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Abstract 

Activation of brain regions that make up the mirror neuron system (MNS) is thought to reflect processing 

and perceiving behavior, action, and intentionality of other organisms.  Sensing and perceiving motor 

behavior in others is an important component of understanding and participating in social interactions. 

Children with chromosome 22q11.2 deletion syndrome (22q11.2DS) are diagnosed with serious medical, 

cognitive, and socio-emotional symptoms. Atypical development and function of the MNS may underpin 

some aspects of socio-emotional impairment and autism spectrum disorder (ASD)-like symptomology 

reported. This study of the MNS investigates differences in activation in the operculum, sensorimotor 

areas, and basal ganglia (BG) in children with 22q11.2DS compared to typically-developing (TD) 

controls. Twenty-nine children (22q11.2DS: n=15; TD: n=16) between ages 7-16 viewed videos of a 

human hand manipulating various household objects during a functional magnetic resonance imaging 

(fMRI) scan. In Analysis 1, children with 22q11.2DS had less extensive brain activation than TD children 

in the operculum, sensorimotor areas, and BG. In Analysis 2, children with 22q11.2DS had the same 

results as Analysis 1 with the exception of sensorimotor areas not being highly active in either group. In 

both analyses, fMRI signal change from baseline to video did not differ significantly between groups. 

Processing efficiency in children with 22q11.2DS may be lower or more variable when compared to TD 

peers.  This is the first study comparing children with 22q11.2DS to TD peers specifically looking at 

MNS activation within the operculum region to assess higher cognitive functioning, somatosensory cortex 

for sensory interpretation, and basal ganglia for gross motor activity. Future studies should compare brain 

activation between children with ASD and those with 22q11.2DS during an MNS task as the next step to 

further clarify the origin of ASD symptoms reported in this population.  
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Neurocorrelates of the Mirror Neuron System in Chromosome 22q11.2 Deletion Syndrome 

 

Introduction 

Chromosome 22q11.2 Deletion Syndrome 

Chromosome 22q11.2 Deletion Syndrome (22q11.2DS), also known as DiGeorge 

syndrome and velocardiofacial syndrome (VCFS), occurs in 1:2000 to 1:4,000 live births. 

22q11.2DS is caused by a 1.5 to 3 megabase deletion on the long arm of chromosome 22. Along 

with serious medical, psychological, cognitive, and social challenges, this syndrome is associated 

with elevated risk of serious neuropsychiatric disorders in late adolescence to early adulthood. 

The affliction also results in abnormal organ formation in utero as well as medical complications 

in infancy (Badcock, 2013; Bassett et al., 2003; Gothelf et al., 2005; Gothelf, Schaer, & Eliez, 

2008; Hall & Owen, 2015; Karayiorgou, Simon, & Gogos, 2010; McDonald-McGinn et al., 

2015; Simon et al., 2005). They are also at greater risk for developing neuropsychiatric issues 

such as developmental delay and risk for psychosis (Wenger et al., 2016). Children with 

22q11.2DS have an increased prevalence of comorbid diagnoses including attention deficit 

hyperactivity disorder (ADHD: 3-46%), generalized anxiety disorder (GAD: 17-29%), obsessive 

compulsive disorder (OCD: 4-33%) and bipolar affective disorder (BPD: 52%) (Bassett et al., 

2003; Bish, Ferrante, McDonald‐McGinn, Zackai, & Simon, 2005; Karayiorgou et al., 2010; 

Vorstman et al., 2006). Rates of autism spectrum disorder (ASD) range from 14% to 50% in 

children with 22q11.2DS (Bassett et al., 2003; Bish et al., 2005; Gothelf et al., 2008; Kates et al., 

2007; Vorstman et al., 2006; Wenger et al., 2016).   
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Origins of Socio-emotional Impairment 

Individuals with 22q11.2DS often have difficulty with social interactions and 

demonstrate elevated levels of anxiety and shyness (Ho et al., 2012; Niklasson, Rasmussen, 

Óskarsdóttir, & Gillberg, 2005; Swillen et al., 1999; Wenger et al., 2016). Their understanding of 

social context is often poor with a tendency for literal interpretations of others’ words and 

actions. Individuals with 22q11.2DS also have notable circumscribed interests, evident in their 

limited spectrum of subjects with the desire to direct others’ attention to their interests (Kates et 

al., 2007). These interests may interfere with their desire to have friends, however, they may 

have a poor understanding about what it means to have or be a friend in terms of reciprocal 

interactions in communication and activities (Ho et al., 2012).    

Poor communication is a strong contributor to poor social interactions. In 22q11.2DS, 

some congenital malformations such as cleft palate and facial dysmorphisms could contribute to 

their social and communication impairment. For example, cleft palate malformation may result 

in feeding problems, excessive drooling, dysphagia, dysphonia, nasal speech, and speech delays 

(Bingham et al., 1997; Zur, 2013) that could contribute to both verbal and non-verbal 

communication deficits. Some children also have hearing loss, with mild loss related to 

inattentiveness (Wenger et al., 2016).  Given the high rate of medical complications in children 

with 22q11.2DS, prolonged physiological and psychological stress could also exacerbate existing 

anxiety and hamper social development (Beaton & Simon, 2010). 

Atypical brain development could also contribute to aspects of commonly reported socio-

emotional difficulties seen in those with 22q11.2DS. For example, symptoms common to both 

22q11.2DS and ASD, such as difficulty understanding the behavior of others, can arise in part 

from differences in brain processing of visual stimuli in faces versus objects or symbols 
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(Campbell et al., 2010). Eye-tracking in individuals with 22q11.2DS tends to be more erratic, 

demonstrated by shorter scanning length and fewer fixations overall.  Reduced eye contact in 

ASD was not shown to be the result of social discomfort, nor did it vary by differences in 

emotional expression. In fact, it is difficult to establish if people with ASD are actively avoiding 

eye contact (Kliemann, Dziobek, Hatri, Steimke, & Heekeren, 2010). In  22q11.2DS, however, 

there is a paucity of research about the extent and purpose of actual avoidance of faces, 

particularly the eyes  (Karagoz Uzel, 2013). In individuals with 22q11.2DS, lack of eye contact 

is often a result of social anxiety or lack of interest.  Problems with attention regulation and 

initiating conversation are present in children with 22q.11.2DS regardless of a comorbid ASD 

diagnosis (Kates et al., 2007; Simon, 2008; Tang et al., 2014). To date, studies involving 

22q11.2DS and eye gaze are limited to tasks investigating cognitive impairment but not social 

impairment (Andersson et al., 2008; Campbell et al., 2010; Swillen et al., 1999; Tang et al., 

2014).   

Campbell and colleagues (2010) found that children with 22q11.2DS spend significantly 

less time looking at the entire face or at the eyes and more time looking at mouths. This could be 

a result of less time attending to faces or to differences in associative brain regions involved in 

processing social stimuli.  Functional MRI studies demonstrate that children with 22q11.2DS 

have less activation in the fusiform face area relative to TD controls when looking at faces 

compared to houses (Andersson et al., 2008). During tasks with facial stimuli, less activation in 

frontal cortex and right insula, but greater activation in the occipital lobe was found (Van 

Amelsvoort et al., 2006). Less activation in the fusiform area may be a result of less time spent 

looking at faces, as a result of atypical brain development, or both.  However, the fusiform face 

area is not solely attuned to faces but is also an associative brain region combining information 
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from the larger visuoperceptual system.  Complex cognition and social interaction arises from 

the coordinated action of associative brain regions that are dependent on efficient functioning of 

a network of modules.  The efficient function (and development) of one module is dependent 

upon the function (and development) of the other modules it is connected to.  For example, if a 

brain region is processing and associating information from four modules but one of those 

models is not working well, the efficiency of the association region is reduced.  Consequently, 

repairing the impaired module or compensating for it should lead to improvement in higher-order 

dependent brain processes. 

Atypical brain structure may affect the quality of social experiences, but it is also 

possible that poor social experiences earlier in life may determine atypical brain development. 

An important difference between children with 22q11.2DS as a group and those with ASD is that 

social competence appears to be more readily trainable in children with 22q11.2DS compared to 

children with ASD.  For example, Vis A Vis, a socio-emotional computer-based training 

program, has been shown to improve ASD-like behaviors such as eye contact and recognition of 

emotional states of others in children with ID and 22q11.2DS (Angkustsiri et al., 2014; Glaser et 

al., 2012).  These skills lasted beyond the training period and were reflected in pre- and post-

training changes in brain activity in response to social stimuli measured using fMRI in children 

with 22q11.2DS (Karagoz Uzel, 2013). Furthermore, children with 22q11.2DS performed worse 

than TD controls in a video-based task designed to investigate the relationship between theory of 

mind (ToM) and reciprocal social behavior regardless of whether the children with 22q11.2DS 

had a comorbid diagnosis of ASD (Ho et al., 2012). Even in the absence of comorbidity with 

each other, 22q11.2DS and ASD share many neuropsychiatric and behavioral features that may 

contribute to several impairments like the presence of circumscribed interests, difficulties in 



MIRROR NEURONS IN 22Q11.2DS     12 
 

sharing attention, and initiating conversation (Kates et al., 2007). 22q11.2DS and ASD share 

visual features such as an abnormal scan path that may reduce activation in the fusiform gyrus 

and medial temporal lobes (Karagoz Uzel, 2013). Children with ASD also cannot shift thought 

and motor outputs on demand as a result of erratic executive function (Ito, 2004). Damage to the 

structure or functionality of the operculum region is tied to deficits in perception, attention, and 

awareness. For example, enlarged Sylvian fissures detected in a sample of infants with 

22q.11.2DS are believed to demonstrate delayed growth in the opercular region, accounting for 

oromotor difficulties that contribute to communication deficits and subsequently, social deficits 

(Bingham et al., 1997; Rolland et al., 1995; Van Amelsvoort et al., 2001). This gives us more 

cause to suspect children with 22q11.2DS may have lower activation in the operculum region, 

fronto-temporal cortex, basal ganglia, and possibly sensorimotor cortices than their TD peers (Ho 

et al., 2012; Niklasson et al., 2005; Rolland et al., 1995; Sahyoun, 2009).  

The direct link between perception and action is a basic mechanism for social interactions 

(Jackson & Decety, 2004). Understanding intentionality of motor movements, irrespective of 

theory of mind (ToM) processes, can demonstrate social competence (Enticott, Johnston, 

Herring, Hoy, & Fitzgerald, 2008). In early infancy, disruptions of core aspects of brain function 

related to motor control and planning are also likely to result in problematic behaviors like motor 

deficits and the inability to perceive and accurately imitate social interactions early in life (Hall 

& Owen, 2015).  

