
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-19-2017

Improving a Particle Swarm Optimization-based Clustering Improving a Particle Swarm Optimization-based Clustering

Method Method

Sharif Shahadat
University of New Orleans, sshahada@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Other Computer Engineering Commons, and the Other Electrical and Computer Engineering

Commons

Recommended Citation Recommended Citation
Shahadat, Sharif, "Improving a Particle Swarm Optimization-based Clustering Method" (2017). University
of New Orleans Theses and Dissertations. 2357.
https://scholarworks.uno.edu/td/2357

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uno.edu%2Ftd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.uno.edu%2Ftd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=scholarworks.uno.edu%2Ftd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2357?utm_source=scholarworks.uno.edu%2Ftd%2F2357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Improving a Particle Swarm Optimization-based
Clustering Method

A thesis
Submitted to the Graduate Faculty of the

University of New Orleans
in partial fulfillment of the

requirements of the degree of
Master of Science

in
Engineering
Electrical

By
Sharif Shahadat

B.Sc. Ahsanullah University of Science and Technology
May 2017

Dedication

I am grateful to the Almighty creator for the infinite blessings in my life, which led to the

completion of my Master’s thesis. I dedicate this work to my loving parents and my beloved

brother, whose prayers and guidance helped me get through this journey. It was due their

constant support that made me reach the destination for this journey.

ii

Acknowledgements

I would like to express heartfelt gratitude to my academic and research advisor, Dr. Dimitrios

Charalampidis, for his guidance and constant support that provided the base for this work.

I am indebted to him for his patience to go through my thesis repeatedly. His encouraging

words gave me confidence when I was struggling through my time in the Master’s Program.

The depth of knowledge and his ever-welcoming character have been a great inspiration

throughout this journey.

I would like to thank Dr. Vesselin Jilkov, and Dr. Ebrahim Amiri, for accepting the request

to serve as members in my thesis committee. Their sincere advices help shape the thesis in

the best way possible. I would also like to thank my friends and colleagues, especially Monir

Hossain and Sumaiya Iqbal for their invaluable support throughout my studies.

I would like to thank my parents and my brother for their guidance throughout my life.

Words are not capable of conveying my feelings towards them.

Finally, I would like to express my deepest gratitude to the University of New Orleans for

providing the necessary tools and environment for this work. I recognize that this research

would not have been possible without the resources made available by the University.

iii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 1

1.3 Complexity of Clustering Problem . 2

1.4 Clustering Algorithms . 3

1.4.1 k-means . 4

1.4.2 k-means++ . 5

1.4.3 Swarm Intelligence . 6

1.4.4 Evolutionary Algorithms . 8

1.5 Summary . 10

1.6 Organization of Thesis . 11

2 Data Clustering and Particle Swarm Optimization 12

2.1 Particle Swarm Optimization . 12

2.2 PSO and Data Clustering . 14

2.3 Particle Swarm Clustering . 16

2.4 Cooperative-Multipopulation Data Clustering PSO 19

iv

3 Associative Data Clustering PSO 23

3.1 Improving Swarm Association . 23

3.1.1 Data Clustering PSO with Association 24

3.1.2 Experimental Setup . 26

3.1.3 Results and Comparison . 27

3.2 Improved ADCPSO (IADCPSO) . 31

3.2.1 Reducing Execution Time . 31

3.2.2 Results and Comparison . 31

4 Conclusions and Future Work 33

4.1 Primary Findings . 33

4.2 Recommendations for Future Work . 34

Bibliography 35

A MATLAB Codes 40

A.1 Data Clustering PSO . 40

A.2 Data Clustering PSO with k-means . 44

A.3 Associative DCPSO . 48

A.4 ADCPSO with k-means . 53

A.5 Improved ADCPSO . 57

A.6 Particle Swarm Clustering . 62

B Acronyms 66

v

List of Tables

3.1 Datasets used for evaluation . 26

3.2 Results for Ruspini dataset for the ADPSO algorithm 28

3.3 Results for Ruspini dataset for the DCPSO algorithm 28

3.4 Results for Artificial dataset for the ADCPSO algorithm 28

3.5 Results for Artificial dataset for the DCPSO algorithm 28

3.6 Results for Iris dataset for the ADCPSO algorithm 28

3.7 Results for Iris dataset for the DCPSO algorithm 29

3.8 Results for Automotive dataset for the ADCPSO algorithm 29

3.9 Results for Automotive dataset for the DCPSO algorithm 29

3.10 Results for Sonar dataset for the ADCPSO algorithm 29

3.11 Results for Sonar dataset for the DCPSO algorithm 29

3.12 ADCPSO run time . 30

3.13 DCPSO run time . 30

3.14 ADCPSO average number of iterations for convergence 30

3.15 ADCPSO average number of iterations for convergence 30

3.16 Improvement achieved by ADCPSO against DCPSO (%) 30

3.17 Best cost achieved by Improved ADCPSO 31

3.18 Execution time for IADCPSO . 32

3.19 IADCPSO average number of iterations needed for convergence 32

vi

List of Figures

1.1 Complexity of clustering . 3

1.2 Taxonomy of clustering methods . 4

1.3 Partitions returned by k-means for non-spherical data 6

3.1 (a) Sample positions of global best and particle, (b) Particle movement to-

wards global best . 24

vii

Abstract

This thesis discusses clustering related works with emphasis on Particle Swarm Optimization

(PSO) principles. Specifically, we review in detail the PSO clustering algorithm proposed

by Van Der Merwe & Engelbrecht, the particle swarm clustering (PSC) algorithm proposed

by Cohen & de Castro, Szabo’s modified PSC (mPSC), and Georgieva & Engelbrecht’s

Cooperative-Multi-Population PSO (CMPSO). In this thesis, an improvement over Van Der

Merwe & Engelbrecht’s PSO clustering has been proposed and tested for standard datasets.

The improvements observed in those experiments vary from slight to moderate, both in terms

of minimizing the cost function, and in terms of run time.

Keywords: Clustering, Particle Swarm Optimization, Metaheuristics, Data Mining

viii

Chapter 1

Introduction

1.1 Motivation

Large datasets are getting more common in the recent years. As a result, it is becoming

exceedingly difficult for human analysts to interpret the patterns in large datasets. Cluster

analysis or data clustering come to rescue in this regard by offering a large number of vital

techniques for the field of pattern recognition. The objective of data clustering is to divide

a large amount of data into groups (clusters) based on certain similarity criteria. Clustering

finds applications in many fields, including data mining, decision making, bioinformatics,

machine learning, object recognition, signal processing, and image segmentation [1–3]. This

thesis introduces a novel data clustering algorithm based on Particle Swarm Optimization

(PSO).

1.2 Background

Everitt (1974) collected the following two definitions of a cluster [4]:

“A cluster is an aggregation of points in the test space such that the distance between any

two points in the cluster is less than the distance between any point in the cluster and any

point not in it.”

1

“Clusters may be described as connected regions of a multi-dimensional space containing a

relatively high density of points, separated from other such regions by a region containing a

relatively low density of points.”

Clustering can help discover inherent structures in unlabeled data. Clustering algorithms

attempt to group data and reveal these structures by optimizing a certain objective function.

Nevertheless, a global optimal solution to a problem might not be always found. Moreover,

because of the unsupervised nature of clustering algorithms, it is not always guaranteed that

the choice of the objective function is appropriate for the problem at hand. For dimensions

higher than three, the solutions found from clustering may often be far away from the optimal

solution.

1.3 Complexity of Clustering Problem

Although for simple scenarios, the process of clustering might appear to be fairly straight-

forward, for more general cases, it can be a significantly complex process. Figure 1.1(a)

presents an example in which it is difficult to determine appropriate clusters as well as the

number of clusters which may suitably reveal the data structure. On the other hand, in

figure 1.1(b), it is apparent that four clusters are present. The data-driven nature of various

applications increases difficulty in designing a universal algorithm that can accurately and

efficiently discover the clusters in the provided data. Also, another factor is the unsupervised

nature of the data sets. These kinds of problems encouraged the creation of various types of

clustering algorithms such as evolutionary and metaheuristics algorithms. An Evolutionary

Algorithm (EA) is a population-based algorithm which is inspired by natural evolution or

2

Figure 1.1: Complexity of clustering

the collective behavior of natural self-organizing system (e.g. ant colony, bee colony, bird

flocking, fish schooling etc.). Specifically, EAs, when used for clustering, have been shown

to provide near-optimal solutions for unsupervised data sets. A large number of algorithms

have been created using EAs to solve clustering problems [5–7].

1.4 Clustering Algorithms

According to [1], there are two main approaches to clustering: partitional clustering and

hierarchical clustering. Partitional clustering [8] produces various partitions and keeps eval-

uating those partitions using a certain condition (for example, the minimum sum of squares).

