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Abstract

We consider the distributed detection of an emitter using multiple sensors deployed at deter-

ministic locations. The signal from the emitter follows a signal attenuation model dependent

on the distance between the sensor and the emitter. The sensors transmit their decisions to

the fusion center through a parallel access Binary Symmetric Channel (BSC) with a cross-over

probability. We seek to optimize the detection performance under a prescribed false alarm at

the sensor level and at the system level. We consider the triangular topology structure and using

the least favorable emitter range study the impact of the BSC on the system level detection

fusion rules. The MAJORITY fusion rule is found to be optimal under certain conditions.

vii



Chapter 1

Introduction

With the confluence of revolutionized internet, information and communications technology

coupled with advances in electronics engineering, wireless sensor networks have come a long

way from traditional sensor-actuator networks with wired communication. The area of detection

and decision making with networks of sensors has been researched for over three decades and

has well established results with regards to a broad spectrum of applications, both civilian and

military. To name a few, sensor networks are useful in detecting topological events such as

forest fires, floods and earthquakes. Also, they are applicable in industrial automation, military

surveillance, national security and emergency health care. Wireless sensors have small size, low

power capacity, limited communication capabilities and processing power. They may measure

distance, speed, humidity, temperature and various other parameters.

With respect to the data available for processing, wireless sensor networks are classified as

centralized and decentralized detection networks. In centralized networks all the information

measured by the sensors are availble for processing at the sink node or central processor. With

increased communication and bandwidth requirements distributed decision making has replaced

centralized detection in a number of areas. In distributed sensor networks the sensors deployed to

monitor a surveillance area are capable of processing the observed data and generating decisions

which are then communicated to the fusion center for processing and eventually taking the global

decision. The information from sensors can be sent through parallel access channels (PAC) or

a multiple access channel (MAC). In a decentralized setting, various interrelated issues have to

be dealt with by the system designer.
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They include optimal processing of the sensor measurements, optimal mixing of the sensor

decisions at the fusion center, communication channel limitations on efficient communication

of the local sensor level decisions and the sensor deployment strategies to obtain maximum

coverage. A lot of research has been conducted assuming conditional independence of sensors

observations. While conditional independence aids in achieving optimal solutions for both the

local sensor level as well as the system level fusion rules, in practical scenarios this assumption

does not hold true. In detection of a low level point radiation source such as a radioactive emit-

ter the sensor measurements are conditionally dependent. The sensor observations are typically

dependent on the distance or range between the sensors and the emitter. This results in a com-

posite hypothesis testing problem. One of the ways to deal with it is to consider least favorable

locations of the emitter within the area of monitoring [1]. The other methods for composite de-

tection include the Generalized Likelihood Ratio Test (GLRT). The GLRT, because of its ease

of use finds widespread implementations, however optimality is hard to establish. On the other

hand, Bayesian approach is a good replacement but is optimal only when the prior probabilities

and the prior probability density functions of the system parameters are true. Other approaches

to tackle this problem include estimating the range between the sensors and the emitter (target)

under the assumption that the emitter is present with probability 1. In this case, the detection

performance critically depends on the estimation of the emitter location which might not be

feasible under low signal to noise ratio.

Furthermore, the communication from the sensors to the fusion center can be corrupted by

channel imperfections. Significant portion of research has been devoted towards distributed de-

tection considering Rayleigh fading, Rician fading and Binary Symmetric or Erasure Channels.

In addition, the channel aware methods have been explored with sub-optimal fusion strategies

at the local sensors [2]. One of the possible channel imperfection is a Binary Symmetric Channel

in which the transmitted bit gets flipped with a probability that is referred to as the channel

cross-over probability. In some applications not all the links connecting the sensors to the fusion

center are binary symmetric for which selective exclusion of sensor nodes help achieve close to

desired performance. Detection performance limitations posed by channel imperfection is an

important communication aspect that cannot be ignored in sensor network design.
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Chapter 2

Preliminaries and Motivation

2.1 Research Background

2.1.1 Decision Fusion in a Wireless Sensor Network

A distributed wireless sensor network is a collection of intelligent sensors capable of obtaining

observations from the environment, processing relevant information and taking decisions either

by sending them to a fusion center or in collaboration [3]. The observations have statistical dis-

tribution based on the phenomenon that could be described by M-ary hypotheses. The problem

of single stationary emitter detection in a region of interest is a binary classification problem.

The observations received at the sensors could be assumed to be conditionally independent. One

of the advantages of this assumption is the formulation of the sensor decision rules as threshold

type tests based solely on the likelihood ratio of the senor observations. However, in practical

scenarios the sensor observations are correlated. This arises due to a random signal in noise or

if the noise in the observations are correlated when detecting a deterministic signal.

A wireless sensor network could centralized or decentralized. In a centralized detection system

the individual sensors observe a global phenomenon characterized by hypotheses H0 and H1 and

send the received measurements to the processing center that processes the data and reaches

a global decision. The biggest advantage of the centralized system over the distributed system

is that the central processing center has complete access to the measurements received by the

sensors. In other words, the information profile at the processing center is more complete. Cen-

tralized detection network is also referred to as Measurement Fusion or Data Fusion for emitter

detection. On the other hand, in decentralized or distributed setting each node has intelligence

to process the measurements based on optimal sensor level rules and take local decisions.
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The local decisions are sent to the fusion center where the information from the sensors are

processed based on an optimal fusion rule and a global decision is taken thereafter. The central-

ized system is more restrictive and can be considered inadvisable in many practical scenarios. In

those cases where it is required to completely cover the region of interest and not all the sensor

decision regions overlap, the signal is not received by all the sensors. As a result, the sensor

measurements fail to transmit accurate messages to the processing center. In such cases, it is

required that the local sensors process the observations received and take decisions based on

local decision rules. Some of the advantages include reduced bandwidth requirement, reduced

cost and increased reliability. Unlike the central processing center, the fusion center has only

partial information. This results in a degradation of the system level performance. The perfor-

mance loss can be reduced by implementing optimal tests at the sensors. The challenges faced

in designing a distributed detection system are sensor deployment(choice of topology) ability

to readjust in case of sensor/link failures, the communication channel imperfection between

sensors and the fusion center.

2.1.2 Conditional Independence of Sensor Observations

The observations at the sensors are said to be conditionally independent when the joint density of

the observations given the hypothesis can be expressed as the product of the marginal densities.

If p (xij | Hl), for i = 1, . . . , N , j = 1, . . . ,M and l = 0, 1 are the marginal densities of the

observations with respect to hypothesis H1 or H0 then conditional assumption leads to the

following formulation for the joint density:

p (xi1, . . . , xiM | Hl) = p
(
xi

M | Hl

)
=

M∏
j=1

p (xij | Hl) (2.1)

where i = 1, . . . , N are the number of sensors, j = 1, . . . ,M and l = 0, 1 are the binary

hypothesis index values. Because of the conditional independence assumption the decision rules

at the sensors and the fusion center are threshold rules based on appropriate likelihood ratios

under the Neyman-Pearson (NP) criterion. With the conditional independence assumption the

test statistic T (X) for each sensor is a likelihood ratio test (LRT). For i = 1, . . . , N ,

T
(
xMi
)

=
P
(
xMi | H1

)
P
(
xMi | H0

) =

M∏
j=1

P (xij | H1)

P (xij | H0)
(2.2)
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2.1.3 Parallel Configuration of Sensors

It is assumed that there is no mutual communication between the sensors and there is no feed-

back from the fusion center to the sensors. The sensors {si}Ni=1 employ decision rules {δi}Ni=1

and send the decision bits {Ii}Ni=1 to the fusion center. Based on the received information the

fusion center employs a decision rule δF that favors either H1 or H0. In the serial configuration

the (i− 1)th sensor sends its decision to the ith sensor that generates its own decision based on

the observation it receives from the surrounding and the decision received from the preceding

sensor. Only the first sensor in the network uses its own observations to generate its own local

decision. Usually the last sensor in the network has the responsibility of classifying the observa-

tions corresponding to the two possible hypotheses(for binary hypothesis problem). Unlike the

serial configuration, in the parallel configuration the sensors transmit the decisions at the same

time to the fusion center. The transmitted decision bits {I1, . . . , IN} are mixed at the fusion

center based on an optimal strategy that satisfies the false alarm constraint and maximizes the

detection probability (Neyman-Pearson criterion)

Figure 2.1: Parallel Configuration of sensors with a Fusion Center.

