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Abstract 
 
 
 
 
Proteins are the fundamental machinery that enables the functions of life. It is critical to 

understand them not just for basic biology, but also to enable medical advances. The field of 

protein structure prediction is concerned with developing computational techniques to predict 

protein structure and function from a protein’s amino acid sequence, encoded for directly in 

DNA, alone. Despite much progress since the first computational models in the late 1960’s, 

techniques for the prediction of protein structure still cannot reliably produce structures of high 

enough accuracy to enable desired applications such as rational drug design. Protein structure 

refinement is the process of modifying a predicted model of a protein to bring it closer to its native 

state. In this dissertation a protein structure refinement technique, that of potential energy 

minimization using hybrid molecular mechanics/knowledge based potential energy functions is 

examined in detail. The generation of the knowledge-based component is critically analyzed, and 

in the end, a potential that is a modest improvement over the original is presented. 

 This dissertation also examines the task of protein structure comparison. In evaluating various 

protein structure prediction techniques, it is crucial to be able to compare produced models 

against known structures to understand how well the technique performs. A novel technique is 

proposed that allows an in-depth yet intuitive evaluation of the local similarities between protein 

structures. Based on a graph analysis of pairwise atomic distance similarities, multiple regions of 

structural similarity can be identified between structures independently of relative orientation. 

Multidomain structures can be evaluated and this technique can be combined with global measures 

of similarity such as the global distance test. This method of comparison is expected to have broad 



 xvi 

applications in rational drug design, the evolutionary study of protein structures, and in the analysis 

of the protein structure prediction effort. 

 

Keywords: Bioinformatics; Protein Structure Prediction; Protein Structure Refinement; Statistical 

Energy Functions; Protein Structure Comparison; Graph Analysis 
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Chapter 1 
 
 
 
 

 Introduction 
 
 
 
 
Proteins are the molecular machines that enable and facilitate the functions of life. From neurons 

firing, to oxygen circulating throughout organisms, to DNA replication and cell reproduction, 

proteins are integral in allowing these processes to occur. Not only are they critical for the 

biological processes within our bodies, but they are also key for the mechanisms that allow many 

viruses and diseases to afflict us. For example, it is a protein complex on the surface of HIV that 

allows it to select and attack the vital CD4+ T cells of the human immune system, and it is a 

misfolded protein due to a single genetic mutation that causes sickle cell anemia. Whether for the 

purposes of better understanding our basic biology or for the purposes of treating diseases and 

designing medicines, it is crucial to understand the proteins involved.  

 A well-known biological adage states, “form follows function” although, in the case of 

structural biology, it is more practically understood as “function follows form”. If one wants to 

understand the function of a protein, one needs to understand its structure [1]. The way that 

structures have historically been determined has been through x-ray crystallography, a technique 

developed in the early 20th century with the first atomic resolution structure, that of table salt, 

solved in 1914 [2] . The first structures of proteins, myoglobin and haemoglobin, shown in Figure 

1.1, were determined in this way by Kendrew and Perutz in the late 1950s [3]-[5]. This technique is 
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widely used today and is joined by other empirical techniques such as NMR spectroscopy [6], [7] 

and electron microscopy [8]. While these techniques have provided tens of thousands of structures 

[9], they are time and labor intensive, and there remain cases such as disordered proteins and 

membrane proteins that are still difficult or even infeasible with modern empirical techniques.  

The field of protein structure prediction is concerned with developing computational 

techniques to determine the structures of proteins. The goal is to provide a quicker, cheaper, and 

more flexible analysis of new protein structures than empirical methods can provide and to enable 

the study of proteins that are difficult or infeasible with those methods. This field dates to 1967 

when Levitt, Lifson, and Warshel wrote the first computer program representing a protein energy 

force field and used it to refine the structures of two proteins: myoglobin and lysozyme [10], [11]. 

Their work follows from Anfinsen’s thermodynamic hypothesis: all the information necessary to 

  

Figure 1.1: The first proteins whose structures were determined. Left, Haemoglobin, determined via x-ray 
crystallography. Haemoglobin is composed of four subunits, colored orange, green, cyan, and blue, each of which 
contains a single haem group that binds with oxygen for ferrying red blood cells. PDB accession code 1A3N. Right, 
Myglobin, determined by x-ray crystallography. Myglobin consists of a single unit which contains a single haem group 
for bind oxygen. PDB accession code5ZZF 
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determine the structure of a protein is encoded in its amino acid sequence [12]. The intuition is 

that a protein is a collection of atoms and as such should obey physical laws. A computer program 

that characterizes these laws and applies them to the atoms of a protein via a numerical 

optimization process should be able to “fold” that protein from a disordered state into the precise 

3-dimensional structure, its native state, that it is drawn towards in nature. 

The protein folding problem has turned out to be non-trivial and remains unsolved. It can 

be argued that there are two major difficulties in the computational protein folding problem. The 

first is that the interactions within a protein and between a protein and its surrounding solvent are 

inherently quantum mechanical and that simulating even small systems using quantum mechanics 

remains infeasible. As Feynman pointed out, quantum mechanical simulations require exponential 

growth in space and time based on the number of particles, and an exact simulation may not even 

be possible [13]. A classical simulation on the other hand grows quadratically, and as a result, a 

large effort in computational physics and chemistry has gone into characterizing classical and 

statistical energy functions that approximate the true quantum mechanical energy functions as 

closely as possible.  

As Levinthal famously pointed out, another major difficulty in the protein folding problem 

is that the conformational search space of even a small protein is astronomically large [14]. Given 

that every amino acid in a polypeptide chain has two flexible backbone torsion angles (f and y) 

that define its local backbone geometry, a chain of 100 residues would have 198 such angles. 

Assuming that each angle has three stable conformations, this modestly sized chain would have a 

total of 3"#$ different conformations, a number of conformations greater than the age of the 

universe in picoseconds. Brute force sampling is not an option, and efficient algorithms to sample 

and explore the conformational space are a prerequisite to solving the protein folding problem.  
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As a result of these two major difficulties, a myriad of different algorithms and different 

energy functions have been developed for the folding of protein structures. In order to evaluate 

progress in the field, a biannual Critical Assessment of Protein Structure Prediction [15]-[17] 

experiment is held. In this experiment, protein structure predictors are given the sequences of 

proteins whose structures have been empirically determined but not yet published. CASP is a 

blind test of predictors’ ability to accurately predict these structures, and it allows predictors to be 

ranked based on their performance and the best methods to be presented and discussed. In 

CASP, it is therefore of critical importance to be able to compare predicted models against the 

native structures and identify their similarity or lack thereof. 

1.1 Dissertation Contributions 

In this dissertation, the formulation of hybrid molecular mechanics/knowledge-based potentials 

used for protein structure refinement, specifically the knowledge-based portion of these potentials, 

is examined in detail. Two questions are asked. The first is: can the performance of the potential 

be improved by modifying the starting database by either having more strict requirements on the 

structures included and/or increasing the size of the database to improve the statistics? In the latter 

case, the hypothesis explored is that a larger body of statistics will smooth out the energy surface, 

allowing structures easier access to energetic minima. The second question explored is whether or 

not the classification of atomic interactions within a protein structures into the default 167 atom 

types as defined by the residue-specific all-atom probability discriminatory function (RAPDF) [18] 

is the optimal classification scheme for potentials of mean force (PMF) [19]. A rigorous 

computational approach was taken by defining a measure of atom type similarity and then 

iteratively combining similar atom types into “merged” atom types under the hypothesis that the 

combined statistics of atom types with similar characteristics can be leveraged to produce a better 
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performing potential. The resulting potentials are tested and analyzed. It is shown that combining 

atom types does result in improved refinement using potential energy minimization, and, in the 

end, a potential that is a modest improvement over the original, KB_0.1 [20], is presented. 

 In the formulation and testing of dozens of potentials for structure refinement, it is natural 

to ask what the practical differences between two protein structure predictors are. That is, does one 

(for example, a potential with a smoother energy surface generated from a larger statistical 

database) better form missing hydrogen bonds than another, and what would that look like in the 

resulting structures? Would large scale, consistent changes be noticeable, such as secondary 

structures being brought together or, more generally, the formation of difficult structural motifs like 

beta-sheets? How would one identify these differences between sets of produced models and their 

natives? Can local similarities and differences between pairs of structures and patterns in the 

similarities of sets of structures be identified? This thought experiment led to the second project 

presented in this dissertation.  

A novel technique has been developed that allows for the identification of all regions of 

local similarity between two protein structures, irrespective of changes in global similarity such as 

domain shifts or conformational changes in disordered regions of those structures. This technique 

allows structures to be ranked according to their overall local similarity and can be combined with 

measures of global similarity such as GDT_TS [21] to identify structures that are both globally and 

locally similar. It allows for regions of local similarity to be visualized either at the sequence level or 

on the 3D structural representations of the proteins. Sequence level visualization allows for quick 

and easy analysis of sets of structures. For example, a set of models produced of some native can 

be analyzed. Likewise, three-dimensional structural representations allow for detailed looks into 

the similarities and differences of individual pairs of structures. A tool to identify and visualize 
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regions of similarity is freely available on GitHub1, and this work is expected to have applications in 

the analysis of evolutionarily related proteins, in drug-design, and in the evaluation of protein 

structure predictors.

1 https://github.com/amaus/jProt 
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Chapter 2 
 
 
 
 

 An Introduction to Protein Structure, Prediction, and to Protein 
Structure Refinement using Hybrid KB/MM Potentials 
 
 
 
 

2.1 The Structure of Proteins 

Proteins are composed of one or more polypeptide chains, each composed of a sequence of 

amino acids. The sequence of these amino acids alone determines the structure of a protein [12] 

as it is their interactions within the protein and between them and the solvent surrounding the 

protein that cause it to fold into its natural or “native” state. While we say that a protein has a 

native state, reality is more complex. A protein is flexible and, in vivo, can shift between multiple 

stable conformations [22] as it interacts with other proteins, substrates, or ligands.  

2.1.1 Protein Structure Hierarchy 

Protein structures are complex and as first proposed by Linderstøm-Lang, they are often described 

in a hierarchical fashion [23], [24]. There are four levels of protein structure: primary, secondary, 

tertiary, and quaternary, shown in Figure 2.1. 

2.1.1.1 Primary Structure 

The lowest level in the structure hierarchy, primary structure, refers to the amino acid sequence of 

a polypeptide chain. A protein’s sequence is directly encoded by a segment of base pairs in an 

organism’s DNA, and mutations in DNA can cause mutations in the encoded proteins. As a result 
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of the genomic sequencing, the amino acid sequence of any protein in an organism can be 

determined. 

2.1.1.2 Secondary Structure 

At the next level in the structure hierarchy, secondary structures are regularly repeating local 

structural motifs within polypeptides. The two most common forms of secondary structure (first 

described by Corey and Pauling before the first structures of proteins had been determined [25]) 

are alpha helices, which are helices characterized by having 3.6 residues per turn in the helix, and 

beta sheets, although there are other rarer forms of secondary structure including the 3"% and & 

helices and alpha sheets. Secondary structures are formed and stabilized by networks of hydrogen 

bonds and they form spontaneously on the pathway to the final stable conformation of a protein. 

2.1.1.3 Tertiary Structure 

Secondary structures come together to form the tertiary structure of a polypeptide chain. The 

formation of tertiary structure is guided and stabilized by a variety of forces and inter-residue bonds 

acting on and within the polypeptide. These include the hydrophobic effect, where hydrophobic 

residues will naturally form the core of a structure where they are “protected” from water by outer 

hydrophilic residues, and include hydrogen bonds, disulfide bonds, and ionic bonds between 

residues separated in sequence within the structure 

2.1.1.4 Quaternary Structure 

Many proteins consist of multiple polypeptide chains. The quaternary structure of a protein is 

defined by the arrangement of the tertiary substructures of that protein. For example, as Figure 2.1 

shows, hemoglobin is an oligomer consisting of four subunits that non-covalently group together to  
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Figure 2.1: Protein Structure Hierarchy. Protein structure is classified into a hierarchy of increasing complexity. The 
primary structure consists of a polypeptide sequence. Secondary Structures are regularly repeating motifs that form 
spontaneously during the folding process. They include alpha helices and beta sheets (left and right). Tertiary structure 
consists of the arrangement of the secondary structures of a single polypeptide. Shown is a subunit of hemoglobin. In 
red is the haem group containing iron. Quaternary structure is the arrangement of the tertiary components of a 
protein. Shown is the whole hemoglobin consisting of four subunits which noncovalently group together forming its 
quaternary structure. 
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form its quaternary structure. Another example is the envelope glycoprotein hemagglutinin, the 

oligomer responsible for the selection and membrane fusion of influenza with target cells, shown 

in Figure 2.2. 

2.1.2 Protein Structure Classification 

Despite the fact that the number of unique protein sequences is large and that each sequence has 

an astronomically large number of possible conformations, the number of actual conformations 

expressed is relatively small, and, in fact, it has been shown that a number of sequences can still 

result in the same structure [26], [27]. In other words, the sequence space for all possible proteins 

is larger than the structural space and any given structure may be producible from a number of 

different sequences. It is therefore not surprising that protein structures tend to have common 

patterns, and the same “folds” crop up again and again in protein structure analysis. 

 

 

Figure 2.2: The Structure of Hemagglutinin. Shown from the side (left) and top (right), Hemagglutitin is an oligomer 
consisting of six units of tertiary structure arranged in three-fold symmetry. On top are three identical globular 
tertiary components responsible for target selection, and in the center are three helical tertiary components 
responsible for membrane fusion. Shown is hemagglutinin H1 responsible for the 1918 pandemic. PDB ascension 
code 1RUZ. 
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 There are two major projects which have taken to classify and organize proteins into 

hierarchies of similar structures: the Structural Classification of Proteins (SCOP2) project [28] and 

the Class Architecture Topology Homologous fold (CATH) database [29]. They both classify 

structures at the highest respective level based on secondary structure composition, i.e., all alpha 

helices, all beta sheets, a mix of both, or mainly disordered. From there, structures are classified 

into various folds: conformations that share similar secondary structure arrangements and 

topologies. Both databases also take evolutionary information into account, classifying structures by 

their evolutionary relationship. 

2.2 Protein Folding Techniques 

The goal of protein structure predictors is simple: given a protein sequence, determine its native 

state, the conformation it is drawn towards in vivo. While this problem seemed insurmountable a 

few decades ago, there has been much progress in recent years [15], [30], [31]. In general, there 

are two classes of techniques for protein structure prediction: template-based modelling and ab 

initio prediction.  

2.2.1 Template-Based Modelling 

With the curation of large datasets of known sequences and structures such as the Research 

Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) database [9], SCOP 

[28], and CATH [29], along with powerful sequence alignment tools such as the basic local 

alignment search tool (BLAST) and position-specific iterated BLAST (PSI-BLAST) [32], [33] it is 

possible to use this existing information to guide structure prediction. Comparative, or homology 

modelling [34], [35] and protein threading [36] both make use of this existing information.  
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2.2.1.1 Homology Modelling 

To predict the structure of a sequence via homology modelling, a sequence alignment [37], [38]  

against a database of known structures is performed to find a homolog of the sequence, relying on 

the assumption that proteins with significant sequence similarity will generally share the same fold 

since evolution preserves protein structure and function even though the sequence may change 

through genetic mutations. If a homolog is found, it is then used as a starting template, and a 

model is built on that template using one of several possible techniques: rigid-body assembly, 

segment matching, or through the satisfaction of spatial constraints [39]. Leveraging the 

accumulated data of decades of structural biology, as long as a reliable template is found, that is, 

one with sufficient sequence similarity, homology modelling regularly produces accurate 

predictions and as a class of methods, remains the most accurate used in CASP [40]. 

2.2.1.2 Fold Recognition aka Protein Threading 

If a sequence with sufficiently high sequence identity for homology modelling is not found, then 

fold recognition, or, protein threading, may be used[36]. The goal of protein threading is to 

identify a template for a sequence that shares the same fold even though the sequence identity may 

be low. A set of possible templates from a variety of folds is identified by selecting structures with 

low sequence identity to the target sequence. Then for each structure, the target sequence is 

“threaded” onto it and its fit is evaluated via a scoring function. The structure with the best fit for 

the target sequence can then be used as the starting template for a model to be built using the 

technique from homology modelling. 
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2.2.2 Ab Initio Prediction 

If either of the techniques above are not applicable, that is, if there are no homologous sequences 

with known structures in existing protein databases, then a sequence’s structure must be predicted 

using ab initio techniques[41]-[44]. Ab initio techniques fold a protein from first principles and 

remain among the most difficult techniques for protein structure predictions. They involve 

searching a protein’s conformational space to identify stable, low energy conformations[45]. One 

possibility is the exploration of the conformational space via monte-carlo sampling [46]-[48] 

combined with energy minimization or molecular dynamics (MD) simulation [49]-[54] [55]. 

Alternatively, Dill proposes a “zipping” and assembly method based on the idea that as a protein 

folds, local metastable structures will form which will then subsequently fold into larger structures 

[30]. CASP has shown that in the past few years, much progress in ab initio techniques has been 

made by restricting the conformational search space using inter-residue contact predictions from 

the analysis of residue coevolution by machine learning algorithms[56]-[58].  

2.2.3 Protein Structure Refinement 

Whether structures are produced via template-based modelling techniques or through ab initio 

prediction, the resulting models are not consistently of native quality. Furthermore, even the most 

reliable technique, homology modelling, still cannot reliably produce models of sufficiently high 

accuracy (< 1.0 Å RMSD) for the target applications of protein structure prediction such as rational 

drug discovery [59]-[62]. In order to move resulting models of any modelling process closer to the 

native, protein structure refinement is applied. 

Refinement processes tend to use one or both of two techniques [59], running MD 

simulations to allow a near native structure model (NNSM) to explore the conformational space 

around it, or performing potential energy minimization (PEM) [11], [63], [64] to bring a NNSM to 
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the nearest local minimum in its energy function landscape. These methods both rely on the 

assumption that a starting structure is close to its native state. Under this assumption, when using 

MD simulations, the conformation space to sample is small and, when performing PEM, the 

nearest minimum is likely the native. Chapter 3 will focus on structure refinement using PEM. 

2.2.3.1 Potential Energy Minimization 

In potential energy minimization, the energy of a protein structure, as a function of the three-

dimensional coordinates of the atoms of that structure, is minimized using numerical optimization. 

