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Abstract 
This project started early in the summer of 2016 when it became evident there was a need for an effective 

and efficient signal analysis toolkit for the Littoral Acoustic Demonstration Center Gulf Ecological 

Monitoring and Modeling (LADC-GEMM) Research Consortium.  LADC-GEMM collected underwater 

acoustic data in the northern Gulf of Mexico during the summer of 2015 using Environmental Acoustic 

Recording Systems (EARS) buoys. Much of the visualization of data was handled through short scripts 

and executed through terminal commands, each time requiring the data to be loaded into memory and 

parameters to be fed through arguments. The vision was to develop a graphical user interface (GUI) that 

would increase the productivity of manual signal analysis. It has been expanded to make several 

calculations autonomously for cataloging and meta data storage of whale clicks. Over the last year and a 

half, a working prototype has been developed with MathWorks matrix laboratory (MATLAB), an integrated 

development environment (IDE). The prototype is now very modular and can accept new tools relatively 

quickly when development is completed. The program has been named Banshee, as the mythical 

creatures are known to “wail”. This paper outlines the functionality of the GUI, explains the benefits of 

frequency analysis, the physical models that facilitate these analytics, and the mathematics performed to 

achieve these models.  
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Chapter 1: Introduction 

1.1 History of LADC-GEMM 
The Littoral Acoustic Demonstration Center (LADC) was formed in early 2001 to utilize autonomous 
Environmental Acoustic Recording System (EARS) buoys developed by the Naval Oceanographic Office 
(NAVOCEANO) at Stennis Space Center which has provided technical guidance and support to LADC. 
The purpose of LADC is to make environmental and marine mammal measurements and perform related 
data analysis. LADC is a consortium of scientists from universities, including the University of New 
Orleans (UNO), and the U.S. Navy, which has also used the buoys to characterize the three-dimensional 
acoustic field of a seismic airgun array and to analyze the noise due to nearby storms. LADC has 
conducted marine mammal experiments in the Gulf of Mexico (GoM) in 2001, 2002, 2007, 2010, and 
2015.  

EARS buoys were developed as autonomous moored underwater recording systems by NAVOCEANO to 
make long-term ocean ambient noise measurements. When LADC was formed, the buoys were capable 
of measuring up to 1000 Hz for 1 year. LADC later added listening to sperm whales to its noise and 
propagation measurement missions, and so NAVOCEANO quickly modified the buoys to measure up to 
5859 Hz for 36 days. The buoys, moored at depths from 550 to 950 meters in the Gulf of Mexico, 
produced exceptionally clear recordings of sperm whale echolocation and coda clicks and recordings of 
other whales.  

Because of increasing U.S. Navy interest in beaked whales, the technology was further developed.  
EARS Generation 2 buoys are now capable of recording one channel to 96 kHz, or 4 channels to 25 kHz. 
All buoy designs include high quality omnidirectional hydrophones.  

In 2007, LADC conducted an exercise, to record primarily not only beaked whales but also sperm whales 
and dolphins in the Northern GoM. The Generation 2 EARS buoys were used in the single-channel mode. 
It made the first recordings of beaked whales in the GoM. Coincidentally, the two sites selected for 
deployment, based on a high density of beaked whale sightings, are 9 and 23 miles from the location of 
the BP oil spill in 2010. Therefore, LADC received funding in 2010 from the National Science Foundation 
and Greenpeace to go back to the sites. 

LADC, along with several new partners, under the name LADC-GEMM (Gulf Ecological Monitoring and 
Modeling) received 3 years of funding (2015 through 2017) from the Gulf of Mexico Research Initiative 
(GoMRI) to conduct two exercises. All of the existing marine mammal recordings are still being analyzed, 
however, the purpose of these additional exercises are to compare sperm whale, beaked whale, and 
dolphin measurements using ten single-channel Generation 2 moored EARS buoys, autonomous surface 
vehicles (ASV’s), sea gliders, and a test cruise in the off year between the two exercises. All 
measurements were made at the three sites of the LADC 2010 experiments.  

The first exercise began with a cruise to deploy the hydrophones and sea glider, as well as, operate the 
ASV’s in June of 2015. A retrieval cruise took place in October 2015. The second field exercise began 
with deployment in April of 2017 and retrieval took place in August of that year.  

