
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-18-2018

Detecting Metagame Shifts in League of Legends Using Detecting Metagame Shifts in League of Legends Using

Unsupervised Learning Unsupervised Learning

Dustin P. Peabody
University of New Orleans, dpeabody@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Peabody, Dustin P., "Detecting Metagame Shifts in League of Legends Using Unsupervised Learning"
(2018). University of New Orleans Theses and Dissertations. 2482.
https://scholarworks.uno.edu/td/2482

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.uno.edu%2Ftd%2F2482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2482?utm_source=scholarworks.uno.edu%2Ftd%2F2482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Detecting	Metagame	Shifts	in	League	of	Legends	Using	Unsupervised	
Learning	

	
	
	
	
	
	

A	Thesis	
	
	
	
	
	
	

Submitted	to	the	Graduate	Faculty	of	the		
University	of	New	Orleans	
in	partial	fulfillment	of	the		

requirements	for	the	degree	of	
	
	
	
	
	
	

Master	of	Science	
in	

Computer	Science	
	
	
	
	
	
	
by	
	

Dustin	Peabody	
	

B.S.	University	of	New	Orleans,	2013	
	

May,	2018	

	 ii	

Table	of	Contents	

List	of	Figures	··	iii	

List	of	Tables	··	iv	

Abstract	··	v	

Introduction	···	1	

Background	··	3	

Related	Work	··	6	

Data	Collection	···	9	

Methodology	··	11	

Results	and	Discussion	···	17	

Future	Work	···	21	

References	··	26	

Vita	···	28	

	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	

	 iii	

List	of	Figures	
Figure	1	...	14	

Figure	2	...	24	
	
	

	 	

	 iv	

List	of	Tables	
Table	1	..	17	

Table	2	..	18	

Table	3	..	19	
	
	 	

	 v	

Abstract	

Over	the	many	years	since	their	inception,	the	complexity	of	video	games	has	risen	

considerably.	With	this	increase	in	complexity	comes	an	increase	in	the	number	of	possible	

choices	for	players	and	increased	difficultly	for	developers	who	try	to	balance	the	effectiveness	

of	these	choices.	In	this	thesis	we	demonstrate	that	unsupervised	learning	can	give	game	

developers	extra	insight	into	their	own	games,	providing	them	with	a	tool	that	can	potentially	

alert	them	to	problems	faster	than	they	would	otherwise	be	able	to	find.	Specifically,	we	use	

DBSCAN	to	look	at	League	of	Legends	and	the	metagame	players	have	formed	with	their	

choices	and	attempt	to	detect	when	the	metagame	shifts	possibly	giving	the	developer	insight	

into	what	changes	they	should	affect	to	achieve	a	more	balanced,	fun	game.	

	

	

	

	

	

	

	

	

	

	

	

Keywords:	Unsupervised	Learning,	DBSCAN,	Metagame,	Game	Development,	Clustering	

	 1	

Introduction	

		Video	games	have	come	a	long	way	in	the	roughly	forty	years	since	their	inception,	and	with	all	

that	change,	the	complexity	of	games	has	increased	as	well.	This	complexity,	and	the	variety	it	

brings,	are	often	the	very	traits	players	search	for	when	choosing	their	games.	After	all,	more	

variety	often	means	more	and	longer	player	engagement,	and	that	often	means	more	revenue	

for	game	developers.	For	competitive	games,	keeping	everything	balanced	is	of	prime	

importance.	How	are	players	supposed	to	measure	their	skill	if	the	underlying	game	is	

imbalanced?	Did	the	player	win	the	match	or	did	the	game	win	it	for	them?	Conversely	is	the	

player	at	fault	for	losing	or	was	it	really	the	fault	of	the	game	itself?		

	Knowing	that	competitive	games	require	balancing,	how	do	game	developers	achieve	this?	

With	the	ubiquity	of	the	internet	developers	don’t	need	to	release	a	perfectly	balanced	game.	

Instead,	they	can	release	small	updates	to	the	game	over-time	to	arrive	at	some	semblance	of	

balance.	They	can	also	utilize	patches	to	release	new	content	for	their	game.	These	incremental	

releases	keep	players	interested	and	engaged,	but	also	further	increase	the	game’s	complexity.	

So	now	game	developers	are	put	in	a	difficult	situation:	balance	the	game	they	already	have,	or	

add	new	content	which	will	itself	change	how	the	game	is	balanced	and	played.	Often	they	

attempt	to	preempt	this	problem	using	quality	assurance	teams	and	test	environments,	but	for	

some	games	the	players	outnumber	the	developers	a	million	to	one.	The	developers	can’t	

possibly	find	and	try	every	combination	of	variables	to	ensure	a	continuously	balanced	product.	

By	using	unsupervised	learning,	we	can,	with	relatively	little	domain	or	game	specific	

knowledge,	build	a	system	that	empowers	the	development	team	to	find	and	identify	problems	

and	patterns	more	quickly	by	pointing	them	in	the	right	direction.		

	 2	

	This	thesis	will	show	that	unsupervised	learning	can	be	used	to	give	the	developers	insight	into	

their	own	games	perhaps	showing	them	areas	that	need	attention	or	alerting	them	to	problems	

faster	than	they	would	be	able	to	find	alone.	Unsupervised	learning	can	help	find	patterns	for	

things	that	are	non-obvious	and	help	guide	development	toward	a	more	enjoyable	experience	

for	everyone.	

	In	the	following	pages	we	describe	a	system	that,	given	some	easily	obtainable,	high	level	data,	

can	help	identify	what	choices	players	are	making	in	a	multiplayer	game	and	why.	These	choices	

shape	the	game’s	ecosystem	and	are	ultimately	a	reflection	of	the	current	state	of	the	game	

and	its	balance.	We	use	DBSCAN	and	some	novel	techniques	to	find	and	differentiate	between	

clusters	formed	by	several	sequential	patches	in	the	game	League	of	Legends.	We	show	that	

our	methods	can	accurately	detect	when	a	large	shift	in	player	choice	occurs.	Our	results	

demonstrate	the	usefulness	that	unsupervised	learning	techniques	exhibit	and	contribute	some	

first	steps	in	the	domain	of	continuous	game	balance	and	metagame	detection.		

