the 

Support vector machine classifier classification does not alter if documents that do not belong to the 

support vectors are removed from the set of training data. 

Usually the classification problem can be confined to thought of consideration of the two-class 

(binary) problem without loss of generality. The main goal of the problem is to separate the two 

classes by a function which is induced from available examples. The goal is to produce a classifier 

that will work well on unseen examples. Consider the example in Figure 1. In the figure there are 

many possible linear classifiers that can separate the data points, but there is only one classifier that 

maximizes the margin (maximizes the distance between it and the nearest data point of the two 

classes). Such linear classifier is defined as the optimal separating hyperplane. Intuitively, we would 

expect this hyperplane to generalize well as opposed to the other possible class boundaries. 
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               Figure 1: Hyperplane in SVM, possibility of many hyperplanes which divide the data points. 
       

The goal of SVM is to maximize the margin in-between classes of the training data. It implies 

finding the biggest margin provides the optimal hyperplane for the classifier. A hyperplane separates 

the two classes based on the equation (8). 

                                               𝑤. 𝑥 + 𝑏 = 0                    (8) 

With  𝑤. 𝑥𝑖 + 𝑏 ≥ 1 𝑖𝑓 𝑦𝑖 = 1 and 𝑤. 𝑥𝑖 + 𝑏 ≤ −1 𝑖𝑓 𝑦𝑖 = −1  for 𝑖 = 1,2, … 𝑁 

The goal of SVM is to find the optimal separating hyperplane by maximizing the distance between 

the two classes, which can be calculated from equation (9).  

                                               𝑚𝑖𝑛 (
1

2
𝑤. 𝑤)                     (9) 
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Figure 2: Hyperplane with support vectors in SVM, where the solid line represents the decision boundary 

while the thin lines represents the boundaries of maximal margin area. Data points lying on the thin lines are 

the support vectors. 

3.3 Attribute Selection  

 Attribute selection plays a key role in data preparation for training the classifier model. It is a 

process in which the best set of attributes are selected from the dataset. It is used to create transforms 

of the dataset such as rescaled attribute values into their constituent parts to make more and useful 

structure for the classifier models. Keeping irrelevant attributes in the training model could cause 

overfitting problem. 

Tokenization: Text data available is composed of terms grouped into sentences and paragraphs. 

One technique to represent text data using the vector space model breaks down the textual data into 

a set of terms. Each of these terms corresponds to an attribute of the input data and therefore becomes 

an axis in the vector space. The data is then represented as vectors, whose components correspond 
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to the terms contained in the data collection and whose value indicates either a binary present/absent 

value or a weightage for the term for the data point. This representation is known as the Extracted 

Term' representation and is the most commonly used representation for text data patterns. The 

process of breaking the available stream of text into words is called tokenization. 

Feature extraction using StringToWordVector: This filtering method transforms string attributes 

present in the text document into word vectors i.e., creates one attribute for each term that is present 

in the document. The filtering options for applying on the dataset are discussed in section 3.4. 

Information Gain Attribute Evaluator (InfoGainAttributeEval): Once the feature extraction is 

completed, feature selection is implemented by using the Attribute Selection filter. Information Gain 

Attribute Evaluator present in the filter allows us to set the threshold of the weights of the features 

to be selected for classification. In our project we have set the threshold to 0.0 such that all the 

features with positive information gain are taken into consideration. 

 

3.4 A Machine Learning Toolkit, WEKA 

Weka tool is a collection of machine learning algorithms for the data mining/document 

classification tasks. The algorithms could be applied to the datasets directly or called from user 

developed java code. This application contains data pre-processing, classification, regression, 

clustering etc. and many other tools. It is well-suited for developing machine learning schemes and 

applications. [39] 

The following options that are available in StringToWordVector filter are used for preprocessing 

the training data set. The method executes used to normalize the reiterations to get the multi-terms 

extraction. 

The following options are applied on StringToWordVec filter: 
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wordsToKeep - The number of words (per class if there is a class attribute assigned) to attempt to 

keep. 

outputWordCounts - Output word counts rather than Boolean 0 or 1 (indicating presence or absence 

of a word). 

lowerCaseTokens - Set to make all the word tokens to converted to lower case before being added to 

the dictionary. 

normalizeDocLength - Sets the word frequencies for a document (instance) to be normalized. 

TFTransform – TF stands for Term Frequency. TFTransform sets the word frequencies to be 

transformed into:    

 log(1+fij) (10) 

Here, fij is the frequency of word i in document (instance) j. 

IDFTransform – IDF stands for Inverse Document Frequency. IDFTransform sets the word 

frequencies in a document to into:  

                                               fij  log (num of Docs/num of Docs with word i), 
                   

(11) 

Here fij is the frequency of word i in document (instance) j. 