Hierarchical clustering [9] creates a hierarchy of clusters based on a given dataset using spe-

cific criteria. For example, if vehicles represent a class, public transportation vehicles would

be a subclass. Furthermore, sedans would be a subclass of public transportation vehicles

and different brands are different subclasses).

3

Hierarchical clustering, on the other hand, does not assume the number of clusters before-

hand and can be applied to any dataset. However, hierarchical clustering algorithms do not

perform well for larger datasets because due to the amount of time and memory complexity

requirements. Although various clustering algorithms exist, the selection of an appropriate

Figure 1.2: Taxonomy of clustering methods

algorithm depends on the particular problem.

1.4.1 k-means

The k-means algorithm is the common choice for clustering large datasets, owing to its low

complexity and high execution speed. The main objective of k-means is to associate every

data point in the dataset to a prototype point (centroid). Essentially, the prototype point

acts as a representative of its cluster. Although, the algorithm is simple and efficient, the

drawback of k-means is that it does not work well with non-convex datasets. Furthermore,

4

the number of clusters, k, has to be specified before execution of the algorithm. The choice

of k usually has a deep impact on the performance of the algorithm. The k-means algorithm

consists of the following steps:

1. Initialize the number of centroids, k, randomly. In some versions of the algorithm the

initial centroids are chosen from the dataset

2. Determine the distance between each data point and each one of the k centroids

3. Assign each point to the cluster whose centroid is the closest one

4. Update the positions of centroids towards the center of gravity of their respective

clusters

5. Repeat steps 2, 3 and 4 until the centroid positions change less than a user-defined

threshold

The objective function for the k-means algorithm is the following:

J =
k∑

j=1

n∑
i=1

��x(j)
i −cj��2 (1.1)

In equation 1.1, k is the number of clusters, n is number of data points, and the term

||x(j)
i −cj||2 represents the distance of the i-th data point, which has been assigned to the

j-th cluster, from the j-th centroid.

1.4.2 k-means++

Initialization plays a crucial role in k-means algorithm [9]. Also, there is high possibility

that the algorithm can get stuck on a local minimum. An example of non-spherical data

5

clustering using k-means is shown in figure 1.2.

Figure 1.3: Partitions returned by k-means for non-spherical data

The k-means++ algorithm proposed by Arthur and Vassilvitskii [10] starts by picking

the k centers one at a time. After that, choosing each point at random with probability

proportional to its squared distance from the already chosen centers.

1.4.3 Swarm Intelligence

The collective behavior of ants, bees, fishes, birds and other species, or what is usually called

Swarm Intelligence (SI), has been proven a fascinating topic for researchers for quite some

time. Usually, SI shows a structured order which is integrated into the system of species.

The way the swarms move also appears to possess some characteristics of a single entity [11].

The swarm’s behavior may consist of the following properties:

1. Homogeneity: Every swarm member has the same type of behavior.

2. Locality: Each swarm member’s motion is influenced by other closely located members.

6

3. Collision Avoidance: Swarm members attempt to avoid collision with other nearby

swarm members.

4. Velocity Matching: Swarm members attempt to match the velocity of other nearby

members.

Algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization

(ACO) have been developed in the literature [12,13] based on the swarm intelligence of bird

flocks and ant colonies.

1.4.3.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an iterative computational method based on SI for

optimization of nonlinear functions. The original algorithm was proposed by Kennedy and

Eberhart (1995) [12]. PSO mimics the bird flocking behavior to find an optimal solution

to a certain optimization problem. The algorithm is initialized with a defined number of

particles which represent a set of possible solutions for the problem at hand. Each particle has

a random velocity and each moves within the solution space in each iteration. The algorithm

considers each particle’s personal best position and global best position after every iteration,

in order to determine the particle’s velocity. After the initial proposal of PSO, various types

of improved variants emerged, focusing on different applications. PSO has also been modified

for the purpose of clustering data, and has showed some promising results compared to other

algorithms [14–17]

7

1.4.3.2 Ant Colony Optimization

Similarly to PSO, Ant Colony Optimization (ACO) is also an iterative computational method

for optimization of nonlinear functions, which was proposed by Marco Dorigo (1992) [13]. It

is based upon the behavior of ants for seeking a source of food from their colony. Ants leave a

trail of pheromone on their way back to the colony after finding food. The ants get attracted

to the pheromone and follow the trail in the hope of finding the food source. However, the

pheromone trail evaporates quickly, so that the shortest path to the food source gets the

highest utilization. This behavior of ants has been put into use as the ACO algorithm for

finding the optimal path in a graph space. The concept of ACO has also been used for

generating clustering algorithms, some of which have been proved to be working well with

different data sets [18–20]

1.4.4 Evolutionary Algorithms

Taking inspiration from nature, EAs use the following general steps to find out the solution

to an optimization problem [21, 22]

1. Generate a random initial population

2. Evaluate all individuals from the population

3. Choose the best individuals from the population to generate the next generation

4. Create the next generation

5. Repeat steps 2-4 until a stopping criterion is met. The best possible solution or a

group of solutions, in the case of multi-objective problems, is chosen

8

The basic idea can be described in short as “survival of the fittest”. The most popular

types of EAs are Genetic Algorithm and Differential Evolution.

1.4.4.1 Genetic Algorithm

Genetic Algorithm (GA) is one of the popular EAs which relies upon nature inspired op-

erations such as selection, crossover, and mutation [23]. Roulette wheel selection [ref] is

the widely used selection method which gives every chromosome a space in an imaginary

roulette wheel according to their fitness score. It ensures the chromosomes with higher fitness

scores are more likely to be selected. Crossover generates children from parent chromosomes,

where each child takes one section of each parent’s chromosome. Finally, after selection and

crossover, mutation applies a small random change in the new generation of chromosomes,

which effectively creates a diversity among the population. The steps followed to generate

solutions to an optimization problem using GA can be summarized as follows:

1. Generate initial population

2. Rank and evaluate individual fitness

3. Apply genetic operators such as crossover, mutation or selection on the chromosomes

4. Create population for next generation

5. Repeat steps 2-4 until the best possible solution or a group of solutions, in the case of

multi-objective problems, is chosen

A lot of GA variants have been developed serving various optimization problems. Some of

the recent ones have been mentioned in [24–26]. Some of the GA variants have also been

9

used for data clustering and have showed promising results [27–30].

1.5 Summary

Clustering is the process of grouping data or observations into a number of meaningful groups

subject to further processing. In this chapter, the general concepts of various clustering

algorithms and have been discussed, and some of the fundamental issues have been presented.

Although the Thesis mainly concentrates on PSO and k-means, some additional algorithms

which have been used in data clustering have been presented for information purposes.

Each clustering model comes with its own advantages and disadvantages. In particular,

the algorithms discussed in this chapter, such as PSO and k-means, fall into the class of

partitional clustering algorithms. Partitional algorithms are generally more lightweight which

make them easily applicable to larger datasets. Some drawbacks of partitional algorithms

are the following:

1. They are limited to forming clusters around prototypes

2. The appropriate number of prototypes is subjective and, for some algorithms, has to

be inferred using the appropriate cluster validation index

3. Solutions are subject to sub-optimality as they are dependent on the initial positions

of the prototypes

Of course, some of the above may also be drawbacks of non-partitional algorithms.

10

1.6 Organization of Thesis

This thesis consists of four chapters which are organized as follows:

• Chapter 1 introduces reader to the concepts of data clustering and discusses the

various algorithms available to do clustering.

• Chapter 2 introduces PSO and summarizes previous work that used PSO for data

clustering.

• Chapter 3 explains the proposed improvements and details the performance compar-

ison of the algorithm presented by Van Der Merwe and Engelbrecht [17].

• Chapter 4 summarizes the findings of this thesis, discusses its contributions and

limitations. Future work has also been discussed in this chapter.

This thesis also contains following two appendices:

• Appendix A provides the MATLAB codes used to generate the results.

• Appendix B provides the acronyms used throughout the thesis, as well as their defi-

nitions.

11

Chapter 2

Data Clustering and Particle Swarm

Optimization

2.1 Particle Swarm Optimization

Prior to discussing the details of PSO, a few terms are introduced in order to explain the

inner working mechanism of the algorithm.

• Objective function: An function, f(x), that is to be optimized with respect to x within

certain constraints.

• Search Space: A single or multi-dimensional space in which solutions are found based

on the objective function, and the constraints.

• Particle: A member of the swarm, associated with a position vector, a velocity vector

and a personal best vector.

• Swarm: A set of particles.

• Position: The location of a particle x within the search space, which represents a

possible solution to the problem at hand. The position is updated using the following

12

equation,

x(t+ 1) = x(t) + v(t+ 1) (2.1)

where, v is the velocity vector, and t is the iteration number.

