
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Spring 5-18-2018 

Detecting Rip Currents from Images Detecting Rip Currents from Images 

Corey C. Maryan 
University of New Orleans, cmaryan@uno.edu 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Maryan, Corey C., "Detecting Rip Currents from Images" (2018). University of New Orleans Theses and 
Dissertations. 2473. 
https://scholarworks.uno.edu/td/2473 

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with 
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright 
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the 
work itself. 
 
This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2473&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uno.edu%2Ftd%2F2473&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2473?utm_source=scholarworks.uno.edu%2Ftd%2F2473&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


 

Detecting Rip Currents from Images 

 

 

 

 

 

 

A Thesis 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the 

University of New Orleans 

in partial fulfillment of the 

requirements for the degree of 

 

 

 

 

 

 

Master of Science 

in 

Computer Science 

 

 

 

 

 

 

by 

 

Corey Maryan 

 

B.A. Southeastern Louisiana University, 2013 

 

May, 2018



ii 

 

Acknowledgments 
 

 I would like to thank Dr. Mahdi Abdelguerfi for all of the opportunities he has given me 

during my career at the University of New Orleans. He has given me more than I could ever ask 

for. I would also like to thank him for recommending the thesis idea. 

  I would like to thank Dr. Md Tamjidul Hoque for providing me with the assistance I 

needed for both the machine learning portion and writing portion of this project. He kept a 

considerate attitude throughout the course of the project and was always eager to help. 

 I would also like to thank Dr. Elias Ioup and Dr. Christopher Michael for helping lay the 

groundwork for collaboration with Naval Research Labs and for thesis guidance. I would also 

like to thank Dr. Elias Ioup for jointly recommending the thesis idea.  

 Finally, I would like to thank Devin Frey for sparking my initial interest in computer 

science. 

  



iii 

Table of Contents 
 

Abstract .............................................................................................................................. vi 

Introduction ..........................................................................................................................1 

Literature Review.................................................................................................................5 

          Machine Learning ......................................................................................................5 

                    Neural Networks ..............................................................................................6 

                    Support Vector Machines ..............................................................................11 

                    Ada-Boost ......................................................................................................15 

                    PCA ................................................................................................................16 

                    Other Machine Learning Algorithms .............................................................17 

          Object Detection ......................................................................................................18 

          Haar Features ...........................................................................................................24 

          Oceanography ..........................................................................................................27 

          Orthorectification .....................................................................................................32 

Methodology ......................................................................................................................36 

          Rip Current Dataset..................................................................................................36 

          Max distance from the average ................................................................................37 

                    Matlab ............................................................................................................37 

                    Implementation ..............................................................................................38 

          Support Vector Machines ........................................................................................38 

                    Features for training .......................................................................................38 

                    Implementation ..............................................................................................39 

          Convolutional Neural Net ........................................................................................40 

                    TensorFlow framework ..................................................................................40 

                    Implementation ..............................................................................................41 

          Viola-Jones ..............................................................................................................41 

                    OpenCV library ..............................................................................................41 

                    Implementation ..............................................................................................42 

          Meta Learner ............................................................................................................43 

                    Additional Features ........................................................................................43 

                    Implementation ..............................................................................................45 

Results ................................................................................................................................48 

          Max distance from the average ................................................................................48 

          Support Vector Machines ........................................................................................49 

          Convolutional Neural Net ........................................................................................51 

          Viola-Jones ..............................................................................................................52 

          Meta-Learner............................................................................................................55 

                    New Features .................................................................................................55 

                    Stacking..........................................................................................................56 

                    Meta-learner ...................................................................................................57 

Discussions ........................................................................................................................61 

          Max distance from the average ................................................................................61 

          Support Vector Machines ........................................................................................61 

          Convolutional Nueral Net ........................................................................................62 

          Viola-Jones ..............................................................................................................63 



iv 

          Meta-Learner............................................................................................................64 

                              New Features .......................................................................................64 

                              Classifier Stacking ...............................................................................64 

Conclusions ........................................................................................................................66 

Bibliography ......................................................................................................................67 

Appendices .........................................................................................................................69 

          Ada-Boost in Java ....................................................................................................69 

          Integral Image in Java ..............................................................................................83 

          New Haar Features in Java ......................................................................................86 

          Max distance from the average in Matlab ................................................................92 

          Meta-Learner Feature Vector in Python ..................................................................98 

          Meta-Learner in Python .........................................................................................104 

Vita ...................................................................................................................................111 

  



v 

List of Figures 
 

Figure 1: Neural network node ............................................................................................7 

Figure 2: A Neural Network ................................................................................................8 

Figure 3: Neural network algorithm ....................................................................................9 

Figure 4: A hyperplane ......................................................................................................11 

Figure 5: Non-linearly separability ....................................................................................12 

Figure 6: Maximal Margin .................................................................................................13 

Figure 7: Ada-Boost algorithm ..........................................................................................15 

Figure 8: Attentional cascading .........................................................................................18 

Figure 9: The Viola-Jones Algorithm ................................................................................19 

Figure 10: Viola-Jones image ............................................................................................20 

Figure 11: Example Haar Features ....................................................................................24 

Figure 12: Applying a feature ............................................................................................25 

Figure 13: Integral Image point .........................................................................................25 

Figure 14: Integral Image Regions ....................................................................................26 

Figure 15: A rip current .....................................................................................................27 

Figure 16: Min max rip currents ........................................................................................29 

Figure 17: Transposed Sandbar locations ..........................................................................31 

Figure 18: Time averaged Shorline....................................................................................32 

Figure 19: Figure 18 transposed ........................................................................................33 

Figure 20: A picture from an Argus site ............................................................................34 

Figure 21: Argus picture of rip currents ............................................................................34 

Figure 22: Rain droplets.....................................................................................................34 

Figure 23: Sun blocking a camera .....................................................................................34 

Figure 24: Rip current samples ..........................................................................................36 

Figure 25: Max distance from average ..............................................................................37 

Figure 26: TensorFlow Setup.............................................................................................40 

Figure 27: Viola-Jones Model ...........................................................................................42 

Figure 28: Matrix ...............................................................................................................43 

Figure 29: New Features results ........................................................................................44 

Figure 30: New Features ....................................................................................................45 

Figure 31: Meta-classifier data ..........................................................................................46 

Figure 32: Basic classifier parameters ...............................................................................47 

Figure 33: Meta-learner .....................................................................................................47 

Figure 34: Max distance from the average ........................................................................48 

Figure 35: Detection rate max distance .............................................................................49 

Figure 36: False positive rate max distance .......................................................................50 

Figure 37: SVM accuracy ..................................................................................................50 

Figure 38: CNN detection rate ...........................................................................................51 

Figure 39: CNN false positive count .................................................................................52 

Figure 40: CNN image .......................................................................................................52 

Figure 41: Viola-Jones Detection rate ...............................................................................53 

Figure 42: Viola-Jones False positive count ......................................................................54 

Figure 43: Viola-Jones image ............................................................................................54 

Figure 44: Accuracy adding new features .........................................................................55 



vi 

Figure 45: Detection rate after stacking .............................................................................56 

Figure 46: False positive rate after stacking ......................................................................57 

Figure 47: Viola-Jones vs meta-learner detection rate ......................................................58 

Figure 48: Viola-Jones vs meta-learner false positive count .............................................58 

Figure 49: Comparing detection rates ................................................................................59 

Figure 50: Comparing false positive counts ......................................................................60 

Figure 51: Viola-Jones vs meta-learner image ..................................................................60 

Figure 52: Java source for Viola-Jones ..............................................................................69 

  



vii 

Abstract 
 

Rip current images are useful for assisting in climate studies but time consuming to manually 

annotate by hand over thousands of images. Object detection is a possible solution for automatic 

annotation because of its success and popularity in identifying regions of interest in images, such 

as human faces. Similarly to faces, rip currents have distinct features that set them apart from 

other areas of an image, such as more generic patterns of the surf zone. There are many distinct 

methods of object detection applied in face detection research. In this thesis, the best fit for a rip 

current object detector is found by comparing these methods. In addition, the methods are 

improved with Haar features exclusively created for rip current images. The compared methods 

include max distance from the average, support vector machines, convolutional neural networks, 

the Viola-Jones object detector, and a meta-learner. The presented results are compared for 

accuracy, false positive rate, and detection rate. Viola-Jones has the top base-line performance by 

achieving a detection rate of 0.88 and identifying only 15 false positives in the test image set of 

53 rip currents. The described meta-learner integrates the presented Haar features, which are 

developed in accordance with the original Viola-Jones algorithm. Ada-Boost, a feature ranking 

algorithm, shows that the newly presented Haar features extract more meaningful data from rip 

current images than some of the current features. The meta-classifier improves upon the stand-

alone Viola-Jones when applying these features by reducing its false positives by 47% while 

retaining a similar computational cost and detection rate. 

 

 

 

 

 

 

 

Machine Learning, Viola Jones, TensorFlow, Rip Currents, Object Detection



 

 1 

1. Introduction 

 Rip currents are nearshore phenomena caused by the breaking of waves in an along-shore 

direction. They account for the majority of lifeguard rescues at beaches. For oceanography, rip 

current images assist in climate studies but must be manually annotated. “Argus site” locations 

such as Duck, North Carolina hold rip current images in a backlog of beach imagery [1]. Argus 

sites are groups of cameras that regularly take photos of shorelines. These images go through the 

process of  “orthorectification” [2],[3]. Othorectification alters the perspective of shoreline 

photos by combining snapshots taken from cameras at different angles and turning them into one 

image. The final image shows one, continuous bird’s eye view of the shoreline, which permits 

easier identification of rip currents. There are many Argus sites at different locations taking 

photos on an hourly basis. This amounts to several thousand images that may contain multiple 

rip currents per image. Neither the time nor the manpower exist for manually annotating every 

image, which makes conducting climate studies involving rip currents difficult. The lack of 

resources creates a need for an automated method to find rip currents in images. The automation 

of rip current detection can reduce the risk to swimmers and provide data for nearshore studies in 

a shorter amount of time. Finding an efficient method to automatically find these rip currents 

naturally lends itself to computing since computers process data far more quickly and accurately 

than humans. Specifically, a branch of computer science called “machine learning” provides a 

possible, effective solution because of its success in identifying regions of interest in images [4-

6]. 

 Machine learning involves the development of algorithms that train models, which make 

predictions on a set of test data [7]. Predicting the class of a data sample is known as 

“classification”. Binary classification assumes each data sample belongs in 1 of 2 classes. For 



 

 2 

example, if a model trains to find rip currents in an image, then a collection of images is the test 

data. Some images exemplify rip currents and have a class label of 1 while other images have a 

class label of 0. The model is exposed to the images and trains with an algorithm. Then, the 

model anticipates the class of unfamiliar images. Training a model with images involves 

extracting data from each image via “computer vision” techniques. Computer vision is an area of 

computer science concerned with image processing and “feature extraction” [8]. Feature 

extraction collects descriptive data from each data sample, which trains a model. Feature 

extraction, as a tool, reduces the amount of input data for the model. A large amount of data 

yields more time and processing power for training. The reduction of input data makes feature 

extraction important as it reduces runtime and conserves memory. A model identifies certain 

areas in an image after it trains on computer vision features. Identifying a specific region of an 

image with machine learning algorithms is “object detection”. 

 Object detection lends itself to a broad category than simply rip currents. Human faces 

are a popular object for detection research [9],[10]. Models built for face detection train on 

images of faces and develop from learning algorithms. An algorithm describes how a model 

updates itself in accordance with the data. Learning algorithms find a pattern between samples 

and update a model to achieve a higher performance on the dataset based on how many instances 

a model incorrectly predicts. The most important goal for a detection model is finding an 

accurate tradeoff between detected objects and misclassified non-object instances. 

 This thesis project aims to find a model that precisely detects rip currents from nearshore 

imagery. Different methods for classification are compared, including: max distance from the 

average [11], Support Vector Machines (SVM) [12], TensorFlow convolutional neural networks 

(CNNs) [13], the OpenCV implementation of Viola-Jones [10] ,[14], and classifier stacking [15].   



 

 3 

Principle component analysis (PCA) [11] reduces the number of dimensions for a data 

sample. This is important to the research as image data contain a large number of dimensions. 

This project attempts to apply PCA to detection by finding the maximum distance from the 

average data sample. A SVM [16] is another type of model that separates 2 classes with the 

greatest distance by finding the maximal margin of separation. Classifier stacking [15] is a meta-

technique that trains a classifier on the output of many different models to increase accuracy.  

TensorFlow is a framework developed by Google [13] and is applied to many machine 

learning obstacles. Convolutional neural networks built with TensorFlow detect objects from 

images. CNNs generate their own features through “image convolution” [4], [6]. Image 

convolution applies a “kernel” to generate image effects, such as edge detection and blurs. A 

kernel is a matrix paired with a region of an image and alters the makeup of the pixel it centers 

around. These filters extract data from each image and eventually become features for training a 

model. CNNs do not need their designs fine-tuned for a specific object when built with 

TensorFlow [13], which makes them promising candidates for developing a rip current detection 

model. 

Another popular algorithm for object detection is  “Viola-Jones” [10]. Viola-Jones 

employs a unique set of features for extracting data, known as “Haar features”. Haar features are 

sets of adjacent rectangles that correspond to different regions in an image. The value of a Haar 

feature is extracted from the grey-scale pixel values in the rectangles. The values of Haar 

features are generated while training the model. Viola-Jones has a technique to choose the best 

Haar feature for the dataset [10]. The advantage of Viola-Jones is the speed of extracting Haar 

features. Viola-Jones is trainable on many different types of images, including rip currents. 



 

 4 

The OpenCV package for Viola-Jones [14], TensorFlow framework [13] for CNN 

models, Matlab for max distance from the average, and the Scikit-learn package [17] for basic 

classifiers are run to generate results. Methods are a collection of machine learning tools, which 

produces an object detection model in Python. Python is a popular programming language for 

computer vision and machine learning because of the functionality already included. The built-in 

implementation of the models are applied to the problem instead of constructing one from 

scratch. Python is also user friendly and a viable choice for this project. Models make a 

prediction on a dataset of rip current images and are compared with a predefined benchmark of 

test images. The dataset is developed from 514 rip current samples manually extracted from the 

surf zone of larger images. The large images are downloaded from a website of beach imagery 

that contains many photos from previously mentioned Argus sites [1]. A larger dataset is created 

by warping the samples from the smaller dataset with OpenCV. 

This project expands upon the Haar feature space for the Viola-Jones classifier by finding 

features better suited for rip currents. This project also contributes a meta-classifier that improves 

upon the most accurate results of the current tools. The meta-classifier trains not only on the 

output of many different models, but on the optimal Haar features chosen by the same algorithm 

Viola-Jones employs.  



 

 5 

2. Literature Review 

 The literature review covers various topics relating to machine learning and how it is 

involved with object detection and oceanography. The machine learning section covers different 

algorithms applied in research. These algorithms are employed by object detection and can 

extract data with Haar features. Certain oceanographic research involving rip currents depends 

on these machine learning algorithms and orthorectification. 

  

2.1 Machine Learning 
  
 Machine learning concerns fitting data to a model with an algorithm [12], [7]. The 

models then make a prediction on a data sample with no class label. This prediction is conducted 

with previous occurrences of similar data. For example, a model trains to predict whether a given 

image is a rip current. The class of the image defines if it is a rip current. Images labeled 1 are of 

rip currents or are labeled 0 if not of rip currents. The images in class 1 are positive samples 

while the images in class 0 are negative samples. The learning algorithm processes training data 

from each image. An example of training data is the location of dark regions in an image. 

Machine learning implementations employ either “supervised”, “unsupervised”, semi-supervised 

or reinforcement learning [7].  

Unsupervised learning is the training of a model when the dataset has no class labels, or 

“ground-truth” data [7]. The ground-truth data describes the correct prediction on a data sample. 

Updating a model is more difficult when its predictions cannot compare with ground-truth data. 

Unsupervised learning is applied when class labels are unknown. This can be useful for tasks 

such as feature selection. These types of tasks are not dependent on the class of each sample. 



 

 6 

Supervised learning concerns a model trained with data that has class labels [7]. 

Supervised learning is the focus of this project because the location of rip currents in images is 

known. The learning is supervised since the model’s predictions are compared to a class label. 

These forms of learning are the training each model goes through. 

Training data are a set of features, which describe each sample in a numerical fashion [7]. 

The evaluation of a model is performed after training. A model compares the predicted class to 

the actual class. A “false negative” is an incorrect prediction on a positive sample. An incorrect 

prediction on a negative sample is a “false positive”. A correct prediction on a positive sample 

defines a “true positive”. A “true negative” identifies a correct prediction on a negative sample. 

The goal of a model is to maximize the number of true positives while minimizing the number of 

false positives. Maximizing true positives minimizes false negatives and minimizing false 

positives maximizes true negatives. Learning algorithms such as neural networks, support vector 

machines or Ada-boost enhance a model’s predictions on data.  

2.1.1 Neural Networks 
 

Neural networks form around the concept of the human brain [12]. Basic units in the 

network are “nodes”. Nodes are similar to a neuron of the human brain. A node is made of three 

parts, including: the input, the activation function, and the output. An example of a node is seen 

in Figure 1. In Figure 1, the output of the neuron Y is equal to a function of its inputs. These 

nodes connect to other nodes by links. The inputs of a node are outputs from other nodes. The 

outputs result from multiplying each link weight by an input, then adding them together. Links 

are input links or output links depending on the direction of the link. 



 

 7 

Links have a weight associated with them, which determine how strongly a node’s output is 

considered when the network classifies a sample. The nodes become a network when every node 

connects to every other node. An example network is in Figure 2. In Figure 2, a neural network 

is made of three different layers: the input layer, the output layer, and a hidden layer. The input 

layer takes the initial data. The output layer predicts the class label. The label is based on the 

output from nodes in the hidden layers. A “single layer perceptron” is composed of an input 

layer directly connected to an output layer [12]. A “multi-layer feed-forward network” has 1 or 

more hidden layers. The hidden layers represent the complex relationships between the input and 

output nodes. A more complex relationship needs additional hidden layers. The neural network 

trains by propagating through these layers until it reaches the output layer. The network’s error is 

the output found versus the desired output. 

 

 

Figure 1. A neural network node. Here the output of the node Y is based around applying the 

function f to the input of the node,𝑤1 ∙ 𝑋1 + 𝑤2 ∙ 𝑋2 + 𝑏 where w1 and w2 are the weights of 

each link.  b = bias, wi = ith weight. 



 

 8 

“Back-propagation” is the network updating the weights in reverse order [12]. The algorithm for 

training a neural network is seen in Figure 3. In line 1 of Figure 3, the algorithm takes an input 

dataset x and an output dataset y. A data structure is setup to store the error for each node. 

Everything below line 3 repeats until convergence is determined at line 20. Small, random 

numbers are assigned to every weight in the network. Each node in the input layer is then 

assigned an input from the dataset. Line 9 starts forward propagation. The inputs and outputs for 

every node of every layer after the input layer are calculated through the activation function. In 

Line 13-14, the error of each node in the output layer is calculated in accordance with the class 

label. Line 15-17 applies back-propagation. This starts from the output layer and works 

backward. The error of each node is found until the input layer is reached. The weights update in 

lines 18 and 19. In line 20 the network checks for convergence. The algorithm exits if the model 

did not improve or ran a specific number of “epochs”. An epoch is an iteration of training for the 

network. The algorithm resumes at line 4 if these conditions are not met. 

 

Figure 2. An example of a multiple layer perceptron with 1 hidden layer. 