Term weighting plays vital part in the determination of the success or failure of classification 

problems. As every term has different level of weightage in a text document, the term weight is 

associated with every term as an important factor. Term frequency of each word in a document (TF) 

is a weight which relies on the distribution of each word in text documents. Term frequency can be 

calculated from the equation (10) and it describes the weightage of the word in the given text 

document. Inverse document frequency of each word in the document database (IDF) is a weight 

which relies on the distribution of each word in the document database. It is calculated using equation 

(11) and describes the weightage of each word in the given documents. TF-IDF, weights a given 
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word to determine how well the word describes an individual document within a corpus. It does this 

by weighting the term positively for the number of times the term occurs within the given document, 

while also weighting the term negatively relative to the number of documents which contain the 

word. Consider term t and document d, where t occurs in n of N documents in D. The TF-IDF 

function is of the form: 

             TFIDF(t, d, n,N) = TF(t, d) × IDF(n,N) (12)     

TF-IDF approach is run against all terms in all documents in the document corpus to rank the 

words by their weights. Higher TF-IDF weight indicates that a word is both important to the 

document, as well as relatively uncommon across the document set. This is often interpreted to imply 

that the term is significant to the document, and could be used to accurately summarize the document. 

TF-IDF provides a good heuristic for determining likely candidate keywords. TF-IDF approach is 

very popular in text classification field and almost all the other weighting schemes are variants of 

this approach. In vector space model organization of document also affect the performance of system. 

In this experiment we use term frequency method and inverse document frequency for our 

experiment setup options. 

Applying Snowball Stemmer: 

This algorithm reduces inflected/derived words to their word stem, by trimming the root of its 

inflectional affixes; usually, only suffixes that have been added to the right-hand end of the root word 

are removed. It reduces the repetitions of words of the same form which gradually reduces the 

dimensionality of the word vectors. 

Removing Stop words using Rainbow list: 

Stop words, are the words, which are filtered out prior to the processing of natural language data 

(text). The presence of these words as attributes does not have any positive impact on the 
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classification. They are usually defined as functional-words, which do not carry meaning and 

influence the classification positively. In our setup, we use rainbow stop words list and have 

appended them with extra words to make the list effective. Thus by the removal of these stop words, 

only terms with high information gain could be considered for the training purpose.  
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4. Methods and their Integrations 

Our experimental setup consists of the following 4 stages and the information flow has been shown 

by Figure 3: 

i) Experimental Data Collection 

ii) Data Preprocessing 

iii) Applying Machine Learning algorithms 

iv) Synthetic data Injection 

The Experimental data is collected and preprocessed using StringToWordVec and 

AttributeSelection filters. Once the data is preprocessed, the model is trained with the data. 

Depending on the accuracy of the model obtained using cross fold validation, synthetic data is added 

to the required classes and the process is repeated from stage ii. 

 

Figure 3: Steps involved in text classification process The Experimental data is preprocessed using 

unsupervised and supervised filtering techniques. Machine learning algorithms are applied on the 

preprocessed data. Based on the model accuracy and training samples available in each class, synthetic data 

is added and the process is repeated from stage ii. 

i 

iv 

ii 
iii 
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Stage 1. Experimental Data Collection 

By manual processing, a team of NASA experts identified 15 top-level categories for their 

patents. The information about these patents is available online. By selecting one of these categories, 

the NASA’s (intelligent properties) portfolio is capable of restricting the results within the chosen 

category. However, improvement is needed. For example, the precision of the search results of 

“social network” is only 4.2%; out of 24 output items (descriptions of patents), 23 are irrelevant but 

included due to the word “network”. On the other hand, the relevant item is categorized under 

“Health, Medicine and Biotechnology”. Finding the relevant item through category-by-category 

search will take time because the logical relationship between “social network” and “Health, 

Medicine and Biotechnology” is not obvious. The problem of this example can be effectively solved 

by refined categorization and semantic tagging.  

Table 2: Number of training documents available in the experimental data. 

SL.  Classes Patent File Count/Class 

1. Aeronautics 87 

2. Communications 29 

3. Electrical and Electronics 47 

4. Environment 28 

5. Health Medicine and Biotechnology 83 

6. Information Technology and Software 81 

7. Instrumentation 33 

8. Manufacturing 35 

9. Materials and Coatings 190 

10. Mechanical and Fluid Systems 73 

11. Optics 71 

12. Power Generation and Storage 25 

13. Propulsion 24 

14. Robotics Automation and Control 67 

15. Sensors 192 

         

In the experimental data, each patent document were assigned category and were classified into 

15 different categories. Table 2 show the available training document for each class. We assumed, 
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that majority of the manually assigned classes to the patent files were correct; but some files could 

be misclassified. Further, some files could be qualified for more than one classes but only one class 

has been assigned. 

Challenges faced in experimental data 

Presence of less informative sections in patent files: Consider the “References” section in a patent 

document, which does not provide positive information about the document.  

Solution: Every section of patent file in the experimental data is not useful for training. Hence, 

extracting features from the “References” section of a patent document merely increases the 

dimensionality of the space rather than providing useful information. Thus some sections like, 

“References”, “See also” etc. were removed from the files, which deliberately provides useful words 

for training the classifier.  

Data Imbalance issue: The number of training samples for each class in the experimental data set 

if not consistent. For example, there is huge difference in the samples count of Sensors class and 

Power Generation and Storage class. 