In addition, the parallel configuration of the sensor network can be parallel access or multiple

access. In parallel access communication each sensor has its own communication channel with

the fusion center. The sensors send the decision bits at the same time but through dedicated

channels. As against this, in multiple access communication all sensors transmit the decision

bits through a single channel linking to the fusion center.
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2.1.4 Neyman-Pearson Lemma

We assume that the observations at the individual sensors either correspond to the hypothesis

H1 or H0. The Neyman-Pearson formulation can be stated as finding optimum local ({δi}Ni=1)

and global (δF ) decision rules that maximize the global probability of detection PFD or minimize

the global probability of miss PFM subject to a prescribed bound on the global probability of

false alarm PFFA. Consider the likelihood ratio test

T
(
xMi
)

=
p(xMi | H1)

p(xMi | H0)

H1

≷
H0

τi

where τi is chosen so that P
(
T
(
xMi
)
> τi | H0

)
= αi. αi is a fixed false alarm value for si. The

Likelihood Ratio Test is uniformly most powerful with the probability of false alarm less than

or equal to αi. In other words, it gives the maximum detection probability among all possible

tests with false alarm less than or equal to αi.

There are variations of the NP formulation that include optimizing the fusion rule for a given

set of local decision rules or optimizing the local decision rules for a fixed fusion rule. Also, the

solution to the problem depends on whether the sensor observations are conditionally indepen-

dent or conditionally dependent.

One of the limitations of the Neyman-Pearson Test is that it is not uniformly most powerful

(UMP) for composite hypothesis testing. A composite hypothesis is a hypothesis that is not

Simple. And a Simple hypothesis is one that uniquely specifies the distribution of the popula-

tion from which the observations (samples) are taken. If the alternative hypothesis depends on

a quantity that itself is unknown or varying then a UMP test cannot be established using the

Neyman-Pearson lemma. However, there are methods that can be implemented to convert the

composite hypothesis into a simple hypothesis.

2.1.5 Sensor Deployment in a Region of Interest

The placement or deployment of the sensor nodes in the area of surveillance is a major con-

tributing factor determining the coverage, connectivity and the lifetime of the wireless sensor

network (WSN). In many situations the sensors have to be strategically placed because the

sensors are not capable of distant monitoring due to limited energy capacities.
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Because of limited sensing range the sensors have to be placed at a suitable distance from the

probable location of the target. The deployment of the sensors could be random or deterministic

depending on the accessibility of the region and the application. Although random deployment

finds widespread use in the theoretical analysis of coverage, connectivity and evaluation of

various algorithms, it is comparatively more expensive than deterministic deployment. Also

existing research corroborates that the node density required in placing the sensors strategically

at fixed locations is lower than deploying them randomly using aerial vehicle.

Having said that, its important to consider such applications where the region of interest or the

surveillance area under consideration is inaccessible due to harsh climate, rough terrain or high

adversarial monitoring.

The optimization criteria and the role of the individual nodes in the network influence the

deployment strategies. Whenever the application requires massive number of sensors in potential

target areas and the cost of the sensors deployed are of lesser significance, non-deterministic

strategies are more practical for use. However, for small scale coverage and monitoring the

deterministic strategies outperform the non-deterministic random counterparts.

Figure 2.2 depicts different sensor deployment strategies. Possible classification are square,

triangular, hexagonal or random coverage.

Figure 2.2: Various Sensor Deployment Strategies
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2.1.6 Communication between the Sensors and the Fusion Center

In distributed detection systems the optimal information processing at the local sensors is of

prime importance in order to optimize the system level performance. However, one is confronted

with the transmission channel constraints while communicating the decision to the fusion cen-

ter. The conventional approach to distributed detection ignores the unreliable nature of the

transmission channels and hence considerable focus is on the first source of uncertainty, i.e. the

sensor measurements. However, in practical settings the errors induced in communication due

to the transmission channel imperfection cannot be ignored. As such, a prevalent approach

to accommodate the channel imperfection involves two-stage solution: First, a communication

block at the fusion center recovers the transmitted bits from the sensors. Second, a signal pro-

cessing block combines the transmitted bits (decisions) according to a fusion rule to take the

final decision.

Figure 2.3: Parallel Configuration Distributed Detection System with Non-Ideal Channel.

The imperfection in the transmission channel between the sensors and the fusion center could

be classified as: Shadowing, Fading, Interference between the observation and transmission

channel, Binary Erasure and Binary Symmetric Channel.

Fading channels could be further categorized as Rayleigh fading or Rician fading, depending on

the distribution of the amplitude gain of the signal transmitted. Rayleigh fading is characterized

by the absence of a line of sight signal and is a special case of the more general concept of Rician

fading in which a line of sight is much stronger than others.

A binary erasure channel is one which a transmitted bit can get scrambled with a certain

probability so that the fusion center has no idea what the transmitted bit was. On the other

hand, in a Binary Symmetric Channel a bit transmitted has a flipping probability with which

it flips into a 0 or 1.

8



2.2 Literature Review

Significant amount of research has been dedicated towards the conventional distributed detec-

tion (decision fusion) under the conditional independence assumption [4], [5], [6], [7], [8]. In

practical settings the sensor measurements are correlated to one another because of correlated

measurement noise. Also, in order achieve satisfactory coverage the sensor deployment in a re-

gion of interest may be spatially dense. As a result, multiple sensors record information about

a single event which in turn results in the correlation of observations. The degree of correlation

increases and the inter-node separation between the sensors decreases. Correlated observations

require different strategies for distributed detection of a target [9], [10], [11], [12]. With the sen-

sor observations correlated, finding optimal local sensor rule and the system fusion rule becomes

a sophisticated problem even for detecting a mean shift under dependent Gaussian noise [9].

Unlike centralized detection where the sensors communicate data to a central processing unit

[13], in distributed detection the sensor measurements need to be mapped to decisions according

to sensor decision rules. The decision bits are transmitted to a fusion center that takes the final

decision based on an optimal fusion rule. The optimization of sensor level rules can be done

by maximizing the detection performance under a prescribed false alarm constraint which is

known as the Neyman-Pearson criterion [14], [15], [16]. Also, optimal rules at the sensor ad

the system level can be found by minimizing a Risk associated with error in decision making

(Bayesian criterion) [17]. In [18] the authors talk about randomized mixing of the sensor per-

formance models at the fusion center using Dynamic Programming under the assumption that

the fusion center has full knowledge of the performance of the individual sensors. Furthermore,

with the assumption of similar performance model of the individual sensors the problem can

be simplified. [19] talks about implementing dynamic sensor thresholds to achieve improved

performance. The intuition behind employing different thresholds is that the distance between

the sensors and the emitter is not known which results in unequal signal -to-noise ratios (SNRs)

for different sensors.

The requirement of improved performance calls upon more than satisfactory coverage of the

area of surveillance. This in turn depends on the deployment of the sensors. The sensors can be

deployed at deterministic locations or can be randomly deployed from the sky using an aerial

vehicle or robot [20].

9



Random deployment is most suitable for areas that are difficult to access on account of

adverse climate, hostile regions etc.. However, it has been shown in a number of works that the

deterministic deployment leads to achievement of better coverage than mere random deploy-

ment. In [21] authors have shown results that override a previous conclusion that deploying

sensors at fixed locations in a grid fashion requires higher node density than random node dis-

tribution. In the study the authors explore the problem of determining the critical node density

required to maintain k-coverage in a square region of interest. The two random strategies (Pois-

son Point Process and Uniform Distribution) have identical density requirement for k-coverage

and the deterministic grid deployment requires lesser node density for the same problem. [22]

confirms the fact that the choice of sensor placement strategy has a big role to play in the net-

work performance. [23] states that a factor of log (n) additional sensors are required in random

deployment as compared to optimal deterministic deployment if the number of sensors required

in random deployment is n. The authors explore the effects of placement errors and random

failures on the density needed to achieve full coverage when sensors are deployed randomly

versus deterministically.