Structure refinement using PEM goes back to the earliest days of protein structure prediction [11], 

[63]. There are two general classes of energy functions for PEM: traditional physics-based 

molecular mechanics (MM) potentials and statistically derived “knowledge-based” (KB) [65] 

potentials. An example of a traditional MM potential can be given as the Energy Calculation and 

Dynamics (ENCAD) potential [64], [66] which takes the following form: 

'()*+,*-./ =1
1
2
45(7 − 7)): +1

1
2
4<(= − =)): +1

1
2
4>[1 − cos(CD + E)]

+1G[(H) H⁄ )": − 2(H) H⁄ )J] + 3321K-KL H⁄  

(2.1) 
  

The first three terms quantify the energetic contributions for bonded interactions: bond stretches, 

bond angle bends, and torsion angle twists, respectively. The last two terms represent nonbonded 

interactions: van der Waals interactions (represented by a Lennard-Jones style function), and 

electrostatic interactions. The potential energy of a structure is calculated as the sum over all 

energetic terms, over all bonded and nonbonded interactions. By perturbing the coordinates of a 

structure’s atoms via a numerical optimization method such as the limited memory Broyden-
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Fletcher-Goldfarb-Shanno (L-BFGS) [67] technique, its potential energy can be minimized 

bringing it ideally closer to its native state. 

2.2.3.2 Potentials of Mean Force 

 KB potentials take the form of potentials of mean force (PMF) [19]. Rather than deriving 

potential functions from physics, they are derived from the statistics of a large set of known protein 

structures. PMFs are based on Boltzmann’s principle, which can be interpreted as saying that states 

of a system that are seen with high frequency correspond to the low energy states. Given a set of 

native structures, it should be possible to identify the patterns within them which correspond to low 

energy states and build energy functions from these patterns. The intuition behind the formulation 

of PMFs is that they quantify how the patterns that exist within protein structures differ from what 

would be expected if no consistent forces were at play (i.e., if the atoms existed as an ideal gas). 

The process of generating a PMF can be outlined as follows.  

For the purposes of gathering statistics for a PMF, atoms within proteins are classified into 

a set of atom types. Most commonly, atoms are categorized into 167 different residue-specific 

heavy atom types defined by Samudrala and Moult for their RAPDF potential [18]. Other 

possibilities include categorizing atoms into their basic heavy atom type, e.g., Ca, Cb, N, O, etc., 

grouping sets of atoms within residues into virtual atoms, or grouping chemically and functionally 

similar atoms into virtual atoms. Using the RAPDF schema, atom types are denoted using the 

following convention: the residue is specified, followed by the atom, followed by its side chain 

position. Side chain positions are specified using the Greek alphabet from a to z. If the atom is on 

the backbone, no position is specified. For example, AN indicates the backbone nitrogen of 

alanine, and FCz indicates the zeta carbon in phenylalanine. For convenience, atom types will be 

specified using Romanized script. E.g., FCz will be written as FCZ.  
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To generate a PMF, given a database of known protein structures and an atom type 

categorization schema, for each pair of atom types, their contact distances within all structures are 

counted and sorted into a set of distance bins for that pair. Figure 2.3 gives an example of such 

counts for a pair of atom types AN and ACB. At the end of this process, each atom pair will have 

its own set of distance bins where each bin contains the number of pairs of atoms of those two 

types that were found to be X distance apart in the database. The number of bins and their width 

are parameters chosen during the design of a PMF. Once all the counts are determined, they are 

then converted into energy values using one of several currently used derivations [18], [68]-[70]. 

Figure 2.4 shows the corresponding energy function for the counts shown in Figure 2.3 as 

calculated using Lu and Skolnick’s formalism [71]. This process is performed for all pairs of atom 

types, and the entire collection of energy curves constitutes the PMF. 

Whether an energy function takes the form of a MM potential or a PMF, its use as a 

potential energy function for PEM is the same. In either case, the energy of a structure is calculated 

as the sum over all energetic terms. For a MM potential, the sum includes all bonds, angles, and 
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Figure 2.3: Histogram of the contacts between the atom types AN and ACB. Generated from the Top500 Structure 
Database from the Richardson Lab. The histogram shows, for example, that approximately 450 AN-ACB atom 
pairs were observed at a distance of 5.6 Å in this database. 
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torsions along with pairwise non-bonded van der Waals and electrostatics interactions, and in a 

PMF the energy is the sum over all pairwise atomic interactions. The calculated energy can then be 

minimized via a quasi-Newton optimization method such as l-BFGS algorithm to refine the 3D-

coordinates of the structure. 

2.2.3.3 Hybrid KB/MM Potentials for in vacuo Structure Refinement 

As Summa and Levitt showed [20], a KB potential can be combined with a MM potential, and the 

resulting hybrid potential performs better in protein structure refinement than purely MM 

potentials alone. In a MM potential, the energetic contributions can be broken up into two broad 

categories, bonded and non-bonded interactions. While the bonded interactions are the stronger 

interactions, they are relatively few. The non-bonded interactions on the other hand are many and 

though they are weaker than the bonded interactions, they are more likely to contain systematic 

errors due to the neglect of quantum mechanical interactions between atoms. The hybrid potential 

uses the energetic terms for the bonded interactions from the ENCAD MM potential and 

represents the nonbonded interactions using a PMF. Since PMFs are built from databases of 
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Figure 2.4: Energy function derived from the contact counts shown in Figure 2.3. Energies were calculated using 
Lu and Skolnick’s formalism. 
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known protein structures, quantum mechanical effects are implicitly accounted for. Likewise, the 

effects of surrounding solution on the structures is also implicitly accounted for. Not only does this 

free refinement from having to be performed via MD simulations (to explicitly model all water 

molecules), but PEM using KB/MM potentials with implicit solution results in a greater percent 

improvement in model distance to the native [72].  

2.2.3.3.1 Generating Hybrid KB/MM Potentials 

 Summa and Levitt generated three different KB/MM potentials. The potentials differed in 

the generation of their PMFs. Each PMF was generated using proteins from the Top500 Database 

from the Richardson lab, using all 167 atom types defined in Samudrala and Moult’s RAPDF [18]. 

All atomic interactions less than 20 Å, excluding those from within the same residue or 

neighboring residues, were included. The PMFs differed in the width of the distance bins into 

which the statistics were gathered: 0.1, 0.2 and 0.5 Å.  

For each PMF, the pairwise counts for each atom type pair were converted into energies 

using the method of Lu and Skolnick [71], as defined by Eq. 2.2 and Eq. 2.3, with an included 

repulsive close-contact portion at low distances increasing monotonically to a plateau of 80 

kcal/mol. Using Lu and Skolnick’s formalism, the energy for atom types M and N for distance bin O 

is calculated as 

G(M, N, O) = −QR ln U
V(M, N, O))5W
V(M, N, O)+X(

Y 

(2.2) 

where V(M, N, O))5W is the number of observed contacts and V(M, N, O)+X( is the number of 

expected contacts for those two atom types in that distance bin within the database of known 

structures. V(M, N, O)+X( is defined as 

 



 

 19 

V(M, N, O)+X( = V(O)Z-ZL 
(2.3) 

Z- and ZL are the mole fractions of the two atom types in the database and V(O) is the total 

number of observed contacts in that distance bin over all atom type pairs.  

Within each PMF, each pairwise energy curve was fitted to a quintic spline, and these atom 

type pairwise differentiable potentials were combined with the bonded terms of the ENCAD 

potential to form the three KB/MM potentials, named KB_0.1, KB_0.2, and KB_0.5 respectively 

for the width of the distance bins used in the generation their component PMFs. The KB/MM 

potentials were smoothly truncated to 0 kcal/mol between 9 and 11 Å. 

2.2.3.3.2 Evaluating the Performance of the Potentials in Refinement 

KB_0.1, KB_0.2, and KB_0.5 were tested against four MM potentials: AMBER99 [73], [74], 

OPLS-AA[75], GROMOS96 [76], and ENCAD [64], [77]. All seven potentials were tested on a 

dataset of 75 native protein structures, chosen to each represent a different fold from the Structural 

Classification of Proteins [78]. For each native, 729 NNSMs were generated using Tirion-style 

quasielastic normal mode perturbation [79]. An example of a native and a NNSM generated in this 

way is given in Figure 2.5. Structures are minimized in vacuo using the L-BFGS optimization 

protocol in either GROMACS[80]-[82] or ENCAD.  

All potentials were evaluated based on two criteria: their ability to not significantly perturb 

the nativeand their ability to move NNSMs closer to the native state. Of the seven potentials, 

KB_0.1 was the best performing with respect to both criteria, followed in second place by 

AMBER99. For the first criteria, when applied to the natives, KB_0.1 resulted in a mean RMSD 

deviation of 0.38 ± 0.14 Å and AMBER99 a mean RMSD deviation 0.41 ± 0.20 Å. For the second 

criteria, performance was measured in the double mean RMSD over all 75 NNSM sets, with 
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<RMSD> indicating the mean RMSD of all 729 NNSMs from the native for a particular set and 

<<RMSD>> indicating the double mean over all 75 sets. Before minimization, <<RMSD>> was 

1.06 Å. After minimization, AMBER99 resulted in a <<RMSD>> of 1.03 Å and KB_0.1 resulted 

in a <<RMSD>> of 0.95 Å, the best improvement of any tested potential. 

2.2.3.3.3 Potential Avenues of Improvement in the Hybrid Potential 

PMFs have widely adopted the atom type classification scheme of all 167 heavy atom types defined 

by the RAPDF potential. It is possible that a classification scheme consisting of all possible atom 

types is not optimal. Some atom types may share similar chemical and/or functional characteristics 

and defining them as separate type may be redundant. The structural database used to gather the 

 

Figure 2.5: Native and a decoy generated via quasielastic normal mode perturbation. In green is the native 1mml and 
in blue is the decoy. The decoy’s RMSD from the native is 2.75 Å. 
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statistics for the PMF can also be examined. Since the publication of the hybrid KB/MM potential, 

the Richardson lab has curated a new structural database, an order of magnitude larger than the 

Top500 used to generate KB_0.1. It is possible that the greater statistics of a larger database can be 

leveraged to produce an improved potential for protein structure refinement. 

2.2.3.3.4 Application of KB_0.1 

The KB_0.1 has been used with success as part of a structure refinement protocol in CASP 

experiments [83] and is used in the KoBaMIN  structure refinement web server. 

2.3 Summary 

An introduction to both protein structure and classification, and to protein folding techniques, 

including protein structure refinement has been given. Potential energy minimization has been 

presented along with a method for generating hybrid KB/MM potentials for use in structure 

refinement. This material serves as a foundation for Chapter 3 in which the formulation of the 

PMFs used in the hybrid KB/MM potentials is explored and for Chapter 4 in which a novel 

technique for comparing protein structures is proposed. This comparison technique allows for the 

exact identification of all regions of local similarity in a pair of structures even if components of 

secondary or tertiary structure are shifted relative to each other 
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Chapter 3 
 
 
 
 

 Refining the Hybrid KB/MM Potential for Potential Energy 
Minimization 
 
- Exploring the formulation of the knowledge-based force fields 

 
 
 
 

3.1 Introduction 

The goal of protein structure predictors is to produce models as close to the true native protein 

structure as possible. Models can be produced through homology modeling, fold recognition (also 

known as protein threading), or ab initio techniques, and while protein structure predictors have 

become increasingly accurate, they have not yet reached the accuracy that can be achieved through 

empirical methods such as x-ray crystallography [15], [16]. The goal of protein structure 

refinement is to move models produced by protein structure predictors from their near native 

structure models (NNSM) as close as possible to the native structure (NS), defined as moving 

NNSMs to < 0.80 Å backbone Ca RMSD from the NS. As Eyal et al. show, 0.80 Å is the accuracy 

limit for structures determined through X-ray crystallography [84].  
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3.2 Towards Improving KB/MM Potentials for Protein Structure Refinement 

Following the same method as Summa and Levitt [20], outlined in section 2.2.3.3.1, potentials for 

the purpose of in vacuo protein structure refinement using PEM are derived as hybrid KB/MM 

potentials with the first three terms of ENCAD’s MM potential (Eq. 2.1), representing the 

energetic terms for the bonded interactions of the potential, and a differentiable KB potential 

representing the nonbonded interactions.  

In pursuit of improving the hybrid KB/MM potential, the formulation of its KB 

component, its PMF, has been examined. Three main questions were asked. First, can the 

refinement performance of the hybrid potential be improved by selecting a larger starting structure 

database for the statistics of the PMF? The motivation for selecting a larger database is that it was 

noticed that the energy curves in the KB PMF portion of KB_0.1 were rough (Figure 3.1). A large 

database should provide a more robust set of statistics, allowing for smoother energy curves to be 

 

Figure 3.1: Energy curve for the atom type pair HNE2-TOG1. Generated from a database of 500 structures using Lu and 
Skolnick’s formalism for the energy calculations. This energy curve is rough, possible causing PEM to get trapped in local 
minima that would not exist if a larger statistical database had been used. 
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generated which will in turn allow PEM to more easily navigate the energy surface to find the 

global minimum without getting trapped in local minima. Second, can performance be improved 

by using a stricter database? A stricter database should eliminate artifacts due to clashes in the 

structures. Third, are all 167 heavy atom types in the PMF required for optimal performance or 

can performance be improved by combining similar atom types to better leverage the statistics of 

both? 

3.2.1 Generation of PMFs 

3.2.1.1 Re-evaluating Low Distance Bin Counts 

In a KB/MM potential, the purpose of the PMF is to evaluate the non-bonded interactions. A 

major goal in its derivation is to accurately represent the critical energetics of close contact 

interactions. To avoid taking the log of zero, in the statistics gathering phase for KB_0.1, all contact 

counts were initialized to one. This solved the problem of how to handle an undefined energy 

where zero counts are observed, but it had a side effect of lessening the energetic bonus for crucial 

close contact interactions such as hydrogen bonds and disulfide bonds.  

Recall from Eq. 2.2 that Lu and Skolnick’s energy calculation requires the ratio of the 

observed number of counts in a distance bin to the expected number of counts in that bin. While 

having a minimum count of one in a distance bin has a minimal effect on the number of observed 

counts, but it does have a cumulative effect on the number of expected counts since, as Eq. 2.3 

shows, the calculation for the number of expected counts requires the sum of all counts in that 

distance bin across all atom type pairs. The ones across all distance bins add up, contributing to an 

artificially high expected value, lowering the energetic bonus for moving these atom type pairs to 

ideal distances, and affecting the performance of the potential. Figure 3.2 shows the difference in 

generated energy curves for the atom type pair NOD1-TOG1, where, if the minimum value for a 
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count is one, the energetic bonus for a desirable contact distance of 2.6 Å is eliminated. All PMFs 

generated in this work differ from KB_0.1 in that distance bins with no contacts use a count of 

zero in the energy calculation.   

In the energy calculation, if the observed or expected number of counts in a distance bin is 

zero, the energy is set to zero. The repulsive close contact portion of the energy function starts at 

the furthest distance bin with no counts where there are no distance bins at smaller distances 

containing any counts. As a result, the majority of distances bins assigned an energy of zero will be 

replaced with the repulsive close contact portion of the energy function. It is important to note that 

it is possible for bins assigned an energy of zero to remain in the PMF. This is possible right 

 

Figure 3.2: Energy curves for atom type pair NOD1-TOG1 derived using alternative counting schemes. If counts start at 
one, then the energetic bonus of a potential hydrogen bond is eliminated from NOD1-TOG1’s energy curve. 
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outside of hydrogen bond lengths where there may be zero counts since hydrogen bonds are 

strong attractors.  

3.2.1.2 Structure Databases for PMF Generation 

Four different databases have been used in the generation of PMFs: Top500, Top8000, 

Top500_1.00vdw, and Top8000_1.00vdw. The first two databases, Top500 and Top8000 

consisting of 500 and 7957 protein structures respectively, are from the Richardson lab. Hydrogens 

are built into all PDBs in both databases using the Reduce program [85]. Both of these databases 

apply filters to ensure that only high-quality structures are included. The Top500 database requires 

all structures have a resolution of 1.8Å or better, a clashscore [86] of < 22/1000 atoms, and < 

10/1000 atoms with main chain bond angles outside of 5[ of Engh and Huber’s parameters [87]. 

A structure’s clashscore is defined as the number of “serious clashes”. Serious clashes are non-

hydrogen-bond van der Waals overlaps of 0.4 Å or greater per 1000 atoms. The Top8000 

database is similar. It requires all structures have a resolution < 2.0 Å, a MolProbity [88], [89] score 

of < 2.0, ≤ 5% of residues with bond length or angle outliers of  > 4[, and ≤ 5% of residues with Cß 

deviation outliers of > 0.25Å. The MolProbity score includes a structure’s clashscore as a 

component of the overall score.  

 The Top500 database is the database that was used to generate KB_0.1. The Top8000 

database, released after the publication of KB_0.1, consists of an order of magnitude more 

structures than Top500. The Top8000 database is included in this work to test the hypothesis that 

a larger database providing a larger set of statistics will generate a PMF with smoother pairwise 

energy curves. This should allow the minimization process, via numerical optimization, to better 

find the global minimum by not getting trapped in the local minima of the potential. 
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The other two databases, Top500_1.00vdw and Top8000_1.00vdw, are subsets of the 

Top500 and Top8000 databases. While both the Top500 and Top8000 databases are strict on the 

structures that they allow to be included, both allow serious clashes to be included if their 

proportion is small. This is an important consideration when designing a PMF. In a PMF, any 

count from a clash at a low distance, where there are no other interactions, will introduce an 

unnatural artifact into the resulting energy curve. Figure 3.3 shows the difference between the 

energy curves generated for the atom pair YCD2-YCD2 using the Top500 database and that same 

database filtered for clashes greater than 1.00 Å. YCD2 indicates the second carbon delta of 

tyrosine and the curves represent the interaction energy for this atom type pair. The energy curve 

for this atom type pair generated from the Top500 database has a dip in energy at 2.5Å due to a 

 
 

Figure 3.3: The effect of eliminating clashes from structure databases on PMF energy curves. A comparison of the energy 
curves for atom pair YCD2-YCD2 as generated from the Top500 database and that same database filtered for structures 
with non-bonded clashes greater that 1.00 Å vdw overlap. The dip in energy in the Top500 curve at 2.5 Å is due to a clash 
between residues 146 and 151 in structure 1a6mH.pdb, adding an unnatural attractor basin to this energy curve. 
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single count originating from a clash between residues 146 and 151 in structure 1a6mH.pdb, 

resulting in an unnatural energy basin at that distance in this energy curve. 

