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Formulas 

• γ=γd(1+ω%/100)   

Where   γd = Dry Unit Weight   

    ω= Moisture content   

• Cc=Δe/Δlogσ’v (Creep Ratio) 

Where  σ’v = effective vertical stress 

 

• S= c+ σtanϕ 

Where   s = Shear Strength  

  c = cohesion  

  ϕ = Friction Angle 

For Clay ϕ = 0 

  s = c 

 

• 𝑘𝑡 = (
𝑞

4𝜋(𝑇2−𝑇1)
)ln(

𝑡2

𝑡1
) 

Where   𝑞 =  𝐼2𝑥
𝑅

𝐿
 

  I = applied current (amperes) 

  R = total resistance of heater element inside probe (ohms) 

  L = Length of probe (in) 

  T = Temperature (F) 

  t = Time (s) 

 

• 𝑘𝑐 =
(𝑓0𝑘0+𝑘𝑓1𝑘1)

(𝑓0−𝑘𝑓1)
 

Where   𝑓0, 𝑓1= Volume fraction of water and solids respectively  

  𝑘0, 𝑘1= Thermal conductivity of water and solids  

   𝑘𝑐 = thermal conductivity of the composite medium 
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• λ=
2.30 𝑄

4𝜋(𝑇2−𝑇1)
log10(𝑡2 𝑡1⁄ ) =

𝑄

4𝜋(𝑇2−𝑇1)
ln(𝑡2 𝑡1⁄ ) 

Where: 

Q = I
2
R/L = EI/L 

Q = Heat input 

λ = Thermal conductivity [W/(m.K)] 

T
1 

= Initial temperature(K) 

T
2  

= Final temperature (K)  

t
1
  = Initial time (s) 

t
2
 = Final time (s) 

I = Current flowing through heater wire (A) 

R = Total resistance of heater wire (W) 

L = Length of heater wire (m) 

E = Measured voltage (V) 

 
 

• T=
1

𝐴+𝐵(ln𝑅)+𝐶(ln𝑅)3−273.2
 

Where: 

A, B, and C       =  Steinhart-Hart coefficients, which vary depending on the       

            specifications of the thermistor and temperature range  

R       =  Resistance at T in ohms  

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

Abstract 

 

Land loss in South Louisiana is increasing at a fairly rapid rate. In an effort to reduce land loss 

and save the marshes of Louisiana, marsh creation projects have been proposed in carefully 

selected regions around the coast as part of the CPRA Coastal Master Plan 2017. Properties and 

characteristics of the soil obtained from soil borings were analyzed and used to determine the 

various design parameters that allow the marsh creation process to occur. Other properties that 

were taken into consideration for Louisiana coastal sediment are the geothermal properties.  

This research analyses those different properties obtained from geotechnical reports from CPRA 

and other data bases, in order to find correlations between the different soil characteristics, 

specifically between the soil’s compressive strength, consolidation properties, Atterberg Limits 

and moisture content. Furthermore, this research also studies the geothermal properties of 

selected Louisiana soils and the correlation between moisture content and thermal conductivity.  
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Chapter 1 

Introduction  

 

1.1 Introduction 

Human and natural forces affecting the gulf coast region, are contributing greatly to the land loss 

of the Louisiana coast. Between 1932 and 2010, Louisiana’s coast lost more than 1,800 square 

miles of land. From 2004 through 2008 alone, more than 300 square miles of marshland were 

lost to hurricanes Katrina, Rita, Gustav, and Ike (Louisiana Master Plan 2017). 

Land loss reduces shorelines, marshes, and swamps that are a vital barrier and first line of 

defense against storm surge and flooding. Coastal flooding has become an all too common 

occurrence due to powerful storm surges associated with tropical events made worse over the 

years by subsidence, sea level rise, and coastal land loss. The master plan, in its purest sense, is a 

list of projects that build or maintain land and reduce risk to our communities. (Louisiana Master 

Plan 2017). 

The Coastal Master Plan 2017 created by CPRA includes 124 projects that build or maintain 

more than 800 square miles of land and reduce expected damage by $8.3 billion annually by year 

2050, which equates to more than $150 billion over the next 50 years and are expected to pay for 

themselves three times over the course of implementing the plan. The plan dedicates nearly $18 

Billion to marsh creation using dredged sediments, $5 Billion to sediment diversions, and more 

than $2 Billion to other types of restoration projects-providing land building benefits of more 

than 800 square miles, compared to a future without action (Louisiana Master Plan 2017). 

The objective of this research is to compile data found in Geotechnical design reports of 

completed marsh creation projects developed by CPRA and use the data to develop 

interrelationships between the soil properties specifically present in those areas. The soil 
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relationships can be used by engineers, scientists, and researchers working in coastal restoration 

projects. A separate attempt was made to evaluate geothermal conductivity properties of some 

Louisiana coastal sediments.  

1.2 History of the Coastal Area 

Coastal Louisiana as shown in Figure 1 below, was formed by the continual deposition of 

sediments from the Mississippi river. Weaving in and out of river alignments across the entire 

delta plain, the sediment-laden waters of the river overflowed and deposited minerals and 

nutrients effectively creating all of the south Louisiana deltaic plain with historical delta reaches 

spanning a range from as far west as the vermillion bay to as far as the St. Bernard parish 

Mississippi state line (Boudreaux, 2012). With each new course that the Mississippi River has 

taken it has deposited alluvial fans of sediment creating a deltaic plain (Deubert, 1982). 

The coast of Louisiana is fringed by a band of marshland 10 to 80 miles in width. The western, 

narrower band of marsh—the chenier plain of southwest Louisiana--is characterized by stranded, 

marsh surrounded by beaches or cheniers. Gulfward-projecting, natural levee ridges bordering 

active and abandoned courses and distributaries of the Mississippi River typify the eastern 

marshes. This eastern region, which spans almost 200 miles of coastal Louisiana--from 

Vermilion Bay (about longitude 92°W) to the Chandeleur Islands --comprises the deltaic plain of 

the Mississippi River (Kolb, 1958) see Figure 1. 

By 1920, developers were building on these former marshes, much of it at or slightly below sea 

level. By nature of the rapidity and environments within which the deltaic deposits were placed, 

most of the deposited soils are poorly consolidated. (Deubert, 1982). 

