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Abstract 
 

The endowment and the framing effect are widely examined cognitive biases. The 

experimental economics literature, using choice data gathered through an elicitation device, 

commonly finds evidence of these biases. Recent work by Cason & Plott (2014) shows that the 

interpretation of choice data as consistent with biases related non-standard preference theory 

could also be consistent with confusion or misconception of the game type used to elucidate 

preferences. I use the Cason and Plott card auction framework to analyze offers of buyers and 

sellers in an experimental setting with subjects from the University of New Orleans simulating 97 

sellers and 90 buyers. The two games have symmetric payoffs in order to examine cognitive 

biases given subjects’ misconception of the game form. Subjects of both games display 

misconception of game form that explains both endowment and framing effects by rational 

confused choice; however, buyers display a much greater dispersion of offers than sellers. I 

estimate card implied valuation of sellers and buyers given game form misconception and find 

no statistical endowment effect, but I do find valuation is more uncertain in the buyer’s game. 

The theory of Rational Inattention predicts this lack of offer symmetry is due to the additional 

cognitive steps necessary in calculating buyer offers. 

 

Keywords: Behavioral Economics; Behavioral Finance; Cognitive Bias; Game Form 

Misconceptions; Endowment Effect; Framing Effect 
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I. Introduction 

Researchers are increasingly testing economic theories by controlling the economic 

environment and repeatedly observing individual behavior. Experimental economics gives 

researchers the opportunity to state an economic theory ex ante and evaluate how individual 

behavior compares and contrasts with the proposed theory. One of the fundamental tenants of 

classical economic theory is the theory of rational choice, which states that individuals will make 

choices consistent with maximizing expected utility. Much empirical work is at odds with utility 

maximizing behavior, so economists, have for decades attempted to reconcile theory with empirical 

observation. Behavioral economics utilizes psychological insights such as cognitive bias to 

supplement existing economic theory to more accurately predict individual decision making. 

 Cognitive biases are systematic deviations from optimal behavior. These biases have serious 

implications for financial and economic policy decisions, as well as understanding individual 

investment behavior. This dissertation will focus on two of the most common cognitive biases; the 

endowment effect, and the framing effect. This paper attempts incorporate game form 

misconceptions of Cason & Plott (2014), in an effort to shed light on the existence and relative 

magnitude of such biases. 

One of the principle messages of Cason & Plott (2014) is that choice data from elicitation 

devices such as the Becker–DeGroot–Marschak (BDM, 1964)1 need to be interpreted carefully, 

specifically as they relate to preference revelation. Game form misconceptions can lead to individuals 

making choices out of confusion, rather than choices that reveal their true preferences. This concept 

                                                           
1 The BDM framework is an incentive compatible mechanism where there the dominate strategy is for individuals to 
bid/offer the objects true price. A Vickrey auction is a BDM device.  
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should take special precedence when the choice data is non-optimal or non-utility maximizing. In any 

experimental setting, it is logical to assume some measure of confusion or misconception amongst 

the subjects. This paper uses the Plott & Cason (2014) experimental framework from both the buyer 

and the sellers’ points of view to distinguish possible biases from the game form misconceptions that 

Plott & Carson identify in their seller only game. 

I attempt to isolate the role of the subject with two experiments types.  In the sellers game I 

elicit his Willingness-To-Accept (WTA). In the buyers games I elicit his Willingness-To-Pay (WTP). The 

Plott & Cason BDM type setup is used for each game.  The payoffs of both games are structured to 

be symmetric and use instructions that are simple and similar.  Following the BDM mechanism, both 

experiments have the same dominant offer strategy that is for a subject to offer a price equal to the 

true value of the object in question. The relative divergence of offers from optimal in the two 

experiments gives us a basis of assessing biases given subjects of both games suffer from a degree 

of confusion or game form misconception.  

The model formulations I assess use the random utility model of Luce-McFadden with choices 

consistent with either optimal offers with a degree of noise or consistent with choices generated 

from a first price game form misconception.  The degree of offer sensitivity between the two game 

types and the implied object valuation are estimated and compared to assess biases due to the 

subject’s role in each type of experiment. 

II. Literature Review 

In experimental settings, several different factors may influence the subject’s valuation of the 

object in question. Perhaps the subject has an emotional attachment to the item he or she is holding, 

the subject is swayed by the range of possible payoffs, or they don’t understand the rules as 
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presented. In this section, I provide a brief background on some of the well-studied cognitive biases 

theorized to effect decision making. I also provide background on game form misconceptions. 

a. The Endowment Effect 

The endowment effect posits people place an excess value on items merely because they 

own them. This leads to the phenomena where individuals add excess value to items due to some 

psychological attachment to the item. It is easy to think of real life situations where an endowment 

effect may be present.  For example, an individual may refuse to sell an old car of his, even at a more 

than fair price, because he inherited the car from his father. The endowment effect is also prevalent 

in the stock market where investors are reluctant to divest certain inherited stocks due to intangible 

reasons such as familiarity or comfort, even though these assets are having an adverse effect on their 

portfolio (Hayes, 2015).  The endowment effect has also been shown to have an effect on the housing 

market (Genovese & Mayer, 2001. 

  The endowment effect is a violation of the utility maximization theory. In a competitive 

market, consumers’ willingness-to-pay (WTP) for an item should be equal to consumers’ willingness-

to-accept (WTA). The endowment effect is usually defined by the gap in the measure of an item’s 

WTA valuation and an item’s WTP valuation. Kahneman, Knetsch & Thaler (1990) observed an 

endowment effect in multiple experiments where measures of willingness-to-accept greatly 

exceeded measures of willingness-to-pay. The authors found this effect persisted even in settings 

where individuals had the opportunity to learn. 

The endowment effect has been extensively studied with mixed results.  Horowitz & 

McConnell (2002) surveys this literature and finding that this effect is more pronounced in 

experiments using incentive-compatible devices, the highest for “non-ordinary goods” and the 
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lowest for money. Shogren, et al. (2001) found evidence of an endowment effect in an initial trial, 

but found that the effect did not persist across multiple trails. Knetsch, et al (2001) found evidence 

suggesting the endowment effect remains robust over time; however, the valuations may be 

dependent on the context of the valuation. Beggan (1992) found evidence to support the existence 

of an ownership effect, when an individual’s ownership of an object causes the owner to treat the 

object as a social entity, due to a possible psychological connection. Samuelson & Zeckhauser (1988) 

found a related status quo bias by researching heath/retirement plan activity of faculty members--

doing nothing is disproportionately preferred to beneficial alternatives.  

Perhaps the most prominent explanation for the existence of the endowment effect, is the 

theory of loss aversion found in Tversky & Kahneman (1991) in which the disadvantage of a loss 

impacts an individual more than the advantages of a gain. In the world of sports, the endowment 

effect, as driven by loss aversion has been shown to have a significant effect on the decisions of 

managers in major league baseball (Pedace, 2013).  

b. The Framing Effect 

The framing effect is a common bias wherein ones preference for particular decision depends 

on how that decision is described, even though the underlying rational choice is the same (Tversky 

& Kahneman, 1981). Frame dependence is a subjective evaluation of an individual’s attachment or 

avoidance of certain information or numbers. 

Levin, Gaeth, Schreiber and Lauriola (2002) identified three distinct forms of the framing 

effect; attribute framing, goal framing, and risky choice framing.  They find an individual’s decision 

frame has a significant effect on choices involving risk. The authors also suggested that the effects of 
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framing should be judged on an individual basis, rather between subjects, in order to avoid errors 

due to aggregation, wherein a significant effect appears via combining several individuals with 

minimal effects, or a significant effect does not appear due to several individuals with significant 

effects cancelling each other out. As opposed to between subjects analysis, this within subject 

analysis allows the ability to examine framing effects individual subject basis.  

Experimental economics has long been used to test for framing effects for both buyers and 

sellers. Price frame manipulation has been shown at times to significantly alter an individual’s 

valuation process. Bohm, Lindén, and Sonnegård (1997) test for framing effects in a WTA (seller) 

study and found individuals’ whose possible payoff frames had higher maximum values had 

significantly higher WTA valuations. The framing of information has been shown to impact valuations 

in either side of a transaction. Kamins, et al. (2004) found that in auctions the price individuals are 

willing to pay is lower when a reserve price is listed rather than not listed. Gilkeson (2003) and Stern 

(2006) studied internet auction behavior and found that the relative opening price of two similar 

items (which is not inherently tied to the item’s actual value) had a significant effect on the items 

closing price. 

The earliest studies of the framing effect include Tversky & Kahneman (1974) and Lichtenstein 

and Slovic (1971), who find evidence that an individual’s place a certain value on an item and are 

likely to adjust that valuation based on the range of the prices being offered. Recently, Urbancic 

(2011) finds evidence of an attraction to the maximum, or a psychological affinity towards the 

maximum price an individual can receive which affects one’s evaluation process. This leads to mass-

seeking bias, in which an individual’s valuation is pulled toward the mean of a price distribution. 
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Urbancic provides possible explanations for this bias such as thrill-seeking, avoidance of extremes, 

or misunderstanding implications.  

c. Game Form Misconceptions 

Charles Plott & Kathryn Zeiler (2005) questioned whether the WTA/WTP gap is caused by true 

individual preferences or a subject’s misconception. Using a modified version of the Becker, DeGroot, 

Marschak (BDM) valuation method they found that after installing a system of tight controls, and 

providing extensive training, the researchers were able to eliminate the gap between WTA and WTP. 

These findings are similar to those of Shogren, et al. (2001) whose tests showed an initial presence 

of a WTA-WTP gap, but also show that the gap disappears after repeated trials, which calls into 

question the fundamental existence of an endowment effect. 

Cason & Plott (2014) questioned whether experimental results which showed support for 

non-standard preference theories were caused by an individual’s true preferences, or by a 

disconnect between an individual’s choices and their possible outcomes. They argue that when the 

consequences of actions are not completely known to the individual, that action can not necessarily 

be equated with a desired preference. These misconceptions of game form can lead to confusion 

being interpreted as evidence of certain ideas which violate rational choice, such as the framing 

effect theory.  

Cason & Plott’s study shows consistent over-valuations of the objects involved. Since the 

known preference for subjects is to prefer monetary reward, decisions based on preference can be 

differentiated from decisions based on mistakes of comprehension. Therefore, the author’s derive 

two behavior models and attempt to systematically explain these mistakes. In the author’s study, 
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the two reasons for divergence from optimal bidding are framing noise and first price auction 

misconceptions, where the subject believes he or she is in control of an item’s transaction price. First 

price auction misconceptions are paramount to this dissertation, and are explained in detail in Part 

II – d (Experimental Design). The authors find that their model of misconception more accurately 

describes their subject’s bidding pattern when compared to a model built around subjects bidding 

optimally with variability for framing effects. For this reason I need to be extremely careful when 

interpreting choice data to preference revelation, and also when evaluating the viability of non-

standard preference theory. 

d. Experimental Design 

Experimental economics involves applying experimental methods in order to test the validity 

of economic theories as well as shed light on certain mechanisms in financial and economic markets.  

Data from individual choice elicited from experiments show they mimic certain real-world financial 

and economic patterns (Horowitz, 2002). The design of the experiment and the conditions under 

which the experiment take place are paramount, because the nature of individual choice is highly 

volatile.  In this section, I cover the first price auction, the second price auction and the BDM 

elicitation mechanisms found in the literature. 

In a first price auction, the individual who submits the highest bid is awarded the item being 

auctioned, the price he pays is equal to the highest amount he bid. Consider a first price auction for 

a used car. The price I’m willing to accept (WTA) is unknown to the buyer, but say the hidden reserve 

price for this car is $5,000. After a month of receiving bids from other potential buyers, the highest 

bid $6,000 and the second highest bid is $5,500. In this scenario, the buyer purchases the car for 

$6,000, the highest amount bid. 
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In a second price auction, the individual who submits the highest bid is again awarded the 

item being auctioned; however, the price he pays is equal to the second highest amount bid. Consider 

a second price auction for the same car and the same bidding behavior. In this instance, the purchase 

price will be the $5,500, or the second highest bid.  

A Vickrey auction is a special instance type of sealed-bid second price auction. The individuals 

involved in the auction submit written bids with no prior knowledge of the bids of others involved. 

Vickrey auctions have many applications in today’s markets2, across several industries. The most 

cited example is likely Google, who utilized Vickrey auctions to generate over $32 billion in 

advertising revenue via Google AdWords in 2011. In their auction, the winning advertiser pays an 

amount equal to a penny more than the second highest advertiser’s bid. These auctions attempt to 

guarantee that subjects will provide honest valuations of the object or service in question, since they 

do not control final price, but only control whether or not the transaction takes place.  

In a first price auction, the individual bidder controls the final sales price of the transaction.  

The bidder is therefore incentivized to bid some value less than the item’s worth and it becomes 

difficult to determine an individual’s true assessment of the value of an item. The benefit of a second 

price auction is that individuals have the incentive to bid the items true value because the winning 

bidder only controls whether or not the transaction occurs; not the price paid. Researchers can glean 

more information from individual choice data in a second price auction setting because bidding one’s 

true value is the dominant strategy therefore one’s choices are more likely to reflect their 

preferences in a second price auction. First price auctions are more common place in day to activities, 

                                                           
2  2nd Price (Vickrey) Auctions also tend to occur with high stake transactions such as privatization, see Cornelli (1997) 
or Bortolotti (2001). 
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as many individuals purchase vehicles through first price auctions, and recently TV shows like Storage 

Wars have increased the visibility of such auctions. This real world familiarity may bias an individual’s 

understanding of the particular experiment, as stated earlier a first price misconception occurs when 

an individual believes that they determine the final price. 