 

 9 

 Images contain vast information for a dataset. Building an efficient network is unrealistic 

if the dataset is too large. For example, each pixel in a 224 by 244 image has 3 dimensions for its 

red, green, and blue color value. A node is created for every pixel and every dimension 

amounting to 150,528 nodes in the input layer. Parameters total to 22,658,678,784 after adding 

the links to each node. The memory needs of parameters yield an inefficient use of resources. A 

Algorithm 1: Neural Network Learning 

1              input: input x, output y, network with N layers, weights wi, j function f 

2              variable: E is a an array of errors indexed by i and j 

3              do: 

4                         for each weight in the network: 

5                                    assign a small random number 

6                         for each example (x, y) in the dataset: 

7                                    for each node in the input layer k: 

8                                                  assign the node to an input x 

9                                    for each layer m after k: 

10                                                for each node n in m: 

11                                                             set inputn = ∑ (wm, n*output(nm-1)) 

12                                                             set outputn = f (inputn) 

13                                  for each node j  in the output layer q: 

14                                                 set E [ j ] = f ’ (input j) * (y j - output j) 

15                                  for each layer starting from q: 

16                                                 for each node i in the layer q-1: 

17                                                             set E [ i ] =  f ’ (input i) * ∑  j (w i, j * E [ j ] ) 

18                                  for each weight wi, j in the network: 

19                                                 set wi, j = wi, j + α + output of node i  * E [ j ] 

20            while (terminating condition does not hold) 

Figure 3. An algorithm for training a neural network. 



 

 10 

224 by 224 image is relatively small, which makes the creation of nodes more difficult for larger 

images. Instead, a “convolutional neural network” is built. 

 A convolutional neural network uses image processing techniques to extract and learn 

features [5]. The input from these features is sent to a traditional set of fully connected layers. 

The extraction of features is performed through “image convolution”. Image convolution is the 

application of a filter to an image. When performing convolution, a square matrix is placed over 

some center point in the image (x, y). Each number in the matrix corresponds to a weight. An 

output is generated by setting (x, y) equal to the result of multiplying the weights in the kernel 

with the values at the positions around (x, y). The results are added together to produce (x, y)’.  

Convolution transforms pixels, which finds edges or generates blur effects. The effect depends 

upon the kernel. These operations are the basis for the “convolution layer”. The convolutional 

layer is the first layer after the input layer in a convolutional neural network. The convolutional 

layer contains a set hyperparmeters, including: the number of filters (kernels), the distance every 

filter extends over the image (receptive field), the “stride”, and the amount of “zero-padding”. 

Stride is the number of pixels skipped when centering the kernel at the next pixel in the region. 

Zero-padding assigns values to regions outside the image, which handles cases when the kernel 

falls out of bounds. The layer accepts an input region of the image and outputs a corresponding 

volume of data based on the number of filters. For example, a region of input from an image is 7 

by 7 by 3. The width, height, and depth of this volume are 7, 7, and 3 respectively. 2 kernels, 3 

by 3 in size, are convoluted with the region. Convolution produces an output of size 3 by 3 by 2 

if a stride of 2 is applied. The third dimension (depth) is equal to the number of filters given as 

input. Local connectivity is an important property of the nodes in a convolutional layer. Nodes 

are connected locally in terms of width and height, but fully-connected along the depth 



 

 11 

dimension. The local connection heavily reduces the number of input parameters, which saves 

memory. An activation layer applies an activation function to the input volume after a 

convolutional layer. A recurrence of convolutional layers are each followed by an activation 

layer, which is needed to transform the input for future layers. The data alters into input for the 

fully connected layers as it passes through each convolutional layer since the number of input 

dimensions gradually decreases. The convolutional layers intermingle with pooling layers. 

The pooling layers reduce the size of the input volume on the width and height dimensions. This 

reduction in volume assists the computational effort for convoluting at future layers. The data is 

fed to a traditional feed- forward, fully-connected neural network for prediction on a class label. 

2.1.2 Support Vector Machines 
 

 

Figure 4. An example of a hyperplane in a 3 dimensional space. 

Hyperplane 



 

 12 

Another powerful learner is a support vector machine (SVM). A SVM finds the best 

formula to separate data into different classes that have the greatest distance between them. This 

is the “maximal margin” between classes and is represented by support vectors [12]. These 

outlying points help form the boundary line between their class and a neighboring class, called a 

“hyperplane”. An example is seen in Figure 4. In Figure 4, the hyperplane is the grid in grey 

separating the two classes by intersecting the green points and red points. This example is 

“linearly separable”. The relationships between non-linear input data and output data are not 

separated into well-defined groups. The output is a set of points similar to Figure 5 if a graph is 

shaped with non-linearly separable data. Notice the separating plane is not a function of the input 

since the hyperplanes are curved in many directions. The most accurate hyperplane has the 

largest margin of separation. “Margin” refers to the distance between the hyperplane and the 

closest vector on each side of the plane. An example is seen in Figure 6. The solid colored 

vectors in red and blue represent the support vectors and are closest to the separator. 

 

Figure 5. An example of a non-linearly separability. The hyperplanes needed to separate 

the data are of complex shapes [16]. 

Non-linear 

hyperplane 

Non-linear 

hyperplane 



 

 13 

Therefore, the margin is twice the distance from the separator to the closest support vector. Data 

points are given a class, 1 or -1, in a binary classification problem. The separator is the set of 

points defined by (1).  

Finding this set of points involves solving the optimization problem defined in (2). New points 

are classified by (3) after the optimum vector is found.  

This solution works if the classes are linearly separable. “Data projection” is applied when 

classes non-linearly separable and plots data in a higher or lower dimensional space. For 

example, additional features are generated with (4), (5) and (6). Graphing in a 3- 

 

Figure 6. A maximal margin. The margin is the distance of the closest support vectors in solid 

red and blue to one another. Each belong to a separate class. The optimal hyperplane is the 

center of the margin [18]. 

{𝑥 ∶ 𝑤 ∙ 𝑥 + 𝑏 = 0}                                                            (1) 

 

𝑎𝑟𝑔𝑚𝑎𝑥 𝛼 ∑ 𝛼𝑗 −  1
2⁄  ∑ 𝛼𝑗𝛼𝑘𝑦𝑗𝑦𝑘(𝑥𝑗 ∙  𝑥𝑘)                                   (2) 

 

ℎ(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝑖 (𝑥 ∙  𝑥𝑖) − 𝑏)                                            (3) 



 

 14 

dimensional space allows for more hyperplanes to be found because the data is now linearly 

separable [12]. Projecting into higher dimensions is the “kernel trick”. The kernel function is 

projecting the data and contains any number of dimensions. The dimensionality of the kernel 

function allows for projection into a potentially infinite number of dimensions. A “hard margin” 

is found when a margin separates data perfectly into each class by a straight line. Figure 6 is an 

example of a hard margin. The separator is kept noisy when data is noisier. “Noise” is a property 

of the data that distorts a data sample. An example is glare on a camera lens. A more realistic 

classifier is produced if the separator retains the noisy property of the data. The target separator 

is a “soft-margin” for non-linearly separable data. This margin adjusts itself for outlying points, 

which increases the accuracy of the final classifier.  

There are some disadvantages to SVM’s. SVM’s tend not to scale to a dataset that has 

more dimensions than samples [7]. The correct kernel must also be chosen. A kernel to start with 

is a “radial basis function” (RBF) kernel because it projects data into an infinite dimensional 

space [7]. The input parameters “gamma” and “C” must also be chosen if the RBF is chosen. C 

is the penalty parameter for incorrect classification and Gamma is the coefficient for the kernel. 

These parameters are found through a process called “grid search”. Grid search tests a range of 

gamma and C coefficients through “10-fold cross-validation”. 10-fold cross-validation breaks 

data into 10 equally sized sets. The model trains on 9 folds and tests on the 1 remaining. The 

model’s performance is a combination of testing results from each holdout fold after training on 

the other 9. The best parameters are chosen based on the model’s performance. 

𝑥1
2                                                                                                      (4) 

𝑥2
2                                                                                                      (5) 

𝑥1

1

2 ∙  𝑥2                                                                                               (6) 



 

 15 

2.1.3 Ada-Boost 
 

Ada-boost searches through a set of features and ranks them in terms of error [19]. These 

features build “decision stumps”, known as weak classifiers. Decision stumps are simple 

classifiers that make a guess at classification, but are combined to form an  

accurate model. Ada-Boost continuously re-evaluates a model with a test dataset and weighs 

features accordingly. An example of the Ada-Boost algorithm is seen in Figure 7. 

Algorithm 2: Ada-Boost 

1    input: example images with labels є (1,-1) for positives i and negatives j respectively  

2    input: number of weak classifiers n 

3    initialize weights w  = 1 / (2 * size of the set they reside in (i or j)) 

4    for k = 1 to n: 

5           for weights wi,j in i and j 

6                        ∑ wi,j = 1 

7           for each haar feature h in set p: 

8                        for each sample image x in  i and j: 

9                                     acquire value v x  =  h(x) 

10                                   add vx to value collection y 

11                      sort y 

12                      for each value vq in y: 

13                                  error ev = min(ev, ∑ wy(0,q-1) , ∑ wy(q+1,size(y))) 

14         add mine(p) to weak classifier collection m 

15         for each sample image x in i and j: 

16                      if  mine(p)(x) is classified correctly: 

17                                   wx  = wx * 
𝑒

1−𝑒
 

18  return m 

Figure 7. The Ada-Boost algorithm. 



 

 16 

The inputs for Ada-Boost are a set of labeled images and the number of weak classifiers to 

return. At line 3 the weights of each input image are initialized. Lines 5 through 17 repeat for 

every weak classifier needed, which is based on n. Lines 5-6 normalize the weights of the images 

every time a new search starts. Lines 7-13 repeat for every feature in the feature space. A feature 

generates a collection of feature values after it is applied to the image collection. Lines 8-10 

generate the feature values. Line 11 sorts the values and line 13 calculates the error for the 

feature based upon the weights of the images. The error for the feature is found by comparing 2 

different values. Errors are assigned at each feature value in the sorted set. The first error results 

from setting all image above the current image to 1 and below to 0. The other error is found by 

doing the opposite operation of the previous error. Error calculations are done in one pass over 

the dataset. The feature with the minimum error is found at line 14, after every feature has an 

error. The feature with the lowest error becomes a weak classifier. This weak classifier is added 

to the current collection. In lines 15 through 17, the weight of the images update in reference to 

images incorrectly classified by the weak classifier. The algorithm continues until k equals n. 

 An advantage of Ada-Boost is its resistance to “overfitting” the data [20]. Overfitting 

occurs when the model learns the training dataset too well. This decreases generalization. 

Generalization affects the prediction on samples not in the dataset. Ada-Boost also does not 

require many parameters, which lowers memory needs [10].  

2.1.4 PCA 
 

 Principle component analysis (PCA) is a method of analyzing the “variance” of a dataset. 

Variance defines the difference between each data sample and the average data sample. PCA 

reduces the number of dimensions in a feature vector [7]. Any dataset has a corresponding 

“Eigen vector”. The Eigen vector contains the components that make up the greatest variance in 



 

 17 

the dataset. “Singular value decomposition” generates the Eigen vector by factoring the 

covariance matrix [11]. The Eigen components are ranked from greatest to least variance 

retained [11]. Dimension reduction employs Eigen components to project the dataset upon. 

Projection is calculated through multiplication of the feature vector and the components, which 

results in a new feature vector for the data sample. This vector has a size equal to the number of 

components projected upon. 

2.1.5 Other Machine Learning Algorithms 
 

 This section briefly outlines algorithms that create the meta-classifier. These algorithms 

include: decision trees, K-nearest neighbors, Naïve Bayes and bagging. 

 A decision tree is a structure built from nodes and branches [21]. The branches extend 

from every node. Nodes correspond to a test on an input variable while the branches are the 

results of the test. Leaf nodes represent class labels when training a decision tree since they are 

the final decision for the tree. Nodes check an input feature value, typically being for inequality 

to a threshold value. 

 K-nearest neighbors (KNN) classify a data sample based on the class of a certain number 

of neighbors, k [22]. Neighbors are assigned a weight based on how far they are from the sample. 

Heftier neighbors have a greater impact on classification. 

 Naïve Bayes classifies a sample with the independent probability of features in the 

training data [23]. The model assumes the probability of every feature is not dependent on the 

probability of another feature, which drastically reduces the amount of computation needed to 

train a classifier. 

 Bagging involves a variety of models that make a prediction on a data sample. Each 

model votes on what the class of the data is [7]. The final classification has the most votes. For 



 

 18 

example, the outputs of a neural network, KNN, and Naïve Bayes are given a weight. A neural 

network and Naïve Bayes model vote on the same class. The final output is their class since it is 

2 to 1. However, the weight of KNN also affects the vote. If KNN has a larger weight than the 

other two classifiers combined, then it chooses the class of KNN. The class predictions of these 

algorithms assist in producing accurate object detection models. 

2.2 Object Detection  

 Computer vision is the study of algorithms that alter and manipulate data contained in an 

image [8]. The algorithms extract features for machine learning. Object detection is a 

combination of computer vision and machine learning, which identifies certain regions of an  

image. In contrast, object recognition concerns identifying a particular instance of an identified  

object. Methods need “positive” and “negative” images. A positive image contains the object 

being sought after while a negative image does not. Object detection also employs a training 

algorithm, such as Viola-Jones or a convolutional neural network.  

 

Figure 8. A Diagram showing attentional cascading for a rip current detector. Only sub-

windows of an image that passes each layer of the cascade (found to be rip currents) are 

processed by further layers. 



 

 19 

 One type of object detection algorithm is the Viola-Jones object detector [10]. Viola-

Jones uses Ada-Boost as the learning algorithm, Haar features, and “cascading architecture”. An 

example of cascading architecture is shown in Figure 8. The detector starts with every sub 

window in an image. Windows are checked at every position and scale in the image. Each sub 

window is passed to a layer of the cascade for processing. The layers that vote the window 

contains the object pass the image along to the next layer of the cascade. The layers that vote the 

image does not contain the object discard it. The model is evaluated by its “detection rates” and 

“false positive rates”. The detection rate is the number of positives correctly classified divided by 

the total positive windows while the false positive rate is the number of negatives misclassified 

divided by the total negative windows. A cascade’s detection rate and false positive rate are 

equal to the product of every layers’ rate. For example, a cascading object detector has 4 layers. 

Every layer has a detection rate of 0.99. The total detection rate for the classifier is 0.994 or 0.96. 

 

Figure 9. An image that has been classified based on faces using Viola-Jones. The faces are 

surrounded by red boxes. 



 

 20 

Notice how the detection rate decreases as the number of layers increase. The detection rate 

decreases because each layer cannot achieve a detection rate of 1.0, which causes them to lose 

positive images. In contrast, the product of the false positive rates work in favor of the cascade. 

Layers train to reject false positives of the previous layer. A higher detection rate and lower false  

positive rate make it difficult to find a collection of suitable weak classifiers.  

 Only 0.067 seconds are needed to evaluate  a 384 by 288 image on a 700 MHz Pentium 

III processor [10]. The rapid detection speed creates “real-time object detection”. Real-time 

object detection involves detecting objects at the speed of video frames and is associated with the  

Algorithm 3: Viola-Jones Cascading Classifier 

1   input: target false positive rate fp  

2   input: false positive rate per layer fpi 

3   input: detect rate per layer dti 

4   input : set of positive and negative images j 

5   variable i = 0 starting detection rate d = 1.0; starting false positive rate f = 1.0 

6   while f  <  fp: 

7           i++ 

8           n = 0 

9           while fpm <  f * fpi-1 

10                       n++ 

11                      collection of weak classifiers m = Ada-Boost(n,j) 

12                      evaluate collection on test set of images 

13                      while  dtm  <  d *  dti-1 

14                               decrease threshold k for collection and re-evaluate 

15         set m as a layer i for cascaded classifier 

16         delete any negatives in j correctly classified 

Figure 10. The Viola-Jones Algorithm. 



 

 21 

rejection rate of negative samples. The rejection rate of negative samples depends on how low 

the false positive rate per layer is set while the misclassification rate of positive samples depends 

on how high the detection rate per layer is set. Negative windows are rejected quicker if the false 

positive rate is lower. Positive images are more slowly discarded if the detection rate is higher. 

An example of an image classified by the face detector is shown in Figure 9. The detected faces 

are in red boxes.  

 An example of the Viola-Jones algorithm is seen in Figure 10. The Viola-Jones object 

detector is given set of positive and negative examples on which to train and test. Other inputs 

are an acceptable detection rate per layer, a target false positive rate, and a false positive rate per 

layer. In line 5, i is initialized to 0. I represents the current layer the algorithm is building. The 

starting false positive rate and detection rate for the cascade are initialized to 1.0. The classifier 

considers every image a rip current when they are set to 1.0. Lines 6 through 16 repeat until the 

classifier achieves the target false positive rate. At line 7 a new layer of the cascade starts. Line 8 

sets the number of weak classifiers returned from Ada-Boost to 0. Line 9 through line 14 repeat 

until the layer achieves the false positive rate needed. In line 10 the number of weak classifiers 

needed increases. This starts at 1 to try the fastest possible computation time for each layer. At 

line 11, Ada-Boost ranks every feature in the feature-space in terms of weighted error with the 

algorithm described in section 2.1.3. Ada-Boost returns weak classifiers in a group of size n. The 

collection becomes a potential layer of the cascade. On line 12 the algorithm evaluates the 

performance of the layer by classifying a test set of images. Lines 13 and 14 repeat until the layer 

has an acceptable detection rate. Decreasing the threshold causes the detection rate and false 

positive rate to increase. At line 9, the algorithms checks if the layer still has an acceptable false 



 

 22 

positive rate. A layer with an acceptable false positive rate becomes a layer of the cascade. 

Otherwise, the layer is discarded and the process starts over, with n increased by 1. 

 Open-source Computer Vision (OpenCV) is a Python package [14] for object detection 

employing the Viola-Jones algorithm. The advantage the OpenCV implementation has over the 

original is a more robust feature set [24]. This set includes features rotated at 45 degree angles. 

OpenCV automatically produces a dataset by superimposing a slightly warped, positive sample 

on top of negative sample. This introduces a risk of overfitting to an artificial dataset. The object 

detector becomes adequate for only detecting artificial samples if the samples do not contain 

meaningful data. The OpenCV package also saves a cascade by writing every layer to a file. The 

files are accessed at a later time to continue training instead of building a new cascade from 

scratch.  

Recently, Google has implemented an object detection framework containing convolution 

neural nets [9], called TensorFlow. This framework employs checkpoints of previous models, 

which accelerates training to just a few hours [13]. Models built with TensorFlow spend weeks 

training on many different objects. Then, they fine tune the final layer to the detect the object 

needed [13]. TensorFlow has a variety of configurations for building a customized network. Two 

examples are the Inception and Mobilenet models. 

In [6], the authors address a need for an efficient convolutional neural network. The need 

is generated from the current method for improving performance of a network, which involves 

increasing the width and parameters of the network. This makes the network prone to overfitting. 

The Inception model is introduced to alleviate the issue. 5 by 5 convolutions are expensive to 

compute, given enough filters are applied at a convolution layer. A 1 by 1 convolution is applied 

to the output volume from the previous layer before preforming larger convolutions, which 



 

 23 

reduces the depth dimension. A 1 by 1 convolution keeps the same width and height of the input, 

but reduces the depth if the number of filters applied is less than the previous output volume’s 

depth. 1 by 1 convolutions make larger networks without sacrificing memory efficiency and 

make local machines with less memory able to build larger networks. Inception networks consist 

of inception modules, which contain a number of 1 by 1 convolution operations followed by a 

larger size convolution or a pooling operation. The final Inception model has one fully-connected 

layer at the end of the network. During training, it has a fully connected layer at the end of each 

module in addition to a connection to the next module. This makes back-propagation start at 

every module, which speeds up the training process. The fully-connected layers are discarded 

after the model is complete. 

Mobilenets are introduced in [4] as a different approach to reducing the size and 

computational effort of convolutional neural networks. These networks contain “depth-wise 

separable convolutions”. Depth-wise separable convolutions break up the convolution step into 2 

parts. The first part involves applying a single filter to every input volume depth, called “depth-

wise convolution”. The second step applies a 1 by 1 convolution to the input volume. The 2 

results are added together, which achieves a similar effect of normal convolution, but at a 

reduced cost of parameters. The paper also introduces a method of thinning the network with a 

“width multiplier”. This is a number less than one multiplied to the input depth and output depth. 

The width multiplier reduces the width of each layer of the network, which further decreases the 

cost of parameters. 