The studies shown in this thesis cover the entire southern portion of the state of Louisiana. The 

parishes included in the study areas are Cameron, Iberia, Jefferson, Lafourche, Orleans, 

Plaquemines, St. Bernard, St. Charles, St. Mary, St. Tammany, Terrebonne, and Vermilion.  
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The objectives of the projects discussed in this paper are to restore marsh areas that are currently 

being degraded by the increased wave action, the lack of vegetation, and sea level rise. Other 

major contributors to land loss in these project areas include subsidence, compaction, and 

oxidation of marsh soils.  

 Marsh Creation establishes new wetlands in open water areas such as bays, ponds, and canals 

through sediment dredging and placement (Louisiana Master Plan 2017).  

 The design of these projects is such that dredged materials from the Gulf, Mississippi river and 

other rivers chosen by CPRA and other engineers, will be placed at the particular Marsh Creation 

project in order to restore the acres of previously lost land.  

 

Figure 1 – Mississippi River Deltas (Kolb, 1958) 
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1.3 Louisiana Coastal Restoration 

1.3.1 The Coastal Protection and Restoration Authority Formation 

 Prior to 2005, coastal protection and restoration efforts in Louisiana were handled by a 

number of local and state governmental entities with limited budgets and little or no coordination 

of efforts. As a result of the devastation of hurricanes Katrina and Rita, the federal government 

agreed to focus attention and money on our plight but had some requests. Rather than deal with a 

myriad of agencies, it wanted one central authority that would represent the state and be 

accountable for oversight of all activities and funds, and it wanted a coordinated plan of action 

with clear goals and achievable objectives. (Coastal 2013) 

In December 2005, meeting in a special session to address recovery issues confronting 

the state following Katrina and Rita, the Louisiana Legislature restructured the State’s Wetland 

Conservation and Restoration Authority to form the Coastal Protection and Restoration 

Authority otherwise known as CPRA. (Coastal 2013) 

Act 8 expanded the membership, duties and responsibilities of the board and charged the 

new Authority with developing and implementing a comprehensive coastal protection plan, 

including both a Master Plan that would be revised every five years and an annual plan of action 

and expenditures to be submitted to the legislature every fiscal year for approval. (Coastal 2013)  

1.3.2 Louisiana Coastal Master Plan 

 The first Coastal Master Plan was adopted by the Louisiana Legislature in 2007. Carrying 

over and building upon the objectives of this plan, the 2012 Coastal Master Plan was developed 

and approved on May 22, 2012. The 2017 Costal Master Plan was unanimously approved by the 

State House and Senate on June 2, 2017. This plan considers an array of new project ideas not 

evaluated in the 2012 Coastal Master Plan.  
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Figure 2 shows a map of the 124 projects included in the 2017 plan that build or maintain more 

than 800 Square Miles of land and reduce expected damage by $8.3 billion annually by year 50, 

which equates to more than $150 billion over the next 50 years and are expected to pay for 

themselves three times over the course of implementing the plan. The plan dedicates nearly $18 

billion to marsh creation using dredged material, $5 billion to sediment diversions, and more 

than $2 billion to other types of restoration projects-providing land building benefits of more 

than 800 square miles, compared to a future without action. (Louisiana Master Plan 2017). 

 

Figure 2 – CPRA Map of Projects (Louisiana Master Plan 2017) 

In studying these projects and their benefits, CPRA also developed maps (Figure – 3) showing 

the medium scenario of negative effects that are projected to occur if these projects are not 

implemented. To capture this comparison, CPRA investigated what we called “Future without 

action” conditions for the next 50 years, meaning conditions that would be present throughout 

coastal Louisiana if we do nothing further without action conditions, our models included 

projects that are already constructed as well as projects that will be built in the near future 

because they have received construction funding (Louisiana Master Plan 2017). 
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Figure 3 – Medium Scenario Future Without Action 

Under the low environmental scenario, 1207 square miles could be lost over 50 years. Under the 

medium scenario, 2254 square miles could be lost. Under the high scenario, 4123 square miles 

could be lost. This predicted land loss is in addition to the nearly 1900 square miles of land area 

lost between 1932 and 2010 (Louisiana Master Plan 2017). 

 

1.3.4 Marsh Creation and Land Creation  

As many as 35 square miles of coastal marshland and other wetland ecosystem environments are 

being lost each year. (Barras, 1994). This equals to losing one football field size land loss every 

38 minutes (Wheeler 2000). 

The overall goal of the marsh creation projects is to create wetland habitat in typically degraded 

coastal marsh regions, in an effort to maximize ecological benefits for the project design life 

duration and restore the landscape and ecosystem that have been substantially distributed by 

human activities such as environmental pollution or land disturbance. (Mitsch et. al, 2004). 

Ecosystem restoration and restoration ecology refer to “the return of an ecosystem to a close 

approximation of its condition prior to disturbance” as defined by the national research council 
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(Boudreaux, 2012). The ultimate goal for restoring the coast and reducing risk is ultimately for 

the benefit of the people that live and work in those environmentally threatened areas.  

1.3.4 The Dredging Process and its Benefits 

 Dredging as defined by CPRA, is an excavation activity conducted underwater for the 

purpose of removing marine bottom sediment. The dredging process often involves radical 

manipulation of in-situ sediments (Lee, 2004). 

Dredging canals for energy exploration and pipelines provided our nation with critical energy 

supplies, but these activities also took a toll on the landscape, altering wetland hydrology and 

leading to land loss. Navigation canals provided our nation with critical infrastructure but also 

allowed salt water to invade deeper into coastal basins (Louisiana Master Plan 2017). 

Although this type of dredging as well as dredging of oil and gas canals has caused land loss in 

the past, dredging for the purpose of creating marsh areas is proven to be a much more effective 

method. Not only is the dredged material used for creating marsh, but dredging occurring along 

distributary channels in order to direct flow into deteriorating marshes.  

CPRA has used large-scale solutions involving extensive dredging and placement of materials, 

better management of the resources of the Mississippi and Atchafalaya Rivers, as well as 

improved hydrology to address root causes of land loss and reduce flooding risk (Louisiana 

Master Plan 2017). 