Perceptual Problems in 22q11.2DS 

Children with 22q11.2DS have demonstrated non-verbal cognitive disturbances in visual 

and spatial perception, learning, memory, attentional processes, and problem-solving skills in 

multiple studies (Bish et al., 2005; Simon, 2008; Swillen et al., 1999; Tang et al., 2014). While 
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there is consensus on visuospatial task performance deficits in children with 22q11.2DS, the 

deficit appears to vary by demands put on the participants.  Howley and colleagues (2012) found 

that vigilance affects impairment on visual motor tasks and that children with 22q11.2DS were 

similar to TD participants in terms of accuracy. However, deficits in psychomotor speed in 

22q11.2DS were due to poor fine motor coordination during timed tasks. Without being timed, 

speed for 22q11.2DS was comparable to TD in most cases (Howley, Prasad, Pender, & Murphy, 

2012). Simon and colleagues (2008) used fMRI to assess the neural correlates of deficits 

processing spatial and temporal visual information. They posited that atypical brain development 

in children with 22q11.2DS contributes to less resolution and acuity leading to poorer 

foundational spatiotemporal competencies.  In turn, this affects the development of cortical 

circuitry that supports efficient higher-order cognitive functions such as mathematics and 

abstract and relational reasoning (Simon, 2008). There are other indicators of atypical visual 

processing in people with 22q11.2DS as well. Bearden et al. (2001) found deficits in spatial 

memory, object memory and general visuospatial cognition in children with 22q11.2DS. Other 

studies found object speed did not appear to affect their performance. Instead, increasing 

cognitive demands, such as distraction from introducing multiple objects, tends to reduce 

performance accuracy and acuity in children with 22q11.2DS, but not TD children (Bish et al., 

2005; Cabaral, Beaton, Stoddard, & Simon, 2012; Simon et al., 2005; Swillen et al., 1999; 

Villalon-Reina et al., 2013). Although there are measurable differences in attention and memory 

as well as performance abilities comparing individuals with 22q11.2DS and TD controls 

(particularly in spatial and visuospatial skills) verbal abilities are often comparable to TD 

children, and task performance differences may reflect subtle differences in observable behavior 

that shape brain development. For example, cognitive abilities like time-keeping and distance are 
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thought to build on visuospatial abilities (Hubbard, Piazza, Pinel, & Dehaene, 2005). Specific 

reduction in volumes of the parahippocampal gyrus, fusiform gyrus, lingual gyrus, posterior 

cingulate, cerebellum, cuneus, and precuneus were all noted to contribute to poor visuospatial 

task performance in 22q11.2DS (Sahyoun, 2009; Simon, 2007, 2008).  

Overall demands on executive function and use of fine motor skills may account for 

poorer results in perceptual processing in special populations like 22q11.2DS. In addition to 

integration issues in the visual system, some motor systems may also be impaired in 22q11.2DS 

and ASD as a result of poor modeling of others’ motor movement in their brain (Bish et al., 

2005; Courchesne et al., 1994; Howley et al., 2012; Ito, 2004; Simon et al., 2005; Swillen et al., 

1999; Tang et al., 2014).  For example, demands on executive function like selectivity in 

attentional processes tend to slow down reaction times in children with 22q11.2DS. However, 

unlike individuals with ASD (excluding HFA), only poor fine motor skills accounted for the 

decline in reaction time in less demanding tasks in 22q11.2DS, indicating children with 

22q11.2DS have specific deficits not completely mediated by intellectual disability (Howley et 

al., 2012). Atypical brain structure, such as partial absence of the corpus callosum (CC) and 

volume reduction in the posterior CC, is suggestive of low interhemispheric connectivity that 

likely result in lower neural activity in 22q11.2DS (Bingham et al., 1997). In contrast, other 

studies found larger volumes are found in the midsagittal CC, posterior CC, and the anterior 

(rostral) portion of the CC that sometimes appears larger with a bending angle. Response time in 

task was found to be inversely related to the size of the genu of the CC, but the direct 

involvement of the size and morphology was not definitive about its effects on cognitive abilities 

(Machado et al., 2007; Simon et al., 2005; Van Amelsvoort et al., 2001). The cerebellum also 

plays a large role in cognition by its reciprocal connections with the basal ganglia, thalamus, and 
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brainstem. It affects cognition (attention shifting, spatial attention), motor control (coordination), 

and the ability to detect change. The overall volume in individuals with 22q11.2DS is reduced in 

the cerebellum including the vermis, albeit inconsistently (Casey, Tottenham, Liston, & Durston, 

2005; Millan et al., 2012; Simon et al., 2005; Van Amelsvoort et al., 2001). Reduced topokinetic 

memory may also contribute to poorer motor control in 22q11.2DS. Believed to be a function in 

the limbic region including the hippocampal formation, insular region, dorsolateral frontal 

cortex, and the parietal cortex, topokinetic memory in spatial memory tasks requires a memory 

of a previously experienced movement in space to be accessed through self-generated eye 

movement or actual locomotor movement. Activation of these regions in 22q11.2DS and ASD is 

reduced, but the dorsolateral frontal cortex is completely inactive in ASD in spatial tasks 

(Berthoz, 1997; Ito, 2004). 

The Mirror Neuron System  

Building on Rizzolatti’s 1988 study where researchers recorded the activation of three 

macaque monkeys’ motor areas while performing several motor movements their arm, Di 

Pellegrino and colleagues used tungsten microelectrodes to record electrical microstimulation of 

the F5 to determine if a monkey would have similar activation in observing a hand movement 

without participation. Strikingly, results revealed the same activation occurred whether a monkey 

was performing the action or watching the action, irrespective of a change in grip (Di Pellegrino, 

Fadiga, Fogassi, Gallese, & Rizzolatti, 1992). Rizzolatti et al., (2001) later investigated the 

concept of the visual hypothesis of action, suggesting activation in the premotor cortex translates 

goals into action by visual stimuli while watching an object being manipulated. Heyes (2011) 

explained, however, that for activation to be truly of a mirrored nature, it has to be observed only 

and include no participation.  
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Vision occurs by the intake of light in the retina, which translates it into neural signals via 

visual transduction. Neural signals enter the visual cortex via retinal geniculate striate in the 

primary motor cortex and end in of cortical layer IV. Information enters the thalamus, visual 

cortex (striate and prestriate), and then the association cortex (Kandel, Schwartz, Jessell, 

Siegelbaum, & Hudspeth, 2000). The visual system responds to change in the form of 

movement, and spatial organization is dependent on simple edge detection. Deficits in 

hierarchical organization such as detecting and understanding a stimulus are exhibited in 

impaired individuals. As visual input is the precursor to activating the mirror neuron system, 

atypical scanning (or possibly erratic saccadic movement) may contribute to decreased activation 

or be indicative of other structural and functional issues. This may affect eye field activation as 

well as regions of the brain associated in mirror tasks. Impairment to visual processes alone may 

inhibit mirror neuron activation (which can occur without higher cognitive processes) and 

subsequently, the understanding of movements and intention in others (Heyes, 2010; Kandel et 

al., 2000; Lang et al., 1998). MNS is created from action and perception cycles that can be 

mediated by internal representation of a movement, allowing us to create an internal 

representation of that action automatically generated in the premotor cortex. This helps us react 

to our environment and anticipate consequences. These representations may be used to interpret 

the movement and behaviors of others; however interpreting is dependent on individual cognitive 

abilities (Buccino et al., 2001; Jackson & Decety, 2004).  

Visuospatial, motor planning/control, and executive processes are involved in sensing 

and perceiving actions in others. These systems are the foundation of higher order cognitive 

processes such as understanding intentionality and theory of mind (ToM). However, deficits in 

basic visual and motor systems as well as visuospatial attention have been found in 22q11.2DS 
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that may explain some of the perceptual issues affecting social interactions and literal 

interpretation these children have in understanding the behavior of others in social interactions 

(Campbell et al., 2010; Courchesne et al., 1994; Howley et al., 2012; Ito, 2004; Niklasson et al., 

2005; Simon, 2007, 2008; Simon et al., 2005; Swillen et al., 1999; Villalon-Reina et al., 2013). 

Activation of mirror neurons, also called canonical neurons, reflects motor, social, and cognitive 

processes. The mirror neuron system (MNS) is implicated in understanding action behavior by 

creating an internal account of an action and using it to organize future behavior (Rizzolatti, 

Fogassi, & Gallese, 2001). Deficits in motor, social, and cognitive processes like those present in 

22q11.2DS and ASD are likely to show decreased activation in the MNS. 

Mirror neurons have been a source of studying theory of mind (ToM), associated 

learning, and imitation in humans. The ToM concept explains meta-cognitive abilities such as 

intentions, beliefs, and desires of others as well as the ability to anticipate consequences. To 

accomplish this, an individual must make the distinction between self and others; the ability to 

make this distinction supports the idea that perception and production of an action means the 

interpretation of other person’s actions are functionally connected (Jackson & Decety, 2004; 

Kaplan & Iacoboni, 2006; Rizzolatti et al., 2001; Schulte-Rüther, Markowitsch, Fink, & Piefke, 

2007). Furthermore, functional and structural changes over time in populations with various 

cognitive or psychiatric disorders have helped shed light on specific impairments that have aided 

(and continue to aid) in the treatments of disorders such as ASD, HFA, and ADHD (Heeger & 

Ress, 2002; Iacoboni et al., 2005; Ito, 2004; Kaplan & Iacoboni, 2006; Rizzolatti et al., 2001; 

Schulte-Rüther et al., 2007). 

The 1992 hallmark study propelled future publications suggesting that activation during 

mirror neuron tasks may also be implicated in ToM, intention, and empathy (Dapretto et al., 
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2006; Iacoboni et al., 2001; Iacoboni et al., 2005). Using mirror neurons to assess ToM has also 

been assessed in special populations having intellectual disabilities (ID), other cognitive 

impairments, brain damage from head injuries, and brain lesions (Fisch, 2013; Ito, 2004; 

Schulte-Rüther et al., 2007; Spengler, von Cramon, & Brass, 2010). While many studies focused 

on children with ASD (particularly empathy), no mirror neuron tasks have been performed on 

children with 22q11.2DS. Assessing theory of mind, intention, and basic mirror and motor 

systems could cite evidence of cognitive impairments as well as neural impairments in children 

with 22q11.2DS.  

In one meta-analysis, human and non-human animal studies appear to have robust, 

“mirror-like” activation when watching object manipulation from others. In whole brain analysis, 

the largest areas of activation occurred in the fronto-temporal regions, parietal lobes, frontal 

lobes, and temporal lobes in humans (Molenberghs, Cunnington, & Mattingley, 2012). 

According to Kandel et al. (2000), the operculum region covers the insula and encompasses parts 

of the frontal, temporal, and parietal lobes, integrating the inferior frontal gyrus (BA 44), 

superior temporal gyrus (BA 22, 41, 42, 45), and transverse gyrus (BA 41, 42). In other studies, 

these regions are known to demonstrate executive functioning such as behavior inhibition and 

motor inhibition (Seitz, Gaebel, & Zielasek, 2011). The inferior frontal gyrus integrates 

executive function and working memory (WM) to contribute to decision-making and response 

inhibition (Millan et al., 2012). Superior temporal gyri activation is expected for TD participants 

and is thought to be active during ToM processing and making associations. Outside of 

mentalizing an action while observing it, ToM is theorized to give people the ability to be 

successful in their social interactions when they are able to understand in desires of others 

(Buccino et al., 2001; Lyons, Caldwell, & Shultz, 2010; Schulte-Rüther et al., 2007). Language 
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systems such as comprehension are also involved in MNS and support the visual hypothesis of 

understanding action through visual analysis (Rizzolatti et al., 2001); but activation in areas of 

language expression during an MNS manual manipulation is not clear (Molenberghs et al., 

2012).  