To test whether removing these artifacts would improve the performance of the resulting 

MM/KB potentials, databases Top500_1.00vdw and Top8000_1.00vdw have been generated from 

the original Top500 and Top8000 databases by removing all structures with non-bonded heavy 

atom clashes ≥ 1.00 Å van der Waal overlap. Formally, two non-bonded atoms a and b are 

clashing if their distance O(\, 7) ≤ (\^ + 7^) − 1.00, where \^ and 7^ are standard atomic radii 

for atoms \ and 7, and atoms are non-bonded if they are separated by five or more covalent bonds 

and are neither involved in hydrogen nor disulfide bonds. Values for standard atomic radii have 

been pulled from ENCAD’s van der Waal potential’s parameters: a^ = 1.85	Å, V^ =

1.65	Å, g^ = 1.60	Å, h^ = 1.85	Å. The Top500_1.00vdw and Top8000_1.00vdw databases 

consist of 449 and 7489 structures respectively. 

PMFs were generated for each of the four structure databases, listed in Table 3.1 with the 

number of structures and pairwise interactions used in PMF generation given. With the exception 

of the structure databases, the parameters and procedure for the generation of the PMFs are 

identical. Pairwise interactions are classified using 167 residue-specific heavy atom types, each 

PMF uses a cutoff distance of 20.0 Å with bins of width 0.1 Å, contacts between atoms in adjacent 

residues in the sequence are omitted, the Lu and Skolnick formalism is used for the calculation of 

 
 KB_Top500 KB_Top500_1.00vdw KB_Top8000 KB_Top8000_1.00vdw 

Structures 500 449 7957 7489 

Pairwise 
Interactions 280,653,907 251,680,166 4,809,056,116 4,479,873,427 

 

Table 3.1: The four PMFs generated from the four structure databases: Top500, Top500_1.00vdw, Top8000, and 
Top8000_1.00vdw. The number structures and pairwise interactions used in the generation of each PMF is given. 
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the energies, and a repulsive close contact portion is added that scales to a plateau of 80 kCal/mol. 

Since the only difference between the PMFs is the structure database, the four PMFs are named 

after their databases: KB_Top500, KB_Top8000, KB_Top500_1.00vdw, and 

KB_Top8000_1.00vdw. 

3.2.1.3 Reducing the Set of Atom Types via an Atom Type Merging Process 

Samudrala and Moult showed when developing their residue-specific all-atom probability 

discriminatory function (RAPDF), that of the three PMFs they tested, the best performing was that 

using 167 residue-specific heavy atom types[90]. Other schemas for classifying atom-pair 

interactions included a residue-specific virtual atom representation (where groups of atoms within 

the same residue are combined into 105 virtual atoms) and a non-residue-specific virtual atom 

representation (where all possible heavy atom types across all residues are combined into 21 virtual 

atoms). They found that the detail inherent in using all 167 possible residue-specific heavy atoms 

allowed the RAPDF to be the most accurate native structure discriminator among the three they 

tested and that their successive atom type approximations of residue-specific virtual atoms and 

non-residue-specific virtual atoms yielded successively worse performance. In their distance 

dependent knowledge-based potential, Lu and Skolnick use the 167 residue-specific atom types, 

but they discuss the idea of grouping similar atom types based on chemical and functional 

similarities. They discuss, for example, grouping EOE1 and DOD1 into a combined atom type, 

but they do not propose or test a set of groupings [71].  

 This work examines in detail the question broached by Lu and Skolnick [71]. Is the 

classification of atoms into all 167 residue-specific heavy atom types optimal for the performance 

of the PMF, or are there atom type groupings that can improve performance by leveraging the 

statistics of one or more atom types? To examine this question systematically, an iterative approach 
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was taken to identify chemically and functionally similar atom types and merge them into 

combined atom types at varying levels of similarity. 

 To identify similar atom types in a PMF, their energy profiles are compared. A single 

energy profile consists of the interaction energies for each distance bin of a single pair of atom 

types. Figure 3.2 shows the energy profile for the AN-ACB atom type pair. Each atom type has a 

set of energy profiles, one for every atom type, including itself, in the PMF. Two atom types that 

have similar functional characteristics will have a similar set of energy profiles. Given two atom 

types a and b, their similarity is defined as the average RMSD of their energy profiles. 

hMiMj\HMkl(\, 	7) =
1
V
1QmhnoG(\, p-), G(7, p-)q

r

-

	 

(3.1) 

N is the number of atom types, and G(\, p-) is the energy profile for atom type a and atom type p- 

in the set of atom types.  

 An iterative procedure is used to generate a set of PMFs, based off of some base PMF, 

containing combined atom types for successively looser thresholds of similarity. Given a PMF and 

a similarity threshold t, all atom type pairs whose similarity is less than t are combined into merged 

atom types, and given a set of thresholds T, for each t in T, a PMF containing merged atom types 

is generated and then used as the starting PMF for the next threshold. The starting PMF for the 

first threshold is the base PMF. Two atom types are combined into a single merged atom type by 

summing their counts across all their bins and then generating an energy curve for these combined 

counts. This new energy curve now represents both atom types in the combine type. At the end of 

a single atom type merge, the PMF has one less atom type and each atom type has one less 

pairwise interaction. These procedures are given in Figure 3.4. 

 The thresholds for merging are determined empirically for each base PMF. A starting 
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threshold is chosen such that at least one pair of atom types will be merged, and an increment is 

selected such that not too many pairs of atom types will be merged in a single iteration. The goal is 

to end up with a set of PMFs spanning the space of reasonable atom type merges. If no atom types 

were merged in an iteration, no new PMF is produced and the same starting PMF is passed on to 

the next iteration.  

Each of the four generated PMFs, KB_Top500, KB_Top8000, KB_Top500_1.00vdw, 

and KB_Top8000_1.00vdw, were subjected to the merging process, producing a new set of PMFs 

for each original PMF. The starting thresholds and threshold increment for each of these merging 

processes are given in Table 3.2. 

Algorithm 2: identifyAndMergeAtomTypes(s, t) 
Input: A Potential of Mean Force s, and a 
similarity threshold t. 
Output: A new Potential of Mean Force s’ where 
atom types whose similarity is less than t have 
been merged. 
1 begin 
2  s’ = copy(s)  
3  while atomTypesMerged == true 
4      atomTypesMerged = false 
5      for every pair of atom types a,b in s 
6          if similarity(a,b) < t 
7              merge a and b 
8              atomTypesMerged = true 
9  return s’ 
10 end 

 

Algorithm 1: generateMergedAtomTypePMFs(s) 
Input: A Potential of Mean Force s 
Output: A set of PMFs st, one for each 
threshold t in  
1 begin 
2 for t in T 
3 								st = identifyAndMergeAtomTypes(st-1, t) 
4 end 

 

Figure 3.4: Atom Type Merging Algorithms. They iteratively generate a set of PMFs whose similar atom types 
have been merged. For each iteration, every pair of atom types whose similarity (as defined in eq. 4) is less 
than a threshold t are merged. The PMF generated at the end of one iteration is used as the starting PMF for 
the next iteration. 
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3.2.2 Methods for Evaluating the Performance of the Potentials 

3.2.2.1 The Refinement Protocol 

Protein structures are refined via in vacuo PEM. The L-BFGS minimizer in ENCAD is used, 

running for 10,000 steps of minimization or until energy convergence to machine precision.  

3.2.2.2 Evaluation Criteria 

To test the performance of each PMF, a hybrid KB/MM potentials is generated with it as the KB 

component and that potential is evaluated in protein structure refinement against two criteria. 

1. Refinement should not significantly perturb the native. 

2. Refinement should move NNSMs closer to the native. 

The first criterion ensures that the potential has an energy well at the native. For a concrete 

criterion, a potential should not move the native by > 0.80 Å RMSD since that is the threshold by 

which natives are indistinguishable from each other in x-ray crystallography experiments [84]. 

In evaluating a potential’s ability to move NNSMs closer to the native, the following 

notation will be used. Given a dataset consisting of natives and a set of NNSMs for each, the mean 

RMSD of a set of NNSMs with respect to the native will be denoted as <rmsd>. The average of 

 
 KB_Top500 KB_Top500_1.00vdw KB_Top8000 KB_Top8000_1.00vdw 

Initial Similarity 
Threshold 
(kcal/mol) 

2.58 2.45 1.80 1.85 

Threshold 
increment 0.01 0.01 0.05 0.05 

 

Table 3.2: Similarity thresholds and increments for the atom type merging process. Given for each of the original 
PMFs: Top500, Top500_1.00vdw, Top8000, and Top8000_1.00vdw. 
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<rmsd> over all sets of NNSMs in the complete dataset will be denoted as <<rmsd>>. It is useful to 

calculate the percent improvement of a refinement process on a set of NNSMs.  

tu = v^wWxyz{|}v^wWxy~�ÄÅ�
v^wWxy~�ÄÅ�

 

(3.2) 

A negative PI indicates improvement. 

3.2.2.3 Structure Datasets for Testing 

Two datasets were used for testing purposes. The first is a decoy dataset generated using the same 

method as outlined by Summa and Levitt [20] and the second is a selection of targets and 

submitted models from CASP experiments 8-13. The decoy dataset consists of 71 natives, selected 

to be representative of the SCOP [78] folds, each with a set of decoys generated by perturbing the 

natives using the method of Tirion [79], yielding a total of 21519 decoys in the dataset. This dataset 

is not identical to the dataset used by Summa and Levitt, but it was regenerated using quasi-elastic 

normal mode perturbation as was the origin set. Of the 75 original natives, four were not used in 

this study due to minimization errors. The four omitted natives are 1cem00, 1fh2, 1ge8a01, and 

1kfn_3. For this decoy dataset, <<rmsd>> before minimization is 1.872 ± 0.223 Å.  

The CASP dataset was built as follows. All submitted models and natives for the split 

domain regular targets for CASP experiments 8 – 13 were downloaded as a starting dataset. Then 

all models whose RMSD from the native were less than 0.50 Å or greater than 5.00 Å were 

removed from the dataset. This was done because the focus of this work is on the performance of 

the potentials as near-native structure minimizers. Starting models that are too close or too far from 

the native do not fall in the experimental test case. Finally, all target sets with 100 or more 

remaining structures were selected as the testing dataset. The CASP dataset consists of 234 natives 

with a total of 59,527 models. For the CASP dataset, <<rmsd> is 2.951 ± 0.847 Å. 



 

 34 

 Both datasets serve a purpose in the evaluation of the potentials. The decoy dataset was 

generated to be a general test of structure refinement ability by being representative of a diverse set 

of folds. A potential that is suitable for general structure refinement should perform well across the 

whole of the dataset as opposed to working well for some types of folds but not others. It was also 

generated to specifically provide a set of near native structures. As a result of the method of 

generation, quasielastic normal mode perturbation [20], the decoys should be in an energetically 

accessible conformation with respect to minimization back to the native. That is, there should be 

no serious energy barriers caused by side-chain packing issues or grossly misfolded conformations 

of a structure.  

The CASP dataset was selected as a real-world test of structure refinement. Structure 

refinement is performed after a model is generated, whether it is generated via homology 

modelling, protein threading, or ab initio techniques, and these models may have energetic barriers 

between them and the native. In an ideal world, structure refinement would only be performed on 

structures close to the native and somewhere on an energetic pathway to the native, but in practice 

this cannot be guaranteed, and the CASP dataset provides a realistic set of models that are 

provided as input to a refinement process. Of the two datasets, the CASP dataset is the more 

difficult test for structure refinement. 

3.3 Results 

3.3.1 Atom Type Merging Process 

The atom type merging process resulted in a set of PMFs generated from each original PMF 

giving, for each, a set of potentials spanning the range from using the full 167 atom types to using 

approximately 100 atom types. A total of 61 PMFs were generated. A list of these PMFs is given in 

Table 3.3. The difference in the number of PMFs produced for KB_Top500 and 
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KB_Top500_1.00vdw is a result of when the various atom types were combined. Not every 

threshold resulted in atom type merges and the different energy curves between those in 

KB_Top500 and KB_Top500_1.00vdw resulted in atom type combinations clustering at different 

thresholds. 

3.3.1.1 Merged Atom Types 

It is important to ask whether or not the atom type merges are reasonable. Tables 3.4, 3.5, 3.6, and 

3.7 give the atom type combinations resulting from the merging processes for each base PMF: 

KB_Top500, KB_Top500_1.00vdw, KB_Top8000, KB_Top8000_1.00vdw. 

For KB_Top500, the first atom types merged into combined atom types are the hydroxyl 

groups of serine and threonine, and the backbone oxygens of threonine and lysine. Both 

 
KB_Top500 KB_Top500_1.00vdw KB_Top8000 KB_Top8000_1.00vdw 

Threshold # Atom 
Types Threshold # Atom 

Types Threshold # Atom 
Types Threshold # Atom 

Types 
2.58 165 2.45 166 1.80 166 1.85 164 
2.61 164 2.51 165 1.85 165 1.90 163 
2.63 159 2.59 162 1.95 161 1.95 159 
2.67 154 2.63 161 2.00 160 2.00 158 
2.70 150 2.64 156 2.05 155 2.05 154 
2.71 148 2.70 148 2.10 150 2.10 147 
2.73 147 2.73 142 2.15 146 2.15 137 
2.76 146 2.78 140 2.20 139 2.20 133 
2.78 140 2.80 139 2.25 117 2.25 124 
2.80 136 2.82 137 2.30 115 2.30 117 
2.90 134 2.87 126 2.35 107 2.35 105 
2.91 131 2.96 123 2.40 104 2.40 104 
2.93 130 3.01 109     
2.94 127 3.04 107     
2.96 125 3.06 105     
2.98 124 3.09 103     
2.99 123 3.14 97     
3.00 122       
3.02 121       
3.03 100       

 

Table 3.3: PMFs generated via the atom type merging process. This process was applied to each original PMF. The 
similarity threshold used to generate each merged atom types PMF and the number of atom types in that PMF are listed. 
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combinations make chemical and functional sense. Atom types of the same element and position 

in the amino acid tend to be combined. For example, carbons at the a and b positions tend to be 

merged. Likewise, backbone oxygen atoms are commonly merged. For the merge process run on 

KB_Top500, by threshold 2.91, the backbone oxygens of thirteen of the amino acids have been 

combined into a single type, suggesting that distinguishing between the majority of the backbone 

oxygens may not be important in a PMF. 

Similar patterns are visible in the rest of the tables. Atom types tend to be merged by 

element and position in the amino acid. Backbone atoms of the same element tend to group 

together. Likewise, carbon atoms from hydrophobic residues tend to be combined. Their 

similarity is evidence of both the importance of the hydrophobic effect and of these KB potentials’ 

ability to implicitly characterize it. Another notable combination is that of the aromatic carbons of 

phenylalanine with those of tyrosine, a combination that happens in all four merge processes. 

Given their chemical similarity, this combination is a good sign that the merging process is 

correctly identifying and combining similar atom types. Complete graphs generated using the open 

source program GRAPHVIZ [91] of all atom type merges for the Top500 and Top500_1.00vdw 

PMFs are given in the appendix. 
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Threshold Atom Types Merges 

2.58 SOG, TOG1 
TO, KO 

2.61 CO, MO 

2.63 

LCA, FCA 
AO, LO 
VO, YO 
VCG1, LCD2 
FCE1, YCE2 

2.67 FCD1, FCD2, FCE2, LCD2, VCG1 
QN, RN, KN 

2.70 EC, QC, LC 
AO, LO, DO, TO, KO 

2.71 NO, QO, SO 

2.73 CO, MO, FO 

2.76 VCG1, LCD2, FCD1, FCE1, FCE2, FCD2, YCE2 

2.78 

VCA, ICA, RCA 
YCD1, YCE1 
ACA, LCB 
AC, LC, EC, QC, TC 

2.80 LCA, FCA, SCA, TCA 
VO, CO, MO, FO, YO, EO 

2.90 LCA, PCA, FCA, SCA, TCA 
LCD1, FCZ 

2.91 AO, VO, LO, CO, MO, FO, YO, NO, EO, QO, SO, TO, KO 
DCA, NCA 

2.93 LCD1, ICD1, FCZ 

2.94 ACB, VCG1, LCD2, FCD1, FCE1, FCE2, FCD2, YCE2, HCE1, GCA  

2.96 ACA, LCA, LCB, PCA, FCA, SCA, TCA 
AN, QN, RN, KN 

2.98 VN, IN 

2.99 IO, RO 

3.00 NN, EN 

3.02 VCG2, TCG2 

3.03 

AC, LC, EC, QC, SC, TC 
VCB, LCG, ICG1, MCG, FCB, NCB 
IO, PO, HO, RO 
WCZ2, WCH2 
VC, FC, KC 
YCB, RCG 
ACA, VCB, LCA, LCB, LCG, ICG1, MCG, PCA, PCB, FCA, FCB, NCB, SCA, SCB, TCA  
DC, NC 
DCA, NCA, ECA, TCB 
KCG, KCD 
LN, FN, YN 

 

Table 3.4: Results of the atom type merging process on KB_Top500. Merges at later iterations encompass those from 
earlier iterations. E.g., at threshold 2.61 atom types CO and MO are combined, and at threshold 2.73, that combined type 
is merged with atom type FO to form a combined atom type representing CO, MO, and FO. 
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Threshold Atom Types Merges 

2.45 SOG, TOG1 

2.51 TO, KO 

2.59 
VCG1, LCD2 
FO, YO 
LCA, FCA 

2.63 SO, GO 

2.64 
AO, VO, LO, FO, YO 
VN, IN 
NO, QO 

2.70 

FCE1, FCD2, YCD1, YCE2, YCD2 
ACA, SCA 
LN, NN, RN 
LCD1, ICD1 

2.73 ACB, VCG1, VCG2, LCD2, ICG2, FCD1, FCE1, FCE2, FCD2, YCD1, YCE2, YCD2  
ACB, VCG2 

2.78 SO, TO, KO, GO 
AO, VO, LO, FO, YO, SO, TO, KO, GO 

2.80 LCA, FCA, KCA 

2.82 
DO, NO, QO 
FC, RC 

2.87 

AC, LC, FC, TC, RC 
VCA, LCA, ICA, FCA, RCA, KCA 
VC, NC, EC 
IO, CO, MO, EO 

2.96 
LCD1, ICD1, FCZ, YCE1 
[ACB, VCG1, VCG2, LCD1, LCD2, ICG2, ICD1, FCD1, FCE1, FCZ, FCE2, FCD2, 
YCD1, YCE1, YCE2, YCD2] 