Solution: The classifier model tends to bend towards the Sensors class due to more number of 

Support vectors generated by Sensors. To resolve this issue we implemented Synthetic data addition 

to the classes, which contain relatively less number of training samples. Also, when the data sets are 

very small, this approach helps in increasing the training material for the model i.e., the number of 

attributes/features helpful for the classification are increased and also the classifier will be able to 

predict the unseen patents correctly using synthetic data.  
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Stage 2: Data Preprocessing 

Creating Attribute-Relation File Format (ARFF) file: Weka tool accepts ARFF file format to 

preprocess the data to perform classification. The text documents in the experimental data were 

converted into ARFF format. An ARFF file is an ASCII text file that describes the list of instances 

sharing a set of attributes. ARFF files have two different sections. First section consists Header 

information and the second section contains data information [40]. The following command has 

been used to convert the text directory into ARFF file: 

 

Once the patent files are converted into ARFF file, it is preprocessed and used for preparing training 

file for the classifier. The data preprocessing techniques used in this project are discussed in the 

following sections. 

Filtering options: This module processes the texts of the text database are extracted into a set of 

unigrams (words) that will be used to train the classifier model.  It implements two preprocessing 

methods as follows, and it’s the attribute extraction phase. 

Applying filters on the data 

i) Unsupervised filter 

ii) Supervised filter 

Here, unsupervised filter StringToWordVector is applied on the data, it converts String attributes into 

a set of attributes representing the word occurrence information from the text contained in the strings. 

StringToWordVector filtering options applied for data preprocessing: The options shown in 

Table 3 can vary depending on the size of the data. The number of attributes generated after applying 

StringToWordVector filter is 4855 words. Once the StringToWordVec filter is applied on the data, 

the attributes are generated without considering any relationship with respect to the class information 

java weka.core.converters.TextDirectoryLoader -dir <input_directory > ">” <file_name>.arff 
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(hence, this is unsupervised filtering). To view the attributes in sorted order of information gain, 

Attribute selection filter is applied on the generated attributes from unsupervised filter. 

Table 3: Unsupervised filtering options applied on data in the experimental setup. 

 

 The Table 4 shows the options to be set in AttributeSelection filter. The number of attributes 

generated after applying Attribute Selection filter is 1218. The Table 5 shows the weights and 

attributes after applying supervised filter on the data. The attributes are ranked in descending order 

of their TF-IDF weights. 

Table 4: Supervised filtering options applied on data in the experimental setup. 

Filter Option Value set Explanation 

Evaluator InfoGainAttributeEval 
Attributes are selected based on the 

information gain ratio. 

Search Ranker 

Threshold value is set to 0.0, such that all 

attributes with positive information gain is 

considered. 

Filter Option Value set Explanation 

wordsToKeep 1000 
This option selects 1000 words from each 

category as attributes. 

outputWordCounts True 
Absence/Presence of word is calculated using 
0/1 format. 

normalizeDocLength True 
It normalizes the frequencies of word in a 

document. 

TFTransform True 
TFTransform is set true for the calculation of 

word weight. 

IDFTransform True 
IDFTransform is set true for the calculation of 

word weight. 

Stemmer Snowball stemmer Snowball Algorithm is selected for this option. 

Stop words Words From File 

File containing stop words list is selected for 

this option (It gives the advantage of adding 

stop words manually into the file). 

tokenizer . , ; : ' " ( ) ? ! 

WordTokenizer is selected, such that the 

document is converted into tokens based on the 

options. 
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Table 5: Weight (TF-IDF) - Attributes after supervised filtering 

Weight (TF-IDF) Attribute Name 

0.1800 light 

0.1660 materials 

0.1637 metal 

0.1571 signal 

0.1437 optical 

             ….. ….. 

0.0508 electromagnetic 

0.0478 suspension 

0.0476 controllers 

0.0471 molecule 

0.0465 reflective 

….. ….. 

0.0242 nanotechnology 

0.0220 biomolecule 

0.0215 alkali 

0.0214 recycling 

 

Thus, attributes that does not contribute much to the document classification are omitted using 

the above techniques. The threshold values in supervised filter can be changed based on the number 

of attributes required. The flowing figure shows the frequency distribution of “light” attribute in the 

documents. We can see from the figure that there is even distribution of the term “light” count in 

each class (see column wise, i.e. for a particular frequency range, the count of the term is displayed 

in each column per class), which makes clear that the term provides high information gain for the 

classification problem. 
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Figure 4: Frequency distribution of "light" attribute in the documents, horizontal axis is the TF-IDF value of the term 

"light", each color represents a class present in the training dataset and the value on the top of each vertical block 

represents the total count of the term in the respective frequency zone.  

 

In the above figure we observe that the number of classes that have the term “light” are 2, with frequency 

approximately in between 6-7. With high term frequency and low document frequency, the 

TermFrequency-InverseDocumentFrequency (TF-IDF) is high which indicates high information gain for the 

word “light”. 

 

 

Figure 5:  Frequency distribution of "reflective" attribute in the documents 

 

 

Attribute: light, InfoGain=0.1800 

Attribute: reflective, InfoGain=0.0465 

High information gain due to high 

term frequency and low document 

frequency. 