Brain networks are activated by stimuli presented in mirror neuron experiments include 

parts of the somatosensory and motor cortices when observing movement; therefore activation in 

these areas are expected in the present experiment. While residing in the parietal lobe, these 

regions also share simultaneous activation from parts of the frontal (premotor cortex) and 

temporal lobes. Robust activation in TD individuals is found in the postcentral gyrus (BA 3, BA 

7, BA 40), superior parietal lobule (BA 7), inferior parietal lobule (BA 40), precuneus (BA 7), 

precentral gyrus (BA 9, BA 44), inferior frontal gyrus (BA 9, BA 44), superior frontal gyrus (BA 

9), medial frontal gyrus (BA 9), insula (BA 13), superior temporal gyrus (BA 45), and 

supramarginal gyrus (BA40) (Buccino et al., 2001; Iacoboni et al., 2001; Kandel et al., 2000; 

Lombardo et al., 2010). Activity in the inferior parietal lobule is associated with conceptualizing 

motor acts (Rizzolatti, Fabbri-Destro, & Cattaneo, 2009) while medial frontal gyrus (MFG) 

activation is associated with fast top-down modulation of sensory activity in sensory cortical 

areas. The MFG also collaborates with supplementary motor area important for subjective 

experience of contextualizing sensory processing in valenced and non-valenced tasks (Lombardo 

et al., 2010; Seitz et al., 2011). In prior studies, the postcentral gyrus of the primary motor cortex 

was found to be active in motor planning, motor learning, motor imagery, and saccadic 

movements (Casey et al., 2005; Kandel et al., 2000).  

In studies of TD humans, working memory, spatial memory, retrieval, and memory 

encoding are involved in MNS sensory-perception (Berthoz, 1997; Cole & Paillard, 1995; Millan 
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et al., 2012; Seitz et al., 2011). Executive functions related to planning are thought to create an 

image of an action coupled with the inhibition to not mimic the movement (Buccino et al., 2001; 

Lombardo et al., 2010; Spengler et al., 2010; Wang, Ramsey, & Hamilton, 2011). Activation 

pertaining to behavior and motor inhibition in these regions appear to be a result of cooperating 

during the task. Pertinent to the present study, attentional processes involving visuospatial and 

visuomotor attention was also active in the precentral gyrus in other studies for TD individuals 

(Berthoz, 1997; Casey et al., 2005; Hubbard et al., 2005; Schreiner et al., 2014). Insula (and 

claustrum) activation in BA 13 is often attributed to fear or disgust, but in other studies, the 

insula also appears active during neutral conditions involving motor control, perception, and 

general cognitive functioning. However, this information from the latter conditions was gathered 

by studying individuals with brain damage in that region (Kamphaus & Reynolds, 2007; 

Spengler et al., 2010). Activation in the insula region is likely to occur as well.  

Activation in the basal ganglia, specifically the bilateral caudate, globus pallidus, and 

substantia nigra (SN) was common in TD individuals during mirror tasks, but usually to a lesser 

degree than operculum and sensorimotor regions (Molenberghs et al., 2012). While rarely 

addressed in MNS tasks, the basal ganglia is thought to be involved in cortico-subcortical mirror 

neuron networks and appears active in response to movement in other tasks (Bonini, 2017; 

Molenberghs et al., 2012). In fMRI mirror tasks, the caudate is implicated in WM integration and 

detecting change, which is likely to occur during changing conditions in a task (Casey et al., 

2005; Millan et al., 2012).  

The Current Study   

This study investigates differences in functional magnetic resonance (fMRI) activation in 

children with 22q11.2DS and typically developing children while observing hand-object 
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manipulation in others. This is the first study comparing children with 22q11.2 with age-matched 

TD peers specifically looking at mirror neuron system activation within the operculum region to 

assess higher cognitive functioning, somatosensory/motor cortex (SI & SII) for sensory 

interpretation, and basal ganglia for gross motor activity. As MNS activation has never been 

studied in this population, our expectations about the amount and location of activation differs 

from previous studies in typical and ASD populations. Due to their differences with visuospatial 

attention, social abilities, and motor skills, it is likely that children with 22q11.2DS will show 

less activation that their TD peers.  

 

Hypothesis  

Aim: To compare motor neuron system function in children with 22q11.2DS to an age-matched 

group of TD children while watching motor action in others. Focal brain regions will include 

canonical somatosensory and premotor cortex and the basal ganglia. These regions are involved 

in processing, integrating, and perceiving motor, sensory, and visual information of action in the 

self and in others. 

 

Hypothesis: Children with 22q11.2DS will show less functional activation than TD children in 

brain regions considered part of the mirror neuron system while watching videos of others’ 

motor actions during an fMRI scan. More specifically, children and adolescents with 22q11.2DS 

will have less functional brain activation in sensorimotor areas, the opercular region, and in the 

basal ganglia compared to TD children and adolescents when observing video of others’ motor 

action. 
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Method 

Participants 

Analysis 1 

A sample of 36 children and adolescents with 22q11.2DS (n =16) and TD (n = 20) 

between the ages of 7 and 16 years were recruited for this study. Two participants (one from 

each group) were dismissed from analysis due to excessive movement artifacts in the MRI scans. 

A diagnosis of 22q11.2DS was confirmed by fluorescence in-situ hybridization. Participants with 

22q11.2DS were excluded if they were below 6 years of age, had a head injury, focal 

neurological abnormalities, or had a central nervous system infection. TD participants were 

excluded if they had a genetic disorder, psychiatric diagnosis, a learning disability or behavioral 

disorder. 

Analysis 2 

A sample of 29 children and adolescents with 22q11.2DS (n =15) and TD (n = 16) 

between the ages of 7 and 16 years were recruited for this study. Five participants from the TD 

group and four from the 22q11.21DS group were removed due to excessive movement in the 

MRI scanner. Three participants were added to the 22q11.2DS group that were acquired since 

the first analysis. The inclusion and exclusion requirements of the groups remained the same (see 

Figure 2). 

Table 1: Demographics 

 22q11.2DS (n=15) TD (n=16) 

 M M 

Age 13.18 (.73) 10.94 (.67) 

Gender (Male) 8 7 

Gender (Female) 7 9 
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Procedure 

All data collection methods were approved by the Institutional Review Board at the 

University of New Orleans (UNO). As part of a larger on-going study, participants were 

recruited through national and state-level 22q11.2DS support networks, flyers, social media, and 

word of mouth. Visits lasted between 2-3 days where they completed computer-based tasks, 

questionnaires, intelligence testing, and structural and functional magnetic resonance imaging.  

Intelligence Measures 

 Wechsler Intelligence Scales for Children (WISC-IV) was administered to all subjects to 

assess subscales domains in verbal comprehension, working memory, processing speed, 

perceptual reasoning and full-scale IQ (FSIQ) (Wechsler, 2003).  

Brain Imaging Measures 

Structural magnetic resonance imaging (sMRI) was conducted at the Touro Imaging 

Center in New Orleans, Louisiana, USA. Images were acquired on a three Tesla Siemens 

MAGNETOM Verio system and a 10 channel head coil. Brain structures were obtained using a 

T1-weighted anatomical images using a MPRAGE sequence with the following acquisition 

parameters: TR =1900; TE = 2.48; TI = 900; flip angle = 9º; slice thickness = 1 mm, with a 256 x 

256 acquisition matrix. Function data was collected using an EPI Blood Oxygen Level 

Dependent (BOLD) contrast with the following parameters: 31 slices, 70 volume, TR = 3000 

msec; slice thickness = 4mm; interslice time = 96; pixel spacing = 3.75; repetitions = 3000. To 

reduce motion artifacts, participant heads were stabilized using head and ear pillows. Participants 

were excluded from the study if they had greater than 3 mm of head motion during the functional 

scans. 
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Neutral Motor Stimulus Video 

A block design was used with a goal-directed action viewing task alternated with rest, in 

order to examine the MNS.  During the action viewing task, subjects viewed clips of someone 

performing actions on objects.  The clips consisted of the individual’s arm and hand only to 

avoid any face or emotion processing. During rest, subjects were shown a fixation cross in the 

middle of the screen.  Five blocks of action viewing were alternated with 5 blocks of rest 

(Stimulus: 21 seconds; Rest: 21 seconds) for a total of 3.5 minutes.  The task was presented 

using EPrime 2.0 Pro (Psychology Tools, 2008, United Kingdom). See Figure 1. 

 

Statistical Analyses 

Analysis 1 

  Anatomical and functional data was analyzed using BrainVoyager QX 2.8 (BVQX; Brain 

Innovation, The Netherlands, Goebel et al., 2006). Preprocessing of functional scans were 

modified for motion correction, slice scan time correction, high frequency temporal filtering, and 

removal of linear trends. Functional and 3-D structural measurements were co-registered and 

transformed into Talairach space (Talairach & Tournoux, 1988). The resulting data sets (voxel 

size 2 × 2 × 2 mm3) were spatially smoothed with a 6 mm 3 full width at half-maximum Gaussian 

kernel for group analysis. Talairach scales were combined to form a template brain. A 

multistudy, multisubject general linear model was used to analyze the data. After retrieving 

clusters from regions of interest (ROI), coordinates were entered into Talairach Daemon 

(Lancaster et al., 2000) to identify the lobule, structure, voxel count, and Brodmann areas of 

activation. High voxel count is usually indicative of prominent activation in a specific area. 

Group differences in BOLD signal during the task were first compared using a fixed effects 
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general linear model (FFX GLM) and then using a random effects general linear model (RFX 

GLM). False discovery rate (FDR) correction was automatically applied to the statistical 

parametric maps to correct for multiple comparisons. The statistical threshold estimator (STE) 

plugin for BVQX also identified the number of voxels (47 voxel minimum) needed within a 

cluster to have a 5% FDR after noise reduction. Full width at half maximum (FWHM) was 

measured by identifying points on the signal curve that were half the maximum value, FWHM= 

3.91. Significance value was set to (p = 0.001) to obtain stringent results (Genovese, Lazar, & 

Nichols, 2002). A fuzzy clustering algorithm (FCA) was applied to the statistical parametric 

maps generated from the RFX GLM to separate artifacts within the task. This method allow 

activated voxels to belong to two or more clusters by group where intracluster distances are 

minimized and intercluster distances are maximized (Tong, Zeng, Sang, & Zeng, 2010). The 

FCA is used when subjects within a group have significant heterogeneity; it manipulates 

activation around the centroid by merging clusters by temporal features (e.g. eliminating 

physiological data like cardiac action and breathing) (Windischberger et al., 2003). The merging 

factor is a threshold of z-scores calculated between two clusters at the end of each iteration. If 

their mutual z-scores are below the merging factor, the clusters are combined. FCA reduces noise 

from the signal-to-noise ratio at the expense of losing signal to gain accuracy of clustering with a 

more stringent false discovery rate of p < 0.001. After converting volumes of interest (VOIs) to 

voxels at a 300-voxel threshold, average signal change, cluster count, peak voxels, and values 

were calculated using BVQX. Coordinates of activation were then entered into Talairach 

Daemon to identify activation by hemisphere, lobule, structure, and cortices (Lancaster et al., 

2000).  
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Analysis 2 

  After removing five scans from the TD group, and four scans from the 22q11.2DS group 

due to the lack of functional activation, we added another three scans to the 22q11.2DS group 

which changed the dynamic of the analysis. Anatomical and functional data was analyzed using 

BrainVoyager QX 2.8 (BVQX; Brain Innovation, The Netherlands, Goebel et al., 2006). 