	

	 	

	 3	

Background	

In	the	following	pages,	we’ll	look	at	a	game	called	League	of	Legends	the	world’s	most	

popular	game	[1]	and	one	with	more	than	its	fair	share	of	complexity.	Boasting	roughly	130	

characters	to	choose	from,	a	game	of	10	players	has	over	163	trillion	possible	combinations	of	

characters	in	it.	And	this	is	before	the	game	even	begins	when	players’	actions	would	balloon	

the	complexity	even	further.	League	of	Legends	(LoL)	is	a	multiplayer	online	battle	arena	

(MOBA)	style	game,	developed	by	Riot	Games	(Riot),	in	which	two	teams	of	5	players	each	face	

off	against	each	other	for	control	of	a	map	called	Summoner's	Rift.	The	objective	of	the	game	is	

to	destroy	the	enemy	team's	Nexus,	a	heavily	defended	structure	located	deep	within	the	

enemy	team's	territory.	Players	accomplish	this	by	selecting	from	over	130	characters	to	control	

which	all	function	differently.	Before	the	game	begins	each	team	takes	turns	banning	one	

character	at	a	time,	preventing	anyone	in	the	game	from	selecting	that	character,	until	there	

are	six	total	banned	characters.	Then	each	team	alternates	choosing	one	character	at	a	time	

until	both	teams	are	comprised	of	five	characters	each,	and	then	the	game	begins.	In	this	thesis	

we	mostly	concern	our	selves	with	which	characters	each	player	bans	and	why.	Often	this	is	

influenced,	and	sometimes	outright	decided,	by	the	current	metagame.		

Metagame	is	a	term	used	when	the	actions	inside	a	game	or	results	of	a	game	are	

affected	by	or	affect	things	outside	of	that	singular	instance	of	the	game.	Tournaments	are	an	

example	of	a	metagame.	The	outcomes	of	each	match	influence	the	standings	of	the	

tournament	and	dictate	how	it	proceeds,	who	wins,	and	who	loses.	In	this	way,	the	metagame	

of	the	tournament	is	affected	by	the	results	of	each	match,	but	the	metagame	can	also	affect	

the	matches	played	inside	of	it	as	well.	If	a	player	were	to	discover	a	dominant	strategy,	that	

	 4	

strategy	would	be	played	more	and	start	to	stifle	other	strategies	of	play.	Then	people	would	

attempt	to	overcome	this	dominant	strategy	with	yet	another	strategy,	even	if	it	would	be	

worse	in	a	vacuum.	This	is	the	style	of	metagame	found	in	LoL	and	it	can	be	found	in	many	

other	games	as	well.	Characters	or	strategies	become	popular	and	spread,	then	players	look	for	

ways	to	overcome	these	prevalent	characters	or	strategies	to	better	secure	victory.		

Metagames	evolve,	grow	and	change	over	time	naturally	as	players	learn	the	game	and	

adapt	to	other	players’	actions,	but	they	can	also	be	changed	in	other	ways,	namely	if	the	game	

itself	changes.	While	unlikely	or	unusual	in	many	games	such	as	chess	or	football,	and	even	

many	older	video	games	like	Super	Smash	Brothers	Melee,	modern	video	games	can	change	

over	the	course	of	their	lifespan.	Often	this	is	accomplished	via	patching.	Patching	is	the	release	

of	small	updates	to	the	game	after	the	game’s	initial	release.	While	patches	are	sometimes	for	

fixing	bugs	or	other	code	related	issues,	they	can	also	be	used	to	modify	the	balance	of	a	game.	

Developers	might	increase	how	much	health	a	character	has	or	change	how	much	something	in	

the	game	is	worth.	These	changes	also	have	an	effect	on	the	metagame	and	cause	it	to	shift	

overtime,	sometimes	drastically.	Developer’s	motivations	for	doing	this	can	differ	greatly.	

Sometimes	certain	characters	or	strategies	are	overbearing	and	are	harming	player	

engagement.	Other	times	some	aspect	of	a	game	lies	ignored	and	forgotten,	so	the	developers	

somehow	make	it	more	appealing	for	players	to	use.	And	still	other	times,	the	developers	just	

want	to	keep	the	game	fresh	and	exciting.		

Whatever	the	reason	for	patching,	if	the	underlying	game	is	modified,	the	metagame	

can	shift	as	well,	sometimes	in	unexpected	ways.	Riot,	the	developer	of	LoL,	frequently	utilizes	

patching	to	modify	their	game.	Roughly	every	two	weeks	they	release	a	patch	with	updates	that	

	 5	

may	strengthen,	weaken,	or	add	characters	or	change	various	aspects	of	the	game,	causing	

shifts	in	the	prevalent	strategies	employed	by	players.	This	predictable	cycle	of	changes	and	

potential	metagame	shifts	makes	League	of	Legends	particularly	interesting	to	study.		

	Patches	are	how	many	developers,	Riot	in	particular,	continue	to	interact	with	their	game	after	

launch.	As	such,	the	content	of	the	patches	is	important.	Unsupervised	learning	can	aid	

developers	in	making	decisions	about	what	will	be	included	in	a	given	patch.	If	a	pattern	is	

observed	where	players	are	abusing	a	certain	mechanic,	the	problem	can	be	corrected,	or	if	a	

feature	is	shown	to	be	underutilized,	the	developers	can	rework	the	feature	to	be	more	

appealing.	These	sorts	of	problems	can	be	detected	with	unsupervised	learning	based	on	player	

behavior,	allowing	the	developers	to	quickly	identify	the	problems	and	begin	developing	fixes,	

which	are	then	deployed	via	patches.		

		

	

	 	

	 6	

Related	Work	

Video	games	have	been	the	subject	of	extensive	research.	This	research	can	be	grouped	

into	either	game	based	research	or	player	behavior	based	research.	Game	based	research	is	

focused	on	things	in	and	immediately	surrounding	the	game.	Kica	et	al.	[2]	studied	the	effect	of	

patches	on	League	of	Legends	by	categorizing	the	changes	present	in	each	patch	and	relating	

them	to	the	various	champions'	performance	and	Riot’s	patching	habits.	While	they	also	

examined	the	effect	patches	have	on	League	of	Legends,	we	choose	to	focus	more	on	which	

groups	of	characters	are	being	banned	than	on	individual	characters’	win	rates	over	time.	Wu,	

Xiong,	and	Lida	[3]	explored	features	of	various	Multiplayer	Online	Battle	Arena	“MOBA”	games	

and	their	impact	on	the	balance	and	fairness	of	the	games.	The	mechanisms	they	investigated	

included	which	characters	appeared	in	professional	games	as	well	as	pick	and	ban	order.	We	

chose	to	focus	on	which	characters	were	banned	rather	than	include	the	order,	but	more	

information	could	possibly	be	gleaned	from	the	ban	order	as	they	demonstrated.	Claypool	et	al.	

[4]	examined	the	League	of	Legends	matchmaking	system	and	how	players	perceive	its	fairness	

and	effectiveness.	They	find	that	games	in	general	are	balanced	according	to	LoL’s	in-game	

rankings,	and	that	players	often	derive	greater	enjoyment	from	winning	games	regardless	of	

the	fairness	of	the	game	itself.	These	findings	help	inform	us	of	players’	desires	to	win	being	of	

great	importance.	We	can	assume	the	desire	to	win	is	a	driving	factor	behind	in	game	decisions	

and	selections.	Beau	and	Bakkes	[5]	use	Monti	Carlo	simulations	to	examine	the	impact	of	game	

actions	and	then	modify	the	highest	impact	actions	until	they	arrive	at	a	balanced	game.	In	the	

simple	game	they	designed,	they	were	able	to	run	repeated	trials	until	they	discovered	the	

highest	impact	actions	or	choices.	This	iterative	approach	to	discover	dominant	strategies	is	

	 7	

similar	to	how	the	millions	of	players	of	League	of	Legends	can	arrive	at	the	strongest	possible	

actions	or	choices	for	the	current	iteration	of	the	game	even	when	the	developers	may	not	

have	found	those	optimal	choices	themselves.		