32 
 

 

Figure 6:  Frequency distribution of "alkali" attribute in the documents 

 

Supervised filtering consists of applying Attribute selection filter on the data which extracts the 

attribute based on the threshold level that is set in the filter options. This reduces the number of 

attributes used for the classification. Hence words which provide more information required for the 

classification are extracted. Once the data preprocessing is completed, the ARFF file is saved and 

used in the preparation of model. From figures 4, 5, 6 we can see the variation of TF-IDF with the 

number of documents, the term is present. In figure 4, we see that the information about the class can 

be obtained more compared to figure 5, 6.  

 

Stage 3. Applying Machine Learning algorithms for classification 

Text classification is a task of deciding whether a document belongs to any of a set of pre -defined 

categories based on the probability. This module implements the Classification process to perform 

the classification based on the generated knowledge or training data using the Support Vector 

Machine Classification Approach, the generated output for the NASA patent classification.  We used 

NASA’s predefined patent documents as training data for performing classification. Implementation 

steps were discussed in the following section. 

Attribute: alkali, InfoGain=0.0215 
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Applying algorithms experimental data: The results from Table 1 suggest that the current data, 

without refinement cannot be used to build up a robust classifier. For example, kNN is a simpler 

method and the poor accuracy (54%) indicates that there are many overlapped samples or, miss‐

labeled samples exist. On the other hand, SVM with various parameters, can very efficiently fit the 

(augmented) data‐ space, once the given sample are consider the ground‐ truth – however, which is 

not true in this case and the accuracy is not very high (~70% using SVM). Further, the tree based 

approaches (Random Forest, J48) which are usually good for noisy data are not even providing good 

accuracy either. Therefore, we planned to identify the good sample to determine the natural and 

effective class‐  boundaries using simpler method – the simpler method, such as kNN, will help us 

avoid over‐ fitting (SVM or, Tree based approach can over‐ fit easily). 

Robust Training and Testing: To arrange robust and effective training using kNN approach, we 

implemented the following two steps:  

(1)  Identify the best k value in the kNN approach (see Table 6 and 7),  

(2) and iteratively retrain and remove the miss‐ classified sample and obtain best training 

accuracy. 

Table 6: Comparison of the training accuracies using 5 fold CV with different values of k from 1 to 10. 

       k =          1         2     3         4        5         6          7       8        9          10 

accuracy%  60.11 54.98  55.63 55.82     54.70  54.98 55.35    54.14 53.96     55.07 

 

Table 7: Comparison of the training accuracies using 5 fold CV with different values of k from 11 to 20. 

     k =           11        12        13   14        15       16   17        18     19        20 

accuracy%  53.68 54.52     54.70 54.33    54.98    54.70 54.52     54.24   52.84 53.86 
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We exhaustively computed the classification accuracy, for k = 1 to 20, and there is lesser 

variations among the outcomes. We avoid selecting k = 1, because k = 1 by nature mostly over-fits, 

hence avoidable. Thus, we selected the most reasonable as well as optimal value, k = 7. 

 

Iteratively retrain and remove the miss‐ classified sample and obtain best training accuracy: This 

is the most important step to retain the best samples and retrain using appropriate sample for higher 

accuracy. This is also a very effort intensive steps, as for each iterations, we had to remove the 

misclassified files applying semi‐ automatic approach. The confusion matrix and the accuracy in 

each steps are shown below. It is to be noted that the accuracy is usually expected to be increasing 

in each steps – however, it can degrade while there are very insufficient sample for a class or classes, 

or, the samples among classes become heavily imbalanced: 

Iteration # 1: kNN (k = 7), accuracy 81.47%, this is achieved by removing miss‐ classified 

samples 1st time (shown in Table 8). 

Table 8: Confusion matrix of the samples kNN Iteration 1. 

a b c d e f g h i j k l m n o  <-- classified as 

50 0 2 0 0 1 0 0 0 3 0 0 1 0 0 | a = Aeronautics   

1 15 2 0 0 0 0 0 0 0 0 0 0 0 0 | b = Communications   

1 3 19 0 0 0 0 0 0 0 0 0 1 0 0 | c = Electrical and Electronics   

0 0 0 13 0 0 0 0 0 1 0 1 0 0 0 | d = Environment   

4 0 3 0 46 0 0 0 1 0 1 0 0 0 1 | e = Health Medicine and Biotechnology  

5 2 1 0 0 29 0 0 0 0 3 0 0 0 0 | f = Information Technology and Software 

1 1 0 0 0 0 7 0 0 0 0 0 0 0 0 | g = Instrumentation   

0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 | h = Manufacturing   

1 0 3 0 0 0 0 0 115  3 0 0 0 0 1 | i = Materials and Coatings   

5 0 0 0 0 0 0 0 0 48 0 1 0 0 1 | j = Mechanical and Fluid Systems   

1 1 2 0 0 0 0 0 0 3 21 0 0 0 2 | k = Optics   

0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 | l = Power Generation and Storage   

1 0 0 0 0 0 0 0 0 1 0 0 17 0 0 | m = Propulsion   

3 0 0 0 0 0 0 0 0 2 0 0 0 39 0 | n = Robotics Automation and Control   

6 4 3 1 0 0 0 0 2 12 13 0 0 0 53 | o = Sensors  
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Iteration # 2: kNN (k = 7), accuracy 89.73%, this is achieved by removing miss‐ classified 

samples 2nd time (shown in Table 9). 