Preprocessing of functional scans were modified for motion correction, slice scan time 

correction, high frequency temporal filtering, and removal of linear trends. Functional and 3-D 

structural measurements were co-registered and transformed into Talairach space (Talairach & 

Tournoux, 1988). The resulting data sets (voxel size 2 × 2 × 2 mm3) were spatially smoothed 

with a 6 mm 3 full width at half-maximum Gaussian kernel for group analysis. Talairach scales 

were combined to form a template brain. A multistudy, multisubject general linear model was 

used to analyze the data. After retrieving clusters from regions of interest (ROI), coordinates 

were entered into Talairach Daemon (Lancaster et al., 2000) to identify the lobule, structure, 

voxel count, and Brodmann areas of activation. High voxel count is usually indicative of 

prominent activation in a specific area. Group differences in BOLD signal during the task were 

first compared using a fixed effects general linear model (FFX GLM) and then using a random 

effects general linear model (RFX GLM). False discovery rate (FDR) correction was 

automatically applied to the statistical parametric maps to correct for multiple comparisons. The 

statistical threshold estimator (STE) plugin for BVQX also identified the number of voxels (37 

voxel minimum) needed within a cluster to have a 5% FDR after noise reduction. Full width at 

half maximum (FWHM) was measured by identifying points on the signal curve that were half 

the maximum value, FWHM= 3.11. Significance value was set to (p = 0.001) to obtain stringent 

results (Genovese et al., 2002). Deleting scans with structural and functional issues allowed us to 
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complete a classical RFX GLM analysis of the groups. After converting volumes of interest 

(VOIs) to voxels at a 300-voxel threshold, average signal change, cluster count, peak voxels, and 

values were calculated using BVQX. Coordinates of activation were then entered into Talairach 

Daemon to identify activation by hemisphere, lobule, structure, and cortices (Lancaster et al., 

2000).  

 

Results 

FSIQ 

 Overall, TD children have higher composite FSIQ than children with 22q11.2DS: TD= 

109.33 (3.54); 22q= 65.47 (2.45). TD children in our sample have also displayed greater aptitude 

in verbal comprehension, working memory, processing speed, and perceptual reasoning than 

children with 22q11.2DS. See Tables 2 and 3. Children with 22q11.2DS tend to perform better in 

verbal comprehension than the other subscale domains; however, it is still much lower than their 

TD peers: verbal comprehension: TD= 110.47 (3.42); 22q= 65.47 (2.45). See Figures 3 and 4; 

Tables 2 and 3. FSIQ scores were not added as covariates of this study as scores are not an 

accurate indicator of intelligence, particularly in 22q11.2DS. Subscales of the WISC-IV were not 

added as covariates of fMRI activation as a previous experiments using multiple eye tracking 

(Cabaral et al., 2012) established the inability of intelligence scores to properly link both 

cognitive and neural substrates such as processing visual stimuli (Simon, 2007).   
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Analysis 1 

Fixed Effects GLM 

Results revealed significant activation for FFX GLM revealed peak differences between 

groups in the inferior frontal gyrus, t(36) = 4.21, parahippocampal gyrus, t(36) = 4.80, thalamus, 

t(36) = 5.82, precuneus, t(36) = 506, and temporal lobes (See Table 4). Differences appear to 

favor the right hemisphere (see Figure 5). FFX also revealed within group differences in TD 

where three major clusters with peaks in the middle occipital gyrus β=33.86, inferior temporal 

gyrus β=32.94, and the inferior parietal lobule β=28.75. See Table 5a and Figure 6a. FFX GLM 

also revealed within the 22q11.2DS group three major clusters with peaks in the middle temporal 

gyrus β=22.32 and the middle occipital gyri, β=23.13, β=22.62 respectively. See Table 5b and 

Figure 6b. 

 

Random Effects GLM1 

Significant activation was found in both groups for all major regions associated with the 

mirror neuron network. Results revealed peak differences between groups in the inferior frontal 

gyrus t(36)= 4.40, p<.001, parahippocampal gyrus t(36)= 4.60, p<.001, and fusiform gyrus 

t(36)= 4.30, p<.001, where t-values represent statistical differences between group during the 

active condition (video). See Table 6 and Figure 7. Within group differences revealed TD having 

peak activation in the fusiform gyrus t(20)= 100, postcentral gyrus t(20)= 81.86, MFG t(20)= 

76.89, and cingulate gyri t(20)= 87.19 (See Table 7a and Figure 8a). Within group differences 

                                                           
1 Classical RFX analysis could not be conducted during Analysis 1 due to the lack of signal change and 
activation in the 22q11.2DS group, even when lowering the threshold of shared activation to 10%. While 
half the group had activation, four participants had little to no activation and another four participants 
with very robust activation. 
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for 22q11.2DS (22q) showed peak activation in the middle occipital gyrus t(16)= 99.99 and 

medial frontal gyrus t(16)= 92.19. See Tables 7b and 8; Figures 8b. Most activation in 

22q11.2DS appears to overlap with TD activation. 

Signal change between groups were not significantly different using FCA, 22q: β= 74.68; 

TD: β= 73.89. See Figure 9. Region of interest (ROI) time course averages resulted in 

22q11.2DS having a lower average during mirror neuron task in the following regions: inferior 

frontal gyrus (TD= 809, 22q= 700), postcentral gyrus (TD= 980, 22q= 980), precentral gyrus 

(TD= 915, 22q= 804), superior temporal gyrus (TD= 1094, 22q= 1025), and globus pallidus 

(TD= 780, 22q= 729). See Figures 10 and 11a-11e. 

Because signal changes are not significantly different, voxel count was documented using 

fuzzy clustering analysis (FCA) from the statistical parametric maps generated from the RFX 

GLM.  The sensorimotor, motor, and premotor cortices (BA 3, BA 7, BA 9, BA 13, BA 40, BA 

44, BA 45) showed differences in activation by voxel count (VC). TD had robust activation in 

the postcentral gyrus (VC= 32,899), superior parietal lobule (VC= 9,700), precentral gyrus (VC= 

54,003), inferior frontal gyrus (VC= 77,898), superior frontal gyrus (VC= 64,764), insula (VC= 

30,017), middle frontal gyrus (VC= 99,711), precuneus (VC= 49,299) and supramarginal gyrus 

(VC= 8970). See Table 8. In 22q11.2DS, activation did occur in all motor areas, but to a lesser 

extent: postcentral gyrus (VC= 3,885), superior parietal lobule (VC= 626), precentral gyrus 

(VC= 3,847), inferior frontal gyrus (VC= 1,852), superior frontal gyrus (VC= 2,391), insula 

(VC= 1,651), middle frontal gyrus (VC= 7,296), precuneus (VC= 1,967) and supramarginal 

gyrus (VC= 1,564). See Table 9. 

In the TD group, clusters of activation were found in the opercular region (BA 22, BA 

41, BA 42), mainly the superior temporal gyrus (VC= 54,623), middle temporal gyrus (VC= 
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66,575), inferior frontal gyrus (VC= 77,898), and transverse gyrus (VC= 2,329). As a group, 

children with 22q11.2DS clusters of activation in reponse to watching the video segments of 

motor activity were  found in the superior temporal gyrus (VC= 3,978), middle temporal gyrus 

(VC= 6,813), inferior frontal gyrus (VC= 1,852), but not the transverse gyrus.  

  The basal ganglia, involved in attentional and motor processes as well as the sensory 

integration, was also active in TD in the caudate (VC= 10,541), globus pallidus (VC= 10,754), 

and substantia nigra (VC= 4,022). Activation occurred in the whole caudate (head, body, tail) for 

TD, but only the caudate body for 22q11.2DS (VC= 133). While both medial and lateral globus 

pallidus was active in TD, only the lateral GP was active in 22q11.2DS (VC=106). Activation in 

the substantia nigra was not found in 22q11.2DS. See Figure 12 and 13.  

Analysis 2 

Classical Random Effects GLM 

Significant activation was found in both groups for all major regions associated with the 

mirror neuron network. Results revealed peak differences between groups in the middle temporal 

gyri t(30)= 5.46 and 5.97, p<.001, inferior frontal gyri t(30)= 5.59 and 5.85, p<.001, and middle 

temporal gyrus t(30)= 5.97, p<.001, where t-values represent statistical differences between 

group during the active condition (See Table 10 and Figure 14). Within group differences 

revealed TD having peak activation in the culmen of the cerebellum t(16)= 100 and middle 

frontal gyrus t(16)= 92.19 (See Table 10 and Figure 15a). Within group differences for 

22q11.2DS showed peak activation in the middle occipital gyrus t(15)= 99.99 and 98.3, the 

inferior frontal gyrus t(15)= 75.59, and the insula t(15)= 74.79 (See Tables 11a and 11b; Figure 

15b). 
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Signal change between groups varied slightly, with 22q11.2DS being lower, 22q: β= 

75.01; TD: β= 82.84. The average rate of change noted activation agreement within groups 

between 70% to 100% of the time with TD showing greater rate of change, 22q11.2DS: low: 70, 

high 87.19; TD: low: 70, high: 96.1. See Figure 16. Region of interest (ROI) time course 

averages resulted in 22q11.2DS having a lower average during mirror neuron task in the 

following regions: inferior frontal gyrus (TD= 809, 22q= 700), parahippocampal gyrus (TD= 

949, 22q= 939), precentral gyrus (TD= 919, 22q= 920), superior temporal gyrus (TD= 1014, 

22q= 1004), and putman (TD= 889, 22q= 649). See Figures 17 and 18a -18e. 

Because signal changes were not significantly different, voxel count was documented 

from the statistical parametric maps generated from the classical RFX GLM.  The premotor 

cortex appeared to be more active than motor and sensorimotor cortex noted by voxel count 

(VC) in the following Brodmann areas (BA 9, BA 13, BA 40, BA 44, BA 45). TD had the most 

robus activation in the inferior parietal lobule (VC= 37), middle frontal gyrus (VC= 8,549), 

precentral gyrus (VC= 2,493), inferior frontal gyrus (VC= 41,494), and insula (VC= 11,697). In 

22q11.2DS, activation occurred in the same regions as TD, but to a lesser extent: inferior parietal 

lobule (VC= 39), middle frontal gyrus (VC= 1,051), precentral gyrus (VC= 275), inferior frontal 

gyrus (VC= 3,588), and insula (VC= 1,424).   

In the TD group, clusters of activation were found in the opercular region (BA 22, BA 

41, BA 42), mainly the superior temporal gyrus (VC= 8,576), middle temporal gyrus (VC= 

12,835), inferior frontal gyrus (VC= 21,494), and transverse gyrus (VC= 49). As a group, 

children with 22q11.2DS clusters of activation in reponse to watching the video segments of 

motor activity were found in the superior temporal gyrus (VC= 3,689), middle temporal gyrus 

(VC= 6,807), inferior frontal gyrus (VC= 3,588), and the transverse gyrus (VC= 364).  
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The basal ganglia, involved in attentional and motor processes as well as the sensory 

integration, was also active in TD in the putamen (VC= 5,645), globus pallidus (VC= 2,288), 

caudate (VC= 2,122), red nucleus (VC= 469) and substantia nigra (VC= 333). Activation occurred 

in the whole caudate (head, body, tail) for TD, but only the caudate body for 22q11.2DS (VC= 

135). While both medial and lateral globus pallidus was active in TD, only the lateral GP was 

active in 22q11.2DS (VC= 138). Activation was found in the putamen (VC= 611), but not the 

substantia nigra in 22q11.2DS. See Tables 12 and 13 and Figures 19 and 20. 