Convolutional neural networks prove beneficial for building an object detector of many 

different objects. Other approaches, like Viola-Jones, weigh heavily on the features they 

calculate. The features Viola-Jones calculates are Haar features. 



 

 24 

2.3 Haar Features 

 Haar features form the main basis for a Viola-Jones [14] and are rectangular regions of an 

image. The regions expose unique features extracted for training. Examples of Haar features are 

seen in Figure 11. The feature (A) is known as “Four”, (B) as “Three Horizontal”, (C) as “Three 

Vertical”, (D) as “Two Horizontal”, and (E) as “Two Vertical”. The feature types are chosen in 

accordance with similarities of light and dark values in all faces [10]. The similarities are found 

by taking a large set of face images, all of the same size, and averaging each pixel. An example 

of an applied Haar feature is shown in Figure 12. The black regions of the Haar features are 

covering the image with different orientations. The feature values are not calculated from the 

original image, but from the “integral image”. An example is seen in Figure 13. 

 

Figure 11. Example haar features (A) The “Four” feature, (B) The “Three Horizontal” feature, 

(C) The “Three Vertical” feature, (D) The “Two Horizontal” feature, (E) The “Two Vertical” 

feature. 



 

 25 

The value at (x, y) is the sum of the gray-scales values above and to the left of the pixel. The 

difference between the areas under the rectangles is taken after the integral image values for each 

of the rectangles are calculated. The difference of areas is the sum of integral image pixels in 

white rectangles subtracted from the sum of pixels in black rectangles. An example of this is 

shown in Figure 14. Figure 14 is a Haar rectangle with four regions: A, B, C, and D. The region 

of A is the integral image value at point 1. 

  

Figure 13. Integral Image point. The point (x, y) = sum of all pixels above and to the left of (x, 

y). 

 

Figure 12. Applying a Haar feature to an image. The feature sits on top of an area of the image.  



 

 26 

 Region B is the integral image value at point 2 subtracted from the value at point 1. Region C is 

the integral image value at point 1 subtracted from point 3. Region D is the integral image value 

at 4 added to the value at point 1. The final result is (1+4) – (2+3). Applying a Haar feature to an 

image yields a single value, which is cheap to hold in memory and quickly computed. Integral 

image values are accessed instantly while normal image values are iterated over. Therefore, 

normal image values take more time to compute. The access speed results in immediate 

evaluation time. A Haar feature placed at every width and height in a 24 by 24 image creates 

over 160,000 features in the feature space. Ada-Boost iterates over the feature space every time a 

weak classifier is needed. Adding more features slows down the search.  

Normal Haar features are limited upright regions in horizontal and vertical directions. 

The OpenCV implementation has a more robust set with rotated and upright regions [24]. The 

 

Figure 14. Integral Image Regions: (A) a region of the image denoted by point 1, (B) a region 

of the image denoted by 2-1, (C) a region of the image denoted by 3-1, (D) a region of the image 

denoted by 4+1-(2+3). 



 

 27 

original Haar features cannot locate tilted faces, which creates the need for rotated features. 

These features are rotated by 45 degrees to mimic a rotated face.  

There is no alternative to blunt force when searching for the optimal feature [25]. 

Searching the entire feature collection comprises the inefficiency of these features. Most 

implementations of Viola-Jones have Haar features for face detection because they are optimized 

for faces. There has been no further research into optimizing these features for different objects. 

2.4 Oceanography 

 Oceanography is an Earth science coving a range of topics, including: ocean currents, 

waves, plate tectonics and the sea floor [26]. Nearshore research comprises one area of  

oceanographic research. An example of nearshore research are rip current studies. Rip currents 

are narrow regions of the surf zone, are perpendicular to the shoreline, and are created by wave 

 

Figure 15. A Depiction of a rip current. The wave breaking force toward the shore is in purple. 

The backward circular motion caused from this force is generating a rip current [27]. 



 

 28 

breaking [28].  An example is shown in Figure 15 [27].  In Figure 15, the dotted line near the top 

of the figure is a shoreline. The forces causing waves to move toward the shoreline are in purple. 

The wave breaking forces are at opposite ends of the rip current and are in red and blue. More 

than 100 people annually die from rip currents in the United States alone and rip currents account 

for over 80% of the rescues performed by beach lifeguards [29]. People have a difficult time 

recognizing rip currents when not trained to spot them [30]. Rip currents also play a large role in 

beach erosion because of their seaward force from shoreline [31], which causes a large amount 

of erosion for countries like Korea. Rip currents images assist in climate studies for 

oceanography, but must be manually annotated by hand [32]. One image can contain many 

different rip currents, which makes annotating thousands of images unreasonable. This can make 

climate studies harder to conduct since they need the number of rip currents in each image and 

the location of each rip current. The previous reasons generate the importance of an accurate 

method for automatic rip current identification in images. One possible solution is machine 

learning because it has become a popular, successful approach for locating certain regions of an 

image [4-6].  

Some oceanographic research is conducted with computer algorithms. One study 

involves rip current behavior and video imagery [28].  In this study, a semi-automated algorithm 

is introduced and adopts “local minima and maxima” for detecting rip channel patterns. The 

local minima and maxima identify darkest and lightest areas of the image, respectively. The 

algorithm is semi-automated because of human correction. Finding rip currents with light and 

dark values is a contribution as the center of rip currents appear darker. A sample from the study 

is seen in Figure 16 [28]. The rip currents and shoreline are seen from a bird’s-eye view at the 



 

 29 

bottom of the image. In Figure 16, (a) the results of the automated portion of the algorithm are 

shown. 

Figure 16, (b) shows warmer colors for minima and cooler colors for maxima. Figure 16, (c) 

shows the same shoreline after human modification. The algorithm finds the local maxima and 

minima located in a 7.5 by 7.5 area of the image. All pixels outside the dotted area are not 

considered since they are not near the shore. A few specification rules are introduced to 

objectively remove pixels not considered part of the rip current. First, a rip current must be a part 

 

Figure 16. A semi-automated process for detecting rip currents: (a) the results of the algorithm 

guessing at where rip currents are located, (b) the maxima and minima pixels in the image 

within a 7.5 by 7.5 region, and (c) the final results once a human has corrected the initial 

results. 



 

 30 

of at least 5 connected local minima pixels. Second, segments of rip currents within 40 m of one 

another are joined. Third, the rip current is split into 2 different rip currents if it has sections 

connected by a line parallel to the shore. Finally, a rip current is removed if it does not extend 

from the shoreline to the tip of the bar-line (dotted line). These images all have a similar 

orientation, which allows the algorithm more generalizability. This makes the algorithm useful 

for images distinct from the samples in the study. 

 Another study has already noted disadvantages of rip current imagery [33]. This study 

discusses the “noise” found in such imagery. Noise makes it difficult to detect rip currents in 

shoreline imagery because of how it interferes with meaningful data. An example could be rain 

droplets or sun glare in the images. The solution is to apply a Gaussian blur, which filters out 

noise. This involves a blending of color values of a particular group of pixels. Next, the image is 

segmented into different regions based on the red, green, and blue values. Finally, color values 

are grouped together to obtain a synthetic, noiseless image. A digitized version of rip currents are 

manually created as a detection benchmark. This makes the process semi-automated. The 

detection rate is 34% for original images and 41% for synthetic images. Correcting noise helps 

minimize the variance of the samples, which generalizes the application of the algorithm.  

In the following study, neural networks predict sandbar movement [34]. Sandbar 

locations are output nodes and wave heights are input nodes. Predictions on sandbar locations are 

more accurate when wave height is high and less accurate when the wave height is low. Previous 

models cannot capture the data relationships because the data is non-linear. Hidden layers 

capture non-linearity in data, which makes the study a contribution [7]. Example data from the 

experiment is seen in Figure 17 [34]. The image in the top right is a bird’s-eye view and is 

similar to images from the last study. 



 

 31 

White, foamy regions from the image are placed onto a horizontal plane x (m). H (m) is wave 

height over an 8 year period. Sandbar location is the data’s class label. In this situation, the 

neural networks are “recurrent”. Ergo, the output of one time step is the input for the next time 

step. For example, there is a sandbar location x (m) at time t. Wave height, averaged over time t-

1 through time t, predicts sandbar location at time t. Time step t becomes t-1 and predicts 

sandbar location for the next time step t, previously t+1. A trained network predicts sandbar 

locations outside of the training set. 

 Rip currents are a neglected focus of study for machine learning. The imagery from 

previous studies has the potential for assisting in rip currents identification since it is 

 

Figure 17. The white foam from the image in to top right is transposed onto x (m). 

H(m) is the wave height at time t (year) corresponding to sandbar location at time t (year). 



 

 32 

“normalized”. Normalization constrains data between 0 and 1, which highlights similarities in 

extracted features. For images, this involves aligning each image to the same orientation and 

size. These studies rely heavily on the bird’s-eye view images of the shoreline. These images are 

not taken from a bird’s eye view, but created through the process of orthorectification.  

 2.5 Orthorectification  

 Previously mentioned studies [28],[34],[33] include imagery of rip currents. This is not 

simple photography.  Multiple cameras capture images of the shoreline at several different 

angles. These images are “orthorectified”.  This process converts the perspective of an image 

into a different perspective [3],[2]. A 10 minute clip of video footage is averaged at every pixel 

to enhance the wave and sandbar behavior in a resulting image. The image looks similar to 

Figure 18 after it is averaged over 5-10 minutes [3]. 

 

Figure 18. A time averaged image of the shoreline from a nearby camera. 

 



 

 33 

In Figure 18, the surf zone of a beach front image is smoothed over time. The smoothing allows 

the motion of the waves and sandbar location to appear well-defined. The center of the image is 

used a reference point when transforming coordinates (x, y, z) into a 2 dimensional plane (u, v) 

through matrix multiplication. The camera is calibrated after the multiplication is complete. The 

camera is corrected through the equation described in [3],[2], hence the dotted region in the 

image looks like Figure 19 [3]. Figures 18 and 19 are taken from an older Argus model from 

1997. Argus sites [1], are set up at many beaches around the world. Multiple cameras are set up 

for one beach. Combining the images at different locations produces a full view of the shoreline. 

This is seen in Figure 20. Figure 20 is an example of an image from the Duck, North Carolina 

camera site. In Figure 21, rip currents are darker blue regions of the surf zone, are surrounded in 

red boxes, and are taken from Secret Harbour, Australia. Rip currents have less defined shapes 

and sizes than other objects. There is some uncertainty whether the dark blue region farthest to 

the right is a true rip current due to the horizontal orientation. 

 

Figure 19. The dotted region of Figure 18 transposed onto a 2-D plane. 

100 

150 

200 

250 

800 850 900 950 1000 1050 1100 1150 1200 

(m) 

(m) 



 

 34 

 

Figure 20. An updated picture from an Argus site [1]. 

 

Figure 21. An Argus picture of rip currents. 

 

Figure 22. An Argus picture with rain droplets on the lens of one camera. 

 

Figure 23. An Argus picture with the sun blocking a camera. 

Typically, a rip current has a perpendicular orientation to the beach.  



 

 35 

Images can be distorted or unclear. An image looks like Figure 22 on a rainy day. In 

Figure 22, rain is distorting one of the cameras. The rain produces a “stretched” look for the area 

marked in red. In addition, Figure 23 is produced if the sun causes a reflection off of the ocean. 

In Figure 23, lighter areas covering the shoreline are annotated in red. These distortions make 

images not as desirable for a dataset. The images need to be as clear as possible to retain the 

most meaningful data for a model. The orthorectified images create a usable dataset because of 

their similar orientation for rip currents. A dataset of these images builds a rip current object 

detector. Rip current regions in the images are pulled out of the larger image. The rip currents are 

processed to create a list of descriptive features. The descriptive features train different models 

for classifying images. There have been no studies applying machine learning to rip current 

detection in orthorectified images. 

  



 

 36 

3. Methodology 

The following topics describe the dataset and how it builds rip current object detectors. 

Rip Current Dataset discusses how and where rip current images are generated from. These 

images create training data and a benchmark for comparing different methods of rip current 

classification. Next, the implementation and package details of max distance from average, 

SVMs, convolutional neural network, Viola-Jones, and the meta-learner are shown. The new 

features are revealed in the meta-learner section. The implementations explain how models 

conduct classification. Methods generate a collection of values for comparison of detected rip 

currents, including: accuracy, detection rate, false positive rate, and false positive count. 

3.1 Rip Current Dataset 

 The data is downloaded from the Coastal Imaging lab web site [1]. The website contains 

a collection of backlogged imagery from different beaches. An example is shown in Figure 24. 

Figure 24 contains 5 rip currents extracted for training. These images are orthorectified by the 

method mentioned in section 2.5. Orthorectification allows rip current images to have similar 

orientation, which spawns similar features between the samples. All rip currents come 

specifically from the Duck, North Carolina and Secret Harbour, Australia datasets. 514 examples 

 

Figure 24. A depiction of beach imagery from an Argus website. It contains 5 rip currents 

annotated in red. 



 

 37 

of rip currents, 24 by 24 in size, are extracted by hand from every image after shoreline images 

are downloaded from the site. In addition, 800 24 by 24 negative examples are pulled in a similar 

fashion from the surf zone. Surf zone negatives are part of the dataset because rip currents only 

appear in images with a surf zone. Faces and other objects appear in many different places. The 

false positive rate for the model reaches an acceptable level sooner when there are fewer types of 

negatives to classify. Models created from negatives in any image are compared against surf 

zone models.  

3.2 Max Distance from Average 

This section explains how to generate the max distance from the average rip current. 

Then, the implementation of the classifier is described. This is the baseline classifier. Every other 

classifier improves upon it. 

 

3.2.1 Matlab 

 PCA runs on the set of rip currents, which finds the max distance from the average. 

Matlab code generates the Eigen components for the rip currents. This code is found in appendix 

 

Figure 25. A depiction of the max distance from the average classifying an image. 



 

 38 

D. Only training on positive samples reduces the training data needed to create a classifier. This 

eliminates computation effort as the size of the dataset has a significant impact on training time. 

3.2.2 Implementation 

  A depiction of the implementation is seen in Figure 25. Every image is a 1 by 576 vector 

when processed column wise. The 24 columns in the image are appended together to produce an 

input vector. Singular value decomposition yields the Eigen vector for the collection of rip 

current vectors. The vectors are projected toward the Eigen vector through matrix multiplication, 

which creates a feature set for the image. The maximum distance from the average feature vector 

is produced by finding the average feature vector. The resulting feature vector has size 1 when 1 

component is projected toward. The average of the single values creates a midpoint in a range of 

possible values. The absolute value of the greatest difference between any one sample feature 

and the average is a threshold. This threshold classifies the images. Every component is 

projected toward, which identifies the component with the smallest threshold. A projected 

sample is classified as a rip current if it has a distance from the average less than or equal to the 

threshold. It is classified as a non-rip current if the distance from the average is greater than the 

threshold. 

3.3 Support Vector Machines 

This section reveals the SVMs built for classification. Formulas for processing the SVM 

features and how the SVMs train on them are discussed. 

3.3.1 Features for training 

Meaningful features are the most important part in creating an accurate SVM [7]. Haar 

features from Viola-Jones are created and applied to every training image. Haar features capture 



 

 39 

a generous portion of image data. Not every feature is considered because the feature space is too 

broad. SVMs do not scale well when there are more features than there are samples [7]. Instead, 

an average of 10 Haar feature types are placed into the feature vector, which limits the training 

vector size to 10 at the cost of descriptive information. This includes 5 new Haar identified in 

section 3.7.1. Features in each category are grouped for averaging. The ratio of black to white 

pixels in the image and “circularity” are also appended to the vector. Circularity represents how 

close to a perfect circle an object is. An image consisting of either black or white pixels produces 

a ratio between the two when they are counted and divided. A black and white image is 

developed from setting every pixel in an image to totally black or totally white, which depends 

on a threshold value. Circularity is calculated from a segmented image. A segmented image is 

the result of applying a Matlab routine to a black and white image. Formula (7) produces 

circularity. In the segmented image, bwow is the number of black pixels without a white 

neighbor and bww is the number of black pixels with a white neighbor.  

4𝜋(𝑏𝑤𝑜𝑤 𝑏𝑤𝑤2⁄ )                                                          (7) 

 

Circularity is a significant feature as rip currents have a semi-circular shape to them. 

 

3.3.2 Implementation 

 The Scikit-learn package for Python creates and trains the SVM [17]. The SVM has a 

RBF kernel because it projects data into an infinite dimensional space, which reveals 

hyperplanes. 10-fold cross-validation evaluates the classifier. The model randomly chooses 10% 

of the training data. The model tests on the 10% holdout after it finishes training on the other 

90%. Next, the model chooses 10% of the untested data and it repeats the process. This continues 

until the model tests on 100% of the training data. The SVM runs on a Linux server and takes 



 

 40 

only a few minutes to complete. A robust scaler from the Scikit-learn package scales the data 

while grid search optimizes the results by finding C and gamma. 

3.5 Convolutional Neural Networks 

 This section explains the CNNs compared. First, TensorFlow and the input needed to 

train the networks are described. Next, how the networks intend to accomplish object detection is 

revealed. 

3.5.1 TensorFlow Framework 

 Tensorflow is a Machine Learning framework developed by Google. It is praised for its 

fast training and ease of use [13]. TensorFlow supplies convolutional neural network 

configurations for building models. Images generated from the OpenCV package train the 

models. The training of convolution neural networks requires a large number of annotated 

images. There are about 100 large, original images containing rip currents. More training 

samples are needed. Therefore, they are trained on 4000 positive and 8000 negative images 

generated by OpenCV. A record of every rip current location is created as input for the 

framework. The models are evaluated on 10% of the training data. 

 

Figure 26. How networks are compared. 



 

 41 

3.5.2 Implementation 

The convolutional neural network setup is seen in Figure 26. There are different model 

configurations provided by Google [35]. One example is “SDD mobilenet V2 coco”. This model 

trades training speed for accuracy. Another example is “faster rcnn inception resnet V2”. 

Inception focuses on precision and accuracy in place of training speed as it has larger layers. 

Training both models covers a wider range of CNN capabilities. Models are built from scratch 

since the prebuilt models are not trained on rip current images [13]. The configurations for the 

models are not changed from default. They run for 5 weeks and are evaluated on the same set of 

orthorectified images as the other models.  

The CNNs learn specific filters applied to different areas of an image. An example of a 

filter is horizontal line detection. Thousands of samples teach CNNs important filters for a 

specific object. Applying a certain filter activates a neuron path, which leads to a region 

classified as an object of interest. 

3.6 Viola-Jones 

This section discusses the package containing an implementation of Viola-Jones. Then, 

Viola-Jones is explained by showing how it classifies an image and showing the manner of 

choosing its features. 

3.6.1 OpenCV Library 

 OpenCV [14] is a popular python library that contains numerous methods to conduct 

Machine Learning experiments. One built-in function trains a cascading object detector similar 

to Viola-Jones [24]. OpenCV also has a method for automatically creating positive samples. The 

461 rip current samples yield 4000 training samples. Imposing a 24 by 24 sample onto a larger, 



 

 42 

negative image of the shoreline creates new samples. The samples are slightly warped to mimic 

different angles. A bash script produces negative samples in a similar manner. The default warp 

parameter of 0.1 is applied 10 times to every sample. The 800 surf negative samples are imposed 

onto a larger image of a shoreline containing no rip currents. The procedure spawns 8000 

negatives. Some models train on created negatives of the shoreline while other models train on 

random, negative images. Different models train with either 4000 positive samples or 461 

positive samples. The command for building a cascading object detector runs with default 

settings. Every model is evaluated on 12 orthorectified images containing about 53 total rip 

currents. This benchmark consists of 10% of the smaller dataset. 

3.6.2 Implementation 

 The Viola-Jones classifier is composed of layers. Figure 27 indicates how the classifier 

makes a prediction. Small images, part of the original large image, are taken as input. Viola-

Jones scans the small images at every scale and location. The layers vote on whether a small 

image is a rip current. The small image passes to the next layer if a layer decides it is a rip 

current. The small image is discarded if a layer predicts it is not a rip current. Small images 

 

Figure 27. The Viola-Jones classifier. 