Player	behavior	research	is	often	more	concerned	with	identifying	patterns	in	behavior,	

often	to	aid	developers	in	designing	games	that	players	will	enjoy	more.	Sifa	et	al.	[6]	utilize	

Simplex	Volume	Maximization	to	classify	player	behavior	in	Tomb	Raider	Underworld	and	how	

it	changes	across	the	length	of	the	game.	Drachen	et	al.	continue	[7]	and	develop	behavior	

profiles	in	the	Massively	Multiplayer	Online	Role-Playing	Game	Tera	and	the	multi-player	

strategy	war	game	Battlefield	2:	Bad	Company	2	using	K-means	and	Simplex	Volume	

maximization.	Their	data	is	cardinal	in	nature	whereas	our	is	nominal,	but	they	are	still	utilizing	

clustering	techniques	to	define	player	behavior.	Rather	than	look	at	instances	of	their	target	

games,	they	instead	look	at	the	accumulated	stats	of	the	players	and	try	to	cluster	the	players	

into	different	behavioral	groups.	Both	of	these	papers	endeavor	to	use	clustering	on	player	

behavior,	which	is	similar	to	our	methods	because	the	metagame	is	formed	via	players’	

decisions	and	behaviors.	Drachen	et	al.	[8]	continue	their	research	and	use	several	clustering	

methods	to	build	player	behavior	profiles	across	two	distinct	game	modes	with	a	focus	on	

performance	and	play	style	in	the	video	game	Destiny.	This	time	the	authors’	aim	is	again	to	

classify	players	based	on	their	in	game	behavior,	with	the	future	goal	being	to	recommend	

items	that	compliment	their	play	style.	This	again	speaks	to	the	utility	that	clustering	has	on	

discovering	insights	from	otherwise	unparsable	amounts	of	data.	Player	behavior	can	also	be	

utilized	in	more	direct	ways	like	predicting	the	outcome	of	a	match	as	shown	by	Ong,	

Deolalikar,	and	Peng	[9].	They	developed	an	unsupervised	learning	framework	to	find	behavior	

	 8	

clusters	which	they	leveraged	into	a	classification	algorithm	in	an	attempt	to	learn	an	outcome	

predictor.	Again	the	authors	of	this	paper	cluster	based	on	cardinal	data	gathered	about	players	

representing	their	behavior.	Here,	however,	the	authors	take	those	clusters	and	use	them	to	

train	various	classification	models,	supporting	the	idea	of	an	“ideal	team”	based	on	player	

behavior	and	chosen	characters	that	fit	those	behaviors.	We	are	more	interested	in	evaluating	

the	metagame	which	is	more	concerned	with	the	whole	of	player	behavior	than	it	is	with	

individual	player	behavior.				

	 	

	 9	

Data	Collection	

League	of	Legends	is	a	very	complex	game,	and	there	are	many	different	kinds	of	data	

we	could	target	for	collection,	but	we	want	data	which	fits	a	few	specific	criteria.	First	we	want	

data	that	is	easy	to	understand.	We’re	trying	to	find	data	that	reflects	what’s	going	on	in	LoL’s	

metagame,	while	simultaneously	being	easy	for	someone	with	little-to-no	understanding	of	the	

game’s	more	intricate	systems	to	use.	By	utilizing	this	type	of	data	we	make	a	system	that	can	

easily	be	ported	to	various	games,	all	while	requiring	little	game	specific	knowledge.	Secondly,	

we’d	like	to	utilize	data	that	is	easy	to	collect	and	process.	With	these	criteria	in	mind,	we	

decided	to	use	the	set	of	characters	that	are	banned	in	each	game.	This	data	is	easy	to	

understand	as	it’s	just	the	characters	that	are	disallowed	in	a	given	game.	The	only	real	game	

knowledge	related	to	this	data	is	that	the	disallowing	of	these	characters	is	done	by	the	players,	

and	it	happens	because	they	don’t	want	to	have	those	characters	in	the	game.	Additionally,	this	

data	is	relatively	easy	to	obtain	via	that	Riot	API.		

Using	the	API,	we	collected	60,000	games	across	6	patches	from	season	5	of	League	of	

Legends,	approximately	Fall	2015.	Each	patch	consists	of	approximately	two	weeks	of	time,	and	

each	patch	has	its	own	set	of	differing	ban	rates	for	each	character.	The	patches	are	labeled	as:	

5.12,	5.13,	5.14,	5.15,	5.16,	and	5.17.	These	patches	were	targeted	because,	based	on	our	

experiences,	there	was	a	large	metagame	shift	that	occurred	in	patch	5.16	when	an	entire	class	

of	character	was	reworked.	This	is	supported	by	several	gaming	news	reports	on	the	patch	

written	at	the	time	[10]	[11]	[12].		

The	Riot	API	does	not	support	any	random	sampling	methods,	so	when	actually	colleting	

the	data,	we	began	by	using	a	few	known	high	level	players	as	seeds.	The	choice	to	only	use	

	 10	

high-level	players	was	made	with	the	goal	of	only	working	with	data	generated	by	players	with	

an	exceptional	understanding	of	the	intricacies	and	nuances	of	both	LoL	and	the	metagame	

surrounding	it.	The	hope	is	that	they	would	quickly	adapt	to	any	shifts	in	the	meta	and	that	

would	be	reflected	in	the	data.	We	further	restricted	our	focus	to	just	the	North	American	

region	because	the	author	was	more	familiar	with	the	high-level	players	making	it	easier	to	

choose	seed	players.		

We	first	looked	for	any	games	those	players	played	in	a	given	patch	and	selected	one	to	

add.	We	then	looked	at	the	nine	other	players	and	acquired	their	games.	We	repeated	this	

process	until	we	had	around	10,000	games	for	the	patch.	We	limited	the	number	of	games	a	

single	player	could	have	per	patch	to	one	in	order	to	control	for	a	player	having	a	favorite	

character	or	ban	and	skewing	the	data	around	that	player.	We	also	omitted	any	games	that	had	

incomplete	or	incorrect	ban	information	in	Riot's	systems.	All	told,	we	collected	approximately	

60,000	games	over	the	course	of	roughly	a	month	of	continuous	API	usage	amounting	to	

approximately	500MB	of	data.	