A separate but pertinent issue in wireless sensor networks is the communication of data from

the sensors to the fusion center. The transmission path through which the sensors communicate

their decisions cannot be guaranteed to be perfect. Various imperfections include fading such as

Rayleigh fading, Rician fading, erasure of decisions in the transmission path (Erasure Channel)

or Binary Symmetric Channel having a certain bit-flipping probability. [24], [2] incorporated

the Rayleigh fading channel layer in the parallel structure of the distributed detection system.

Considering fixed locations for the local decision devices [2] computed likelihood ratio based

rule as the decision fusion rule. The optimal fusion rule, however requires perfect knowledge of

the local decision performance indices as well as the fading channel and claims that the chan-

nel aware fusion strategies are more energy efficient than considering the two stage approach

of fusion and communication separately. In a distributed setting the sensors deployed in the

region of interest are usually low-end devices with limited communication capacities. As such,

communicating the instantaneous channel information is a task beyond the communication ca-

pability of the sensors. [25] considers the knowledge of Rician fading channel statistics instead

of instantaneous channel information in deriving a likelihood ratio (LR) based optimal fusion

rule. The channel statistics based fusion rule approaches the optimal LR based fusion rule under

high signal-to-noise ratio.

10



2.3 Motivation behind the thesis

The motivation behind this thesis is the problem of distributed emitter detection with deter-

ministic sensor deployment under a multiple access binary symmetric channel. Distributed

detection is a widely studied and well researched area with a considerable amount of work to-

wards emitter detection. However, channel imperfection arising out of the presence of a binary

symmetric channel is an important issue considered in this work. [26] explores the emitter de-

tection system design with sensor observations dependent on the range between the fixed sensor

locations and the least favorable emitter location in a region of interest. Among all the decision

fusion rules characterized as the random mixture of decision trees the optimal fusion policy

turned out to be the OR rule with each sensor applying identical decision rule to generate the

decision bit. However, the presence of an imperfect channel linking the sensors and the fusion

center influences the optimal system level decision rule.

The sensors deployed in the region of interest at deterministic locations generate local decisions

using the least favorable sensor-emitter distance using identical likelihood ratio tests. The per-

formance model of each sensor and the channel cross-over probability is known to the fusion

center (FC). The sensors send information to the fusion center about the presence or absence

of the emitter. The decision bit transmitted to the FC has a probability p of getting flipped.

This implies that if a sensor sends decision corresponding to a false declaration of emitter pres-

ence and if the decision gets flipped, then the resulting error is in favor of the detector system.

Similarly,if the sensor sends a decision corresponding to the false declaration of emitter absence

and if the decision gets flipped, then the resulting error is in favor of the detector system. As

a result of this influence of the binary symmetric channel under certain conditions the optimal

fusion rule is no longer the OR rule.
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Chapter 3

Problem Formulation

Consider a region of interest (ROI) having an area Se that is suspected to have a low-level point

radiation source. We have a distributed emitter detection system having N sensors located at

fixed locations {li}Ni=1. Denote by le the actual emitter location within the region of interest

with area Se. Under the distributed detection setting, the sensors {si}Ni=1 deployed uniformly

at fixed locations {li}Ni=1, take respective localized decisions Ii employing localized decision

rules δi. The local decisions are transmitted to the fusion center (FC) that takes the global

decision regarding the presence or absence of the emitter by employing a global decision rule

δF . The observations at the local sensors depend on the signal strength from the emitter which

in turn depends on the range between the sensors and the emitter. As a result, the conditional

independence assumption on the observations at the sensors is inapplicable in this scenario.

Furthermore, the local decisions from the individual sensors are sent to the fusion center through

imperfect transmission channel. The transmission channel is considered to be a parallel multiple

access binary symmetric channel having a cross over probability p.

This chapter considers the formulation of the problem of obtaining optimal local decision rules

and the corresponding fusion rule in the presence of channel cross over probability.

3.1 Statistical Distribution of the Sensor Measurements

Under the emitter absent hypothesis, i.e. the hypothesis H0, each sensor has an observation

model given by:

X ∼ f0 (X) (3.1.1)
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Typically f0 does not depend on the sensor index i or its location li. Under the signal

present hypothesis, i.. hypothesis H1, the observation model of senor si is given by:

Xi ∼ f1 (X | ξ (di)) , i = 1, .., N (3.1.2)

In the above notation for the statistical distribution of the sensor observations di = ‖li−le‖is

the range between the sensors and the emitter and ξ (·) is a known function depending on the

signal propagation model of the emitter.

We denote by xMi the M independent observations {xi1 , ..., xiM } made by sensor si. Denote by

XM the collection of observations {x1
M , ..xN

M} from all the N sensors.

In centralized detection setting, the sensors collect observations and transmit them to the fusion

center that can utilize the measurements from all sensors by employing a decision rule δ that

computes a test statistic T
(
XM

)
and compares it with a threshold to decide whether an emitter

is present.

However, in the distributed setting each local sensor si utilizes a local decision rule δi that

computes a test statistic Ti
(
xi

M
)

and compares it with a threshold to decide whether an

emitter is present. Sensor si then sends its local decision Ii to the fusion center that applies a

fusion rule δ (I1, .., IN ) using all the local decisions of the sensors to decide upon the presence

of an emitter within the region of interest. In this work, we have considered the transmission of

the individual decisions from the sensors to the fusion center via communication channel having

a cross over probability p. It means that a bit (say1) has a probability p of getting flipped (0)

during its transmission to the fusion center.

The goal is to optimize the sensor locations and the decision rules under the distributed setting

in the presence of an imperfect transmission channel to satisfy the desired false alarm and

detection probability constraints for any possible emitter locations in the area covered by the

region of interest with the minimal number of observations M.

3.2 Decision Fusion with Least Favorable Range between the

Sensor and the Emitter

We consider sensor si to have a false alarm pFAi = α(δ)i
under a certain decision rule (δi). Let

fe be the distribution of the emitter location.
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Also, let pDi = β(δ)i (fe) be the detection probability of sensor si under decision rule δ and

the emitter location distribution fe. We call f?e the least favorable distribution of the emitter

for a given decision rule δ when f?e satisfies the following:

β(δ) (f?) ≤ β(δ) (f) (3.2.1)

for any proper distribution fe. Note that f?e may not be unique.

We assume that the hypotheses H0 and H1 become harder to distinguish as the distance between

the emitter and the sensor increases. We assume that the relative entropy D (f1 (di) //f0) is

strictly decreasing in di where

D (f1//f0) =

∫
X
f1 (x) log

f1 (x)

f0 (x)
dx (3.2.2)

for continuous density functions f1 and f0.

The decision rule δi for the sensor si to declare the presence of emitter (H1hypothesis) is

δi
(
xM
i

)
= 1

(
Ti
(
xM
i

)
> τi

)
(3.2.3)

where

Ti
(
xM
i

)
=

1

M

M∑
j=1

log

(
f1 (xij | ξ (d?i ))

f0 (xij)

)
(3.2.4)

is the test statistic which is the log-likelihood ratio of the observation under hypotheses H1

and H0. τi is some threshold to achieve the desirable false alarm probability pFAi = αi. If d?i is

the least favorable range between the emitter and the sensor such that S?e = {le : ‖le− li‖ = d?i },

then the coverage area of each senor si will be Sei = {le : ‖le − li‖ ≤ d?i }. Each sensor achieves

the detection probability at least βi (d?i ) under the false alarm constraint no greater than αi for

an emitter located in the region Sei = {le : ‖le − li‖ ≤ d?i }. We call d?i the coverage radius of

sensor si. with false alarm probability αi. and detection probability βi under the least favorable

emitter range from the sensor. Using N sensors to cover the region of interest having area e

with each sensor having an area Sei for i = 1, .., N , we want to jointly optimize the sensor

deployment {li}|i = 1N and the local decision rule {δi}Ni=1 as well as the decision fusion rule δF

so that each sensor si satisfy the sensor coverage constraint, i.e. the area under the region of

interest is the proper subset of the union of the coverage areas of the individual sensors.
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In other words, the sensors should completely cover the region of interest.

Se ⊆
N⋃
i=1

Sei (3.2.5)

It should be noted that if the emitter is within the coverage area Sei of the sensor, then the

sensor detection probability βi (di) under a false alarm constraint αi is at least the detection

probability βi (d?i ) (considering the least favorable range between the sensor and the emitter).