 

 43 

passing every layer in the cascade are considered rip currents. A layer is a series of weak 

classifiers. A combination of weak classifiers results in a strong classifier, known as a layer of 

the cascade. Ada-boost picks the best Haar features for the dataset. The chosen features become 

weak classifiers. 

3.7 Meta Learner 

 This section explains the meta-learner. First, the meta-learner’s features are introduced. 

The features develop from the original Haar features in the Viola-Jones algorithm [10]. Ada-

boost chooses the optimal features for the dataset. The chosen features are appended to a feature 

vector, which trains the meta-classifier. The meta-classifier combines many classifiers together 

to provide a final classification. 

3.7.1 Additional Haar Features 

A more robust feature set is needed to capture the complexities of rip currents because 

the original set of Haar features are optimized for faces. The average image of all rip current 

samples assists in creating new features. Consequentially, 19 new features spawn from a 3 by 3  

1 2 3
8 7 9
4 5 6

 

Figure 28. The matrix for designing the new features. Every number represents an area of space 

extracted from the integral image for a haar feature formula. 



 

 44 

matrix shown in Figure 28. Numbers 1-9 represent different regions of a rectangle. A new Haar 

feature is created by changing the difference formula between regions. The algorithms creating 

and applying Haar features are provided in [25]. The false positive rates and detection rates 

compare the features. The test results are seen in Figure 29. X, T, Inverted T, Three Columns, 

and Cross have the top performance of the features. The names reflect how the features appear. 

An evaluation on 19 features in the 3 by 3 matrix finds the mentioned 5. The code for evaluating 

the features is in appendix C. The features are tasked with building 10 layers of a cascade 5 times 

over. The top features have a false positive rate lower than 1. Every other feature has a false 

positive rate of 1, which means the features fail the test since they cannot separate samples 

accuractly. The formula column in Figure 29 depicts rectangles operated on in the 3 by 3 matrix. 

Feature Formula Detection Rate False 
Positive 
Rate 

X [1 + 3 + 4 + 6 ] - [7] 0.996 0.5 

T [1 + 2 + 3 + 5] - [7] 0.996 0.5 

Inverted T [6 + 4 + 5 + 7] - [2] 0.995 0.6 

Three Columns [3 + 9 + 6 + 1 + 8 + 4 + 7 + 5] - 
[2] 

0.996 0.5 

Cross [2 + 7+ 9 + 8] - [5] 0.995 0.8 

I [1 + 3 + 4 + 6] - [2 + 7 + 5] 1 1 

T (b) [1+ 3] - [2 + 7 + 5] 1 1 

Short T [1+ 3] - [2 + 7] 1 1 

Inverted T (b) [6 + 4] - [5 + 2 + 7] 1 1 

V [1 + 3] - [7] 1 1 

^ [4 + 6] - [7] 1 1 

[ [5 + 7 + 2] - [6 + 3] 1 1 

[ (b) [5 + 2 + 6 + 3] - [7] 1 1 

] [5 + 2 + 1 + 4] - [7] 1 1 

> [1 + 4] - [7] 1 1 

< [3 + 6] - [7] 1 1 

] (b) [3 + 6 + 9] - [2 + 5] 1 1 

[ (c) [8 + 4 + 1] - [2 + 5] 1 1 

L [6] - [2 + 7 + 5] 1 1 
 

Figure 29. The results of using each feature to train a 10 layer cascade of weak classifiers. The 

Formula column refers to the matrix described in Figure 24. 



 

 45 

A 3 by 3 matrix has more rectangles than a 2 or 3 by x < 3 matrix, which creates more robust 

features. They are larger than their previous counterpart, thus fewer of them in a 24 by 24 

window. Fewer features produce a smaller feature space, which takes less time for Ada-Boost to 

search. Examples of the top performing features are seen in Figure 30. Ada-Boost builds 9 layers 

of a Viola-Jones cascade with 30% new features and 70% original features. The features chosen 

by Ada-Boost make a new feature vector, which trains the meta-classifier. 

3.7.2 Implementation 

 A collection of classifiers from the Scikit-learn package train on a feature vector 

comprised of 77 Haar features found by Ada-boost. The meta-learner is seen in Figure 31. A 

technique known as stacking [15] improves results. A model yields the class probability of every 

test sample after training. 10-fold cross validation assists in recording a probability for every 

sample in the dataset. 

 

Figure 30. The Newly Added Features: (A) “Three columns”, (B) “Inverted T”, (C) “X”, (D) 

“T” and (E) “Cross”. 



 

 46 

These models include: SVM, neural network, decision tree, bagging, Naïve Bays, Ada-Boost, 

nearest neighbors, and random forest. They represent most of the Scikit-learn models. Figure 32 

identifies the parameters for creating each model. Training every model in the package is a brute 

force approach. This finds the most appropriate model for the dataset. The models are built with 

default parameters, except for the SVM. A meta-classifier trains on a feature vector made from 

77 Haar features and 8 model confidence values. The meta-classifier trains as every type of 

classifier and is evaluated as each model. The top performer is chosen for the final model. The 

method for classification is in Figure 33. In Figure 33, the meta-classifier and basic classifiers 

train on the data generated from the method in Figure 31. The OpenCV Viola-Jones classifier 

runs on the rip current benchmark, which acquires the rip current output windows. A feature 

vector for every output window is then created. First, 77 Haar features applied to the output 

windows create a feature vector for the basic classifiers. Next, the basic classifiers make 

predictions on the feature vectors, which generate the confidence values for every model. 

 

Figure 31. A Flow chart representing the meta classifier. The basic classifiers train on a Haar 

feature vector. The confidence values from every fold are appended to the original feature vector 

creating X``. 



 

 47 

Third, the confidence values of the 8 basic classifiers are appended to the original feature vector. 

Finally, the resulting feature vector is handed, as input, to the meta-learner for final 

classification. The results of the meta-classifier are compared against the traditional, stand-alone 

Viola-Jones.  

  

 

Figure 33. A Flow-chart describing the meta-learner source code in Python. 

Model 
         

Bagging N_estimators = 10 max_sampl
es = 1.0 

Max_featur
es = 1.0 

Booststra
p = true 

Bootstrap_features = false 
  

Decisio
n Tree 

criterion = gini splitter = 
best 

no max 
depth 

min_samples split = 2 
    

Ada-
Boost 

base = 
DecisionTreeClassif
ier 

n_estimator
s = 50 

learning_rat
e = 1 

real-boosting 
    

Neural 
Networ
k 

hidden_layer_size 
= 100 

activation = 
relu 

adam solver alpha = 
0.0001 

batch size = 200 epoch 
= 200 

beta_
1 = 0.9 

Beta_2 
= 
0.999 

Epsilo
n = 
1e-8 

Random 
Forest 

N_estimators = 10 criterion = 
gini 

Max_featur
es = 
n_features 

Max_dept
h = none 

min_samples_sp
lit = 2 

min_samples_le
af = 1 

No 
weight
s 

 

Nearest 
Neighb
or 

n_neighbors = 5 Uniform 
Weights 

Auto 
algorithm 

Leaf_size 
= 30 

p = 2 
    

SVM kernel = RBF C = 4.0 
 

gamma = 0.00390625 
     

 

Figure 32. The parameters for each basic classifier. 



 

 48 

4. Results 

This section contains the results for max distance from the average, SVMs, convolutional 

neural networks, Viola-Jones, and the meta-learner. The meta-learner section is broken into the 

new Haar features, stacking, and the actual meta-learner. 

4.1 Max Distance from the Average 

 The results for max distance from the average on the rip current dataset are in Figures 34, 

35, and 36. Components in the Eigen vector are on x axis. The graphs mimic the structure of the 

Eigen vector. The x axis starts from the component in the front of the vector and works 

backward. In Figure 34, the y axis is the max distance from the average. The distance from the 

average decreases as rip current samples project toward components at the end of the Eigen 

vector. Distance decreases because components retain less variance from front to back in the 

vector. Figure 35 reveals the detection rate for the rip current dataset. The detection rate  

 

Figure 34. The max distance from the average feature vector generated for every 

component projected toward. 

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400 450

m
a
x
 d

is
ta

n
c
e

Eigen Components from front to back of the Eigen Vector

Distance per Eigen Component from Average Feature 
Vector



 

 49 

gradually decreases as components near the end of the Eigen vector generate the maximum 

distance from the average. The detection rate decreases as more outlying rip currents from the 

dataset are lost. The detection rate reaches a minimum rate of 71% for Eigen component number 

307. The maximum distance from the average is greater at the front of the Eigen vector. In 

consequence, this yields a larger range of rip current values. The large range holds the detection 

rate at 1.0 because of its inclusive nature. Figure 36 identifies the false positive rate of every 

component. The component projection has no effect on the false positive rate. Every negative 

sample is misclassified as a rip current. The range of values is not small enough to divide rip 

currents from other images, which creates a 100% false positive rate. 

4.2 Support Vector Machines 

  The results for the Scikit-learn SVM with a RBF kernel and 10-fold cross-validation is 

seen in Figure 37. Black-white ratio and circularity produces a 4% higher accuracy. 

 

Figure 35. The detection rate for the distance yielded from every component.  

0

0.2

0.4

0.6

0.8

1

1.2

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

2
2
6

2
3
5

2
4
4

2
5
3

2
6
2

2
7
1

2
8
0

2
8
9

2
9
8

3
0
7

D
E

T
E

C
T

IO
N

 R
A

T
E

EIGEN COMPONENT FROM FRONT TO BACK IN THE EIGEN VECTOR

Detection rate of Eigen Components



 

 50 

 

Figure 36. The false positive rate for the distance yielded from every component. 

 

Figure 37. The results for Scikit-learn SVM. The average Haar feature vector does not 

contain the circularity or black-white ratio feature. The last version applies a Robust scaler 

and parameters found with grid search. 

0

0.2

0.4

0.6

0.8

1

1.2
1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

2
2
6

2
3
5

2
4
4

2
5
3

2
6
2

2
7
1

2
8
0

2
8
9

2
9
8

3
0
7

F
A

L
S

E
 P

O
S

IT
IV

E
 R

A
T

E

EIGEN COMPONENTS FROM FRONT TO BACK OF THE EIGEN VECTOR

False Positve Rate per Eigen Component

0.65

0.7

0.75

0.8

0.85

0.9

Average Haar features Added Circularity and bw ratio Scaled and grid search

A
c
c
u
ra

c
y

Changes applied to Svm

Accuracy for SVM



 

 51 

The results also describe the accuracy when applying a robust scaler and optimal parameters to 

the SVM. The numerical results for grid search are C = 4.0 and gamma = 0.00390625. Scaling 

and optimal parameters increase the accuracy by 10%. 

4.3 Convolutional Neural Networks  

 Figure 38 identifies the detection rate of the 2 convolutional neural networks. The 

models make no predictions after week 1 of training. In week 3, rcnn Inception has the highest 

detection rate for the networks with 50%. In week 5, the detection rate for the Inception model 

drops from 50% to 19%. The detection rate for Mobilenet increases slightly after 5 weeks of 

training to 1.9%. Figure 39 reveals the number of false positives found by the models. The false 

positive count decreases from 100 to 20 for the Inception model, after week 5 of training. The 

false positive count for the sdd Mobilenet model remains unchanged at 0 for all 5 weeks of  

 

Figure 38. The detection rate results after 1-5 weeks of training for CNNs. 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 Week 3 Weeks 5 Weeks

D
e
te

c
ti
o
n
 R

a
te

Time spent training

CNN Detection Rate

Sdd mobilenet rcnn incpetion



 

 52 

training. Figure 40 is an example image classified by the inception model. It contains a large 

number of imprecise detections around the surf zone. 

4.4 Viola-Jones 

 The OpenCV library creates many models for rip current classification from the Viola-

Jones algorithm. In Figure 41, the y axis is the type of cascade built. These types correspond to 

positive and negative samples in every training set. “Created Non-Surf Neg”, “Created Surf 

 

Figure 39. The false positive count after 1-5 weeks of training the CNNs. 

 

Figure 40. An image classified by the inception model after 3 weeks of training. The green boxes 

show detected rip currents in the image. 

0

20

40

60

80

100

120

1 Week 3 Weeks 5 Weeks

N
u
m

b
e
r 

o
f 

fa
ls

e
 p

o
s
it
iv

e
s
 f

o
u
n
d

Time Spent Training

CNN False Positive Count

Sdd mobilenet rcnn incpetion



 

 53 

Neg”, “Part Hand-Picked Surf Neg”, and “Part Hand-Picked Non-Surf Neg” train with negative 

samples created by OpenCV. “Created Surf Neg” and “Created Non-Surf Neg” also train on 

created, positive samples, which are warped and superimposed onto a large negative image by 

OpenCV. “Hand-Picked” trains on manually extracted, negative samples from the surf zone. 

 Figure 41 depicts the detection rate on 12 images containing 53 total rip currents.  Figure 42 

identifies the number of false positives in the same images. Hand-Picked finds 300 false 

positives the benchmark images. This is the maximum number of false positives for any cascade. 

Hand-Picked also trains on the smallest dataset. It has a detection rate of 1.0, therefore it finds all 

rip currents in the 12 images. Created Surf Neg and Created Non-Surf Neg train on the largest 

dataset, have a detection rate of 0.63, or 63%, and find the lowest number of false positives. Part 

Hand-Picked Surf Neg has a 1.0 detection rate, but locates 75 false positives in the benchmark 

 

Figure 41. The detection rate of every cascade on the rip current test images. The cascade names 

correspond to the types of samples the cascade trains on. 

0 0.2 0.4 0.6 0.8 1 1.2

Created non-surf neg

Created surf neg

hand-picked

part hand picked surf neg

part hand picked non-surf neg

Detection rate

C
a
s
c
a
d
e
 t

y
p
e

Detection Rate for Viola-Jones



 

 54 

images. Part Hand-Picked Non-Surf Neg has an 88% detection rate and finds 15 false positives 

in 12 images. Figure 43 is an example image classified by Part Hand-Picked Non-Surf Neg. 

It finds every rip current in the image except for the box in the middle. This box is a false 

positive and should be moved slightly to the left. 

 

Figure 42. The number of false postives found by each cascade. 

 

Figure 43. An image of rip currents classified by an OpenCV object detector. The red boxes 

indicate rip currents in the image. 

0 50 100 150 200 250 300 350

Created non-surf neg

Created surf neg

hand-picked

part hand picked surf neg

part hand picked non-surf neg

Number of false postives found

C
a
s
c
a
d
e
 T

y
p
e

Number of False Positives for Viola-Jones



 

 55 

4.6 Meta Learner 

This section describes the results for the new features that are used to build the meta-

classifier and the results of the meta-learner. The first subsection reveals accuracies for every 

basic model with new features. Then, the detection rate and false positive rate after stacking is 

provided. Finally, the detection rate and false positive count for the meta-classifier is described. 

This includes a comparison of the meta-classifier and Viola-Jones at different layers and a final 

comparison of every object detection model with notable performance in the project. 

4.6.1 Results for New Features 

In Figure 44, the accuracies for every model are presented as more features are appended 

to the training vector. The accuracies combine the true positive and true negative rates. Accuracy 

describes how many images are correctly classified during 10-fold cross validation. Accuracies 

 

Figure 44. The accuracy after continuously adding new features to the feature vector.  

0.75

0.8

0.85

0.9

0.95

1

1 3 2 2 3 3 4 3 6 2 7 8 9 9 1 2 0

A
C

C
U

R
A

C
Y

NUMBER OF FEATURES CHOSEN BY ADA-BOOST

Adding New Features

SVM Decision Tree Random Forest Neural Network

Ada-Boost Bagging Naïve Bayes Nearest Neighbor



 

 56 

are at their lowest when the vector is composed of 13 Haar features. The accuracies of all models 

except Naïve Bayes and nearest neighbor increase as more Haar features are added for training. 

Ada-Boost achieves the highest accuracy of 98% at 77 Haar features. Bagging reaches 98% 

accuracy at 120 Haar features. Random forest and the decision tree levels off at 96% accuracy 

with 99 Haar features. Neural networks achieve an accuracy of 96% with 78 Haar features 

added. SVMs peak at 93% accuracy and level off at 43 Haar features introduced. The accuracy 

for nearest neighbors continues to decrease as more Haar features are appended. 

KNN reaches 86% accuracy after 33 Haar features are added. The accuracy Naïve Bayes 

increases slightly, decreases until 62 Haar features are inside the feature vector, and levels off at 

76% accuracy. 

 4.6.2 Results for Stacking 

 

Figure 45. The detection rate of every model after stacking the confidence of every model.  

0.75 0.8 0.85 0.9 0.95 1 1.05

SVM

Neural Network

Random Forest

Nearest Neighbors

Ada-Boost

Bagging

Naïve Bayes

Decision Tree

Detection Rate

M
o
d
e
l

Stacking results for Detection Rate

Detection rate with stacking Detection rate with features



 

 57 

 In Figure 45, the detection rate after adding the confidence of each learner to the feature 

vector is seen. Models’ detection rates increase after they are stacked. Detection increases by 

3.75% on average after stacking. Figure 46 contains the false positive rates after stacking 

models. The false positive rate decreases by an average of 10% after stacking confidence values. 

Bagging and Ada-boost have the highest detection rate at 99% and have the lowest false positive 

rate at 1%. Nearest neighbors has the lowest detection rate and has the highest false positive rate 

at 89% and 25%, respectively. 

4.6.3 Results for Meta-Classifier 

In Figure 47, the detection rate of Viola-Jones is compared against the meta-classifier at 

layer 17, 28, 35, and 40. Figure 48 has a comparison of the false positive count for those same 

layers. The detection rate decreases from 88% to 85% for layer 28 after adding the meta-

classifier, but remains the same at every other layer. 

 

Figure 46. The false positive rate after stacking the confidence of every model. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

SVM

Neural Network

Random Forest

Nearest Neighbors

Ada-Boost

Bagging

Naïve Bayes

Decision Tree

False Positive rate

M
o
d
e
l

Stacking Results for False Positive rate

False Postive rate with stacking False Positive rate with Features



 

 58 

 

Figure 48. A comparison of the false positives found at a varying number of layers for the 

Viola-Jones classifier and the meta classifier. 

 

Figure 47. A comparison of the Viola-Jones classifier and the meta classifier detection rates at 

a varying number of layers. 

0

50

100

150

200

250

300

350

17 28 35 40

N
u
m

b
e
r 

o
f 

F
a
ls

e
 P

o
s
it
iv

e
s

Layers used for the Cascade

False Positive Count Viola-Jones vs. Meta-classifier

False Positives left Viola-Jones False Postives left meta

0

0.2

0.4

0.6

0.8

1

1.2

17 28 35 40

D
e
tc

ti
o
n
 R

a
te

Number of Layers Used for the Cascade

Detection Rate Viola-Jones vs. Meta-classifier

Detection Rate Viola-Jones Detection Rate Meta



 

 59 

The meta-classifier reduces the number of false positives by 47% at layer 28. The meta-classifier 

achieves a lower false positive rate at this layer than a 40 layer Viola-Jones cascade. 

The false positive rate for a cascade is equal to the product of every layer’s false positive rate. 

Layers have a false positive rate of 0.7, consequently a false positive rate of 4.6e-5 for a 28 layer 

cascade. Adding the meta-learner with a false positive rate of 0.01 to the end of the cascade 

produces a false positive rate of 4.6e-7. Figure 49 depicts a detection rate comparison of CNN, 

Viola-Jones, and the meta-classifier at peak performance. The Viola-Jones model has the highest 

detection rate of 88%. The meta-learner has the next highest detection rate of 85%. In Figure 50, 

the false positive counts of the classifiers are compared. CNN has the highest false positive count 

at 100 followed by Viola-Jones at 15. The meta-classifier has the lowest false positive count. 

Figure 51 compares the same image classified by Viola-Jones and the meta-classifier. There are 

more windows labeled as rip currents by Viola-Jones. The meta-classifier finds fewer false 

positives while still locating the 2 rip currents in the image. 