All	of	the	data	was	stored	in	a	PostgreSQL	database	using	the	Active	Record	Object-

Relational	Mapping.	This	enabled	us	to	use	simple	Ruby	code	to	automate	the	acquisition	of	

game	and	player	data	by	creating	an	easy	to	use	interface	with	the	Riot	API.	

	

	

	

	

	 11	

Methodology	

Our	goal	is	to	develop	a	system	that	can	identify	and	track	metagame	changes	over	

time,	but	also	requires	little	game	specific	knowledge	so	that	it’s	both	easier	to	use	and	simpler	

to	port	to	other	games.	To	that	end,	we	decided	to	utilize	unsupervised	learning	techniques,	

namely	clustering,	to	perform	the	bulk	of	our	investigation.	Much	of	the	work	in	and	around	the	

clustering	was	performed	in	the	R	programming	language	[13]	because	it	has	many	trusted	

implementations	of	various	statistical	and	machine	learning	algorithms.	In	this	case	we're	using	

the	FPC	package	[14]	and	its	DBSCAN	implementation	for	clustering.	

DBSCAN	[15]	was	chosen	as	the	clustering	method	of	choice	for	a	few	reasons	specific	to	

the	dataset	we	have.	Firstly,	DBSCAN	has	the	concept	of	noise	points	making	it	resistant	to	

misclassification	of	outlier	points.	This	is	important	because	given	our	data	there	is	a	high	

likelihood	of	random	and/or	noise	points	(people	just	banning	what	they	hate	for	reasons	other	

than	balance).	Secondly,	it	can	find	clusters	of	arbitrary	shape.	Since	this	effort	was	largely	

exploratory,	we	didn't	know	what	shape	the	clusters	would	take.	The	fact	that	DBSCAN	can	find	

non-linearly	separable	clusters	is	highly	valuable.	Finally,	and	most	importantly,	DBSCAN	does	

not	need	to	be	provided	with	a	number	of	clusters	to	find;	the	algorithm	discovers	that	for	us.	

These	are	all	very	important	points	and	advantages	over	other	clustering	methods	like	the	

centroid-based	algorithm	k-means,	which	needs	a	starting	number	of	clusters	and	often	has	

difficulty	finding	clusters	that	are	not	linearly	separable.		

DBSCAN	also	allows	us	to	use	an	arbitrary	distance	function.	In	many	datasets	Euclidean	

distance	is	used	by	default,	but	due	to	the	high	dimensionality	and	nominal	nature	of	our	data,	

Euclidean	distance	is	not	sufficient.	Given	that	the	bans	in	each	game	are	essentially	a	set,	we	

	 12	

decided	to	use	the	Jaccard	index	to	measure	distance	between	two	games'	bans.	The	Jaccard	

index	is	defined	as	 |"∩$|
" % $ &|"∩$|

	where	𝛢	and	𝛣	are	sets.	Jaccard	distance	is	defined	as	the	

dissimilarity	between	two	sets.	It	is	calculated	by	subtracting	the	Jaccard	coefficient	from	one.	

Jaccard	distance	is	thus	defined	like	so	|"∪$|&|"∩$|
|"∪$|

.	We	apply	the	Jaccard	distance	between	

every	combination	of	points	in	a	given	patch,	creating	a	dissimilarity	matrix.	The	FPC	package's	

DBSCAN	takes	this	matrix	as	input	in	lieu	of	the	original	dataset.	For	example,	if	we	have	two	

points	𝐴 = 	 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 	and	𝐵 = 	 [𝑎, 𝑏, 𝑑, 𝑓, 𝑔]	their	Jaccard	index	would	be:	

| 𝑎, 𝑏, 𝑑 |
𝑎, 𝑏, 𝑐, 𝑑, 𝑒 + 𝑎, 𝑏, 𝑑, 𝑓, 𝑔 − 𝑎, 𝑏, 𝑑 	𝑜𝑟	

3
5 + 5 − 3	 = 	

3
7	

and	the	Jaccard	distance	would	be:	

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 − | 𝑎, 𝑏, 𝑑 |
| 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 | 	or	

7 − 3
7 =

4
7	

The	dissimilarity	matrix	would	look	as	follows.		

	 A	 B	

A	 0	 4
7	

B	 4
7	

0	

	

The	DBSCAN	algorithm	has	two	parameters:	ε	and	𝑚𝑖𝑛𝑃𝑡𝑠.	ε	is	the	radius	of	the	

neighborhood	around	a	point	and	𝑚𝑖𝑛𝑃𝑡𝑠	is	the	minimum	number	of	points	that	need	to	be	

within	ε	distance	from	a	point	for	that	point	to	be	considered	a	core	point.	Any	two	points	

within	ε	distance	of	each	other	are	reachable	in	respect	to	each	other.	The	cluster	is	formed	by	

	 13	

a	core	point	reaching	other	core	points	forming	a	path	from	core	point	to	core	point,	each	

within	ε	of	the	previous	point.	If	a	point	is	within	ε	of	a	core	point,	but	does	not	have	at	least	

𝑚𝑖𝑛𝑃𝑡𝑠	within	ε	radius	of	itself,	then	the	point	is	a	non-core	point	or	"edge."	The	point	still	

belongs	to	the	cluster,	however	it	cannot	form	paths	to	other	points	to	grow	the	cluster.	Any	

points	that	are	not	edge	points	or	core	points	of	some	cluster	are	classified	as	noise.		

The	algorithm	begins	by	choosing	an	arbitrary	point	and	checking	if	there	are	𝑚𝑖𝑛𝑃𝑡𝑠	

points	within	ε	distance	of	the	initial	point.	If	enough	points	are	present,	a	cluster	is	started	and	

the	algorithm	examines	each	point	located	within	ε	of	the	initial	point	in	the	same	way.	This	

continues	until	all	the	edge	points	of	the	cluster	are	found.	If	enough	points	are	not	present	

within	ε	of	the	initially	chosen	point,	then	the	point	is	labeled	as	noise.	The	next	unvisited	point	

is	then	chosen	and	the	same	steps	are	performed	again.	After	every	point	has	been	visited	and	

classified,	the	algorithm	terminates.		

To	begin,	we	need	to	choose	ε	and	𝑚𝑖𝑛𝑃𝑡𝑠.	Often	times	this	choice	is	made	using	

domain	knowledge	and	expertise	mixed	with	trial	and	error.	We	decided	to	start	by	iterating	

through	ε	and	𝑚𝑖𝑛𝑃𝑡𝑠	values	until	we	arrived	at	a	set	of	clusters	that	contained	some	non-

duplicate	bans.	This	is	due	to	the	data	set	having	many	points	that	are	duplicates	to	one	

another.	Entire	clusters	could	be	made	with	every	point	being	an	identical	copy	of	each	other.		