The Becker, DeGroot, and Marschak (1964) method attempts to measure individual 

preferences through experimental response by creating an incentive compatible elicitation. The term 

incentive compatibility means all participants achieve their maximum outcome by adhering to their 

true preferences. The most common variation of the method involves comparing a subjects bid to a 

price generated by a random number generator. In the present study, the BDM device is no different 

than a second price action. The subjects bid has to be large enough (WTP) game), or small enough 

(WTA) for a transaction to occur, in which they receive the randomly selected payoff price. 

Bohm (1997) found that the BDM mechanism is sensitive to the choice of the upper bound of 

a subject’s possible payoff frame, and therefore the BDM cannot be truly incentive-compatible in 

practice. However, Irwin, (1998) tested the BDM and their experiment verified its incentive-

compatible nature in a pure induced-value setting. Induced value theory (Smith, 76) depends on the 

postulate of non-satiation, where any autonomous individual’s utility function is increasing 

monotonously with the monetary reward.  The referenced authors also found that the optimality of 

the bidding behavior is a function of the information provided. The accuracy of the BDM method is 

not a subject in this dissertation, since I utilize the same elicitation device for both games, the 

measurements should be comparable. I will, however, test how the subjects’ offers are affected by 

the upper and lower bounds of their payoff possibility frames, as well as the role of feedback 

information and repeated trials. 
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III. The Experiment 

The design of my experiments is borrowed from the Cason & Plott (2014) game performed at 

Purdue University. In their experiment, the subject takes the role of a seller and is given a card, shown 

in Figure 1A, worth $2.00 cash. The subject is then asked how much he is willing to accept (WTA) in 

order to sell his card given information that the sales price is determined randomly between two 

values stated on the card, a sale will occur only if his offer is lower or equal to the sale price. After 

declaring an offer, the subject turns the card over and removes a piece of tape revealing the sales 

price. The sales price, or posted price, is drawn from a uniform distribution in the interval given by 

one of five possible ranges stated on the front of the card, 𝑃 = 𝑈[𝑃𝑙 , 𝑃𝑢], where 𝑃𝑙  = 0, and 𝑃𝑢 =

 {4,5,6,7,8}. The optimal offer is always the card value, as subjects will potentially miss out on a sale 

if their offers are greater than the card value.  If no sale occurs they receive the card value of $2.00. 

{Insert Figure 1A here} 

Symmetric to the Cason and Plott (2014) seller game, I also create a buyers game with the 

set of payoffs (shown in the modelling section) designed to elicit how much a buyer would be 

willing to pay (WTP) for the card shown in Figure 1B.  With the same setup, the subject is given a 

card worth $6.00 cash for anyone who purchases it. The subject is told the purchase price is 

determined randomly between two prices stated on the card and a purchase will occur if his offer 

is above the purchase price.  They receive $2.00 in addition to any profit (or loss) on the purchase. 

Similarly, the subject turns the card over after declaring his offer and removes a piece of tape 

revealing the purchase price. . The purchase price, or the posted price, is drawn from a uniform 

distribution in the interval given by one of five possible ranges stated on the front of the card, 𝑃 =



 

11 
 

𝑈[𝑃𝑙  , 𝑃𝑢], where 𝑃𝑙 =  {0,1,2,3,4} and 𝑃𝑢  = 8. Likewise, the optimal offer is always the card value 

as subjects will potentially miss out on a purchase if their offers are lower than the card value. If no 

purchase occurs they simply receive $2.00. 

{Insert Figure 1B here} 

I conducted my experiment with 194 subjects at the University of New Orleans during the 

spring 2016 semester.  In eight class sessions over two weeks, 97 subjects took part as sellers (WTA 

game), and 97 subjects took part as buyers (WTP game)3. Two cards in Round sequential order 

were placed in an envelope. The round 1 card was either white (WTA) or yellow (WTP), and the 

round 2 card was green in both cases. Subjects were asked to choose envelopes from a bin and 

then take their seats. Envelops contained round 1 cards allocated so that each of the five frame 

sizes,  𝑃𝑢 − 𝑃𝑙 + 1, were equally represented.  Envelop round 2 cards were allocated so that 

subjects faced a 1/3 chance of an upward, downward, or no-change in frame when compared to 

the round 1 card. 

 The game scripts I followed for each game are contained in Appendix A-1 and A-2. Once 

seated, I read through the instructions as printed on their cards. I told subjects not talk to their fellow 

classmates and not to ask me any questions, as their individual understanding of the instructions was 

a primary concern of my study. I then told the subjects to reach into their envelope and remove the 

white (WTA) or yellow (WTP) cards depending on the game. 

                                                           
3While 97 subjects were given a card for the buyer game (WTP), 93 completed the Round 1 cards and 94 completed the Round 2 

cards leaving 90 subjects completing. All seller (WTA) game cards were completed. Students attending multiple sections where the 
experiment was conducted only took part in during the first section attended.  
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After the subject wrote down their offer price, I asked then to turn the card over and remove 

the tape to reveal the posted price. They were then instructed to fill in the blank on the back and 

circle the correct answer as to what they should be paid. Subjects were also asked to write their 

name at the bottom of the back of the card so payment could be arranged. No payments were made 

at this point. 

After I collected the round one cards, the subjects were told to reach into their envelope and 

take out the green card.  I then repeated the experiment instructions on their 2nd round card. After 

envelops were collected, I told them they would be able to claim their earnings at an office in the 

College of Business Administration.  Individual sealed envelopes were then prepared with their 

earnings and distributed to the subjects. Earnings ranged between $1.60 and $13.75 with an average 

of $5.98 per subject, total earnings amounted to $1159.804. 

IV. Initial Results 

a. Symmetry of Games 

 The two games are as identical as possible with simple instructions and the same set of 

payoffs in order to isolate the subject’s role as a seller or as a buyer. As shown in Table 1 the payoffs 

and expected payoffs are the same for each game for each frame size.  

  

                                                           
4 51% of the total earnings were collected by the subjects. 
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Table 1. Payoffs of Seller and Buyer Games and Expected Profit Given Optimal Offer 

 𝑃𝑢 𝑉𝑟 𝑉𝑐 𝑃𝑙  𝑃𝑢 − 𝑉𝑐 𝑃[𝑝 > 𝑏] 𝐸[𝑝|𝑝 > 𝑏] 𝐸[𝑝|𝑝 > 𝑏] − 𝑉𝑐 𝐸[𝜋∗] 
 4 - 2 0 2 .500 3.0 1.0 2.50 
 5 - 2 0 3 .600 3.5 1.5 2.90 

Seller 6 - 2 0 4 .667 4.0 2.0 3.33 
 7 - 2 0 5 .714 4.5 2.5 3.78 
 8 - 2 0 6 .750 5.0 3.0 4.25 

 Avg     .646 4.0 2.0 3.35 

          

 𝑃𝑢 𝑉𝑟 𝑉𝑐 𝑃𝑙  𝑉𝑐 − 𝑃𝑙  𝑃[𝑝 < 𝑏] 𝐸[𝑝|𝑝 < 𝑏] 𝑉𝑐 − 𝐸[𝑝|𝑝 < 𝑏] 𝐸[𝜋∗] 
 8 2 6 0 6 .750 3.00 3.00 4.25 
 8 2 6 1 5 .714 2.50 3.50 3.78 

Buyer 8 2 6 2 4 .667 2.00 4.00 3.33 
 8 2 6 3 3 .600 1.50 4.50 2.90 
 8 2 6 4 2 .500 1.00 5.00 2.50 

 Avg     .646 2.00 4.00 3.35 

Table Notes: Table depicts symmetry of payoffs and expected payoffs given optional offer of WTA and WTP games The 

game setup variables are defined as; 𝑃𝑢= value of upper frame, 𝑃𝑙 =lower frame,   𝑉𝑟= rebate value, 𝑉𝑐  = card value, 𝑏 = 

offer. Table assumes optimal offer 𝑏 = 𝑉𝑐 . In the seller game [WTA[𝑝 > 𝑏]] a sale occurs when posted price exceeds offer 

price. The probability of a sale is [𝑝 > 𝑏] = 1 −
𝑏−𝑃𝑙

𝑃𝑢−𝑃𝑙
= 1 −

2

𝑃𝑢
 , Expected offer price given a sale is 𝐸[𝑝|𝑝 > 𝑏] =

𝑃𝑢+𝑏

2
=

𝑃𝑢+2

2
 , and Expected profit is 𝐸[𝜋𝐴

∗] = 𝑉𝑐 +
(𝑃𝑢−𝑉𝑐)2

2(𝑃𝑢−𝑃𝑙)
= 2 +

(𝑃𝑢−2)2

2𝑃𝑢
. In the buyer game [WTP[𝑝 < 𝑏]] a sale occurs when 

offer price exceeds posted price. The probability of a sale is  𝑃[𝑝 < 𝑏] =
𝑏−𝑃𝑙

𝑃𝑢−𝑃𝑙
=

6−𝑃𝑙

8−𝑃𝑙
, Expected offer price given a sale 

is 𝐸[𝑝|𝑝 < 𝑏] =
𝑃𝑙+𝑏

2
=

𝑃𝑙+6

2
, and expected profit is 𝐸[𝜋𝑃

∗ ] = 𝑉𝑟 +
(𝑉𝑐−𝑃𝑙)2

2(𝑃𝑢−𝑃𝑙)
= 2 +

(6−𝑃𝑙)2

2(8−𝑃𝑙)
. 

There are five rows for each game because there are five possible frame sizes 𝑃𝑢 − 𝑃𝑙  for a 

particular game.  The card value 𝑉𝑐   = {$2.00, 𝑜𝑟 $6.00} is fixed.  The 𝑉𝑟= rebate value is fixed a $2.00 

for the buyers game in which they are rebated $2.00 plus any game profits and 𝑏𝑖 is the subjects 

offer.  The table shows that subjects facing a fame range in either game have the same game payoff.  

Cason and Plot (2014) refer to subjects that form expectations according to game rules as 

using the optimal model.  The expected profit for the seller’s game is,  

𝐸[�̃�|𝑏𝑖(𝑜𝑝𝑡)] = 𝑉𝑐 + (𝐸[𝑃|𝑃 > 𝑏𝑖) − 𝑉𝑐) ∗ 𝑃𝑟(𝑃 > 𝑏𝑖), (1) 
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given by card value plus expected profit from the sale with probabilities given by a conditional 

uniform distribution.  The probability of a sale is 𝑃𝑟[𝑃 > 𝑏] = 1 −
𝑏−𝑃𝑙

𝑃𝑢−𝑃𝑙
. The expected price given a 

sale is,  𝐸[𝑝|𝑝 > 𝑏] =
𝑃𝑢+𝑏

2
.  Expected profit then becomes,  

𝐸[�̃�|𝑏𝑖(𝑜𝑝𝑡)] = 
1

𝑃𝑢
[2𝑏𝑖 +

(𝑃𝑢
2 − 𝑏𝑖

2)

2
]. 

(2) 

when 𝑉𝑐 = 2 and 𝑃𝑙 = 0. Table 1 assumes optimal offer 𝑏 = 𝑉𝑐. 

In the buyers game, the buyer is awarded $2.00 plus game profits.  The expected value is,  

𝐸[�̃�|𝑏𝑖(𝑜𝑝𝑡)] = 𝑉𝑟 + (𝑉𝑐 − 𝐸[𝑃|𝑃 < 𝑏𝑖)) ∗ 𝑃𝑟(𝑃 < 𝑏𝑖), (3) 

where the probability, 𝑃[𝑝 < 𝑏] =
𝑏−𝑃𝑙

𝑃𝑢−𝑃𝑙
, is the same as before and the expected offer price given a 

purchase is 𝐸[𝑝|𝑝 < 𝑏] =
𝑃𝑙+𝑏

2
. Expected profit becomes,  

𝐸[�̃�|𝑏𝑖(𝑜𝑝𝑡)] = 2 +
𝑃𝑙

2 − 𝑏𝑖
2 + 12(𝑏 − 𝑃𝑙)

16 − 2 𝑃𝑙
 

(4) 

when 𝑉𝑟 = 2, 𝑉𝑐 = 6, and 𝑃𝑢 = 8.  Table 1 assumes optimal offer, 𝑏 = 𝑉𝑐.   