 

Figure 49. A comparison of detection rate for Viola-Jones, CNN, and the meta-classifier. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Meta-Classifier Viola-Jones CNN

D
e
te

c
ti
o
n
 R

a
te

Model Used

Comparison of Detection Rate



 

 60 

  

  

 

Figure 50. A comparison of the false positive count for Viola-Jones, CNN, and the meta-

classifier. 

 

 

Figure 51.  The top image classified by Viola-Jones versus the bottom image classified by the 

meta classifier. 

0

20

40

60

80

100

120

Meta-Classifier Viola-Jones CNN

N
u
m

b
e
r 

o
f 

F
a
ls

e
 P

o
s
it
iv

e
s
 f

o
u
n
d

Model Used

False positive count



 

 61 

5. Discussion 

This section reveals underlying details, which concern results for max distance from the 

average, SVMs, convolutional neural networks, Viola-Jones, and the meta-learner. The meta-

learner section is broken into a discussion of the new Haar features and classifier stacking. 

5.1 Max Distance from the Average 

 The max distance from the average decreases as components toward the end of the Eigen 

vector are projected upon. This is expected as components near the front of the Eigen vector 

maximize variance while components near the rear minimize variance. The differences between 

each rip current are retained as more variance is retained. Only commonalities between rip 

current samples remain as variance decreases. The threshold is less inclusive as the maximum 

difference from the average decreases. The exclusion decreases the detection rate.  

Different components do not change the number of correctly classified negative samples. 

The features generated from the components cannot capture the difference between a rip current 

and something not a rip current. Too much information is lost when projecting toward only one 

dimension, which produces entangled values of negative samples and positive samples. Max 

distance from the average has the weakest false positive rate, but PCA may be useful for future 

work with rip current recognition or dimension reduction. 

5.2 Support Vector Machines 

 Training support vector machines on circularity and black-white ratio increases 

performance by 4%. The 4% increase in performance supports circularity and black-white ratio 

as viable features. The improvement from circularity is due to the semi-circle nature of a rip 

current sample. The rip current samples also have similar lighting. The lighting and orientation 



 

 62 

of the samples supports the black-white ratio improvement. Scaling and grid searching improve 

performance by an additional 10%. This further backs the need for this optimization.  

SVMs prove to be a less effective meta-classifier. Ada-Boost chooses the features for 

training, which gives SVMs weaker classification performances by comparison. SVMs are not 

acceptable as a method of classification for rip currents when training on average Haar features 

since their accuracies max out at 88%. This rate sets a ceiling for accuracy of the detector. The 

target rate of a classifier during evaluation is 99% because it is matching a layer of Viola-Jones. 

A 12% loss of samples is too large when given such a small sample size. 

5.3 Convolutional Neural Networks 

 The CNNs need a longer amount of time to train than the Viola-Jones detectors. The 

training is longer because models are built from scratch. The variables of the convolutional layer 

are not global. The lack of fully connected nodes may reduce performance from 3 weeks of 

training to 5 weeks of training as important variables might not be saved. A decrease in 

performance may also be due to overfitting. There are not an adequate number of rip current 

samples for creating a classifier with convolutional neural nets. CNNs require a larger number of 

samples to avoid overfitting [4-6]. The detection boxes located on test images are large and 

contain many rip currents. The models cannot differentiate between individual rip currents, 

which may be attributed to the stitching process of convolutional neural nets. This process 

adjoins neighboring boxes together if they are within a small enough range.  

The CNN models preform worse than Viola-Jones due to the number of samples needed 

for the learners. Ada-Boost performs adequately on fewer samples [20]. A neural network needs 

many thousands of samples. The CNN face detectors attain a decent model after training with 

close to 100000 samples.  



 

 63 

The model configurations for the CNNs are not optimized for the rip current dataset. 

Optimization for the configurations or a higher quality annotated dataset of rip current images 

can deeply improve performance. 

5.4 Viola-Jones 

 24 by 24, negative images are highly ineffective for building a Viola-Jones object 

detector. The Hand-Picked cascade has the largest false positive rate of any cascade type, which 

bolsters OpenCV’s need to down-sample larger negative images. The cascades that train on 

created, positive samples have a lower detection rate on the test images. This performance is the 

result of transformations to the data by OpenCV. Warping the data is no substitute for a 

meaningful sample when there are many more warped samples than there are natural samples. 

Tilting the original samples causes them to lose meaningful data around the edges of the sample.  

The cascades training on few samples have a perfect detection rate, but their false 

positive rate is also high. Detection rate decreases as of the number of samples increase. A larger 

number of positive samples yields a harder false positive rate test, which requires more layers to 

pass. Adding more layers to the cascade reduces the false positive rate, but the detection rate as 

well.  

A balance of the detection and false positive rates is important when choosing a cascade. 

The Part Hand-Picked Any Neg cascade correctly classifies 88% of rip currents in all 12 images 

and only finds 15 false positives. Hence, it is the top performer for Viola-Jones. The larger 

cascades are not as accurate, which have a detection rate of 60%. This is not an efficient tradeoff 

for attaining less than 5 false positives. Viola-Jones has the best predictions on the dataset for the 

pre-existing tools. A dataset of 24 by 24 samples is allowed by OpenCV for training. This data 



 

 64 

yields the highest quality results. The Viola-Jones detector also locates where rip currents are in 

the image, which can be counted if needed.   

Ada-Boost is decent for generalizing a detector since it only considers a hard margin for 

each weak classifier it adds [20]. Ada-boost does not maximize accuracy by adjusting the margin 

for outliers, which leads to less of an over fit. 

5.5 Meta Learner 

 The following subsections explain the impact of adding the new Haar features to the 

feature vector and stacking models to create the meta-learner. 

5.5.1 New Features  

 The new features improve the accuracy of almost every model in Scikit-learn. Learners 

such as neural networks and SVM continue to increase as they train on more features since they 

adequately handle larger dimensional feature spaces. KNN and Naive-Bayes suffer when adding 

more features because they cannot handle larger dimensional feature spaces. 

Ada-Boost, random forest, decision tree, and bagging performances continue to increase 

as more features are appended to the feature vector. These features are chosen in accordance with 

splitting the data. A classifier splitting the data has an increased performance if it receives a 

feature that splits the data effectively, which the Haar features are optimized to do. A mixture of 

the new and old Haar features improve results. This is supported by Ada-Boost reaching a peak 

accuracy of 98%. 



 

 65 

5.5.2 Classifier stacking 

 The performance of classifiers increase when training on the confidence values of every 

learner. Therefore, confidence values help compensate for what a classifier is lacking in 

classification.  

The meta-classifier has a better performance than a strong classifier (layer) of a Viola-

Jones cascade. A layer has a false positive rate of 50% to 70%. The meta-classifier has a false 

positive rate of 1%. Thus, the false positive rate of the final classifier is improved. The detection 

rates of a cascade layer and the meta-classifier, at best, remain the same. The lack of change is 

due to a reclassification of output windows. The positive windows are lost forever if the Viola-

Jones classifier misses them. The meta-classifier does not classify windows that are not output 

from Viola-Jones since it piggybacks on Viola-Jones. Overall, the meta-learner has the most 

promising results. 

  



 

 66 

6. Conclusions 

 Max distance from the average is not an adequate classifier for rip currents and should be 

avoided when only projecting toward 1 dimension. PCA has not been concluded as tool for 

recognition or feature dimension reduction on rip currents. SVMs also have a peak accuracy 

inadequate for detecting rip currents when training on average Haar features.  

The annotated dataset created by OpenCV is ineffective for training CNNs. This 

reinforces that superimposing a smaller image onto a larger image does not produce meaningful 

samples for a small dataset of rip currents. They may be useful if a larger dataset is created. A 

larger, manually annotated dataset is needed to fully explore classifying rip currents with CNNs. 

 Viola-Jones is a decent method for creating a rip current classifier. Warped, positive 

samples decrease the performance of the cascade as it over fits to the samples. Large, negative 

images and smaller, positive samples are needed for producing a significant cascade.  

Classifier stacking is effective for increasing the performance of a model. The new Haar 

features are beneficial for classifying the rip current dataset. The classifiers have the most 

improvement from the Haar features when they are built upon splitting the dataset with a 

threshold value.  

The most effective dataset is the manually picked 461 rip currents along with random, 

large, and negative images. This dataset in combination with the meta-classifier has the best 

performance when assuming a lower false positive rate is desired. The Ada-boost and bagging 

algorithms produce the most accurate meta-classifiers. The meta-classifier has the potential to 

assist in automated rip current identification for climate studies.  



 

 67 

Bibliography 

1. University, O.S. Coastal Imaging Lab. 2009 2009/01/05; Available from: cil-

www.coas.oregonstate.edu. 

2. Heikkilä, J. and O. Silvén, A Four-step Camera Calibration Procedure with Implicit 

Image Correction. 1997. 

3. Holland, K.T., et al., Practical Use of Video Imagery in Nearshore Oceanographic Field 

Studies. IEEE JOURNAL OF OCEANIC ENGINEERING, 1997. 22(1). 

4. Howard, A.G., et al., MobileNets: Efficient Convolutional Neural Networks for Mobile 

Vision Applications. 2017. 

5. Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet Classification with Deep 

Convolutional Neural Networks. 2012: p. 9. 

6. Szegedy, C., et al., Going deeper with convolutions. 2015. 

7. Bishop, C., Pattern Recognition and Machine Learning. Information Science and 

Statistics. 2009: Springer-Veriag New York. 

8. Szeliski, R., Computer Vision: Algorithms and Applications. 2010: Springer Science & 

Business Media. 812. 

9. Stewart, R. and M. Andriluka, End-to-end people detection in crowded scenes. CoRR, 

2015. abs/1506.04878. 

10. Viola, P. and M.J. Jones, Robust Real-Time Face Detection. International Journel of 

Computer Vision, 2004. 57(2): p. 137-154. 

11. Jolliffe, I.T., Principle Component Analysis. 2013: Springer Science & Business Media. 

12. Russell, S. and P. Norvig, Artificial Intelligence: A Modern Approach. 2009: Prentice 

Hall Press. 1152. 

13. TensorFlow. 2017; Develop]. Available from: 

https://www.tensorflow.org/tutorials/image_retraining. 

14. Bradski, G., The OpenCV Library. Dr. Dobb's Journel of Software Tools, 2000. 

15. Wolpert, D.H., Stacked Generalization. 

16. Maurya, A. Support Vector Machines: How does going to higher dimension help data get 

linearly separable which was non linearly separable in actual dimension? 2013; 

Available from: https://www.quora.com/Support-Vector-Machines-How-does-going-to-

higher-dimension-help-data-get-linearly-separable-which-was-non-linearly-separable-in-

actual-dimension. 

17. Fabian Pedregosa, G.V., Alexandre Gramfort,Vincent Michel,Bertrand Thirion,Olivier 

Grisel,Mathieu Blondel,Peter Prettenhofer, and V.D. Ron Weiss, Jake 

Vanderplas,Alexandre Passos,David Cournapeau,Matthieu Brucher,Matthieu 

Perrot,Edouard Duchesnay, Scikit-learn: Machine Learning in Python. Journal of 

Machine Learning Research. 12: p. 2825-2830. 

18. Bhalla, D. Support Vector Machine SImplified using R. Available from: 

https://www.listendata.com/2017/01/support-vector-machine-in-r-tutorial.html. 

19. Benediktsson, J., J. Kittler, and F. Roli. Multiple Classifer Systems. 2009. 

20. Schapire, R.E., Explaining AdaBoost. 2012. 

21. Loh, W.-Y., Classification and Regression trees. 2011: p. 10. 

22. Hall, P., B.U. Park, and R.J. Samworth, Choice of Neighbor Order in Nearest-Neighbor 

Classification. The Annals of Statistics, 2008. 36(5): p. 2135-2152. 

23. Zhang, H., The Optimality of Naive Bayes. 2004: p. 6. 

http://www.coas.oregonstate.edu/
https://www.tensorflow.org/tutorials/image_retraining
https://www.quora.com/Support-Vector-Machines-How-does-going-to-higher-dimension-help-data-get-linearly-separable-which-was-non-linearly-separable-in-actual-dimension
https://www.quora.com/Support-Vector-Machines-How-does-going-to-higher-dimension-help-data-get-linearly-separable-which-was-non-linearly-separable-in-actual-dimension
https://www.quora.com/Support-Vector-Machines-How-does-going-to-higher-dimension-help-data-get-linearly-separable-which-was-non-linearly-separable-in-actual-dimension
https://www.listendata.com/2017/01/support-vector-machine-in-r-tutorial.html


 

 68 

24. Leinhart, R. and H. Maydt. An Extended Set of Haar-Like Features for Rapid Object 

Detection. 2002. 

25. Jensen, O.H., Implementing the Viola-Jones Face Detection Algorithm. 2008. 

26. Pinet, C.U.P.R., Invitation to Oceanography. 2009: Jones & Bartlett Publishers. 

27. Castelle, B., et al., Rip current types, circulation and hazard. Earth-Science Reviews, 

2016. 163(Supplement C): p. 1-21. 

28. Gallop, S.L., et al., Storm-driven changes in rip channel patterns on an embayed beach. 

Geomorphology, 2011. 127: p. 179-188. 

29. Association, U.S.L. Rip Currents. 2017; Available from: 

www.usla.org/?page=RIPCURRENTS. 

30. Leatherman, S.P. Rip Currents 101. 2011; Available from: 

www.ripcurrents.com/ripcurrents101.html. 

31. Kim, K.-H., S. Shin, and A.Y.W. Widayati, Mitigation Measures for Beach Erosion and 

Rip Current. Journal of Coastal Research, 2013: p. 290-295. 

32. Holman, R.A., et al., Rip Spacing and persistence on an embayed beach. Journal of 

Geophysical Research, 2006. 111. 

33. Sebastian Pitman, S.L.G., Ivan D. Haigh, Sasan Mahmoodi, Gerd Masselink, Roshanka 

Ranasinghe, Synthetic Imagery for the Automated Detection of Rip Currents. Journal of 

Coastal Research, 2016. 75: p. 912-916. 

34. Pape, L. and B.G. Ruessink, Neural-network predictability experiments for nearshore 

sandbar migration. Continental Shelf Research, 2011. 31: p. 1033-1042. 

35. TensorFlow Model Configurations. 2017; Available from: 

https://github.com/tensorflow/models/tree/master/research/object_detection/samples/conf

igs. 

 

  

http://www.usla.org/?page=RIPCURRENTS
http://www.ripcurrents.com/ripcurrents101.html
https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs
https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs


 

 69 

Appendix 

 

Figure 52. A flow-chart describing the source code for Java. 

 

A. Source Code for Ada-Boost in Java 

package violajones; 

 

import java.util.ArrayList; 

import java.util.Collections; 

import java.util.Comparator; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.Map; 

import java.util.Map.Entry; 

import java.util.TreeSet; 

 

import haar.Cross; 

import haar.Four; 

import haar.HaarFeature; 

import haar.HaarFeature.TYPE; 

import haar.IntegralImage; 

import haar.InvertedT; 



 

 70 

import haar.T; 

import haar.ThreeColumns; 

import haar.X; 

import haar.ThreeHorizontal; 

import haar.ThreeVertical; 

import haar.TwoHorizontal; 

import haar.TwoVertical; 

/** 

 * Represents the AdaBoost learning algorithm used in Viola-Jones. 

 * @author Corey Maryan 

 * 

 */ 

public class AdaBoost { 

    public static HaarFeature[] featureSet; 

    public static HashMap<HaarFeature,Boolean> used = new HashMap<>(); 

    private static HashMap<IntegralImage,Boolean> rips; 

    public static int totalMax = Integer.MIN_VALUE; 

    public static int totalMin = Integer.MAX_VALUE; 

 

    //returns a strong classifier a.k.a. a collection of weak classifiers 

    public static HaarFeature[] learn(ArrayList<IntegralImage> 

trainPos,ArrayList<IntegralImage> trainNeg,int layer){ 

         

         

 

       //if there are no images to train on then failure 

        if (trainNeg.size()== 0) { 

            return null; 

        }         

         

        double negWeight = 1.0 / (2.0*trainNeg.size()); 

        double posWeight = 1.0 / (2.0*trainPos.size()); 

         

        //initialize the weights for all images 

        for (IntegralImage img : trainPos) 

            img.weight = posWeight; 

        for (IntegralImage img : trainNeg) 

            img.weight = negWeight; 

         

        //if we are building the first layer create the haar feature space 

        if (layer == 1) { 

            ArrayList<HaarFeature> features = new ArrayList<>(); 

             

 //for each feature type, width, height, and positive in a 24x24 window create a feature 

            for (TYPE f : TYPE.values()) { 

                for (int x = 0;x < 24;x++) { 



 

 71 

                    for (int y = 0; y < 24;y++) { 

                     /* if (f == TYPE.CROSS) { 

                          for (int width = 1;width < 25;width++) { 

                               for (int height = 1;height < 25;height++) { 

                                   if (x + 3*height-1 <24 && y + 3*width-1 < 24) { 

                                        features.add(new Cross(x,y,width,height)); 

                                   }                                     

                               } 

                            } 

                        } else if (f == TYPE.INVERTED_T) { 

                          for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x + 3*height-1 < 24 && y + 3*width-1 < 24) { 

                                        features.add(new InvertedT(x,y,width,height)); 

                                    }                                     

                                } 

                            } 

                        } else*/ if (f == TYPE.T) { 

                           for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x + 3*height-1 < 24 && y + 3*width-1 < 24) { 

                                        features.add(new T(x,y,width,height)); 

                                    }                                     

                                } 

                            } 

                        }else if (f == TYPE.THREE_COLUMNS) { 

                           for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x + 3* height-1 < 24 && y + 3*width-1 < 24) { 

                                        features.add(new ThreeColumns(x,y,width,height)); 

                                    }                                     

                               } 

                            } 

                        }else if (f == TYPE.X) { 

                          for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x + 3* height-1 < 24 && y + width*3-1 < 24) { 

                                        features.add(new X(x,y,width,height)); 

                                    }                                     

                                } 

                            } 

                        }/* else if (f == TYPE.THREE_VERTICAL) { 

                            for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x + 3* height-1 < 24 && y + width-1 < 24) { 

                                        features.add(new ThreeVertical(x,y,width,height)); 



 

 72 

                                    }                                     

                                } 

                            } 

                        }*/else if (f == TYPE.THREE_HORIZONTAL) { 

                            for (int width = 1;width < 24;width++) { 

                                for (int height = 1;height < 24;height++) { 

                                    if (x + height-1 < 24 && y + width*3-1 < 24) { 

                                        features.add(new ThreeHorizontal(x,y,width,height)); 

                                    }                                     

                                } 

                            } 

                        }else if (f == TYPE.TWO_VERTICAL) { 

                          for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x + 2* height-1 < 24 && y + width-1 < 24) { 

                                        features.add(new  TwoVertical(x,y,width,height)); 

                                    }                                     

                                } 

                            } 

                        }/*else if (f == TYPE.TWO_HORIZONTAL) { 

                          for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x +  height-1 < 24 && y + width*2-1 < 24) { 

                                        features.add(new TwoHorizontal(x,y,width,height)); 

                                    }                                     

                                } 

                            } 

                        }else if (f == TYPE.FOUR) { 

                          for (int width = 1;width < 25;width++) { 

                                for (int height = 1;height < 25;height++) { 

                                    if (x + 2* height-1 < 24 && y + width*2-1 < 24) { 

                                        features.add(new Four(x,y,width,height)); 

                                    }                                     

                                } 

                            } 

                        }*/ 

                    } 

                } 

            } 

             

            featureSet = new HaarFeature[features.size()]; 

             

            for (int i = 0; i < features.size(); i++) { 

                featureSet[i] = features.get(i); 

            } 

             



 

 73 

            used = new HashMap<>();             

            for (HaarFeature feature : features) used.put(feature,false); 

        } 

                    

        rips = new HashMap<>(); 

        HaarFeature[] classifiers = new HaarFeature[1]; 

         

        double totalWeight = 0.0; 

         

        for (IntegralImage im : trainPos) totalWeight += im.weight; 

        for (IntegralImage im : trainNeg) totalWeight += im.weight; 

         

        double norm = 1.0/totalWeight; 

         