	 14	

	

	

	

	

	

	

	

	

	

	

	

Figure	1	shows	the	general	results	produced	by	different	values	for	ε	and	𝑚𝑖𝑛𝑃𝑡𝑠.	Region	A	(ε	

below	0.3)	always	results	in	all	of	the	data	being	classified	as	noise.	Region	B	(ε	at	or	above	0.5)	

results	in	only	one	cluster	containing	all	the	data	with	no	noise.	Region	C	(ε	between	0.3	and	

0.5	and	𝑚𝑖𝑛𝑃𝑡𝑠	below	50)	generates	many	small	clusters,	but	the	clusters	just	contain	

duplicate	points,	meaning	that	each	point	in	the	cluster	has	a	Jaccard	distance	of	0	with	every	

other	point	in	the	cluster.	Finally	region	D	(ε	between	0.3	and	0.5	and	𝑚𝑖𝑛𝑃𝑡𝑠	above	200)	

results	in	one	cluster,	but	with	increasingly	large	amounts	of	noise,	until	the	whole	dataset	is	

noise.	This	leaves	us	with	the	gray	region	consisting	of	ε	between	0.3	and	0.5	and	𝑚𝑖𝑛𝑃𝑡𝑠	

between	50	and	200	which	produces	valid	clusters.	We	found	that	setting	ε	to	0.3	and	𝑚𝑖𝑛𝑃𝑡𝑠	

Figure	1	Possible	values	for	Epsilon	and	minPts	

	 15	

to	100	was	a	good	strategy	to	achieve	defined	clusters.	We	settled	on	a	constant	number	to	

make	the	next	step	more	consistent.		

Now	that	we	have	some	parameters	to	use,	we	can	use	DBSCAN	on	each	patch	

individually	to	extract	its	clusters.	Once	that	is	done,	we	have	some	number	of	clusters	for	each	

patch	representing	the	metagame	during	that	patch.	If	we	can	detect	a	cluster	persisting	from	

patch	to	patch,	that	means	the	metagame	has	persisted	across	those	patches	as	well.	Similarly,	

if	a	cluster	breaks	apart	going	from	one	patch	to	the	next,	we	can	say	that	the	metagame	has	

shifted	between	those	patches.	To	do	this	comparison	we	take	the	clusters	from	two	different	

patches	and	build	a	new	dataset	consisting	of	just	the	points	which	comprise	those	clusters.	We	

then	run	DBSCAN	on	the	newly	created	dataset.	After	DBSCAN	is	done	we	look	to	see	if	the	new	

dataset	separates	into	different	clusters	or	coalesces	into	a	single	cluster.	As	a	final	step	if	the	

clusters	separate,	we	check	the	origin	patches	of	the	points	comprising	the	clusters.	If	each	

cluster	is	mostly	comprised	of	points	from	a	single	patch,	we	can	safely	say	the	patches	and	

therefore	the	metagame	have	separated.	This	is	done	with	two	patches	at	a	time	to	make	

examining	the	results	easier.	

After	all	of	the	above	is	done,	we’re	left	with	clusters	which	represent	the	metagame	in	

each	patch,	but	the	clusters	themselves	are	still	difficult	to	to	parse	on	a	human	level.	Often	the	

clusters	can	have	over	2,000	points	and	extracting	any	actionable	insights	from	them	can	prove	

difficult	and	time	consuming.	In	response	to	this	issue,	we	employ	a	final	step	to	give	the	

clusters	something	of	a	label	which	also	allows	us	glean	some	information	quickly.	We	begin	by	

taking	the	dissimilarity	matrix	for	each	patch,	generated	as	input	to	DBSCAN,	and	we	separate	

the	matrix	by	cluster,	leaving	us	with	several	matrices	one	per	cluster.	Next	we	sum	the	total	

	 16	

distance	for	each	point	and	divide	by	the	number	of	points	in	the	cluster.	This	gives	us	the	

average	distance	for	each	point,	we	call	this	the	“centroid”	for	the	cluster.	The	centroid	is	the	

average	set	of	bans	for	that	cluster,	the	set	of	bans	with	the	most	similarities	to	every	other	set	

of	bans	in	that	cluster.	While	DBSCAN	does	not	have	centroids	natively	due	to	the	algorithm	not	

assuming	the	sphericity	of	clusters,	we	find	the	centroids	useful	for	the	readability	and	utility	

applications	discussed	above.		

	 	

	 17	

Results	and	Discussion	

When	DBSCAN	is	performed	on	each	patch	alone	we	see	that	exactly	one	cluster	is	

produced	per	patch.	When	comparing	each	patch	to	it’s	immediate	chronological	successor,	we	

see	that	almost	all	of	the	patches’	clusters	don’t	separate.	5.12	and	5.13	clusters	coalesce	into	

one	cluster.	The	same	is	true	of	5.13	and	5.14,	5.14	and	5.15,	and	5.16	and	5.17.	Between	

patches	5.15	and	5.16	however,	the	clusters	diverge.	When	the	points	comprising	the	clusters	

from	5.15	and	5.16	are	combined	and	run	through	DBSCAN,	they	form	two	distinct	separable	

clusters.	One	cluster	is	made	up	almost	entirely	by	points	from	5.15	and	the	other	by	points	

originating	from	5.16.	The	table	below	shows	that	this	pattern	holds	throughout	all	the	patches.	

Patches	5.16	and	5.17	separate	from	every	other	patch	except	for	each	other.	The	only	

exception	is	between	5.12	and	5.15.		

Table	1.	Inter-patch	Cluster	Comparisons		

	 5.12	 5.13	 5.14	 5.15	 5.16	 5.17	

5.12	 N/A	 No	Split	 No	Split	 Split	 Split	 Split	

5.13	 No	Split	 N/A	 No	Split	 No	Split	 Split	 Split	

5.14	 No	Split	 No	Split	 N/A	 No	Split	 Split	 Split	

5.15	 Split	 No	Split	 No	Split	 N/A	 Split	 Split	

5.16	 Split	 Split	 Split	 Split	 N/A	 No	Split	

5.17	 Split	 Split	 Split	 Split	 No	Split	 N/A	

	 	

	 18	

	
	We	know	from	closer	inspection	that	the	large	change	found	between	patches	5.15	and	5.16	is	

due	to	a	major	game	update.	The	5.16	patch	notes	talk	about	changing	an	entire	class	of	

character,	the	“Juggernauts.”	This	patch	drastically	changed	several	characters	and	for	the	

duration	of	the	patch	these	“Juggernauts”	saw	drastically	increased	ban	rates.	This	increased	

ban	rate	persisted	into	5.17	which	would	explain	why	those	clusters	are	non-separable.	The	

several	patches	before	the	change	seem	to	have	rather	stable	ban	rates,	the	same	few	

characters	are	banned	rather	consistently.	This	seems	to	suggest	that	the	game	was	rather	

stagnant	as	each	patch	didn’t	drastically	change	the	players’	banning	habits	from	the	previous	

patch.	This	doesn’t	mean	that	patches	5.12	through	5.15	had	no	effect,	just	that	the	changes	

between	sequential	patches	were	small	in	comparison.	The	effects	of	the	patches	do	seem	to	

build	on	each	other	as	exemplified	by	patch	5.12	and	5.15	separating	from	each	other	despite	

the	lack	of	drastic	changes	in	patch	5.12.	