As shown in the diagram in Figure 4, in order for a Marsh Creation Project to be implemented, 

the project area and the borrow area are selected. An earthen containment dike is then 

constructed around the perimeter of the project area typically using in-situ material, this will 

contain the slurry material. The borrow area is then hydraulically dredged, and the slurry 

material is pumped into the designated marsh creation areas.  This slurry or dredged material 

goes through a de-watering and settlement process and eventually creates new marshland that is 
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higher than the Mean Sea Level. The thickness of the dredged material will decrease overtime 

due to primary and secondary consolidation. Due to the overburden pressure caused by the 

dredged material, the existing subsurface soil beneath the containment areas will also experience 

additional consolidation settlement.  

 

Figure 4 – Typical Marsh Creation Project Section with Earthen Containment Dike 

(Jaskaran, et. al, 2017) 

The scope of this research is to evaluate engineering properties of coastal sediments from 

recently completed marsh creation projects in Louisiana. Geotechnical data from multiple marsh 

creation projects in multiple parishes were used to develop interrelationships between soil 

compressibility properties.  
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Chapter 2 

Literature Review 

 

2.1 Introduction 

As the literature review during this research was done, it was found that many studies have been 

previously done in topics researching different correlations in soil properties and some have been 

successful. Although correlations have been previously observed, none have been made in areas 

related to Louisiana marsh land or specifically land that will be used to replenish the marshes. In 

most instances, these studies have been done for different soil types from other areas around the 

world, which are completely different from the types of soils available in south Louisiana.  

Correlations to define relationships between soil properties has been of significant help to design 

a civil infrastructure project. Such correlations permit the engineer to make preliminary estimates 

and design calculations based on limited soils data with more assurance. Correlations also 

provide for a possible reduction in the amount of laboratory testing required when the economics 

of a project do not warrant extensive testing (Deubert, 1982). 

The following sections give a brief review of the literature on correlations between different soil 

types and properties.  

2.2 Established Correlations 

2.2.1 Established Consolidation Index Correlations by previous studies 

The following list and table 1 and 2 provide correlations that have been achieved by others as 

described by Deubert: 

• Normally consolidated clay of low to medium sensitivity by Terzaghi and Peck: 

  Cc = 0.009(LL-10) 

 Where   LL = Liquid limit 

   Cc = Compression Index 
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• Mississippi Valley alluvial soils by Sherman and Hadjidakis: 

  Cc = 0.011(LL)-0.176 

• Inorganic silty clay by Hough: 

  Cc = 0.30(e0-0.27) 

 Where e0 = Initial void ratio 

• Marsh deposits near New York by Knapp: 

  Cc=0.6(e0-1) for e0 < 6 

  Cc=0.85(e0-2) for e0 = 6 to 14 

• Organic soils and peats by MPMR (1958): 

  Cc = 0.010 to 0.015 (wn, %) 

 Where wn = Natural water content 

• Organic soils and peats by Sowers 

  Cc = (0.5 to 0.7) e0  

Deubert found the following correlations: 

Summary of General Correlations for Recent Deposits  

Line of Regression  N  Sy  R2  

Cc = 0.014 wn - 0.16 873 0.15 0.89 

Cc = 0.009 LL - 0.09 850 0.23 0.7 

Cc = 0.010 PI + 0.07 (Where PI=Plasticity Index) 799 0.23 0.65 

Table 1 - Summary of General Correlations for Recent Deposits (Deubert, 1982) 

Some Empirical Equations for Cc – Compression Index 

Cc = 1.15(e0 - 0.35) All Clays 

Cc = 17.66 x 10-5 wn 
2 + 5.93 x 10-3 wn – 1.35 x 10-1 Chicago Clays 

Cc = 0.01wn Chicago Clays 

Cc = 0.75 (e0 – 0.50) Soils to very low plasticity  

Cc = 1.15 x 10-2 w
n Organic soils meadow mats, 

peats, and organic silt and clay  

Table 2 - Some Empirical Equations for Cc: Table 3-1 (Deubert, 1982) 
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2.2.2 Established Coefficient of Consolidation Correlations 

The following list provides correlations that have been achieved by others regarding the 

coefficient of consolidation (Cv) of soil: 

• Coefficient of consolidation from liquid limit of soil:  

Cv = ((108(wL)-6.7591 ) (cm2/sec))(3.875 ft2/day) 

Where wL = Liquid Limit 

• The relationship can be expressed by the following equation (Al-tae’s, et. la, 2011): 

Cv = 4258 X(-1.75) (3.875 ft2/day) 

Where   X = liquid limit 

An attempt has been made to correlate the coefficient of consolidation with index properties/ 

indices. Twenty soil samples of both fine grained and coarse grained are taken and empirical 

equations has been developed using Microsoft Excel (Jadhav, 2016). Only two relevant 

correlations were found using the SLRA and the MLRA models.  

The correlations are as follows: 

Cv Value and obtained from the shrinkage index (Is) (SLRA Model) 

• Cv = 128.7/(Is)3.54 + 0.0002  

This correlation yielded a R2 Value of 0.715 

Cv Value and Plastic Limit (PL), Shrinkage Index (Is) (MLRA Model) 

• Cv = 5.4*PL/(Is)3.54 + 0.0002 

This correlation Yielded a R2 value of 0.79 

An attempt was made to correlate the liquid limit and coefficient of consolidation (Cv) values of 

experimental results of soil sample collected for investigation. It is observed that the coefficient 

of consolidation (Cv) value decreases with increase in liquid limit. From SLRA correlation 
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coefficient (R2) is found to be 0.4081. It represents no significant relation exist between these 

two parameters to predict Cv from liquid limit (Jadhav, 2016).  

2.3 Previous Studies 

 Different correlations of soil properties have been studied over many years. Some studies 

have achieved relative and effective correlations, while others seem to prove that some soil 

properties and characteristics do not have correlations.  

In Establishing relationship between coefficient of consolidation and index properties/Indices of 

remolded soil samples, the author’s attempt is made to correlate the liquid limit and coefficient 

of consolidation (Cv) values of experimental results of soil sample collected for investigation. It 

is observed that the coefficient of consolidation (Cv) value decreases with increase in liquid limit 

(Jadhav, 2016). Figure 5 shows the range of different Cv correlations under different parameters.  

 
Figure 5 – Range of Cv (after U.S. Department of the Navy, 1971) 

During this literary review, it was found that the majority of the correlations previously studied 

showed positive correlations between Coefficient of Consolidation and Compression index Vs. 