        //normalize the weights for each image 

        for (IntegralImage im : trainPos) { 

            im.weight = im.weight*norm; 

            rips.put(im, true); 

        }  

         

        for (IntegralImage im : trainNeg) { 

            im.weight = im.weight*norm; 

            rips.put(im, false); 

        }  

         

        double bestErrorFound = Double.MAX_VALUE; 

 

        //for each feature in the space 

        for (HaarFeature feature : featureSet) {         

            if (used.get(feature)) 

                continue; 

             

            Map<IntegralImage,Integer> scores = new HashMap<>(); 

             

            for (IntegralImage img : trainPos) { 

                int score = feature.getFeatureValue(img.integral); 

                scores.put(img, score); 

            } 

             

            for (IntegralImage img : trainNeg) { 

                int score = feature.getFeatureValue(img.integral); 

                scores.put(img, score); 

            } 

             

        //create a map that can assign a value to each image    



 

 74 

TreeSet<Map.Entry<IntegralImage,Integer>> set  = new                       

TreeSet<Map.Entry<IntegralImage,Integer>>( 

                    new Comparator<Map.Entry<IntegralImage,Integer>>() { 

                        @Override public int compare(Map.Entry<IntegralImage,Integer> e1, 

Map.Entry<IntegralImage,Integer> e2) { 

                            int res = e1.getValue().compareTo(e2.getValue()); 

                            return res != 0 ? res : 1; 

                        } 

                    } 

                ); 

             

            set.addAll(scores.entrySet()); 

             

            HashMap<Double,Integer> type1s = new HashMap<>(); 

            HashMap<Double,Integer> type2s = new HashMap<>(); 

            double tPos = 0.0; 

            double tNeg = 0.0; 

            double sPos = 0.0; 

            double sNeg = 0.0; 

             

 //total weight for pos and neg images 

            for (IntegralImage im : trainNeg) 

                tNeg += im.weight; 

            for (IntegralImage im : trainPos) 

                tPos += im.weight; 

 

            Iterator<Entry<IntegralImage, Integer>> it = set.iterator(); 

            Entry<IntegralImage, Integer> previous = it.next(); 

            Entry<IntegralImage, Integer> next = null; 

             

            while(it.hasNext()) { 

              //iterate over the image list and compare weight totals 

                if (previous.equals(set.first()) && next == null) { 

                    double type1 = sPos + (tNeg-sNeg); 

                    double type2 = sNeg + (tPos-sPos); 

                     

                    if (type1 > type2) { 

                        type2s.put(type2,previous.getValue()); 

                    } else { 

                        type1s.put(type1,previous.getValue()); 

                    } 

                     

                    next = it.next();                   

                } else if (it.hasNext()) {                                                                    

                    if (rips.get(previous.getKey())){ 

                        sPos += previous.getKey().weight; 



 

 75 

                    } else { 

                        sNeg += previous.getKey().weight; 

                    } 

                     

                    double type1 = sPos + (tNeg-sNeg); 

                    double type2 = sNeg + (tPos-sPos); 

                     

                     

         if (type1 > type2) { 

                        type2s.put(type2,previous.getValue()); 

                    } else { 

                        type1s.put(type1,previous.getValue()); 

                    } 

 

                    previous = next; 

                    next = it.next(); 

                    if (!it.hasNext()) { 

                        previous = next; 

                                                     

                        if (rips.get(previous.getKey())){ 

                            sPos += previous.getKey().weight; 

                        } else { 

                            sNeg += previous.getKey().weight; 

                        } 

                         

                        double lastType1 = sPos + (tNeg-sNeg); 

                        double lastType2 = sNeg + (tPos-sPos); 

                         

                        if (lastType1 > lastType2) { 

                            type2s.put(lastType2,previous.getValue()); 

                        } else { 

                            type1s.put(lastType1,previous.getValue()); 

                        }                  

                    } 

                }                   

            } 

 

       //find the minimum error based on the weights 

            if (type2s.isEmpty() && type1s.isEmpty()) { 

                feature.weightedError = Double.MAX_VALUE; 

            } else if(type2s.isEmpty()){ 

                feature.weightedError = Collections.min(type1s.keySet()); 

                feature.setThreshold(type1s.get(feature.weightedError)); 

                feature.setPolarity(-1); 

            } else if (type1s.isEmpty()) { 

                feature.weightedError = Collections.min(type2s.keySet()); 



 

 76 

                feature.setThreshold(type2s.get(feature.weightedError));   

                feature.setPolarity(1); 

            } else {                     

                double type2Min = Double.MAX_VALUE; 

                double type1Min = Double.MAX_VALUE; 

                type2Min = Collections.min(type2s.keySet()); 

                type1Min = Collections.min(type1s.keySet());              

                feature.weightedError = type1Min; 

                feature.setThreshold( type1s.get(type1Min)); 

                feature.setPolarity(-1); 

 

                if (feature.weightedError > type2Min) { 

                    feature.weightedError = type2Min; 

                    feature.setThreshold(type2s.get(type2Min));   

                    feature.setPolarity(1); 

                }  

            } 

             

            if (feature.weightedError > 0) { 

                feature.weight = Math.log((1.0-feature.weightedError)/feature.weightedError); 

            } else { 

                feature.weightedError = 0; 

                feature.weight = 4; 

            } 

             

            if (feature.weightedError < bestErrorFound) { 

                bestErrorFound = feature.weightedError; 

                classifiers[0] = feature; 

            } 

        } 

         

        for (IntegralImage img : trainPos) { 

            int score = classifiers[0].getFeatureValue(img.integral); 

 

            if (score > totalMax) { 

                totalMax = score; 

            } 

        } 

         

        for (IntegralImage img : trainNeg) { 

            int score = classifiers[0].getFeatureValue(img.integral); 

             

            if (score < totalMin) { 

                totalMin = score; 

            } 

        } 



 

 77 

                         

        double correctPos = 0.0; 

        double correctNeg = 0.0; 

        double correctPos2 = 0.0; 

        double correctNeg2 = 0.0; 

        int previous = classifiers[0].getPolarity(); 

       //try each polarity and pick the one that works the best 

        classifiers[0].setPolarity(1); 

   

        for (IntegralImage im : trainPos) if (im.label == classifiers[0].getClass(im.integral))        

                  correctPos++;  

        for (IntegralImage im : trainNeg) if (im.label == classifiers[0].getClass(im.integral))            

  correctNeg++; 

 

        classifiers[0].setPolarity(-1); 

         

        for (IntegralImage im : trainPos) if (im.label == classifiers[0].getClass(im.integral))   

            correctPos2++; 

        for (IntegralImage im : trainNeg) if (im.label == classifiers[0].getClass(im.integral))         

            correctNeg2++; 

    

        if (previous == classifiers[0].getPolarity()) { 

            classifiers[0].error = 1.0-

(correctPos2+correctNeg2*1.0)/(trainPos.size()+trainNeg.size()*1.0); 

        }  else { 

            classifiers[0].error = 1.0-

(correctPos+correctNeg*1.0)/(trainPos.size()+trainNeg.size()*1.0); 

        } 

        classifiers[0].setPolarity(previous);         

        bestErrorFound =  classifiers[0].weightedError;              

        return classifiers; 

    } 

 

    //an alternate method for added more classifiers if some amount is not good enough 

    public static HaarFeature[] extend(ArrayList<IntegralImage> 

trainPos,ArrayList<IntegralImage> trainNeg,HaarFeature[] previousClassifiers) {        

        if (trainNeg.size() == 0) { 

            return null; 

        } 

         

        HaarFeature[] classifiers = new HaarFeature[previousClassifiers.length+1]; 

 

        for (int i = 0; i < previousClassifiers.length;i++) classifiers[i] = previousClassifiers[i];    

         

        int i = previousClassifiers.length;                 

         



 

 78 

        double totalWeight = 0.0; 

         

        for (IntegralImage im : trainPos) totalWeight += im.weight; 

        for (IntegralImage im : trainNeg) totalWeight += im.weight; 

         

        double norm = 1.0/totalWeight; 

         

        for (IntegralImage im : trainPos) im.weight = im.weight*norm; 

        for (IntegralImage im : trainNeg) im.weight = im.weight*norm; 

         

        double bestErrorFound = Double.MAX_VALUE; 

         

        for (HaarFeature feature : featureSet) {         

            if (used.get(feature)) 

                continue; 

             

            Map<IntegralImage,Integer> scores = new HashMap<>(); 

             

            for (IntegralImage img : trainPos) { 

                int score = feature.getFeatureValue(img.integral); 

                scores.put(img, score); 

            } 

             

            for (IntegralImage img : trainNeg) { 

                int score = feature.getFeatureValue(img.integral); 

                scores.put(img, score); 

            } 

             

            TreeSet<Map.Entry<IntegralImage,Integer>> set  = new 

TreeSet<Map.Entry<IntegralImage,Integer>>( 

                    new Comparator<Map.Entry<IntegralImage,Integer>>() { 

                        @Override public int compare(Map.Entry<IntegralImage,Integer> e1, 

Map.Entry<IntegralImage,Integer> e2) { 

                            int res = e1.getValue().compareTo(e2.getValue()); 

                            return res != 0 ? res : 1; 

                        } 

                    } 

                ); 

             

            set.addAll(scores.entrySet()); 

             

            HashMap<Double,Integer> type1s = new HashMap<>(); 

            HashMap<Double,Integer> type2s = new HashMap<>(); 

            double tPos = 0.0; 

            double tNeg = 0.0; 

            double sPos = 0.0; 



 

 79 

            double sNeg = 0.0; 

             

 

            for (IntegralImage im : trainNeg) 

                tNeg += im.weight; 

            for (IntegralImage im : trainPos) 

                tPos += im.weight; 

 

            Iterator<Entry<IntegralImage, Integer>> it = set.iterator(); 

            Entry<IntegralImage, Integer> previous = it.next(); 

            Entry<IntegralImage, Integer> next = null; 

             

            while(it.hasNext()) { 

                if (previous.equals(set.first()) && next == null) { 

                    double type1 = sPos + (tNeg-sNeg); 

                    double type2 = sNeg + (tPos-sPos); 

                     

                    if (type1 > type2) { 

                        type2s.put(type2,previous.getValue()); 

                    } else { 

                        type1s.put(type1,previous.getValue()); 

                    } 

                     

                    next = it.next();                     

                } else if (it.hasNext()) {                                                                    

                    if (rips.get(previous.getKey())){ 

                        sPos += previous.getKey().weight; 

                    } else { 

                        sNeg += previous.getKey().weight; 

                    } 

                     

                    double type1 = sPos + (tNeg-sNeg); 

                    double type2 = sNeg + (tPos-sPos); 

                     

                    if (type1 > type2) { 

                        type2s.put(type2,previous.getValue()); 

                    } else { 

                        type1s.put(type1,previous.getValue()); 

                    } 

 

                    previous = next; 

                    next = it.next(); 

 

                    if (!it.hasNext()) { 

                        previous = next; 

                                                     



 

 80 

                        if (rips.get(previous.getKey())){ 

                            sPos += previous.getKey().weight; 

                        } else { 

                            sNeg += previous.getKey().weight; 

                        } 

                         

                        double lastType1 = sPos + (tNeg-sNeg); 

                        double lastType2 = sNeg + (tPos-sPos);           

                        if (lastType1 > lastType2) { 

                            type2s.put(lastType2,previous.getValue()); 

                        } else { 

                            type1s.put(lastType1,previous.getValue()); 

                        }                  

                    } 

                }                   

            } 

       

            if (type2s.isEmpty() && type1s.isEmpty()) { 

                feature.weightedError = Double.MAX_VALUE; 

            } else if(type2s.isEmpty()){ 

                feature.weightedError = Collections.min(type1s.keySet()); 

                feature.setThreshold(type1s.get(feature.weightedError)); 

                feature.setPolarity(-1); 

            } else if (type1s.isEmpty()) { 

                feature.weightedError = Collections.min(type2s.keySet()); 

                feature.setThreshold(type2s.get(feature.weightedError)); 

                feature.setPolarity(1); 

            } else {                     

                double type2Min = Double.MAX_VALUE; 

                double type1Min = Double.MAX_VALUE; 

                type2Min = Collections.min(type2s.keySet()); 

                type1Min = Collections.min(type1s.keySet()); 

                 

                feature.weightedError = type1Min; 

                feature.setThreshold(type1s.get(type1Min)); 

                feature.setPolarity(-1); 

 

                

 

 if (feature.weightedError > type2Min) { 

                    feature.weightedError = type2Min; 

                    feature.setThreshold(type2s.get(type2Min));   

                    feature.setPolarity(1); 

                }  

            } 

             



 

 81 

            if (feature.weightedError > 0 && feature.weightedError < 1) { 

                feature.weight = Math.log((1.0-feature.weightedError)/feature.weightedError); 

            } else { 

                feature.weightedError = 0; 

                feature.weight = 4; 

            }  

             

            if (feature.weightedError < bestErrorFound) { 

                bestErrorFound = feature.weightedError; 

                classifiers[i] = feature; 

            } 

        }                       

 

        bestErrorFound = classifiers[i].weightedError;     

         

        

 for (IntegralImage img : trainPos) { 

            int score = classifiers[i].getFeatureValue(img.integral); 

            if (score > totalMax) { 

                totalMax = score; 

            } 

        } 

         

        for (IntegralImage img : trainNeg) { 

            int score = classifiers[i].getFeatureValue(img.integral); 

             

            if (score < totalMin) { 

                totalMin = score; 

            } 

        }  

 

        double correctPos = 0.0; 

        double correctNeg = 0.0; 

        double correctPos2 = 0.0; 

        double correctNeg2 = 0.0; 

        int previous = classifiers[i].getPolarity();       

        classifiers[i].setPolarity(1); 

    

        

       for (IntegralImage im : trainPos) if (im.label == classifiers[i].getClass(im.integral))  

               correctPos++; 

       for (IntegralImage im : trainNeg) if (im.label == classifiers[i].getClass(im.integral)) 

               correctNeg++;  

         

        classifiers[i].setPolarity(-1); 

         



 

 82 

        for (IntegralImage im : trainPos) if (im.label == classifiers[i].getClass(im.integral)) 

correctPos2++;  

        for (IntegralImage im : trainNeg) if (im.label == classifiers[i].getClass(im.integral)) 

correctNeg2++;         

        if (previous == classifiers[i].getPolarity()) { 

            classifiers[i].error = 1.0-

(correctPos2+correctNeg2*1.0)/(trainPos.size()+trainNeg.size()*1.0); 

        }  else { 

            classifiers[i].error = 1.0-

(correctPos+correctNeg*1.0)/(trainPos.size()+trainNeg.size()*1.0); 

        } 

        classifiers[i].setPolarity(previous); 

        used.put(classifiers[i],true);      

 

        //update the weights for each image based on what was misclassified 

        if (bestErrorFound >= 0) { 

            for (IntegralImage im : trainPos) 

                if (im.label == classifiers[i].getClass(im.integral))  

                    im.weight = im.weight*(bestErrorFound/(1.0-bestErrorFound));    

             

            for (IntegralImage im : trainNeg)  

                if (im.label == classifiers[i].getClass(im.integral))  

                    im.weight = im.weight*(bestErrorFound/(1.0-bestErrorFound)); 

        } else { 

            System.out.println("Cannot acheive lower error."); 

            classifiers = null; 

        }  

        return classifiers; 

    }     

} 

  



 

 83 

 

B. Source Code for Integral Image in Java 

 

package haar; 

 

import java.awt.Color; 

import java.awt.image.BufferedImage; 

import java.io.Serializable; 

 

public class IntegralImage implements Serializable{ 

     

    /** 

     *  

     */ 

    private static final long serialVersionUID = -3700022838878542056L; 

    public int[][] integral; 

    public int label; 

    public double weight; 

     

    //calculate the integral for a 2-d matrix 

    public IntegralImage(int[][] img,int label) { 

        this.label = label; 

        integral = new int[img.length][img[0].length]; 

        integral[0][0] = img[0][0];//rbg should be the same for each color now that it is grey scale 

        //used to convert the image to grey-scale 

        for (int i=0;i<img.length;i++) { 

            for (int j=0;j<img[0].length;j++) { 

                 

                if (j-1 < 0) { 

                    if(i-1 <0){ 

                        integral[i][j] = img[i][j]; 

 

                    } else { 

                        integral[i][j] = img[i][j] + img[i-1][j]; 

                    } 

                }else if (i-1 < 0) { 

                    if(j-1 <0){ 

                        integral[i][j] = img[i][j]; 

 

                    } else { 

                        integral[i][j] = img[i][j] + img[i][j-1]; 

                    } 

                } else { 

                    integral[i][j] = img[i][j] + img[i][j-1] + img[i-1][j] - img[i-1][j-1]; 

                } 



 

 84 

            } 

        } 

    } 

     

    //calculate the integral for a BufferedImage object 

    public IntegralImage(BufferedImage img,int label) { 

        this.label = label; 

        integral = new int[img.getWidth()][img.getHeight()]; 

 

        //used to convert the image to grey-scale 

        for (int i=0;i<img.getWidth();i++) { 

            for (int j=0;j<img.getHeight();j++) { 

                 

                Color c = new Color(img.getRGB(i, j)); 

                int red = (int)(c.getRed() * 0.299); 

                int green = (int)(c.getGreen() * 0.587); 

                int blue = (int)(c.getBlue() *0.114); 

                Color newColor = new Color(red+green+blue,red+green+blue,red+green+blue); 

                 

                img.setRGB(i, j, newColor.getRGB()); 

            } 

        } 

         

        integral[0][0] = (img.getRGB(0, 0)>>16)&0xFF;//rbg should be the same for each color 

now that it is grey scale 

               

       for (int i = 0;i < img.getWidth();i++) { 

            for (int j = 0;j < img.getHeight();j++) { 

                Color color = new Color(img.getRGB(i, j)); 

                if (j-1 < 0) { 

                    if(i-1 < 0){ 

                        integral[i][j] = color.getBlue(); 

 

                    }else{ 

                        Color shiftColor = new Color(img.getRGB(i-1, j)); 

                        integral[i][j] = color.getBlue() + shiftColor.getBlue(); 

                    } 

                }else if (i-1 < 0) { 

                    if(j-1 < 0){ 

                        integral[i][j] = color.getBlue(); 

 

                    }else{ 

                        Color shiftColor = new Color(img.getRGB(i, j-1)); 

                        integral[i][j] = color.getBlue() + shiftColor.getBlue(); 

                    } 

                } else { 



 

 85 

                    Color shiftColor = new Color(img.getRGB(i, j-1)); 

                    Color shiftColor2 = new Color(img.getRGB(i-1, j)); 

                    Color shiftColor3 = new Color(img.getRGB(i-1, j-1)); 

                    integral[i][j] = color.getBlue() + shiftColor.getBlue() + shiftColor2.getBlue() - 

shiftColor3.getBlue(); 

                } 

            } 

        } 

    } 

 

    //this method uses the top left point and bottom right point to calculate the area of a rectangle 

    public static int getAreaSum(int[][] integral,int topLeftX,int topLeftY,int bottomRightX,int 

bottomRightY) { 

        int topRightX = topLeftX; 

        int topRightY = bottomRightY; 

        int bottomLeftX = bottomRightX; 

        int bottomLeftY = topLeftY; 

        return integral[bottomRightX][bottomRightY] - integral[topRightX][topRightY] - 

integral[bottomLeftX][bottomLeftY] + integral[topLeftX][topLeftY]; 

    } 

} 

  



 

 86 

C. Source Code for New Haar features in Java 

package haar; 

 

public class T extends HaarFeature { 

 

    public T(int x, int y,int width, int height) { 

        super(x,y,width,height); 

        this.featureType = TYPE.T; 

        this.feature_orientation[0] = 3; 

        this.feature_orientation[1] = 3; 

    } 

 

    //each feature that extends HaarFeature must implement this getFeatureValueMethod in a       

unique way. This is how we attain the feature for an image. 