1.2 The Data 
The EARS moorings are passive acoustic monitoring (PAM) system used to record marine mammal 

phonations. Each mooring has two paired single channel EARS buoys with one-meter separation. Glass 

floats hold the mooring upright with the goal of keeping the receivers at an approximate depth of 1000 

meters; where marine mammals are known to feed.  
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Figure 1: EARS configuration schematic 

The data are stored in the binary files as voltage amplitudes that were sampled at a given frequency, in 

the case of the 2015 experiment, 192 kHz.  The data were continuously recorded for one hundred days 

before being retrieved for processing. This paper will not go into deep detail as to how this process of 

recording acoustic data takes place, however a very general explanation of transducer theory can be 

useful, or even important for context. 

The hydrophones installed in the EARS platform employ omnidirectional input transducers that convert 

the mechanical energy of an underwater acoustic wave into electrical energy measured in voltage. 

Transducers use a diaphragm, which oscillates when struck by an acoustic pressure wave, to produce a 

measurable potential difference, or voltage. This source of voltage is usually a conductive coil which is 

pushed through a magnet or vice-versa. The voltage (𝑽) (Kinsler, et. al., 2000) is defined by  

𝑽 = 𝒁𝐸𝐵𝑰 + 𝑻𝑒𝑚𝒖 

where 𝑻𝑒𝑚 is the transduction coefficient (manufacturer provided in most cases), 𝒁𝐸𝐵 is the blocked 

electrical impedance, I is the current at the electrical inputs, and 𝒖 is the speed of the radiating surface or 

diaphragm. The oscillation of the diaphragm, and thus the coil, creates electrical pulses in a circuit, which 

are directly proportional in amplitude, phase, and frequency to the pressure wave that produced the 

mechanical movement of the diaphragm. The image below is an example of a basic microphone circuit 

diagram. This is merely for reference and is not specific to the actual hydrophones utilized by the EARS 

buoys. 

 

Figure 2: Moving-Coil Transducer. Image thanks to AspenCore, Inc. 
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The hydrophones employed by the EARS buoys are of a much different design, though the concepts are 

similar.  To achieve an omnidirectional underwater transducer, a cylindrical ceramic piezoelectric design 

is used. Unlike the diaphragm in the microphone diagram pictured above, which relies on a secondary 

mechanism to produce an electrical pulse, piezoelectric materials have the ability to generate an electrical 

charge directly in response to certain forms of mechanical stress. The phenomenon is known as the 

piezoelectric effect.  The ceramic elements are radially poled and are connected electrically in parallel 

and generate an electric charge that is relative in magnitude to any acoustic pressure wave they may 

come in contact with. 

 

Figure 3: Schematic of a BM024 cylindrical hydrophone (Jones et. al., 1992) 

The pulse amplitudes of these waves are then stored in mechanical hard drives in the EARS housing for 

later retrieval. As discussed above, these hydrophone arrays are left on site for several months to collect 

large amounts of data in the northern GoM. In 2015 alone, there were 32 terabytes of acoustic data 

collected from all LADC-GEMM sites. 

When working with such large data sets, it is important to have efficiency in mind. One goal of the UNO 

branch of LADC-GEMM is to create a catalog of mammal clicks for future reference. Mining the data can 

be an arduous process, therefore development of productivity software is vital. Acoustic data from any 

single LADC experiment can support a variety of marine mammal related studies, often in parallel and 

complementary to each other. For example, several techniques were explored for individually identifying 

sperm whales by their clicks for future comparison. Many of these techniques require extensive 

knowledge of frequency analysis.  Chapter 2 will review some of the more important aspects of this field 

of study. 
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Chapter 2: Applications of Transform in Signal Analysis 

2.1 Bioacoustics 
In the underwater-acoustic applications of signal analysis, the time series allows the analyst to observe 

the instantaneous relative magnitudes of the sound pressure waves which propagate through the 

medium. Over time, analysts can observe these fluctuations in magnitude as signals. The Fourier 

transforms, discussed at length in the following sections, of these time signals are their spectra. Aptly 

referred to as the “frequency domain”, the results of this mathematical operation are literally the 

amplitudes at the frequencies present in the signal. This is extremely useful to acousticians and marine 

biologist, as it can be difficult to gather visual data on underwater mammals.  Many of these species of 

use acoustic echolocation for sensory processing of their surroundings. They rely on it for hunting and 

navigation, since electromagnetic radiation (light) does not penetrate water for more than about 1000 

meters. Figure 5 below was taken from the National Oceanic and Atmospheric Administration (NOAA) 

website and explains a few of the zones of interest to researchers. 