The decision rule δi is optimal under the Neyman-Pearson criterion when the range between the

sensor and the emitter is d?i . It is also optimal under Bayesian framework with suitable choice

of the threshold τi.

3.3 Transmission of Local Decisions in the presence of Channel

Crossover Probability

In practical scenarios the transmission channel linking the sensors and the fusion center are never

ideal. Channel imperfection is an important aspect in the design of signal detection systems

that cannot be ignored. Here we consider a Binary Symmetric Channel with a cross-over or

bit flipping probability p. The decision in favor of emitter present H1 hypothesis is denoted as

Ii = 1 and the decision in favor of emitter absent H0 i denoted as Ii = 0. During transmission

through a binary symmetric channel (BSC), there is a probability p with which the decision

received by the fusion center Ireci is equal to the flipped decision 1 − Ii. The probability of

receiving a ′1′ when H0 is the true hypothesis is different as seen from the fusion center than as

seen by the sensor. If Pr{Ii = 1 | H0} = pFAi (δi) = αδi is the false alarm at the sensor level,

then the false alarm as seen from the fusion center must take into consideration the bit flipping

probability p, because the decision sent to the fusion center might be erroneous.

The false alarm corresponding to sensor si as seen from the fusion center is as follows:

pFAi (δi) =Pr{Ireci = 1 | H0} = Pr{Ireci = 1 | Ii = 1}Pr{Ii = 1 | H0} +

Pr{Ireci = 1 | Ii = 0}Pr{Ii = 0 | H0}

The probabilities Pr{Ireci = 1 | Ii = 1} and Pr{Ireci = 1 | Ii = 0} represent the probabilities

of correct and incorrect transmission and is equal to 1− p and p respectively.
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So the expression for the false alarm corresponding to sensor si as seen from the fusion

center is:

pFFAi (δi) = (1− p) pFAi (δi) + p (1− pFAi (δi)) (3.3.1)

where Pr{Ii = 1 | H0} = pFAi (δi) is the false alarm probability of the sensor si.

Similarly, the detection probability corresponding to the sensor si as seen from the sensor is

pFDi (δi) = (1− p) pDi (δi) + p (1− pDi (δi)) (3.3.2)

Note that the above two expressions (3.3.1) and (3.3.2) are the false alarm and the detection

probability including the bit flipping probability p.

So the sensor level false alarm and detection probabilities can be expressed as a function of the

false alarm and detection probabilities as seen from the fusion center. They are as shown below:

pFAi (δi) =
pFFAi (δi)− p

1− 2p

pDi (δi) =
pFDi (δi)− p

1− 2p

(3.3.4)

So we can see from the above equation that the channel cross over probability p can not

exceed the false alarm and the detection probability as seen from the fusion center, i.e. pFFAi
(δi)

and pFDi
(δi) respectively for p < 0.5 and pFFAi

(δi) and pFDi
(δi) greater than p. Because pFAi (δi)

and pDi (δi) are probabilities and cannot have negative values.

3.4 Problem Statement

With the assumption that the fusion center has knowledge of the performance model of each

sensor si i.e.,
(
αFi , β

F
i

)
, the least favorable distance of the emitter from each sensor d?i and the

channel cross over probability of the binary symmetric channel, p, the optimal fusion rule is

in general a random mixture of the local decisions (decision rules to be specific). The optimal

fusion policy is a solution to the following constrained optimization problem.

maximize PFD (δF | δ1, δ2, δ3, . . . , δN )

subject to PFFA (δF | δ1, δ2, δ3, . . . , δN ) ≤ αF
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The resulting optimal fusion rule is a randomized mixture of decision trees. Subsequently,

we optimize the sensor-level decision rule and the sensor deployment (that satisfies the coverage

constraint of Eq.3.2.5) using the likelihood ratio test as the desirable performance model.

maximize PDi (δi | d?i )

subject to PFAi (δ?i ) ≤ αi

This in turn amounts to finding the optimal threshold τ?i such that PFAi (τ?i ) = αi. By

employing identical performance model for the individual sensors, both constrained optimization

problems can be simplified. The optimization problem resulting in the optimal fusion rule is

limited to a k/N rule, wherein we can use fusion rules such as OR rule, ALL rule or the

MAJORITY rule. Likewise, the optimization of the local sensor performance is limited to

finding an optimal threshold τ?i = τ? as mentioned above. We also take notice of the fact that

in such a case all the sensors employ the same coverage radius d?i .
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Chapter 4

System Design and Performance
Analysis

In the previous chapter we saw the statistical distribution of the sensor measurements in the

presence and absence of a radioactive emitter at an unknown location in a region of interest.

And because of the unknown distance between the sensors and the emitter, the least favorable

emitter location was incorporated into the formulation of the localized decision rule at the

individual sensors. The localized fusion strategy at each sensor is a likelihood ratio test that

takes in a collection of M observations and takes local decision based on a suitably chosen

threshold. We also saw the different sensor deployment strategies and the system level and

sensor level optimization to optimize the detection performance.

In this chapter, we look at a specific model of the distributed emitter detection system. In order

to derive insights into the problem of emitter detection with an imperfect channel linking the

sensors and the fusion center, we consider a simplified model for a channel imperfection. The

channel is modeled as a binary symmetric channel with channel cross-over probability p. In

other words, the transmitted bit has a probability p of being ”flipped”. It is further assumed

that this probability is known to the fusion center. However, in reality the probability p apart

from being unknown can be dependent on specific characteristics of the transmission link (such

as modulation format, channel coding, fading, detection strategy at the fusion center, etc.).
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4.1 A 3-sensor example

Consider a network of three sensors covering a region of interest with area Se. The three sen-

sors are arranged as shown in Figure 2. The locations of the sensors are (0,0), (b,0) and (b/2,

1.732b/2). The network is in accordance with the parallel topology wherein the sensors detect

a global phenomenon characterized by a null or alternate hypothesis and transmit their local

decisions to the fusion center at the same time. We also assume that the channel imperfection

modeled as a binary symmetric channel (with flipping probability p) is also a multiple access

channel. In other words, the flipping probability is the same for all the sensor-fusion center

transmission path. The measurement noise at each sensor is modeled to have Gaussian distri-

bution having zero mean and variance σ2. Also they are independent and identically distributed.

For local sensor si the binary hypothesis testing problem is defined as follows:

H1 : Xij = Ai + nij

H0 : Xij = nij

i = 1, . . . , 3

j = 1, . . . ,M (4.1.1)

nij ∼ N
(
0, σ2

)
. Ai is a known function depending on the propagation model of the emitter. It

is assumed that the radioactive emitter source has an isotropic signal attenuation model defined

as:

A2
i =

P0

1 + adni
(4.1.2)

In the above equation n is the signal decay exponent and can take values in between 2 and

3. a is an adjustable constant. This model is applicable with unknown distance between sensors

and the emitter being 0. Also, it can be extended to the three dimensional case.

From equations (4.1.1) and (4.1.2) we see that the binary hypothesis problem is a composite

hypothesis problem. The sensor observations depend on the amplitude Ai which in turn depends

on the distance between the sensors and the emitter (an unknown quantity). As a result, the

sensor si employs a likelihood ratio test δi assuming least favorable distance d?i .
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So the test statistic at each sensor is given as:

Ti
(
xi

M
)

=
1

M

M∑
j=1

log

{ 1√
2πσ

exp

{
−1
2σ2

(xij −Ai)2
}

1√
2πσ

exp

{
−1
2σ2

(xij)
2

} }

This further simplifies to

Ti
(
xM
i

)
=

1

M

M∑
j=1

(
xijAi −

A2
i

2

)
(4.1.3)

The sensor decides in favor of hypothesis H1 if the test statistic is above a threshold τ?i (to

achieve the desired false alarm rate αi).

1

M

M∑
j=1

(
xijAi −

A2
i

2

)
> τ?i

1

M

M∑
j=1

(
xij

√
P0

1 + ad?i
− 1

2

(
P0

1 + ad?i

))
> τ?i

The test statistic is the sample mean of M observations at each sensor. However, we notice

that the expression on the right hand side of the inequality below is a dependent quantity which

becomes a constant only under the assumption that di = d?i .