• Velocity: The speed with which a particle moves within the search space. The veloc-

ity, v, specifies the particle’s course of movement. The velocity is updated using the

following equation,

Vi(t+ 1) = ω ∗ Vi(t) + ϕ1 ∗ (Xpbest(t)−Xi(t)) + ϕ2 ∗ (Xgbest(t)−Xi(t)) (2.2)

Where,

ω is the inertia weight

ϕ1 & ϕ2 is the accelerating factor

(Xpbest(t)−Xi(t)) is the cognitive term

(Xgbest(t)−Xi(t)) is the social term

• Personal Best: The position, pbest, at which a particle achieved the best (maximum or

minimum) objective function till a particular iteration. Each particle has a memory of

its own personal best.

• Global Best: The best position vector, g, out of all personal bests in the whole swarm.

The pseudocode of the PSO algorithm is presented next:

13

Algorithm 1 Basic PSO
1: for each particle do

Randomly Initialize particle and velocity
2: end for
3: while maximum iterations or minimum error criteria is not attained do
4: for each particle do
5: Find the particle with the best fitness p in the swarm
6: Calculate particle velocity according to the equation 2.2
7: Apply the velocity limit
8: Update particle position according to the equation 2.1
9: Apply the position limit

10: Update velocity and position
11: end for
12: end while
13: return p

The objective of PSO is to improve the position vectors and find a global best g where

g = argmin(f(x)).

2.2 PSO and Data Clustering

An early PSO-based clustering algorithm was proposed by Van Der Merwe and Engelbrecht

in 2003 [17]. In this algorithm, a data vector, y, is represented as an M -dimensional column

vector. The i-th particle is represented by a group of column vectors, xi = {pi1, pi2, ..., pinc},

where pin, n = 1,2, …, nc, is a potential centroid vector, and nc denotes the number of

centroids. The swarm’s initial position can be either determined by k-means or can be

chosen randomly.

In [17], k-means was used to initialize the particles. After initialization, the particles

obtained from k-means where added to a population of particles obtained randomly. Then,

the algorithm applies generic PSO to find out which particle has the best distances from the

14

data points.

They evaluated PSO and the Hybrid clustering algorithm during the experiments. The

algorithms were compared against K-means on six classification problems in [17]. Their

clustering results were compared using three quality measures namely quantization error,

intra-cluster distances and inter-cluster distances. The classification problems were composed

by two bi-dimensional artificial and four well-known datasets.

The results of this experiments showed that the algorithms of [17], in general, are better

than k-Means. Both proposed algorithms converge to lower quantization error in the first

artificial problem. The Hybrid clustering algorithm has the smallest quantization error for all

proposed datasets. Also, the Hybrid algorithm presents the smallest Inter-cluster Distances.

The pseudocode of the standard PSO data clustering algorithm presented in [17] is pre-

sented below:

Algorithm 2 Standard Data Clustering PSO
1: for each particle do

Randomly Initialize particle and velocity
2: end for
3: while maximum iterations/minimum error is not attained do
4: for each particle do
5: for each data point do
6: Calculate distance between all data and centroids
7: Assign each data point to the closest centroid
8: end for
9: Update global and local best positions

10: end for
11: for each particle do
12: Update velocity and position
13: end for
14: end while
15: return p

15

2.3 Particle Swarm Clustering

Cohen and de Castro proposed an improved way of clustering using PSO, and they named it

Particle Swarm Clustering (PSC) [16]. The algorithm is evaluated with benchmark datasets

and results are compared with that of standard unsupervised clustering algorithms. In PSC,

PSO is modified to work with clustering and hence differs from PSO in a sense that unlike

PSO, where each particle in the space leads to a potential solution and finally encodes the

whole solution, PSC considers each particle as representation of clusters and thus encodes

part of the solution. The performance evaluation measure in PSC differs from the fitness

quality function used in the general PSO. Rather it initializes particles and then move these

particles into such regions which shall represent natural clusters. Equation(2.3) represents a

modified form of PSO and is the math equation used in PSC.

Vi(t+1) = ω ∗Vi(t)+ϕ1 ∗ (Xpbest(t)−Xi(t))+ϕ2 ∗ (Xgbest(t)−Xi(t))+ϕ3 ∗ (yj −xi(t)) (2.3)

where,

vi(t) is Particle’s previous position

pi(t) - xi(t) is the cognitive term

gj(t) - xi(t) is the social term

yj(t) - xi(t) is the self-organizing term

The particle swarm clustering algorithm has five main input parameters which are given

in the following pseudo code. These are 1) the dataset which is going to be clustered, 2)

16

maximum number of iterations, 3) number of particles, 4) maximum velocity, and 5) initial

value of the learning parameter.

1: procedure PSC
2: for each particle do

Randomly Initialize particle and velocity
3: end for
4: while maximum iterations or minimum error criteria is not attained do
5: for each particle do
6: Find the particle with the best fitness p in the swarm
7: end for
8: end while
9: return p

10: end procedure

Initially, the parameters of velocity and particles (cluster’s centroids) are randomly cho-

sen, with maximum bound on the velocity values already defined. Then the distances between

nearest data items are calculated and data items with minimum distance are grouped to-

gether to form clusters. After each iteration, the velocity, distance and centroids of clusters

are updated until convergence.

The authors evaluated the algorithm using the Ruspini dataset which has 75 components

in a two-dimensional space. The dataset was first normalized into the range of [0,1]. Then,

the parameters were initialized and the PSC algorithm run for the specified number of

iterations, which clustered the whole dataset correctly into four groups. It was shown that

there were 20, 23, 17 and 15 data items into four clusters, respectively. The number of

iterations were 150, and the maximum velocity was set to 0.001. The number of iterations,

the maximum velocity, and the number of particles affected the overall performance of the

process. Also, in a case where there are as many particles as data items, each particle

represented an individual cluster. PSC was also evaluated on the Yeast dataset which has

17

29 data items, and the clustering performance is compared with k-means clustering. It was

shown that PSC clusters the data more efficiently and addresses the problem of stagnation

which other algorithms had.

Another concern that PSC handled is that data is sparse, and we often encounter cases

where data items do not belong to any cluster. To handle this problem, PSC moves such

data items in the direction of the cluster with the maximum number of data items. Apart

from the number of iterations and maximum velocity parameters, the social and cognitive

terms also affected clustering. So, instead of randomly initializing these terms, values were

changed in a fixed interval as follows:

ϕ1, ϕ2 ∈ [0.1 2.05] and ϕ3 ∈ [0.005 1]

To determine the effect of varying the above parameters in their specified range, all the other

parameters are kept constant as given below:

• Number of particles were fixed to 8

• Maximum velocity was initialized to 0.01

• Number of iterations were initialized to 200

• Inertia weight ω = 0.95

• social ϕ1 and cognitive ϕ2 terms were fixed to 0

• Self-organizing terms ϕ3 = 0.005

After running PSC, it was observed that many of the particle got stuck to their positions

and become stationary, which affected the clustering performance. On the other hand, when

18

the social and cognitive terms were also introduced in the PSC algorithm, clustering was

improved. Thus, it can be concluded that only introducing the self-organizing term and

fixing social and cognitive terms to 0 leads to poor clustering results whereas introducing

all of the three terms results in better clustering performance. This indicates that the social

and cognitive terms contribute significantly in the clustering process. It was also concluded

that the fixed initialization of all terms leads to poor clustering as opposed to random

initialization.

2.4 Cooperative-Multipopulation Data Clustering PSO

Population-based data clustering algorithms employed in dynamic environments, lose the

diversity of the population and the outdated memory of the individuals. Georgieva and

Engelbrecht in [31] proposed a new particle swarm optimization alternative for clustering in

dynamic environments, named cooperative-multipopulation data clustering PSO.

Most of the dynamic population-based clustering algorithms are variations or improve-

ments of the static population-based algorithm of [17]. The new clustering algorithm of [31],

cooperative-multipopulation data clustering PSO, is actually a combination of two algorithm

named Multi-swarm Data Clustering PSO [32] and Cooperative Data Clustering PSO [33].

From the Multi-swarm Data Clustering PSO [32], the new algorithm takes the repulsion

and anti-convergence methods. The repulsion method is the re-initialization of a swarm

which is too close to another swarm. The anti-convergence method which re-initializes a

swarm whose convergence radius is too small. The re-initialization method is the same as

19

proposed in [34], where a proportion of the population is placed in new random positions of

the search space.

As for the Cooperative Data Clustering PSO [33], this new dynamic population-based

algorithm takes each swarm that optimizes only one centroid. The other algorithms [32], [34]

and [17] optimizes all centroid in each swarm. In order to be able to optimize all centroids,

[33] proposed a context particle. The context particle is based on the best solutions of each

swarm. Because of this context particle, the Cooperative Data Clustering PSO [33] is more

viable than Multi-swarm Data Clustering PSO [32].