Liquid Limit and Moisture Content; however; very few if any studies have been done for other 
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correlations presented in this thesis including shear strength. The correlations described above 

are the correlations found thus far in this literature review.  

2.4 Geothermal Properties of Soil 

In recent studies of soil properties, the geothermal properties of soils are becoming more and 

more interesting to the engineering field. These studies are being used in order to test soil in 

areas where it remains at a constant temperature throughout the year and use it in the design of 

solar energy storage systems above ground. The ability of soil to efficiently conduct and store 

solar thermal energy is critical in the economic design of these systems. (Lutenegger, 2001) 

In his study of thermal properties of soils, Lutenegger performed field and laboratory 

investigations to evaluate thermal conductivity by constructing a thermal needle probe and a 

field probe. Thermal conductivity values were obtained using a simple line heat sources analysis 

Weschler (1966) was used to reduce the measured temperature increase versus time data 

collected. (Lutenegger, 2001) 

Thermal conductivity in the field using the field probe was obtained using the following:  

 𝑘𝑡 = (
𝑞

4𝜋(𝑇2−𝑇1)
)ln(

𝑡2

𝑡1
) 

Where   𝑞 =  𝐼2𝑥
𝑅

𝐿
 

  I = applied current (amperes) 

  R = total resistance of heater element inside probe (ohms) 

  L = Length of probe (in) 

  T = Temperature (F) 

  t = Time (s) 

Thermal conductivity in the laboratory using a thermal needle probe was calculated using the 

simple line heat source theory by Hillel (1982) and Ingersoll (1988): 
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𝑘𝑐 =
(𝑓0𝑘0 + 𝑘𝑓1𝑘1)

(𝑓0 − 𝑘𝑓1)
 

Where   𝑓0, 𝑓1= Volume fraction of water and solids respectively  

  𝑘0, 𝑘1= Thermal conductivity of water and solids  

  𝑘𝑐 = thermal conductivity of the composite medium 

In this study, it was concluded that both approaches provide similar test results for estimating 

thermal conductivity. (Lutenegger, 2001) 

In an attempt to gain background information on ground temperature and geothermal energy to 

be used for ground source heat pumps, ground temperature profiles were plotted in many areas in 

the United States. Dr. Olgun at Virginia Tech used this data to determine that after a certain 

depth in the ground generally after 30ft, the temperature of the soil remains relatively constant in 

Houston, TX. Although many of these ground temperature profiles have been done in many 

states, the closest one to New Orleans being in Houston, TX (figure 6), none have been done thus 

far in Louisiana.   

 

Figure 6 – Mean ground temperature in Houston, TX  
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Chapter 3 

Scope 

 

3.1 Research Objectives 

The overall objective of this research was to evaluate soil properties obtained from the boring log 

information collected from different areas of on-going and recently completed marsh creation 

projects throughout the southern coast of Louisiana.  

This research evaluates the following properties: 

1. Coefficient of consolidation vs. moisture content  

2. Coefficient of consolidation vs. liquid limit 

3. Compression index vs. moisture content  

4. Compression index vs. liquid limit 

5. Undrained shear strength vs. moisture content 

6. Undrained shear strength vs. liquid limit 

7. Geothermal soil properties of Louisiana soil  

 

3.2 Goals  

The overall goal of this research is to find a correlation between the different soil properties 

listed in the objectives above, and verify the results using values of coefficient of determination 

(R2) and check them with available equations previously developed for different types of soils. 

Additionally, geothermal properties of some coastal Louisiana soils were also evaluated.  

 

3.3 Methodology  

The data used in this thesis was obtained by multiple Geotechnical Engineering firms hired by 

CPRA, from the sites of actual projects that are on-going and ones that will be executed in the 



16 

 

future according to the Coastal Master Plan 2017 and depending on funding sources. The studies 

will compare compressive stress with soil’s moisture content liquid limits as well as the 

coefficient of consolidation and Compression Index vs. Liquid limit and Moisture Content 

obtained from the marsh creation projects boring logs.   

The main purpose behind finding a correlation is to reduce the relatively time consuming and 

expensive geotechnical testing for future design efforts in marsh creation projects and the 

Coastal Engineering field.   

A data set will be presented and analyzed to show the different types of soils present in the marsh 

creation project areas, it will study the characteristics described above of each type of soil and 

correlate the least expensive and time-consuming laboratory test performed with the lengthier 

and costly tests.  

Although multiple attempts at finding a correlation between different soil characteristics and 

their shear strength have been attempted and have succeeded, the key differences between other 

work and this thesis are the types of soils tested, the types of projects that the parameters will be 

used to design, and the saturation amount in the various areas of Marshes.  
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Chapter 4 

Laboratory Testing 

4.1 Introduction  

The geotechnical tests used in this study were performed by various Geotechnical Engineering 

firms. Soil classifications of the samples used were established in the laboratory in general using 

the Atterberg Method of determining the liquid Limit, Plastic Limit and Plasticity index.  

The Geotechnical laboratory test typically conducted on the vibracore material for a proposed 

marsh creation borrow area generally include the USCS Classification, Gradation/Hydrometer, 

Moisture Content, Atterberg Limits, Unit Weight and Specific Gravity. These test results are 

utilized by the dredger and designer to estimate dredging production rates and marsh fill 

behavior (Jaskaran, et. al, 2017). The following chapter gives a brief description of some of the 

geotechnical test performed in order to obtain the data used in the analysis for this research.  