3.01 

ACA, LCB, PCB, NCB, SCA 
HCE1, GCA 
LN, NN, SN, RN 
VCA, LCA, ICA, FCA, DCA, ECA, RCA, KCA 
DOD1, DOD2 
AC, VC, LC, FC, DC, NC, EC, TC, RC 
AO, VO, LO, IO, CO, MO, PO, FO, YO, EO, SO, TO, RO, KO, GO 
YCA, QCA 

3.04 VCA, LCA, ICA, PCA, FCA, YCA, DCA, ECA, QCA, RCA, KCA 

3.06 HCA, TCA 
VN, IN, TN 

3.09 
HCE1, TCG2, GCA 
VCA, LCA, ICA, PCA, FCA, YCA, DCA, ECA, ECB, QCA, RCA, KCA 

3.14 

YOH, SOG, TOG1 
QCG, KCB 
KCG KCD 
ACA, LCB, PCB, NCB, SCA, SCB 
QC, HC 
LCG, WCB 

 

Table 3.5: Results of the atom type merging process on KB_Top500_1.00vdw. 
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Threshold Atom Types Merges 

1.80 FCE1, YCE1 

1.85 FCE1, YCE1, YCE2 

1.95 

FCD2, YCD1 
FCB YCB 
NCG, GCA 
VCA, ICA 

2.00 FCD2, YCD1, YCD2 

2.05 

ACA, SCA 
FN, RN 
FCE2, WCZ2, WCH2 
NO, KO 

2.10 

LN, FN, RN 
DC, SC 
TCA, RCA 
VCA, LCA, ICA 
VO, GO 

2.15 
VCA, LCA, ICA, QCA, KCA 
FCE1, FCZ, YCE1, YCE2 
NCA, TCA, RCA 

2.20 

ACA, VCA, LCA, ICA, PCA, QCA, SCA, KCA 
YOH, TOG1 
AO, QO, RO 
VO, LO, GO 
FCB, YCB, HCB 

2.25 

AC, DC, SC 
AO, MO, FO, WO, HO, RO 
PCB, PCG 
WCZ3, WCE3 
VO, LO, DO, EO, SO, GO 
LN, FN, NN, RN, KN 
FCG, YCG 
HND1, HNE2 
LCB, RCB 
LC, FC, EC, RC, KC 
FCE1, FCZ, FCE2, YCE1, YCE2, WCZ2, WCH2 
YOH, SOG, TOG1 

2.30 FCD1, FCD2, YCD1, YCD2 
PO, TO 

2.35 

VCB, LCG 
PCB, PCG, DCB, NCB, NCG, ECB, HCD2, SCB, GCA 
NCG, SCB, GCA 
ICG2, FCD1, FCD2, YCD1, YCD2 

2.40 
EN, TN 
ACA, VCA, VCB, LCA, LCG, ICA, PCA, QCA, SCA, KCA 
IN, YN 

 

Table 3.6: Results of the atom type merging process on KB_Top8000. 
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Threshold Atom Types Merges 

1.85 FCE1, YCE2 
FCD2, YCD1, YCD2 

1.90 FCE1, YCE1, YCE2 

1.95 

FCB YCB 
VCA, QCA 
SCB, GCA 
DC, SC 

2.00 YOH, TOG1 

2.05 
FCE1, FCZ, FCE2, YCE1, YCE2  
NO, RO 
AO, LO 

2.10 

VCA, QCA, KCA 
WCZ2, WCH2 
AO, LO, NO, RO, GO 
ACA, SCA, TCA, RCA 

2.15 

ACB, FCD2, YCD1, YCD2 
ACA, VCA, PCA, ECA, QCA, SCA, TCA, RCA, KCA 
ICG1, FCB, YCB 
MO, WO, HO 
LN, FN, RN 
WCZ3 WCE3 

2.20 MO, FO, WO, HO 
AC, LC, FC DC, SC 

2.25 

HND1, HNE2 
HCD2, SCB, GCA 
SO, TO 
ACB, FCD2, YCD1, YCE2 
AO, VO, LO, MO, FO, WO, NO, HO, RO, KO, GO 
FCD1, WCZ2, WCH2 
DCB, ECB 
HCE1, HCD2, SCB, GCA 

2.30 

ACB, FCE1, FCZ, FCE2, FCD2, YCD1, YCE1, YCE2, YCD2 
LCD1, LCD2 
YOH, SOG, TOG1 
AO, VO, LO, MO, FO, WO, DO, NO, EO, HO, SO, TO, RO, KO, GO 
DCG, ECD 

2.35 

ACA, VCA, VCB, LCB, LCG, PCA, DCB, ECA, ECB, QCA, SCA, TCA, RCA, KCA 
PCB, PCG 
YCG, WCG 
HCB, KCB 
FCD1, WCZ2, WCH2, WCZ3, WCE3 
AC, LC, FC, YC, DC, SC, TC, RC, KC 

2.40 ACB, FCE1, FCZ, FCE2, FCD2, YCD1, YCE1, YCE2, YCD2, HCE1, HCD2, SCB, GCA 

 

Table 3.7: Results of the atom type merging process on KB_Top8000_1.00vdw. 
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3.3.2 Performance of the Generated Hybrid MM/KB Potentials in PEM 

Each generated potential has been applied in PEM on both the CASP and decoy datasets. The 

performance with respect to the two criteria (Section 3.2.2.2) of all generated potentials is 

compared against KB_0.1. The performance of the base four potentials, KB_Top500, 

KB_Top500_1.00vdw, KB_Top8000, and KB_Top8000_1.00vdw will be presented, followed by 

the performance of the merged atom types PMFs derived from them. The impact of the starting 

database selection and of the atom type merging process will be presented. 

3.3.2.1 The Baseline: KB_0.1’s Performance 

Before discussing any modifications to the hybrid KB/MM potential, a control must first be 

established. The decoy dataset has a starting <<rmsd>> of 1.872 Å. For this dataset, 

KB_0.1 improves <<rmsd>> to 1.637 Å. Its mean PI over all of the decoy sets is -12.69%. 

When applied to the natives, KB_0.1 results in a mean perturbation of 0.36 ± 0.12 Å. It is 

useful to evaluate potentials based on their ability to refine structures at various distances 

from the native. Figure 3.5 shows KB_0.1’s performance in PEM on sets of NNSMs in the 

decoy dataset that fall in increasing ranges of starting RMSD from the native. 

 

Figure 3.5: KB_0.1’s ability to minimize the decoy dataset relative to starting RMSD from native. Performance 
measured by average PI on the models that fall within each RMSD range. 
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The CASP dataset has a starting <<rmsd>> of 2.951 Å. KB_0.1 improves <<rmsd>> 

to 2.918 Å. Its mean PI over all CASP target sets is -1.78%, and when applied to the native, 

it perturbs them by an average of 0.39 ± 0.20 Å. KB_0.1’s performance as a function of starting 

model RMSD is given in Figure 3.6. The number of models in each starting RMSD range for both 

datasets is given in Table 3.9. 

3.3.2.2 The Performance of the KB_Top500, KB_Top500_1.00vdw, KB_Top8000, and 
KB_Top8000_1.00vdw Potentials 

The four KB potentials generated from the different starting database were evaluated based on 

their performance according to both evaluation criteria and were compared against KB_0.1. Table 

3.8 summarizes the results. A couple of factors are immediately noticeable. First, choosing a larger 

starting database does not increase performance. By both evaluation criteria, the Top8000 

potentials perform worse. First, they significantly alter the atomic coordinates of the native 

structures, greater than the criterion tolerance threshold of 0.80 Å RMSD. They also perform 

 

Figure 3.6: KB_0.1’s ability to minimize the CASP dataset relative to starting RMSD from native. Performance 
measured by average PI on the models that fall within each RMSD range. 
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worse overall in minimization. Over the CASP dataset, their use results in a net degradation of 

model quality. Reasons for its performance will be discussed. The performance differences 

between KB_0.1 and both Top500 

potentials is slight. KB_Top500 is the best 

performer across both datasets, but its 

advantage, 0.004Å and 0.002 Å is so slight 

that it is negligible. For the Top500 PMFs, 

eliminating clashes did not improve their 

performance, although for the Top8000 

PMFs, it did, but once again, by a small 

amount. Comparing all five potentials with 

respect to their performance as minimizers 

of models at varying levels of starting RMSD 

to the native shows an interesting trend 

(Figure 3.7). On the decoy dataset, while the 

Starting 
RMSD Range 

# NNSMs 
Decoy Dataset CASP Dataset 

[0.50, 0.75) 2006 623 

[0.75, 1.00) 2048 1355 

[1.00, 1.25) 2042 2039 

[1.25, 1.50) 2000 2426 

[1.50, 1.75) 1962 3474 

[1.75, 2.00) 1936 3686 

[2.00, 2.25) 1866 4354 

[2.25, 2.50) 1826 4506 

[2.50, 2.75) 1713 5097 

[2.75, 3.00) 1514 4751 

[3.00, 3.25) 1163 4668 

[3.25, 3.50) 674 4285 

[3.50, 3.75) 338 3882 

[3.75, 4.00) 189 3174 

[4.00, 4.25) 107 2607 
[4.25, 4.50) 67 2391 

[4.50, 4.75) 34 2004 

[4.75, 5.00) 23 1839 

 

 Decoy Dataset CASP Dataset 

 Native 
Perturbation Mean PI <<rmsd>> Native 

Perturbation Mean PI <<rmsd> 

KB_0.1 0.36 ± 0.12 -12.69 % 1.637 0.39 ± 0.20 -1.18 % 2.918 

KB_Top500 0.34 ± 0.11 -12.89 % 1.633 0.38 ± 0.14 -1.26 % 2.916 

KB_Top500_1.00vdw 0.34 ± 0.14 -12.50 % 1.640 0.53 ± 0.15 -1.21 % 2.917 

KB_Top8000 0.92 ± 0.34 -8.52 % 1.715 0.97 ± 0.35 1.81 % 2.980 

KB_Top8000_1.00vdw 0.94 ± 0.36 -8.89 % 1.708 0.96 ± 0.33 1.66 % 2.976 

 

Table 3.8: Performance summary of KB_0.1 and four base PMFs. Native perturbations are given as the 
average RMSD (Å) with standard deviation over all natives in the set. Mean PI is the average of a potential’s 
PI across all of a dataset’s decoy or model sets. Starting <<rmsd>> of the Decoy Dataset is 1.87 ± 0.22 Å and 
of the CASP Dataset is 2.95 ± 0.85 Å. 

Table 3.9: Decoy and CASP Dataset model counts and 
starting RMSD distribution. 
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Top8000 potentials degrade models at low starting RMSD, they outperform the other potentials at 

higher levels of starting RMSD.  

3.3.2.3 Performance of the Merged Atom Types Potentials 

All 61 potentials generated from the atom type merging process (listed in Table 3.3) were 

evaluated against both criteria. Figures 3.9, 3.10, 3.11, and 3.12 give the native perturbation and 

performance in minimization on the decoy dataset of the potentials using the merged atom types 

PMFs generated from KB_Top500, KB_Top500_1.00vdw, KB_Top8000, and 

KB_Top8000_1.00vdw respectively. First, it can be noted that potentials containing merged atom 

types PMFs derived from the KB_Top500 performed better than KB_0.1 and KB_Top500 in 

structure refinement (Figures 3.9 top and 3.10 top). They also perturbed the natives more (Figures 

 
 
Figure 3.7: The performance KB_0.1 and four base potentials in minimization with respect to model starting 
RMSD. The chart has been truncated to a maximum PI of 10%. The PI values for KB_Top8000 and 
KB_Top8000_1.00dw for the first and second bins are 65% and 26%, and 63% and 26% respectively. The 
Top8000 potentials perform worse than the other potentials for models close to the native but outperform the 
other potentials when the model is further from the native. Ranges above 4.00 Å were omitted due to a lack of 
decoys at those distances. 
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3.9 bottom and 3.10 bottom). The maximum mean RMSD over the minimized natives was 0.50 ± 

0.17 Å (KB_Top500_1.00vdw_3.14), still well within the acceptable tolerance of 0.80 Å. 

 As expected, based on the performance of KB_Top8000 and KB_Top8000_1.00vdw, the 

merged atom types potentials generated from these PMFs did not perform well by either criterion. 

They significantly perturbed the natives, and they performed worse than KB_0.1 for minimization. 

Merging atom types for the Top8000 PMFs did not result in improvement in PEM for structure 

refinement. 

Applied to the decoy dataset, of all potentials tested, the best performing is 

KB_Top500_2.98 with 124 atom types. Figure 3.8 gives its list of combined atom types. Its mean 

deviation in RMSD of the natives is 0.44 ± 0.14 Å, and it minimized the structures in this dataset 

to a <<rmsd>> of 1.617 Å from the starting <<rmsd>> of 1.872 Å, an improvement in <<rmsd>> of 

0.02 Ã over KB_0.1 (<<rmsd>> = 1.637 Å). Figure 3.14 compares this potential against 

KB_Top500 and KB_0.1 in PEM of each of the sets in the decoy dataset and shows that, as 

expected, KB_Top500_2.98 outperforms both KB_Top500 and KB_0.1 as a structure minimizer. 

   

 
• AO  VO  LO  CO  MO  FO  YO  DO  NO  EO  QO  SO  TO  KO 
• AC  LC  EC  QC  TC 
• AN  QN  RN  KN 
• VN  IN 
• ACA  LCA  LCB  PCA  FCA  SCA  TCA 
• VCA  ICA  RCA 
• DCA  NCA 
• LCD1  ICD1  FCZ 
• YCD1  YCE1 
• ACB  VCG1  LCD2  FCD1  FCE1  FCE2  FCD2  YCE2  HCE1  GCA 
• SOG  TOG1 

Figure 3.8: The combined atom types in KB_Top500_2.98. This potential contains 13 combined 
atom types. For a combined type, the counts for the individual atom types have been summed across 
bins and a single energy curve generated from these combined types that represents all component 
atom types 
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Figure 3.9: Performance of KB_Top500 and its merged atom types PMFs. KB_0.1 is included for 
reference. Each merged atom types PMF is denoted by its merge threshold. Top. Evaluating Criterion 1, 
the ability of the potentials to minimize NNSMs. While the difference in minimized <<rmsd>> between 
potentials is small, a trend is observed. Combining atom types results in a net improvement in the ability 
to minimize structures. The best performing potential is KB_Top500_2.98 which achieves a <<rmsd>> 
0.02 Å better than KB_0.1. Bottom. Evaluating Criterion 2, that the potentials should not significantly 
perturb the natives. The mean RMSD over all refined natives is given. As the number of combined atom 
types increases, the resulting potentials perturb the natives more, but all within the acceptable tolerance 
of < 0.80 Å. 
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Figure 3.10: Performance of KB_Top500_1.00vdw and its merged atom types PMFs. KB_0.1 is 
included for reference. Each merged atom type PMF is denoted by its merge threshold. Top. Evaluating 
Criterion 1, the ability of the potentials to minimize NNSMs. While the difference in minimized 
<<rmsd>> between potentials is small, a trend is observed. Combining atom types results in a net 
improvement in the ability to minimize structures. The best performing potential is 
KB_Top500_1.00vdw_2.87. Bottom. Evaluating Criterion 2, that the potentials should not significantly 
perturb the natives. The mean RMSD over all refined natives is given. As the number of combined atom 
types increases, the resulting potentials perturb the natives more, but all within the acceptable tolerance 
of < 0.80 Å. 
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Figure 3.11: Performance of KB_Top8000 and its merged atom types PMFs. KB_0.1 is included for 
reference. Each merged atom type PMF is denoted by its merge threshold. Top. Evaluating Criterion 1, 
the ability of the potentials to minimize NNSMs. Merging atom types on PMFs derived from the 
Top8000 database does not result in improved performance in structure refinement. Bottom. Evaluating 
Criterion 2, that the potentials should not significantly perturb the natives. The mean RMSD over all 
refined natives is given. The KB_Top8000 potential and all potentials containing merged atom types 
PMFs derived from it significantly perturb the native. 
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Figure 3.12: Performance of KB_Top8000_1.00vdw and its merged atom types PMFs. KB_0.1 is 
included for reference. Each merged atom type PMF is denoted by its merge threshold. Top. Evaluating 
Criterion 1, the ability of the potentials to minimize NNSMs. Merging atom types on PMFs derived from 
the Top8000_1.00vdw database does not result in improved performance in structure refinement. 
Bottom. Evaluating Criterion 2, that the potentials should not significantly perturb the natives. The mean 
RMSD over all refined natives is given. The KB_Top8000_1.00vdw potential and all potentials 
containing merged atom types PMFs derived from it significantly perturb the native. 
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Applied across the CASP dataset, the merged atom types potentials do not result in 

significant improvement in the refinement of the structures (Figure 3.13). The potential with the 

best <<rmsd>> for this dataset (KB_Top500_2.70, <<rmsd>> = 2.914 Å) only improves <<rmsd>> 

by 0.004 over KB_0.1 (<<rmsd>> = 2.918Å). The results for the KB_Top500_1.00vdw potentials 

were similar with the best improvement in <<rmsd>> over KB_0.1 being 0.002 Å 

(KB_Top500_1.00vdw_2.70, coincidentally of the same threshold). The merged atom types 

potentials derived from KB_Top8000 and KB_Top8000_1.00vdw resulted in net degradation of 

the structures. 

 

 

 
Figure 3.13: Performance of KB_Top500 and its merged atom types PMFs on the CASP dataset. On this dataset, 
minimizing structures with KB_500, KB_500_1.00vdw, and their derived merged atom types PMFs did not result 
in significant improvement of <<rmsd>> relative to KB_0.1. The best performing potential of the KB_Top500 set 
of PMFs improved <<rmsd>> by 0.004 Å relative to KB_0.1. 
 