 

Figure 4: NOAA illustration of oceanographic zones by depth 

As many whales rely on species that reside in the aphotic zone for sustenance, they must dive to these 

depths to hunt their prey.  At these depths, their eyes are insufficient for conveying perception. As an 

example of such species, consider the sperm whale.  The sperm whale uses a biological mechanism 

known as the monkey lips, or museau de singe, to generate a broadband acoustic pressure wave known 

as a click. This is annotated as “Mo” in the figure below.  This signal bounces off of, and is amplified by, 

the frontal air sac (Fr) and directed through the junk (Ju) where it exits and travels through water. This 

creates an extremely high sound pressure level that is ideal for the echolocation method utilized by the 

sperm whale. 

 

Figure 5: Sperm whale cranial schematic (Madsen, et. al., 2002) 
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Scientists can exploit these acoustic echolocation data to determine population densities and behavior. 

Furthermore, the data can be used for localization and classification since each species operates in 

slightly different frequency bands. Much of the efforts of LADC-GEMM are centralized around the 

classification of species given their calls. The intent is to build on the works of noted researchers such as 

Dr. George Ioup, Dr. Juliette Ioup, and Dr. Simone Baumann-Pickering to name a few. As an example of 

such works, the figure below was taken from Baumann-Pickering, et. al (2013). 

 

Figure 6: Frequency Content of Beaked Whale Signals 

Findings, such as these, give a baseline to researchers attempting to classify future signals recorded from 

other underwater mammals.  Many of the values listed in the table above rely on access to the frequency 

domain of the signal generated by the animal. 

2.2 The Fourier Transform 
The Fourier transform has been accepted as a staple technique in signal analysis and many other fields 

of data science. Though other transforms may be used from time to time, it would be difficult to find any 

research group in the signal analysis field that does not regularly and routinely utilize Fourier analysis in 

some form. Other transforms, such as the Laplace and Z-transforms, may be treated as strictly 

mathematical models, and are often used to simplify equations and provide a more easily solvable 

system prior to returning to the function domain. The Fourier transform and the resulting frequency 

spectra, on the other hand, have as real an interpretation as the function domains themselves (i.e. time, 

space, etc.). As discussed above, the time series data must be passed through the Fourier transform to 

obtain the frequency spectrum. For the purposes of this paper, the Fourier transform (Bracewell, 2000) is 

given by  

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 (1) 

 

and the inverse Fourier transform is given by 

 𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
∞

−∞

 (2) 

 

to return to the function domain, where 𝑥(𝑡) is the signal, 𝑋(𝑓) is the Fourier transform, 𝑑𝑡 is an 

infinitesimally small increment of time, and 𝑑𝑓 is an infinitesimally small increment of frequency.  These 

are defined to be the continuous Fourier transform, and are not indicative of real, sampled data. To rectify 
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this, the terms  𝑑𝑡 and  𝑑𝑓 can no longer be considered infinitesimally small.  For a signal of integer length 

N (starting at 1) and sample frequency 𝑓𝑠, the time array 𝑇 is 

 ∆𝑡 =
1

𝑓𝑠
 

(3) 

 

 𝑇 = [0: ∆𝑡: (𝑁 − 1)∆𝑡] (4) 

Note: The notation used here is [𝑓𝑖𝑟𝑠𝑡 𝑣𝑎𝑙𝑢𝑒: 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑟 𝑠𝑡𝑒𝑝 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙: 𝑙𝑎𝑠𝑡 𝑣𝑎𝑙𝑢𝑒]. This is shorthand for a 

column vector valued object with N number rows. 