The table reveals that the buyer’s game may be mapped into an equivalent seller game by,  

𝑏(𝑠𝑒𝑙𝑙𝑒𝑟) = 8 − 𝑏(𝑏𝑢𝑦𝑒𝑟), (5a) 

𝑃(𝑠𝑒𝑙𝑙𝑒𝑟) = 8 − 𝑃(𝑏𝑢𝑦𝑒𝑟), and  (5b) 

𝑃𝑢(𝑠𝑒𝑙𝑙𝑒𝑟) = 𝑃𝑢(𝑏𝑢𝑦𝑒𝑟) − 𝑃𝑙(𝑏𝑢𝑦𝑒𝑟). (5c) 

The transformation requires the offer, the posted price and upper frame to change. The simplest 

case is first seller entry and the last buyer entry where there is a 50/50 chance of a sale or a purchase 

given each offers optimally (i.e., 𝑉𝑐   = {$2.00, 𝑜𝑟 $6.00}  ).  Now the bid is transformed $8.00 - $6.00 

= $2.00.  Say the realized price in the buyer game is $1.00 under card value or $5.00. This translates 
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to $8.00 - $5.00 =$3.00 over card value yielding the same $1.00 profit, the same expected profit, and 

the same actual payoff. Lastly the frame range reflects the new interval for the realized price (note: 

𝑃𝑙 = 0).  

b. The Endowment Effect 

As an initial test of bidder behavior, I look at the properties of earnings of sellers and buyers. Table 

2 provides the average earnings and average valuation errors for the full sample. While the average 

earnings for sellers were higher than those of buyers (6.22 vs. 5.96) the two-tail T-Test does not reject 

that null hypothesis [p-value = 0.44], that the average earnings between roles are equal.  Because 

the two experiments were designed to have equal payoffs and there is no significant difference 

between the earnings of buyers and sellers, I can make an initial inference that the experiment 

performed as designed on an aggregate level.  
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Table 2. Average Bidding Earnings, Errors & Optimality 

Panel A. Seller Game Panel B. Buyer Game 

Round Stat Avg. Offer Round Stat Avg. Offer 

1st N 97 1st N 90 

       

 Avg. Bid 3.99   Avg. Bid 4.22 

 Std. err 0.15   Std. err 0.19 

       

 Val. Error 1.99   Val. Error 1.78 

 % Val. Error 99.5%   % Val. Error 24.33% 

 % Optimal 11.34%   % Optimal 10.00% 

            

2nd Avg. Bid 3.74 2nd Avg. Bid 4.54 

 Std. err 0.21   Std. err 0.19 

       

 Val. Error 1.74   Val. Error 1.46 

 % Val. Error 87.0%   % Val. Error 27.0% 

 % Optimal 15.5%   % Optimal 3.3% 

            

Average Avg. Bid 3.86 Average Avg. Bid 4.38 

 Std. err 0.18   Std. err 0.19 

            

 Earnings 6.22  Earnings 5.96 

 Std. Err 0.23  Std. Err 0.24 

      

Table Notes: Table displays statistics for all subjects who completed both rounds of the experiment. Sellers 

were bidding their willingness-to-accept (WTA) values for a $2.00 card, buyers were bidding their willingness-

to-pay (WTP) values for a $6.00 card. 𝜇𝑏𝑖 denotes average bid. Val. Error = |𝑏𝑖 − 𝑉𝑐|,       %Val. Error = 
|𝑏𝑖−𝑉𝑐|

𝑉𝑐
, 

%Optimal is the percentage of students who bid within 0.25 of the card value. 

 One facet of the BDM mechanism which will be expounded upon later is the fact that not all 

valuation mistakes are punished. A seller may overvalue their object and still make a profit depending 

on the bids he or she receives. The first result showed no significant difference in the earnings of the 

two roles, next, I test to see if the valuation errors (judged in dollar value) made by the subjects of 
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the experiment is conditional on their role in the experiment. I define a dollar valuation error as the 

difference between a subjects’ bid and the true value of the item involved in the game.  

$𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = |𝐵𝑖 − 𝑉𝑐| (6) 

The lack of significant difference in average earnings should coincide with a lack of significant 

difference in the valuation errors made by the sellers and buyers. Here, the average dollar valuation 

error for sellers ($1.86) was greater than the average dollar valuation error for buyers ($1.62), but 

the two-tail t-test does not reject the null hypothesis that the valuation errors, judged on a dollar 

basis, are equal among transaction roles.  

%𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  
|𝐵𝑖 − 𝑉𝑐|

𝑉𝑐
 

      (7) 

 Lastly, I examine test for differences in the magnitude of these of valuation errors for each 

role. It is important to note the differences in the values of the objects involved in the two games. In 

the seller game, the subject places his willingness-to-accept valuation on a card with a true value of 

$2.00 while in the buyer game; the subject places his willingness-to-pay valuation on a card with a 

true value of $6.00. When accounting for the difference in the objects underlying value, the disparity 

in valuation errors becomes much more pronounced.  Now, the average % valuation error for sellers 

(93.25%) was much greater than the average %valuation for buyers (27%), the two tail t-test strongly 

rejects the null hypothesis [p-value = 0.00], which provides strong evidence that sellers’ errors, as 

judged on percent of item value basis, were significantly greater than those of buyers. 

The fact that the dollar valuation errors are not different, yet the errors as judged as a 

percentage of the items’ value are significantly different calls into question whether or not the true 

value of the object involved in these type of experiment has a significant effect on the subject’s 

valuation methodology. I take the time to note the differences in the value of the objects involved in 
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each game, however, it is important to note that the objects true value should not matter. The 

strategy to maximize the expected payoff is always for the subject to value the object at its true 

value, whether that value is $2.00 (WTA game) or $6.00 (WTP game), and whether the subject is a 

buyer or a seller. Therefore, the results in Table 2 provide evidence of the possible existence of an 

ownership effect as evidenced by the much larger relative valuation errors appearing on the seller 

side (Beggan 1992). Per Horowitz (2002), differing valuations may be caused by factors such as the 

uniqueness or scarcity of a good, as well as any transaction costs involved, neither factor should have 

an effect in this study.  

 This preliminary analysis also supports the part-whole bias theory as referenced by Bateman 

(1997) where in incentive compatible procedures, valuations of parts of objects consistently exceed 

the valuation of the whole. Another explanation is that subjects are systematically drawn towards 

$2.00 valuation errors. The role of the $2.00 error will be explored in further detail later, but it should 

be noted that both buyers and sellers start out receiving $2.00 per round, so this may influence their 

bidding behavior. For the sellers, $2.00 represents the value of the card, and for buyers, $2.00 

represents the redemption amount for participating in a single round of the experiment.  

 The analysis thus far shows the danger in the straightforward judgment of individual choice 

data. Any assertions made from the sample of buyers and sellers would be based on the condition 

that each party in the transaction fully understood their role and the implications of their choices, or 

at the least, each role understood their transactional implications at the same level. In the following 

analysis, I will utilize the concept of game form misconceptions to quantify the level of transactional 

understanding. The results will show how game form misconceptions can drastically alter one’s 
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interpretation of individual choice data, and should progress the understanding of such data going 

forward. 

For sellers, the average subject offer fell from $3.99 in round 1 to $3.74 (Table 2) in round 2, 

suggesting that repetition did, in fact, lead to a more optimal pattern on bids. The magnitude of this 

valuation learning effect for sellers amounts to $0.25 or 12.5% of the item’s true value. I also see a 

3.1% increase in the proportion of optimal bids, which is indicative of the subjects learning and 

improving their bidding patterns from round 1 to round 2.  

%𝑉𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐸𝑓𝑓𝑒𝑐𝑡 =  
(𝜇𝐵𝑖|𝑅2 − 𝜇𝐵𝑖|𝑅1)

𝑉𝑐
 

(8) 

For buyers, the average subject offer increased from $4.22 to $4.54 (Table 2) from round 1 

to round 2, again suggesting that repetition leads to more optimal bidding pattern. The magnitude 

of this valuation learning effect for buyers amounts to $0.32 or 5.3% of the items true value. I also 

see a 5.4% decrease in the proportion of optimal bids, this finding represents the initial sign of 

confusion by the buyers, as some of the subjects who offered optimal bids in round 1 deviated from 

optimal in round 2.  

In the next section, I further the analysis by testing the findings of Cason & Plott on the 

samples of data. I don’t aim to challenge the findings of the authors but attempt to utilize their 

framework to analyze individual choice decisions on either side of a transaction. Cason & Plott state 

that the BDM mechanism does not provide accurate measurements of preferences, but that 

statement may be too definitive in the face of mixed evidence. The BDM provides an assessment, 

which indicates a preference, but the exact magnitude of the preference is likely exaggerated by the 
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presence of some form of misunderstanding on the part of the subjects, of the implications of their 

decisions within the experiment.   

{Insert Figures 2A & 2B here} 

A graphical representation of the subjects bidding behavior appears above in Figures 2A and 

2B. The data, like Cason & Plott (2014), show that a greater proportion of subjects chose offers close 

to other dollar figures. For the sellers, the 10 percent of the subjects valued the card at $2.00 (its 

true value), while 18 percent valued the card at $3.00 and 23 percent at $4.00. For the buyers, 9 

percent of the subjects valued the card at $6.00 (its true value, while 10 percent valued the card at 

$5.00 and 22 percent at $4.00. One explanation for these valuation errors is the minimal information 

theory presented by Irwin (1998) where the author finds that subjects make optimal decisions via 

the BDM when they are provided with the necessary information, but minimal information was not 

enough to deduce the optimal strategy. Although the subjects were given all of the information 

necessary to determine the optimal bid, the results show that they did not appear to fully process 

and understand the information provided to them.  

The initial evaluation of the subjects bidding patterns through graphical representation show 

no significant difference. Both roles show a tendency towards a $2.00 valuation error, which may be 

tied to the true value of the card (seller game) or the initial payoff (buyer game), or perhaps an 

alternate explanation. These results showing a consistent trend of valuation errors provide support 

for the overall presence of some form of misconception on both sides of the transaction. 
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c. Optimality Effect 

 Now that I have seen signs of misconception in both experiments, I next look for signs of 

understanding within in the two games. I begin with the role of optimality, a subject who bids 

optimally in the first round appears to understand the implications of this mechanism5. I would 

expect that given another attempt at this game, more subjects would bid optimally as the second 

attempt should increase the subjects understanding. 

  

                                                           
5 Optimality is defined by bids which are within $0.25 of the card’s true value. 
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Table 3. Round 1 to Round 2 Offer Price Movements of Those Choosing Incorrectly 

Panel A. Seller Game 

 Seller %Total Buyer %Total 

Total 81 (100%) 86 (100%) 

Move Onto Optimum 2 (2%) 5 (6%) 

Move Towards Optimum 30 (37%) 33 (38%) 

Move Away from 
Optimum 

22 (27%) 29 (34%) 

No Change 19 (23%) 27 (31%) 

     

  𝜒2 𝑑𝑓 𝑝𝑣𝑎𝑙 

Pearson Chi-Square  3.634 3 .304 

Likelihood Ratio  3.684 3 .298 

Panel B. Buyer Game 

 Exposed %Total Not Exposed %Total 

Total 55 (100%) 112 (100%) 

Move Onto Optimum 2 (4%) 5 (4%) 

Move Towards Optimum 29 (53%) 34 (30%) 

Move Away from 
Optimum 

14 (25%) 37 (33%) 

No Change 36 (65%) 10 (9%) 

     

Tests  𝜒2 𝑑𝑓 𝑝𝑣𝑎𝑙 
Pearson Chi-Square  8.258 3 .041 

Likelihood Ratio  8.230 3 .041 

Panel C. Offer Ratios- Move Toward Optimum 

Type Exposed? 0ffer1 Ratio > Offer2 Ratio total % 

Buyer N  29 61 48% 

 Y 18 25 72% 

Seller N  19 51 37% 

  Y 14 30 47% 

Table notes: Exposure occurs when an individuals’ non-optimal bid, ends up reducing their payoff. Optimal bids are 

those within 0.25 of the card’s value. Offer ratio is calculated as (𝑏 − 𝑉𝑐)/(𝑃∗ − 𝑉𝑐), a quotient of 0 represents the 

optimum. Pearson Chi-Square / Likelihood Ratio tests for independence between columns (i.e. Sellers vs. Buyers, and 

Exposed vs. Not Exposed). 

I test this assertion of round to round optimality independence by running Fisher’s exact test 

on the data.  Price movement data for those subjects who did not bid optimally in round 1 appears 
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above in Table 3. Part of the data, like Cason & Plott show an optimal bid learning effect, as the 

subjects bid patterns become more optimal after completing the first round. Of the sellers, the 

number of sellers bidding optimally in round 2 jumped from 11.3 percent (11 subjects) to 15.4 

percent (15 subjects), for an optimal bid learning effect of 4.1%. This is consistent with Noussair 

(2004) who found that bias in the BDM tended to decrease over time. 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐵𝑖𝑑 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝐸𝑓𝑓𝑒𝑐𝑡 =  %𝑂𝑝𝑡|𝑅2 − %𝑂𝑝𝑡|𝑅1 (9) 

The buyer game told a different story, as the proportion of optimal bidding decreased from 

10 percent (9 subjects) to 3.3 percent (3 subjects) or an optimal bid learning effect of negative 6.7%. 

This result runs counter to intuition, as well as Cason & Plott (2014) and the seller version of this 

experiment. The only plausible explanation for the 6 subjects who deviated from their round 1 

optimal bid is confusion, (although 2 out of 6 were not rewarded for his optimal bid which may lead 

one to be more prone to change their bid, even though the initial bid was optimal). The apparent 

confusion in the bidding pattern provides possible evidence of a high level of game form 

misconception in the buyer game. In both cases, the data rejects the null hypothesis [p|seller <.01, 

p| buyer <.01] that the rate of optimality in round 2 is independent of the rate of optimality in round 

1, but for opposite reasons. 

 The last result showed that subject’s second round behavior, namely their likelihood of 

bidding optimally in round 2 was dependent on their likelihood of bidding optimally in round 1. In 

this section, I delve further into the effects of round 1 optimal bidding and expand the conversation 

into choice stability. In theory, subjects who bid optimally in round 1 should be more likely to stay 

with their optimal choice, and therefore less likely to change their bid from round 1 to round 2.  
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 Of the 97 sellers, 86 did not choose optimally during round 1. Of those 86, 67 (78 percent) 

chose a different offer price in the second round while 19 (22 percent) chose the same offer price. 

11 sellers did make offers near $2.00 in round 1. Of those 11, 10 (91 percent) chose the same offer 

price and 1 (9 percent) chose a different price on the second card. The data strongly rejects the null 

hypothesis of independence and supports the theory that for sellers, round 1 optimality leads to 

more stability of choice. 

Of the 90 buyers, 81 did not choose optimally during round 1. Of those 81, 54 (67 percent) 

chose a different offer price in the second round while 27 (33 percent) chose the same offer price. 9 

buyers did chose optimally in round 1. Of those 9, 3 (33 percent) chose the same offer price and 6 

(66 percent) chose a different price on the second card. The data does not reject the null hypothesis 

that buyer’s stability of choice is independent of Round 1 optimality.  