	The	fact	that	each	patch	only	has	a	single	cluster	is	strange	at	first,	but	it	does	line	up	with	our	

experiences	in	League	of	Legends,	where	there	is	usually	only	one	dominant	strategy	or	a	small	

handful	of	characters	that	are	overbearing	at	a	time.	This	is	especially	true	following	the	

“Juggernaut”	changes	described	above	which	shook	the	metagame	to	its	core	and	warped	

gameplay	for	several	patches	including	the	League	of	Legends	world	championship	of	that	year	

[16].	Our	system	is	general	enough	that	it	should	handle	any	instances	where	several	clusters	

emerge	with	very	little	modification,	be	that	in	LoL	or	other	games.	

	Finally,	there	are	some	insights	and	utilities	to	be	gained	from	examining	cluster	centroids	we	

calculated	before.	First,	we	can	use	the	centroids	to	quickly	estimate	the	differences	between	

	 19	

the	clusters.	Table	2	is	the	Jaccard	distance	measuring	the	dissimilarity	between	each	of	our	

centroids.	We	can	see	that	the	distance	between	each	centroid	closely	matches	the	results	of	

our	tests	for	cluster	separation	above.	Outside	of	5.12	being	very	far	apart	from	each	other	

cluster,	the	centroid	distances	perfectly	mirror	our	cluster	separation	tests.	One	possible	reason	

for	5.12’s	distance	is	that	some	of	the	characters	in	5.12’s	centroid	are	still	heavily	banned	in	

subsequent	patches,	but	not	enough	of	them	and	not	frequently	enough	for	them	to	appear	in	

the	centroids	for	those	patches.	That	would	still	allow	for	the	clusters	to	merge	and	remember	

that	the	centroids	are	simplifications	of	the	clusters	and	not	totally	indicative	of	their	

composition.	The	centroids	simply	allow	us	to	get	an	idea	of	the	cluster’s	contents	quickly.		

Table	2.		Jaccard	Distance	between	Calculated	Cluster	Centroids	

	 5.12	 5.13	 5.14	 5.15	 5.16	 5.17	

5.12	 0.00	 	 	 	 	 	

5.13	 0.91	 0.00	 	 	 	 	

5.14	 1.00	 0.67	 0.00	 	 	 	

5.15	 1.00	 0.67	 0.29	 0.00	 	 	

5.16	 1.00	 1.00	 0.91	 0.91	 0.00	 	

5.17	 1.00	 1.00	 1.00	 1.00	 0.29	 0.00	

	Another	piece	of	information	illustrated	by	the	centroids	is	the	clusters’	relationships	to	the	top	

banned	characters	for	each	patch.	One	would	assume	that	the	top	six	or	so	banned	characters	

would	be	a	good	indicator	of	the	metagame	for	that	patch,	and	this	is	partially	true.	The	top	

banned	characters	do	represent	a	large	portion	of	the	clusters’	compositions,	but	they	don’t	

dictate	it	fully.	This	is	shown	when	calculating	the	distances	between	a	patch’s	top	bans	and	the	

	 20	

centroids	for	that	patch.	For	example,	patch	5.13’s	most	banned	characters	are:	Ezreal,	Ryze,	

Shyvana,	Master	Yi,	Gragas,	and	Cho’Gath	while	that	same	patch’s	centroid	consists	of:	

Shyvana,	Ezreal,	Master	Yi,	Nidalee,	Evelynn,	and	Ryze.	So	the	Jaccard	distance	would	be:	

IJKLMN,			OPJL,			QRPSMTM,			UMVWLK	XY,			ZKM[MV,			\R]^ZMWR,			_Y`MNLL,			ISLNPTT & IJKLMN,			OPJL,			QRPSMTM,			UMVWLK	XY
IJKLMN,			OPJL,			QRPSMTM,			UMVWLK	XY,			ZKM[MV,			\R]^ZMWR,			_Y`MNLL,			ISLNPTT

			

or:	

8 − 4
8 =

4
8 =

1
2	

Table	3	shows	the	Jaccard	distance	between	the	top	6	character	bans	per	patch	and	that	

patch’s	centroids.	We	can	see	that	patches	5.12	and	5.17	both	have	centroids	that	are	

equivalent	to	the	top	banned	characters,	but	patches	5.13	through	5.16	do	not.	This	shows	that	

while	the	top	bans	are	worth	observing	when	investigating	the	metagame,	they	do	not	paint	

the	entire	picture	of	what	is	happening	at	the	time.	After	all,	each	game	has	six	unique	bans,	

but	the	top	ban	rates	do	not	account	for	this	relationship	as	they	are	only	calculated	per	

character	and	not	over	different	combinations	of	characters	so	some	relational	data	can	be	lost	

if	only	the	top	bans	are	considered.		

Table	3.	Distance	Between	Top	Bans	and	Centroids	Per	Patch	

5.12	 5.13	 5.14	 5.15	 5.16	 5.17	

0.00	 0.50	 0.29	 0.29	 0.29	 0.00	

	

	

	

	

	 21	

Future	Work	

	Our	current	system	performs	well,	but	a	more	sensitive	system	would	be	of	great	use.	We	can	

see	from	the	various	patches	that	Riot	is	interested	in	more	than	just	drastic	metagame	shifts.	If	

that’s	all	they	wanted	they	could	just	drastically	increase	or	decrease	a	character’s	power	and	

guarantee	big	changes	and	excitement,	but	clearly	that’s	not	the	case.	Instead	they	are	

concerned	not	just	with	intentionally	changing	things,	but	also	balancing	characters	that	are	too	

strong	or	too	weak	and	making	characters	that	are	played	infrequently	more	appealing	to	the	

player	base.	A	more	sensitive	system	would	be	able	to	inform	Riot	when	they	succeed	or	fail	in	

these	endeavors.	A	version	of	our	system	that	takes	in	various	kinds	of	inputs	could	also	reveal	

unexpected	interactions	when	changes	are	made.	Perhaps	strengthening	one	character	makes	

another	stronger	or	weaker,	or	maybe	reducing	another’s	power	allows	an	infrequently	played	

character	to	come	back	into	the	metagame.	Introspection	into	the	formed	clusters	could	show	

how	various	components	of	the	game	are	linked,	even	if	the	developers	weren’t	aware	of	the	

full	breadth	of	consequences	their	changes	had.	All	of	this	data	is	of	great	interest	to	the	

players	as	well.	The	ability	to	quickly	analyze	and	adapt	to	changes	is	of	great	importance	to	

competitive	players	who	want	to	win	as	much	as	possible.	Information	about	what	other	

players	are	picking	and	banning	would	enable	them	to	create	new	strategies	that	work	in	the	

current	metagame	more	quickly.		