As implied above, equations (1) and (2) take ∆𝑡 from equation (3) to be infinitesimally small, but of course 

this is only theoretical.  In applied signal analysis, data is sampled and is represented by discrete 

measurements in time. An adaptation of the Fourier transform for real sampled data is known as the 

discrete Fourier transform (DFT). If N is the number of data points in a given signal, and the independent 

variable is n, the DFT 𝑋(𝑘) of the data 𝑥(𝑛) is given by 

 𝑋(𝑘 + 1) = ∑ 𝑥(𝑛 + 1)𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

 (5) 

 

and its inverse is given by 

 𝑥(𝑛 + 1) =
1

𝑁
∑ 𝑋(𝑘 + 1)𝑊𝑁

−𝑘𝑛

𝑁−1

𝑘=0

 (6) 

 

where k is the independent variable in the frequency domain and  

 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁 (7) 

 

MATLAB uses the engineering convention of  −𝑗 = −𝑖 = −√−1  in the forward DFT and normalizes in the 

inverse transform operation as is required by the sum of sequence and first value theorem (Bracewell, 

2000). This notation was adopted by the author for continuity. Using the results of what is known as the 

Short Time Fourier transform (STFT), a spectrogram can be built to visualize and analyze the frequency 

bands. See section 2.5 for discussion and section 3.3 for example images.  

2.3 Power Spectral Density 
Other aspects of the signal that are of interest include the peak frequency and the various bandwidths 

that can be obtain from a power spectrum (PS). The PS is the squared, normalized, absolute value of the 

Fourier transform.  This operation allows the analyst to emphasize the changes in amplitude across many 

frequencies.  The PS (Bracewell, 2000, pgs. 285-288) is defined by: 

 𝑃𝑆 = |
𝑋(𝑘)

𝑚𝑎𝑥 [𝑋(𝑘)]
|

2

 (8) 

 

Often when visualizing the power spectrum in acoustics, the amplitudes are displayed in logarithmic scale 

using the loudness unit, decibels (Kinsler et al, 2000, pg. 130).  In this form it is known as the power 

spectral density (PSD): 

 PSD = 10log10 𝑃𝑆 (9) 
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2.4 Bandpass Filtering 
Bandpass filtering is a mathematical model of cutting out unwanted frequencies in order to denoise a 

signal. In this context, windows are utilized in the frequency domain to allow only the frequencies of 

interest to remain.  The most basic of these windows is known to students of Ronald Newbold 

Bracewell as the Rect function: 

 Π(𝑡) = {
1     −

1

2
< 𝑡 <

1

2
0         𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

   (10) 

 

Figure 7: Rect function plot 

As the saying goes, “there is no free lunch,” and as expected, there can be drawbacks to this in some 

situations. A maximally flat magnitude bandpass filter is utilized as to obtain as flat of a frequency 

response as possible. If this is not done, distortions can occur when returning to the time domain. A 

phenomenon known as Gibb’s oscillations can present itself as no filter can be perfectly flat at either end. 

 

Figure 8: Gibbs oscillations in the PSD as a result of windowing the time series data 

This occurs due to the result of carrying the window with the signal in the inverse transform. This can be 

illustrated mathematically with the convolution theorem (Bracewell, 2000).  Give the signal functions 

𝑓(𝑡) & ℎ(𝑡) with transform 𝐹(𝑠) & 𝐻(𝑠) respectively, the convolution of such functions results in the 

following relationships: 

 
𝑓(𝑡) ∗ ℎ(𝑡) ⊃ 𝐹(𝑠)𝐻(𝑠) 

𝑓(𝑡)ℎ(𝑡) ⊃ 𝐹(𝑠) ∗ 𝐻(𝑠) 
(11) 

 

Since applying a filter in the frequency domain literally means taking the product of the filter and the 

transform coefficients, the transform of the filter effects the time series data as well. The oscillatory 

behavior is a direct result of the Fourier transform of window like function. Consider again the Rect 

function; its Fourier transform is the sinc: 

 Π(𝑡) ⊃ sinc(𝑠) =
sin (𝜋𝑠)

𝜋𝑠
 (12) 
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Figure 9: Sinc function plot 