The cooperative-multipopulation data clustering PSO presented by [31] combines Coop-

erative Data Clustering PSO [33] (because of it’s quality) and Multi-swarm Data Clustering

PSO [33] (because of it’s robustness). Furthermore, in order to avoid inaccurate representa-

tions of the solution, in [31] added an additional swarm, named the “explorer swarm”. The

additional swarm substitutes a swarm that will be reinitialized. During this re-initialization,

the re-initialized swarm becomes “explorer swarm” and the previous “explorer swarm” takes

the place of the re-initialized swarm in the clustering solution. This additional swarm guar-

antee that the solution is given by algorithm’s exploration and is not random (given by

re-initialization).

The algorithm of the cooperative-multipopulation data clustering PSO is performed using

the following steps:

1. Initialize the particles of the k + 1 swarms (one additional as ”explorer swarm”).

2. Initialize the context particle.

3. Update each particle’s best position if the new position has less fitness value. The

20

fitness value is calculated putting the new particle in the context particle. Also, update

the swarm best particle if some of the updated particles are better.

4. Update the context particle.

5. Update the position of all particles with the new context particle using standard PSO’s

update equations.

6. Verify if two swarms are too close with a minimal inter-cluster distance. Re-initialize

one of them in this case and change it by the “explorer swarm”.

7. Verify if a swarm converges too much with a minimal intra-cluster distance. Re-

initialize this swarm in this case and change it by the “explorer swarm”.

8. Go to the step 3 until the stopping condition is not reached (max iteration steps). At

the end, the resulting context particle is the output of this algorithm.

Then, in [31] an elitist version of their cooperative-multipopulation data clustering PSO

algorithm was also proposed. The elitist version only changes the context particle to include

new best solutions (not downgrade with re-initialization).

The dataset used for the experimental setup were auto-generated temporal clustering

datasets with 8 clusters. Each cluster was changed in a dynamic way, moving patterns

from one cluster to another at each interval of change. The algorithms were evaluated

on a combination of change frequency between 1 and 5, severities in the same range and

dimensions with 3, 8 and 15.

The quality of the algorithms was measured with inter-cluster distance, intra-cluster

distance and Ray-turi validity index. The results were averaged over 20 runs where each

21

algorithm ran for 1000 iterations with 50 particles of swarm size. During the re-initialization,

only 10% of the swarm was re-initialized.

The authors compared six data clustering PSO algorithms, the standard [17], the stan-

dard with re-initialization, Multi-swarm Data Clustering PSO [32], Cooperative Data Clus-

tering PSO [33], cooperative-multipopulation data clustering PSO and it’s elitist version.

Between six population-based clustering algorithms evaluated on pattern migration datasets,

according to the Ray-Turi measure, the elitist cooperative-multipopulation data clustering

PSO gave the most optimal solution. However, this algorithm didn’t perform well with the

increase of dimension. The cooperative-multipopulation algorithm didn’t present good re-

sults considering Ray-Turi and intra-cluster distance measures. But, the elitist version gave

better results because it controls the effects of re-initialization on the context particle in a

better way.

22

Chapter 3

Associative Data Clustering PSO

3.1 Improving Swarm Association

An issue with the basic data clustering PSO-based algorithm presented in [17] is the associ-

ation problem that arises when calculating the square of the Euclidean distance, Ji, between

the centroid vectors within the ith particle, xi, and those within the global best particle, gbest.

More specifically, each particle should be represented as a set of centroids, in the sense that

the order of centroid vectors within the particle should be of no importance. However, for the

purpose of implementing Ji, centroid vectors may be ordered. In [17], there is no indication

that a solution to the association problem has been considered. The square distance, Ji, is

calculated using the following equation:

Ji =
nc∑
j=1

||xj
i−gjbest||

2 (3.1)

where nc is the number of centroids, and xj
i and gjbest represent the jth centroid within the

particle and the global best particle, respectively. An example illustrating the aforementioned

association problem is shown in Figure 3.1.

In Figure 3.1(a), an example of a particle and a global best particle are shown, each

consisting of three centroids. The lines connecting the centroids are used to identify which

23

1

2 1

23

3 1

2 1

23

3

(a) (b)

Figure 3.1: (a) Sample positions of global best and particle, (b) Particle movement towards
global best

centroids are associated with the same particle. The numbers indicate the order of the

centroid vector within the particle. In the case that a proper centroid association is not

used, it is apparent that the particle will have to undergo a relatively large change in order

to match the global best particle. This motion is indicated by the arrows in Figure 3.1(b).

Nevertheless, the positions of the centroids within the two particles are in fact close to each

other if an appropriate centroid associate association technique is implemented.

3.1.1 Data Clustering PSO with Association

In order to mitigate the association issue, a modification to [17] has been proposed. The

overall modified algorithm is presented in Algorithm 3. In particular, the modified step is

also described in more detail in Algorithm 4. Based on this modification, the global best

solution corresponding to the ith particle is represented as ĝjbest,i. Therefore, the equation for

calculating the square Euclidean distance becomes as follows:

Ĵi =
nc∑
j=1

||xj
i−ĝjbest,i||

2 (3.2)

24

The algorithm for ADCPSO is shown in Algorithm 3 and the inner algorithm of the

modified portion of DCPSO has been shown in Algorithm 4.

Algorithm 3 Associative Data Clustering PSO
1: for each particle do

Randomly Initialize particle and velocity
2: end for
3: while maximum iterations/minimum error is not attained do
4: for each particle do
5: for each data point do
6: Calculate distance between all data and centroids
7: Assign each data point to the closest centroid
8: end for
9: Update global and local best positions

10: end for
11: for each particle do
12: Determine distances between global best centroids
13: and specific particle’s centroids
14: Rearrange global best, gbest, centroids
15: according to the distances between centroids
16: Update velocity and position
17: end for
18: end while
19: return p

Algorithm 4 Association Fix for Data Clustering PSO
1: nc centroids
2: for each particle do
3: Initialize all nc labels to 0
4: for each centroid in the particle do
5: if label is 0 then
6: for each centroid in global best do
7: measure distance between particle centroid and global best centroid
8: end for
9: end if

10: append global best centroid with smallest distance to new global best
11: Set label to 1 for the chosen global best centroid
12: end for
13: Update velocity and position using the new global best
14: end for

25

3.1.2 Experimental Setup

A computer with Intel© Core i5-3230M with MATLAB R2016b has been used to simulate all

experiments presented in the next section. Several standard datasets have been used in the

experiments to evaluate the performance clustering algorithms. The details for the datasets

used are mentioned in table 3.1. All of the datasets, except for the artificial dataset, are

publicly available at UCI Machine Learning Repository [35].

Table 3.1: Datasets used for evaluation

Dataset Objects Attributes
Ruspini 75 2
Artificial 200 2

Iris 150 4
Automotive 240 8

Sonar 208 60

The following were the parameters for the programs in MATLAB:

• Maximum Clusters: 3

• Particles: 20, 40, 60

• Inertia: 0.99

• Maximum Iterations: 500

• Program Evaluation: 500

• Accelerating factors: 0.5

• Dimensions: 2, 4, 8, 60

26

3.1.3 Results and Comparison

Tables 3.2-11 report the values of the best, average, median, and standard deviation of the

global best cost found using 20, 40, and 60 particles, considering 500 runs of the algorithms.

A total of five different datasets were used. In general, it can be observed that ADCPSO

has achieved a lower cost against the DCPSO. Also, the standard deviation of the ADCPSO

was lower than that of DCPSO, which indicates that the performance of DCPSO was more

sensitive to particle initialization. Another important point is that the improvement of

ADCPSO with respect to DCPSO increases as the dataset dimension increases. Table 3.16

reports the overall percentage improvement of ADCPSO against the DCPSO.

Table 3.12-15 presents the average execution time and number of iteration to converge

required per run. It is apparent that ADCPSO has a disadvantage compared to DCPSO.

Although the number of iterations required by ADCPSO in order to converge is in general

smaller compared to DCPSO, its overall execution time is higher. The reason is that indi-

vidual iterations of ASCPSO are more expensive computationally compared to DCPSO. For

this reason, we have proposed another improved version of ADCPSO, namely IADCPSO.

In particular, IADCPSO exhibits improved execution times, which comes at the expense of

additional memory storage requirements. The extra memory storage is simply equal to the

one required for storing the personal bests. The IADCPSO algorithm is described in section

3.2.