The	first	improvement	that	comes	to	mind	would	be	to	use	more	data	from	the	games	

played,	such	as	how	often	a	given	character	is	picked	or	how	often	a	character	wins,	in	addition	

to	the	ban	data	we	used	here.	This	would	make	the	system	more	sensitive	to	minute	changes	

between	patches.	Another	worthwhile	avenue	would	be	the	addition	of	some	in-game	data	like	

	 22	

what	items	players	are	purchasing	on	their	characters.	Since	items	are	purchasable	by	all	

characters,	their	power	and	balance	is	of	great	import.	A	single	item	being	too	strong	can	

quickly	warp	the	game’s	landscape,	making	entire	classes	of	characters	incredibly	powerful	and	

pushing	out	others.	The	previous	two	points	are	of	particular	import	because	they	account	for	

interactions	that	aren’t	as	apparent	when	only	utilizing	pick,	win,	and	ban	rates.	Because	all	of	

these	measures	are	calculated	per	character	with	no	attention	paid	to	combinations,	adding	

this	information	to	the	clustering	has	the	potential	to	show	unknown	synergies	or	interactions	

both	between	characters	and	between	characters	and	items.	On	the	more	technical	side	of	

things,	other	clustering	algorithms	could	prove	very	useful	in	discerning	metagame	changes.	In	

particular,	the	OPTICS	family	of	algorithms	[17],	which	are	based	on	DBSCAN,	definitely	warrant	

experimentation.	These	differ	from	DBSCAN	by	first	linearly	ordering	the	points	by	their	

distance	from	each	other,	such	that	the	points	that	are	closest	to	one	another	are	neighbors	

after	the	ordering.	And	finally,	as	is	always	the	case,	a	better	distance	function	would	increase	

the	clustering	accuracy.	Jaccard	distance	was	sufficient	here	but	a	more	sensitive	function	built	

specifically	for	League	of	Legends	would	improve	cluster	detection.	

One	of	the	biggest	improvements	we	could	make,	would	be	to	use	a	better	distance	

function.	Finding	one	that	better	reflects	the	differences	between	a	set	of	bans	or	a	team	

composition	is	difficult	but	may	be	possible.	For	example,	we	know	that	bans	are	picked	in	

order,	to	encapsulate	this,	we	developed	a	new	distance	function.	The	function	counts	the	

number	of	matching	ordered	pairs	in	both	sets	and	divides	that	number	by	the	total	amount	of	

ordered	pairs,	the	intersection	of	the	set	of	pairs	over	the	union	of	the	ordered	pairs.	If	we	have	

	 23	

two	points	𝐴 = 	 𝑎, 𝑏, 𝑐 	and	𝐵 = 	 𝑐, 𝑎, 𝑏 		𝐴	would	have	the	ordered	pairs	[𝑎 → 𝑏, 𝑎 → 𝑐, 𝑏 →

𝑐]	and	𝐵	would	have	[𝑐	 → 𝑎, 𝑐	 → 𝑏, 𝑎 → 𝑏].	The	total	distance	would	be:	

1 −
𝑎 → 𝑏

𝑎 → 𝑏, 𝑎 → 𝑐, 𝑏 → 𝑐, 𝑐	 → 𝑎, 𝑐	 → 𝑏 = 1 −	
1
5 = 0.8		

This	new	metric	does	a	good	job	of	accounting	for	order,	but	it	focuses	almost	exclusively	on	

that	order.	These	two	sets	have	the	exact	same	points,	but	because	the	order	changes	slightly,	

the	distance	between	them	is	very	large.	To	combat	this,	we	combined	this	new	metric	with	

Jaccard	distance	each	equally	weighted.	This	step	makes	the	total	distance	between	𝐴	and	𝐵	

0.4	rather	than	0.8,	which	is	much	closer.		

	We	used	this	new	distance	to	run	some	tests	on	our	data	to	see	how	DBSCAN	would	perform.	

We	specifically	looked	at	patch	5.16	and	the	first	thing	we	observed	is	that	our	old	parameters	

no	longer	work.	ε	to	0.3	and	𝑚𝑖𝑛𝑃𝑡𝑠	100	simply	results	in	all	noise	and	no	clusters.	This	makes	

sense	given	that	on	the	whole	our	points	are	now	farther	apart.	Our	previous	method	of	

iterating	through	parameter	combinations	until	we	discover	a	cluster	or	clusters	that	are	not	

comprised	entirely	of	duplicate	points	doesn’t	work	as	well	with	this	distance	metric	due	to	the	

increased	distance	between	points.	We	do	see,	however,	that	ε	lower	than	0.5	always	

produces	comparatively	small	clusters	often	consisting	of	less	than	800	points	and	frequently	

being	smaller	than	100	points.	ε	values	at	or	above	0.6	result	in	a	single	cluster	with	varying	

amounts	of	noise	points	depending	on	𝑚𝑖𝑛𝑃𝑡𝑠.	ε	between	0.5	and	0.6	seems	to	be	the	sweet	

spot	as	everything	between	those	values	always	results	in	at	least	one	significant	cluster.	This	is	

illustrated	in	figure	2	below.	One	interesting	observation	is	that	𝑚𝑖𝑛𝑃𝑡𝑠	is	much	less	sensitive	

	 24	

than	it	was	with	just	Jaccard	distance.	The	minimum	is	around	100	rather	than	50,	but	

depending	on	the	exact	value	of	ε	we	can	set	𝑚𝑖𝑛𝑃𝑡𝑠	much	higher,	in	some	cases	over	1000,	

before	we	start	to	transform	the	single	strong	cluster	with	noise.	It’s	possible	that	this	new	

distance	is	overvaluing	or	undervaluing	order,	but	that	could	be	tuned	up	or	down	depending	

on	what	one	believes	is	a	better	measure	of	distance	between	sets	of	bans	is	League	of	

Legends.	

			A	potentially	more	exciting	prospect	would	be	adapting	our	system	for	use	in	various	other	

games.	Detecting	and	describing	metagames	is	a	challenging	problem	especially	in	the	general	

case.	Adapting	our	system	could	help	many	other	developers	find	their	game’s	metagame	

quickly	and	efficiently.	This	is	especially	exciting	for	smaller	developers	who	don’t	have	Riot’s	

resources.	With	a	modified	version	of	our	system,	small	development	teams	would	have	a	tool	

Figure	2	New	possible	values	for	Epsilon	and	minPts	

	 25	

to	quickly	detect	metagame	shifts	and	respond	if	they	don’t	like	the	way	the	environment	is	

progressing.		