From his original paper, S. Butterworth (1930) is quoted as saying, "An ideal electrical filter should not 

only completely reject the unwanted frequencies but should also have uniform sensitivity for the wanted 

frequencies."  Obviously, this is impossible, but the 4th order Butterworth Filter does well enough for the 

purposes of this software. This filter uses the frequency responses (Oppenheim & Shafer, 1975, pg. 211): 

 

𝑙𝑜𝑤𝑝𝑎𝑠𝑠: |𝐻𝑙𝑝(𝑗𝑘)|2 =
1

√1 + (
𝑗𝑘
𝑗𝑘𝑐

)
2𝑛

 

(13) 

 

 
ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠: |𝐻ℎ𝑝(𝑗𝑘)|2 =

|
𝑗𝑘
𝑗𝑘𝑐

|
2𝑛

√1 + (
𝑗𝑘
𝑗𝑘𝑐

)
2𝑛

 
(14) 

 

Where 𝑘𝑐 is the cutoff frequency and 𝑛 is the order. These filters are difficult to visualize due to their 

imaginary part and the variability of their scale and order, however, the following figure can give an idea 

of its shape by considering only the real parts: 

 

Figure 10:Example of H(t) with values  𝑘𝑐 = 10 & 2𝑛 = 4 

Note that the shape attempts to become as flat as possible as it approaches zero on either side. These 

types of filters are known as “max flat”.  

2.5 The Wavelet Transform 
As has been illustrated above, the Fourier transform is extremely useful in many forms of data analytics, 

but it does have its drawbacks. Its use of then analyzing function, shown here as Euler’s equation, 

 𝑒−𝑗2𝜋/𝑁 = cos (
2𝜋

𝑁
) − 𝑗 sin (

2𝜋

𝑁
) (15) 

 

employs the method of adding a series of products of infinitely long wave functions with data amplitudes 

to obtain frequency data. This can often be useful; however, the use of such infinite analyzing functions 

fails to localize well with respect to time.   
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Figure 11: The Fourier transform does not localize frequencies with the time of occurrence 

The STFT attempts to amend this by taking small chunks of the data to perform transform in windows. 

These are then assembled later into spectrograms creating a pixelized pattern that can do a decent job of 

providing time data with the frequencies obtained. Unfortunately, due to the nature of the operation, 

aspects of the uncertainty principle being to apply, as is demonstrated by the following figure.  

 

Figure 12: Localizing better in time sacrifices resolution in frequency, and vice-versa 

In order to address these drawbacks, a mathematical operation known as the wavelet transform is 

considered. Wavelets are finite wave functions that have compact support and other special properties 

that allow for some very interesting analytics.  

 

Figure 13: Wave vs. Wavelet (Mann and Haykin, 1995) 

In contrast to the analysis function utilized by the Fourier transform, where pixels are uniform, wavelets 

are able to localize frequencies much better in time through the concept of multiresolution. At lower 

frequencies, this may not be necessary, as the analyzing function is wide enough to capture them. As the 

frequencies get higher, a scaling factor adjusts the wavelet by compressing it. Some resolution with 

respect to frequencies captured is lost, but it allows analysts to know when these higher frequencies 

occurred with relative accuracy, whereas the STFT could have missed them all together.     

 

Figure 14: Uniform resolution STFT vs. multiresolution wavelet transform 
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The wavelet transform is given by 

 
𝐹(𝑎, 𝑏) =

1

|𝑎|1 2⁄
∫ 𝑓(𝑡)𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

∞

−∞

 

 

(16) 

where 𝜓 , a wavelet, has taken the place of the exponential function in the Fourier transform. The variable 

𝑎 is known as the scaling factor which either dilates or compresses the wavelet and is analogous to the 

frequency content of the Fourier transform, and 𝑏 is known as the translation factor which acts as a phase 

shifting mechanism that localizes the frequencies captured with the time they were present. The 

equivalent frequency (𝐹𝑒𝑞) can be obtained by calculating the center frequency of the wavelet (𝐶𝑓), and is 

inversely proportional to the product of the scaling factor and the sampling interval.  