27

Table 3.2: Results for Ruspini dataset for the ADPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 2.9782 3.0978 2.9843 0.1691
40 2.9781 3.0811 2.9806 0.1315
60 2.9781 3.084 2.9804 0.1323

Table 3.3: Results for Ruspini dataset for the DCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 2.9782 3.1022 2.986 0.1938
40 2.9781 3.0865 2.9815 0.1329
60 2.9781 3.0899 2.981 0.1336

Table 3.4: Results for Artificial dataset for the ADCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 7.7114 7.809 7.8189 0.0704
40 7.7114 7.793 7.793 0.067
60 7.7113 7.7945 7.813 0.0677

Table 3.5: Results for Artificial dataset for the DCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 7.7115 7.837 7.857 0.0798
40 7.7115 7.806 7.816 0.0692
60 7.7114 7.7997 7.814 0.0689

Table 3.6: Results for Iris dataset for the ADCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 2.8338 2.9043 2.8862 0.07113
40 2.8272 2.8524 2.8482 0.0169
60 2.8264 2.8415 2.839 0.0108

28

Table 3.7: Results for Iris dataset for the DCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 2.8436 3.0371 2.995 0.2245
40 2.8296 2.9131 2.899 0.0563
60 2.8316 2.8814 2.873 0.0365

Table 3.8: Results for Automotive dataset for the ADCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 15.6334 16.181 16.075 0.389
40 15.6081 15.7966 15.7705 0.1221
60 15.5913 15.7038 15.6946 0.0682

Table 3.9: Results for Automotive dataset for the DCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 15.8136 16.7989 16.65 0.6707
40 15.68287 16.122 16.08 0.255
60 15.6323 15.9251 15.903 0.1536

Table 3.10: Results for Sonar dataset for the ADCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 376.176 394.7668 393.0316 10.1231
40 369.7983 379.4235 378.5748 5.43123
60 368.4715 374.0484 373.3401 3.9172

Table 3.11: Results for Sonar dataset for the DCPSO algorithm

No. of
Particles

Cost
Best Average Median Std. Dev.

20 383.6466 404.0151 403.3845 9.5313
40 373.7812 386.0607 385.2033 6.0774
60 370.8911 378.2333 377.9088 3.5355

29

Table 3.12: ADCPSO run time

No. of
Particles

Average time of each iteration (seconds)
Ruspini Artificial Iris Automotive Sonar

20 0.266 0.304 0.495 0.696 1.525
40 0.448 0.484 0.781 0.448 3.109
60 0.586 0.643 1.015 1.999 4.685

Table 3.13: DCPSO run time

No. of
Particles

Average time of each iteration (seconds)
Ruspini Artificial Iris Automotive Sonar

20 0.194 0.227 0.335 0.462 1.317
40 0.301 0.360 0.630 0.255 2.570
60 0.406 0.492 0.864 1.348 3.848

Table 3.14: ADCPSO average number of iterations for convergence

No. of
Particles

Average no. of iterations to converge
Ruspini Artificial Iris Automotive Sonar

20 150 198 325 478 491
40 109 140 236 476 494
60 96 114 198 472 496

Table 3.15: ADCPSO average number of iterations for convergence

No. of
Particles

Average no. of iterations to converge
Ruspini Artificial Iris Automotive Sonar

20 193 269 392 481 490
40 131 193 360 485 495
60 112 168 321 485 497

Table 3.16: Improvement achieved by ADCPSO against DCPSO (%)

No. of
Particles

Best Cost Improvement (%)
Ruspini Artificial Iris Automotive Sonar

20 0 0 0.34 1.1 1.95
40 0 0 0.08 0.45 1.61
60 0 0 0.18 0.25 0.65

30

3.2 Improved ADCPSO (IADCPSO)

3.2.1 Reducing Execution Time

The drawback of ADCPSO is that the program runs take longer than DCPSO due to its

higher computational complexity. To remedy this issue, an additional modification to the

algorithm has been proposed, so that the association part of the algorithm runs only when

there is a change in the global best solution. In order to achieve this objective, all of the

updated global best vectors, ĝjbest,i are stored as separate variables. Therefore, there will

be one global vector stored per particle. The additional memory requirements equal the

memory needed to store the personal best vectors for all particles. Essentially, there is a

trade off between memory and execution time.

3.2.2 Results and Comparison

Tables 3.17-19 represent the best cost achieved by IADCPSO, the average time for each iter-

ation, and the average number of iterations needed for convergence. The results demonstrate

that IADCPSO exhibits almost the same cost as ADCPSO, while reducing the execution

time close to that of the DCPSO algorithm.

Table 3.17: Best cost achieved by Improved ADCPSO

No. of
Particles

Best Cost Improvement
Ruspini Artificial Iris Automotive Sonar

20 2.978 7.7115 2.832 15.683 373.925
40 2.978 7.7114 2.828 15.592 370.53
60 2.978 7.7113 2.827 15.586 368.1

31

Table 3.18: Execution time for IADCPSO

No. of
Particles

Average time of each iteration (seconds)
Ruspini Artificial Iris Automotive Sonar

20 0.161 0.207 0.304 0.497 1.38
40 0.265 0.324 0.506 0.99 2.73
60 0.364 0.427 0.682 1.455 4.25

Table 3.19: IADCPSO average number of iterations needed for convergence

No. of
Particles

Average no. of iterations to converge
Ruspini Artificial Iris Automotive Sonar

20 149 201 312 479 491
40 110 138 232 477 495
60 96 113 198 467 497

32

Chapter 4

Conclusions and Future Work

4.1 Primary Findings

This research aimed to improve a PSO based data clustering algorithm. One major issue

with several existing PSO-based clustering algorithms was identified. The issue was the

association of particle centroids with the centroids of the global best particle when computing

the cognitive term. We have proposed a modification to the PSO clustering algorithm

in [17]. We performed comparisons between the proposed ADCPSO and the existing DCPSO.

In summary, ADCPSO showed slight to moderate improvement, in terms of the cost, for

datasets with dimensions higher than 3. Also, the proposed algorithm converged faster than

the original DCPSO, in terms of the number of iterations. The only drawback was that the

execution time per iteration was higher for ACPSO. This was due to the fact that individual

iterations required additional computations for performing centroid associations between

particles and the global best vector. This concern was also mitigated in this thesis in an

second modified algorithm, namely IADCPSO.

33

4.2 Recommendations for Future Work

As this thesis focused on the use of PSO to cluster datasets, various future work can be done

based on this research:

• Applying the association operation between the particles and their personal best, in

addition to the association operation between the particles and the global best,

• Studying the scalability of the algorithms,

• Comparing the performance of IADCPSO with additional existing PSO-based cluster-

ing algorithms,

• Implementing advanced PSO-based dimensional clustering algorithms, similar to the

one proposed in [36]

34

Bibliography

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing

surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[2] P. Dayan, M. Sahani, and G. Deback, “Unsupervised learning,” The MIT encyclopedia

of the cognitive sciences, 1999.

[3] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition letters,

vol. 31, no. 8, pp. 651–666, 2010.

[4] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[5] M. J. Abul Hasan and S. Ramakrishnan, “A survey: hybrid evolutionary algorithms for

cluster analysis,” Artificial Intelligence Review, vol. 36, no. 3, pp. 179–204, 2011.

[6] A. A. Freitas, “A survey of evolutionary algorithms for data mining and knowledge

discovery,” in Advances in evolutionary computing, pp. 819–845, Springer, 2003.

[7] E. R. Hruschka, R. J. Campello, A. A. Freitas, et al., “A survey of evolutionary algo-

rithms for clustering,” IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), vol. 39, no. 2, pp. 133–155, 2009.

[8] H. Bock, “Probability models and hypothesis testing in partitioning cluster analysis.

clustering and classification, ed. by arabie, p., hubert, l., and desorte, g,” 1996.

35

[9] A. D. Gordon, “Hierarchical classification,” in Clustering and classification, pp. 65–121,

World Scientific, 1996.

[10] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” in

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

pp. 1027–1035, Society for Industrial and Applied Mathematics, 2007.

[11] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, “Collective memory

and spatial sorting in animal groups,” Journal of theoretical biology, vol. 218, no. 1,

pp. 1–11, 2002.

[12] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Conf. IEEE Int

Neural Networks, vol. 4, pp. 1942–1948 vol.4, 1995.

[13] M. Dorigo, “Optimization, learning and natural algorithms,” Ph. D. Thesis, Politecnico

di Milano, Italy, 1992.

[14] A. Szabo, L. N. de Castro, and M. R. Delgado, “The proposal of a fuzzy clustering

algorithm based on particle swarm,” in Nature and Biologically Inspired Computing

(NaBIC), 2011 Third World Congress on, pp. 459–465, IEEE, 2011.

[15] A. Szabo, A. K. F. Prior, and L. N. de Castro, “The proposal of a velocity memoryless

clustering swarm,” in Evolutionary Computation (CEC), 2010 IEEE Congress on, pp. 1–

5, IEEE, 2010.