 

Table 9: Confusion matrix of the samples kNN Iteration 2. 

a b c d e f g h i j k l m n o <-- classified as 

47 2 0 0 0 0 0 0 0 0 0 0 1 0 0 | a = Aeronautics 

0 14 0 0 0 0 0 0 0 0 1 0 0 0 0 | b = Communications 

1 0 17 0 0 0 0 0 0 0 0 0 1 0 0 | c = Electrical and Electronics 

0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 | d = Environment 

6 3 1 0 33 0 0 0 0 1 2 0 0 0 0 | e = Health Medicine and Biotechnology 

3 2 0 0 0 23 0 0 0 0 1 0 0 0 0 | f = Information Technology and Software 

0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 | g = Instrumentation 

0 0 2 0 0 0 0 18 0 1 0 0 0 0 0 | h = Manufacturing 

1 0 3 0 0 0 0 2 109   0 0 0 0 0 0 | i = Materials and Coatings 

4 0 2 0 0 0 0 0 0 42 0 0 0 0 0 | j = Mechanical and Fluid Systems 

0 1 1 0 0 0 0 0 0 0 19 0 0 0 0 | k = Optics 

0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 | l = Power Generation and Storage 

0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 | m = Propulsion 

0 0 0 0 0 0 0 0 0 1 0 0 0 38 0 | n = Robotics Automation and Control 

0 1 2 0 0 0 0 0 1 0 2 0 0 0 47 | o = Sensors 

 

After removal of the misclassified samples from the training data, Support vector machine 

classifier is applied to measure the accuracy of the classification. The confusion matrix shown in 

Table 10, is achieved by performing SMO poly-kernel method on kNN’s second iteration data. The 

accuracy achieved is, 96.0331%. It is to be noted, that as the training samples further decreased in 

classes like “Communications”, “Power Generation and Storage” etc. we restored the original 

samples into the data set to avoid poor training set. To improve the model accuracy further we have 

proposed to add synthetic data to the training files which is discussed in the following section. 
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Table 10: Confusion matrix of the samples after applying SMO on iteration 2 data. 
 

a   b   c   d   e   f   g   h   i   j   k   l   m   n   o   < -- classified as 

 

46  1   0   0   0   0   0   0   1   2   0   0   0   0   0 |   a = Aeronautics 

0  28   0   0   0   0   0   0   0   0   0   0   0   0   2 |   b = Communications  

0   0  26   0   0   2   0   0   2   0   0   0    0   0   0 |   c = Electrical and Electronics 

0   0   0  26   0   0   0   0   0   0   0   0   0   0   0 |   d = Environment 

0   0   0   0  45   0   0   0   0   0   0    0   0   0   1 |   e = Health Medicine and Biotechnology 

1   0   0   0   0  27   0   0   0   0   1   0   0   0   0 |   f = Information Technology and Software 

0   0   0   0   0   0  28   0   0   0   0   0   0   0   0 |   g = Instrumentation  

0   0   0   0   0   0   0  30   0   0   0   0   0   0   0 |   h = Manufacturing  

0   0   0   0   0   0   0   0 114   1   0   0   0   0   0 |   i = Materials and Coatings 

1   0   1   0   0   0   0   0   1  45   0   0    0   0   0 |   j = Mechanical and Fluid Systems 

0   0   1   0   0   0   0   0   0   0  26   0   0   0   0 |   k = Optics  

0   0   0   0   0   0   0   0   0   0   0  28   0   0   0 |   l = Power Generation and Storage 

0   0   0   0   0   0   0   0   0   0   0   0  26   0   0 |   m = Propulsion  

0   0   0   0   0   0   0   0   0   1   0   0   0  38   0 |   n = Robotics Automation and Control 

1   1   0   0   0   0   0   0   3   0   0   0   0   0  48 |   o = Sensors   
 

Stage 4. Addition of Synthetic in training data 

Reducing the difference in number of training samples between classes: We first tried to increase 

the number of samples in the less dense classes (i.e., classes having fewer number of training 

samples) by copy pasting the available files in their respective classes. Doing so will increase the 

count of files in the classes but could not achieve much accurate results upon testing. As the samples 

in small classes are copy-pasted, it increases the number of training data and increases the weight of 

the training attributes. However, as we tested the data, which is not seen by the training model, it 

resulted in poor accuracy. And the accuracy was 46.2366 % and total 93 files tested. 

 

To overcome the problem of text classification involving imbalanced and low training dataset, we 

have implemented a solution by adding synthetic data in the classes that have less number of samples. 