 

Discussion 

Children with 22q11.2DS 

The aim of this study was to measure brain activity in regions that make up the mirror 

neuron system in children with 22q11.2DS in comparison to TD children.  Children with 

22q11.2DS demonstrated less activation overall than their TD peers with little differences in 

signal change in both analyses.  Overall, the groups did not differ in the locations of shared 

activation across individuals within each group. Though not wholly in agreement of specific 

regions of activation, FCA and classical RFX-GLM analyses both demonstrate that children with 

22q11.2DS have greater variability as evidenced by less overlap in activation within group, 

whereas typically developing children did not. We concur that MNS was functioning 

successfully in 22q11.2DS despite the differences in voxel count between groups. 

Children with 22q11.2DS exhibit difficulties in other cognitive domains that are not 

necessarily shared by children with ASD such as poorer visuospatial and temporal acuity 

(Simon, 2007, 2008; Swillen et al., 1999; Villalon-Reina et al., 2013). Children with 22q11.2DS 
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often have delayed motor development and structural differences in brain regions involved in 

associating visual, motor, and spatial sensory information (Simon, 2007, 2008; Simon et al., 

2005; Swillen et al., 1999; Tang et al., 2014; Villalon-Reina et al., 2013). Thus, examining the 

motor neuron system in these children provides insight into the junction of visual and motor 

perception of others’ actions and serves as a foundational element to developing an ‘accurate’ 

theory of mind. 

Findings in this study were fairly congruent with previous studies with control groups. 

Consistent with hypotheses, TD children did have larger regions of interest in clusters with high 

voxel counts (VC) in the sensorimotor areas than children with 22q11.2DS during using FCA. 

TD children also had greater activation in the operculum region and in the basal ganglia, areas 

that are thought to be involved in ToM, executive, memory, and attentional processes that are 

considered to be canonical activation involved in MNS as well as the visual processes.  

By using classical random effects analysis, we found the operculum and basal ganglia 

regions also showed higher VC in TD than 22q11.2DS, but that parietal activation 

(sensorimotor) was limited in both groups, challenging our expectation of mirror neuron theory. 

Evidence of high activation levels in the basal ganglia, thalami, brainstem, and cerebellum 

demonstrates that children in both groups are using motor mechansims and higher order thinking, 

just not through conventional channels.  

 Keeping in mind that 70% to 100% of activation was shared within groups, robust 

activation was noted in sensorimotor areas in both groups using FCA. FCA showed TD children 

had higher voxel counts in visuospatial (BA 45) and visuomotor attention (BA 7) areas that are 

necessary to activate MNS in basic sensorimotor areas; classical RFX analysis demonstrated less 

activation in sensorimotor areas (particularly most of the parietal region) for both groups but 
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noted higher VC in the thalamic, midbrain, and brainstem regions. Use of the sensory relay 

station and older evolutionary structures, such as the brainstem and cerebellum, may demonstrate 

understanding of motor movements outside the parietal regions typically thought to be involved 

in motor movement and understanding. Where FCA showed increased VC in areas for motor 

learning (BA 1-3, BA 13), motor imagery (BA 5, BA 7), saccadic movements (BA 5, BA 7), and 

somatosensory detection and integration (BA 13, BA 40), classical RFX appeared void of 

saccadic movement and somatosensory detection and integration; motor imagery appeared active 

only though the insula region.  Memory retrieval (BA 9) was more notable in TD than in 

22q11.2DS in both analyses as was WM and behavioral inhibition (BA 9, BA 13, BA 40) which 

are necessary in recognizing movement.  

Activation in the opercular region also yielded differences between groups. Involving 

areas of the frontal and temporal lobes, this region is thought to integrate higher order processes 

in executive function. Working (BA 7, BA 41, BA 44, BA 45) and episodic memory (BA 44, BA 

45) are necessary in recognizing movement. During FCA and classical RFX analysis, VC in 

executive functions such as motor and behavioral inhibition (BA 44, BA 45) and ToM (BA 22) 

were higher in TD. This is striking, as the deficits in attention for 22q11.2DS should have 

required greater efforts in attentional processes. Retrieval and topokinetic memory (BA 31) were 

found in the posterior cingulate in TD, but not in 22q11.2DS. This finding is consistent with 

previous research which has found evidence of reduced volume in posterior regions of the brain 

in 22q11.2DS (Simon et al., 2005; Van Amelsvoort et al., 2001).  

Activation in the basal ganglia is another necessary region in MNS involving motor 

movement and sensory processing. As hypothesized, activation of the caudate, globus pallidus, 

substantia nigra, and putamen were present in both groups. However, where TD children had 
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activation in the red nucleus, children with 22q11.2Ds did not. Less activation in the basal 

ganglia was expected than in the sensorimotor and operculum regions.  Basal ganglia activation 

in MNS tasks are necessary, given its role in attention and motor processes like detecting change, 

responding to movement, and working memory integration (Bonini, 2017). As predicted, TD 

children had greater cluster sizes in the basal ganglia.  

The classical RFX analysis revealed other notable activation. For example, activation of 

the cuneus of occipital lobe gives us evidence that participants in both groups are receiving and 

processing visual information. Oddly, we found no precuneus activation in 22q11.2DS nor 

enough in TD to make the statistical threshold cutoff. Superior frontal gyrus activation appeared 

to be greatly overestimated in FCA, as TD barely made the cutoff where 22q11.2DS could not. 

We also found the inferior temporal gyrus, active in processing visual information in the ventral 

“what” stream, appeared comparable in both groups affirming that children with 22q11.2DS 

deficits in visual processing noted in IQ subscales may not always translate into real world 

problems.  

Also of note, the classical analysis showed parahippocampal gyrus to be a peak area of 

activation in 22q11.2DS as well as the second greatest area of activation in TD by voxel count. 

The analysis also showed greater activation in both groups in the hippocampus (over 10 times 

more in TD than 22q11.2DS), amygdala, and uncus. Though TD has a greater VC than 

22q11.2DS in all cases, it may be possible that memory retrieval in mirror neuron tasks play a 

greater role than the motor cortex as previously thought.  Like the thalamus and brainstem 

activation playing a role in motor movement and understanding, high cerebellar activation was 

also found in both groups with the declive of the cerebellum being a peak activation point in TD 

children.  
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Implications for ToM in 22q11.2DS 

ToM is noted to demonstrate activation in the inferior frontal gyrus and inferior parietal 

lobule, and it is a complicated concept (Schulte-Rüther et al., 2007). While ToM is implicated in 

inferring intention, however, it is unclear if it is also involved in inferring the feelings of others 

(i.e., empathy). Do we merely witness an action and make our own inferences about the action, 

or do we infer the intended behavior of others solely as to how it relates to our own self-

preservation (Rizzolatti et al., 2001; Schulte-Rüther et al., 2007)?  Sensorimotor areas (e.g., 

parietal and frontal motor areas) are active when observing movement with a specific goal rather 

than random movement of body parts. In fact, the primary motor cortex has been found to 

encode nearly 40% of neurons for motor acts (Rizzolatti et al., 2009).  Activation of the 

opercular and sensorimotor regions are noted to occur in response to salient stimuli. It could be 

complicit in ToM, but it may also be evidence of canonical MNS and nothing more (Debbané et 

al., 2012; Downar, Crawley, Mikulis, & Davis, 2002). Spatial memory and visual feedback 

involving movement stimulates topokinetic memory which explains the activation in limbic 

regions, such as the cingulate gyrus and hippocampus (Berthoz, 1997; Cole & Paillard, 1995; 

Kamphaus & Reynolds, 2007). 

The basal ganglia is implicated in noticing sudden changes, particularly when the change 

is unexpected (Casey et al., 2000). It is possible that paying attention to the task may have 

reduced activation in these areas for children with 22q11.2DS. Witnessing goal-directed 

behavior (which activates the production of dopamine) may account for activation in the basal 

ganglia, particularly in the substantia nigra (Seitz et al., 2011; Wittmann et al., 2005). Procedural 

learning and memory are activated in the bilateral globus pallidus (Millan et al., 2012), but it is 

unclear as to why activation was limited to the lateral GP in 22q11.2Ds but encompassed both 
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medial and lateral GP in TD children during basic motor movements (Howley et al., 2012; 

Rizzolatti et al., 2009; Rizzolatti et al., 2001). It is unclear if having less agreement in activation 

in 22q11.2DS is due to impairments with basic cognitive or attentional processes.  

Results suggest TD children may utilize higher cognitive mediation like ToM outside of 

basic observation of motor tasks. Activation of the inferior frontal gyrus in 22q11.2DS may be 

more indicative of inhibition and higher-level social cognitive processing, even if the results are 

obtained by different neural mechanisms (shown in BOLD activation and signal change) 

(Spengler, 2010). Noted from previous studies, damaged and under-developed areas in the 

operculum and somatosensory regions can lead to difficulty in processing the actions of other 

people (Rolland et al., 1995; Spengler et al., 2010). In children, dorsal and ventral streams 

involved in visual processes are not as well developed as in adults, and impairments in these 

regions may have affected the task for children with 22q11.2DS (Villalon-Reina et al., 2013). 

With age, however, MNS can change by sensorimotor learning stemming from multitudes of 

sensorimotor experiences obtained through interactions with others (Heyes, 2010). Clearly, 

children with 22q11.2DS do have an understanding of motor movement and intentionality in 

others as well as the executive ability to inhibit mimicry of the behavior. However, they may not 

fully grasp the intention of the movement outside of movement’s sake, a requirement implicated 

in ToM.   

Observing motor manipulation of objects demonstrated the working conditions within 

components of motor, executive, attentional, and memory function in 22q11.2DS (Azuma et al., 

2015; Inan, Petros, & Anderson, 2013). As children with 22q11.2DS have shown less overall 

activation in valenced and non-valenced tasks in previous studies (Azuma et al., 2015), they also 

showed lower signal change when compared to TD peers. Even though somatosensory and motor 
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abilities eventually develop, early delays in gross motor skills like coordination and balance may 

inhibit speed abilities later in life, especially in the somatosensory and motor cortex during MNS 

tasks (Swillen et al., 1999). While visuospatial and visuomotor impairments in 22q11.2DS are 

the result of parietal lobe dysfunction (Simon et al., 2005), classical RFX analysis showed less 

parietal activation in both 22q11.2DS and TD children. This is particularly striking as TD 

individuals in previous studies usually showed robust activation during mirror neuron tasks. As 

visual and motor activation is not always indicative of higher order processes, there is no 

explanation for any participant having less activation in the absence of a cognitive, social, or 

motor impairments (Rizzolatti et al., 2009) despite their performance demonstrating neural 

competence during MNS tasks. The brainstem is implicit in basic motor movement occurring in 

non-human mammals that is necessary for social interactions and survival (Smith et al., 2008), 

while the thalamus is the relay station for most sensory input. No activation was found in the 

brainstem or thalamic nuclei in 22q11.2DS during FCA but was found in classical RFX analysis. 

This cites evidence that cutting out temporal features also removes evidence of motor movement 

understanding.   