4.2 Geotechnical Characterization Testing of Soils 

 Moisture content and USCS Classification were performed on all samples using ASTM D2216-

10, D2487-11, and D2488-09a, Atterberg Limits were performed using ASTM D4318-10 

method, Shear strength and consolidation tests were performed using ASTM D2166/D 2166M-

10, ASTM D 2850-03a (2007), and ASTM D2435-11 Method. These methods include 

Consolidation Tests, Unconsolidated Undrained (UU or Q) Triaxial Tests, and Unconfined 

Compression Tests (UCT). The test data selected within the Marsh creation projects area 

included over 700 consolidation tests performed. A total of 2955 data points were used in 

developing the correlations shown in this study.  
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4.2.1 Moisture Content  

Moisture content is defined as the ratio of the weight of water to the weight of solids in a given 

volume of soil. The moisture content of a soil sample is generally obtained by measuring the 

weight of a soil sample when it is retrieved from the ground, placing it in a small tin container, 

then placing the sample in an oven until it is completely dry, and weight remains constant. The 

soil sample is removed from the oven, and the moisture content is calculated by taking the ratio 

of wet to dry sample as expressed by the following formula:  

𝑀𝐶(%) =
𝒘𝒘 −𝑾𝒅

𝑾𝒅 −𝑾𝒕
 

Where    Ww = Weight of wet soil  

        Wd = Weight of dry soil  

        Wt = Weight of tin container  

 

4.2.2 USCS Classification  

Determination of soil type was done by using the Unified Soil Classification System, such that 

clay is defined as a soil having a liquid limit and plasticity index falling above the “A Line” and 

silty clay for those which fall below the “A Line” (Deubert, 1982).  Basic geotechnical 

parameters need to be measured. The most basic parameter is the material’s physical property 

classification based on the grain size distribution of gravel, sand, silt, and clay. Other physical 

properties include water content, density, specific gravity, and percent solids (Lee, 2004) 
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4.2.3 Atterberg Limits 

This method was developed by a Swedish scientist named Atterberg and later refined by Arthur 

Casagrande, to describe the consistency of the fine-grained soils with varying moisture contents. 

At a very low moisture content, soil behaves more like a solid. When the moisture content is 

very high, the soil and water may flow like a liquid. Hence, on an arbitrary basis, depending on 

the moisture content, the behavior of soil can be divided into four basic states: solid, semisolid, 

plastic, and liquid (Das, 2010). 

The Atterberg limits include four parameters: shrinkage limit, plastic limit, liquid limit and 

plasticity index. The shrinkage limit is the moisture content, in percent, at which the volume of 

the soil mass ceases to change with continuing loss of moisture. It is a state of equilibrium 

reached at which more loss of moisture results in no further volume change.  The plastic Limit is 

the moisture content at which the soil crumbles when rolled into threads of 1/8 in in diameter. It 

is the lower limit of the plastic stage of soil. This test is performed by repeatedly rolling of soil 

sample by hand on a glass plate. The liquid limit is a test performed using an apparatus called the 

Casagrande device, which consists of a brass cup and a hard rubber base. The test is performed 

by placing a soil paste in the brass cup as shown in Figure 7. A groove is then cut at the center 

of the soil with a grooving tool. By using the crank-operated cam, the cup is lifted and dropped. 

The moisture content required to close certain distance along the bottom of the groove after 25 

blows is defined as the liquid limit.  
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Figure 7 – Casagrande Device: Liquid Limit Test (Das, 2010) 

 

4.2.4 Consolidation Test 

Consolidation testing is a laboratory attempt to duplicate an in-situ consolidation by determining 

the stress-strain characteristics of a soil sample in compression. (Deubert, 1982)  

The procedure for a one-dimensional laboratory consolidation test, consists of placing a soil 

specimen with a diameter of 2.4 in inside of a metal ring between two porous stones. A load is 

then applied on the specimen through a lever arm, with the load being applied for 24 hours, then 

doubled. The compression is measured by a micrometer dial gauge, and a plot of deformation 

against time is formed.  
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4.2.5 Shear Strength  

Shear failure occurs when the stresses between the particles are such that they slide or roll past 

each other. Due to the particulate nature of soil, unlike that of a continuum, the shear strength 

depends on the interparticle interactions rather than the internal strength of the soil particles 

themselves (Coduto 2001). 

Compressive strength is the maximum compressive load a body can bear prior to failure, divided 

by its cross-sectional area. Whereas: shear strength is the maximum shear load a body can 

withstand before failure occurs divided by its cross-sectional area. 

In the laboratory, shear strength tests generally consist of unconfined compression test and 

unconsolidated-undrained triaxial tests. These tests are performed in order to determine the 

compressibility characteristics of the soils and the results are shown on a percent strain versus 

log pressure curve. 

Compression of soils under a laterally constrained condition may be conveniently divided into 

primary compression observed during the increase in effective vertical stress, and secondary 

compression that follows at constant effective vertical stress (Mesri, et. al, 2007).  

4.3 Geothermal Energy Testing of Soils 

Geothermal Energy is energy available as heat contained or discharged from the earth’s crust that 

can be used for generating electricity and providing direct heat for numerous applications such as 

space and district heating; water heating; water heating; aquaculture; horticulture; and industrial 

processes. In addition, the use of energy extracted from the constant temperatures of the earth at 

shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as 

geothermal energy. (Renewable Energy 2012)  
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The overall objective of the geothermal energy research in Louisiana is to test the ground 

temperature and verify that after a certain depth the soil temperature remains constant year-

round. This can lead to the ability to evaluate the feasibility of using conventional pile 

foundations as GEPs in Louisiana, characterizing and evaluating the hydro-thermal properties of 

subsurface soil, and eventually characterizing and evaluating thermo mechanical behavior of 

Geothermal Energy Pole foundation as alternate means for production and storage of energy. 

Through different field and laboratory research such as the ground temperature monitoring and 

determination of thermal conductivity of soil by thermal needle probe procedure, we can prove 

that this study is achievable.  

4.3.1 Thermal Conductivity of Soil by Thermal Needle Probe   

In order to determine the thermal conductivity of soil in the laboratory, a thermal needle probe 

(Figure 8) was built following the guidelines in ASTM Standard D 5334-08. The needle consists 

of a small hypodermic tube with nichrome heater element wire and glass braid type T 

thermocouple wire inserted into it. After the wires were inserted, the tube was filled with thermal 

epoxy. The thermocouple wires extruding from the top of the needle were connected to a 

thermocouple jack used for temperature reading, while the heater element wires were connected 

to the heat source input.  

 

Figure 8 – Laboratory setup: thermal needle probe  
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4.3.2 Laboratory Testing Arrangement 

The laboratory testing arrangement in Figure 9 was used as a guide to build the testing 

arrangement in Figure 10 includes a fixed piston setup that has a small opening at the top to 

allow the probe to be inserted into the sample. The needle will be attached to constant power 

supply, which will pass a constant current through it, allowing a variation of temperature to pass 

through the soil. On the other end of the needle, a thermocouple readout unit is attached in order 

for the temperature to be recorded.  