 

 51 

  

  

Mean Percent Change in RMSD 

Se
t N

am
e 

Figure 3.14: PEM using KB_0.1, KB_Top500, and KB_Top500_2.98 on the decoy dataset. The PI of each set with 
respect to starting and ending mean NNSM RMSD from the native is given. The performance of three potentials is 
presented: KB_Top500_2.98, KB_Top500, and KB_0.1. KB_Top500_2.98 is the best performing potential of all 
tested with respect to PEM over this decoy dataset. It was derived via the atom type merging process applied to 
KB_Top500. 



 

 52 

 

3.3.2.4 Summary 

PMFs generated from the four databases (Top500, Top500_1.00vdw, Top8000, and 

Top8000_1.00vdw) along with PMFs derived from these original four potentials via the atom type 

merging process were all used as the KB components of hybrid MM/KBs potential. Each hybrid 

potential was tested in PEM over the CASP and decoy datasets. Their performance was evaluated 

against two criteria: first, their ability to not perturb the coordinates of the native structures, and, 

second, their ability to improve the <<rmsd>> of the datasets as compared against KB_0.1.  

The potentials generated from the Top8000 and Top8000_1.00vdw databases performed 

poorly with respect to both criteria (Table 3.8, Figures 3.12 and 3.13). They significantly perturbed 

the natives, and they did not improve <<rmsd>> with respect to KB_0.1. On the CASP dataset, 

they overall degraded the structures. The potentials generated from the Top500 and 

Top500_1.00vdw databases performed on average better than KB_0.1, with the atom type merging 

process further improving their ability to refine structures (Table 3.8, Figures 3.10 and 3.11). With 

respect to database selection, filtering out all structures with clashes did not result in improved 

performance for the potential derived from the Top500 database, but did for the Top8000 

database (Table 3.8). 

The potential that performed best in PEM over the decoy dataset was KB_Top500_2.98 

with 124 atom types (combined types listed in Figure 3.9) in the KB component. It reduced the 

decoy dataset’s <<rmsd>> from 1.872 Å to 1.617 Å.  

3.4 Discussion 

This work set out to address several questions pertaining to the generation of knowledge-based 

potentials of mean force. First, does generating PMFs from a larger structural database allow for 
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smoother pairwise energy curves to be produced which would in turn allow PEM to more easily 

move across the energy surface in search of the global minimum without getting trapped in local 

minima? Likewise, would removing structures from structural databases that have steric clashes, 

thus eliminating unnatural artifacts clashes produce in the pairwise energy curves of PMFs, 

improve the performance of the potentials in PEM? Lastly, are all 167 atom types necessary in the 

formulation of a PMF? Are some of them redundant? That is, are there atom types that are so 

characteristically similar within proteins that they can be merged into a single atom type, leveraging 

the combined statistics of two or more atom types to better represent them all? Furthermore, 

would doing so produce PMFs that when used in hybrid KB/MM potentials for PEM, allow the 

refinement process to better minimize structures? 

3.4.1 Generating KB Potentials from a Larger Structure Database 

Conclusively, the KB/MM potentials containing PMFs generated from the larger structure 

database (Top8000) led to worse PEM performance. On the CASP dataset, their use resulted in 

net degradation of the structures. This result is the most instructive result of this set of 

experiments. Generating PMFs from the larger database did result in smoother energy functions 

(Figure 3.15), but that did not allow for structures to better be minimized toward the global 

minimum. Instead, it allowed PEM to make large changes to structures, potentially moving them 

away from the native. If we let << HiÉO >>x+/*. indicate the double mean RMSD (as defined in 

section 3.2.2.2) over all sets in a testing dataset  with respect to the minimized vs starting state of the 

models, then << HiÉO >>x+/*. indicates how much refinement alters the models in a dataset 

during minimization. PEM with KB_Top500 resulted in << HiÉO >>x+/*. of 0.70 ± 0.18Å on 

the decoy dataset and 0.52 ± 0.15Å on the CASP datasets, whereas PEM using KB_Top8000 
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resulted in << HiÉO >>x+/*. of 1.42 ± 0.30 Å and 1.28 ± 0.32 Å for the decoy and CASP 

datasets respectively. KB_Top8000 significantly altered the structures. 

 To summarize these results, KB_Top500 makes small changes to structures, consistently 

improving them, whereas KB_Top8000 makes large changes to models and is much more volatile 

in its minimizations. Furthermore, consistently large perturbations of the natives (Figures 3.11 and 

3.12) by KB_Top8000 indicate that it does not have a strong attractor basins around the natives. 

Interestingly, as Figure 3.7 shows, KB_Top8000 favors structures that are further from the native. 

On the decoy dataset, for structures in the 3.00 – 3.25 Å range for model starting RMSD, 

KB_Top8000 on average improves them by 17.50%, a significant improvement. For a structure 

with an RMSD from the native the middle of that range, KB_Top8000 on average moves it from 

3.12 Å RMSD to 2.57 Å RMSD towards the native. While that is an impressive improvement, 

 
Figure 3.15: Comparison of HNE2-TOG1 energy curves generated from the Top500 and Top8000 databases. The 
energies are calculated using Lu and Skolnick’s formalism. The curve generated from the Top8000 database is 
significantly smoother than the energy curve generated from the Top500 Database, indicating that the larger set of 
statistics will result in smoother energy surfaces.  
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starting model distance from the native is not foreknown, and with large possible reward comes 

large risk as is evidenced by KB_Top8000’s general poor performance. This dynamic between 

risky refinement methods with a large possible improvements and conservative methods with 

consistent but small improvements has been observed and documented in recent CASP 

experiments [59]. 

 It’s possible that with too large a statistical dataset, the energy curves became too 

generalized and featureless, embodying large features such as hydrogen bonds, but losing many 

small but important features of atomic interactions, and it may be these small features that are 

crucial to a KB potential’s performance. It may also be the roughness which prevents structures 

from moving too far, creating a conservative but consistent potential for refinement. Contrary to 

expectations, rather than a smoother energy curve allowing for larger improvements in refinement, 

it may be that the rough energy surface of KB_Top500 allows it to be successful in PEM, 

consistently making small improvements.  

3.4.2 Eliminating Structures with Clashes from the Databases 

While the Richardson lab filters structures for clashes when building their databases, they allow 

some clashes in the database as long as their proportion is sufficiently small. For statistical 

potentials, any clash will introduce artifacts into the energy surface. Therefore, when selecting 

structures for as statistical database, a strict policy of no clashes should be enforced. In building the 

KB potentials in this work, a simple policy was enforced: if any structure had a van der Waals 

overlap > 1.00 Å (based on standard atomic radii) for any non-bonded and non-hydrogen bonded 

atom pair, that entire structure was discarded. As a result, for the Top500_1.00vdw and 

Top8000_1.00vdw databases, 51 and 468 structures were discarded respectively from the original 

databases. KB_Top500_1.00vdw did not outperform KB_Top500 as a potential for PEM. In fact, 
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KB_Top500_1.00vdw and its set of merged atom types PMFs performed slightly worse than 

KB_Top500 and its set of merged atom types PMFs.  

For the Top8000 PMFs, eliminating all clashes did result in improved performance. This 

may be due to two factors. First, 468 structures were removed from the Top8000 database, 

eliminating 2053 clashes, an order of magnitude more than the 220 clashes that were eliminated by 

removing 51 structures from the Top500 database. An order of magnitude more clashes may have 

had a larger negative effect on the Top8000 PMF than the fewer clashes incorporated into 

KB_Top500. Secondly, the KB_Top500_1.00vdw may have been negatively impacted by the 

statistical loss of the structures. As already discussed, the larger statistical dataset used to generate 

the Top8000 PMFs resulted in smoother energy curves, arguably too smooth as it allowed those 

PMFs to make large inconsistent (with respect to moving towards native) changes to models. 

Removing some of Top8000 statistical dataset may have been beneficial to the potential’s 

performance in PEM. On the other hand, for KB_Top500_1.00vdw, the statistical loss may have 

outweighed the benefit of eliminating energetic artifacts due to clashes.  

3.4.3 Combining Atom Types in PMFs 

The question was posed as to whether or not classifying atoms into all 167 residue-specific heavy 

atom types is optimal for a KB potential. An iterative atom type merging algorithm based on the 

similarity of multiple atom types’ energy curves was used to derive sets of PMFs containing merged 

atom types. Each base PMF (KB_Top500, KB_Top500_1.00vdw, KB_Top8000, and 

KB_Top8000_1.00vdw) was used as a starting PMF on which the merging algorithm was run. 

Reasonable combinations of atom types were merged: the hydroxyl groups of serine and 

threonine, carbons from hydrophobic residues, and, as a general pattern, atom types of the same 

element and position on the backbone or in the side chains of the residues. 
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 In general, the merged atom types PMFs derived from KB_Top500 and 

KB_Top500_1.00vdw performed better than the PMF they were derived from. For the Top8000 

PMF sets, the opposite was true. Combining atom types within those potentials did not yield 

improved performance in PEM. For the Top500 PMFs, combining similar atom types may have 

had two benefits. One, it may have allowed similar atom types to leverage their combined statistics 

into energy curves that better represent them, and, two, the smoother potentials of the combined 

atom types may have given minimization more latitude to move the models and explore the energy 

surface. As stated above, for minimization using KB_Top500, << HiÉO >>x+/*. of the decoy set 

was 0.70 ± 0.18Å. For the best performing merged atom types PMF (KB_Top500_2.98), 

<< HiÉO >>x+/*. was 0.82 ± 0.20 Å. With the only difference between these two potentials 

being that KB_Top500_2.58 contains a set of merged atom types, the merging process smoothed 

some of the energy curves, allowing beneficial movement of the structures to achieve better 

minimization than the base KB_Top500 potential (Figure 3.9).  

 Taken together, the performance of the resulting potentials from the atom type merging 

process for both the Top500 and Top8000 PMFs indicate that if the statistical database is large 

and the energy surface of a potential is already smooth, then combining atom types will not result 

in net improvement for PEM, but if the energy surface of a PMF is rough, then combining atom 

types may improve performance.  

3.4.4 Conclusions 

Taken together, these experiments – using a larger statistical dataset, eliminating clashes, and 

merging atom types – suggest that there exists some size of a statistical dataset between that of the 

Top500 and Top8000 databases that will generate PMFs for hybrid KB/MM potentials that can 

achieve larger improvements in refinement while still maintaining consistency. The Top8000 



 

 58 

database is too large a dataset because its use results in energy curves that are too featureless and 

smooth, allowing for too much freedom of movement and often degrading models in refinement. 

On the other hand, the negative effect of eliminating structures with clashes from the Top500 

database, suggesting sensitivity to the loss of statistics, and the positive effect of merging atom types, 

resulting in some smoother energy curves and more movement of the structures in minimization, 

indicate that KB potentials could benefit from having a larger dataset than the Top 500 database. It 

is not clear whether combining atom types was key to improved performance or if the 

improvement was due to the better statistical representation and reduced roughness of the energy 

curves for the combined types. Lastly, even though the removal of structures with clashes had a 

negative impact on the performance of KB_Top500_1.00vdw, it is more likely that the negative 

effect was caused by the reduced statistical dataset rather than some missing positive effect of the 

energetic artifacts caused by the clashes. 

 Finally, the CASP dataset was chosen as a real-world dataset for testing. The generation of 

the decoy dataset ensures that the decoys are on an accessible path from the native. Smooth shifts 

are made to the structures and there should be no major energy barriers on the way to the native. 

On the other hand, the CASP dataset consists of models with no guarantee that there are no major 

problems such as issues with side chain packing that must be resolved to get to the native. PEM 

using potentials such as those explored in this chapter is not intended to make large changes in 

structures and is designed to evaluate and address issues with side chain packing. The CASP 

dataset therefore a much harder dataset and this is evident in the results. Whereas the best 

potential could improve the decoy dataset <<rmsd>> by 0.25 Å, it could only improve the CASP 

dataset <<rmsd>> by 0.03 Å. This indicates that conservative methods for structure refinement 

such as PEM are not enough for the current quality of predicted models. The method of PEM 



 

 59 

should be included as part of a pipeline for structure refinement, as it done by the KoBaMin 

server (which uses KB_0.1) [92] and the Feig group [51]. 

3.4.5 Future Work 

Future work includes identifying the optimal size for the statistical database. It is possible that the 

optimal size is somewhere between the Top500 and Top8000 databases. The goal is to balance a 

potential’s ability to provide an energy surface that can be traversed, yet still consistently move 

models towards the native.  

Another potentially lucrative avenue is in examining the composition of the database. 

Much progress has been made with using existing homology information and, recently, coevolution 

residue contact information [56] in the prediction of protein structures. PMFs generated in this 

work were general and meant to be generally applicable. Given the breadth of the CATH and 

SCOP2 databases, it should be possible to use sequence and homology information to select 

and/or seed structural databases for PMF generation with structures from the same fold as the 

structure that is being minimized. Since a PMF embodies the patterns discovered in native 

structures, why not use related and similar structures to generate PMFs specialized for individual 

families and/or folds of proteins? Specialized fold-specific potentials may be better able to refine 

structures of that fold than more general potentials such as the ones generated and analyzed in this 

work.  
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Chapter 4 
 
 
 
 

 A Novel Graph Theoretical Protein Structure Comparison and 
Analysis Technique 
 
 
 
 

4.1 Motivation 

Protein structure comparison remains a non-trivial task. Whether for analyzing the results of 

different protein structure predictors, different conformations of the same protein, or similar 

conformations of related proteins, the comparison and analysis of differing and complex three-

dimensional structures is a difficult yet fundamental task.  

In the bi-annual Critical Assessment of Protein Structure Prediction (CASP) experiment, 

methods to compare and analyze protein structures are of critical importance in the evaluation of 

the experiment [15]. For each CASP, sequences for proteins whose structures have been 

empirically solved but not yet published are released to protein structure predictors. Predictors 

generate structure models for these sequences which are then compared against the known 

structures and ultimately ranked to determine which predictors produce the most reliable 

structures. Not only are individual predictors judged, but also is the field as a whole in order to 

determine how well protein structure prediction is advancing from one CASP experiment to the 

next. The methods used to compare protein structures need to be intuitive yet powerful enough to 

able to evaluate and rank complex 3-dimensional structures. There are many competing priorities 
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for protein structure comparisons. Should models be ranked according to their global fit? Or their 

local accuracy? Are the side-chains packed correctly? Or is backbone geometry the important 

factor? To account for the often-orthogonal pull of differing comparison priorities, many methods 

of comparison have been designed.  

The organization of this chapter is as follows. The next section discusses important 

considerations when analyzing and designing techniques for protein structure comparison. After 

that, a review of prominent techniques for protein structure comparison is given. Following the 

review, a novel technique is then proposed that allows for a deep analysis of structural similarities. 

This method identifies exactly all of the parts of two structures that are the same, presenting 

information about structure pairs that no other technique provides. 

4.2 Important Considerations for Methods that Compare Protein Structures 

Ideally, methods to analyze the similarities of and differences between protein structures should 

have certain properties [93]: They should be quantitative and visualizable (i.e. they should produce 

an overall metric but rely on underlying information that can easily be visualized in a meaningful 

way). They should not only allow analysis across large data sets, but also allow insightful analysis 

into individual comparisons. They should be stable against large variations in small parts of the 

structures (i.e. large swings in variable loops or at the termini of a structure should not result in 

large leaps in the similarity score). Finally, any new method should provide information that is not 

easily accessible from other measures, and their assessments should be intuitive to understand.  

It is important to note that in protein structure comparison there is a distinction between 

the global and local accuracy of structures and that these two directions of structure analysis are 

often orthogonal. Globally accurate structures are those which orient the tertiary components of 
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structures, such as domains, correctly relative to each other while locally accurate structures are 

those that get the details of the components correct. Structures which are globally accurate might 

not be locally accurate and vice versa. For example, domain movements in multi-domain structures 

will contribute to a poor global score even if the domains themselves are locally accurate. 

Balancing the orthogonal pull of the analysis global versus local accuracy remains a key difficulty in 

protein structure analysis. 

4.3 Existing Metrics 

Given the complexity of protein structures and the reality that desired properties for a protein 

structures comparison metric can conflict, a many metrics have been developed. At its most basic 

level, when comparing protein structures, a set of correspondences between reference points 

(usually the a backbone carbon atoms, or Cas) in one structure to reference points in the other is 

required, and it is based on these correspondences that differences and similarities in the two 

 Figure 4.1: Correspondences for structural comparison. 1rop and an artificially modified version of it. In this 
example, the correspondences are the distances between the Cas of analogous residues in the superposed 
structures.  In cases where the comparison isn’t between identical proteins, analogous residues are determined via 
sequence alignment. 
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structures can be assessed (Figure 4.1). Broadly speaking, there are two major categories of 

methods for protein structure comparison, superposition-based methods and contact-based 

methods, the difference between them being how the correspondences are determined. 

4.3.1 Superposition-Based Metrics 

In superposition-based methods, the correspondences between structures are the distances 

between analogous Cas following a superposition of one structure onto another. The optimal 

superposition is determined by finding the transformation of one structure onto the other that 

minimizes the Root Mean Square Deviation (RMSD) of the corresponding Cas between the 

structures. The RMSD can be returned as a score for the two structures but it suffers a couple of 

drawbacks. The major drawback is that RMSD is calculated by taking the square of the errors. The 

parts of the structures with the largest errors will dominate the score. Consequently, structures that 

are similar throughout but have a small part that is very different, such as a loop, will receive poor 

scores. Figure 4.2 shows human estrogen receptor a in two conformations which differ only in the 

terminal alpha helix’s orientation yet have an RMSD of 6.24 Å. The other major drawback of 

 

Figure 4.2: Human estrogen receptor a in two conformations. These conformations only differ in the orientation 
of the terminal alpha helix, yet they have an RMSD score of 6.24 Å.	PDB	accession	codes:	1R5K,	1A52. 
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RMSD is that the analysis of the errors is difficult. If, for example, one wanted to compare a model 

against the native to identify which parts were well-modeled and which were not, the superposition 

errors cannot be used because they are ambiguous. Is any particular error due to an intrinsic 

difference at that location or an unfavorable superposition? Figure 4.1 is a contrived, but good 

example of this. The superposition errors of the left helix increase from the hinge to the terminus, 

but the helix as a whole as well modelled as the right helix. They are both identical to the reference 

structure. It is the superposition that gives the left helix its large errors.  