Increased cognition demonstrated by executive functions is more pertinent in theory of 

mind, but it is not needed to stimulate visuospatial and visuomotor areas if observers are aware 

of the outcome of the motor act and understand what other individual is doing. The higher-order 

perception of emotional states and intentions that encompass ToM are underpinned by middle-

level processes that simulate observed behavior in the brain of the participant (Rizzolatti et al., 

2009; Spengler et al., 2010). Previous studies suggest that basic somatosensory, motor, and basic 

visual input are necessary while processing a mirror task. Even a subtle impairment could 

reverberate through development as brain systems interdependently rely on one another not just 
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in function, but also in a foundational way. For example, normal development and function of 

associative regions such as the superior parietal cortex depends on the normal development and 

function of the systems that send neural signals to it (Bressler & Menon, 2010).   

Limitations and Future Directions  

Results of this study should be interpreted within the context of known limitations.  Small 

sample size with unequal grouping of participants may have an effect on the ability to detect 

differences between and within the groups. In addition, given the relative rarity of people with 

22q11.2DS, recruiting large samples of participants in a narrower age range (children 6-10, 

adolescents 11-16) is often problematic. Taking into consideration the array of developmental 

changes that occur during this time, the current study is likely affected by different stages in 

brain development in addition to varying abilities in attention, social interactions, intelligence, 

and maturity given the age range of the samples. Due to this heterogeneity in 22q11.2DS, our 

results may not truly be representative of the population as a whole. For example, differences in 

medical issues, and psychological and cognitive abilities underpin different types and levels of 

impairments that are difficult to establish phenotypes (Kates et al., 2007; Swillen et al., 1999; 

Tang et al., 2014; Vorstman et al., 2006; Wenger et al., 2016).  

Furthermore, despite being stabilized with a head restraining system of padding 

specifically designed for MRI head coils, movement inside the MRI machine still occurs. Even 

with offline image processing tools like motion correction, extreme movement mars the ability to 

create brain masks and accurately map activation. As a consequence, we had to remove two 

participants from the study. Because eye-tracking confirmation was not available, it was difficult 

to establish how much participants were paying attention to the task. We had to remove 7 
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participants in Analysis 2 due to lack of activation and signal change to get a better picture of the 

overall motor, sensory, and cognitive processing abilities.  

Perhaps the largest limitation in this study is heterogeneity, the same issue that makes it 

difficult to establish behavioral and psychological phenotypes for 22q11.2DS. While 

heterogeneity is expected in special populations, it results in probability maps that show 

activation shared by 70 to 100 percent of the population and may overlook other modes of 

neurocorrelates in the MNS. While not a common method in multigroup analysis, fuzzy 

clustering analysis (FCA) allowed us to take a glimpse at the amount of activation shared in most 

participants within a heterogeneous group. However, when compared to classical RFX analysis, 

we found that the temporal cutoffs in FCA actually overestimated activation in sensorimotor 

areas and underestimated activation in basic structures implicit in motor movement and motor 

observation. Eye-tracking confirmation was not available, so it is possible that children varied in 

their gaze time. However, since we saw activation as predicted in appropriate areas, it was highly 

likely that all participants were watching the video. Furthermore, the use of anti-depressants, 

including norepinephrine-dopamine reuptake inhibitors (NDRI), may influence all group 

participants regarding activation in the substantia nigra.  

Future studies may be helpful in investigating activation differences between TD and 

22q11.2DS. For example, explaining the role the caudate plays in a mirror task that would result 

in activation in the body of the caudate only in 22q11.2DS but the head, body, and tail of the 

caudate in TD. Explaining the role in MNS may help understand the activation presence of the 

anterior cingulate cortex and posterior cingulate cortex in TD; in 22q11.2DS, however, the 

absence of activation would warrant further study. The function of the thalamus in the MNS, 

including specific thalamic nuclei, could help explain the why the TD group had nearly 20 times 
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more voxels than 22q11.2DS and why having a lower voxel count was not solely the response of 

an impairment.  Other considerations would include the role of fusiform gyrus and insula in 

mirror neuron tasks as VC is comparable in both groups. Future studies should also include other 

behavioral measures such as the Behavioral Assessment System for Children (BASC-2) 

(Kamphaus & Reynolds, 2007) to be used examine associations with functional activation.  

 

Implications 

While 22q11.2DS participants did have less activation overall when compared to TD 

children, the difference in signal change did not vary too greatly, and activation in regions 

central to MNS was present, even if it was not as robust as TD. These results may be a limitation 

of the sample and differences in cognition by age, or it may be an indicator that children with 

22q11.2DS may not be as compromised in basic visual and cognitive processes as previously 

thought. While their visuospatial impairments still suggest they have more fundamental issues 

with certain components of their visuoperceptual systems, differences may also be attributed to 

deficits in attention, particularly attention shifting or sharing attention for multiple stimuli, such 

as noise from the MRI machine or temperature of testing room.  

Given the high rate of comorbidity and symptomology with ASD, investigating 

differences in activation with 22q11.2DS may shed light on cognitive processes that are not well 

understood. While most of the activation for 22q11.2DS does not appear to be impaired while 

observing basic motor tasks, it still shares similarities with ASD during neuroimaging studies 

(like reduced activation) and warrants further investigation.  
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Figure 1 – Example action sequences from the task demonstrating object manipulation. 
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Figure 2: Age differences in groups 

 

Figure 2: Mean Age for TD: 10.94; 22q11.2DS: 13.18 

 

Figure 3: FSIQ subscale composite scores 

 

Figure 3: FS: Full Scale IQ; VC: Verbal Comprehension; WM: Working Memory; Proc Sp: Processing Speed; 
PerReas: Perceptual Reasoning. Although TD children tend to score higher on FSIQ subscales, children with 
22q11.2DS tend to do better in verbal comprehension over other domains. 
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Figure 4: FSIQ subscales by percentile rank 

 

Figure 4: TD tend to perform better overall on FSIQ testing than children with 22q11.2DS.  
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Figure 5: Between group analysis for FFX GLM in both TD and 22q. 

 

Figure 5: Peak differences between group show greatest activation in the inferior frontal gyrus t(36) = 4.21, 
parahippocampal gyrus t(36) = 4.80, thalamus t(36) = 5.82, precuneus t(36) = 5.06, and bilateral temporal 
lobes t(36) =4.37 and t(36)= 4.77, respectively.  TD had greater activation overall than 22q11.2DS. 
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Figure 6a and 6b: FFX for TD Fixed effects for TD mostly shows activation in the visual areas whereas 

22q11.2DS show less in the same area. FFX removes the variable bias and is not helpful for between group 
comparisons 

 

6a. Typically developing FFX GLM 

 

6a. TD children showed peak activation in the middle occipital gyrus β=33.86, inferior temporal gyrus 
β=32.94, and inferior parietal lobule β=28.75. 
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6b: 22q11.2DS FFX GLM 

 

6b. Children with 22q11.2DS showed peak activation in the middle temporal gyrus β=22.32, and the bilateral 
middle occipital gyrus β=23.13, β=22.62, respectively. 
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Figure 7: Between group RFX GLM analysis with FCA 

 

Figure 7: Peak differences between groups showed activation in the inferior frontal gyrus t(36)= 4.40, 
p<.001, parahippocampal gyrus t(36)= 4.60, p<.001, and fusiform gyrus t(36)= 4.30, p<.001, with TD having 
greater activation than 22q11.2DS.  
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Figure 8a and 8b: Within group RFX using fuzzy clustering analysis (FCA). FCA allowed 
overlapping in activation by separate artifacts within the task. FCA allowed activated voxels to 
belong to two or more clusters by group by manipulating activation around the centroid to merge 
clusters by temporal features (e.g. eliminating physiological data like cardiac action and breathing). 
TD shows significant activation in visual, motor, and executive processes (3a) where 22q11.2DS 
shows similar activation, but to a lesser degree noted by a lower VC (3b).  

 

8a. TD RFX with FCA showed peak activation in the fusiform gyrus t(20)=100, postcentral gyrus 

t(20)=81.86, cingulate gyri t(20)=87.19, and middle frontal gyrus t(20)=76.89. 
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8b. 22q11.2DS RFX with FCA showed peak activation in the middle occipital gyrus t(16)=99.9, and the 

middle frontal gyrus t(16)=92.19. 
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Figure 9: Average signal change in groups: 22q: 74.68; TD: 73.89. Because of the signal change is similar, 

voxel count was studied. The average rate of change within groups is also comparible: 22q: low: 70, high 
78.66; TD: low: 70, high: 76.59. 

 

 

 

Figure 10: Region of interest (ROI) time course averages resulted in 22q having a lower average during 
mirror neuron task in the following regions: inferior frontal gyrus (TD=805, 22q=774), postcentral gyrus 
(TD=980, 22q=980), precentral gyrus (TD=915, 22q=804), superior temporal gyrus (TD=1094, 22q=1025), 
and globus pallidus (TD=780, 22q=729). 
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Figure 11: ROI time course by region. Time courses are indicated by activation within a set of coordinates in 
both groups. Activity looks consistent across TD and 22q11.2DS groups. 

a                               b  

11a. ROI in the inferior frontal gyrus for TD (a) and 22q (b). Coordinates x= -50, y= 30, z= 32. 

 

a                              b  

11b. ROI in the postcentral gyrus for TD (a) and 22q (b). Coordinates x= -53, y= -24, z= 37. 

 

a.      b  

11c. ROI in the precentral gyrus for TD (a) and 22q (b). Coordinates x= 16, y= -19, z= 38. 

 

a.      b. .  

11d. ROI in the superior temporal gyrus for TD (a) and 22q (b). Coordinates x= 53, y= -16, z= 2. 

 

a.        b.  

11e. ROI in the globus pallidus for TD (a) and 22q (b). Coordinates x= -19, y= -1, z= -2. 
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Figure 12: VC by region in TD childrens using FCA in RFX. Aside from a larger overall VC, TD children 
show greater activation in the frontal (27%), occipital (17%), temporal (15%), and parietal (12%) lobes.  
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Figure 13: VC in FCA RFX by region in children with22q11.2DS noted by lower overall VC. Children with 
22q11.2DS show greater activation in the parietal (24%), occipital (18%) frontal (16%), and temporal (13%) 
lobes.  
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Figure 14: Classical RFX between group differences 

 

Figure 14: Peak differences between groups showed activation in the hippocampus β(30)=3.21, inferior 
frontal gyri β(30)=3.82. Total VC between groups is 50,058 voxels. 
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Figures 15a and 15b: Classical RFX GLM for TD (15a) and 22q11.2DS (15b). 

 

Figure 15a: Peak differences within the TD group showed greatest activation in the culmen of the 

cerebellum t(16)=100, and the middle frontal gyrus t(16)=92.19. Total VC within the TD group in 

240,742 voxels. 
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Figure 15b: Peak differences within the 22q11.2DS group showed greatest activation in the thalamus 

t(15)=82.81, putamen t(15)=78.33, and middle occipital gyrus t(15)=99.99. Total VC within the 

22q11.2DS group is 74,722 voxels. 
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Figure 16: Overall signal change between groups 

 

Figure 16: In Analysis 2, average overall signal change in the mirror task was lower in 22q11.2DS (75.01) 
than TD (82.84). 

 

 

 

Figure 17: Signal change in classical RFX GLM by region 

 

Figure 17: Average signal change β=75.01; TD: β=82.84. 22q: low: 70, high 87.19; TD: low: 70, high: 96.1. 
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Figure 18: ROI time course by region in classical RFX GLM analysis. Time courses are indicated by 

activation within a set of coordinates in both groups. Activity looks consistent across TD and 22q11.2DS 
groups. 

a                              b  

18a. ROI in the inferior frontal gyrus for TD (a) and 22q (b). Coordinates x= -50, y= 28, z= 0. 