 

 

 

Figure 9 – Laboratory Test Arrangement (Lutenegger, 2001) 
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Figure 10 – Laboratory thermal conductivity setup 

4.3.3 Laboratory Testing of Thermal Conductivity  

The data obtained from the laboratory arrangement is recorded at different time intervals from 0-

1200 seconds. The data is then graphed in order to find the slope of the steady state portion of the 

line. From the slope, we can determine initial and final temperature as well as the initial and final 

time to be used in the equation below.  

Thermal conductivity can be computed using the following equation: 

• λ=
2.30 𝑄

4𝜋(𝑇2−𝑇1)
log10(𝑡2 𝑡1⁄ ) =

𝑄

4𝜋(𝑇2−𝑇1)
ln(𝑡2 𝑡1⁄ ) 

Where: 

• Q = I
2
R/L = EI/L 

• Q = Heat input 

• λ  = Thermal conductivity [W/(m.K)] 

• T
1 

= Initial temperature(K) 

• T
2  

= Final temperature (K)  

• t
1
  = Initial time (s) 

• t
2
 = Final time (s) 

• I  = Current flowing through heater wire (A) 

• R = Total resistance of heater wire (W) 

• L = Length of heater wire (m) 

• E = Measured voltage (V) 
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4.3.4 Ground Temperature Monitoring Using Thermistor Strings 

In order to measure the ground temperature to evaluate whether or not the temperature of the soil 

remains constant after a certain depth, field testing was performed using a Thermistor String. At 

a chosen location in New Orleans East (Figure 10), a 100 ft boring was excavated near the 

testing site, to evaluate the different soil layers present in the area. The thermistor string was then 

installed at 1 foot intervals to a depth of 49 ft below the surface and 1 ft above the ground.  

 

Figure 11 – Location of excavated boring and thermistor string installation 

The field apparatus (figure 11) contains a series of temperature monitoring sensor, spaced 

according to the depths requested, at 1 ft intervals for this research’s purpose. An autoranging 

multimeter is used to measure the resistance in Ohms, then this variable is used to find the 

temperature of the subsurface soil by the Steinhart-hart equation.  
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T = 
1

𝐴+𝐵(ln𝑅)+𝐶(ln𝑅)3−273.2
 

Where: 

• A, B, and C  =  Steinhart-Hart coefficients, which vary depending on the       

            specifications of the thermistor and temperature range  

• R       =  Resistance at T in ohms  

            

Figure 12 – Filed temperature monitoring setup  

The ground temperature at the location mentioned above, was measured year-round at a once a 

week frequency. And a ground temperature profile was created to test the soil’s temperature.  
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Chapter 5 

Results and Discussions 

5.1 Introduction  

The main focus of this study is to find a correlation between the different properties of the soils 

in the marsh creation projects, and the effects of the weight/stress of the soil that is being 

dredged and placed in these areas on the existing subsurface soil whose properties are being 

evaluated. In addition to changes in geotechnical properties and engineering behavior in dredged 

materials, there are uncertainties in assigning property parameters based on possible alternate 

definitions of those parameters. The physical property of water content may be defined in two or 

three different ways, depending on the test or reporting method. The standard method for water 

content calculates the weight of water divided by the weight of dry solids. Alternate but 

commonly used methods calculate the weight of water divided by the total wet weight, or by a 

volumetric basis (Lee, 2004). 

Accurate measurement of shear strength parameters, coefficient of consolidation, and 

compressibility can be difficult, time consuming and costly. As a result of this there is now a 

tendency in countries all over the world towards building up correlation equations between the 

above soil properties and the so-called soil indices in order to speed-up the design process. (pg-2) 

This study focuses on finding a correlation between the above-mentioned soil parameters, 

specifically in areas of marsh creation projects in Southern Louisiana. The following chapter 

discusses the positive and negative results achieved during this research.  
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5.2 Discussion of Results (Geotechnical Properties) 

The number of project sites for which data was available, for each parish studied is shown in 

table 3. From these samples, the points were plotted for compression index, shear strength, 

coefficient of consolidation, moisture content and liquid limit. The graphs below show the results 

and positive or negative regressions achieved after combining the available data for projects in 

the state of Louisiana.  

 

Parish 
Number of 

Locations 

Cameron 2 

Jefferson 3 

Plaquemines 3 

St. Charles 2 

St. Tammany 2 

Terrebonne 4 

Vermillion 1 

 

Table 3 - Number and location of project sites used in this paper 
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Figure 13 - Compression index vs. moisture content  

The graph above shows experimental values of Compression Index. From SLRA correlation 

coefficient (R2) is found to be 0.8573. It represents that a relation exists between these two 

parameters to predict compression index from moisture content 
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Figure 14 - Compression Index Vs. Liquid Limit  

The graph above shows experimental values of Compression Index. From SLRA correlation 

coefficient (R2) is found to be 0.5779. It represents that a relation possibly exists between these 

two parameters to predict Compression Index from Liquid Limit. When compared to Terzaghi’s 

correlation Cc = 0.009 LL-0.10, similar results were found. 
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Figure 15 - Coefficient of Consolidation Vs. Liquid Limit  

The graph above shows experimental values of coefficient of consolidation collected from all of 

the aforementioned projects. From the power regression shown on the graph in figure 15, the 

correlation coefficient (R2) is found to be 0.0852. It represents that a relation does not exist 

between these two parameters to predict coefficient of consolidation from Liquid Limit. A power 

trendline was used to evaluate the data above due to the correlation coefficient being the highest 

from the different trendlines. The type of regression in this case did not make a difference, 

because a correlation could not be found between the two variables.  
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Figure 16 - Coefficient of Consolidation Vs. Liquid Limit  

The graph above shows experimental values of coefficient of consolidation collected from all of 

the aforementioned projects. From the power regression shown on the graph in figure 16, the 

correlation coefficient (R2) is found to be 0.0528. It represents that a relation does not exist 

between these two parameters to predict coefficient of consolidation from moisture content. A 

power trendline was used to evaluate the data above due to the correlation coefficient being the 

highest from the different trendlines. The type of regression in this case did not make a 

difference, because a correlation could not be found between the two variables.  
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Figure 17 - Coefficient of Consolidation Vs. Moisture Content for Different Types of Soil 

The graph above shows experimental values of coefficient of consolidation (Cv) collected. The 

data was separated into the different types of soils, in order to study how soil types affect the 

correlation between Cv and moisture content. The linear regressions observed in figure 17, did 

not achieve a positive result, with the correlation coefficient (R2) being as follows: 

Type of Soil Correlation Coefficient 

Peat (PT)  R2 = 0.1869 

Organic Clay (OH) R2 = 0.0198 

Lean Clay (CL) R2 = 0.0645 

Silt (ML) R2 = 0.219 

Fat Clay (CH) R2 = 0.0294 

 

Table 4 – Correlation coefficient for different soil types (Cv Vs. MC analysis) 

These correlations represent that a relation does not exist between these two parameters to 

predict coefficient of consolidation from moisture content for the types of soils in Louisiana. 
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Figure 18 - Coefficient of Consolidation Vs. Liquid Limit for Different Types of Soil 

The graph above shows experimental values of coefficient of consolidation (Cv) vs. liquid limit. 