 These results run counter to Cason & Plott (2014) as well as the seller side of the same 

experiment. In Cason & Plott, 15 percent of the subjects who bid optimally in round 1 of the 

experiment bid optimally in round 2, for the seller side of the experiment, the probability of round 1 

optimal subjects changing bids was 9 percent whereas on the buyer side, the probability of changing 

bids after round 1 optimality is a staggering 66 percent. This result again points towards relatively 

more misconception on the buyer side of the experiment, as there is little in the way of rationale 

explaining a subject deviating from his initial optimal bid.  

d. The Framing Effect 

 The next step in the analysis is to test for possible signs of framing effects. Since the optimal 

strategy is always to value the card at its true value, the subject’s bids should be independent of 
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payoff frame. Therefore, there should be no correlation between an individuals’ change in bid and 

the change in their payoff frame. 

Table 4. Offer Descriptives by Posted Price Range Max Excluding Offers ±25cents. 

Panel A. Seller (WTA)   

Round Stat    Range    

   [0,$4] [0,$5] [0,$6] [0,$7] [0,$8] Total 

1𝑠𝑡 N  16 23 17 14 16 86 

 mean  4.24 3.78 4.06 4.11 5.19 4.24 

 Std err  0.49 0.18 0.17 0.45 0.34 0.15 

 Median  4.00 3.75 4.00 4.00 5.00 4.00 

 % optimal  16% 4% 6% 26% 6% 11% 

         

2𝑛𝑑 N  14 16 18 17 17 82 

 Mean  4.27 3.47 3.53 4.41 4.61 4.05 

 Std err  1.01 0.36 0.23 0.38 0.48 0.23 

 Median  3.25 3.13 4.00 4.50 4.00 4.00 

 % optimal  33% 11% 10% 6% 15% 15% 

Panel B. Buyer (WTP) 

Round Stat    Range    

   [4,$8] [3,$8] [2,$8] [1,$8] [0,$8] Total 

1𝑠𝑡 N  12 14 18 19 18 81 

 Mean  5.42 4.26 4.48 3.33 3.18 4.02 

 Std err  0.40 0.51 0.44 0.34 0.30 0.19 

 Median  5.00 4.00 4.00 3.00 3.38 4.00 

 % optimal  0% 18% 5% 10% 14% 10% 

         

2𝑛𝑑 N  20 22 15 19 9 85 

 mean  4.83 4.08 4.35 4.68 4.29 4.46 

 Std err  0.28 0.32 0.49 0.50 0.86 0.20 

 Median  5.00 4.00 4.00 4.50 4.50 4.50 

 %Optimal  9% 4% 12% 0% 0% 6% 

Table notes:  Table shows average bid for each available payoff frame for subjects who did not bid optimally (within 25 

cents of card value). Subjects’ payoff frames are known before subject places bid. %Optimal is the percentage of 

students who bid within 0.25 of the card value. 

Table 4 – Panel A summarizes the mean price offer for each of the 5 upper bounds for the full 

sample of sellers. When the bids are categorized by their upper bounds, there is weak evidence of a 

framing effect, the majority (6 out of 8) of the sequential average bids are within the standard error, 
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however, those that fall outside the standard error (2 out of 2) all move in concert with the upper 

bound. 

Table 4 – Panel B summarizes the mean price offer for each of the 5 lower bounds for the full 

sample of buyers. The trend here is similar to the buyer results again the majority of the sequential 

average bids fall within the standard error, but those that do not (3 out of 3) move downwards as 

the lower bound decreases. 

 The two tables above two show how the average bids on aggregate are tied to the frame of 

randomized posted price. Next, I utilize a Mann–Whitney U test in order to analyze the relationship 

between the bids placed and the upper (seller) or lower (buyer) bounds of the subject’s subjects 

payoff ranges.   
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Table 5. Offer Similarity and Posted Price Range - P-Values Excluding Optimal Offers ±25cents 

Panel A. Seller 

Round   Range   

   [0,$5]  [0,$6]  [0,$7]  [0,$8] 

1𝑠𝑡 Range [0,$4] 0.861 0.483 0.768 0.026 
 Range [0,$5]  0.167 0.358 0.001 
 Range [0,$6]   0.824 0.012 
 Range [0,$7]    0.099 

2𝑛𝑑 Range [0,$4] 0.736 0.405 0.044 0.138 
 Range [0,$5]  0.861 0.045 0.106 
 Range [0,$6]   0.017 0.121 
 Range [0,$7]    0.958 

Panel B. Buyer 

Round   Range   

   [3,$8]  [2,$8]  [1,$8]  [0,$8] 

1𝑠𝑡 Range [4,$8] 0.041 0.034 0.000 0.000 
 Range [3,$8]  0.535 0.151 0.159 
 Range [2,$8]   0.020 0.032 
 Range [1,$8]    0.916 

2𝑛𝑑 Range [4,$8] 0.069 0.233 0.799 0.583 
 Range [3,$8]  0.827 0.342 0.740 
 Range [2,$8]   0.651 0.976 
 Range [1,$8]    0.674 

Table notes: Table shows p-values from Mann-Whitney U Test, excluding offers within ±25 cents of optimal 

value, between offers with posted price ranges for each game round. Values significant at 10% are in italics.  

Panel A depicts the seller (WTA) game and Panel B depicts the buyer game (WTP). The sample includes all 

UNO students who completed both rounds of the experiment. Seller p-values range from 0.001 to 0.958. 

Buyer p-values range from 0.000 to 0.976. 

In Cason & Plott (2014) 75 percent of the pairwise tests show a significant difference in offers 

based on the subject’s payoff ranges, which appears to be evidence of a framing effect. The data 

(Table 5, above) does not show the same level of distributional dependence, for the full sample of 

data 35 percent of the pairwise tests show a significant difference in the subjects bid based on the 

payoff range. The sellers (35 percent of pairs) and the buyers (35 percent of pairs) show the similar 
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amounts of distributional dependence, and this dependence decreases in both games from round 1 

to round 2. 

Although the Mann-Whitney test did not show a significant difference between the 

distributional dependence of seller and buyer bids, table 4 does provide evidence that the minimum 

amount that buyers have to pay may have more effect on an individual’s valuation than the 

maximum payoff available does for sellers. This is consistent with a form of endowment effect, as 

anchoring will tend to reduce offer price flexibility Bokhari (2011). The anchoring effect as well as the 

ownership effect (Beggan, 1992) and loss aversion (Tversky, 1991) are amongst the most commonly 

referenced theories on the roots of the appearance of an endowment effect, in an effort to 

disentangle these biases I extend the analysis in order to further understand the role of other types 

of information on the subjects bidding behavior. 

  



 

29 
 

Table 6. Within Sample Framing Analysis 

Sub-Sample Stat Seller Buyer 

 N 70 67 

 𝜇𝑏𝑖  3.50 4.68 

 𝜇𝑃𝑗 5.96 2.39 
∆𝐹𝑟𝑎𝑚𝑒 𝜇(𝑀𝑖𝑑𝑝𝑡𝑖) 2.93 4.81 

 𝜇(𝑏𝑖 − 𝑀𝑖𝑑𝑝𝑡𝑖) 0.57 0.13 

 SE (0.225) (0.206) 

 𝑟Δbi,Δ𝑝 0.262 0.180 

 P-val [0.029] [.145] 

 N 63 59 

 𝜇𝑏𝑖  3.70 4.57 

 𝜇𝑃𝑗 6.00 2.25 
∆𝐹𝑟𝑎𝑚𝑒|𝑁𝑜𝑂𝑝𝑡1 𝜇(𝑀𝑖𝑑𝑝𝑡𝑖) 2.90 4.87 

 𝜇(𝑏𝑖 − 𝑀𝑖𝑑𝑝𝑡𝑖) 0.80 0.30 

 SE (0.229) (0.221) 

 𝑟Δbi,Δ𝑝 0.280 0.229 

 P-val [0.026] [0.088] 

Table Notes: statistics are based off round 2 bidding data for subjects whose frame changed from round 1 to round 2 

(∆𝐹𝑟𝑎𝑚𝑒). 𝑁𝑜𝑂𝑝𝑡1 are those subjects who did not bid optimally (within 0.25) in round 1. 𝜇𝑏𝑖  denotes an individual’s 

average bid. 𝑝∗denotes the upper payoff bound for sellers and the lower payoff bound for buyers. 𝑀𝑑𝑝𝑡𝑖 is the midpoint 

of an individual’s payoff frame. 𝑟 is the Pearson correlation coefficient. 

Lastly, I turn to the within subject framework suggested by Levin (2002), this method of 

analysis allows me to look for framing effects on an individual basis, and avoids errors of aggregation. 

Table 6 (above) presents statistics for the individual subjects average offer distance from the mean 

of their payoff distribution 𝜇(𝑏𝑖 − 𝑀𝑖𝑑𝑝𝑡𝑖) as well as the correlation between an individual’s bid 

change and the change of their payoff frame. The subjects showed a shorter distance from midpoint 

than the sellers did, which suggests that on an individual subject level, buyers were more attracted 

to the minimum price of their payoff distribution than sellers were attracted to their maximum.  
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e. The Role of Feedback 

In the next section of the analysis, I attempt to determine the role of feedback in the BDM 

mechanism. In the case of many individuals, a non-optimal bid may still result in the individual 

earning profit, or the non-optimal bid may have no effect at all. Exposure, as defined here, occurs 

when an individuals’ non-optimal bid, ends up reducing their payoff, for example, a seller who set 

their WTA at $4.00 would be exposed if the randomized sales price was anything amount greater 

than $2.00 and less than $4.00. If the sales price was $3.95 the individual could have earned an extra 

$1.95 by setting their valuation at $2.00 (objects true value). Theoretically, a mistake that costs an 

individual money in round 1 should have a pronounced effect on their round 2 bidding behavior. 

{Insert Figures 3A & 3B here} 

Figure 3A illustrates the pattern of bidder movements towards and away from the optimal 

offer ratio6 by those subjects who were not exposed to their error, Figure 3B displays the same for 

those subjects who were exposed to their errors. Seller activity is depicted by diamonds and buyer 

activity is depicted by “X’s”. Marks on the 45-degree line represent subjects who maintained a 

consistent offer ratio from round 1 to round 2. Marks below the 45-degree line represent movements 

toward the optimal offer ratio of 0, while marks above the 45-degre line represent movements away 

from optimal, detailed analysis of these bidding patterns appears below. 

I first look to assess the overall effect of a subject being exposed to his first round error. Of 

the sample of UNO subjects who did not bid optimally in the first round, a total of 55 subjects were 

                                                           
6 Optimal Offer Ratio [0.00] is defined by (bi – $2) / (Pu - $2), where bi is the individual’s bid and Pu is the upper bound of 
the payoff frame. 
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exposed to their error, of those 55 subjects, 31 (56 percent) improved their offer ratio. A total of 112 

subjects were not exposed to their round 1 error, and 39 (35 percent) of those subjects improved 

their offer ratio. I can define the samples overall exposure effect as the difference between the 

percentage of subjects who improved their bids after being exposed and the percentage of subjects 

who improved their bids without being exposed. In the sample the overall exposure effect is 21 

percent. 

Of the 86 sellers who did not bid optimally in the first round, 25 were exposed to their error 

(see Table 3), of those 25, 18 subjects (72 percent) improved their offer ratio from round 1 to round 

2. Of the 61 subjects who were not exposed to their mistake in round 1, 29 subjects (47.5 percent) 

improved their offer ratio, so it could be said that subjects being exposed to their, or the seller side 

exposure effect, increased their propensity to improve his bid by 24.5 percent. 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 =  %𝐼𝑚𝑝𝑟𝑜𝑣𝑒 𝑅𝑎𝑡𝑖𝑜|𝐸𝑥𝑝𝑜𝑠𝑒𝑑 − %𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑅𝑎𝑡𝑖𝑜|𝑁𝑜𝑡 𝐸𝑥𝑝𝑜𝑠𝑒𝑑 (10) 

Of the 86 sellers who did not bid optimally in the first round, 25 were exposed to their error 

(see Table 3), of those 25, 18 subjects (72 percent) improved their offer ratio from round 1 to round 

2. Of the 61 subjects who were not exposed to their mistake in round 1, 29 subjects (47.5 percent) 

improved their offer ratio, so it could be said that subjects being exposed to their, or the seller side 

exposure effect, increased their propensity to improve his bid by 24.5 percent. 

Of the 81 buyers who did not bid optimally in the first round, 30 were exposed to their error, 

of those 30, 14 subjects (47 percent) improved their offer ratio from round 1 to round 2. Of the 51 

subjects who were not exposed to their mistake in round 1, 19 subjects (37 percent) improved their 

offer ratio, so it could be said that subjects being exposed to their, or the buyer seller side exposure 

effect, increased their propensity to improve his bid by 10 percent. 
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∆𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 =  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐸𝑓𝑓𝑒𝑐𝑡|𝑆𝑒𝑙𝑙𝑒𝑟 − 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐸𝑓𝑓𝑒𝑐𝑡|𝐵𝑢𝑦𝑒𝑟 (11) 

  When evaluating both games, the evidence here suggests feedback, namely being exposed 

to a round 1 mistake, was 14.5 percent more likely to improve bidder behavior for sellers rather than 

buyers [ΔExposure Effect = .145]. Feedback having more of an effect of on sellers than buyers is 

inconsistent with the ownership and anchoring aspects endowment effect theory.  For a seller, the 

endowment effect causes the individual to set their valuation at a certain monetary value, plus an 

intangible value. Extra information and feedback will do less to shift the sellers’ valuation than the 

buyers’ valuation, this is due to the ownership effect explanation of endowment effect theory, the 

intangible attachment is only considered on the seller side, and therefore, information has less sway. 