The synthetic data has been collected from well‐ known taxonomical repositories and articles, and 

fed into the respective classes by generating files having chunk of dataset within them. Keywords 

related to each class has also been collected in this procedure and are added into text files and are 
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fed into the classes for training purpose. The purpose of the addition of the keywords is to have 

higher information gain for the keywords/attributes, which are very closely related to a particular 

class. In future when a new patent document is given for prediction, it is expected that due to feeding 

relevant in the training synthetically, the prediction will be more accurate. Synthetic data is collected 

based on the major areas that are sub domains for the top class. For example, the top class, 

“Aeronautics”, we have collect data that is suitable for Sub categories such as: 

‐ Aerodynamics and Fluid Mechanics 

‐ Structures and Materials 

‐ Propulsion and Power 

We trained the model with the relevant data and tested it with several other related input files. 

Based on the data provided by NASA and the synthetic data that is collected, sub categories are 

classified. We read the documents thoroughly and cross‐ validated against standard resources like 

IEEE for the sub category classification and fit the data in the respective sub classes for training.  

Table 11: Accuracy of the model, after multiplying the training samples in dataset 

a b c d e f g h i j  k l m n o < ‐ ‐  classified as 

5 0 0 0 0 1 0 0 0 0 0 0 0 0 3 | a = Aeronautics  

0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 | b = Communications  

0 0 1 0 0 0 0 0 2 1 0 0 0 0 1 | c = Electrical and Electronics  

0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 | d = Environment  

0 0 0 0 5 1 0 0 1 0 0 0 0 0 1 | e = Health_Medicine and Biotechnology  

0 0 0 0 0 4 0 0 0 0 0 0 0 3 0 | f = Information Technology and Software  

1 0 0 0 0 0 0 0 1 0 0 0 0 0 3 | g = Instrumentation  

0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 | h = Manufacturing  

0 0 0 0 0 0 0 0 9 0 0 0 0 0 2 | i = Materials and Coatings  

0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 | j  = Mechanical and Fluid Sys tems 

0 0 0 0 0 1 0 0 1 1 0 0 0 0 4 | k = Optics  

0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 | l = Power Generation and Storage  

0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 | m = Propulsion  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | n = Robotics Automation and Control  

0 0 0 0 0 1 0 0 2 1 1 0 0 0 9 | o = Sensors 
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Data‐ collection: Collecting the data from MediaWiki database: The main advantage of adding 

synthetic data is that the model can handle new/unseen data that comes for testing hence can result 

in better prediction. By adding synthetic data classes, the ill impact of imbalance has been subsided 

and the domination of the higher sample classes reduces gradually, which ultimately improves the 

model accuracy for testing cases, i.e., true prediction in classification enhanced. 

Table 12: Training sample File count before and after insertion of synthetic data 

SL.  Classes Old File Count/Class New File Count/Class 

1. Aeronautics 87 125 

2. Communications 29 52 

3. Electrical and Electronics 47 93 

4. Environment 28 44 

5. Health Medicine and Biotechnology 83 98 

6. Information Technology and Software 81 105 

7. Instrumentation 33 130 

8. Manufacturing 35 121 

9. Materials and Coatings 190 192 

10. Mechanical and Fluid Systems 73 99 

11. Optics 71 112 

12. Power Generation and Storage 25 73 

13. Propulsion 24  24 

14. Robotics Automation and Control 67  118 

15. Sensors 192 214 

                                                   Total =                     1065 1600 

 

Using web crawler program to collect data: Collecting data from each source is a tedious task. 

This issue can be resolved by using web crawling technique. A web crawler is a simple program to 

collect data from web, which uses web links as inputs. We built a web crawler to collect data from 

internet (MediaWiki) and use it in training data set. We have collected sub category list for each top 

category from IEEE taxonomy. We provide web crawler the URL of MediaWiki and a taxonomy 

word to search for. The crawler will go to the web page and download as text file and if the link 

doesn’t work, it will go to the next page and repeat. Visiting the pages that is already visited should 
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be taken care of while extracting data. Thus the data that is required to reduce the class imbalance 

issue is collected. The collected data is added to the training samples and used to build a document 

classifier (the distribution is shown in Table 12). 

 

Table 13 Confusion matrix of the test samples before addition of synthetic data. 

a b c d e f g h i j  k l m n o <‐ ‐  classified as 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | a = Aeronautics  

0 3 0 0 0 0 0 0 0 0 1 0 0 0 1 | b = Communications  

0 0 4 0 0 0 0 0 0 0 1 0 0 0 1 | c = Electrical  and Electronics 

0 0 1 3 0 0 0 0 1 0 0 0 0 0 0 | d = Environment  

0 0 0 0 7 0 0 0 0 0 0 1 0 0 1 | e = Health Medicine and Biotechnology 

0 0 0 0 0 5 0 0 0 0 1 0 0 1 2 | f = Information Technology and Software 

1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 | g = Instrumentation  

0 0 0 0 0 0 0 2 2 0 0 0 0 0 1 | h = Manufacturing  

1 0 0 0 0 0 0 3 12 0 0 0 0 0 0 | i = Materials and Coatings 

0 0 0 0 0 0 0 0 0 7 0 0 0 0 1 | j  = Mechanical  and Fluid Systems 

0 0 0 0 0 0 1 0 1 0 5 0 0 0 0 | k = Optics  

0 0 1 0 0 0 0 0 1 0 0  2 0 0 0 | l = Power Generation and Storage 

0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 | m = Propulsion  

0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 | n = Robotics Automation and Control 

0 0 2 0 1 2 3 0 0 1 2 0 0 0 6 | o = Sensors  

 

Table 12 shows the increase in file count for each category using web crawling technique. The 

training samples increased from 1065 to 1600, which reduced the data imbalance issue in the training 

dataset. The confusion matrix in Table 13 shows the accuracy (which is 64.6552%) before and Table 

14 shows the accuracy (which is 69.8276%) of the model after the addition of synthetic data that is 

tested on 116 randomly selected files from each class using the training data that is generated after 

kNN second iteration (see Table 6). 