4.3.1.1 Local Global Alignment: GDT & LCS 

The Local Global Alignment (LGA) method was developed to overcome the shortcomings of 

RMSD [21]. LGA consists of two complementary components, the Global Distance Test (GDT) 

and the Longest Continuous Segments (LCS) algorithm. The idea behind LGA is that rather than 

relying on a single global superposition of the two structures, multiple superpositions can be used 

to identify regions of similarity that could not be identified in a single global superposition. 

With the GDT component of LGA, the goal is to find the largest set of residues that can 

be superimposed under some distance threshold. More specifically, for a given distance threshold 

O, GDT finds the largest set of residues that can be superimposed where no corresponding pair of 

residues has a distance greater than the threshold. This in effect finds the largest region of global 

similarity between the structures under that threshold where “global” refers to sequence. The 

residues in the region can come from anywhere in the protein sequence. Within LGA, GDT uses 

thresholds from 0.5 Å to 10.0 Å in increments of 0.5 Å. For each threshold, GDT produces a 

score, the percent of residues that are in the region under that distance cutoff. 

While the GDT component focuses on global regions, the LCS component is designed to 

identify regions of local similarity. LCS finds the longest continuous – within the sequence – 
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segments of the structures that can be superimposed under some RMSD cutoff. The cutoff is an 

important distinction. Whereas GDT finds the maximum number of residues that can be 

superimposed and whose distances all fall under a threshold, LCS finds a largest continuous 

segment of the sequence that can be superimposed who’s total RMSD falls under a threshold. For 

a set of residues, the goal isn’t to minimize the distances, but to minimize the RMSD of that set. 

This has a major consequence for LCS. Choosing RMSD as the selection criterion allows for 

optimal similarity information for a region. In comparison, because GDT’s goal is to minimize the 

distances between all the residues in the region, it cannot guarantee optimal results, only an 

approximation. Within LGA, LCS is run with default thresholds of 1.0, 2.0, and 5.0 Å. Like GDT, 

for each threshold, LCS returns the percent of residues in the longest continuous segment under 

that RMSD cutoff. The LGA program also includes in its output the RMSD of each region. 

In order to combine the global information from GDT with the local information from 

LCS, LGA calculates a total score for a pair of structures as a weighted sum of scores calculated for 

the GDT and LCS components. Using a weight factor w (0.0<= w <= 1.0), the LGA score is 

defined as 

ÖÜá_h = â ∗ h(ÜnR) + (1 − â) ∗ h(Öah) 

(4.1) 

where S(F) is itself a weighted sum of the percent of residues that can fit under each threshold for 

that component. Lower valued thresholds are weighted more heavily, and the total sum is divided 

by a factor based on the number of thresholds used. S(F) is thus defined as follows: 

 
 
 
 
 



 

 66 

 X = 0; 
 for threshold vi in v1, v2, …, vk { 
  Y = (k – i + 1)/k; 
  X = X + Y*F_vi; 
 } 
 S(F) = X /((1 + k)* k/2); 

While LGA_S combines the local information from LCS and the global information from 

GDT into a single score, it is the GDT component of this score that has made its way into 

prominent use. The GDT component is used as a key metric in the evaluation of the CASP 

experiments [15]. From it, a GDT_TS score is calculated as the average of the percent of residues 

under distance cutoffs (1.0, 2.0, 4.0, 8.0). A high accuracy version, GDT_HA can be calculated 

using cutoffs (0.5, 1.0, 2.0, 4.0).  

GDT works well when comparing structures which have only a single domain but cannot 

handle structures with multiple domains. If two dual-domain structures are the same except that 

the domains are shifted relative to one another, GDT will count the residues in the larger domain 

as matching and omit the residues in the smaller domain because GDT maximizes the number of 

residues that can be optimally superimposed. If the domains are close in size, GDT will give a 

poor score for the comparison even though the structures may overall be very similar. The 

problem is that GDT is not designed to identify multiple regions of similarity in a structure, only 

the largest one. This limits GDT to working on either single domain structures, or those structures 

whose domains are known and whose domains can be analyzed one by one. While the issue is 

phrased in the language of domains, the core problem applies even to single domain structures. If 

secondary structures within a domain are shifted relative to each other, the same results will occur. 

Only the largest region will be identified. Whether analyzing multi-domain structures or single 

domain structures, smaller regions of similarity are omitted from the score and analysis by GDT. 
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4.3.1.2 TM-Score	

The Template Modelling Score (TM-Score), developed by Zhang and Skolnick, was developed as 

a tool to assess the quality of protein structure threading templates and the predicted models from 

those templates [94]. Motivated by the metrics that came before it, it was also developed to address 

two issues common to existing metrics. The first is that metrics such as GDT, which are based on 

the percent of residues that fit under a sets of distance cutoffs, discard detailed error information 

by treating all residues within a cutoff band – for example, [4, 8) Å – as identical contributions to 

the score. The second issue that is that the magnitude of many metrics is dependent on the size of 

the input structures. The same score for a pair of small proteins and a pair of large ones can have 

different meanings. For example, as Zhang and Skolnick point out, an absolute GDT score of 0.4 

can reflect significant similarity between structures of size 400 residues but could indicate a near 

random selection from the PDB for small structures of size 40 residues.  

 Motivated by the Levitt-Gerstein score [95], the TM-score is defined as 

RmhpãHå = m\ç
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(4.2) 

where Ör is the length of the native, Öô is the length of the aligned residues to the template, O-	is 

the distance between the M*ö pair of aligned residues, and O% is a normalization factor to eliminate 

the dependence of the score on the size of the structures. O% is defined as  

O% = 1.24úÖ, − 15
ù − 1.8 

(4.3) 
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It approximates an estimation of the average distance of corresponding residue pairs in random 

related proteins in the TM-score superposition. Max indicates that the maximum TM-score is 

selected and returned after an iterative search finds the optimal superposition of the template to 

the native structure that maximizes the TM-score.  

The TM-score search process goes as follows. Starting from an initial fragment of Ö-,* 

neighboring residues aligned onto the native, this fragment is superimposed to the corresponding 

residues of the native. Then, all the residues in the template with a distance to the native of less 

than O% are included in the fragment and the fragment is superimposed onto the native again. This 

repeats until the rotation matrix converges. This process is performed for an extensive set of initial 

fragments, determined from a set of initial fragment sizes – Öô, Öô 2⁄ , Öô 4⁄ , Ö, 4	–  each of which, 

if less than Öô, are windowed across the template from N- to the C-terminus to give the fragments. 

The result of the whole procedure is a near-optimal superposition of the template onto the native 

which maximizes the TM-score. The TM-score cannot be guaranteed to be the maximum, but an 

experiment performed by the authors showed that tripling the search with additional randomly 

selected initial fragments improved the TM-score of a small percent of their test set (6%) by only a 

negligible amount (<0.002). 

The inclusion of the normalization factor O% successfully eliminates dependence of the 

score on the size of the structures. Regardless of size, random unrelated protein pairs should have 

a TM-score of » 0.17. It can therefore be said that TM-scores £ 0.17 indicate unrelated proteins, 

and, by the definition of the score, a value of 1.0 indicates completely identical structures. The 

TM-score provides a well-defined metric which can be interpreted uniformly no matter the size of 

the structures. Like GDT, it still suffers the same drawbacks associated with calculating a score 
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from the superposition of one structure onto another. It is not built to handle multi-domain 

structures nor to identify separate regions of a model which match a reference structure. 

4.3.1.3 Sphere Grinder	

Whereas GDT and TM-score evaluate the global accuracy of pairs of protein structures, Sphere 

Grinder was designed to allow for insight into their local accuracy [96]. Instead of optimizing some 

global superposition of one structure onto another, it superimposes local environments from 

throughout the structures. Given a reference, a model, and a radius R0 (default 6 Å), for each 

residue in a reference structure, Sphere Grinder identifies all atoms whose distance from that 

residue (by default determined using Ca) is less than R0 as that residue’s local environment. Then 

the corresponding atoms in the model are identified and superposed onto the local environment 

in the reference. The RMSD of this superposition is the accuracy score of that residue. The 

Sphere Grinder Score is then calculated as the percent of residues with an RMSD less than a 

cutoff.  

 By varying R0, Sphere Grinder can be tuned to focus on local or global accuracy. Small 

values for R0 are used to evaluate structures for local accuracy and large values for global accuracy. 

4.3.2 Contact-Based Metrics 

Contact-based metrics are those which, rather than being based on the distances between the 

structures after a superimposition, are based on corresponding distances and/or interactions within 

the structures. A contact can be defined as two atoms that are separated by less than some 

threshold distance. The major benefit of using intra-structure distances as opposed to 

superposition errors as the underlying information for a metric is that the information is 
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unambiguous. Two residues are either the same distance apart in two different structures or they 

are not, whereas the superposition error for corresponding residues depends on the superposition.  

4.3.2.1 CAD 

The Contact Area Difference (CAD) score performs structure comparisons by examining the 

contact areas of pairs of residues within both structures [97]. It was designed to overcome a major 

issue of RMSD, its inability to rank partially correct models of some reference. RMSD tends to be 

dominated by the incorrect parts of the structures, and when ranking structures, those parts 

outweigh the parts that are well modelled. By basing the comparison on the contact areas of 

residues within the structures, CAD was also inherently designed to account for side chain packing.  

 To calculate a CAD score, first, contact area matrices are calculated for both a reference 

and a model structure. For each pair of residues i and j in a structure, their contact area is 

calculated by rolling a probe of radius R over residue i to determine the area of the surface traced 

by the center of that probe that is occluded by the van der Waals surface of residue j. Doing this 

for all pairs of residues in both structures results in contact area matrices AR and AM for the 

reference and model structures respectively. The CAD score is then defined as the normalized 

weighted sum of the absolute differences of the contact area matrices.  

aán =
100∑ ü-üL†oá-L
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and: 

ü- = å
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(4.6) 

The CAD score is weighted by factors Wi, calculated from the temperature factors of the residues 

and a standard factor which the author suggests take the value of 20 to balance the weight of 

residues that have high vs. low temperature factors. CAD is normalized by the weighted average of 

the elements of both matrices. The author recommends C=0.9 in the normalization factor so that 

scrambled random structures will have close to 100% CAD difference from their reference 

structure. 

The result of all these considerations is a score that is robust against fractional changes and 

domain movements and that still accounts for side chain packing within the structures while 

accounting for the natural propensity of some parts of a structure to be flexible by factoring in 

residue temperature factors. 

4.3.2.2 lDDT	

The local Distance Difference Test (lDDT) is designed to address the issue of domain movements 

between comparable structures [98]. It does so by creating a measure that balances both local and 

global similarity, referring respectively to environments within a structure and the structure as a 

whole. It also includes, built into the score itself, the validation of stereochemical plausibility. 

 lDDT measures the number of contacts within a predefined inclusion radius Q% that are 

preserved between the reference and model structures. To calculate the score, the distances for all 

atom pairs with a distance under Q% are saved in a set of distances Ö. In the model, the percent of 

corresponding atom pairs whose distances are preserved, within a tolerance threshold, those in Ö 
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are computed. lDDT is calculated as the average of four fractions of matching atom pairs using 

tolerance thresholds 0.5 Å, 1.0 Å, 2.0 Å, and 4.0 Å, the same thresholds as used to calculate the 

GDT-HA score. lDDT can be calculated over all atom pairs, just the Ca atoms, or the backbone 

atoms. By default, lDDT uses an inclusion radius of Q% = 15Å. The authors determined the 

inclusion radius empirically by performing an analysis of the CASP9 experiment They examined 

the correlation between the GDC-all and lDDT scores of the CASP9 models as the value of the 

inclusion radius varied in the range 2 to 40 Å. GDC-all is an all atom version of GDT with 

thresholds from 0.5 to 10.0 in steps of 0.5 Å. The authors found that Q% = 15Å produces scores 

that are a good balance between local and global similarity. Lower values for the inclusion radius 

focus the metric more on local similarity while higher values shift the balance towards global 

similarity.  

lDDT validates stereochemical plausibility by considering stereochemical violations and 

steric clashes. Stereochemical violations are bond lengths and angles which diverge from expected 

values by more than 12 standard deviations. Steric clashes are atom distances distance which are 

less than the sum of their van der Waals radii, within a default tolerance of 1.5 Å. If side-chain 

atoms of a residue show stereochemical violations or steric clashes, all distances including any of 

the side-chain atoms of that residue are considered not preserved. If the backbone atoms exhibit 

stereochemical violations or steric clashes, any distances that include any of that residue’s atoms 

are considered not preserved. 

lDDT can also be calculated using a set of structures as the reference state. Using multiple 

references, for each atom pair, an acceptable distance range is defined by the min and max 

observed distance over the set of reference structures. To calculate the score, each atom pair 

distance in the model which falls within its acceptable range is considered preserved. The 
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percentage of preserved distances, accounting for stereochemical violations and clashes, is returned 

as the score.  

4.4 Regions of Similarity 

All existing protein structure comparison methods return a score for similarity, but few give a deep 

underlying look at the parts of the structures which match. Zemla’s Global Distance Test (GDT) 

[21] partially does this by identifying the largest region whose superposition errors all fall under 

some threshold, but the region and its errors are dependent on that superposition, and smaller 

regions are not identified. By converting the Ca distances matrices of two structures into a graph, a 

maximum clique analysis can be used to identify the largest non-overlapping regions of similarity 

between the structures. These regions can easily be visualized, and they lend themselves to a deep 

analysis of the underlying similarities between structures, complementing existing methods of 

comparison by providing additional information that is not readily available. Additionally, when 

applied to an analysis such as that performed for each CASP experiment, models which correctly 

represent each domain in a multi-domain structure but whose orientations differ from the native 

will be immediately apparent. A regions of similarity analysis can be performed on multi-domain 

targets without a priori knowledge of the domains. 

4.4.1 Methods 

4.4.1.1 Definition of Regions of Similarity	

A Region of Similarity is a set of aligned residues between two protein structures whose intra-

structure Ca distances are all the same – within a tolerance threshold – in both structures and 

which all form a cohesive unit within the structures. Rigorously defined, given a reference and a 

model structure whose residues have been aligned, a region of similarity is a set of residues whose: 
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1. Size is at least 10 residues. 

2. Pairwise Ca atomic distances are all the same, within a tolerance threshold, in both 

structures. 

3. Contact map in the model forms a connected graph. 

The third condition ensures that the residues in a region all come from some local part of the 

model. It forces a region to contain contiguous residues in three-dimensional space and enforces 

the idea that a region should represent a set of residues that take the shape they do because they 

are strongly interacting with one another. Without this condition, it would be possible to have 

residues from distant parts of the structures forming a region because they are coincidentally the 

same distance apart in both structures.  

4.4.1.2 Finding Regions of Similarity	

To find the largest region of similarity between two protein structures, first their sequences are 

aligned. Then the distance differences matrix is calculated: n-,L = Q-,L − m-,L where i and j are 

aligned residues, R is the Ca distance matrix for the reference structure, M is the Ca distance 

matrix for the model structure, and D is the distance differences matrix. A similarity graph is then 

built from n-,L. Every residue is a vertex, and there is an edge between two vertices if their value in 

n-,L	is less than a tolerance threshold, k = 1.0Å by default. The maximum clique of this graph 

reveals the set of potential residues for the region of similarity. The last step is to select only those 

which form the largest spatially contiguous region in the model. To find this region, a graph is built 

from the contact map of the model (all residues are vertices and there is an edge between two 

residues if their Cas are less than 10.0 Å apart), and the largest component found by a depth-first 
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search of this graph reveals the final residues in this region. If this region contains at least 10 

residues, return it, otherwise there is no region of similarity between the structures. 

A disjoint set of regions of similarity (denoted simply as RoS) can be found by iteratively 

identifying regions on the same similarity graph Ü. After each region is found, its residues are 

removed from Ü to prevent residues from being assigned into multiple regions. This continues 

until no more regions are found. If the two structures are identical, there will be a single region 

containing all residues. If the structures consist of two identical domains that are shifted relative to 

each other, then there will be two regions of similarity, one for each domain. 

Regions of similarity can also be used to perform a threshold tiered test inspired by GDT: 

RoS-GDT. Given a set of thresholds {1.0, 2.0, 4.0, and 8.0 Å}, four regions of similarity are 

identified: Q".%, Q:.%, Q®.%, and Q$.%. Each region is the largest region of similarity in the similarity 

graph built under its threshold which, for each threshold except the first, completely encompasses 

the region of similarity found for the previous threshold. To find these regions, four similarity 

graphs, Ü".%, Ü:.%, Ü®.%, and Ü$.%, are constructed as described above. To start, the largest region of 

similarity in Ü".% is found. This is Q".%. Then, the subgraph in Ü:.% consisting of the residues from 

Q".% is identified and all residues which are neighbors of this subgraph and which have an edge to 

every residue in this subgraph are selected. The maximum clique found within these residues in 

Ü:.% is the maximum set of residues which can be combined with those in Q".% and still form a 

clique in Ü:.%. Within this combined set of residues, the largest connected component in the 

contact map graph is found, and the residues in this component are returned as Q:.%. The same 

process is repeated for Q®.% and Q$.%. The thresholds {0.5, 1.0, 2.0, and 4.0 Å} can be used to 

perform an RoS-GDT-HA test. The set of regions found by RoS-GDT is called an expanded 

region of similarity.  
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The regions found by RoS-GDT show tiers of modelling quality, but they only encompass 

one part of a pair of structures. Like the original GDT, in a multi-domain structure where separate 

domains are well modelled but shifted relative to each other, RoS-GDT will identify only the 

largest domain. To identify multiple areas of a pair of structures that are similar, a disjoint set of 

Expanded Regions of Similarity (ERoS) can be identified. Each expanded region of similarity has 

tiers of residues found using the thresholds {1.0, 2.0, 4.0, and 8.0 Å}. To start, a set of disjoint 

regions of similarity is identified under the first threshold. Then, for each subsequent threshold, 

each region of similarity, in the order of initial discovery, is expanded to the next threshold using 

the similarity graph for that threshold omitting all residues found in all other regions so far. At the 

end of the process, a set of Expanded Regions of Similarity is returned. A score similar to 

GDT_TS can be calculated from this set: the average of the percent of residues under each 

threshold. ERoS_score is defined as:  

	©Qãh_ÉpãHå = 	
1
4
oQ*™ + Q*´ + Q*ù + Q*¨q 

(4.7) 

Q*| is the sum of the fractions of residues that fall under the C*ö threshold over all the 

expanded regions of similarity. Each fraction is calculated with respect to the number of residues in 

the reference structure. 