[16] S. C. Cohen and L. N. de Castro, “Data clustering with particle swarms,” in Evolutionary

Computation, 2006. CEC 2006. IEEE Congress on, pp. 1792–1798, IEEE, 2006.

36

[17] D. Van der Merwe and A. P. Engelbrecht, “Data clustering using particle swarm opti-

mization,” in Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, vol. 1,

pp. 215–220, IEEE, 2003.

[18] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an ant colony

optimization algorithm,” IEEE Transactions on evolutionary computation, vol. 6, no. 4,

pp. 321–332, 2002.

[19] P. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An ant colony approach for clus-

tering,” Analytica Chimica Acta, vol. 509, no. 2, pp. 187–195, 2004.

[20] P. Rocca, L. Manica, and A. Massa, “An improved excitation matching method based on

an ant colony optimization for suboptimal-free clustering in sum-difference compromise

synthesis,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2297–

2306, 2009.

[21] K.-C. Wong, “Evolutionary algorithms: Concepts, designs, and applications in bioinfor-

matics: Evolutionary algorithms for bioinformatics,” arXiv preprint arXiv:1508.00468,

2015.

[22] F. Streichert, “Introduction to evolutionary algorithms,” paper to be presented Apr,

vol. 4, 2002.

[23] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[24] S. Iqbal and M. T. Hoque, “hgrga: A scalable genetic algorithm using homologous gene

schema replacement,” Swarm and Evolutionary Computation, 2016.

37

[25] S. Iqbal and M. T. Hoque, “A homologous gene replacement based genetic algorithm,”

in Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Com-

panion, pp. 91–92, ACM, 2016.

[26] S. Iqbal and M. T. Hoque, “An adaptive and memory-assisted local crossover in genetic

algorithm,” tech. rep., University of New Orleans, 2017.

[27] L. A. N. Lorena and J. C. Furtado, “Constructive genetic algorithm for clustering prob-

lems,” Evolutionary Computation, vol. 9, no. 3, pp. 309–327, 2001.

[28] C. Ding, Y. Cheng, and M. He, “Two-level genetic algorithm for clustered traveling

salesman problem with application in large-scale tsps,” Tsinghua Science & Technology,

vol. 12, no. 4, pp. 459–465, 2007.

[29] A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “Multiobjective genetic

algorithm-based fuzzy clustering of categorical attributes,” IEEE Transactions on Evo-

lutionary Computation, vol. 13, no. 5, pp. 991–1005, 2009.

[30] C.-H. Cheng, W.-K. Lee, and K.-F. Wong, “A genetic algorithm-based clustering ap-

proach for database partitioning,” IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C (Applications and Reviews), vol. 32, no. 3, pp. 215–230, 2002.

[31] K. Georgieva and A. P. Engelbrecht, “A cooperative multi-population approach to clus-

tering temporal data,” in Evolutionary Computation (CEC), 2013 IEEE Congress on,

pp. 1983–1991, IEEE, 2013.

[32] T. Blackwell, “Particle swarm optimization in dynamic environments,” in Evolutionary

computation in dynamic and uncertain environments, pp. 29–49, Springer, 2007.

38

[33] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle swarm

optimization,” IEEE transactions on evolutionary computation, vol. 8, no. 3, pp. 225–

239, 2004.

[34] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle

swarms,” in Evolutionary Computation, 2001. Proceedings of the 2001 Congress on,

vol. 1, pp. 94–100, IEEE, 2001.

[35] M. Lichman, “UCI machine learning repository,” 2013.

[36] S. Kiranyaz, T. Ince, A. Yildirim, and M. Gabbouj, “Fractional particle swarm opti-

mization in multidimensional search space,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 40, no. 2, pp. 298–319, 2010.

39

Appendix A

MATLAB Codes

A.1 Data Clustering PSO

1 %%

2 %%%%%%%%% Van Der Merwe & Engelbrecht 's PSO clustering %%%%%%%%%%%%%%%%%%%

3 %%

4

5 for p=1:500

6

7 data_set=textread('data_set_sonar.txt'); % Import Dataset

8 dataset_subset=0;

9 n_dimensions=60;

10 max_iter=500;

11 vmax=0.01;

12 w=0.99;

13 global Y

14

15 phi1=0.5; % 1.1;

16 phi2=0.5; % 0.8;

17 phi3=0.005; % 0.3;

40

18 phi4=0.06;

19 %Y=rand(length(Y),2);

20 N=max(size(data_set));

21 Y=zeros(N,n_dimensions);

22 for i=1:n_dimensions

23 Y(:,i)=data_set(:,i)/max(data_set(:,i));

24 end

25 n_centroids=3;

26 n_particles=60;

27

28 tic

29 v=cell(n_particles ,1);

30

31 for i=1:n_particles

32 v{i}=vmax*(2*rand(n_centroids ,n_dimensions)-1);

33 end

34

35 x=cell(n_particles ,1);

36 for i=1:n_particles

37 for j=1:n_centroids

38 r=ceil(rand(1,1)*(length(Y)-1)+1);

39 x{i}(j,:)=Y(r,:);

40 end

41 end

42

43 motion_iter=[];

44 personal_best_cost=linspace(1e99,1e99,n_particles);

41

45 personal_bests= x;

46 global_best_cost=1e99;

47 global_best= inf(n_centroids ,n_dimensions);

48

49 prev_global_best_cost=inf;

50 iter=0;

51 run_flag=1;

52 while (iter<max_iter && run_flag==1)

53 run_flag=0;

54 for iter_inner=1:50

55 iter=iter+1;

56 % Particle loop

57 for i=1:n_particles

58 % Centroid loop

59 for j=1:n_centroids

60 Distance{i}(j,:)=(sum((repmat(x{i}(j,:),[N ...

1])-Y).^2,2)).';

61 end

62 end

63 for i=1:n_particles

64 [minimum_dist_temp , closest_centroid_temp]= ...

min(Distance{i},[],1);

65 minimum_dist(i,:)=minimum_dist_temp;

66 closest_centroid(i,:)=closest_centroid_temp;

67 end

68 total_minimum=sum(minimum_dist ,2);

69

42

70 prev_global_best_cost=global_best_cost;

71 for i=1:n_particles

72 if total_minimum(i) < personal_best_cost(i)

73 personal_best_cost(i)=total_minimum(i);

74 personal_bests{i} = x{i};

75 end

76 if total_minimum(i) < global_best_cost

77 global_best_cost=total_minimum(i);

78 global_best = x{i};

79 end

80

81 end

82

83

84 for i=1:n_particles

85

86 v{i} = v{i} ...

87 + phi1*(personal_bests{i} - x{i}) + ...

phi2*(global_best - x{i});

88 x{i} = x{i}+w*v{i};

89

90

91 end

92 w=w*0.99;

93

94 if (abs(global_best_cost -prev_global_best_cost)>0.001)

95

43

96 c_iter=iter;

97 run_flag=1;

98 end

99 end

100 end

101 end

A.2 Data Clustering PSO with k-means

1 %%

2 %%%%%% Van Der Merwe & ’Engelbrechts PSO clustering with k-means %%%%%%%%

3 %%

4

5 for p=1:500

6

7 data_set=textread('data_set_sonar.txt'); % Ruspini Dataset

8 dataset_subset=0;

9 n_dimensions=60;

10 max_iter=500;

11 vmax=0.01;

12 w=0.99;

13 global Y

14

15 phi1=0.5; % 1.1;

16 phi2=0.5; % 0.8;

44

17 phi3=0.005; % 0.3;

18 phi4=0.06;

19 N=max(size(data_set));

20 Y=zeros(N,n_dimensions);

21 for i=1:n_dimensions

22 Y(:,i)=data_set(:,i)/max(data_set(:,i));

23 end

24 n_centroids=3;

25 n_particles=60;

26

27 tic

28 v=cell(n_particles ,1);

29

30 for i=1:n_particles

31 v{i}=vmax*(2*rand(n_centroids ,n_dimensions)-1);

32 end

33

34 x=cell(n_particles ,1);

35 for i=1:n_particles

36 for j=1:n_centroids

37 r=ceil(rand(1,1)*(length(Y)-1)+1);

38 x{i}(j,:)=Y(r,:);

39 end

40 end

41

42 motion_iter=[];

43 personal_best_cost=linspace(1e99,1e99,n_particles);

45

44 personal_bests= x;

45 global_best_cost=1e99;

46 global_best= inf(n_centroids ,n_dimensions);

47

48 prev_global_best_cost=inf;

49 iter=0;

50 run_flag=1;

51 while (iter<max_iter && run_flag==1)

52 run_flag=0;

53 for iter_inner=1:50

54 iter=iter+1;

55 % Particle loop

56 for i=1:n_particles

57 % Centroid loop

58 for j=1:n_centroids

59 Distance{i}(j,:)=(sum((repmat(x{i}(j,:),[N ...

1])-Y).^2,2)).';

60 end

61 end

62 for i=1:n_particles

63 [minimum_dist_temp , closest_centroid_temp]= ...

min(Distance{i},[],1);

64 minimum_dist(i,:)=minimum_dist_temp;

65 closest_centroid(i,:)=closest_centroid_temp;

66 end

67 total_minimum=sum(minimum_dist ,2);

68

46

69 prev_global_best_cost=global_best_cost;

70 for i=1:n_particles

71 if total_minimum(i) < personal_best_cost(i)

72 personal_best_cost(i)=total_minimum(i);

73 personal_bests{i} = x{i};

74 end

75 if total_minimum(i) < global_best_cost

76 global_best_cost=total_minimum(i);

77 global_best = x{i};

78 end

79

80 end

81

82 for i=1:n_particles

83

84 v{i} = v{i} ...