1

M

M∑
j=1

xij > τ?i

√
1 + a (d?i )

n

P0
+

1

2

√
P0

1 + a (d?i )
n

The above inequality is also expressed as:

X̄i >
τ?i
Ai

+
Ai
2

(4.1.4)

4.2 Performance Analysis

The sample mean is the sufficient statistic for an individual sensor for the optimality test against

the least favorable emitter location. With the sensors employing identical coverage radius equal

to the least favorable distance between the sensors and the emitter the composite hypothesis

testing problem is now a simple hypothesis. Also note that the observations at the sensors are

iid.
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This culminates in the following statistical distribution for the sample mean for hypothesis

H1 and H0.

H1 : X̄i ∼ N
(
Ai (d?i ) ,

σ2

M

)
H0 : X̄i ∼ N

(
0,
σ2

M

) (4.2.1)

In the previous section we noticed that the threshold for each sensor depends on the distance

d?i . Hence, we shall denote it as τi (d?i ) = τ ′i .

The detection probability and the false alarm probability for each sensor is given as follows:

pDi (δi | d?i ) =

√
M√

2πσ

∫ ∞
τ ′i

exp

{
−M
2σ2

(t−Ai (d?i ))
2

}
= Q

(
τ ′i −Ai (d?i )

σ√
M

)
(4.2.2)

pFAi (δi) =

√
M√

2πσ

∫ ∞
τ ′i

exp

{
−M
2σ2

t2
}

= Q

(
τ ′i
σ√
M

)
(4.2.3)

Therefore, as mentioned in the previous chapter the optimal test for the sensors against the

least favorable emitter location boils to finding the optimal τi (d?i ) = τ ′i so that pFAi (δi) = αi.

So, if αi is a false alarm probability value for a decision rule δi then the threshold can be

expressed as:

τ ′i = Q−1 (αi)
σ√
M

(4.2.4)

Consequently, the corresponding detection probability is given as

βi (δi | d?i ) = Q

(
Q−1 (αi)−

Ai (d?i )
√
M

σ

)

Here we notice that the false alarm probability at the sensor and the false alarm probability

of the sensor as seen from the fusion center is related by equation (3.3.4). Hence the detection

probability becomes

βi (δi | d?i ) = Q

(
Q−1

(
αFi − p
1− 2p

)
− Ai (d?i )

√
M

σ

)
(4.2.5)

αFi is the false alarm probability for sensor si as seen from the fusion center.

This difference is a result of the binary symmetric channel between the sensors and the fusion

center.
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The detection probability and false alarm as seen from the fusion center is:

βFi (δi | d?i ) = (1− 2p)βi (δi | d?i ) + p

αFi (δi) = (1− 2p)αi (δi) + p

The performance model of the sensors that the fusion center utilizes to take the global

decision is
(
αFi , β

F
i

)
. It is important to note that in this case, since the flipping probability p

and the performance model ”at the individual sensor” i.e. (αi, βi) is known to the fusion center,

it might appear that it doesn’t make any significant difference if
(
αFi , β

F
i

)
or (αi, βi) is used. In

actuality, the fusion center has to take the flipping probability into account and incorporate it

in its knowledge of the performance model of each sensor. In this work, the imperfect channel is

modeled as a binary symmetric channel whose probability is a known constant. However, there

are more practical situations in which the flipping probability depends on the decision strategy

being used at the fusion center or other channel characteristics such as presence of fading or

modulation.

4.3 Sensor Deployment and Coverage

The deployment strategy employed by the emitter detection network is the triangular sensor

constellation. In this arrangement the sensors are placed in what can be interpreted as triangular

cells. Equilateral triangular arrangement is considered here. An emitter could be within any

triangular cell. The signal from the emitter follows a signal propagation that depends on the

unknown distance between the sensor location and the emitter location. Out approach against

this constraint lies in optimizing the deployment of sensors, the local decision rules and the

global fusion rule with respect to the least favorable location of the emitter.

When the region of interest is large and sensors are densely arranged in congruent circles (two

dimensional space) or spheres (three dimensional space), the optimization of the local decision

rules δi of the sensors and the system level fusion rule δF is treated with regards to a circle

(sphere) packing problem. We consider three or four nearest range sensors of primary interest

to the least favorable emitter location. We solve a constrained optimization problem involving

these primary neighboring sensors to the least favorable emitter location to optimize the local

decision rules for si.
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The figure below shows the sensor deployment for a triangular cell in the triangular arrange-

ment of sensors. The coverage of the sensors using least favorable emitter distance for OR and

ALL fusion rule are shown respectively.

(a) Sensor Coverage for OR rule

(b) Sensor Coverage for ALL rule

Figure 4.1: The sensor coverage for two different fusion rules, the OR rule and the ALL rule.
The circles represent the sensing area of the three sensors. The intersection of the circles within the
triangle(ROI) is the overlapped decision regions of the sensors. The intersection of the triangle and an
individual circle represent the decision region of an individual sensor.

The OR rule is characterized by at least one sensor in favor of the emitter present leading

to the global decision in favor of emitter present hypothesis. The ALL rule on the other hand

requires all the sensors to be in favor of emitter present in order for the global decision to be in

favor of emitter present hypothesis. Note that, we only consider the sensors on the immediate

neighborhood of the emitter as the ones of primary interest. For the OR rule, the point E (the

centroid of the triangle) is the least favorable emitter location since the emitter tends to be

equidistant from all the sensors. Also, notice that the emitter places itself at the boundary of

the sensing radii of the individual sensors when Or rule is used as the optimal policy. However,

for the ALL rule the emitter tends to be very close to any one sensor (in this example s2). The

figure above shows that when ALL rule is adopted as the fusion policy the emitter places itself

at the boundary of the sensing radii of the other two sensors.
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4.4 Extension to N sensors

The sensors implement similar decision rules over the observations. As represented by equations

(4.2.2) and (4.2.3) the detection probability depends on the threshold τ ′i and the least favorable

emitter-sensor distance d?i . Note that the distance d?i is also the coverage radius of each sensor.

Including identical coverage radius and threshold at the sensors to optimize the decision rule

(with deployment limited to the coverage problem) leads to k out of N mixing with the false

alarm less than or equal to αF . With the system false alarm tolerance set to αF = 0.05 (say),

the objective is to maximize the system detection probability. The k out of N mixing with k

= 0,..,N involves 2N =
(
N
0

)
+
(
N
1

)
+ · · · +

(
N
N

)
combinations. Out of the total combinations,

based on the number of sensors in favor the presence of the emitter the fusion policies can

be characterized into the OR, MAJORITY or ALL rule. If number of sensors in favor of the

presence of emitter is at least 1 i.e. k ≥ 1 and the fusion center declares H1 then the fusion

policy is referred to as the OR rule. Likewise for k = N it is AND. For the majority rule we

have to cases. When the number of sensors N is odd, it is k ≥ dN2 e. And when N is even, it

is k ≥ N
2 + 1. The probability of false alarm for each sensor (as seen from the fusion center) is

related to the system level false alarm tolerance αF upon implementation of the OR rule as the

following:

PFFA = 1−
(

1− αFi(OR)

)N
(4.4.1)

The value of αF can be fixed beforehand to a desired value within which we want the system

level false alarm to be restricted. Note that, the false alarm probability for each sensor is taken

as αFi(OR) and not αi(OR) because the performance model used by the fusion center has to take

into consideration the imperfection in the channel modeled as binary symmetric channel.