 𝐹𝑒𝑞 =
𝐶𝑓

𝑎
∙

1

∆𝑡
 (17) 

 

 

Figure 15: Compression and Dilation of a sinc wavelet 

Scaling any wavelet by a factor of 2, for example, results in reducing 𝐹𝑒𝑞 by an octave. Since this 

transform results in a function of two variables, the inverse transform is not symmetric like its cousin the 

Fourier transform.  The inverse can be obtained by the equation   

 
𝑓(𝑡) =

1

𝐶𝜓

∫ ∫ 𝐹(𝑎, 𝑏)
1

|𝑎|1 2⁄
�̃� (

𝑡 − 𝑏

𝑎
) 𝑑𝑏

𝑑𝑎

𝑎2

∞

−∞

∞

−∞

 

 

(18) 

where �̃� is the dual function of 𝜓.  The explanation of this relationship is outside the scope of this paper, 

but it is important to note that, in all wavelets used by the author, 𝜓 is biorthogonal and square integrable, 

and thus 𝜓 = �̃� (Unser, 1996). Further, 𝐶𝜓 is known as the wavelet admissibility constant and is given by 

 
𝐶𝜓 = ∫

|𝜓(𝜔)|2

|𝜔|
𝑑𝜔

∞

−∞

 

 

(19) 

The continuous wavelet transform defined above can also be translated to their discrete versions as well, 

however this is very laborious process due to its lack of symmetry and not necessary in the scope of this 

paper.  
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Figure 16: Examples of wavelets 𝜓(𝜔) 

Once the results of the transform have been obtained, a process known as thresholding can be utilized to 

denoise the signal. In signal analysis, the most widely used process is that of soft thresholding, where a 

data dependent threshold 𝛿 is chosen.  The standard method is to choose the threshold value statistically 

(Kolaczyk, 1996).  

 
𝛿 = 𝜎√2 log10(𝑁2) 

 
(20) 

Where 𝜎  is the standard deviation of the noise and N is the number of data points.  This is a basic 

equation for calculating entropy. Values can also be chosen manually for testing purposes. All values 

present in the signal that fall below the absolute value of 𝛿 are set to zero.  For the practice of hard 

thresholding the process would end here.  For soft thresholding,  𝛿 is then subtracted from the remaining 

values.  The filter is applied as follows (Strang, 1996). 

 𝑦𝑠𝑜𝑓𝑡(𝑡) = {
0                                     

𝑥(𝑡)
 |𝑥(𝑡)|

 ||𝑥(𝑡)| − 𝛿|
       

𝑓𝑜𝑟 |𝑥(𝑡)| < 𝛿

𝑒𝑙𝑠𝑤ℎ𝑒𝑟𝑒
 (21) 

 

This ensures a reconstructed thresholded function that is at least as smooth as the original function. Hard 

thresholding tends to exhibit distortions due to discontinuities. As an example of thresholding, consider 

the function 𝑥(𝑡) = cos 𝑡 , 0 < 𝑡 < 4𝜋 

 

Figure 17: Thresholding example with  𝛿 = 0.5 

The techniques discussed in this chapter have all been utilized in the development of the Banshee 
software.  Example images, explanations of the capabilities, features, and processes are shown and 
discussed in the following chapter.   
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Chapter 3: The Analysis Toolkit 
The original toolset, known henceforth as the Analysis Tab, includes a GUI that accepts a file path, aided 

by a secondary interface of the computer’s file structure. It is compatible with both EARS binary files and 

text data files. This interface can load the data into the computer’s memory and perform a series of 

operations to visualize the data in many useful ways, including plots of a time series, its time-frequency 

spectrogram, and its PSD.  

 

Figure 18: Image of the analysis tab of the Banshee program 

 

3.1 Load Sequence 
In order to read these data, the GUI was constructed in the MATLAB environment, which has built-in read 

functions for binary files. This makes the process less arduous than using open source development 

environments, however some tailoring was still necessary to organize the data into a usable format. The 

“Load” button has two possible operations. By default, it will run a binary read algorithm that decodes and 

loads the data of a single EARS binary file into the computer memory for later access. This includes not 

only the voltage amplitudes, but also time stamp information for each file of slightly more than 21 

seconds. These data are then stored as an array or “vector” object inside a class along with all other GUI 

objects (i.e. buttons, edit boxes, toggles, etc.). The secondary operation is dictated by a drop-down menu 

located below the file path edit box. The “Text” option will allow the user to load a .dat file containing an 

array of amplitude values. These files can be created with the GUI through the save icon at the top left-

hand corner or by any other method. The format of the .dat files is extremely important, and caution 

should be taken when creating said files outside of the GUI program.  
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3.2 Time Series: 
The simplest of the operations, but every bit as important, is the time series. It allows the analyst to 

navigate the data file and decide on which portions of the signal to focus. The “Times Series” button 

accesses the data loaded into memory and calculates a time array (based on the given sample rate and 

number of data points), as the times of the samples are not stored in the data for every sample point.  