 

a                             b  

18b. ROI in the parahippocampal gyrus for TD (a) and 22q (b). Coordinates x= -26, y= -25, z= -12. 

 

a.      b  

18c. ROI in the precentral gyrus for TD (a) and 22q (b). Coordinates x= 46, y= 12, z= 9. 

 

a.      b.   

18d. ROI in the superior temporal gyrus for TD (a) and 22q (b). Coordinates x= 53, y= -16, z= 2. 

 

a.        b.  

18e. ROI in the putamen for TD (a) and 22q (b). Coordinates x= -18, y= 7, z= -2. 
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Figure 19: Classical RFX GLM voxel count by region in TD children 
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Figures 20: Classical RFX GLM voxel count by region in children with 22q11.2DS 
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Table 2: Subscales by composite scores 

 TD (n=16) 22q11.2DS (n=15) 

Age 10.94 (.67) 13.18 (.73) 

Full Scale  109.33 (3.54) 65.47 (2.45) 

Verbal Comprehension 110.47 (3.42) 77.8 (2.72) 

Working Memory 106.27 (4.08) 71.13 (3.32) 

Processing Speed 105.40 (4.29) 68.4 (2.63) 

Perceptual Reasoning 105.00 (3.24) 69.67 (2.58) 

 

 

 

Table 3: Subscales by percentile rank 

 TD (n=16) 22q11.2DS (n=15) 

Full Scale 67.80 (6.54) 2.14 (.58) 

Verbal Comprehension 69.73 (6.22) 10.87 (3.27) 

Working Memory 59.91 (7.23) 6.80 (2.02) 

Processing Speed 58.80 (8.39) 4.07 (1.73) 

Perceptual Reasoning 60.10 (6.46) 4.63 (2.48) 

 

 

 

 

Table 4: Between group FFX 

Cluster x y z t p VC Lobe Structure BA 

1 44 39 11 4.210046 0.000177 464 Frontal Lobe Inferior Frontal Gyrus 45 

2 33 -51 -4 4.798808 0.000031 2526 Limbic Lobe Parahippocampal Gyrus  

3 21 -23 -4 5.821696 0.000001 2032 Sub-Lobar Thalamus  

4 26 -62 18 4.370368 0.000111 661 Temporal Lobe Sub-Gyral  

5 -25 -61 34 5.058458 0.000014 1340 Parietal Lobe Precuneus 18 

6 -46 -48 -9 4.772732 0.000034 1833 Temporal Lobe Sub-Gyral   

Table 4: Between group activation in fixed effects GLM is noted by peak voxel areas. 
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Table 5a: FFX GLM for TD activation 

Structure Lobes Voxel Count Brodmann areas 

Declive Cerebellum 6252  

Culmen Cerebellum 2966  

Inferior Occipital Gyrus Occipital 4811 17, 18, 19 

Middle Occipital Gyrus Occipital 15622 17, 18, 19, 37, 39 

Superior Occipital Gyrus Occipital 606 19 

Cuneus Occipital 2910 17, 18, 19 

Precuneus Occipital, Parietal 1264 18, 19, 39 

Lingual Gyrus Occipital 6534 17, 18, 19 

Fusiform Gyrus Occipital, Temporal 11152 19, 20, 37 

Inferior Temporal Gyrus Temporal 4903 19, 20, 21, 37 

Middle Temporal Gyrus Temporal, Occipital 2665 19, 20, 37 

Parahippocampal Gyrus Limbic 2069 30, 36, 37 

Postcentral Gyrus Parietal 2560 1, 2, 3, 40 

Inferior Parietal Lobule Parietal 1716 40 

Cingulate Gyrus Limbic 889 24, 31, 32 

Posterior Cingulate Limbic 224 30, 31 

Table 5a: Activation within TD children notes greater activation in the middle occipital gyrus (VC=15,622) 

and fusiform gyrus (VC=11,152). Brodmann areas in both the occipital and fusiform gyrus are active during 
saccadic eye movement and recognizing visual patterns. The middle occipital gyrus is further distinguished for 
visual motion detection and encoding (memory).  

 

 

 

Table 5b: FFX GLM for 22q11.2DS Activation 

Structure Lobes Voxel Count Brodmann areas 

Inferior Occipital Gyrus Occipital 94 17, 18, 19 

Middle Occipital Gyrus Occipital 1262 17, 18, 19 

Cuneus Occipital 94 18, 19 

Lingual Gyrus Occipital 72 17, 18, 19 

Inferior Temporal Gyrus Temporal 293 20, 21, 37 

Middle Temporal Gyrus Temporal, Occipital 1336 19, 20, 37 

Superior Temporal Gyrus Temporal 176 21, 22, 41, 42 

Table 5b: Activation within TD children notes greater activation in the middle temporal gyrus (VC=1,136) 

and middle occipital gyrus (VC=1,262). Brodmann areas in both middle temporal and middle occipital gyri 
are active during saccadic eye movement and recognizing visual patterns. The middle temporal gyrus is 
further distinguished for visual motion detection, visual integration, comprehension, and WM and encoding.  
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Table 6: Between-group differences RFX with FCA 

Cluster Coordinates Structure Voxels t p 
1 x=40 y=-31 z=-12 Inferior Frontal Gyrus 915 

 
4.40 * 

2 x=33 y=-51 z=-4 Parahippocampal Gyrus 2097 4.60 * 
3 x=29 y=-38 z=-11 Fusiform Gyrus 460 4.60 * 
4 x=-25 y=-61 z=33 Sub-gyral (parietal lobe) 1113 4.82 * 
5 x=-45 y=-46 z=-9 Sub-gyral (temporal lobe) 2189 4.93 * 
6 x=-53 y=34 z=10 Inferior Frontal Gyrus 1850 5.13 * 

*=<.001 

Table 6: Between group activation in random effects GLM is noted by peak voxel areas prominent in the 
parahippocampal gyrus, inferior frontal gyrus, and sub-gyral areas within the temporal and parietal lobes.  

 

 

Table 7a: Typically developing Within Group RFX_FCA 

Cluster Coordinates Structure BA VC Beta t p Avg Mass 

1 x=34 y=-36 z=-13 Fusiform Gyrus 37 1683919 
 

76.59 100 * 4767309.61 

2 x=10 y=-31 z=63 Postcentral Gyrus 3 5098 73.69 81.88 * 375662.31 

3 x=9 y=43 z=42 Medial Frontal Gyrus 6 1065 72.18 76.88 * 76872.66 

4 x=-9 y=20 z=42 Cingulate Gyrus 32 401 72.35 77.65 * 29013.52 

5 x=-18 y=-28 z=32 Cingulate Gyrus 32 684 74.65 87.19 * 51065.63 

*=<.001 

Table 7a: Activation within TD children notes greater activation in the fusiform and postcentral gyri when 

fuzzy clustering analysis (FCA) is used. Brodmann areas in the fusiform gyrus are active during visual 
attention and motion processing, as well as encoding (memory) and ToM. The postcentral gyrus is active 
during primary motor movement and motor learning, visual motion processing, encoding, comprehension 
and ToM.   

 

Table 7b: 22q11.2DS Within Group RFX 

Cluster Coordinates Structure BA Voxels Beta t p Avg 
Mass 

1 x=29 y=-85 z=1 Middle Occipital Gyrus 18 67449 77.1 99.90 * 5200000.5 

2 x=31 y=35 z=-5 Middle Frontal Gyrus 6 309 72.42 79.30 * 22378.89 

3 x=10 y=35 z=33 Medial Frontal Gyrus  8767 72.42 92.19 * 662860.88 

4 x=17 y=3 z=28 Cingulate Gyrus  901 75.61 82.62 * 66522.67 

5 x=10 y=-35 z=33 Medial Frontal Gyrus 8 11431 73.94 85.84 * 845143.19 

6 x=-32 y=-92 z=5 Middle Occipital Gyrus 18 47412 78.66 98.43 * 3729215.5 

7 x=-18 y=0 z=-4 Lateral Globus Pallidus  598 72.52 82.85 * 43364.27 

*=<.001 

Table 7b: Activation within children with 22q11.2DS notes greater activation in the middle occipital gyrus 

and medial frontal gyrus when fuzzy clustering analysis (FCA) is used. Brodmann areas in the middle occipital 
gyrus is active during saccadic eye movement, visual attention, and pattern detection. The medial frontal gyrus 
is active during sensorimotor (secondary) motor processes, proprioception, WM and memory retrieval, 
visuomotor attention, planning, and behavioral inhibition.  
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Table 8: Activation by voxel count in TD group. 

    

Cingulate Gyrus Limbic 24108 23, 24, 31, 32 

Anterior Cingulate  Limbic 18840 24, 25, 32, 33 

Posterior Cingulate Limbic 12198 23, 29, 30, 31 

Amygdala/Uncus Limbic 5273 20, 28, 34, 36, 38 

Parahippocampal Gyrus Limbic 18415 27, 28, 29, 30,35, 36 

Hippocampus Limbic 1824  

Superior Temporal Gyrus Temporal 54623 21, 22, 28, 41, 42 

Middle Temporal Gyrus Temporal 66575 21, 22, 37, 38, 39 

Inferior Temporal Gyrus Temporal 29072 20, 21, 22, 37 

Transverse Temporal 
Gyrus 

Temporal 2329 41, 42 

Supramarginal Gyrus Temporal, Parietal 8970 40 

Angular Gyrus Temporal, Parietal, 
Occipital 

6087 39 

Superior Parietal Lobule Parietal 9700 7 

Inferior Parietal Lobule Parietal 32420 2, 39, 40 

Postcentral Gyrus Parietal 32899 1, 2, 3, 5, 7, 40, 43 

Precentral Gyrus Frontal 54003 4, 6, 9, 43, 44 

Superior Frontal Gyrus Frontal 64764 6, 8, 9, 10 

Middle Frontal Gyrus Frontal 99711 6, 8, 9, 10, 46, 47 

Medial Frontal Gyrus Frontal 39342 6, 8, 9, 10, 11, 32 

Inferior Frontal Gyrus Frontal 77898 9, 10, 11, 44, 45, 46, 
47 

Orbital Gyrus Frontal 686 47 

Rectal Gyrus Frontal 1902 11 

Subcallosal Gyrus Frontal 1387 25 

Paracentral Lobule Frontal 8286 3, 4, 5, 6 

Superior Occipital Gyrus Occipital 2083 19 

Middle Occipital Gyrus Occipital 40567 17, 18, 19, 37, 39 

Inferior Occipital Gyrus Occipital 14403 17, 18, 19 

Insula  Sub-lobar 30017 13, 47 

Claustrum Sub-lobar 3574 13, 47 

Cuneus Occipital 30832 17, 18, 19, 30 

Precuneus Occipital, Parietal 49299 7, 18, 19, 31, 39 

Lingual Gyrus Occipital 42315 17, 18, 19 

Fusiform Gyrus Occipital, Temporal 20464 19, 20, 37 

Globus Pallidus Basal Ganglia 10754 Lateral and Medial 

Caudate Basal Ganglia 10541 Head, Body, Tail 

Putamen Basal Ganglia 25081  

Red Nucleus Lentiform Nucleus 6723  

Substantia Nigra Lentiform Nucleus 4022  

Pons Midbrain 8768  

Thalamic Nuclei Thalamus 29464  

Hypothalamus  116  
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Declive Cerebellum 21097  

Culmen Cerebellum 37436  

Cerebellar Lingual Cerebellum 1278  

Pyramis Cerebellum 6662  

Dentate of Cerebellum Cerebellum 4394  

Tuber Cerebellum 14748  

Nodule  Cerebellum 2232  

Uvula Cerebellum 5065  

Fastigium Cerebellum 321  

Corpus Callosum  18876  

Anterior Commissure  6746  

 Optic Tract  3598  

Table 8: Gross voxel count for TD children when using FCA. Please see Figure 8 for corresponding 
information.  