 Expanded Regions of Similarity can also be generated using twenty thresholds: {0.5, 1.0, 

1.5, …, 10.0}. The fraction of residues under each threshold can be used to generate plots which 

show the percent of the structures which match under decreasing levels of accuracy. This 

technique is denoted as ERoS-Plot. 
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4.4.1.3 Visualizing Regions of Similarity	

Local accuracy maps can be generated from regions of similarity. They show, at the sequence level, 

which residues in a model are within which region of similarity. Up to five regions can be colored: 

blue, green, purple, brown, and yellow. If a single threshold is used, such as when finding disjoin 

regions of similarity, the region with the largest number of residues is colored blue and the region 

with the smallest number of residues is colored yellow. If expanded regions of similarity are being 

visualized, the colors are determined in the same order by the size of the regions identified using 

the most stringent threshold. Residues which are not in any of the top five regions are colored red, 

and those that are not in the reference or the model are colored white. The colors have been 

chosen to be visually distinct. If expanded regions of similarity are being visualized, within each 

color, the shades vary uniformly in saturation and luminosity to indicate under which threshold 

that residue was added to the region. Darker shades indicate more stringent thresholds. Finally, if 

RoS-GDT regions are being represented, a divergent color scheme from blue to peach is used. 

Red residues are not in any of the regions. Examples of local accuracy plots are given in Figure 4.3. 

ERoS plots can be generated from the ERoS-Plot data. For each model, the total fraction 

of residues identified under each threshold is plotted and the result shows how well that model 

represents the target. Those models which include larger portions of their structure within regions 

of similarity under tighter thresholds are the better models. Figure 4.6 gives an example of ERoS-

Plot. 

Regions of similarity can also be visualized on the three-dimensional structural 

representations of proteins as well. Both PyMol [99] and Chimera [100] scripts can be generated to 

select and color residues belonging to each region and threshold so that individual structure pairs 

can be examined in detail. Figure 4.3 shows two structures, 1qvi_A and 1b7t_A superposed with 
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their regions of similarity colored. Their RMSD is 60.36, but they are actually quite similar. The 

major difference is a large shifted domain at the bottom. It is also easy to see through the regions 

that there are two domains in the “body” portion that are shifted slightly relative to each other. 

4.4.1.4 Feasibility Study 

Identifying regions of similarity relies on solving instances of the NP-complete problem of finding 

maximum cliques. To ensure the feasibility of the technique, a study was performed on a set of 

88,758 pairs of different experimentally determined structures for identical proteins provided by 

Kufareva[93]. This dataset contains a variety of structures of varying sizes and levels of similarity. 

The smallest structures contain less than 20 residues and the largest over 1000. Measured by 

 

Figure 4.3: Regions of Similarity Colored on Structures 1qvi_A and 1b7t_A. These are two empirically determined 
structures of the same protein from the Kufareva dataset. They have an RMSD of 60.36 Å yet, as the regions indicate, 
they are actually quite similar with a significantly shifted domain. 
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LGA_S, the least similar pairs have scores less than 10 and the most similar have scores of 100. 

For each pair, RoS, RoS-GDT, RoS-GDT-HA, ERoS, and ERoS-Plot were generated. The 

runtimes were recorded and are presented below. 

4.4.1.5 Software & Hardware	

All algorithms for finding regions of similarity have been implemented in jProt, a java protein 

comparisons library freely available at https://github.com/amaus/jProt. Maximum cliques are found 

using Li, Fang, and Xu’s C program implementation of their IncMaxCLQ algorithm[101]. Local 

accuracy maps and ERoS plots were generated using gnuplot. The feasibility study was performed 

on the lee2 cluster at the University of New Orleans. This cluster consists of 36 compute nodes, 

each with dual XEON X5650 CPUs. Lee2 has a total of 1.1 TB of RAM. 

4.4.2 Results 

4.4.2.1 Illustrating Regions through Local Accuracy Maps	

Local accuracy maps can be generated using each of three major techniques: RoS, ERoS, and RoS-

GDT. Figure 4.4 illustrates the differences between them using the two-domain target T0976 from 

the CASP13 experiment[15]. This target was chosen because most models roughly represent each 

domain (and some do accurately), but they generally shift the domains relative to each other with 

respect to the reference structure. In these plots, the top four models ranked according to their 

ERoS_Score are displayed. 	

The regions identified by RoS and ERoS show that in these structures, there are two large 

regions, blue and green, that are well-modelled. Since the residues in these regions are not 

sequential, it is likely that these are elements of secondary structure that are accurately representing 

parts of the tertiary structure of the reference. Additionally, in the top model, in each half there are 
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sequential segments of the sequence, brown and yellow, that are likely secondary structures shifted 

relative to the others. Comparing these plots against the three-dimensional structures illustrated in 

Figure 4.5, the two large regions correspond to the two domains and the yellow and brown regions 

are alpha helices shifted relative to their domains.  

The information in these maps is information that regions of similarity can present in 

addition to the information provided by other methods of comparison. For example, while lDDT 

gives each residue a local accuracy score, regions of similarity can identify the sets of residues that 

together are all locally accurate as a group. While regions of similarity, like lDDT, is a measure of 

local accuracy, GDT is a measure of global accuracy. It tends to rank structures favorably that are 

globally accurate since structures with accurate global orientations are more likely to capture larger 

parts of the structures in an optimal superposition. In the case of T0976, GDT will rank well the 

models which have the domains in the same orientation as the reference structure. In conjunction 

with GDT, regions of similarity can then identify which parts of the structures that are globally 

accurate are locally accurate as well. 

 

Figure 4.4: Comparison of the three Regions of Similarity methods on target T0976 from CASP13 (A) RoS: A disjoint 
set of regions of similarity (identified under the default threshold of 1.0 Å), colored in order of largest to smallest: 
blue, green, purple, brown, then yellow. Red indicates that a residue is not in any of the largest five regions highlighted. 
(B) ERoS: The Expanded Regions of Similarity. Starting from those found by RoS, each region has been expanded in 
turn to include residues at looser thresholds. The coloring is the same except that different shades indicate under 
which threshold the residue was added to the region. Darker shades indicate more stringent thresholds. (C) RoS-
GDT: A test analogous to GDT. The largest region of similarity is identified and expanded through the GDT 
thresholds. The divergent color scheme indicates decreasing modeling accuracy from blue to light red for this region. 
Bold red indicates that a residue is not included under any of the thresholds. 
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Figure 4.5: Regions of similarity identified for T0976 and T0976TS043_1. Left: T0976 (the 
reference) and on the right is T0976TS043_1 (the model) colored according to the expanded 
regions of similarity illustrated in Figure 4.3 Right: Despite the fact that the two domains in this 
structure are oriented differently between the reference and the model, the regions of similarity 
can still be identified and the overall similarity between the structures is apparent. 
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4.4.2.2 ERoS Plots	

ERoS plots can be generated for one or more models of some reference structure. They show how 

well each structure models the reference by plotting the percent of residues within all regions of 

similarity under each of twenty thresholds {0.5, 1.0, 1.5, …, 10.0 Å}. The larger the fraction of a 

structure that is included within regions of similarity under each of the thresholds, the better that 

structure will perform in the plot. Given that the underlying analysis relies on regions of similarity, 

ERoS Plots illustrate how well each of a set of structures match their reference structure locally 

across the whole of their structures.		

	 Figure 4.6 shows the ERoS plot for the “first models” submitted for the CASP13 target 

T0976. In a CASP experiment, each group may submit multiple models for each target. The 

models plotted in Figure 4 are those each group submitted as their “first model”, the model they 

wish to be included in the default rankings for the experiment. The curves of the models 

T0976TS043_1, T0976TS472_1, and T0976TS322_1 are highlighted in blue, green, and purple 

respectively. The first is the top ranked model by ERoS_Score. It should also be noted that this 

model is ranked first by lDDT as well. This is not surprising given the similarity between these two	

scores, but the scores are not directly analogous. The next two models are those ranked as the first 

and second place models respectively according to GDT_TS. The plot shows that while TS472_1 

has a better global score, TS322_1 has more of its structure within regions of similarity across the 

majority of the thresholds. In other words, its local geometries are a better representation of the 

native.	

In any structural comparison, structures with a high degree of global similarity, such as 

domains being in proper orientations, may not have a high degree of local similarity and vice versa. 

ERoS plots can be used in conjunction with global measures such as GDT or TM-Score to identify 
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those structures which not only match globally but locally as well. Combined with local accuracy 

maps and three-dimensional representations, the structures which exhibit both global and local 

similarity can then be further analyzed to identify exactly which parts of the structures match. 

4.4.2.3 Feasibility Analysis 

Since the regions of similarity techniques rely on solutions to instances of an NP-Complete 

problem (finding the maximum clique of a graph), these techniques were rigorously tested on a set 

of 88,758 pairs of different structures for identical proteins[93]. Table 4.1 summarizes the results.  

 Figure 4.6: ERoS Plot for CASP13 target T0976. T0976TS043_1 (blue), T0976TS472_1 (green), and 
T0976TS322_1 (purple) are highlighted. The first is the model ranked best by ERoS_Score. The next two are 
the top two models ranked by GDT_TS. While TS472_1 is a slightly better global representation of the target 
(GDT_TS score of 59.2 vs 58.2 for TS322_1), the plot shows that TS322_1 is a better local representation. 
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In Table 4.1, the runtime statistics for five different comparison techniques are presented. 

As the table shows, the most intensive technique is ERoS-Plot. This matches expectations as 

ERoS-Plot has the largest number of thresholds to evaluate and therefore depends on solving more 

instances of the maximum clique problem than any other method. Its average runtime is 7.3 

seconds. The maximum time recorded for any individual comparison is 238 seconds. This time is  

for the structure pair 2drd_C and 2j8s_A. Three of the largest runtimes in Table 1, those for RoS, 

RoS-GDT, and ERoS, are all for the same pair of structures, 3hhm_A and 2rd0_A. These results 

speak to the nature of instances of NP-Complete problems. For many cases, the solution will be 

easy, but for some, the solution will be difficult. For the majority of the comparisons, the solutions 

took on the order of seconds. For a few, the time required was on the order of minutes.  

 The identical proteins dataset is a rigorous test of these techniques. As an example of a 

practical application, the most intensive technique, ERoS-Plot, was run on the CASP12 dataset 

containing 131 targets with a total of 9545 models. The average runtime was 1.5 seconds with a 

median runtime of 553 ms and a maximum runtime of 23 seconds. 

 Figures 4.7 and 4.8 shows the ERoS-Plot runtimes for the identical proteins and the 

CASP12 datasets respectively. In the plots, the structure pairs are ordered by groups of identical 

proteins and by models for a given CASP12 target in the top and bottom of the figure respectively. 

In both plots, the outlier runtimes group together. These runtimes come from comparisons within 

 
Technique RoS RoS-GDT RoS-GDT-HA ERoS ERoS-Plot 

Average 1352 964 935 1749 7315 

Median 991 620 539 1226 4350 

Max 90457 89791 17813 98558 237509 

 

 

Table 4.1: Region of Similarity Techniques Runtimes (ms) 
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sets of multiple structures of the same protein in the identical proteins dataset and from within sets 

of models submitted for some target within the CASP12 dataset. In Figure 4.7, two outlying 

structures pairs are identified. The runtime for structure pair 2drd_C – 2j8s_A was 238 seconds 

and the runtime for pair 3hhm_A-2rd0_A was 132 seconds. Both of these pairs are shown in 

Figure 4.9. Likewise, the CASP model with the longest runtime, T0920TS421_1 with a runtime of 

23 seconds, is compared against its reference structure in Figure 4.10.While a full discussion is 

beyond the scope of this research, it should be noted that there is some feature within the similarity 

graphs constructed for these structures that make them difficult instances of the max clique 

problem. No simple correlation was found between the size or the density of the graph and the 

runtime, but it can be noted that the longest runtimes tend to belong to large structures that are 

very similar. 

 

 

Figure 4.7: ERoS-Plot runtimes for the structure pairs in the identical proteins dataset. Two outlying structure 
pairs are labeled. The “spikes” are sets of identical structures all pairwise compared with each other. Identical sets 
tend to have similar runtimes. There is some undetermined property of their underlying similarity graphs that 
make them difficult instances of the max clique problem. 
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Figure 4.8: ERoS-Plot runtimes for the structure pairs in the CASP12 dataset. The most prominent “spikes” are 
labeled by the CASP target the structure pairs in it belong to. Note the scale for the runtimes. The range is 0-25 
seconds, compared against Figure 4.7 with a runtime range of 0-250 seconds. Evaluation of the CASP12 dataset is 
feasible with this technique. 

  
Figure 4.9: The two structure pairs from the identical proteins dataset with the outlier ERoS Plot Runtimes. Left: 
2drd_C vs. 2j8s_A, runtime 238 s Right: 3hhm_A vs. 2rd0, runtime 132 s. Each structure pair is superposed 
with the ERoS regions colored. They are both large structures that are very similar, probably contributing to 
their long ERoS-Plot runtimes. 
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4.5 Discussion  

Many protein structure comparison methods provide an overall similarity score for structure pairs, 

but few take an in-depth look at the underlying information of the comparison. GDT [21] partially 

does by allowing the largest set of residues from a model whose superposition errors on some 

reference are all under some threshold, but the set identified depends on the superposition and 

multiple sets are not identified. lDDT [98] allows for an in-depth look at the residues of the 

structures. It gives each residue a score, measuring how well its local environment (defined as all 

atoms within some radius of the that residue) is reproduced in a model by finding the fraction of 

preserved contacts within that environment. Likewise, Sphere Grinder [96] provides similar 

information. It also measures the accuracy of the environment around each residue, but instead of 

using contacts, it superimposes corresponding environments and uses the RMSD of that 

 

Figure 4.10: CASP12 model T0920TS421_1 compared against its reference T0920. This structure pair 
had the longest runtime for the ERoS plot technique, 23 seconds. T0920 is a two-domain target. For this 
model, one of the domains was submitted. 
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superposition as the measure. Both methods provide scores for individual residues, but they do 

not identify sets of residues whose environment as a whole is reproduced.  

Regions of Similarity is a contact-based protein structure comparison suite which performs 

a graphical analysis on the contacts within the structure to provide a detailed analysis of the 

similarities between two protein structures. A region of similarity is a set of residues that together 

are geometrically similar in both structures. That is, all of their inter-residue distances are the same, 

within some tolerance threshold. Based on a maximum clique analysis on the graph representing 

pairwise residue contact similarities between a pair of structures, regions are found independently 

of the superposition of the structures. Disjoint regions of similarity, those which are independent of 

each other and possibly shifted relative to each other, can be found. As a result, regions of 

similarity can be identified in multi-domain structures irrespective of domain movements. It must 

also be noted that while this method relies on solutions to the NP-Complete problem of finding 

maximum cliques, it has been tested against a rigorous dataset of similar proteins and found to be 

feasible. 

Regions of similarity can easily and meaningfully be visualized. At the sequence level, 

residues can be colored according to their region and the tolerance threshold at which they were 

added to that region, showing not only which parts of the sequence form regions of similarity, but 

also giving an indication of the relative local accuracy of each residue. These local accuracy maps 

can be generated for sets of structures, allowing a group of models to be compared against some 

reference structure. These same regions can also be visualized on the individual three-dimensional 

structures using either PyMol [99] or Chimera [100]. Lastly, overall accuracy plots (ERoS-Plots) 

can be produced. These plots show, for each structure in some set compared against a reference, 

how the fraction of residues identified within regions of similarity changes as the tolerance 



 

 89 

threshold of similarity is increased from 0.5 Å to 10.0 Å in increments of 0.5 Å. These plots allow 

for a whole set of structures to be quickly evaluated and for different models within a set to be 

compared against each other. Those models which are locally accurate over larger portions of the 

structures will be evident. 

Regions of Similarity evaluates the local accuracy of a pair of protein structures. While 

different use cases may have different requirements, binding site analysis may require high levels of 

local similarity and conformational analysis may focus more on global similarity, in general, when 

evaluating models against some reference structure, the best models are those which exhibit both 

global and local accuracy, two orthogonal modes of comparison. Only by combining both global 

and local methods can the similarities of and differences between protein structures be fully 

explored. In conjunction with global measures such as GDT_TS and TM-Score [94], regions of 

similarity can be used to identify which of the models that are globally accurate are also locally 

accurate and furthermore, exactly which parts of the models are accurate representations of their 

corresponding parts in the reference. By providing access to information that was not previously 

available, regions of similarity allow for a novel and intuitive look into the similarities between 

protein structures and can be used in concert with existing metrics to provide a complete global 

and local comparative analysis of proteins structures. 

4.6 Future Work 

The CAD score works by creating a pairwise calculating a pairwise residue contact area matrix for 

both structures in a comparison. The difference between analogous pairwise residue contact areas 

is then used to calculate the CAD score. A regions of similarity analysis could be applied to this 

data, and if so, it would be possible to determine regions within two proteins that have the same 

side chain packing. This would add another dimension to local structural analysis. At present, RoS 
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is limited to analyzing backbone geometry. In the future, RoS will be expanded to calculate and 

analyze residue contact areas so that it can analyze both backbone geometry and side chain 

packing. 
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Chapter 5 
 
 
 
 

 Conclusion 
 
 
 
 
The understanding of proteins is critical not only for advances in basic biology but also in the 

discovery of new treatments and cures for diseases. With the major advances made in genomics in 

the past few decades, it is now possible to determine the amino acid sequence of any protein [102], 

and as Anfinsen stated, the structure and function of a protein is completely determined by its 

amino acid sequence [12]. The field of protein structure prediction is concerned with developing 

computational techniques to determine the structure and function of a protein from its amino acid 

sequence. Despite much progress in the past several decades [15], [31], protein structure 

predictors are still not able to consistently produce models of high enough accuracy for desired 

applications such as rational drug design [59]. Protein structure refinement techniques are 

therefore being developed to move predicted models closer to the native state [62].  

In this dissertation two major projects have been presented. The first is an in-depth 

examination and analysis of the formulation and generation of hybrid KB/MM potentials for 

protein structure refinement using potential energy minimization, and the second is a novel graph 

theoretical technique for protein structure comparison and analysis. 
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5.1 Hybrid KB/MM Examination and Analysis Summary 

In the analysis of the hybrid KB/MM potentials, the generation of the potentials of mean force for 

the KB portion of the hybrid potential was the focus. Special attention was paid to the pairwise 

energy curves and the performance of the resulting potentials. In this analysis, several factors 

affecting the generation of the KB potentials were explored: 

1. The effect of the counting scheme on the potentials, especially at critical low distances. 

2. The size of the structural database used (either Top500 or Top8000) in the generation of 

the potentials, affecting the smoothness of the energy curves. 