Consider the stock market and divestiture aversion, bad news is more likely to dissuade one from 

purchasing a stock than it is likely to cause one to sell a stock they own, especially one that they may 

have inherited or attached an intangible value to for any reason. 

f. Summary of Initial Findings 

 So far the analysis has shown us that valuation errors between the two transactional roles 

were about equal in dollar values, but much higher for sellers when considering the error as a 

percentage of the items’ value, this showed possible evidence of an endowment effect, but also lead 

us to ponder whether the subjects considered the value of the item when determining their 

valuation.  

When considering the effect of optimality, I saw that the sellers bid pattern became more 

optimal over time, while several buyers who bid optimally in round 1 adjusted to a sub-optimal 

pattern in the second round, this is a sign of high levels of confusion or purely random behavior in 
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the seller game. Excess confusion on the buyer side of an experiment could be due to an alternate 

explanation of the endowment effect, namely rational inattention (Matejka, 2014) which will be 

discussed later. 

The framing analysis also provided evidence in support of the endowment effect, as I saw 

that manipulating the framing of the payoffs had slightly more effect on the buyers than it did the 

sellers, which supports endowment effect theory. However, when evaluating the role of subject 

exposure, I see that financial feedback (exposure) has a much stronger effect on changing seller 

behavior than it does on changing buyer behavior. This exposure analysis presents evidence against 

the prominent explanations of the endowment effect. 

The analysis thus far has provided us with very mixed results, there are valuation errors, but 

there is also evidence of confusion, there is evidence in support of, and against the endowment 

effect. I have learned from Cason & Plott (2014) that I should not view the individual choice data as 

a true indication of their pure preferences. The initial results presented earlier provide strong 

evidence that many of the subjects who took part in this experiment were not clear about the 

implications of their valuations, therefore, I follow the model presented in Cason & Plott to evaluate 

how the data fit the two choice models which they present. 

V. The Models 

My empirical work compares models of optimal bidding and first-price misconception. Cason 

& Plott (2014) find that sub-optimal choices made their experimental setting do not reveal an 

individual's preference, but rather a misconception of game rules. I adapt the Cason & Plott 

methodology by estimating random utility choice models of subjects forming expectations using 
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optimal bids or a first-price misconception bids. A mixed choice model is also considered to assess 

which of the two models provides a better fit to their experimental data. 

a. Optimal Model with Noise 

It’s possible for a subject to understand the implications of the BDM mechanism, and make 

mistakes. These mistakes are often not penalized by the mechanism. In the experiments, 29% of the 

sellers and 37% of the buyers who did not bid optimally in round 1 were exposed to their mistake. 

The model derivation is in terms of the seller’s game, but the buyer’s game can be easily transformed 

into to the seller’s game using equations (5). The subject, who understands the implications of 

second price Vickrey auction, will formulate his/her expected profit as in equations (1) and (2).  Cason 

and Plott (2014) characterize subjects using computing these expectations as following a model that 

is optimal with noise. According to equation (2) the expected profit is a function of the distance 

between the upper frame and the individuals bid. This represents framing noise in individual choice 

behavior. 

I derive a new semi-closed form expression based on Cason and Plott (2014) who assume and 

estimate only discrete versions of the model. Here, the upper frame can be any value, 𝑃𝑙 = 0 and 

the card value is $2.00 as in Cason and Plott.7 They base probability that offer will be any bid value is 

derived from a quantal choice framework in which individuals make Luce-McFadden logit errors 

(McFadden, 1976). The probability of any offer equally to the subjects bid is: 

𝑃[𝑜𝑓𝑓𝑒𝑟 = 𝑏𝑖(𝑜𝑝𝑡)] = 
𝑒𝜆[�̃�|𝑏𝑖(𝑜𝑝𝑡)]

∑ 𝑒𝜆[�̃�|𝑏𝑗(𝑜𝑝𝑡)]
𝑗

=
𝑒𝜆[�̃�|𝑏𝑖(𝑜𝑝𝑡)]

∫ 𝑒𝜆[�̃�|𝑏(𝑜𝑝𝑡)]𝑑𝑏
𝑢

𝑙

. 
(12) 

                                                           
7 More general expressions can be calculated.  I concentrate on specific values to simplify the exposition. 
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If bids are continuous on the interval [𝑙, 𝑢] then the denominator becomes, 

∫ 𝑒𝜆[�̃�|𝑏(𝑜𝑝𝑡)]𝑑𝑏 =
𝑢

𝑙

 
1

√𝜆
2𝑒

2𝜆

𝑃𝑢
+

𝑃𝑢𝜆

2 √
𝑃𝑢𝜋

2
[Φ[x(u)] −Φ[x(l)]];𝑥(𝑗) = √

𝜆

𝑃𝑢
(𝑃𝑗 − 2). 

(13) 

Φ[. ] is the cumulative normal. The log-likelihood (i.e, ln (𝑃[𝑜𝑓𝑓𝑒𝑟 = 𝑏𝑖])) of the 𝑖𝑡ℎ subject is, 

𝐿𝑜𝑔𝑙𝑖(𝑜𝑝𝑡, 𝑢) =  (14) 

So the grand likelihood for each game is, 

𝐿𝑜𝑔𝑙(𝑜𝑝𝑡) = ∑ ∑ 𝑑𝑢,𝑖𝐿𝑜𝑔𝑙𝑖(𝑜𝑝𝑡, 𝑢)

𝑢𝑖

 (15) 

where 𝑑𝑢,𝑖 is from a set of five range dummies.  For each round of a game ,  𝑑𝑢,𝑖 = 1 for subject 

𝑖 only for the frame she faces on the front of the card, 𝑃𝑢 = {4,5,6,7,8}.  

b. First Price Misconception Model 

Cason & Plott (2014) also develop an alternative bidding behavior model patterned after 

subject incorrectly believing that the auction experiment is a first price auction. In a first price action, 

subjects believe that their profit is based on the price they offered instead of the price on the back 

of the card. For the sample, 45 percent of sellers and 43 percent of buyers showed signs of this 

misconception, either directly by circling the incorrect payoff box (where is this documented), or 

indirectly by twice bidding above (seller) or below (buyer) the random payoff price8.  

Now the bid value replaces the conditional expected value of the randomly drawn price: 

𝐸[�̃�|𝑏𝑖(1𝑠𝑡)] = 2 ∗ 𝑃𝑟(𝑏𝑖 > 𝑃) + 𝑏 ∗ 𝑃𝑟(𝑃 > 𝑏𝑖),. (16) 

                                                           
8 Of the sellers, 10 directly displayed misconception through their card feedback, 34 showed possible misconception 
through their bids (44/97 = 45%). Of the buyers, 15 directly displayed misconception through their card feedback, 24 
showed possible misconception through their bids (39/90 = 43%). 
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Assuming a uniform distribution the expression becomes, 

𝐸[�̃�|𝑏𝑖(1𝑠𝑡)] = 
1

𝑃𝑢

[2𝑏𝑖 + 𝑏𝑖(𝑃𝑢 − 𝑏𝑖)]. 
(17) 

The optimal bid is the conditional expectation of the posted price greater than the card value of $2, 

𝑏1𝑠𝑡 = 𝐸[𝑃|𝑃 > 2] =
2+𝑃𝑢

2
.  The probability of the offer equal to bid is, 

𝑃[𝑜𝑓𝑓𝑒𝑟 = 𝑏𝑖(1𝑠𝑡)] = 
𝑒𝜆[�̃�|𝑏𝑖(1𝑠𝑡)]

∑ 𝑒𝜆[�̃�|𝑏𝑗(1𝑠𝑡)]
𝑗

=
𝑒𝜆[�̃�|𝑏𝑖(1𝑠𝑡)]

∫ 𝑒𝜆[�̃�|𝑏(1𝑠𝑡)]𝑑𝑏
𝑢

𝑙

. 
(18) 

If bids are continuous on the interval [𝑙, 𝑢] then the denominator becomes, 

∫ 𝑒𝜆[�̃�|𝑏(1𝑠𝑡)]𝑑𝑏 =
𝑢

𝑙

 
1

√𝜆
𝑒

𝜆(1+
1

𝑃𝑢
+

𝑃𝑢
4

)
√𝑃𝑢𝜋[Φ[x(u)] −Φ[x(l)]]; 𝑥(𝑗) =

1

2
√

2𝜆

𝑃𝑢

[2𝑃𝑗 − 2 − 𝑃𝑢] 
(19) 

The log-likelihood (i.e., ln (𝑃[𝑜𝑓𝑓𝑒𝑟 = 𝑏𝑖])) of the 𝑖𝑡ℎ subject is, 

𝐿𝑜𝑔𝑙𝑖(1𝑠𝑡 , 𝑢) = 
−1

4Pu
[(2 − 2𝑏 + Pu)2𝜆 + 2Puln[𝜋/𝜆] + 4Pu𝑙𝑛[√𝑃𝑢Φ[𝑥(𝑢)] − √𝑃𝑢Φ[𝑥(𝑙)]])] 

(20) 

where the cumulative normal term is slightly different: 𝑥(𝑗) = √
𝜆

2𝑃𝑢
[2𝑃𝑗 − 2 − 𝑃𝑢].  The game 

likelihood is, 

𝐿𝑜𝑔𝑙(1𝑠𝑡) = ∑ ∑ 𝑑𝑢,𝑖𝐿𝑜𝑔𝑙𝑖(1𝑠𝑡 , 𝑢)

𝑢𝑖

 (21) 

Again, 𝑑𝑢,𝑖  is a dummy variable which equals 1 only for the upper frame Pu the individual faces in that 

round. 
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c. Model Comparison 

{Insert Figure 4 here} 

Figure 4 displays the expected profit of each of the two previously discussed models, given 

their payoff ranges. The optimal model is designated by two solid lines, an optimal bid of $2.00 given 

the smallest available payoff range ($0.00 to $4.00), the model accounts for framing noise and leads 

to an expected profit of $2.50, as the payoff range increases the probability of receiving a random 

price of over $2.00 increases and therefore so does the expected profit. Increases of the payoff range 

will also increase the likelihood of subject bidding error and the more one deviates from the optimal 

bid, the lower his expected profit. 

The first price model is designated by the two dashed lines, the subject believes that he is in 

competition with the upper frame, and therefore he formulates his optimal bid = (2 + 𝑃𝑢)/2. The 

graphs display this behavior as the misconceived optimal bid increases as the payoff range expands. 

The two overlapped expected payoff models displayed in Figure 4 provide a possible explanation for 

the differences in bid behavior amongst subjects taking part in the experiment.  

VI. Experimental Results 

The task of creating a behavior model based on misconceptions, as well as testing that model 

against an optimal behavior model has already been completed in Cason & Plott (2014). The primary 

aim of this paper is to add to the literature by assessing whether the model fits are a function of the 

subjects’ role in the experiment.  
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a. Lambda Analysis 

From the earlier equations, I know that the 𝜆 parameter represents the sensitivity of bidding 

behavior to each model, 𝜆𝑜
 represents the samples sensitivity to the optimal model with noise, and 

𝜆𝑚
 represents to the sensitivity to the first price model. As lambda approaches infinity the model fits 

the bidding behavior perfectly with no errors, as lambda approaches zero, the subjects are 

completely insensitive to the model of choice and choose bids with equal probability, and as lambda 

approaches negative infinity the bidding behavior represents the inverse of the bidding pattern 

predicted by the model.  

{Insert Figure 5 here} 

Figure 5 displays a probability density function for both choice models, given a range of 

posted prices, and assuming a 𝜆 value of 3.09. In the optimal model, I see the bidding behavior 

condensed near the true value of the card $2.00, a higher lambda estimate would lead to a thinner 

and steeper curve, representing an increased probability of bids around $2.00, a lower lambda 

estimate would lead to a wide and flatter distribution of bids spread across the payoff range. I also 

observe that the probability of bidding optimally decreases as the upper bound of the payoff range 

increases, which is due to the framing noise included in the model. 

In the first price model, I see that the optimal bid under this model is directly related to the 

upper frame 𝑃𝑢. This is consistent with the maximization of the incorrect payoff expression, which 

yields �̃� = 1 + .5𝑃𝑢. So when 𝑃𝑢=4, the optimal bid is calculated as $3.00 and when the 𝑃𝑢=8, the 

optimal bid is calculated as $5.00 as depicted, the bidding probabilities based given payoff ranges 

appear in Figure 5. 

                                                           
9 Lambda is set at 3.0 for illustrative purposes only. 
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I begin my analysis with the examination of the payoff sensitivity parameters obtained from 

the maximum likelihood estimation. Table 7 reports estimates for the sensitivity to the optimal 

model, denoted as λo, well as estimates for the sensitivity to the first price model, λm for each of 

three sub-samples, broken down by the different data sources for both sellers and buyers. 