 

 

 

 

Table 14: Confusion matrix of the test samples after  addition of synthetic data. 
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a b c d e f g h i j  k l m n o <‐ ‐  classified as 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 | a = Aeronautics  

0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 | b = Communications  

0 0 4 0 1 0 0 0 0 0 0 0 0 0 1 | c = Electrical and Electronics 

0 0 0 3 1 0 0 0 0 0 1 0 0 0 0 | d = Environment  

0 0 0 0 7 0 0 0 0 0 0 1 0 0 1 | e = Health Medicine and Biotechnology 

0 0 1 0 0 4 0 0 0 0 1 0 0 1  2 | f = Information Technology and Software 

0 0 0 0 0 0 1 0 1 0 1 0 0 0 2 | g = Instrumentation  

0 0 0 0 0 0 0 2 2 0 0 0 0 0 1 | h = Manufacturing  

0 0 0 0 0 0 0 2 13 1 0 0 0 0 0 | i = Materials and Coatings 

0 0 0 0 0 0 0 1 0 7 0 0 0 0 0 | j  = Mechanical and Fluid Systems 

0 0 0 0 0 0 1 0 1 0 4 0 0 0 1 | k = Optics  

0 0 0 0 0 0 0 0 1 0 1  2 0 0 0 | l = Power Generation and Storage 

0 0 0 0 0 0 1 0 0 1 0 0 2 0 0 | m = Propulsion 

0 0 0 0 0 0 0 0 0 1 0 0 0 5 0 | n = Robotics Automation and Control 

0 0 0 0 0 0 1 0 1 1 0 0 0 1 13 | o = Sensors  

Thus we see, there is a clear improvement about 5% in test accuracy of the same model. Adding 

synthetic data has proven that the model efficiency could be increased for this kind of data. The 

reason behind the improvement of the accuracy of the model is the weights (TF-IDF) of the attributes 

which provide more information gain is increased by the addition of the terms. Hence, it confirms 

that this approach improves overall prediction accuracy of the classifier when the synthetic data 

injection idea is fully applied. 

 

5. Sub categories within top categories 

Along with the classification of top 15 categories for NASA, we started developing classifier 

model to perform Sub category classification for the 15 NASA categories. The NASA patent 

document data set we were experimenting is not big enough to train a model for the classification of 

sub categories. Thus we have used the synthetic data approach to collect relevant data from internet 

sources to train the classifier model.  
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The main advantage of adding synthetic data is to reduce the class imbalance between the classes. 

But when data sets are very small, this approach helps in increasing the training material for the 

model i.e., the number of attributes/features helpful for the classification are increased.  

Based on the IEEE taxonomy [7], we have collected data for the classification of sub categories. 

We used web crawling technique to harvest the useful data from internet. This web crawler uses the 

taxonomy and searches for the links in Wikipedia pages and visit pages according to the category 

tree in the MediaWiki content repository and collects the data. Once the data mining is finished, it 

is cleaned and added into the sub category folders and preprocessing is done to train the model. 

Possible sub‐ categories: We have selected sub categories for the top classes based on the IEEE 

taxonomy and mediawiki category tree. The following list could be further increased based on the 

data available. 

Table 15: Sub categories suggestions: Based on IEEE taxonomy and MediaWiki category tree, each top 

category is sub classified into different sub categories. 

Sub‐ categories for the top category: Aerospace Engineering 

‐ Aerodynamics and Fluid Mechanics 

‐ Structures and Materials 

‐ Propulsion and Power 

Sub‐ categories for the top category: Communication 

‐ Communication Technology and New Media 

‐ Digital Communications and Networking 

‐ Systems and Communications 

Sub‐ categories for the top category: Electrical and Electronics 

‐ Circuits 

‐ Electro Magnetics 

Sub‐ categories for the top category: Environment: 

‐ Geo Science 

‐ Oceanography 

‐ Social Factors 

Sub‐ categories for the top category: Health, Medicine and Biotechnology: 

‐ Bio Informatics 

‐ Computational biology 

Sub‐ categories for the top category: Information Technology and Software: 
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‐ Databases/Information Systems 

‐ Software Engineering 

Sub‐ categories for the top category: Instrumentation: 

‐ Mechatronics 

‐ Biomedical devices and instrumentation 

Sub‐ categories for the top category: Manufacturing: 

‐ Agile Manufacturing 

‐ Electronic Devices and Semiconductor Manufacturing 

Sub‐ categories for the top category: Materials and Coatings: 