The	process	wouldn’t	be	too	complex,	seeing	as	how	most	of	the	system	is	built	on	

rather	game	agnostic	parts.	The	distance	metric	is	generic	and	the	data	collection	only	requires	

a	surface	level	understanding	of	the	game.	Given	all	the	complexity	of	League	of	Legends,	

results	can	be	gathered	with	just	what	characters	are	banned	in	the	game.	These	techniques	

are	easily	mapped	onto	other	MOBA	style	games	like	Defense	of	the	Ancients	2	and	Heroes	of	

the	Storm,	to	name	two	popular	examples.	Both	games	have	a	wide	array	of	characters	to	

choose	from	and	a	system	of	bans	to	prevent	some	characters	from	participating	in	a	given	

game.	A	large	amount	of	game	specific	knowledge	wouldn’t	be	required	to	map	our	methods	

onto	other	genres	either.	Various	competitive	shooter	games	like	Counter	Strike:	Global	

Offensive	or	Overwatch	have	similar	choices	players	can	make.	Overwatch	has	different	

characters	to	play	as	and	form	teams	with,	and	Counter	Strike	has	a	variety	of	weapons	players	

can	use	at	the	start	of	every	round.	If	the	rate	at	which	these	things	are	selected	is	available,	

either	through	a	convenient	API	like	Riot	has,	or	via	data	scrapping,	then	it	should	be	possible	to	

implement	a	similar	system	for	those	games	with	minimal	changes.		

	

	

	

	

	
	
	

	 26	

References	
	
[1]	 "SuperData	Research	|	Games	data	and	market	research	»	Market	Brief	—	2017	Digital	

Games	&	Interactive	Media	Year	in	Review",	Superdataresearch.com,	2018.	[Online].	
Available:	https://www.superdataresearch.com/market-data/market-brief-year-in-
review/.	[Accessed:	02-	Feb-	2018].	

[2]	 A.	Kica,	A.	L.	Manna,	L.	O'Donnell,	T.	Paolillo,	and	M.	Claypool,	"Nerfs,	Buffs	and	Bugs	-	
Analysis	of	the	Impact	of	Patching	on	League	of	Legends,"	in	2016	International	
Conference	on	Collaboration	Technologies	and	Systems	(CTS),	2016,	pp.	128-135.	

[3]	 M.	Wu,	S.	Xiong,	and	H.	Iida,	"Fairness	mechanism	in	multiplayer	online	battle	arena	
games,"	in	2016	3rd	International	Conference	on	Systems	and	Informatics	(ICSAI),	2016,	
pp.	387-392.	

[4]	 M.	Claypool,	J.	Decelle,	G.	Hall,	and	L.	O'Donnell,	"Surrender	at	20?	Matchmaking	in	
league	of	legends,"	in	2015	IEEE	Games	Entertainment	Media	Conference	(GEM),	2015,	
pp.	1-4.	

[5]	 P.	Beau	and	S.	Bakkes,	"Automated	game	balancing	of	asymmetric	video	games,"	in	
2016	IEEE	Conference	on	Computational	Intelligence	and	Games	(CIG),	2016,	pp.	1-8.	

[6]	 R.	Sifa,	A.	Drachen,	C.	Bauckhage,	C.	Thurau,	and	A.	Canossa,	"Behavior	evolution	in	
Tomb	Raider	Underworld,"	in	2013	IEEE	Conference	on	Computational	Inteligence	in	
Games	(CIG),	2013,	pp.	1-8.	

[7]	 A.	Drachen,	R.	Sifa,	C.	Bauckhage,	and	C.	Thurau,	"Guns,	swords	and	data:	Clustering	of	
player	behavior	in	computer	games	in	the	wild,"	in	2012	IEEE	Conference	on	
Computational	Intelligence	and	Games	(CIG),	2012,	pp.	163-170.	

[8]	 A.	Drachen	et	al.,	"Guns	and	guardians:	Comparative	cluster	analysis	and	behavioral	
profiling	in	destiny,"	in	2016	IEEE	Conference	on	Computational	Intelligence	and	Games	
(CIG),	2016,	pp.	1-8.	

[9]	 Hao	Yi	Ong,	Sunil	Deolalikar,	and	Mark	Peng,	"Player	Behavior	and	Optimal	Team	
Composition	for	Online	Multiplayer	Games,"	CoRR,	2015.	

[10]	 James	Chen.	(2015,	August)	pcgamer.	[Online].	https://www.pcgamer.com/league-of-
legends-patch-516/	

[11]	 Rachel	Gu.	(2015,	August)	gamespot.	[Online].	
https://www.gamespot.com/articles/league-of-legends-patch-516-means-drastic-
changes-/1100-6429832/	

[12]	 Yannick	LeJacq.	(2015,	August)	Kotaku.	[Online].	https://kotaku.com/league-of-
legends-next-patch-makes-a-lot-of-big-change-1725151910	

[13]	 R	Core	Team.	(2016)	R:	A	Language	and	Environment	for	Statistical	Computing.	
[Online].	https://www.R-project.org/	

[14]	 Christian	Hennig.	(2015)	fpc:	Flexible	Procedures	for	Clustering.	[Online].	
https://CRAN.R-project.org/package=fpc	

[15]	 Martin	Ester,	Hans-Peter	Kriegel,	Jörg	Sander,	and	Xiaowei	Xu,	"A	density-based	
algorithm	for	discovering	clusters	in	large	spatial	databases	with	noise,"	,	p.	1996.	

	 27	

[16]	 Daniel	Rosen.	(2017,	July)	thescoreesports.	[Online].	
https://www.thescoreesports.com/lol/news/14464-how-did-this-happen-the-balance-
disaster-that-was-worlds-2015	

[17]	 Mihael	Ankerst,	Markus	M.	Breunig,	Hans-peter	Kriegel,	and	Jörg	Sander,	"OPTICS:	
Ordering	Points	To	Identify	the	Clustering	Structure,"	,	1999,	pp.	49--60.	

[18]	 Richard	Garfield.	(1995)	Lost	in	the	Shuffle:	Games	Within	Games.	[Online].	
https://magic.wizards.com/en/articles/archive/feature/lost-shuffle-games-within-
games-2010-06-21-0	

[19]	 Dae-Ki	Kang	and	Myong-Jong	Kim,	"Poisson	Model	and	Bradley	terry	Model	for	
predicting	multiplayer	online	battle	games,"	in	2015	Seventh	International	Conference	
on	Ubiquitous	and	Future	Networks,	2015,	pp.	882-887.	

	
	 	

	 	

	 28	

Vita	
The	author	was	born	in	Jefferson,	Louisiana	and	grew	up	in	Chalmette,	Louisiana.	He	obtained	

his	Bachelors’	degree	in	computer	science	from	the	University	of	New	Orleans	in	2013.	He	

joined	the	University	of	New	Orleans	computer	science	graduate	program	and	became	a	

member	of	the	Canizaro	Livingston	Gulf	States	Center	for	Environmental	Informatics	in	2013	

and	2015	respectively.		

	Detecting Metagame Shifts in League of Legends Using Unsupervised Learning
	Recommended Citation

	Microsoft Word - Utilizing Clustering to Detect Metagame Shifts in League of Legends.docx