 

 

 

 

 

 

 

Table 7. Sensitivity Estimates of Optimal and First Price Misconception Models by Subject 
Type/Game and Data Source 

Subjects Rnd 𝑁 𝜆𝑜 𝑆𝐸𝑜   𝐿𝑜𝑔𝑙(𝑜) 𝜆𝑚 𝑆𝐸𝑚  𝐿𝑜𝑔𝑙(𝑚) 
𝐿𝑜𝑔𝑙(𝑚)

𝐿𝑜𝑔𝑙(𝑜)
 

    
UNO-ALL 

       

All 1 187 -0.370 ( 0.156 ) ** -329.5 0.957 ( 0.160 ) *** -306.5 93% 
 2 187 -0.306 ( 0.170 ) * -322.6 0.530 ( 0.129 ) *** -314.1 97% 
ShwMis 1 83 -0.826 ( 0.224 ) *** -139.5 1.117 ( 0.261 ) *** -131.9 95% 
 2 83 -0.922 ( 0.244 ) *** -134.8 0.888 ( 0.234 ) *** -131.5 98% 
NoOpt 1 169 -0.588 ( 0.159 ) *** -293.4 1.177 ( 0.189 ) *** -269.2 92% 
 2 170 -0.485 ( 0.171 ) *** -292.1 0.570 ( 0.138 ) *** -285.5 98% 

    
UNO-WTA 

       

All 1 97 -0.327 ( 0.229 )  -168.6 1.611 ( 0.307 ) *** -144.4 86% 
 2 97 -0.093 ( 0.235 )  -170.5 0.853 ( 0.211 ) *** -159.3 93% 
ShwMis 1 44 -0.951 ( 0.327 ) *** -70.9 1.570 ( 0.448 ) *** -63.9 90% 



 

40 
 

 2 44 -0.650 ( 0.319 ) * -74.2 1.611 ( 0.455 ) *** -64.7 87% 
NoOpt 1 87 -0.556 ( 0.233 ) ** -149.5 2.164 ( 0.407 ) *** -121.7 81% 
 2 84 -0.345 ( 0.236 )  -147.8 1.018 ( 0.247 ) *** -136.3 92% 

    
UNO-WTP 

       

All 1 90 -0.408 ( 0.214 ) * -160.9 0.551 ( 0.185 ) *** -157.2 98% 
 2 90 -0.569 ( 0.249 ) ** -151.2 0.264 ( 0.164 )  -152.3 101% 
ShwMis 1 39 -0.716 ( 0.309 ) ** -68.5 0.780 ( 0.318 ) ** -66.9 98% 
 2 39 -1.338 ( 0.390 ) *** -59.7 0.421 ( 0.272 )  -64.0 107% 
NoOpt 1 82 -0.617 ( 0.219 ) *** -143.9 0.665 ( 0.206 ) *** -141.0 98% 
 2 86 -0.650 ( 0.250 ) ** -143.9 0.263 ( 0.168 )  -145.7 101% 

    
PLOTT 

       

All 1 244 0.963 ( 0.210 ) *** -416.2 1.158 ( 0.156 ) *** -386.5 93% 
 2 244 1.109 ( 0.219 ) *** -414.3 0.581 ( 0.115 ) *** -415.5 100% 
ShwMis 1 110 0.425 ( 0.261 )  -190.8 2.985 ( 0.473 ) *** -141.5 74% 
 2 110 -0.009 ( 0.228 )  -192.7 1.742 ( 0.305 ) *** -161.5 84% 
NoOpt 1 203 0.531 ( 0.198 ) ** -352.1 1.795 ( 0.229 ) *** -296.8 84% 
 2 168 0.281 ( 0.198 )  -296.1 1.029 ( 0.175 ) *** -271.8 92% 

    
JOINT 

       

All 1 431 0.237 ( 0.122 ) * -759.6 1.066 ( 0.112 ) *** -693.4 91% 
 2 431 0.376 ( 0.131 ) *** -750.9 0.559 ( 0.086 ) *** -729.6 97% 
ShwMis 1 193 -0.209 ( 0.163 )  -337.3 1.840 ( 0.240 ) *** -280.2 83% 
 2 193 -0.400 ( 0.162 ) ** -331.2 1.290 ( 0.187 ) *** -295.6 89% 
NoOpt 1 372 -0.068 ( 0.121 )  -655.8 1.470 ( 0.147 ) *** -568.2 87% 
 2 338 -0.120 ( 0.127 )  -592.7 0.772 ( 0.109 ) *** -559.5 94% 

Table Notes: 𝜆𝑜 denotes sensitivity to optimal model. 𝜆𝑚 denotes sensitivity to first price model. 

Log Likelihood Ratios (
𝐿𝑜𝑔𝑙(𝑚)

𝐿𝑜𝑔𝑙(𝑜)
) less than 100 percent indicate the first price model provides a better fit 

for the data.  

Based off of the experimental design, there are two patterns that I look to observe in the 

data. The first is sub-sample to model fit correlation, the second is possible learning effects. There 

are 3 sub-samples involved in the overall estimation. Sub-sample 1 is the full sample of data from 

a given source, within that source, sub-sample 2 represents the subjects who did not bid optimally 

in either round and, sub-sample 3 is made up of the subjects who appeared to show a 

misconception, either through the feedback they provided on their game card or via their bid 

pattern.  
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As I move from sub-sample 1 to sub-sample I expect the sub-samples to become less 

sensitive to optimal model 𝜆𝑜, and more sensitive to the first price model 𝜆𝑚. The estimation done 

by Cason & Plott (2014) follows this pattern in the majority of their sub-samples (see Table 7, 

PLOTT). The second pattern is learning effects, which would be represented by an increase in 

optimal model sensitivity 𝜆𝑜 after one round, or a decrease in first price model sensitivity 𝜆𝑚 after 

1 round.  Cason & Plott’s data do not show an increase in optimal model of sensitivity, but do in 

fact show first price model sensitivity significantly decreasing in all 3 sub-samples, after round 1. 

This combination gives us mixed evidence as to whether or not repetition of the game lead to 

learning amongst subjects. 

1. Combined UNO Sample 

The initial analysis starts with the sample of subjects who took part in the experiments at the 

University of New Orleans (UNO), in this sample there were 97 sellers and 90 buyers for a full 

sample of 187 subjects.  

As I move from sub-sample 1 to sub-sample 3 (Table 6), in the UNO sample I expect subjects 

to begin to show more signs of possible confusion denoted by a decrease in 𝜆𝑜. The data loosely 

fit this behavior pattern, in round 1, the 𝜆𝑜 parameter decreases from -0.37 to -0.59 to -0.83, 

however, none of these changes in  𝜆𝑜 are significantly different. In round 2 I again show a 

significant decrease in 𝜆𝑜 only when I move from sub-sample 2 to sub-sample (-.49 to -0.92). 

Following this same pattern from sub-sample 1 to sub-sample 3, I would expect the parameter 

𝜆𝑚to increase as I move to sub-samples with less optimal behavior. In both round 1 and round 2, 

there is no significant difference in the three 𝜆𝑚  parameters from sub-sample to sub-sample.  

Several studies, including Plott & Zeiler (2005) have shown that optimal behavior in an 
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experiments utilizing the BDM mechanism can increase as subjects have more opportunities at 

the game. Since I expect subjects bid accuracy to increase with repeated trials I expect the 

parameter 𝜆𝑜
 to increase within sub-samples from round 1 to round 2. While the 𝜆𝑜  parameter 

increases after 1 round in all 3 sub-samples, none of the increases are of significant magnitude, 

and therefore there is no evidence of a learning effect when defined as an increase in optimal 

behavior after 1 opportunity. 

Another interpretation of a learning effect would be a decrease in confusion, sub-samples 

1 and 2 of the data do in fact show sharp declines in the sensitivity parameter to the first price 

model 𝜆𝑚. While it is interesting to note this decrease 𝜆𝑚, I must evaluate this trend in context, 

while the subjects appear to become less confused after 1 round, they do not become more 

optimal. This observations suggests that the UNO sample of data may be bidding under a model 

not discussed in this paper, or simply at random. When evaluating the results of evaluating the 

lambda estimation results for individual games, I see that this decrease in 𝜆𝑚 sensitivity is 

primarily driven by the WTA subjects, whose results showed significantly less confusion in both 

sub-sample 1 and sub-sample 2. 

2. Evaluation of Model Fit 

 The estimates presented in Table 7 also provide us with the opportunity to evaluate 

whether the optimal model or first price model provides more accurate estimations of the data. I 

do this by observing the ratio of log likelihoods, where a 𝑙𝑜𝑔𝑙(𝑜) represents the log likelihood of 

the 𝜆𝑜  estimation, while 𝑙𝑜𝑔𝑙(𝑚) provides the same for the estimation of 𝜆𝑚. The UNO-ALL panel 

provides log likelihood ratios that are all less than 100% indicating that in all of the estimations the 

first price model provided a more accurate estimation. This finding is consistent with the results 
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from Cason & Plott (2014) (see PLOTT panel), whose estimates were also more accurate using the 

first price model. The only estimation which didn’t follow this trend was the UNO-WTP estimations, 

where the bid behavior was extremely erratic. This result, combined with the fact that all of the 

UNO-WTP estimates for 𝜆𝑜  were negative suggests that buyer behavior may be driven by some 

confusion other than a first price auction misconception. 

3. Lambda Sensitivity Equivalence 

I have estimated data to suggest that, based on the ratio of log likelihoods, the first price 

model provides a more accurate estimation. The final test of this parameter is designed to assess 

whether the sensitivity estimates are significantly different between seller and buyer. Table 8 shows 

the results of a constrained estimation, wherein 𝜆𝑠, the seller’s model fit sensitivity, is equal to 𝜆𝑏, 

which is the model sensitivity parameter for the buyers. 
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Table 8.  Sensitivity Equivalence of buyers and sellers, 𝝀𝒔 = 𝝀𝒃 

Panel A. Optimal Model 

𝑅𝑛𝑑 𝑁 𝜆𝑝  𝜆𝑠  𝜆𝑏  𝑙𝑜𝑔𝑙𝑢 𝜆𝑝  𝜆𝑢  𝑙𝑜𝑔𝑙𝑐 𝑝𝑣𝑎𝑙 

      All         

1 431 0.963 *** -0.327  -0.408 * -745.59 0.963 *** -0.370 ** -745.62 0.796 
  ( 0.21 )  ( 0.229 )  ( 0.214 )   ( 0.21 )  ( 0.156 )    
2 431 1.109 *** -0.093  -0.569 ** -736.01 1.109 *** -0.306 * -736.98 0.164 
  ( 0.219 )  ( 0.235 )  ( 0.249 )   ( 0.219 )  ( 0.17 )    

      ShwMis         

1 193 0.425  -0.951 *** -0.716 ** -330.15 0.425  -0.826 *** -330.29 0.600 
  ( 0.261 )  ( 0.327 )  ( 0.309 )   ( 0.261 )  ( 0.224 )    
2 193 -0.009  -0.650 * -1.338 *** -326.49 -0.009  -0.922 *** -327.43 0.170 
  ( 0.228 )  ( 0.319 )  ( 0.39 )   ( 0.228 )  ( 0.244 )    

      NoOpt         

1 372 0.531 ** -0.556 ** -0.617 *** -645.49 0.531 ** -0.588 *** -645.51 0.847 
  ( 0.198 )  ( 0.233 )  ( 0.219 )   ( 0.198 )  ( 0.159 )    
2 338 0.281  -0.345  -0.650 ** -587.86 0.281  -0.485 *** -588.26 0.374 
  ( 0.198 )  ( 0.236 )  ( 0.25 )   ( 0.198 )  ( 0.171 )    

Panel B.  First Price Model 

𝑅𝑛𝑑 𝑁 𝜆𝑝  𝜆𝑠  𝜆𝑏  𝑙𝑜𝑔𝑙𝑢 𝜆𝑝  𝜆𝑢  𝑙𝑜𝑔𝑙𝑐  𝑝𝑣𝑎𝑙 

      All         

1 431 1.158 *** 1.611 *** 0.551 *** -688.11 1.158 *** 0.957 *** -693.00 0.002 
  ( 0.156 )  ( 0.307 )  ( 0.185 )   ( 0.156 )  ( 0.16 )    
2 431 0.581 *** 0.853 *** 0.264  -727.09 0.581 *** 0.530 *** -729.60 0.025 
  ( 0.115 )  ( 0.211 )  ( 0.164 )   ( 0.115 )  ( 0.129 )    

      ShwMis         

1 193 2.985 *** 1.570 *** 0.780 ** -272.25 2.985 *** 1.117 *** -273.34 0.139 
  ( 0.473 )  ( 0.448 )  ( 0.318 )   ( 0.473 )  ( 0.261 )    
2 193 1.742 *** 1.611 *** 0.421  -290.17 1.742 *** 0.888 *** -293.05 0.016 
  ( 0.305 )  ( 0.455 )  ( 0.272 )   ( 0.305 )  ( 0.234 )    

      NoOpt         

1 372 1.795 *** 2.164 *** 0.665 *** -559.53 1.795 *** 1.177 *** -566.04 0.000 
  ( 0.229 )  ( 0.407 )  ( 0.206 )   ( 0.229 )  ( 0.189 )    
2 338 1.029 *** 1.018 *** 0.263  -553.86 1.029 *** 0.570 *** -557.31 0.009 
  ( 0.175 )  ( 0.247 )  ( 0.168 )   ( 0.175 )  ( 0.138 )    

Table Notes: 𝜆 =  (1 − 𝑠𝑟𝑐)𝜆𝑝 + 𝑠𝑟𝑐 ∗ (𝜆𝑠(1 − 𝑔𝑎𝑚𝑒) + 𝜆𝑏 𝑔𝑎𝑚𝑒) 𝐻0: 𝜆𝑠 = 𝜆𝑏 . The null hypothesis is 

tested under a Chi Squared distribution with 1 degree of freedom. 𝜆𝑗, 𝑗 = {𝑝, 𝑠, 𝑏} denotes model sensitivity for 

University of Purdue subjects (p),UNO sellers (s), and UNO buyers (b). 𝜆𝑢 is model sensitivity for all UNO 

subjects. 

 When utilizing the optimal model to in estimating 𝜆 under these constraints, the p-value does 

not reject the null hypothesis that that the lambda parameters may be equal. This is dues to the 



 

45 
 

significant level of divergence from the optimal model prevalent in both games, and that the optimal 

model does a poor job of estimating these results for both games.  

 When testing this constraint under the first price model, the five of the six sub-sample to 

round combinations strongly reject the null hypothesis. In all cases, the 𝜆 estimate for the buyers 

was higher than that of the sellers, and in 5 of 6 cases it was significantly so. These estimation results 

fall in line with the idea that the first price model does a much more accurate job of predicting the 

behavior of the subjects involved in the experiment.  