This array is then coupled with the signal array for a two-dimensional time series plot of signal amplitude 

on the vertical axis versus time on the horizontal axis as seen in the figure below. The time array is the 

relative time from the beginning of the file or the first plotted point. The actual time can be calculated by 

taking the relative time and adding it to the timestamp given under the “All” button or by accessing the 

“Catalog” tab.  This value, in future releases will be displayed for the user on the GUI for more efficient 

access to the real time of the event being analyzed. This could save users’ time when generating reports 

for Digital Object Identifier (DOI) numbers. The following figure is an example of a time series plot of 

several sperm whale clicks, recorded in the Northern GoM. As discussed in Chapter 1, the amplitudes are 

recorded voltages relative to the ambient pressure at the hydrophone depth. 

 

Figure 19: Time series of an EARS file captured in the Northern Gulf of Mexico generated by Banshee 

Additional tools have been included to further manipulate the plot, such as zoom, pan, and a data cursor 

for closer inspection. Once a region of interest is found, the start time and duration edit boxes can be 

utilized to select a much smaller array for further analysis. The axes are automatically reset so the signal 

extrema span the entire viewing window to allow easier inspection. 

 

Figure 20: Time series of blown up click using start time and duration edit boxes 

This not only allows the visualization of the smaller set of data, as the zoom would provide, but also 

permits the user to apply more complex operations on only the shorter data set. In other words, all 

operations requested will then be performed on the set specified by the edit boxes rather than the full 

data set loaded into memory. This object-based system uses far less random-access memory (RAM) and 

processing power than previous methods utilized (i.e. command line called programs).  
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3.3 Spectrogram 
In order to visualize the frequency bands, the spectrogram operation of the GUI takes the portion of the 

data dictated by the edit boxes discussed above and utilizes the STFT and performs several analysis 

operations. For large data sets, an algorithm has been included to down sample the signal for faster 

processing. For small data sets, however, we can achieve much higher resolution pictures. As an 

example, the figures below are over 4 million data points and only 380 data points, respectively. 

 

Figure 21: Spectrogram of entire EARS file 

 

Figure 22: Spectrogram of smaller selection of data from EARS file 

The spectrogram images displayed here use the three-dimensional method of time on the horizontal axis, 

frequency on the vertical axis, and pixels of varying darkness to indicate amplitude (higher amplitudes are 

darker). The advantage of this type of visualization is the ability to compare behavior in both the 

frequency domain and the time domain at selected times and frequencies. 

3.4 Power Spectral Density 
The PSD button will run the calculations as described in Chapter 2.  The amplitudes are displayed in 

logarithmic scale using the loudness unit, decibels. The maximum amplitude therefore occurs at zero dB, 

known as the peak frequency, with all other levels relative to this max value.  

 

Figure 23: Power Spectral Density (PSD) generated by Banshee 
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The resulting transformed data allow the analyst to obtain important information characteristic of the 

signal. The -10dB bandwidth is the difference of the frequencies where the PSD crosses this threshold. 

The center frequency is half the -10dB bandwidth plus the frequency value of the first crossing. These 

values are often unique to many species, and as such are important for classification. The Catalog tab of 

Banshee has been programed, in large part thanks to Mr. Britt Aguda, to calculate all of these values of 

interest. An algorithm was also developed that can accurately distinguish the -10dB bandwidth, even if 

the PSD fluctuates across the threshold prematurely. Once all values are obtained, the “Report” button 

will create a .mat object file that stores this meta data along with a .dat file of the amplitudes for future 

processing. 