The data was separated into the different types of soils, in order to study how soil types affect the 

correlation between Cv and liquid limit. The linear regressions observed in figure 18, only one 

type soil achieved a positive correlation result, and that is silt (ML) 

The correlation coefficient (R2) being are as follows: 

Type of Soil Correlation Coefficient 

Peat (PT)  R2 = 0.1866 

Organic Clay (OH) R2 = 8E-05 

Lean Clay (CL) R2 = 0.0603 

Silt (ML) R2 = 0.9445 

Fat Clay (CH) R2 = 0.0021 

Table 5 – Correlation coefficient for different soil types (Cv vs. LL analysis) 
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Figure 19 - Shear Strength Vs. Moisture Content  

The graph above shows experimental values of Shear Strength. From SLRA correlation 

coefficient (R2) is found to be 0.0312. It represents that no relation exists between these two 

parameters to predict Shear Strength from Moisture Content.  
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Figure 20 - Shear Strength Vs. Liquid Limit  

The graph above shows experimental values of Shear Strength. From the trendline, the 

correlation coefficient (R2) is found to be 0.1484. It represents that no relation exists between 

these two parameters to predict Shear Strength from Liquid Limit.  

5.3 Field and Laboratory Results for Geothermal Energy Properties 

5.3.1 Field Testing results  

In order for geothermal energy piles to function properly, a constant heat source in the ground is 

needs to be available year-round. This study was performed to test whether that is an occurrence 

in the subsurface soil available in southern Louisiana. A thermistor string was installed and the 

temperature in the ground was measured for approximately 1 year to achieve a ground 

temperature profile for Louisiana similar to that for Houston, TX in figure 5.  
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The temperature profile in figure 21, shows that after a depth of 15-20 feet, the temperature 

remains relatively at a constant range between 70-75 degrees Fahrenheit. 

 

Figure 21 – New Orleans ground temperature profile 

5.3.2 Laboratory results  

Several types of soils were used in the laboratory to test the thermal conductivity of soils in the 

Louisiana area. The soil samples consisted of Ottawa Sand (used for calibration of the needle 
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Ottawa Sand Test 1    Ottawa Sand Test 2   

Weight of apparatus 5.359  Weight of apparatus (lb) 5.359 

 Weight of apparatus + sand 11.672   Weight of apparatus + sand(lb) 11.992 

Weight of sand   6.313  Weight of sand   6.633 

Q 13.604823 I(A) 0.97  Q 10.12795 I(A) 0.84 

E (V) 5.7 L(m) 0.4064  E (V) 4.9 L(m) 0.4064 

Room temperature (F) 69.62  Room temperature (F) 70.5 

Thermal Conductivity (W/m.K) 0.172512  Thermal Conductivity (W/m.K) 0.15907 

Volume  (in ^3) 120.2640938  Volume  (in ^3) 120.2640938 

Density of Sand 0.052492808  Density of Sand 0.055153619 

 

Red Clay Sand Test 1    Red Clay Sand Test 2   

Weight of apparatus (lb) 5.359  Weight of apparatus (lb) 5.359 

 Weight of apparatus + sand(lb) 10.952  

 Weight of apparatus + 
sand(lb) 11.316 

Weight of sand   5.593  Weight of sand   5.957 

Q 14.27165 I(A) 1  Q 14.61614 I(A) 0.99 

E (V) 5.8 L(m) 0.4064  E (V) 6 L(m) 0.4064 

Room temperature (F) 71.06  Room temperature (F) 71.24 

Thermal Conductivity (W/m.K) 0.161575  Thermal Conductivity (W/m.K) 0.169774 

Volume  (in ^3) 120.2640938  Volume  (in ^3) 120.2640938 

Density of Sand 0.046505984  Density of Sand 0.049532656 

 

Pumped River Sand Test 1    Pumped River Sand Test 2   

Weight of apparatus (lb) 5.359  Weight of apparatus (lb) 5.359 

 Weight of apparatus + 
sand(lb) 11.277   Weight of apparatus + sand(lb) 11.444 

Weight of sand (lb)   5.918  Weight of sand   6.085 

Q 14.95325 I(A) 1.03  Q 14.12894 I(A) 0.99 

E (V) 5.9 L(m) 0.4064  E (V) 5.8 L(m) 0.4064 

Room temperature (F) 71.24  Room temperature (F) 65.66 

Thermal Conductivity (W/m.K) 0.180783  Thermal Conductivity (W/m.K) 0.180491 

Volume  (in ^3) 120.2640938  Volume  (in ^3) 120.2640938 

Density of Sand 0.04920837  Density of Sand 0.05059698 

Table 6a. – Thermal conductivity of different types of sands   
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Hass Pitt Sand Test 1    Hass Pitt Sand Test 2   

Weight of apparatus (lb) 4.463  Weight of apparatus (lb) 4.463 

 Weight of apparatus + sand(lb) 6.475   Weight of apparatus + sand(lb) 6.51 

Weight of sand   2.012  Weight of sand   2.047 

Q 14.91142 I(A) 1.01  Q 14.51772 I(A) 1 

E (V) 6 L(m) 0.4064  E (V) 5.9 L(m) 0.4064 

Room temperature (F) 64.76  Room temperature (F) 64.94 

Thermal Conductivity (W/m.K) 0.087848  Thermal Conductivity (W/m.K) 0.164222 

Volume  (in ^3) 48.92439975  Volume  (in ^3) 48.92439975 

Density of Sand 0.041124674  Density of Sand 0.041840064 

 