Similarly, the detection probability of the system PFD is related to the detection probability for

each sensor βFi(OR) (d?i ) for OR rule as:

PFD = 1−
(

1− βFi(OR) (d?i )
)N

(4.4.2)

Likewise, when the optimal policy used at the fusion center is the ALL rule (k=N), the false

alarm probability is as follows:

PFFA =
(
αFi(ALL)

)N
(4.4.3)
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The probability of detection for the ALL rule is:

PFD =
(
βFi(ALL) (d?i )

)N
(4.4.4)

The system performance for MAJORITY rule is as shown below.

a) When N is odd:

Denoting βFi(MAJ) (d?i ) = β, the system level probability of detection is:

PFD =

(
N

dN2 e

)
(β)d

N
2
e (1− β)N−d

N
2
e+

(
N

dN2 e+ 1

)
(β)d

N
2
e+1 (1− β)N−d

N
2
e−1+. . .+(β)N (4.4.5)

Denoting αFi(MAJ) = α, the system level false alarm is:

PFFA =

(
N

dN2 e

)
(α)d

N
2
e (1− α)N−d

N
2
e +

(
N

dN2 e+ 1

)
(α)d

N
2
e+1 (1− α)N−d

N
2
e−1 + . . .+ (α)N

(4.4.6)

b) When N is even:

The probability of system detection and false alarm for βFi(MAJ) (d?i ) = β and αFi(MAJ) = α is:

PFD =

(
N

N
2 + 1

)
(β)

N
2
+1 (1− β)

N
2
−1 +

(
N

N
2 + 2

)
(β)

N
2
+2 (1− β)

N
2
−2 + . . .+ (β)N (4.4.7)

PFFA =

(
N

N
2 + 1

)
(α)

N
2
+1 (1− α)

N
2
−1 +

(
N

N
2 + 2

)
(α)

N
2
+2 (1− α)

N
2
−2 + . . .+ (α)N (4.4.8)

So we looked at a specific problem wherein a system of three sensors arranged in an equi-

lateral triangle monitor an area of interest that contains an emitter at an unknown location.

The individual sensors collect observations that are corrupted by Gaussian noise having zero

mean and variance σ2. Also, it was found that the signal propagation model of the radioactive

emitter depends on the sensor-to-emitter distance rendering the binary hypothesis problem as

a composite hypothesis problem. To overcome this constraint, we considered the least favorable

range between the sensor and the emitter. Next, a performance analysis of the optimization of

the individual sensors given the least favorable distance was carried out. The optimal sensor

level detection boiled down to finding a suitable threshold satisfying the false alarm constraint

of the sensors. Also, by considering identical performance model and coverage radius of the

sensors the constrained optimization of the system level performance was reduced to a k/N

policy with false alarm fixed to predetermined value. In the next chapter, we look at numerical

results to analyze and gain insights into detection performance of the system.
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Chapter 5

Comparative Study of Detection
Performance

In the previous chapter we looked at a specific three sensor emitter detection system and the

mathematical expressions of the sensor performance model. Also, we looked at the system level

performance under a set of practical assumptions.

In this chapter, we further our analysis with numerical examples and graphical plots. As

discussed in section (4.1) we consider three sensors placed at (0,0), (b,0) and (b/2, 1.732b/2,).

Let us assume b=
√

3. So, the sensors are at locations (0, 0) ,
(√

3, 0
)
,
(√

3
2 , 1.5

)
. The sensor level

and system level detection performance is dealt with taking into consideration the fact that the

number of sensors nearest to the least favorable emitter location is three. This approach can

be extended to a large region of interest covered with sensors in a triangular arrangement. The

emitter could be located at an unknown location within any of the triangular cells. Note that

the emitter could also be located on the line joining two adjacent sensors. The detection of an

event triangle (i.e., a triangular cell within which an emitter is present) is a separate problem.

However, we are interested in the performance optimization of the sensors and the detection

system within a sub-region of interest monitored by the three nearest sensors to the emitter

location.

The signal propagation model is as shown in equation (4.1.2). The model is applicable even

when the distance between the emitter and the sensor is equal to 0. The figure on the following

page shows the variation of the amplitude of the emitter radiation with distance. A low level

point radiation source is considered with P0 equal to 5 dB, a is an adjustable constant equal to

100 and n is the signal decay exponent that can take values between 2 and 3. Here, we consider

n equal to 2.5.
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The signal propagation model depends on the unknown distance between the sensor and the

emitter as shown below:

Figure 5.1: The variation of Signal Amplitude with distance.

The measurement noise at each individual sensor is considered to be iid Gaussian with zero

mean and variance σ2 = 1. As discussed in section (4.2) under the sensor performance analysis,

the observation samples at each sensor are N
(
Ai (d?i ) ,

1
M

)
under hypothesis H1 and N

(
0, 1

M

)
under hypothesis H0. Since Ai (d?i ) is dependent on the distance d?i it is a composite binary

hypothesis problem. The value of d?i depends on the fusion rule used at the fusion center. Upon

employing the OR rule the emitter places itself equidistant from all the sensors (which is the

centroid of the triangle in this case) and for the ALL fusion rule the emitter places itself very

close to or at any one of the sensors. However, it is not not known to the fusion center at

which sensor the emitter places itself. As a result, the emitter treats all the sensors equally and

considers equal chance of the emitter to be located at any of the three sensors.

5.1 Probability of False Alarm at each sensor

The performance model of each sensor (αi, βi) is considered identical. And as the cross-over

probability p linking the sensors and the fusion center is assumed to be known to the fusion

center (p=0.01), the sensor performance as seen from the fusion center
(
αFi , β

F
i

)
is also identical.

Since the fusion center has to take the channel probability into consideration it mixes
(
αFi , β

F
i

)
according to the k/N policy. It is desired that the system level false alarm be within five per

cent, i.e. PFFA ≤ 0.05.
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For the OR fusion rule αFi can be found out using equation (4.3.1). αFi = 0.017 for N = 3.

And the false alarm for each sensor as seen by itself is αi =
αF
i −p
1−2p = 0.00714 for p = 0.01.

So, αFi(OR) = 0.017 and αi(OR) = 0.00714.

Likewise, for N = 3 sensors the individual sensor false alarm a seen by itself and the fusion

center can be found out for the ALL rule using equation (4.3.3). With PFFA fixed at 0.05,

αFi = 0.3684 and αi =
αF
i −p
1−2p = 0.3657 for p = 0.01.

So, αFi(ALL) = 0.3684 and αi(ALL) = 0.3657.

5.2 Sensor Performance with Increasing Number of Observa-

tions

As mentioned in the preceding sections, the emitter places itself equidistant from the sensors

when the optimal fusion rule is the OR rule. Whereas, it places itself close to any of three

sensors when the optimal fusion rule is the ALL rule. With the given arrangement the values

of d?i is equal to 1 and
√

3 for the OR and ALL fusion rule respectively. The figure below shows

a comparison of the performance of each sensor (as seen from the fusion center) with increasing

number of observations while implementing the OR and the ALL rule as the optimal rule by

the fusion center.

Figure 5.2: Sensor level detection performance with increasing number of observations. OR rule:
d?i = 1, ALL rule: d?i =

√
3.
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With the specific values taken for the different parameters, equation (4.2.5) for OR and ALL

is given as follows:

βi(OR) (δi | d?i ) = Q

(
Q−1 (0.00714)−

√
5M

1 + 100 (1)2.5

)

Q−1 (0.00714) = 2.4501.

βi(ALL) (δi | d?i ) = Q

(
Q−1 (0.3657)−

√
5M

1 + 100
(√

3
)2.5

)

Q−1 (0.3657) = 0.3433. Comparing the two expressions it can be seen that although both

βi(OR) (δi | d?i ) and βi(ALL) (δi | d?i ) increase with increasing number of observations, however

the detection probability for each sensor is more towards the upper left corner for the ALL rule.

This is evident from the fact that the probability of false alarm at each sensor for the ALL rule

is much higher than for the OR rule.

Analytically, it is evident from equation (4.2.5) that increasing the argument of theQ (.) function

leads to an increase in detection probability. The false alarm at each sensor for ALL is higher

than that for OR. Also, d?i =
√

3 is greater than d?i = 1. Furthermore, Q1

(
αi(ALL)

)
(=

Q−1 (0.3657) = 0.3433) is significantly lower than Q−1
(
αi(OR)

)
(= Q−1 (0.0.00714) = 2.4501).

So, to start with βi(ALL) (δi | d?i ) is greater than βi(OR) (δi | d?i ) and it increases in a similar

fashion for every collected observation until the 95 per cent probability mark. The figure below

shows the variation of the sensor threshold for a fixed false alarm (for both OR and ALL rule)

with increasing number of observations.