 

Figure 24: Catalog Tab of Banshee 

3.5 Bandpass Filter 
In the practical sense, the intensity of sound is nonuniformly distributed over different frequencies across 

time. The receivers record a range of these frequencies from a multitude of sources. Much of this is of no 

interest to any particular group, and as such is considered to be noise. It can be said that one individuals 

noise is another’s signal.  With this idea in mind, a bandpass filter was included in the toolset. The GUI 

was designed to always utilize the filter for noise removal. By default, it is set at the receiver extrema, 

resulting from the sample interval or rate: 

 

As LADC-GEMM 2015 data has a sample rate of 192kHz, this was set as the default, but it can be 

changed if older or newer data has a different sample rate. The bandpass threshold will automatically set 

itself from a small frequency (approximately zero with respect to these data) to the cutoff frequency, or in 

other words, half the sample frequency.  The figures below demonstrate the capabilities of the 
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Butterworth filter employed by the GUI (See Chapter 2 for more detail).  Note, the signal displayed as (c) 

has far less jagged changes and the resulting PSD no longer includes the higher frequencies. 

 

 
(a) 

 

 
(c) 

 

 
(b) 

 

 

 
(d) 

 

Figure 25: (a) original time series; (b) original PSD; (c) time series with 𝑘𝑐 = 20𝑘𝐻𝑧 (d) PSD with 𝑘𝑐 = 20𝑘𝐻𝑧 

 

3.6 Fine Scale Frequency Analysis 
The FS toggle located next to the Spectrogram button utilizes MATLAB’s Wavelet toolbox to produce “fine 

scale” scaleograms. These functions allow the creation of very high resolution, denoised images for 

analyst and are analogous to the spectrograms obtained through Fourier analysis. The following figure 

compares the spectrogram with the same image obtain through wavelet analysis.  The image on the right 

utilizes equation 17 from chapter 2 to obtain the equivalent frequencies. 

  

 

Figure 26: Fourier vs. Wavelet analysis 

The toolbox utilizes the wavelet transform and has an algorithm to optimize a 𝛿 value for thresholding. 

This process can achieve remarkable results not possible in traditional Fourier analysis.  
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Results and Conclusion 
The development of this software has been tremendously successful, and toolsets and functionality 

continue to grow with each month. Manual analysis, cataloging, and data mining of whale clicks now 

takes a fraction of the time it did with previous methods. The cataloging functionality of Banshee has been 

expanded to take several files from any given folder; it will find all clicks, calculate the values of interest 

discussed in this paper, and provide reports on them all, sorting them by their file name.  Much of the 

work that several students produced in the summer of 2016 was replicated in less than 10 minutes by a 

single user.  

Development began in the summer of 2016 as a way to better visualize the data collected and processed 

by LADC-GEMM. Currently, the software is in the hands of multiple researchers within the consortium, as 

well as, high school students across the New Orleans metropolitan area. Thus far, Banshee has been 

received well by users. Feedback tends to be requests for additional features, which have been 

implemented when completed.  

Under the guidance of Mr. Kendal Leftwich outreach programs have been designed to use the software to 

aid and educate students in data mining and collection procedures. Many of these students are required 

by the schools to conduct research and UNO LADC-GEMM has a significant amount of data to mine and 

catalog. As such, this is a mutually beneficial relationship. Thus far the program has been well received, 

and students are motivated to learn about bioacoustics and signal analysis techniques. 

Future plans for the software include expanding the cataloging functionality to include even more data 

mining capabilities. For instance, the most recent work of Mr. Jack Lebien of UNO uses multiple statistical 

algorithms to classify underwater mammals based on the criteria extracted above. This includes k-means, 

self-organizing maps, and several other iterative machine learning techniques. Mr. Matt Firneno, another 

researcher affiliated with UNO LADC-GEMM, has begun to explore the classification potential of Lorenz 

attractors, time-embedded manifold creation, fractal dimension, and other applications of chaos theory. 

These algorithms should be migrated into Banshee to further improve its capabilities. Mr. Britt Aguda has 

begun development of a database management tool for the reports collected has also just begun, but will 

eventually operate much like that of other database querying software only specific to LADC-GEMM data. 

It will generate spreadsheet reports utilizing end user defined parameters to further improve research 

efficiency. 
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