85 + phi1*(personal_bests{i} - x{i}) + ...

phi2*(global_best - x{i});

86 x{i} = x{i}+w*v{i};

87 end

88 w=w*0.99;

89

90 if (abs(global_best_cost -prev_global_best_cost)>0.001)

91

92 c_iter=iter;

93 run_flag=1;

94 end

47

95 end

96 end

97 time=toc;

98 for i=1:3

99 [indices, global_best , SumD] = kmeans(Y,3,'start',global_best);

100 global_best_cost_kmeans=sum(SumD);

101 end

102 end

A.3 Associative DCPSO

1 %%

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ADCPSO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %%

4 for p=1:500

5

6 data_set=textread('data_set_sonar.txt');

7 dataset_subset=0;

8 n_dimensions=60;

9 max_iter=500;

10 vmax=0.01;

11 w=0.99;

12 global Y

13

14 phi1=0.5; % 1.1;

48

15 phi2=0.5; % 0.8;

16 phi3=0.005; % 0.3;

17 phi4=0.06;

18 N=max(size(data_set));

19 Y=zeros(N,n_dimensions);

20 for i=1:n_dimensions

21 Y(:,i)=data_set(:,i)/max(data_set(:,i));

22 end

23

24 n_centroids=3;

25 n_particles=60;

26

27 tic

28 v=cell(n_particles ,1);

29

30 for i=1:n_particles

31 v{i}=vmax*(2*rand(n_centroids ,n_dimensions)-1);

32 end

33

34 x=cell(n_particles ,1);

35 for i=1:n_particles

36 for j=1:n_centroids

37 r=ceil(rand(1,1)*(length(Y)-1)+1);

38 x{i}(j,:)=Y(r,:);

39 end

40 end

41

49

42 motion_iter=[];

43 personal_best_cost=linspace(1e99,1e99,n_particles);

44 personal_bests= x;

45 global_best_cost=1e99;

46 global_best= inf(n_centroids ,n_dimensions);

47

48 prev_global_best_cost=inf;

49 iter=0;

50 run_flag=1;

51 while (iter<max_iter && run_flag==1)

52 run_flag=0;

53 for iter_inner=1:50

54 iter=iter+1;

55 % Particle loop

56 for i=1:n_particles

57 % Centroid loop

58 for j=1:n_centroids

59 Distance{i}(j,:)=(sum((repmat(x{i}(j,:),[N ...

1])-Y).^2,2)).';

60 end

61 end

62 for i=1:n_particles

63 [minimum_dist_temp , closest_centroid_temp]= ...

min(Distance{i},[],1);

64 minimum_dist(i,:)=minimum_dist_temp;

65 closest_centroid(i,:)=closest_centroid_temp;

66 end

50

67 total_minimum=sum(minimum_dist ,2);

68

69 prev_global_best_cost=global_best_cost;

70 for i=1:n_particles

71 if total_minimum(i) < personal_best_cost(i)

72 personal_best_cost(i)=total_minimum(i);

73 personal_bests{i} = x{i};

74 end

75 if total_minimum(i) < global_best_cost

76 global_best_cost=total_minimum(i);

77 global_best = x{i};

78 end

79

80 end

81 gtemp=global_best*0;

82

83 for i=1:n_particles

84

85 label = zeros(1,n_centroids);

86 for j=1:n_centroids

87 d1=inf;

88 for c=1:n_centroids

89 if (label(c)==0)

90 d=sum((x{i}(j,:)-global_best(c,:)).^2);

91 if (d<d1)

92 ctemp=c;

93 d1=d;

51

94 end

95 end

96 end

97 gtemp(j,:)=global_best(ctemp ,:);

98 label(:,ctemp)=1;

99 end

100

101

102 v{i} = v{i} ...

103 + phi1*(personal_bests{i} - x{i}) + phi2*(gtemp - ...

x{i});

104 x{i} = x{i}+w*v{i};

105 end

106 w=w*0.99;

107

108 if (abs(global_best_cost -prev_global_best_cost)>0.001)

109

110 c_iter=iter;

111 run_flag=1;

112 end

113 end

114 end

115 time=toc;

116 end

52

A.4 ADCPSO with k-means

1 %%

2 %%%%%%%%%%%%%%%%%%%%%%%% ADCPSO with k-means %%%%%%%%%%%%%%%%%%%%%%%%%%

3 %%

4 for p=1:500

5

6 data_set=textread('data_set_sonar.txt');

7 dataset_subset=0;

8 n_dimensions=60;

9 max_iter=500;

10 vmax=0.01;

11 w=0.99;

12 global Y

13

14 phi1=0.5; % 1.1;

15 phi2=0.5; % 0.8;

16 phi3=0.005; % 0.3;

17 phi4=0.06;

18 N=max(size(data_set));

19 Y=zeros(N,n_dimensions);

20 for i=1:n_dimensions

21 Y(:,i)=data_set(:,i)/max(data_set(:,i));

22 end

23 n_centroids=3;

53

24 n_particles=60;

25

26 tic

27 v=cell(n_particles ,1);

28

29 for i=1:n_particles

30 v{i}=vmax*(2*rand(n_centroids ,n_dimensions)-1);

31 end

32

33 x=cell(n_particles ,1);

34 for i=1:n_particles

35 for j=1:n_centroids

36 r=ceil(rand(1,1)*(length(Y)-1)+1);

37 x{i}(j,:)=Y(r,:);

38 end

39 end

40

41 motion_iter=[];

42 personal_best_cost=linspace(1e99,1e99,n_particles);

43 personal_bests= x;

44 global_best_cost=1e99;

45 global_best= inf(n_centroids ,n_dimensions);

46

47 prev_global_best_cost=inf;

48 iter=0;

49 run_flag=1;

50 while (iter<max_iter && run_flag==1)

54

51 run_flag=0;

52 for iter_inner=1:50

53 iter=iter+1;

54 % Particle loop

55 for i=1:n_particles

56 % Centroid loop

57 for j=1:n_centroids

58 Distance{i}(j,:)=(sum((repmat(x{i}(j,:),[N ...

1])-Y).^2,2)).';

59 end

60 end

61 for i=1:n_particles

62 [minimum_dist_temp , closest_centroid_temp]= ...

min(Distance{i},[],1);

63 minimum_dist(i,:)=minimum_dist_temp;

64 closest_centroid(i,:)=closest_centroid_temp;

65 end

66 total_minimum=sum(minimum_dist ,2);

67

68 prev_global_best_cost=global_best_cost;

69 for i=1:n_particles

70 if total_minimum(i) < personal_best_cost(i)

71 personal_best_cost(i)=total_minimum(i);

72 personal_bests{i} = x{i};

73 end

74 if total_minimum(i) < global_best_cost

75 global_best_cost=total_minimum(i);

55

76 global_best = x{i};

77 end

78

79 end

80 gtemp=global_best*0;

81

82 for i=1:n_particles

83

84 label = zeros(1,n_centroids);

85 for j=1:n_centroids

86 d1=inf;

87 for c=1:n_centroids

88 if (label(c)==0)

89 d=sum((x{i}(j,:)-global_best(c,:)).^2);

90 if (d<d1)

91 ctemp=c;

92 d1=d;

93 end

94 end

95 end

96 gtemp(j,:)=global_best(ctemp ,:);

97

98 label(:,ctemp)=1;

99 end

100

101

102 v{i} = v{i} ...