4. Mixed Model Analysis 

The next step in the analysis is to utilize both behavior models in order to estimate the 

grand likelihood, which is constructed as a probability weighted average of each conditional 

likelihoods. Table 9 reports estimates for a pooled payoff sensitivity parameter λ as well as the 

probability that the first price misconception model best describes the data pattern, Θm. This 

estimation procedure assumes that all bidding behavior was driven by either optimal model or 

the first price auction misconception model. 

𝐿𝑜𝑔𝑙(𝜆, 𝛩𝑚, 𝑦𝑖) =  

 

∑ 𝐿𝑜𝑔𝑙[(1 −  𝛩𝑚)𝑙𝑖
𝑂𝑃𝑇 + 𝛩𝑚𝑙𝑖

1𝑠𝑡]

𝑖

 (19) 

I start with Panel A of Table 9, which utilizes the full sample of 187 UNO students who 

completed the experiment. Similarly to the analysis from Table 9, I expect to find a sub-sample to 

theta correlation, where the probability of misconception parameter is directly correlated with 

the designed probability of misconception in each sub-sample. I will also look for a learning effects, 

or a decrease in misconception after a round of the experiment familiarizes the subjects with the 

games’ rules. 
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Table 9. Mixed Model Analysis 

Panel A. University of New Orleans 

𝑅𝑛𝑑 𝑁 𝜆  𝑆𝐸𝜆  𝛩𝑚  𝑆𝐸𝛩𝑚
 𝛩1  𝑆𝐸𝛩1

  𝑙𝑜𝑔𝑙 

      All        

1 187 1.151 *** (0.354)  0.935 *** (0.090)     -306.26 
2 187 0.711 ** (0.711)  0.870 *** (0.165)         -313.91 

      NoOpt        

1 187 2.086 *** (0.390)     0.908  *** (0.038)  -292.40 
2 187 1.193 *** (0.355)     0.814 ***   (0.074)  -309.63 

      ShwMis        

1 187 1.219 *** (0.359)     0.215 *** (0.106)  -304.20 
2 187 0.926 ** (0.351)     0.450  ** (0.172)  -310.03 

Panel B.  Purdue University (from Cason &Plott, 2014) 

𝑅𝑛𝑑 𝑁 𝜆  𝑆𝐸𝜆  𝛩𝑚  𝑆𝐸𝛩𝑚
 𝛩1  𝑆𝐸𝛩1

  𝑙𝑜𝑔𝑙 

      All        

1 245 4.49  (0.839)  0.65  (0.046)     -932.4 
2 244 2.65  (0.824)  0.42  (0.059)         -962.5 

      NoOpt        

1 245 5.59  (0.735)     0.85   (0.033)  -884.9 
2 244 4.39  (0.948)     0.76    (0.052)  -913.9 

      ShwMis        

1 245 5.06  (0.787)     0.50  (0.078)  -913.1 
2 244 2.40  (0.699)     0.99   (0.096)  -927.8 

Table Notes: 𝜆 represents the pooled payoff sensitivity to mixed model. 𝛩  is the probability that subjects bid using the 

first price auction misconception model. 𝛩𝑚 =  𝛩0 + 𝛩1𝑑 . 𝛩1 denotes the coefficient on a dummy variable those subjects 

did not bid optimally (NoOpt) or separately showed signs of misconception (ShwMis). The equation for the dummy 

variable estimation is 𝛩𝑚 =  𝛩0 + 𝛩1𝑑. Panel B is taken directly from Cason & Plott (2014) Table 5. 

For the full sample of UNO subjects, the theta value of 0.93 shows the bidding behavior is 

significantly more likely to follow the first price auction model than the optimal model. Θm
 of .93 

indicates and 93% probability that subjects’ bids are driven by the first price misconception 

model and a 7% chance that their biding behavior is more heavily influenced by the optimal 

model. 

In this estimation procedure, Heading 2 and Heading 3 utilize the dummy variable 𝛩1 in 

order to test for changes 𝛩𝑚 when subjects did not bid optimally (heading 2, 𝑁𝑜𝑂𝑝𝑡) or showed a 
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possible misconception through their bidding pattern or card feedback (heading 3, 𝑆ℎ𝑤𝑀𝑖𝑠). 

Therefore, the misconception likelihood is captured by the equation: 

𝛩𝑚 =  𝛩0 + 𝛩1𝑑.        (21) 

Cason & Plott utilized the same methodology and observed an uptick an uptick in the 

probability of misconception for those in heading 2 and heading 3, with one exception. The data 

does now show the same pattern, the non-optimal dummy variable (𝑁𝑜𝑂𝑝𝑡) produces a 𝛩1  

parameter that is not significantly different from the 𝛩𝑚  estimated in heading 1, this is likely due 

to the very high 𝛩𝑚  parameter estimated in panel 1, which leaves little room to increase. The likely 

misconception dummy variable (𝑆ℎ𝑤𝑀𝑖𝑠) produces a 𝛩1 estimate which is significantly less than 

the 𝛩1 originally estimated. Along with earlier results, this suggests that those subjects who shows 

the most signs of confusion were likely bidding randomly, confused, or not paying attention to the 

rules stated on the card and during the experiment.  

When observing the Purdue data (Table 9, Panel B), I see that the 𝛩1 parameter in round 1, 

is also significantly less than their original 𝛩𝑚 estimates. This result indicates a misconception in 

that sub-sample of Purdue subjects other than a first price auction misconception. In round 2, 

however, that estimate significantly increases to 0.99, this indicates that the Purdue subjects who 

showed the most signs of confusion, originally bid under an undetermined pattern, but after 1 

round, those subjects behavior fell strongly in line with the first price misconception model. The 

data shows no such significant increase in 𝛩1 for those with likely misconceptions and provides 

evidence that the while the confused Purdue subjects appeared to learn the incorrect (first price) 

behavior model after one round, the confused UNO subjects did not adapt in the same fashion, 

and continued to bid using an undefined pattern or no pattern at all. When described as a 
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significant decrease in probability of misconception 𝛩𝑚  after round 1, the UNO subjects showed 

no signs of learning. 

5. Summary of Model Fit 

The mixed model analysis provides strong evidence in favor of the first price model, however, 

this analysis assumes that all behavior is driven by one of two patterns. The analysis of the theta 

parameters suggests that perhaps a significant proportion of the subjects in the UNO sample may 

have been bidding randomly.  

When comparing the lambda estimation results from the both the buyer and seller 

perspectives, I see that both the optimal and the first price auction misconception models fit better 

when the subject is the seller, this difference in model fit is significantly pronounced when utilizing 

the first price model. This is consistent with a pattern of anchoring and adjustment, where the seller 

anchors his valuation around the true value of the card, and then uses some methodology to adjust 

his/her bid based on the rest of the information available to him (Tversky & Kahneman, 1974). The 

lack of a clear reference point, inherit from the ownership of the object may lead to buyer bidding 

patterns which are scattered indiscriminately. Other theories which may help explain these divergent 

behavior patterns are discussed in the conclusion. 

VII. Tests of the Endowment Effect 

a. Univariate Analysis 

For the initial test of the endowment effect, I must first consider the differing value of the 

objects involved and convert the valuations to an equivalent scale. Consider the seller who over-

values his $2.00 card by $1.50, or places a round 1 bid of $3.50. Next consider the buyer who makes 
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an equivalent error, meaning he undervalues the $6.00 card by $1.50, or places a round 1 bid at 

$4.50. Conveniently, the bid equivalence is a function of the static $8.00 upper frame in the seller 

game. 

𝐵𝑖𝑑 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑦: 𝐵𝑖𝑑|𝑆𝑒𝑙𝑙𝑒𝑟(𝑊𝑇𝐴) =  $8.00 − 𝐵𝑖𝑑|𝐵𝑢𝑦𝑒𝑟(𝑊𝑇𝑃)    (22) 

In the previous example, I can see that $4.50 buyer bid is the equivalent valuation of the $3.50 

seller bid ($8.00 - $4.50 = $3.50). With this information, I can calculate the average valuation of the 

buyers and sellers. I know that for the full sample of UNO information, the average WTA amount 

over 194 bids by the sellers was $3.87 for their $2.00 card. For the buyers, I have a 187 bids with an 

average WTP amount of $4.38, using the bid conversion formula, I calculate a transformed average 

buyer bid amount of $3.62. 

This initial endowment effect test shows us that in terms of subject bid equivalency, the 

sellers valued their objects at a higher amount than did the buyers ($3.87 vs. $3.63), however, this is 

negligible difference which falls within the standard error. Therefore, when defined strictly by the 

average bids of sellers and buyers, there is no evidence of an endowment effect.  

This method of analysis assumes that the subjects’ bid is a completely accurate portrayal of 

their internal card valuation preferences. The earlier analysis shows an existing level of 

misconception amongst both sellers and buyers, such that the subjects’ valuations may not match 

their true preferences. Therefore, I require a more sophisticated measure in order to more accurately 

assess the subjects’ valuations.  
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b. Maximum Likelihood Estimation 

Maximum likelihood analysis allows us the ability to estimate the more accurately estimate 

the subjects’ bidding behavior in non-linear fashion. I run a pooled maximum likelihood estimation 

in order to elucidate the subject’s true card valuations for both the optimal and the first price auction 

misconception model.  

I start by estimating the parameter 𝛼, which estimates the card value for the optimally 

bidding subjects. I also utilize dummy variables to account for changes in game (𝛿𝑠  = WTA or 𝛿𝑏  = 

WTP) or source (𝛿𝑝 Purdue), the results are displayed in Table 10. 
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Table 10. Card Valuation 

Panel A. Optimal Model 

# 𝛼0  𝛿𝑠  𝛿𝑏  𝛿𝑝  𝜆𝑠  𝜆𝑏  𝜆𝑝  𝑙𝑜𝑔𝑙 

     NoOpt           

1 1.903 *** 4.488 *** 5.698 *** 3.582 *** 3.917 *** 0.791 ** 5.536 *** -588.44 
 ( 0.162 )  ( 0.203 )  ( 1.19 )  ( 0.083 )  ( 0.763 )  ( 0.384 )  ( 0.593 )   
2 1.815 *** 4.408 *** 6.612 ** 3.538 *** 1.855 *** 0.493  3.599 *** -650.99 
 ( 0.168 )  ( 0.354 )  ( 2.873 )  ( 0.118 )  ( 0.481 )  ( 0.397 )  ( 0.439 )   

     ShwMis           

1 3.096 *** 5.117 *** 7.387 *** 3.842 *** 2.569 *** 0.659  4.539 *** -627.63 
 ( 0.105 )  ( 0.441 )  ( 2.416 )  ( 0.132 )  ( 0.597 )  ( 0.399 )  ( 0.515 )   
2 2.403 *** 5.914 *** 20.608  3.874 *** 1.162 *** 0.172  3.442 *** -656.81 
 ( 0.128 )  ( 1.022 )  ( 37.533 )  ( 0.158 )  ( 0.425 )  ( 0.372 )  ( 0.421 )   

Panel B. First Price Model 

# 𝛼0  𝛿𝑠  𝛿𝑏  𝛿𝑝  𝜆𝑠  𝜆𝑏  𝜆𝑝  𝑙𝑜𝑔𝑙 

     NoOpt           

1 -2.078 *** 2.975 *** 4.408 ** 1.361 *** 1.973 *** 0.481 * 2.547 *** -620.20 
 ( 0.344 )  ( 0.4 )  ( 2.046 )  ( 0.162 )  ( 0.437 )  ( 0.249 )  ( 0.283 )   
2 -2.009 *** 2.674 *** -3.884  1.125 *** 0.974 *** -0.378  1.896 *** -661.79 
 ( 0.325 )  ( 0.697 )  ( 2.882 )  ( 0.214 )  ( 0.283 )  ( 0.231 )  ( 0.232 )   

     ShwMis           

1 0.375 * 4.231 *** 7.768  1.864 *** 1.362 *** 0.363  2.064 *** -655.62 
 ( 0.208 )  ( 0.861 )  ( 4.862 )  ( 0.263 )  ( 0.352 )  ( 0.248 )  ( 0.248 )   
2 -1.028 *** 5.116 *** -5.773 * 1.769 *** 0.704 ** -0.440 ** 1.914 *** -660.09 
 ( 0.231 )  ( 1.752 )  ( 3.433 )  ( 0.275 )  ( 0.271 )  ( 0.206 )  ( 0.231 )   

Table Notes: α represents card value for optimal students, 𝛿𝑠 card value for sellers, 𝛿𝑏  card value for buyers and 𝛿𝑏𝑝 card 

value Purdue subjects. 𝜆0 represents optimal subject sensitivity, . 𝜆1 seller sensitivity and 𝜆2 buyer sensitivity. 

Under the optimal model, I estimate the initial α parameter values for the non-optimal sub-

sample and observe that the subjects’ card valuations are not different from $2.00 in either round, 

the sub-sample of subjects who show misconceptions produce a card valuation of $3.10 in the first 

round 1, α drops to $2.40 in round 2. Under the first price model, the α parameter produces 

estimates that are either negative or less than $2.00, this is due to the first price model correcting 

for misconceptions and noise that are not existent in the subset of optimal bidders. 

I next analyze the card valuation parameters for the two games, 𝛿𝑠  represents the card 

valuation for those who took part as sellers (WTA) and 𝛿𝑏  represents the card valuation for those 
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subjects who took part as buyers (WTP). While estimating the card values utilizing the optimal model, 

I see that the 𝛿 parameter values are consistently higher for the WTP game (𝛿𝑏), but due large 

standard errors, I see no significant difference in the card values between the two games. While 

estimating the card values using the first price model, I see no significant difference in card values in 

round 1, in the second round I see higher valuations for the WTA parameter (𝛿𝑠) due to several 

negative card valuations in the WTP sample.  