Grand Isle Sand Test 1    Grand Isle Sand Test 2   

Weight of apparatus (lb) 5.359  Weight of apparatus (lb) 5.359 

 Weight of apparatus + sand(lb) 11.3185   Weight of apparatus + sand(lb) 11.375 

Weight of sand   5.9595  Weight of sand   6.016 

Q 13.98622 I(A) 0.98  Q 14.22736 I(A) 0.98 

E (V) 5.8 L(m) 0.4064  E (V) 5.9 L(m) 0.4064 

Room temperature (F) 65.12  Room temperature (F) 64.94 

Thermal Conductivity (W/m.K) 0.124429  Thermal Conductivity (W/m.K) 0.139173 

Volume  (in ^3) 120.2640938  Volume  (in ^3) 120.2640938 

Density of Sand 0.049553444  Density of Sand 0.050023243 

 

Lowes Sand Test 1    Lowes Sand Test 2   

Weight of apparatus (lb) 5.359  Weight of apparatus (lb) 4.463 

 Weight of apparatus + sand(lb) 11.986   Weight of apparatus + sand(lb) 11.916 

Weight of sand   6.627  Weight of sand   7.453 

Q 14.12894 I(A) 0.99  Q 14.12894 I(A) 0.99 

E (V) 5.8 L(m) 0.4064  E (V) 5.8 L(m) 0.4064 

Room temperature (F) 65.3  Room temperature (F) 65.48 

Thermal Conductivity (W/m.K) 0.175685  Thermal Conductivity (W/m.K) 0.229062 

Volume  (in ^3) 120.2640938  Volume  (in ^3) 120.2640938 

Density of Sand 0.055103729  Density of Sand 0.061971947 

Table 6b. – Thermal conductivity of different types of sands 
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Type of Soil Thermal Conductivity 

Test 1 (W/m.K) 

Thermal Conductivity 

Test 1 (W/m.K) 

Ottawa Sand  0.17251 0.15907 

Red Clay Sand 0.16157 0.16977 

Pumped River Sand  0.18078 0.18049 

Hass Pitt Sand 0.08784 0.16422 

Grand Isle Sand 0.12442 0.13917 

Lowes Sand 0.17568 0.22906 

Table 7 – Thermal conductivity of different types of sands 

The thermal conductivity for pumped river sand was also tested at different moisture contents. 

The sand was placed in an oven for 48 hours and allowed to completely dry, then a specific 

amount was used. The sample was weighed and waster was added to it at an amount of 25 and 50 

percent by weight. The thermal conductivity was measured for the dry sample, the 25 percent 

moisture content, and the 50 percent moisture content. The results were as shown in figure 20.  

 

Figure 22 – Pumped River sand thermal conductivity vs. moisture content 

From the above graph we can confirm that as the moisture content increases, so does the thermal 

conductivity of the soil. From the linear regression it is apparent that a correlation between the 

two variables is positive with an R2 value of 0.807.  
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 Chapter 6  

Summary and Conclusion  

Data was obtained from the CPRA CRIMS database for the geotechnical boring logs used in this 

research, in an attempt to find a correlation between different soil characteristics in south 

Louisiana. The following conclusion can be made regarding these correlations.  

1. Based on limited data evaluated, the compression index and moisture content are related by 

the following relationship: 

• Compression index and moisture content    

o Cc = 0.0093(w) + 0.0961  R2 = 0.8573 

Where   w = Moisture Content 

Cc = Compression Index 

• Compression Index and Liquid Limit 

o Cc = 0.0094(LL) + 0.0887  R2 = 0.5779 

Where  LL = Liquid Limit 

• Coefficient of consolidation and liquid limit (For ML – Silt) 

o Cv = -1.2459(LL) + 44.223 R2 =  

The equations listed above, showed a positive correlation between the different properties of soil. 

The remainder of the equations from the linear regressions did not achieve positive correlation.  

An additional property was taken into consideration that included the ratio of moisture 

content:liquid limit as a third party parameter between the different characteristics and was used 

to compare the shear strength; however; a positive correlation was not achieved and was 

therefore not included in this study.    
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2. The thermal conductivity of dry sand ranged from 0.08 to 0.22 W/m.K. Thermal conductivity 

of pumped river sand was tested at different moisture contents and the resulting relationship is as 

follows:  

• Thermal Conductivity vs. moisture content of pumped river sand: 

o y = 0.3418w   R2 = 0.7761 

Where   w = Moisture Content 
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Chapter 7 

Recommendations for Future Research  

The results obtained from this study can be further used to manipulate and regroup the data for 

the purpose of finding more correlations. The data from this study, presents the available data 

from the soil borings, it does not further categorize the soils other properties. Soils can be 

classified per type and the same analysis can be studied using unit weight, organic content, etc. 

Furthermore, studying the geothermal energy of the soils and whether at certain depths the 

temperature remains constant or not in the field conditions. This data can also be used to find a 

correlation between the soil’s physical and thermal properties.  

The ability to predict undrained shear strength in dredged materials is important to the 

geotechnical engineer responsible for analyzing subaqueous slope stability or designing 

engineered structures built with dredged material (Lee, 2004). Therefore, this research can aid in 

further studies and correlations that will help with this prediction.   

As far as the geothermal energy portion of this research, the methods, data and application can be 

used to answer many questions such as: 

• What happens to the Louisiana soil properties subjected to cyclic heating and cooling? 

• What happens to the pile frictional capacity at the interface of pile surface and soil? 

• What happens to the pile load carrying capacity if heat is transferred in and out of the pile 

foundation? 

• Does the pile and surrounding soils expand and contract due to heating and cooling? 

• What type of piles is most suitable for use as a GEPs? 

• Does the pile concrete crack due to cyclic heating and cooling? 
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• What is the amount of heat transfer and heat storage in the pile as well as in surrounding 

soils? 

• Does excessive heating and cooling affect the heat balance of ground? 

• How much does the Geothermal Energy Pile system cost in comparison to conventional 

GSHP system? 

• What is the energy saving of using GEPs in comparison to conventional HVAC heating 

and cooling system? 

This research will be developed further to complete the moisture content analysis for the 

remaining different types of soils, and will be used to test the thermal conductivity of soils on 

samples from the marsh creation project areas around southern Louisiana, which most definitely 

has soils with unique properties that are not seen anywhere else in the world.     
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