‐ Structural Materials 

‐ Materials Chemistry 

‐ Biology and Biomimetic Materials 

Sub‐ categories for the top category: Mechanical and Fluid Systems: 

‐ Acoustics, Dynamics, and Controls 

‐ Applied Mechanics 

‐ Biomechanical Engineering 

‐ Computer‐ Aided Engineering and Design 

‐ Electro‐ Mechanical Systems 

‐ Energy Systems 

‐ Heat Transfer, Combustion 

Sub‐ categories for the top category: Optics: 

‐ Bio imaging and biomedical optics 

Sub‐ categories for the top category: Power Generation and Storage: 

‐ Propulsion and Power 

‐ Power and Energy 

Sub‐ categories for the top category: Propulsion: 

‐ Spacecraft propulsion 

‐ Jet engines 

Sub‐ categories for the top category: Robotics, Automation and Control: 

‐ Artificial Intelligence 

‐ Robotics 

Sub‐ categories for the top category: Sensors: 

‐ Wireless sensor networks 

‐ Image Sensors 
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6. Design and development of application program 

We have built a simple software to perform the document classification automatically by selecting 

the test file. Training documents are collected from NASA patent repository, data preprocessing is 

performed and used as training data set for the model. After the input file is selected, the model 

performs evaluation using SMO classifier using training dataset and the predicted ouput is displayed.  

We used Java platform, Weka to import classifier methods, and Eclipse IDE to develop the 

software architecture and the interface to classify or categorize the given document by user. In brief, 

for a given document, the software will provide user suggested class or category visually using a pie 

chart (to indicate the probable portion) – so the user immediately get an idea of document sharing by 

the best as well as other categories.The following screenshots of the tool will desecibe the whole 

procedure of category prediction as well as will provide an idea of how to use the software. 

 

Figure 7: Home page of Text classification tool. After selecting file from a location, click “Submit” button for 

the output. Once the prediction is completed, the output is shown in the text area present in the window. 
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Figure 8: Output prediction window for Text classification tool. Once an input file is selected, it is evaluated 

by the classifier model and output is predicted. 

 

 

User can view the probability distribution over different categories for the file chosen. “View 

probability pie chart” provides the probability distribution of the prediction category in the form of 

a pie chart. By scrolling the mouse pointer on to a particular category will show the percentage 

distribution of that particular category. Figure 6 shows the probability distribution of the test 

document instance. 
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Figure 9: Probability distribution pie chart for the test instance: input file probability distribution over all the 

labeled classes is shown based on the classifier evaluation. 

 

Operating tool through command line: In order to perform batch processing the input files, command 

line version provides great platform for the user. By providing the location of the tool and the input 

file location, document classification can be performed. This version also provides the probability 

distribution of the input file along with the category prediction. Command line options were 

implemented in the code to help user to view output in multiple ways i.e., tool performs only category 

prediction with no options, category prediction with probability distribution with “p” option etc. 
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The following images shows the operation of tool through command line version.  By using the 

syntax shown in the following figure, user is able to view the predicted   category of the document. 

 

Example syntax:   

 

 

Figure 10:  Operation of tool through command line version, inputs: Application’s runnable jar file location 

and a test file. 

 

The syntax shown in the following figure shows the operation of tool to display the probabilities 

of the top level category. 

 

Example syntax:  

  java -jar Nasa_Patent_Classifier.jar E:\ patent9242720.txt 

java -jar Nasa_Patent_Classifier.jar E:\ patent9242720.txt -p 
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Figure 11:  Operation of tool through command line version with options. For this application, we have 

developed the code to provide the probability distribution of the input file when option “p” is passed thorugh 

command line. Developers can add more options based on the experimental requirements. 
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7. Conclusions and Future Works 

In this work, we designed a novel method for patent document classification and sub classification 

using machine learning techniques. Our method involves data preprocessing techniques necessary 

for document classification and handling overlapped classes. In this study, we found that the accuracy 

of the document classifier (5 fold cross validation results) improves from 69.20 % to 96.03% with 

the removal of misclassified files from the training dataset. In addition, data imbalance issue causes 

a drop in the accuracies of the classifier models. To mitigate the problem, we applied several 

techniques to reduce the data imbalance issue in training dataset, but addition of synthetic data 

worked best in improving the classifier accuracy. This process might help the future researchers to 

proceed further in the usage of synthetic data for the reduction of data imbalance problem in training 

sets. We have developed two models for document classification, first, excludes the misclassified 

files from the training data, second, and does not exclude misclassified files, where the former model 

achieved more accuracy percentage. It is to be noted that both the models are equally important as 

the class overlap helps us acquire the probabilities with which the input file fall into multiple classes. 

Furthermore, we suggest the method of obtaining the tag words which provide fine-grained level of 

details about the input file or categories generated based on the information gain of the terms. The 

terms with highest frequency gain from the data were considered as the tag words. We would like to 

draw the attention of researchers to perform in detail analysis and implementation of sub category 

classification, as it needs more training data for building a robust model, which can be achieved by 

collecting more synthetic data. 
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