Figure 5.3: Plot showing the decrease of sensor threshold with an increase in observations for a fixed
αi=0.3657 and αi=0.00714.
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5.2.1 Sensor level Threshold

Going back to chapter 3, section (3.4) where the constrained optimization of the sensor level

decision rule was discussed, we saw that the problem boils down to finding a suitable threshold

that satisfies the false alarm constraint. PDi (δi | d?i ) = Q

(
τ ′i
√
M − 1

σ

√
P0M

1+a(d?i )
n

)
. Substitut-

ing the values for p, σ, a and n we obtain the following:

maximize Q

(
τ ′i
√
M −

√
5M

1 + 100 (d?i )
2.5

)

subject to Q
(
τ ′i
√
M
)
≤ αFi − p

1− 2p

For a fixed αFi = 0.3684 and M = 30 (say), the value of threshold is τ ′i = 0.0627.

However, it is important to note that this threshold varies with M . And as shown in figure 6

it decreases with increasing M . Also, the sensor optimizes its decision rule without considering

the other sensors. So, the optimization turns out to be a calculation of τ ′i = Q−1
(
αF
i −p
1−2p

)
1√
M

as the sensor si gradually collects observations M . For a fixed αFi the detection probability is

given as Q

(
Q−1

(
αF
i −p
1−2p

)
−
√

5M

1+100(d?i )
2.5

)
.

5.3 System Performance

5.3.1 Ideal Channel

For the ideal channel, the channel probability is p = 0. Among all the decision fusion rules

computed from the constrained optimization (in section 3.4) the OR rule is the optimal rule. It

takes 130 observations for the system to reach 95 per cent detection probability. However, with

the ALL rule the number of observations required goes up to 480 to reach the same performance.

5.3.2 Non-Ideal Channel

For the non-ideal channel it can be seen that the number of observations required for achieving

95 per cent detection probability while implementing the OR rule is 160. For ALL rule, it takes

600 observations for the system to achieve the same performance.

Plots showing the detection performance for the ideal channel and the non-ideal channel are

shown in the following page.
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Figure 5.4: Detection Performance of the system when the channel probability p = 0 (Ideal Channel).

Figure 5.5: Detection performance of the system for channel probability p = 0.01 (Non-Ideal Channel).

It can be seen that there is an increase in the number of observations required to reach the

same performance level (PFD = 0.95) from the ideal situation to the non-ideal situation. There

is about 23% for thee OR rule and about 25% increase for the ALL rule. Also, the increase

in number of observations from OR to ALL for the ideal channel is about 269% and for the

non-ideal channel it is 275%. Thus, we see that the OR rule outperforms the ALL rule by a

large margin for both situations when channel probability p = 0 and p = 0.01.
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5.3.3 What if Channel Probability is greater than 0.017 ?

So far it is evident that the OR rule is the optimal detection rule. But, for p < 0.5 and assuming

that probability of detection at sensor is greater than the probability of false alarm at the sensor,

pFAi (δi) ∈ [p, 1 − p] and pDi (δi | d?i ) ∈ [p, 1 − p]. For N = 3, and the system level false alarm

constraint fixed at 0.05, αFi = 0.017. Also, the false alarm as seen by the sensor and the false

alarm of the sensor as seen by the fusion center are related as αi =
αF
i −p
1−2p , which implies that

the value of p can not exceed 0.017, otherwise αi will be negative which is probabilistically not

consistent. So, if p takes values such as 0.02 or higher then the ALL rule seems to be applicable.

It could be argued that even for ALL rule the relation between αi and αFi holds and hence there

is a similar limitation. However, it is important to note that although theoretically the value

of p could be greater than αFi(ALL) = 0.3684 (for the three sensor system), in practical scenarios

such a value is far from realization.

However, if the cross-over probability reaches larger values then such a situation would call for

a separation approach for the distributed detection. The communication schemes have to be

separately dealt with from the signal processing algorithms involved in the computation of the

decision rules.

5.4 The MAJORITY Rule

Given a system level false alarm the false alarm for each sensor si under the MAJORITY rule

can be calculated from equation (4.3.8).

(
3

2

)(
αFi(MAJ)

)2 (
1− αFi(MAJ)

)
+
(
αFi(MAJ)

)3
= 0.05

From the above equation we get three values for αFi(MAJ) (0.13535, -0.12407, 1.48872). αFi(MAJ)

being a probability can not take a negative value or a value greater than 1. So αFi(MAJ) =

0.13535. And αi(MAJ) = 0.13535−0.01
1−2(0.01) = 0.128. The optimization of sensor level decision rule and

deployment is confined to the following optimization problem:

maximize Q

(
τ ′i
√
M −

√
5M

1 + 100 (d?i )
2.5

)

subject to Q
(
τ ′i
√
M
)
≤ 0.13535− 0.01

1− 2 (0.01)
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In implementing the MAJORITY rule a question arises as to where the emitter would place

itself in the region of interest. In other words, what should be the least favorable distance

between the sensor and the emitter. The three-sensor system can be thought of as a sub-

region of interest which is part of a bigger region of interest deployed with sensors in triangular

arrangement. For the OR rule the least favorable location of the emitter was equidistant from

the all the three sensors (centroid). For the ALL rule the least favorable location would be very

close to any one of the three sensors. However, for the MAJORITY rule it is difficult to decide

what the appropriate least favorable location of the emitter would be. The sensors are arranged

in a triangular (equilateral) fashion so that they form triangular cells. The figure below shows

a similar arrangement.

The scope of d?i in the three sensor system is [1,
√

3].

The least favorable distance cannot be less than 1 if the adjacent distance between the

sensors is
√

3. Likewise, d?i cannot be greater than
√

3. If d?i is less than 1, the triangular

region of interest is not fully covered as shown in the figure below. And if d?i is greater

than
√

3, it implies that the emitter is outside the triangular region which is an infeasible

case. However, if we consider the entire region deployed with sensors in the triangular

arrangement then it is not infeasible. Because, in that case the emitter falls in another

triangular three-sensor arrangement of sensors.

Figure 5.6: The Region of Interest is not covered for d?i < 1.

Figure 5.7: Triangular Arrangement. An emitter is assumed to be within one triangular region of
interest at a time. It ca be seen that if d?i is greater than

√
3 then it falls in a different triangular region.
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The least favorable emitter location may not be unique, and hence the least favorable dis-

tance d?i is not a unique value within the region of interest. It can take values in [1,
√

3]. Its

important to remember that the very reason of having a composite binary hypothesis testing

problem is the presence of the unknown distance di in the sensor measurements (under hypoth-

esis H1). In actuality the distance di varies from sensor to sensor based on the location of the

emitter. However, in order to convert the composite hypothesis to a simple hypothesis problem

we consider the least favorable distance d?i and it is further assumed that all three sensors use

the same d?i to optimize the sensor decision rule δi. This explains why we consider d?i =
√

3 for

all the sensors in case of ALL rule when in reality the emitter could be close to only one of the

three sensors.

5.4.1 System Performance under the MAJORITY rule

Since the sensors apply identical likelihood ratio test with identical d?i , d
?
i could be thought of

as the coverage radius or the sensing radius of each sensor.

Figure 5.8: Overlap of decision regions
for d?i = 1.25. Emitter E lies in a region
covered only by s1.

Figure 5.9: Overlap of decision regions
for d?i = 1.65. Emitter E lies in a region
covered only by s3.

The decision region overlap depends on the choice of d?i . The scope of d?i is [1,
√

3]. Let

Di be the decision region of si corresponding to d?i . Since the sensors use identical d?i the area

of Di is same. Now for d?i =
√

3 the entire triangular region of interest is fully covered by

D1 ∩ D2 ∩ D3. However for 1 < d?i <
√

3 there are some non-overlapped decision regions as

shown in figures 5.8 and 5.9 respectively. For the majority rule the H1 hypothesis is declared

only when the emitter is detected by at least two out of three sensors. In other words, the

emitter has to be in the decision region of two or more sensors, i.e it has to be located in the

overlap of at least two decision regions.

34



As a result, d?i =
√

3 is the ideal choice. Also, it follows analytically that for the MAJORITY

rule the emitter would distance itself as far as possible from at least two sensors. This can be

achieved only if the emitter is very close to any of the three sensors.

However, one might argue that in the presence of binary symmetric channel even if the emitter

is beyond the decision region of a sensor there is a probability of the decision to be flipped in

favor of H1 although the sensor correctly decided in favor of H0. This situation in fact is in

favor of the system performance.

Figure 5.10 shows the system performance under MAJORITY rule for d?i = 1 and d?i =
√

3. It

can be inferred that for all the values of d?i ∈
(
1,
√

3
)

the performance curve is in between the

curves for d?i = 1 and d?i =
√

3.