    @Override 

    public int getFeatureValue(int[][] intImage) { 

 int first = IntegralImage.getAreaSum(intImage,this.x,this.y,this.x+this.height-

1,this.y+this.width-1); 

 

int second = IntegralImage.getAreaSum(intImage,this.x,this.y+this.width,this.x+this.height-

1,this.y+this.width*2-1); 

 

int third = IntegralImage.getAreaSum(intImage, this.x, this.y+2*this.width, 

this.x+this.height-1, this.y+3*this.width-1); 

 

int fifth = 

IntegralImage.getAreaSum(intImage,this.x+2*this.height,this.y+this.width,this.x+this.heigh

t*3-1,this.y+this.width*2-1); 

 

int seventh = IntegralImage.getAreaSum(intImage, this.x+this.height, this.y+this.width,  

this.x+this.height*2-1, this.y+2*this.width-1); 

        

        return first+second+third-seventh+fifth; 

    } 

} 

 

 

 

public class InvertedT extends HaarFeature { 

 

    public InvertedT(int x, int y,int width, int height) { 

        super(x,y,width,height); 

        this.featureType = TYPE.INVERTED_T; 

        this.feature_orientation[0] = 3; 

        this.feature_orientation[1] = 3;         



 

 87 

    } 

 

    @Override 

    public int getFeatureValue(int[][] intImage) { 

int second = 

IntegralImage.getAreaSum(intImage,this.x,this.y+this.width,this.x+this.height-

1,this.y+this.width*2-1); 

 

int fourth = IntegralImage.getAreaSum(intImage, this.x+2*this.height, this.y, 

this.x+this.height*3-1, this.y+this.width-1);        

 

int fifth = 

IntegralImage.getAreaSum(intImage,this.x+2*this.height,this.y+this.width,this.x+this.heigh

t*3-1,this.y+this.width*2-1); 

 

int sixth = IntegralImage.getAreaSum(intImage, this.x+2*this.height, this.y+2*this.width, 

this.x+this.height*3-1, this.y+3*this.width-1); 

 

int seventh = IntegralImage.getAreaSum(intImage, this.x+this.height, this.y+this.width, 

this.x+this.height*2-1, this.y+2*this.width-1); 

         

        return sixth+fourth+fifth- second+seventh; 

    } 

} 

 

public class ThreeColumns extends HaarFeature{ 

 

    public ThreeColumns(int x, int y,int width, int height) { 

        super(x,y,width,height); 

        this.featureType = TYPE.THREE_COLUMNS; 

        this.feature_orientation[0] = 3; 

        this.feature_orientation[1] = 3; 

    } 

 

    @Override 

    public int getFeatureValue(int[][] intImage) { 

 int first = IntegralImage.getAreaSum(intImage,this.x,this.y,this.x+this.height-

1,this.y+this.width-1); 

 

int second = IntegralImage.getAreaSum(intImage,this.x,this.y+this.width,this.x+this.height-

1,this.y+this.width*2-1); 

 

int third = IntegralImage.getAreaSum(intImage, this.x, this.y+2*this.width, 

this.x+this.height-1, this.y+3*this.width-1); 

 



 

 88 

int fourth = IntegralImage.getAreaSum(intImage, this.x+2*this.height, this.y, 

this.x+this.height*3-1, this.y+this.width-1);       

  

int fifth = 

IntegralImage.getAreaSum(intImage,this.x+2*this.height,this.y+this.width,this.x+this.heigh

t*3-1,this.y+this.width*2-1); 

 

int sixth = IntegralImage.getAreaSum(intImage, this.x+2*this.height, this.y+2*this.width, 

this.x+this.height*3-1, this.y+3*this.width-1); 

 

int seventh = IntegralImage.getAreaSum(intImage, this.x+this.height, this.y+this.width, 

this.x+this.height*2-1, this.y+2*this.width-1); 

 

int eighth = IntegralImage.getAreaSum(intImage, this.x+this.height, this.y, 

this.x+this.height*2-1, this.y+this.width-1); 

 

int ninth = IntegralImage.getAreaSum(intImage, this.x+this.height*2, this.y+this.width, 

this.x+this.height*2-1, this.y+3*this.width-1); 

     

        return third+ninth+sixth+first+eighth+fourth-second+seventh+fifth; 

    } 

 

} 

 

public class X extends HaarFeature{ 

 

    public X(int x, int y,int width, int height) { 

        super(x,y,width,height); 

        this.featureType = TYPE.X; 

        this.feature_orientation[0] = 3; 

        this.feature_orientation[1] = 3; 

    } 

 

    @Override 

    public int getFeatureValue(int[][] intImage) {  

 int first = IntegralImage.getAreaSum(intImage,this.x,this.y,this.x+this.height-

1,this.y+this.width-1); 

 

int third = IntegralImage.getAreaSum(intImage, this.x, this.y+2*this.width, 

this.x+this.height-1, this.y+3*this.width-1); 

 

int fourth = IntegralImage.getAreaSum(intImage, this.x+2*this.height, this.y, 

this.x+this.height*3-1, this.y+this.width-1);        

 

int sixth = IntegralImage.getAreaSum(intImage, this.x+2*this.height, this.y+2*this.width, 

this.x+this.height*3-1, this.y+3*this.width-1); 



 

 89 

 

int seventh = IntegralImage.getAreaSum(intImage, this.x+this.height, this.y+this.width, 

this.x+this.height*2-1, this.y+2*this.width-1); 

         

        return first+third+fourth+sixth-seventh; 

    } 

} 

 

public class Cross extends HaarFeature{ 

 

    public Cross(int x, int y,int width, int height) { 

        super(x,y,width,height); 

        this.featureType = TYPE.CROSS; 

        this.feature_orientation[0] = 3; 

        this.feature_orientation[1] = 3; 

    } 

 

    @Override 

    public int getFeatureValue(int[][] intImage) { 

 int second = 

IntegralImage.getAreaSum(intImage,this.x,this.y+this.width,this.x+this.height-

1,this.y+this.width*2-1); 

 

int fifth = 

IntegralImage.getAreaSum(intImage,this.x+2*this.height,this.y+this.width,this.x+this.heigh

t*3-1,this.y+this.width*2-1); 

 

int seventh = IntegralImage.getAreaSum(intImage, this.x+this.height, this.y+this.width, 

this.x+this.height*2-1, this.y+2*this.width-1); 

 

int eighth = IntegralImage.getAreaSum(intImage, this.x+this.height, this.y, 

this.x+this.height*2-1, this.y+this.width-1); 

 

int ninth = IntegralImage.getAreaSum(intImage, this.x+this.height*2, this.y+this.width, 

this.x+this.height*2-1, this.y+3*this.width-1); 

         

        return second+seventh-fifth+ninth+eighth; 

    } 

} 

 

 

import violajones.AdaBoost; 

 

public abstract class HaarFeature { 

 

    public TYPE featureType; 



 

 90 

    protected int x; 

    protected int y; 

    protected int width; 

    protected int height; 

    private int threshold; 

    private int polarity; 

    public final int[] feature_orientation = new int[2]; 

    public double error = Double.POSITIVE_INFINITY; 

    public double weight = 0.0; 

    public double weightedError = Double.POSITIVE_INFINITY; 

     

    public enum TYPE { 

        

TWO_VERTICAL,TWO_HORIZONTAL,THREE_HORIZONTAL,THREE_VERTICA

L,FOUR,X,T,INVERTED_T,THREE_COLUMNS,CROSS; 

    } 

 

    public HaarFeature (int x,int y, int width, int height){ 

        this.x = x; 

        this.y = y; 

        this.width = width; 

        this.height = height; 

    } 

     

    public int getX() { 

        return this.x; 

    } 

     

    public int getY() { 

        return this.y; 

    } 

     

    public int getWidth() { 

        return this.width; 

    } 

     

    public int getHeight() { 

        return this.height; 

    } 

     

    public int getThreshold() { 

        return this.threshold; 

    } 

     

    public int getPolarity() { 

        return this.polarity; 



 

 91 

    } 

     

    public final void setThreshold(int threshold) { 

        this.threshold = threshold; 

    } 

     

    public final void setWeight(int weight) { 

        this.weight = weight; 

    } 

     

    public final void setPolarity(int polarity) { 

        this.polarity = polarity; 

    } 

     

    public abstract int getFeatureValue(int[][] intImage); 

     

    public final int getClass(int[][] img){ 

        int score = getFeatureValue(img); 

 

 double normalScore = ((score - AdaBoost.totalMin)*1.0/(AdaBoost.totalMax- 

AdaBoost.totalMin)*1.0); 

 

double normalThreshold = ((this.threshold - AdaBoost.totalMin)*1.0/(AdaBoost.totalMax- 

AdaBoost.totalMin)*1.0); 

         

        if (normalScore * this.polarity < normalThreshold*this.polarity) return 1;  

        else return 0; 

    } 

} 

 

  



 

 92 

D. Source Code for PCA in Matlab 

% @Maryan: Rip Current Detection using PCA  

% Load the training and test images 

=====================================================================

========= 

 Train_image_vec = uint8(zeros(576,415));  % Dimension of an image is = 112 x 92 = 10304 

pixels; I want to load 40 x 8 [index: 1 to 8] = 320 images for training 

  Test_image_vec =  uint8(zeros(576,46));   % I want to load 40 x 2 [index: 9 to 10] = 80 images 

for testing 

  Test_image_neg_vec = uint8(zeros(576,46)); 

     

%Load rip 

currents============================================================== 

%IF USING WINDOWS CHANGE THE FORWARD SLASHES TO BACK SLASHES 

trainImageFiles = dir('positive_rips/*.pgm') 

testImageFiles = dir('test_rips/*.pgm') 

testImageFilesNeg = dir('negatives/*.pgm') 

 

for i=1:415  

    img = imread(strcat('positive_rips/',trainImageFiles(i).name)); 

    Train_image_vec (:,i) =reshape(img, 576,1);   

end 

 

for i=1:46 

    img = imread(strcat('test_rips/',testImageFiles(i).name)); 

    Test_image_vec (:,i) = reshape(img, 576,1); 

end   

 

for i=1:46 

    img = imread(strcat('negatives/',testImageFilesNeg(i).name)); 

    Test_image_neg_vec (:,i) = reshape(img, 576,1); 

end   

%===================================================================

==============================================    

% Take the average of the respective pixel-values of all the training images 

===================================== 

avg=uint8(mean(Train_image_vec,2));  % 2=> row-wise avg 

 

% Remove the computed average value from the each of the training images and create "Normal 

vector"============== 

 Normal_Train_Vec =[]; 

 for i=1:415 

     Normal_Train_Vec (:, i) = Train_image_vec(:, i) - avg; 

 end 

 



 

 93 

%Generate covariance matrix M 

=====================================================================

=============== 

M = Normal_Train_Vec' * Normal_Train_Vec; 

[U, E, V] =svd(M);     % U = EigenVector, E = EigenValue 

 

%Let us pick 1st best 15 EigenVectors' corresponsing normal training vectors (from 10304x320 

to 10304x15) ======== 

U=Normal_Train_Vec * U; % Project the normal training vectors towards the EigenValues  

U30=U(:,1:30);          % Take 15 Eigen_normal_training_vec  

last30 = U(:,[(415-29):415]) 

 %%================test ALL components for detection of rip currents 

 Component_Wise_Det_FP_Rate = [] 

  

 for i = 1:415 

     component = U(:,i);%%select individual component 

     Training_Feature =[]; 

      

     for j = 1:415 

         Training_Feature(j,:)=  uint8(single(Normal_Train_Vec(:,j))'*single(component));   

%%generate features for this component 

     end 

      

     featureAvg = int8(mean(Training_Feature,1))%column wise feature avg 

     distancesFromAvg = [] 

      

     for j = 1:415 

         distancesFromAvg(j,:) = Training_Feature(j,:) - featureAvg%calcualte the diff from 

average for each sample 

     end 

      

     distancesFromAvg = abs(distancesFromAvg) %distance is always pos 

     max_distance = max(distancesFromAvg)%max distance from avg 

     numCorPos = 0 

     numCorNeg = 0 

      

     %%testing pos samples 

     for j = 1:46 

         feature_distance = abs(int8(uint8(single(uint8(Test_image_vec(:,j)-

avg))'*single(component))) - featureAvg);% get the distance vector from average 

         %=====this uses max total distance for this component 

        if (feature_distance <= max_distance) 

            numCorPos++ 

        end 

     end 

      



 

 94 

     %%testing neg samples 

     for j = 1:46 

        feature_distance = abs(int8(uint8(single(uint8(Test_image_neg_vec(:,j)-

avg))'*single(component))) - featureAvg) 

            

        if (feature_distance > max_distance_lowest_component) 

            numCorNeg++ 

        end 

     end 

      

     Component_Wise_Det_FP_Rate(i,:) = 

[single(numCorPos)/single(46),single(numCorNeg)/single(46)] 

 end 

 

 csvwrite('distancePerComponent.csv',Component_Wise_Det_FP_Rate); 

 

% Extract the features from training ... each row in Training_Feature is the pattern of one 

training images.====== 

   Training_Feature =[]; 

   Training_Lowest_feature = []; 

   Training_Last_30_feature = []; 

    

   for i =1:415 

       Training_Feature(i,:)=  uint8(single(Normal_Train_Vec(:,i))'*single(U30));    

   end  

    

   for i =1:415 

       Training_Last_30_feature(i,:)=  uint8(single(Normal_Train_Vec(:,i))'*single(last30));    

   end  

    

   featureAvg = int8(mean(Training_Feature,1));%column-wise feature avg 

   last30FeatureAvg = int8(mean(Training_Last_30_feature,1));%column-wise feature avg 

   distances = []; 

   last30Distances = []; 

    

   for i = 1:415 

       distances(i,:) = Training_Feature(i,:)-featureAvg; % calculate distance from avg vector 

   end 

    

   for i = 1:415 

       last30Distances(i,:) = Training_Last_30_feature(i,:)-last30FeatureAvg; % calculate distance 

from avg vector 

   end 

    

   entire_eigen_feature_vector = [] 

    



 

 95 

   for i = 1:415 

       entire_eigen_feature_vector(i,:) = uint8(single(Normal_Train_Vec(:,i))'*single(U));   

   end 

    

   entire_distances = [] 

    

   featureEnitreAvg = single(mean(entire_eigen_feature_vector,1)) 

    

   for i = 1:415 

       entire_distances(i,:) = single(entire_eigen_feature_vector(i,:)-featureEnitreAvg); % calculate 

distance from avg vector 

   end 

    

   last30Distances = abs(last30Distances) 

   entire_distances = abs(entire_distances) 

   distances = abs(distances); 

   total_distance_per_component = []; 

    

   %total distance per compoenent 

   for i = 1:30 

       total_distance_per_component(i,:) = sum(distances(:,i)) 

   end 

    

   csvwrite('distancePerComponent.csv',total_distance_per_component); 

    

   min_distances = []; 

   mean_entire_distances = [] 

   mean_distances = mean(distances,1); % the average distance for each component 

   mean_entire_distances = mean(entire_distances,1) 

   max_distances = []; 

    

   csvwrite('avgDistancePerComponent.csv',mean_distances); 

   csvwrite('avgDistancePerComponentEntire.csv',mean_entire_distances); 

    

   lowest_components = U30(:,[11 18 27 30]) 

   lowest_avg = int8(featureAvg(:,[11 18 27 30])) 

    

   for i =1:415 

Training_Lowest_Feature(i,:)=  

uint8(single(Normal_Train_Vec(:,i))'*single(lowest_components));    

   end  

    

   lowest_component_distances = [] 

    

   for i = 1:415 



 

 96 

       lowest_component_distances(i,:) = int8(Training_Lowest_Feature(i,:))-lowest_avg; % 

calculate distance from avg vector 

   end 

    

   lowest_component_distances = abs(lowest_component_distances) 

    

   for i = 1:30 

      max_distances(i,:) = max(distances(:,i)) %column wise max distance for each component 

from average feature 

   end 

    

   for i = 1:30 

      min_distances(i,:) = min(distances(i,:)) %column wise min distance for each component from 

average feature 

   end 

    

   max_distance = 0; 

   max_distance_lowest_component = 0; 

    

   for i = 1:415 

       sum_distance = sum(distances(i,:)); 

        

       if sum_distance > max_distance 

           max_distance = sum_distance 

       end 

   end 

    

   for i = 1:415 

       sum_distance = sum(lowest_component_distances(i,:)); 

        

       if sum_distance > max_distance_lowest_component 

           max_distance_lowest_component = sum_distance 

       end 

   end 

numCor = 0; 

 

for i = 1:46 

    feature_distances = abs(int8(uint8(single(uint8(Test_image_vec(:,i)-

avg))'*single(lowest_components))) - lowest_avg);% get the distance vector from average 

    %=====this uses max total distance over the whole vector 

 

    max_feature_distance = sum(feature_distances) 

   if (max_feature_distance <= max_distance_lowest_component) 

       numCor++ 

   end 

end 



 

 97 

 

for i = 1:46 

   feature_distances = abs(int8(uint8(single(uint8(Test_image_neg_vec(:,i)-

avg))'*single(lowest_components))) - lowest_avg) 

   feature_distance = sum(feature_distances) 

    

   if (feature_distance > max_distance_lowest_component) 

       numCor++ 

   end 

end 

 

for i = 1:46 

    %========the commented out code below does the same as the one line...its just explained 

  %  Test_img_norm = Test_image_vec(:,i)-avg 

   % Test_feature = uint8(single(Test_img_norm)'*single(U30)) 

   % feature_distance = sum(abs(int8(Test_feature) - featureAvg)) 

    feature_distances = abs(int8(uint8(single(uint8(Test_image_vec(:,i)-avg))'*single(U30))) - 

featureAvg);% get the distance vector from average 

    for i = 1:30 

        if feature_distances(:,i) > 127 % this compares individual distances for each component 

            numWrong++ 

        end 

    end 

    %=====this uses max total distance over the whole vector 

    max_feature_distance = sum(feature_distances) 

   if (max_feature_distance <= max_distance) 

       numCor++ 

   end 

end 

 

for i = 1:46 

   feature_distances = abs(int8(uint8(single(uint8(Test_image_neg_vec(:,i)-avg))'*single(U30))) - 

featureAvg) 

   if (feature_distance > max_distance) 

       numCor++ 

   end 

end 

 

result = single(numCor)/single(92)                         

  



 

 98 

E. Source Code for generating Meta Learner Feature Vector in Python 

from numpy import genfromtxt 

from sklearn import svm 

from sklearn import neural_network 

from sklearn import neighbors 

from sklearn import tree 

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier 

from sklearn import naive_bayes 

from random import * 

from csv import reader 

from sklearn.preprocessing import * 

import numpy as np 

import math 

 

# Load a CSV file 

def load_csv(filename): 

 dataset = list() 

 with open(filename, 'r') as file: 

  csv_reader = reader(file) 

  for row in csv_reader: 

   if not row: 

    continue 

   dataset.append(row) 

 return dataset 

 

# Split a dataset into k folds 

def cross_validation_split(dataset, n_folds): 

 dataset_split = list() 

 dataset_copy = list(dataset) 

 fold_size = int(len(dataset) / n_folds) 

 for i in range(n_folds): 

  fold = list() 

 

  while len(fold) < fold_size: 

   index = randrange(len(dataset_copy)) 

   fold.append(dataset_copy.pop(index)) 

 

  dataset_split.append(fold) 

 while len(dataset_copy) > 0: 

  index = randrange(len(dataset_split)) 

  dataset_split[index].append(dataset_copy.pop(0)) 

 return dataset_split 

 

#data for the meta-learner 

data = load_csv('new_raw_data_with_ensemble_small.csv') 



 

 99 

#rect_test_data = np.genfromtxt('testRect.csv',delimiter=',') 

#rect_test_data = np.asarray(rect_test_data,np.float64) 

conf_fold = [dict(),dict(),dict(),dict(),dict(),dict(),dict(),dict()] 

 

#conf_fold = [dict(),dict(),dict()] 

folds = cross_validation_split(data, 10) 

det_rates = [[],[],[],[],[],[],[],[]] 

fp_rates = [[],[],[],[],[],[],[],[]] 

accuracy = [[],[],[],[],[],[],[],[]] 

 

#det_rates = [[],[],[]] 

#fp_rates = [[],[],[]] 

#accuracy = [[],[],[]] 