This estimation procedure takes into account the level of misconception evident in the 

subjects’ bidding behavior. Therefore, when combined with the previous analysis, I can ascertain that 

these valuations are due to the level of error (or non-model conforming bids) evident in the WTP 

game relative to the WTA game. When looking at the complete set of card value estimations for the 

two games, I see no significant evidence of the endowment effect when defined as the gap between 

WTA and WTP valuations. 

c. Summary 

The analysis has consistently shown us that the bidding behavior of the subjects more closely 

followed the first price model than it did the optimal model. Furthermore, the first price model 

provides significantly better estimates as for sellers than it does for buyers. I also see consistently 

larger estimates when utilizing dummy variables to estimate the card valuations   from the WTP 

game. The presence of excess noisy behavior in the WTP game leads us to conclude that the games 

are not symmetrical in practice, although they were in design. This leads us to the question of why 

these games performed differently in practice. The only relevant differences between the two games 

are is the role of the subject involved, and the process by which the subjects calculate their payoff. 
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So then, why would seller’s behavior appear follow a specific models, but buyer’s behavior appear 

to be random?  

One explanation is the economic theory of rational ignorance which occurs when an 

individual views marginal cost of acquiring information (or learning rules in this case) as higher than 

the potential marginal benefit of that knowledge. This theory is widely cited, and is often listed as 

the primary cause for low voter turnout amongst certain groups of people or in certain geographic 

locations (Arnold, 2016 and Martinelli, 2007).  

While rational ignorance is a known theory, it has not been explicitly linked to the endowment 

effect in published works. One theory is that while the games are designed symmetrically, the buyers 

start the game owning nothing while the sellers are endowed with a $2.00 card. This lack of 

ownership by the buyers leads to a pattern of rational ignorance, as they don’t believe the time it 

will take to pay attention is worth the expected payoff. Those subjects who begin the game endowed 

with a card, believe they have more incentive acquire information (in this case, read and comprehend 

the instructions on the card) and therefore their bidding behavior more closely falls in line with both 

the optimal model, and the first price model.  

Another explanation that has recently been presented is the concept of rational inattention. 

Matejka (2014) models a rational inattention approach in discrete choice analysis, he finds that that 

the decision maker’s optimal strategy results in choosing probabilistically in line with a generalized 

multinomial logit model, which depends both on the actions’ true payoffs as well as on prior belief.  

Sims (2015) defines states that rational inattention models introduce the idea that people’s abilities 

to translate external da into action are constrained by their capacity to process information. While 

the expected payoffs for both games are the same, the buyers are tasked with one additional step in 
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calculating their payoff, this combined with the subjects prior beliefs, leads to rational inattention 

on the buyer side which causes their noisy behavior. Whether this rational inattention is a primary 

cause for results that indicate an endowment effect is left for future work. 

VIII. Conclusion  

Decades of research has been done in an effort to more completely understand the reasons 

for the possible existence, as well as the magnitude of the endowment effect. While the concept is 

understandable on a psychological level, scholars in finance and economics have looked to gain a 

greater understanding of why this behavior exists and how it effects economic policy decisions, 

investor portfolio behavior, the housing market, as well as a myriad of other applications. The work 

of Plott and Cason (2014) provided us with the ability to evaluate such behavior using non-linear 

estimation, and introduced the variable of subject comprehension into these discussions. 

The results herein may further the conversation on the possible driving forces behind the 

endowment effect, namely the effect of rational inattention. Marzilli (2014) recently questioned the 

relationship between loss aversion and attention.  By utilizing a sophisticated framework while 

evaluating subject behavior on both sides of the transaction, I was able to make intriguing inferences 

on how a subject’s transactional role affects his bidding behavior. Evaluating the endowment effect 

under the lens of rational inattention may lead to increased understanding of how to evaluate an 

individual’s financial decision making, how to shape economic policy, and further supplement the 

conversation on one of economics longest running quandaries. 
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Figure 1A. Seller - WTA Game Card Example 

FRONT OF CARD 
This ticket is worth $2.00 to you. 
 
You can sell it. 
 
Name your offer price.  
 
_________________________. 
 
Located under the tape on the other side of this 
card is a posted price. 
 
The posted price was drawn randomly between: 
 
[$ ____0.00____ and $ ____4.00_____ ] 
 
If your offer price is below the posted price on 
the back of the card then you sell your ticket at 
the posted price. 
 
If your offer price is above the posted price on 
the back of the card then you do not sell your 
ticket but you do collect the $2.00 value of the 
ticket. 
 
You can view the posted price after you have 
named your price. 

BACK OF CARD 
Posted price is under the tape. To be viewed only 
after you have named your offer price on the 
other side. 
 

$  1.55 
 
 
 
Circle the appropriate amount and print your 
name so we can pay you. 
 
My offer price is below the posted price. 
       Pay me the posted price of 
$_______________. 
 
My offer price is above the posted price. 
      Pay me $ 2.00. 
 
 
Name 
_____________________________________ 

 

Card notes: Each subject takes part in the game twice. The lower bound of payoff frame is constant at 

$0.00, lower frame takes the value 𝑃𝑙 = {4,5,6,7,8}, the randomized payoff price is uniformly distributed 

about the payoff range. Price on back of card is unknown to subject until they declare their offer price. 

Possible misconceptions occur if the subject circles the incorrect box, or if the subject’s offer price is 

below the randomly generated price in both rounds.  

  



63 
 

Figure 1B. Buyer - WTP Game Card Example 

FRONT OF CARD 
This ticket is worth $6.00 to the one who  
purchases it. 
 
You can buy it. 
 
Name your bid price.  
 
_________________________. 
 
Located under the tape on the other side of this card 
is a posted price. 
 
The posted price was drawn randomly between: 
 
[$ ____4.00____ and $ ___8.00_____ ] 
 
If the price you bid is above the posted price on the 
back of the card then you buy this ticket at the 
posted price, you receive $2.00 in addition to any 
gain/loss on the purchase. 
 
If the price you bid is below the posted price on the 
back of the card then you do not buy your ticket but 
you do collect $2.00. 
 
You can view the posted price after you have named 
your price. 
 

BACK OF CARD 
Posted price is under the tape. To be viewed only after 
you have named your bid price on the other side. 
 
 

$ 5.20  
 
 
 

Circle the appropriate amount and print your name so 
we can pay you. 
 
My bid price is above the posted price. 

Pay me $2.00 plus the value of this card minus the 
posted price of $_______________. 

 
 
 
My bid price is below the posted price. 
      Pay me $ 2.00. 
 
 
Name _____________________________________ 
 

Card notes: Each subject takes part in the game twice. The upper bound of payoff frame is constant at 

$8.00, lower frame takes the value 𝑃𝑙 = {0,1,2,3,4}, the randomized payoff price is uniformly distributed 

about the payoff range. Price on back of card is unknown to subject until they declare their offer price. 

Possible misconceptions occur if the subject circles the incorrect box, or if the subject’s offer price is 

below the randomly generated price in both rounds.  
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Figure 2A. Student Offer (WTA) All Rounds 

 
 

Figure 2B. Student Bid (WTP) All Rounds 

 
Notes: Figures represents histograms of offers by game round within 50 cents on a total of 374 bids on 

the 97 WTA subjects and the 90 WTP subjects who completed both game rounds. 
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Figure 3A.  Offer Ratios of Subjects Not Exposed to Round 1 Error- Both Games

 

Figure 3B.  Offer Ratios of Subjects Exposed to Round 1 Error- Both Games 

 

Notes: Offer ratio is calculated as (𝑏 − 𝑉𝑐)/(𝑃
∗ − 𝑉𝑐), a quotient of 0 represents the optimum.  
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Figure 4. Expected Profit Given Optimal and Misconception Models w/ Range of Posted Prices [4,8] 

 

Figure Notes: Expected profit given optimal model is defined by, 𝐸[�̃�|𝑏𝑖(𝑜𝑝𝑡)] =
1

𝑃𝑢
[2𝑏𝑖 +

(𝑃𝑢
2−𝑏𝑖

2)

2
]. 

Expected profit given misconception model is defined by, 𝐸[�̃�|𝑏𝑖(1
𝑠𝑡)] =

1

𝑃𝑢
[2𝑏𝑖 + 𝑏𝑖(𝑃𝑢 − 𝑏𝑖)]. 
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Figure 5. P[Offer=b] 𝝀 = 𝟑. 𝟎, Optimal and Misconception Choice Models w/ Range of Posted Prices  

 

Figure Notes: The probability of a subject’s offer is defined by 𝑃𝑟𝑜𝑏(𝑜𝑓𝑓𝑒𝑟 = 𝑏𝑗) =
𝑒
𝜆𝐸[𝜋|𝑏𝑗]

∑ 𝑒^𝜆𝐸[𝜋|𝑏𝑘}𝑛
𝑘=1
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Appendix A-1. Seller (WTA) Experiment Detail 

1. Today I’ll be conducting an experiment on Financial Decision Making. This experiment relies on a 
controlled environment with no outside feedback, each of you should act as if you are in 
isolation as your individual interpretation of the game is extremely important, therefore I ask 
that you not talk to your classmates. 

2. After I have completed reading the instructions for the second time, please do not ask me any 
questions. (This is so that one subject’s question doesn’t affect another’s strategy.) 

3. At this point is where I read the instructions to the game. These instructions are printed on the 
subjects’ cards, but I will first read the instructions to them, in order for them to have some 
semblance of the type of experiment I am conducting [See Game Cards below Tables A-1 and A-
2]. 

4. In this game, you will be paid the card value ($2.00) in addition to any gain or loss you achieve 
during the transaction. That is, if you are able to sell the $2.00 card for $5.00, you will be paid 
$2.00 plus the $3.00 of profit for a total payoff of $5.00, if no transaction occurs, you will still 
receive the $2.00 card value. It’s very important to state the Randomized Sales Price represents 
the price I’m willing to purchase your card for,, and has an already been determined by a 
Random Draw from a Uniform Distribution, so basically, the Random Price on the back of the 
card, is equally likely to be any number between the Upper and Lower Bounds of the Payoff 
Range you see on the Front Side of the Card. 

5. At this point, the subjects come to the front of the classroom and select any individual envelope 

6. After subjects have been seated, they are asked to take out the White (Round 1) Card. 

7. Next, I re-read the instructions verbatim from the front of the card. 

8. Please name your offer price, which represents the amount you are Willing-To-Accept for your 
card, which has a value of 2.00.[] 

9. Please turn the card over and remove the tab. The price underneath the tab represents the 
amount that I am Willing-To-Pay to purchase your card.  

10. Based on your offer price (your WTA), and my Sales Price (WTP), please circle the appropriate 
option. (Transaction or No Transaction, Payoff Calculation) 

11. Make sure you have written your name in the appropriate space. 

12. I collect all of the Round 1 Cards. 

13. Please reach into your envelope, and remove the Green (Round 2 Card) 

14. Repeat Steps 6 through 11. 

15. Data Collection & Analysis. 

16. Results will be tabulated, and subjects (during their next class period) will receive a voucher for 
the amount they earned. 

17. Subjects will need to present their voucher and their Student ID Card in order to redeem their 
Experiment payments. A detailed log consisting of each subject’s name, ID#, Class, and Earnings 
will be kept. 
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Appendix A-2. Buyer (WTP) Experiment Detail 

1. Today I’ll be conducting an experiment on Financial Decision Making. This experiment relies on a 
controlled environment with no outside feedback, each of you should act as if you are in 
isolation as your individual interpretation of the game is extremely important, therefore I ask 
that you not talk to your classmates. 

2. After I have completed reading the instructions for the second time, please do not ask me any 
questions. (This is so that one subject’s question doesn’t affect another’s strategy.) 

3. At this point is where I read the instructions to the game. These instructions are printed on the 
subjects’ cards, but I will first read the instructions to them, in order for them to have some 
semblance of the type of experiment I am conducting [See Game Cards below Tables A-1 and A-
2]. 

4. In this game, you will be paid $2.00 in addition to any gain or loss you achieve during the 
transaction. That is, if you are able to purchase the $6.00 card for $5.00, you will be paid $2.00 
plus the $1.00 of profit for a total payoff of $3.00. It’s very important to state the Randomized 
Sales Price represents the price I’m willing to sell the card for, and has an already been 
determined by a Random Draw from a Uniform Distribution, so basically, the Random Price on 
the back of the card, is equally likely to be any number between the Upper and Lower Bounds of 
the Payoff Range you see on the Front Side of the Card. 

5. At this point, the subjects come to the front of the classroom and select any individual envelope 

6. After subjects have been seated, they are asked to take out the Yellow (Round 1) Card. 

7. Next, I re-read the instructions verbatim from the front of the card. 

8. Please name your offer price, which represents the amount you are willing to pay for this $6.00 
Card.[] 

9. Please turn the card over and remove the tab. The price underneath the tab represents the 
amount that I am Willing-To-Accept or the amount that I will sell the card for.  

10. Based on your offer price (your WTP), and my Sales Price (WTA), please circle the appropriate 
option. (Transaction or No Transaction, Payoff Calculation) 

11. Make sure you have written your name in the appropriate space. 

12. I collect all of the Round 1 Cards. 

13. Please reach into your envelope, and remove the Green (Round 2 Card) 

14. Repeat Steps 6 through 11. 

15. Data Collection & Analysis. 

16. Results will be tabulated, and subjects (during their next class period) will receive a voucher for 
the amount they earned. 

17. Subjects will need to present their voucher and their Student ID Card in order to redeem their 
Experiment payments. A detailed log consisting of each subject’s name, ID#, Class, and Earnings 
will be kept. 
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