 

Table 9: Activation by voxel count in 22q11.2DS 

    

Structure Lobes Voxel Count Brodmann area 

Cingulate Gyrus Limbic 1078 24, 32 

Anterior Cingulate  Limbic 764 24, 32, 33 

Amygdala/Uncus Limbic 296  

Parahippocampal Gyrus Limbic 2759 35, 36, 37 

Hippocampus Limbic 677  

Superior Temporal Gyrus Temporal 3978 13, 22, 39, 41 

Middle Temporal Gyrus Temporal 6813 19, 20, 21, 37, 39 

Inferior Temporal Gyrus Temporal 853 19, 20, 37 

Supramarginal Gyrus Parietal, Occipital 1564 40 

Angular Gyrus Temporal; Parietal 95 39 

Superior Parietal Lobule  Parietal 626 7 

Inferior Parietal Lobule Parietal 10764 2, 40 

Postcentral Gyrus Parietal  3885 1, 2, 3, 40 

Precentral Gyrus Frontal 3847 4, 6, 9, 44 

Superior Frontal Gyrus Frontal 2391 8, 9, 10 

Middle Frontal Gyrus Frontal 7296 6, 8 ,9 ,10 ,46 

Medial Frontal Gyrus Frontal 4036 6, 8, 9 

Inferior Frontal Gyrus Frontal 1852 17, 18, 19, 39 

Paracentral Lobule Frontal 1375 31 

Superior Occipital Gyrus Occipital 197 19 

Middle Occipital Gyrus Occipital 10016 17, 18, 19, 37, 39 

Inferior Occipital Gyrus Occipital 1852 17, 18, 19 

Insula  Sub-lobar 1651 13, 47 

Claustrum Sub-lobar 108 13, 47 

Cuneus Occipital 1614 17, 18, 19 

Precuneus Occipital, Parietal 1967 7, 19, 37 
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Lingual Gyrus Occipital 1999 17, 18, 19 

Fusiform Gyrus Occipital, Parietal 6570 18, 19, 20, 36, 37  

Globus Pallidus Basal Ganglia 106 Lateral 

Caudate Basal Ganglia 133 Body 

Putamen Basal Ganglia 326  

Declive Cerebellum 2163  

Culmen Cerebellum 2579  

Corpus Callosum  304  

Table 9: Gross voxel count for children with 22q11.2DS when using FCA. Please see Figure 9 for 
corresponding information.  

 

Table 10: Classical RFX GLM between group differences 

Cluster Coordinates Structure VC Beta p 

1 x=22, y=-22, z=-3 Middle Temporal Gyrus 30,245 3.68 * 

2 x=44, y=35,  z=12 Inferior Frontal Gyrus 4,266 3.82 * 

3 x=36, y=-4 z=24 Middle Frontal Gyrus 1,280 3.64 * 

4 x=-44, y=-46, z=-9 Middle Temporal Gyrus 10,361 3.72 * 

5 x=-33, y=-22, z=-14 Hippocampus 302 3.21 * 

6 x=-42, y=6, z=32 Inferior Frontal Gyrus 1,457 3.78 * 

7 x=-54, y=33, z=10 Inferior Frontal Gyrus 2,147 3.58 * 

*=<.001 

 

Table 11a: Classical RFX GLM within group TD 

Cluster Coordinates Structure BA VC Beta t p Avg Mass 

1 x=23, y=-40, z=-17 Culmen of Cerebellum  240246 85.87 100 * 20630222 

2 x=33, y=12, z=32 Middle Frontal Gyrus  9 496 79.82 92.19 * 39593.13 

*=<.001 

 

Table 11b: Classical RFX GLM within group 22q11.2DS 

Cluster Coordinates Structure BA VC Beta t p Avg Mass 

1 x=31, y=-90, z=0 Middle Occipital Gyrus 18 33657 79.18 99.99 * 2664834.50 

2 x=50, y=9, z=16 Inferior Frontal Gyrus  2651 75.59 90.62 * 200380.92 

3 x=34, y=42, z=11 Middle Frontal Gyrus  646 74.70 85.77 * 48257.41 

4 x=35, y=-6, z=-20 Parahippocampal Gyrus  895 75.56 91.67 * 67619.94 

5 x=21, y=35, z=4 Sub-Gyral  389 75.95 83.93 * 29156.04 

6 x=18, y=9, z=-9 Putamen  420 73.02 78.33 * 30666.60 
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7 x=5, y=-15, z=12 Thalamus: Medial Dorsal Nucleus  554 75.18 82.81 * 41651.34 

8 x=-8, y=1, z=-8 Insula 13 2006 74.27 89.50 * 148978.50 

9 x=-32, y=-92, z=5 Middle Occipital Gyrus 18 30068 80.21 98.33 * 2411653.50 

10 x=-48, y=31, z=0 Inferior Frontal Gyrus  1400 73.94 85.17 * 103210.53 

11 x=-34, y=-4, z=14 Insula 13 696 74.79 83.44 * 52054.64 

12 x=-39, y=-2, z=25 Sub-Gyral  819 72.95 80.00 * 59749.03 

13 x=-49, y=20, z=25 Middle Frontal Gyrus  521 73.44 79.90 * 38261.01 

*=<.001 

 

 

Table 12: TD activation by VC using classical RFX GLM analysis 

Structure Lobe VC BA 
Inferior Frontal Gyrus Frontal Lobe 21494 9, 10, 13, 44, 45, 46, 47 

Middle Frontal Gyrus Frontal Lobe 8549 9, 10, 11, 46, 47 

Precentral Gyrus Frontal Lobe 2493 6, 9, 44 

Superior Frontal Gyrus Frontal Lobe 37 6, 8, 9, 10 

Sub-Gyral Frontal Lobe 14875  

Inferior Temporal Gyrus Temporal Lobe 2010 19, 37 

Middle Temporal Gyrus Temporal Lobe 12835 19, 21, 22, 37, 39 

Superior Temporal Gyrus Temporal Lobe 8576 13, 22, 38, 39, 41 

Transverse Temporal Gyrus Temporal Lobe 49 41 

Sub-Gyral Temporal Lobe 19671  

Amygdala Limbic Lobe 805  

Anterior Cingulate Limbic Lobe 42 25 

Hippocampus Limbic Lobe 1262  

Parahippocampal Gyrus Limbic Lobe 13317 19, 27, 28, 34, 35, 36, 
37 

Posterior Cingulate Limbic Lobe 159 30 

Sub-Gyral Limbic Lobe 323  

Uncus Limbic Lobe 250 28, 34, Amygdala 

Inferior Parietal Lobule Parietal Lobe 37 2, 39, 40 

Sub-Gyral Parietal Lobe 178  

Cuneus Occipital Lobe 1328 17, 18, 30 

Fusiform Gyrus Occipital Lobe 13344 18, 19, 20, 36, 37 

Inferior Occipital Gyrus Occipital Lobe 2976 17, 18, 19 

Lingual Gyrus Occipital Lobe 6612 17, 18, 19 

Middle Occipital Gyrus Occipital Lobe 11376 18, 19, 37 

Sub-Gyral Occipital Lobe 7181  

Lateral Globus Pallidus Lentiform Nucleus 1730  

Medial Globus Pallidus Lentiform Nucleus 558  

Putamen Lentiform Nucleus 5645  

Anterior Nucleus Thalamus 645  

Lateral Posterior Nucleus Thalamus 80  

Medial Dorsal Nucleus Thalamus 1402  
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Pulvinar Thalamus 2099  

Ventral Anterior Nucleus Thalamus 376  

Ventral Lateral Nucleus Thalamus 876  

Ventral Posterior Lateral Nucleus Thalamus 388  

Ventral Posterior Medial Nucleus Thalamus 265  

Mammillary Body Brainstem 298  

Medial Geniculum Body  Brainstem 82  

Caudate Head Caudate 521  

Caudate Body Caudate 1403  

Caudate Tail Caudate 198  

Insula Insula 10900 13 

Claustrum Insula 1797 13 

Pons  Brainstem 416  

Midbrain  Brainstem 10152  

Lateral Geniculum Body Brainstem 54  

Red Nucleus Brainstem 469  

Substantia Nigra Brainstem 333  

Subthalamic Nucleus Brainstem 209  

Cerebellar Lingual Anterior Lobe of Cerebellum 861  

Culmen Anterior Lobe of Cerebellum 8650  

Declive Posterior Lobe of Cerebellum 9107  

Figure 12: As 37 voxels was the cutoff point in STE, regions containing less than 37 voxels are not shown. 

 

Table 13: 22q11.2DS activation by VC using classical RFX GLM analysis 

Structure Lobe VC BA 
Inferior Frontal Gyrus Frontal Lobe 3588 9, 10, 13, 44, 45, 46, 47 

Middle Frontal Gyrus Frontal Lobe 1051 9, 10, 11, 46, 47 

Precentral Gyrus Frontal Lobe 275 6, 9, 44 

Sub-Gyral Frontal Lobe 1788  

Hippocampus Temporal Lobe 106  

Inferior Temporal Gyrus Temporal Lobe 1279 19, 37 

Middle Temporal Gyrus Temporal Lobe 6807 19, 21, 22, 37, 39 

Superior Temporal Gyrus Temporal Lobe 3689 13, 22, 38, 39, 41 

Transverse Temporal Gyrus Temporal Lobe 364 41 

Sub-Gyral Temporal Lobe 6633  

Amygdala Limbic Lobe 182  

Hippocampus Limbic Lobe 174  

Parahippocampal Gyrus Limbic Lobe 3138 9, 27, 28, 34, 35, 36, 37 

Uncus Limbic Lobe 186 28, 34, Amygdala 

Inferior Parietal Lobule Parietal Lobe 39 2, 39, 40 

Cuneus Occipital Lobe 585 17, 18, 30 

Fusiform Gyrus Occipital Lobe 9426 18, 19, 20, 36, 37 

Inferior Occipital Gyrus Occipital Lobe 2946 17, 18, 19 

Lingual Gyrus Occipital Lobe 3616 17, 18, 19 

Middle Occipital Gyrus Occipital Lobe 9915 18, 19, 37 

Sub-Gyral Occipital Lobe 5958  

Lateral Globus Pallidus Lentiform Nucleus 138  
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Putamen Lentiform Nucleus 611  

Anterior Nucleus  Thalamus 55  

Medial Dorsal Nucleus Thalamus 217  

Ventral Lateral Nucleus Thalamus 100  

Caudate Body Caudate 135  

Insula Insula 1314 13 

Claustrum Insula 110 13 

Culmen Anterior Lobe of Cerebellum 2955  

Declive Posterior Lobe of Cerebellum 3854  

Figure 13: As 37 voxels was the cutoff point in STE, regions containing less than 37 voxels are not shown. 
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