 

names = ["Nearest Neighbors", 

 "RBF SVM", 

"Decision Tree", 

  "Random Forest", "Neural Net", 

"AdaBoost", 

         "Bagging", 

"Naive Bayes"] 

fold_idx = 0 

for fold in folds: 

 train_data = list(folds) 

 train_data.remove(fold) 

 train_data = sum(train_data,[]) 

 test_data = list() 

 classes = [] 

 test_classes = [] 

 train_copy = [] 

  

 #removing the class label from test and training data 

 for row in train_data: 

  row_copy = list(row) 

  train_copy.append(row_copy) 

  classes.append(row_copy[len(row_copy)-1]) 

  row_copy.remove(row_copy[len(row_copy)-1]) 

 

 for row in fold: 

  row_copy = list(row) 

  test_data.append(row_copy) 

  test_classes.append(row_copy[len(row_copy)-1]) 

  row_copy.remove(row_copy[len(row_copy)-1]) 

 

 train_copy = np.asarray(train_copy,np.float64) 

 test_data = np.asarray(test_data,np.float64) 



 

 100 

 test_classes = np.asarray(test_classes,np.float64) 

 classes = np.asarray(classes,np.float64) 

 scaler = RobustScaler(copy=True) 

 train_copy = scaler.fit_transform(train_copy) 

# print str(len(train_copy[0]))+' '+str(len(rect_test_data[0])) 

 test_data = scaler.transform(test_data) 

 

#creating models 

 classifiers = [ 

  neighbors.KNeighborsClassifier(50), 

  svm.SVC(kernel='rbf',probability=True,C=4.0,gamma=0.00390625), 

  tree.DecisionTreeClassifier(max_depth=10), 

  RandomForestClassifier(max_depth=10), 

  neural_network.MLPClassifier(max_iter=600), 

  AdaBoostClassifier(n_estimators=200), 

  BaggingClassifier(), 

  naive_bayes.GaussianNB() 

  ] 

 idx = 0 

 probs = [] 

 for model in classifiers: 

  model.fit(train_copy,classes) 

  results = model.predict(test_data) 

  prob = model.predict_proba(test_data) 

 

#these lines are used if we are generating data for output from OpenCV 

#  if fold_idx == 0: 

#   scale_rect_data = scaler.transform(rect_test_data) 

#   prob_rect = model.predict_proba(scale_rect_data) 

#   probs.append(prob_rect) 

  false_positive = 0 

  false_negative = 0 

  true_positive = 0 

  true_negative = 0 

  num_pos = 0 

  num_neg = 0 

 

  for i in range(0,results.size): 

   if results[i] == 0 and test_classes[i] == 1: 

    false_negative += 1 

    num_pos += 1 

   elif results[i] == 1 and test_classes[i] == 0: 

    false_positive += 1 

    num_neg += 1 

   elif results[i] == 1 and test_classes[i] == 1: 

    true_positive += 1 



 

 101 

    num_pos += 1 

   elif results[i] == 0 and test_classes[i] == 0: 

    true_negative += 1 

    num_neg += 1 

 

#map the confidence for each sample classified to its sample 

  for index in range(len(prob)): 

  

 conf_fold[idx][fold[index][0]+fold[index][1]+fold[index][33]+fold[index][34]] = 

prob[index][1] 

 

  det_rates[idx].append((true_positive)/(num_pos*1.0)) 

  fp_rates[idx].append(false_positive/(num_neg*1.0)) 

  accuracy[idx].append((true_positive+true_negative)/(num_pos+num_neg*1.0)) 

  #print 'accuracy ' + str((true_positive+true_negative)/(num_pos+num_neg*1.0)) 

  #print "det " + str((true_positive)/(num_pos*1.0)) + " fp "+ 

str(false_positive/(num_neg*1.0)) + " tn " + str(true_negative/(num_neg*1.0)) + " fn " + 

str(false_negative/(num_pos*1.0))+"\n" 

  idx += 1 

 if fold_idx == 0: 

  for model_conf in probs: 

   pos_conf = [] 

   for conf in model_conf: 

    pos_conf.append(conf[1]) 

   rect_test_data = np.c_[rect_test_data,pos_conf] 

 fold_idx+= 1 

average_det = 0.0 

average_fp = 0.0 

average_acc = 0.0 

classes = [] 

idx = 0 

 

for rates in det_rates: 

 average_det = 0 

 if not rates: 

  continue 

 for rate in rates: 

  average_det += rate 

 print 'average det for ' + names[idx] + ' ' + str(average_det/(len(rates)*1.0))  

 idx+= 1 

 

idx = 0 

 

for rates in fp_rates: 

 average_fp = 0 

 if not rates: 



 

 102 

  continue 

 for rate in rates: 

  average_fp += rate 

 print 'average fp for ' + names[idx] + ' ' + str(average_fp/(len(rates)*1.0)) 

 idx += 1 

 

idx = 0 

 

for rates in accuracy: 

 average_acc = 0 

 if not rates: 

  continue 

 for rate in rates: 

  average_acc += rate 

 print 'average accuracy for ' + names[idx] + ' ' +str(average_acc/(len(rates)*1.0))  

 idx+= 1 

idx = 0 

 

# These lines are used to calculate the Pearson correlation coefficient between each model 

#for i in range(len(conf_fold)): 

# for j in range(i+1,len(conf_fold)): 

#  xy = 0 

#  totalX = 0 

#  totalY = 0 

#  totalXsq = 0 

#  totalYsq = 0 

#  for row in data: 

#   for key in conf_fold[i]: 

#    if key == row[0]+row[1]+row[10]+row[11]: 

#     totalX += conf_fold[i][key] 

#     totalY += conf_fold[j][key] 

#     totalXsq += (conf_fold[i][key]*conf_fold[i][key]) 

#     totalYsq += (conf_fold[j][key]*conf_fold[j][key]) 

#     xy += conf_fold[i][key] * conf_fold[j][key] 

#  pcc = ((len(data)*xy) - (totalX*totalY))/(math.sqrt((len(data)*totalXsq) - 

math.pow(totalX,2)) * math.sqrt((len(data)*totalYsq) - math.pow(totalY,2))) 

#  print 'the pcc between ' + names[i]+ ' and '+ names[j] + ' is '+ str(pcc) 

#data_np = genfromtxt('best_feature_data_small.csv',delimiter=',') 

data_np = np.asarray(data_np,np.float64) 

class_col = data_np[:,len(data_np[0])-1] 

data_np = np.delete(data_np,len(data_np[0])-1,1) 

 

for model in conf_fold: 

 conf = [] 

 for row in data: 

  for key in model: 



 

 103 

   if row[0]+row[1]+row[33]+row[34] == key: 

    conf.append(model[key]) 

 data_np = np.c_[data_np,conf] 

 

data_np = np.c_[data_np,class_col] 

np.savetxt('new_raw_data_with_ensemble_small.csv',data_np,delimiter=',') 

#np.savetxt('ready_rect.csv',rect_test_data,delimiter=',')  



 

 104 

F. Source Code for Meta learner in Python 

 

from numpy import genfromtxt 

from sklearn import svm 

from sklearn import neural_network 

from sklearn import neighbors 

from sklearn import tree 

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier 

from sklearn import naive_bayes 

from random import * 

from csv import reader 

from sklearn.preprocessing import * 

from PIL import Image 

import cv2 

import numpy as np 

from os import listdir,walk 

from os.path import isfile, join 

 

#load a .csv file into an array 

def load_csv(filename): 

    dataset = list() 

    with open(filename,'r') as file: 

        csv_reader = reader(file) 

        for row in csv_reader: 

            if not row: 

                continue 

            dataset.append(row) 

    return dataset 

 

#calculate the corresponding integral for a given image 

def calculate_integral(im): 

 integral = np.zeros((len(im),len(im[0])),dtype = 'int64') 

 integral[0][0] = im[0][0] 

  

 for i in range(len(im)): 

  for j in range(len(im[0])): 

   if j-1 < 0: 

    if i-1 < 0: 

     integral[i][j] = im[i][j] 

    else: 

     integral[i][j] = im[i][j] + im[i-1][j] 

   elif i-1 < 0: 

    if j-1 < 0: 

     integral[i][j] = im[i][j] 

    else: 

     integral[i][j] = im[i][j] + im[i][j-1] 



 

 105 

   else: 

    integral[i][j] = im[i][j] + im[i][j-1] + (im[i-1][j] - im[i-1][j-1]) 

 return integral 

 

#get the area based on the rectangle between topLeft and bottomRight 

def getAreaSum(integral,topLeftX,topLeftY,bottomRightX,bottomRightY): 

 topRightX = topLeftX 

 topRightY = bottomRightY 

 bottomLeftX = bottomRightX 

 bottomLeftY = topLeftY 

 

 return integral[bottomRightX][bottomRightY] - integral[topRightX][topRightY]  - 

integral[bottomLeftX][bottomLeftY] + integral[topLeftX][topLeftY] 

 

#apply a feature to an integral image based on which type of feature it is 

def getFeatureValue(integral,featureType,x,y,w,h): 

 score = 0    

 if featureType == 'TWO_VERTICAL': 

  first = getAreaSum(integral,x,y,x+h-1,y+w-1) 

  second = getAreaSum(integral,x+h,y,x+h*2-1,y+w-1) 

 

  score = first - second 

 elif featureType == 'THREE_HORIZONTAL': 

  first = getAreaSum(integral,x,y,x+h-1,y+w-1) 

  second = getAreaSum(integral,x,y+w,x+h-1,y+w*2-1) 

  third = getAreaSum(integral,x,y+w*2,x+h-1,y+3*w-1) 

 

  score = first + third - second 

 elif featureType == 'THREE_COLUMNS': 

  first = getAreaSum(integral,x,y,x+h-1,y+w-1) 

  second = getAreaSum(integral,x,y+w,x+h-1,y+w*2-1) 

  third = getAreaSum(integral,x,y+2*w,x+h-1,y+3*w-1) 

  fourth = getAreaSum(integral,x+2*h,y,x+h*3-1,y+w-1) 

  fifth = getAreaSum(integral,x+2*h,y+w,x+h*3-1,y+w*2-1) 

  sixth = getAreaSum(integral,x+2*h,y+2*w,x+h*3-1,y+w*3-1) 

  seventh = getAreaSum(integral,x+h,y+w,x+2*h-1,y+2*w-1) 

  eigth = getAreaSum(integral,x+h,y,x+2*h-1,y+w-1) 

  ninth = getAreaSum(integral,x+h*2,y+w,x+h*2-1,y+3*w-1) 

         

  score = third + ninth + sixth + first + eigth + fourth – second + seventh + fifth 

 elif featureType == 'X': 

  first = getAreaSum(integral,x,y,x+h-1,y+w-1) 

  third = getAreaSum(integral,x,y+2*w,x+h-1,y+3*w-1) 

  fourth = getAreaSum(integral,x+2*h,y,x+h*3-1,y+w-1) 

  sixth = getAreaSum(integral,x+2*h,y+2*w,x+h*3-1,y+w*3-1) 

  seventh = getAreaSum(integral,x+h,y+w,x+2*h-1,y+2*w-1) 



 

 106 

 

  score = first + third + fourth + sixth – seventh 

 elif featureType == 'T': 

  first = getAreaSum(integral,x,y,x+h-1,y+w-1) 

  second = getAreaSum(integral,x,y+w,x+h-1,y+w*2-1) 

  third = getAreaSum(integral,x,y+2*w,x+h-1,y+3*w-1) 

  fifth = getAreaSum(integral,x+2*h,y+w,x+h*3-1,y+w*2-1) 

  seventh = getAreaSum(integral,x+h,y+w,x+2*h-1,y+2*w-1) 

 

  score = first + second + third  - seventh + fifth 

 else: 

  print 'feature type not recognized' 

 

 return score 

 

#load an OpenCV cascade 

rip_current_openCV_model = 

cv2.CascadeClassifier('part_hand_picked_any_neg/cascade_stage28.xml') 

 

path_to_test_samples = '/Users/Maryan/Documents/Thesis/cascade_data/data/testing_rips/pos' 

only_files = [f for f in listdir(path_to_test_samples) if isfile(join(path_to_test_samples,f))] 

test_images = np.empty(len(only_files)-1, dtype=object) 

integrals_pos = [] 

integrals_neg = [] 

rect_test_data = 

genfromtxt('/Users/Maryan/Documents/Thesis/cascade_data/data/ready_rect.csv',delimiter=',') 

 

#this code is used if we want to build the meta-classifier data from scratch 

''' 

for subdir,dirs,files in 

walk('/Users/Maryan/Documents/Thesis/cascade_data/data/testing_rips/results/pos_samples_war

ped/'): 

    for _file in files: 

        if _file.endswith('.png'): 

            

integrals_pos.append(calculate_integral(np.array(Image.open('/Users/Maryan//Documents/Thesi

s/cascade_data/data/testing_rips/results/pos_samples_warped/'+str(_file)),dtype='int64'))) 

 

for subdir,dirs,files in walk('/Users/Maryan/Documents/Thesis/rip_positives/positive_rips/'): 

    for _file in files: 

        if _file.endswith('.png'): 

            

integrals_pos.append(calculate_integral(np.array(Image.open('/Users/Maryan//Documents/Thesi

s/rip_positives/positive_rips/'+str(_file)),dtype='int64'))) 

             

for subdir,dirs,files in walk('/Users/Maryan/Documents/Thesis/unaltered_neg/'): 



 

 107 

    for _file in files: 

        if _file.endswith('.pgm'): 

            

integrals_neg.append(calculate_integral(np.array(Image.open('/Users/Maryan/Documents/Thesis

/unaltered_neg/'+str(_file)),dtype='int64'))) 

             

for subdir,dirs,files in walk('/Users/Maryan/Documents/Thesis/unaltered_images/'): 

    for _file in files: 

        if _file.endswith('.pgm'): 

            

integrals_neg.append(calculate_integral(np.array(Image.open('/Users/Maryan/Documents/Thesis

/unaltered_images/'+str(_file)),dtype='int64'))) 

             

for subdir,dirs,files in 

walk('/Users/Maryan/Documents/Thesis/cascade_data/data/testing_rips/results/neg_opencv_sam

ples/'): 

    for _file in files: 

        if _file.endswith('.png'): 

            

integrals_neg.append(calculate_integral(np.array(Image.open('/Users/Maryan/Documents/Thesis

/cascade_data/data/testing_rips/results/neg_opencv_samples/'+str(_file)),dtype='int64'))) 

 

#basic_train_data = [] 

''' 

 

for n in range(1,len(only_files)): 

    test_images[n-1] =  cv2.imread(join(path_to_test_samples,only_files[n])) 

 

haar_feature_data = load_csv('/Users/Maryan/Documents/Thesis/cascade_data/data/features.csv') 

#meta_train_data = 

np.genfromtxt('/Users/Maryan/Documents/Thesis/cascade_data/data/new_raw_data_with_ensem

ble_7_all_pcc_only_haar.csv',delimiter=',') 

#basic_train_data = 

np.genfromtxt('/Users/Maryan/Documents/Thesis/cascade_data/data/new_data_raw_7_only_haar

.csv',delimiter=',') 

meta_train_data = 

np.genfromtxt('/Users/Maryan/Documents/Thesis/cascade_data/data/new_raw_data_with_ensem

ble_small.csv',delimiter=',') 

basic_train_data = 

np.genfromtxt('/Users/Maryan/Documents/Thesis/cascade_data/data/best_feature_data_small.csv

',delimiter=',') 

 

#create data and scalers for data we need one for the meta and one for the basic classifiers 

basic_train_data = np.asarray(basic_train_data,np.float64) 

basic_class = basic_train_data[:,len(basic_train_data[0])-1] 

basic_train_data = np.delete(basic_train_data,len(basic_train_data[0])-1,1) 



 

 108 

scaler_for_basic = RobustScaler(copy=True) 

scaler_for_meta = RobustScaler(copy=True) 

 

basic_train_data = scaler_for_basic.fit_transform(basic_train_data) 

 

#for integral in integrals_pos: 

#    feature_vector = [] 

#    for feature in haar_feature_data: 

#        

feature_vector.append(getFeatureValue(integral,feature[0],int(feature[1]),int(feature[2]),int(featu

re[3]),int(feature[4]))) 

#    basic_train_data.append(feature_vector) 

 

#create basic classifiers 

basic_classifiers = [ 

         neighbors.KNeighborsClassifier(50), 

         svm.SVC(kernel='rbf',probability=True,C=4.0,gamma=0.00390625), 

         tree.DecisionTreeClassifier(max_depth=10), 

         RandomForestClassifier(max_depth=10), 

         neural_network.MLPClassifier(max_iter=600), 

         AdaBoostClassifier(n_estimators=200), 

         BaggingClassifier(), 

      naive_bayes.GaussianNB() 

]    

 

meta_train_data = np.asarray(meta_train_data,np.float64) 

meta_class = meta_train_data[:,len(meta_train_data[0])-1] 

meta_train_data = np.delete(meta_train_data,len(meta_train_data[0])-1,1) 

 

'''meta_train_data = [] 

for classifier in basic_classifers: 

    for row in basic_train_data: 

        row.append(classifier.pred_proba())       

''' 

 

#create the meta classifier and train it 

meta_train_data = scaler_for_meta.fit_transform(meta_train_data) 

model = AdaBoostClassifier(n_estimators=300) 

model.fit(meta_train_data,meta_class) 

rect_test_data = scaler_for_meta.transform(rect_test_data) 

 

#train each basic classifier 

for classifier in basic_classifiers: 

    classifier.fit(basic_train_data,basic_class) 

 

scale_factor = 1.1 



 

 109 

min_neighbors = 1 

min_size = (20,20) 

#prediction = model.predict(rect_test_data) 

 

i=1 

j = 1 

k = 0 

 

#for each image run it through the OpenCV detector then take the remaining windows and use  

# the meta-classifier to attain the final classification. 

for im in test_images: 

    im_copy = im.copy() 

    rips = rip_current_openCV_model.detectMultiScale(im_copy,scaleFactor = 

scale_factor,minNeighbors=min_neighbors,minSize=min_size) 

    for (x,y,w,h) in rips: 

        feature_vector = [] 

        cropped_rip = im[y:y+h, x:x+w] 

        resized_image = cv2.resize(cropped_rip,(24,24),interpolation= cv2.INTER_CUBIC) 

        gray_image = cv2.cvtColor(resized_image,cv2.COLOR_BGR2GRAY) 

        cv2.imwrite('testing_rips/results/rect/'+str(j)+'.png',gray_image) 

        integral = calculate_integral(np.array(gray_image,dtype='int64')) 

         

        #apply each feature to the window 

        for feature in haar_feature_data: 

feature_vector.append(getFeatureValue(integral,feature[0],int(feature[1]),int(feature[2]),i

nt(feature[3]),int(feature[4]))) 

        feature_vector = np.reshape(feature_vector,(1,-1))     

        scaled_vector = scaler_for_basic.transform(feature_vector) 

         

        #attain the probability for each classifier and append it to the feature vector 

        for classifier in basic_classifiers: 

   result = classifier.predict_proba(scaled_vector) 

   feature_vector = np.c_[feature_vector,result[0][1]] 

         

        feature_vector = scaler_for_meta.transform(feature_vector) 

         

        #classifiy the final vector using the meta classifier 

        prediction = model.predict(feature_vector) 

             

        #only keep the windows classified as a rip current     

        if prediction[0] == 1: 

   im_copy = cv2.rectangle(im_copy,(x,y),(x+w,y+h),(50,50,200),2) 

             

        j += 1 

        k += 1 

    cv2.imwrite('testing_rips/results/meta_part_hand_neg/'+str(i)+'.png',im_copy) 



 

 110 

    i += 1  



 

 111 

 

Vita 

The author was born in Mandeville, Louisiana. He acquired his bachelor’s degree from 

Southeastern Louisiana University in 2013. He was first employed as a research assistant at 

UNO while working on his thesis. He was later employed at Naval Research Labs for the 

remainder of his thesis as a computer science trainee. 

 

 


	Detecting Rip Currents from Images
	Recommended Citation

	tmp.1524862848.pdf.x4qEB