Figure 5.10: The detection performance of the system under the MAJORITY rule for d?i = 1 and
d?i =

√
3. Note that for all values of d?i ∈

(
1,
√

3
)

the detection performance curve is between the ones

for d?i = 1 and d?i =
√

3.

Figure 5.11 shows a comparison of the AND rule and the MAJORITY rule for p = 0.02

(knowing the fact that OR rule is infeasibe for p > 0.017) at d?i =
√

3. The number of obser-

vations required to reach the desired detection performance of 95 per cent for the MAJORITY

rule is 425 whereas for the ALL rule the performance does not reach the desired level after 700

observations.
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Figure 5.11: Comparison of detection performance of the ALL rule and the MAJORITY rule with the
least favorable emitter to sensor distance set at d?i =

√
3. Note that there is significant difference in the

performance of the two fusion rules.

Thus, we see that the OR rule is the optimal fusion rule under the assumption that the

transmission of decisions from the sensors to the fusion center is through ideal channels. Under

the assumption that the channel linking the sensors and fusion center is binary symmetric with

cross-over probability p, the OR rule is still optimal. However, for value of p greater than

0.017 the rule is not optimal. This calls for the sensors to lower their decision thresholds. For

ALL rule, the threshold is lowered significantly resulting in a much reduced false alarm and

an eventual reduction in sensor detection probability leading to the significant increase in the

number of observations to reach the desired performance. Among the fusion rules classified as

OR, ALL and MAJORITY, the MAJORITY rule was found to be optimal.
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Chapter 6

Conclusion

The focus of this study was to explore the emitter detector system issues of finding optimal local

sensor rules and system fusion rule with deterministic sensor deployment. The channel linking

the sensors and the fusion center was considered to be a multiple access binary symmetric

channel. The communication of the sensors with the fusion center was in accordance with the

parallel configuration of distributed detection. The results obtained were different from the

ideal channel assumption of [26] in which the OR rule was declared to be the optimal fusion

rule. This research shows that the possibility of bit-flipping upon transmission influences the

choice of optimal decision fusion rule. The optimal local sensor decision rules are likelihood

ratio test based with each sensor utilizing identical sensing radius equal to the least favorable

sensor-emitter distance. The optimal sensor rule boiled down to suitable threshold computation

satisfying a false alarm constraint. With the fusion center having complete knowledge of the

performance model of the sensors and the channel cross-over probability, the optimal fusion

rule was the solution of a constrained problem in the Neyman-Pearson sense. Among all fusion

rules classified as the OR, ALL and MAJORITY, the MAJORITY rule was found to be optimal

given that the channel cross-over probability p is greater than 0.017 and less than 0.5.

There are a few limitations of this research. First, the methodology in this work is applicable for

cross-over probability p less than 0.5. In addition, the threshold for each sensor is assumed to

be identical on account of employing identical sensing radius for each sensor. The sensing radius

is equal to the least favorable distance of the emitter from the sensor. In practice, however,

the sensor-emitter distance is different for different sensors. Hence, there is a need to adopt

collaborative detection among the sensors. Also, for larger values of p the sensors will have to

transmit a stream of bits instead of single-bit decision, thus requiring sensors with increased

processing and communication capacities.

37



Bibliography

[1] J. A. Gubner and B. J. B. Fonseca, “Least favorable distributions for the design of randomly
deployed sensor detection systems,” IEEE Transactions on Information Theory, 2014.

[2] B. Chen, P. K. Varshney, T. Kasetkasem, and R. Jiang, “Channel-aware decision fusion in
wireless sensor networks,” IEEE Transactions on Signal Processing, 2005.

[3] S. S. Iyengar, R. L. Kashyap, and R. N. Madan, “Distributed sensor networks- introduction
to the special section,” IEEE Transactions on System, Man and Cybernetics, 1991.

[4] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor detection systems,”
IEEE Transactions on Aerospace and Electronics Systems, 1986.

[5] P. K. Varshney, “Distributed detection and data fusion,” Springer, New York, 1997.

[6] H. V. Poor, “An introduction to signal detection and estimation,” Springer, New York,
1994.

[7] J. N. Tsitsiklis, “Decentralized detection,” Advances in Signal Processing, 2009.

[8] R. Vishwanathan and P. K. Varshney, “Distributed detection with multiple sensors: Part-
i,” Proceeding of IEEE, 1997.

[9] P. K. Willet, P. F. Swaszek, and R. Blum, “The good, bad and ugly: Distributed detection
of a known signal in dependent gaussian noise,” IEEE Transactions on Signal Processing,
2000.

[10] E. Drakopoulo and C. C. Lee, “Optimum multisensor fusion of correlated local decisions,”
IEEE Transactions on Aerospace and Electronics Systems, 1991.

[11] W. Chang, M. Kam, and Q. Zhu, “Hardware complexity of binary distributed detection
systems with isolated local bayesian detectors,” IEEE Transactions on Aerospace and Elec-
tronics Systems, 1991.

[12] M. Kam and W. S. Gray, “Optimal data fusion of correlated local decisions in multiple
sensor detection systems,” IEEE Transactions on Aerospace and Electronics Systems, 1992.

[13] W. Li and H. Dai, “Distributed detection in wireless sensor networks using a multiple
access channel,” IEEE Transactions on Signal Processing, 2007.

[14] Q. Yan and R. S. Blum, “Distributed signal detection under the neyman-pearson criterion,”
IEEE Transactions on Information Theory, 2001.

[15] D. A. Pados, P. Papantoni-Kazakos, D. Kazakos, and A. G. Koyiantis, “On-line threshold
learning for neyman-pearson distributed detection,” IEEE Transactions on Systems, Man
and Cybernetics, 1994.

38



[16] S. Acharya, M. Kam, and J. Wang, “Distributed decision fusion using the neyman-pearson
criterion,” 17th International Conference on Information Fusion, Salamanca, Spain.

[17] H. Kasabeh, L. Cao, and R. Vishwanathan, “Hard decision based distributed detection in
multi-sensor system over noise correlated sensing channels,” Annual Conference on Infor-
mation Science and Systems (CISS), 2016.

[18] H. Chen, V. P. Jilkov, and X. R. Li, “On optimizing decision fusion with a budget con-
straint,” 16th International Conference on Information Fusion, 2013.

[19] P. Ray and P. K. Varshney, “Distributed detection in wireless sensor networks using dy-
namic sensor thresholds,” International Journal of Distributed Sensor Networks, 2008.

[20] C. Bolkcom, “Homeland security: Unmanned aerial vehicles and border surveillance,”
DTIC Doc., 2004.

[21] H. Zhang and J. C. Hou, “Is deterministic deployment worse than random deployment in
wireless sensor networks?,”

[22] L. P. Damuut and D. Gu, “A survey of deterministic versus non-deterministic node place-
ment schemes in wsns,” SENSORCOMM: The Sixth International Conference on Sensor
Technologies and Applications, 2012.

[23] P. Balister and S. Kumar, “Random vs. deterministic depoyment of sensors in the presence
of failures and placement errors,” IEEE INFOCOM, 2009.

[24] B. Chen, P. K. Varshney, and L. Tong, “Channel-aware distributed detection in wireless
sensor networks,” IEEE Signal Processing Magazine, 2006.

[25] Y. Wang, M. Xiong, D. wu Yue, and R. He, “Decision fusion over rician fading channel for
wireless ensor networks,” Wireless Communications, Networking and Mobile Computing.
5th International Conference on WiCom, 2009.

[26] H. Chen and S. Zhang, “Emitter dependent system with range dependent observations,”
19th International Conference on Information Fusion (FUSION), 2016.

39



Vita

Soumyadip Patra was born on 16th March, 1991 in Calcutta, India. He completed his under-

graduate studies in Electronics and Communication Engineering at West Bengal University of

Technology on July 2012. In Fall 2014 he came to the University of New Orleans to pursue

graduate studies in Electrical Engineering. His areas of research interest include Signal Detec-

tion, Signal Processing and Automatic Control.

40


	Distributed Emitter Detector Design under Imperfect Communication Channel
	Recommended Citation

	tmp.1502099672.pdf.1Fg_Z