56

103 + phi1*(personal_bests{i} - x{i}) + phi2*(gtemp - ...

x{i});

104 x{i} = x{i}+w*v{i};

105

106

107 end

108 w=w*0.99;

109

110 if (abs(global_best_cost -prev_global_best_cost)>0.001)

111

112 c_iter=iter;

113 run_flag=1;

114 end

115 end

116 end

117 time=toc;

118 for i=1:3

119 [¬, global_best , SumD] = kmeans(Y,3,'start',global_best);

120 global_best_cost_kmeans=sum(SumD);

121 end

122 end

A.5 Improved ADCPSO

1 %%

57

2 %%%%%%%%%%%%%%%%%%%%%%% Improved ADCPSO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %%

4

5 for p=1:500

6

7 data_set=textread('data_set_sonar.txt');

8 dataset_subset=0;

9 n_dimensions=60;

10 max_iter=500;

11 vmax=0.01;

12 w=0.99;

13 global Y

14

15 phi1=0.5; % 1.1;

16 phi2=0.5; % 0.8;

17 phi3=0.005; % 0.3;

18 phi4=0.06;

19 N=max(size(data_set));

20 Y=zeros(N,n_dimensions);

21 for i=1:n_dimensions

22 Y(:,i)=data_set(:,i)/max(data_set(:,i));

23 end

24

25 n_centroids=3;

26 n_particles=60;

27

28 tic

58

29 v=cell(n_particles ,1);

30

31 for i=1:n_particles

32 v{i}=vmax*(2*rand(n_centroids ,n_dimensions)-1);

33 end

34

35 x=cell(n_particles ,1);

36 for i=1:n_particles

37 for j=1:n_centroids

38 r=ceil(rand(1,1)*(length(Y)-1)+1);

39 x{i}(j,:)=Y(r,:);

40 end

41 end

42

43 motion_iter=[];

44 personal_best_cost=linspace(1e99,1e99,n_particles);

45 personal_bests= x;

46 global_best_cost=1e99;

47 global_best= inf(n_centroids ,n_dimensions);

48 global_bests= x;

49

50 prev_global_best_cost=inf;

51 iter=0;

52 run_flag=1;

53 while (iter<max_iter && run_flag==1)

54 run_flag=0;

55 for iter_inner=1:50

59

56 iter=iter+1;

57 % Particle loop

58 for i=1:n_particles

59 % Centroid loop

60 for j=1:n_centroids

61 Distance{i}(j,:)=(sum((repmat(x{i}(j,:),[N ...

1])-Y).^2,2)).';

62 end

63 end

64 for i=1:n_particles

65 [minimum_dist_temp , closest_centroid_temp]= ...

min(Distance{i},[],1);

66 minimum_dist(i,:)=minimum_dist_temp;

67 closest_centroid(i,:)=closest_centroid_temp;

68 end

69 total_minimum=sum(minimum_dist ,2);

70

71 best_updated=0;

72 prev_global_best_cost=global_best_cost;

73 for i=1:n_particles

74 if total_minimum(i) < personal_best_cost(i)

75 personal_best_cost(i)=total_minimum(i);

76 personal_bests{i} = x{i};

77 end

78 if total_minimum(i) < global_best_cost

79 global_best_cost=total_minimum(i);

80 global_best = x{i};

60

81 best_updated=1;

82 end

83

84 end

85 gtemp=global_best*0;

86

87 for i=1:n_particles

88 if best_updated==1

89 label = zeros(1,n_centroids);

90 for j=1:n_centroids

91 d1=inf;

92 for c=1:n_centroids

93 if (label(c)==0)

94 d=sum((x{i}(j,:)-global_best(c,:)).^2);

95 if (d<d1)

96 ctemp=c;

97 d1=d;

98 end

99 end

100 end

101 gtemp(j,:)=global_best(ctemp ,:);

102 label(:,ctemp)=1;

103 end

104 global_bests{i}=gtemp;

105 end

106

107 v{i} = v{i} ...

61

108 + phi1*(personal_bests{i} - x{i}) + ...

phi2*(global_bests{i} - x{i});

109 x{i} = x{i}+w*v{i};

110 end

111 w=w*0.99;

112

113 if (abs(global_best_cost -prev_global_best_cost)>0.001)

114

115 c_iter=iter;

116 run_flag=1;

117 end

118 end

119 end

120 time=toc;

121 end

A.6 Particle Swarm Clustering

1 %% Initialization

2 data_set=textread('data_set_sonar.txt');

3 max_it=150;

4 vmax=0.01;

5 n_part=3;

6 w=0.95;

7 n_cluster_per_particle=3;

62

8 global Y

9

10 phi1=0; % 1.1;

11 phi2=0; % 0.8;

12 phi3=0.005; % 0.3;

13 phi4=0.06;

14

15 Y = [data_set(:,1)/max(data_set(:,1)) ...

data_set(:,2)/max(data_set(:,2))];

16 N=max(size(data_set));

17 x=rand(n_cluster_per_particle*n_part ,2); % usually every particle ...

xi initialized at random

18 c = reshape(x,1, []);

19

20 v=vmax*(2*rand(n_part*n_cluster_per_particle ,2)-1); % at random, vi ...

in [-vmax,vmax]

21 distYX=linspace(1e99,1e99,n_part);

22 pI=[0 0];

23 pG=[0 0];

24 win_counter=zeros(max(size(x)),1);

25 t=1;

26

27 while t < max_it

28 win_counter=zeros(n_part*n_cluster_per_particle ,1);

29 for i = 1 : N %for each data

30 for j=1:n_part*n_cluster_per_particle

31 distYX(j) = dist(Y(i,:),x(j,:)');

63

32 end

33 distMatrix(:,i)=distYX;

34 for k=1:n_cluster_per_particle

35 particle=mat2cell(distMatrix ,[3 3 3], N);

36 end

37 I = find(distYX==min(distYX));

38 win_counter(I)= win_counter(I)+1;

39 f= @(x) sum(sum(bsxfun(@minus,Y,x).^2)); % distance function

40 if f(x(I,:)) < f(pI)

41 pI = x(I,:);

42 end

43 if f(x(I,:)) < f(pG)

44 pG = x(I,:);

45 end

46

47 v(I,:) = min(vmax, max(-vmax, v(I,:) + phi1*(pI - x(I,:)) ...

+ phi2*(pG - x(I,:)) + phi3*(Y(i,:) - x(I,:))));

48 x(I,:)=x(I,:)+w*v(I,:);

49 end

50

51 % for each empty particles , redirect them to the winning particles

52 [¬,max_count]=max(win_counter);

53 for i = 1 : n_part*n_cluster_per_particle

54 if(win_counter(i)==0)

55 v(i,:) = min(vmax, max(-vmax, w*v(i,:) + ...

phi4*(x(max_count ,:) - x(i,:))));

56 x(i,:) = x(i,:) + v(i,:);

64

57 end

58 end

59 w = 0.95*w;

60 t = t + 1;

61 end

62 disp(x)

65

Appendix B

Acronyms

Following is the list of acronyms used in this thesis. Acronyms are ordered alphabetically.

ACO Ant Colony Optimization

ADCPSO Associative Data Clustering Particle Swarm Optimization

DCPSO Data Clustering Particle Swarm Optimization

EA Evolutionary Algorithm

GA Genetic Algorithm

IADCPSO Improved Associative Data Clustering Particle Swarm

Optimization

PSC Particle Swarm Clustering

PSO Particle Swarm Optimization

SI Swarm Intelligence

66

Vita

Sharif Shahadat was born on October 19, 1990, in Dhaka, Bangladesh. The author completed

his bachelor’s degree in Electrical and Electronic Engineering from Ahsanullah University of

Science and Technology, Dhaka, Bangladesh in 2012. He finished his Masters in Electrical

Engineering from the University of New Orleans in May 2017 with a cumulative GPA of 3.60.

The author worked with his advisor Dr. Dimitrios Charalampidis for his master’s thesis. His

research interests are in Data clustering, Particle Swarm Optimization and Metaheuristics.

67

	Improving a Particle Swarm Optimization-based Clustering Method
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Motivation
	Background
	Complexity of Clustering Problem
	Clustering Algorithms
	k-means
	k-means++
	Swarm Intelligence
	Evolutionary Algorithms

	Summary
	Organization of Thesis

	Data Clustering and Particle Swarm Optimization
	Particle Swarm Optimization
	PSO and Data Clustering
	Particle Swarm Clustering
	Cooperative-Multipopulation Data Clustering PSO

	Associative Data Clustering PSO
	Improving Swarm Association
	Data Clustering PSO with Association
	Experimental Setup
	Results and Comparison

	Improved ADCPSO (IADCPSO)
	Reducing Execution Time
	Results and Comparison

	Conclusions and Future Work
	Primary Findings
	Recommendations for Future Work

	Bibliography
	MATLAB Codes
	Data Clustering PSO
	Data Clustering PSO with k-means
	Associative DCPSO
	ADCPSO with k-means
	Improved ADCPSO
	Particle Swarm Clustering

	Acronyms