3. The strictness of the starting database, eliminating all structures with clashes to remove 

energetic artifacts from the energy curves 

4. The number of atom types used in the generation of the potentials, identifying and 

combining similar atom types to improve the statistical representation of those atom types 

in the potential. 

To evaluate performance, all generated potentials were applied in structural refinement 

against two datasets, a decoy dataset generated using quasi-elastic normal mode perturbation and a 

CASP dataset collated from the regular target submissions for CASPs 8-13. Every potential was 

evaluated against two criteria. 

1. Refinement should not significantly perturb the native. 

2. Refinement should move models closer to the native. 

5.1.1 Results and Discussion 

It was found that a very modest improvement in potential performance was achieved by altering 

the contact counting scheme in the statistics gather phase to initialize all PMF bins to zero rather 
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than one, and it was also found that combining similar atom types within the potentials generated 

from the Top500 databases resulted in a more significant improvement in performance. On the 

other hand, combining atom types for potentials generated from the Top8000 databases did not 

improve performance. Increasing the size of the starting database (generating potentials from the 

Top8000 database) resulted in potentials that were more volatile and performed worse in 

refinement. These potentials significantly altered natives and led to a net degradation of the models 

in the CASP dataset. Finally, removing all structures with clashes from the databases gave mixed 

results. For the smaller Top500 database, potentials generated from the subset only containing 

structures with no clashes performed slightly worse than the potentials generated from the full 

database. For the larger Top8000 database, removing clashes slightly improved the performance of 

those potentials.  

 When considering the implications of these results, it is important to note that the energy 

curves within KB_0.1 [20] (the original potential this work is based on) and within the PMFs 

generated in this work from the Top500 database (the difference between these and KB_0.1 being 

only the counting scheme) are rough. See Figure 3.15 for an example. This could be an indication 

that these potentials are capturing important features of the interactions that are key to refinement 

performance, or that a larger statistical database is needed to smooth out some of these artifacts. It 

is most likely the case that both implications are true. In either or both cases, it seems to be the 

roughness of these curves which prevents refinement from making large changes to structures.  

 In the case of the potentials generated from the Top8000 database, the curves are much 

smoother (Figure 3.15), but those potentials significantly perturb the natives and result in worse 

performance overall. It was expected that removing all clashes (and the energetic artifacts caused 

by them) would overall improve performance. So why did it not do so for the Top500 potentials? 
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It may be because removing the 51 structures from the database in order to eliminate all clashes 

negatively impacted the statistical robustness of the dataset. This would imply that the Top500 

database is either just the right size or could be expanded to include more structures. Potentials 

generated from 500 structures containing no clashes should be tested.  

 Why did using combined atom types within the Top500 potentials improve performance? 

Combining similar atom types allows for an improved statistical representation of the combined 

types. The process resulted in potentials with more freedom to move structures that performed 

better in refinement. This implies that perhaps the Top500 database should be expanded to 

improve statistics, and also that there may be an ideal size somewhere between the 500 structures 

in Top500 and the 7957 structures in the Top8000 database for the generation of potentials of 

mean force.  

 The best performing potential generated in this work is one based on the Top500 database 

(including structures with clashes), with initialized statistical counts starting at zero, and containing 

124 atom types with common combinations including backbone atoms of the same element and 

carbons from hydrophobic residues (Figure 3.8). 

 Moving forward, databases containing no clashes with sizes between 500 and 8000 

structures should be tested, and atom type combinations on these potentials should continue to be 

determined and tested. Given that combining atom types did not result in improved performance 

for potentials generated from the Top8000 database, there may be a point at which combining 

atom types does not improve performance. This may coincide with an optimal statistical database 

size. Another avenue for improvement may be in using evolutionary data in the generation of 

potentials. With large databases of known families of proteins (SCOP2[28] and CATH [29]), it 

may be possible to generate specialized potentials for individual protein folds. If a homologous 
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family of a structure can be identified via structural or sequence analysis, a potential could be 

generated from or seeded with homologous structures, and this potential may better embody the 

patterns within the fold and allow more improved refinement of that structure. 

5.2 A Novel Graph Theoretical Protein Structure Comparison Technique 

In the process of generating and evaluating the performance of dozens of potentials for structural 

refinement, it was natural to ask how resulting structures of the potentials differed from one 

another. For example, does one potential better form hydrogen bond networks, and how would 

that look in the resulting structures? In general, if different predictors were better or worse at 

predicting certain structural motifs, could that pattern be noticed and how would one identify such 

regions of local similarity between structures? These questions led to the development of the 

Regions of Similarity family of techniques presented in Chapter 4. 

 These techniques allow for the exact identification of all regions between two structures that 

are similar, irrespective of changes in global similarity such as changes in relative orientation like 

domain shifts or conformational changes in disordered regions. It works by performing a graph 

analysis on the underlying similarities between two structures, the intra-structure Ca distances. If 

two analogous Cas are the same distance apart in both structures that is a single point of similarity. 

By building a graph from these similarities and finding maximum cliques on it, complete regions of 

similarity, where all Cas in that region are the same distance apart in both structures, can be 

identified. Despite relying on solutions to an NP-Complete problem, through rigorous testing, this 

technique has been found to be feasible. 

 Regions of similarity allows for a complete and intuitive analysis of the local similarity 

between two structures and can be combined with global measure of similarity such as GDT [21] 
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to identify structures that are both globally and locally similar (two orthogonal modes of 

comparison). Regions of similarity can be visualized in several ways to allow for a robust analysis of 

pairs or sets of structures. They can be visualized on the sequence level, allowing for a set of 

models of a native to quickly be analyzed (Figure 4.4). They can also be visualized on the 3D 

representations of structures (Figures 4.3, 4.5, 4.8, and 4.10), allowing for an in depth look into the 

similarities between any given pair of structures. Finally, plots relating increasing thresholds of 

similarity to the percent of residues included in all regions can be provided to give a good 

indication of overall structural local similarity (Figure 4.6). A tool to identify and visualize regions 

of similarity is freely available on GitHub1, and this work is expected to have broad applications in 

rational drug design, the evolutionary study of protein structures, and in the analysis of the protein 

structure prediction effort. 

 An exciting avenue for future work on this project is in leveraging this technique to analyze 

the similarity data generated in the calculation of the CAD score [97]. CAD operates by generating 

pairwise residue contact area matrices for two structures. The difference between analogous 

residue pair contact areas is used to calculate its score. A regions of similarity analysis could be 

applied to this data to identify regions between proteins that have the same side chain packing. 

This would add another dimension to the Regions of Similarity project. At present, it can identify 

backbone similarity. With the addition of residue contact area analysis, side chain packing could 

be identified as well, allowing for a more complete look and a deeper analysis of structural 

similarity.

 
1 https://github.com/amaus/jProt 
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Appendix 
 
 
 
 

A.1 Lists of Omitted PDBs for the Generation of KB_Top500_1.00vdw and 

KB_Top8000_vdw 

The ‘H’ appended to every PDB name indicates that hydrogens have been built into to them by 

the Reduce program (see section 3.2.1.2 for further details about these databases). This is true of 

all PDBs in the Top500 and Top8000 databases. In the Top8000 database, PDBs are split by 

chain. The chain ID is indicated following an ‘_’. 

A.1.1 Omitted PDBs from Top500 for the Generation of KB_Top500_1.00vdw 

 
1a6mH 
1aayH 
1aqbH 
1b9wH 
1babBH 
1bdmBH 
1becH 
1btyH 
1bu8H 
1bueH 
1ceqH 

1cf9BH 
1cgoH 
1cl8H 
1fusH 
1gaiH 
1gciH 
1gd1OH 
1gsoH 
1guqAH 
1hmtH 
1htrH 

1lkkH 
1mbaH 
1mdcH 
1mmlH 
1oncH 
1phnAH 
1qgqH 
1qgwBDH 
1qnfH 
1qnjH 
1rhsH 

1sluH 
1tgsIH 
1ttbAH 
1tudH 
1ubpH 
2bbkLH 
2bopAH 
2cbaH 
2hmzAH 
2pvbH 
2qwcH 

2tnfAH 
3claH 
3pteH 
3sebH 
3stdAH 
5cytH 
9wgaAH 

 

A.1.2 Omitted PDBs from Top8000 for the Generation of KB_Top8000_1.00vdw 

 
1a7tFH_B 
1ayeFH_A 
1b63FH_A 
1bsgFH_A 
1bu8FH_A 

1bueFH_A 
1bxuFH_A 
1cjcFH_A 
1d5tFH_A 
1dciFH_C 

1deuFH_A 
1dl2FH_A 
1dpjFH_A 
1e25FH_A 
1ejdFH_B 

1eltFH_A 
1eq9FH_B 
1f7bFH_C 
1fj2FH_B 
1fljFH_A 

1fusFH_A 
1g6aFH_A 
1gaiFH_A 
1gciFH_A 
1gpiFH_A 
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1gppFH_A 
1gpuFH_A 
1gvzFH_A 
1h0hFH_K 
1h4aFH_X 
1hj8FH_A 
1hleFH_A 
1hmtFH_A 
1hp1FH_A 
1hpgFH_A 
1hx0FH_A 
1hzoFH_A 
1iuzFH_A 
1jd0FH_B 
1jltFH_A 
1jltFH_B 
1k07FH_A 
1k3iFH_A 
1k75FH_B 
1ka1FH_A 
1kgcFH_D 
1ku1FH_A 
1lo6FH_A 
1m2xFH_D 
1m40FH_A 
1m8sFH_A 
1mc2FH_A 
1mdoFH_A 
1me4FH_A 
1mexFH_H 
1mj5FH_A 
1mn8FH_B 
1n12FH_A 
1n63FH_E 
1n9pFH_A 
1nlnFH_A 
1nrjFH_A 
1nu0FH_A 
1nxoFH_A 
1o0eFH_B 
1o7eFH_B 
1o82FH_A 
1odmFH_A 
1ongFH_A 
1ox0FH_A 
1oxsFH_C 

1pa2FH_A 
1pfzFH_A 
1pzgFH_A 
1qnjFH_A 
1qouFH_B 
1qwgFH_A 
1qwoFH_A 
1qxyFH_A 
1r0rFH_E 
1r0uFH_A 
1r6wFH_A 
1r8hFH_D 
1rhcFH_A 
1rutFH_X 
1rwhFH_A 
1rypFH_J 
1rypFH_K 
1s1fFH_A 
1spjFH_A 
1syyFH_A 
1t0bFH_D 
1to4FH_A 
1tt2FH_A 
1u2bFH_A 
1u6eFH_A 
1uixFH_A 
1ulrFH_A 
1ut7FH_B 
1v05FH_A 
1v0wFH_A 
1v54FH_A 
1vmeFH_B 
1vmhFH_A 
1vr5FH_B 
1vr8FH_A 
1vyfFH_A 
1vzyFH_B 
1w0nFH_A 
1w1qFH_A 
1w32FH_A 
1w3wFH_A 
1w7cFH_A 
1wb0FH_A 
1wl8FH_A 
1wrmFH_A 
1x0lFH_A 

1x38FH_A 
1xdwFH_A 
1xiyFH_A 
1xsoFH_B 
1xx1FH_C 
1y2mFH_C 
1y63FH_A 
1y7tFH_B 
1y81FH_A 
1yg9FH_A 
1ynpFH_B 
1yxyFH_A 
1z57FH_A 
1z76FH_B 
1z7aFH_D 
1zd0FH_A 
1zi9FH_A 
1zr0FH_D 
1zr6FH_A 
1zsxFH_A 
1zuuFH_A 
1zx8FH_C 
1zzkFH_A 
2anyFH_A 
2apxFH_A 
2b6nFH_A 
2bbaFH_A 
2bcmFH_B 
2bezFH_C 
2bkrFH_A 
2bw0FH_A 
2bz6FH_H 
2cayFH_A 
2cjzFH_A 
2cn0FH_H 
2d1gFH_A 
2e7zFH_A 
2eq6FH_B 
2ex4FH_A 
2f8aFH_A 
2f91FH_A 
2f9nFH_B 
2fdsFH_A 
2fgrFH_A 
2fhxFH_B 
2fm6FH_A 

2fosFH_A 
2fpqFH_A 
2fueFH_A 
2gaiFH_B 
2gasFH_A 
2gauFH_A 
2gbwFH_E 
2h0uFH_A 
2h12FH_A 
2h26FH_A 
2h4pFH_A 
2h5cFH_A 
2h6eFH_A 
2h8oFH_A 
2hbvFH_A 
2hc1FH_A 
2he2FH_A 
2hekFH_B 
2heuFH_B 
2hl7FH_A 
2hlcFH_A 
2hlvFH_A 
2ht9FH_B 
2hy7FH_A 
2hyxFH_D 
2i0qFH_A 
2icrFH_A 
2idlFH_B 
2ijxFH_D 
2in8FH_A 
2ip2FH_B 
2iw1FH_A 
2iwzFH_A 
2j97FH_A 
2j9cFH_B 
2jdfFH_A 
2jikFH_A 
2jilFH_A 
2jisFH_A 
2jkhFH_A 
2jliFH_A 
2nw2FH_B 
2oblFH_A 
2okmFH_A 
2opcFH_A 
2oqbFH_A 

2ouaFH_A 
2oxgFH_Y 
2p49FH_B 
2p74FH_A 
2pfeFH_B 
2pi6FH_A 
2pltFH_A 
2pmqFH_A 
2pmrFH_A 
2pq8FH_A 
2pqmFH_B 
2pvbFH_A 
2pzeFH_B 
2q0uFH_A 
2q2hFH_A 
2q7wFH_A 
2qa9FH_E 
2qeeFH_F 
2qmjFH_A 
2qmqFH_A 
2qruFH_A 
2qudFH_A 
2qvbFH_A 
2qvoFH_A 
2qwcFH_A 
2qxiFH_A 
2r16FH_A 
2r1bFH_B 
2ra3FH_B 
2rhfFH_A 
2sgaFH_A 
2tnfFH_B 
2uurFH_A 
2uuuFH_C 
2uv4FH_A 
2uw1FH_A 
2uxqFH_A 
2uxwFH_A 
2v03FH_A 
2v5iFH_A 
2vacFH_A 
2vifFH_A 
2vngFH_A 
2vo8FH_A 
2vo9FH_B 
2vphFH_B 
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2vq8FH_A 
2vqpFH_A 
2vsvFH_A 
2vwrFH_A 
2vx5FH_A 
2vxtFH_H 
2vxtFH_I 
2vzmFH_A 
2w0iFH_A 
2w98FH_B 
2wb6FH_A 
2weiFH_A 
2welFH_A 
2wj5FH_A 
2wk0FH_A 
2wkkFH_C 
2wnpFH_F 
2wnxFH_A 
2wolFH_A 
2woyFH_A 
2wtgFH_A 
2wweFH_A 
2wwfFH_C 
2wwxFH_B 
2wyqFH_A 
2x26FH_B 
2x49FH_A 
2x4jFH_A 
2x5pFH_A 
2x7bFH_A 
2x98FH_B 
2xbpFH_A 
2xdeFH_A 
2xdgFH_A 
2xi9FH_B 
2xn6FH_A 
2xsuFH_A 
2xttFH_B 
2xu7FH_B 
2xvsFH_A 
2yrxFH_A 
2ywnFH_A 
2yxwFH_A 
2yzhFH_C 

2z66FH_B 
2z7fFH_E 
2zxyFH_A 
2zyaFH_B 
3a3dFH_B 
3a40FH_X 
3a4rFH_A 
3aarFH_A 
3abdFH_B 
3ajoFH_A 
3b7eFH_A 
3b7sFH_A 
3b9tFH_A 
3beuFH_B 
3bfvFH_A 
3bixFH_A 
3bj1FH_C 
3bn7FH_A 
3bvkFH_F 
3c5aFH_A 
3c5eFH_A 
3c9aFH_B 
3c9xFH_A 
3ccfFH_A 
3ccgFH_A 
3cecFH_A 
3cfcFH_H 
3ck6FH_B 
3ckmFH_A 
3claFH_A 
3cmcFH_Q 
3cn4FH_B 
3coxFH_A 
3d0oFH_A 
3d4uFH_A 
3d8tFH_A 
3db7FH_A 
3dmeFH_B 
3dpkFH_A 
3durFH_B 
3dz1FH_A 
3e6jFH_A 
3ed7FH_A 
3edgFH_A 

3edvFH_A 
3ee4FH_A 
3eojFH_A 
3er6FH_A 
3eupFH_B 
3ew0FH_A 
3ewhFH_A 
3eyiFH_A 
3f5hFH_B 
3f8tFH_A 
3fdlFH_A 
3fedFH_A 
3ff9FH_B 
3fg1FH_D 
3fo3FH_A 
3fw3FH_A 
3fzyFH_B 
3g0eFH_A 
3g5sFH_A 
3g6mFH_A 
3g8yFH_A 
3g9xFH_A 
3ggwFH_B 
3gkvFH_B 
3gpkFH_B 
3guyFH_B 
3gvoFH_A 
3gylFH_B 
3h04FH_A 
3h34FH_A 
3h4nFH_A 
3h9uFH_C 
3hoiFH_A 
3hr6FH_A 
3hsrFH_D 
3ht1FH_A 
3hx8FH_D 
3i09FH_A 
3i10FH_A 
3i2nFH_A 
3i94FH_A 
3iavFH_A 
3iboFH_A 
3ie5FH_A 

3ie7FH_A 
3ihvFH_A 
3iofFH_A 
3iq0FH_A 
3isgFH_A 
3iv4FH_A 
3jqlFH_A 
3js8FH_A 
3jszFH_A 
3jxoFH_A 
3jzyFH_A 
3k01FH_A 
3kaxFH_A 
3kcgFH_H 
3kdwFH_A 
3keoFH_B 
3kkfFH_A 
3kkgFH_A 
3klkFH_A 
3kqrFH_A 
3kv1FH_A 
3kz5FH_A 
3kz7FH_A 
3l0lFH_B 
3l4rFH_A 
3l7oFH_A 
3l8aFH_B 
3l91FH_B 
3la7FH_B 
3lgbFH_B 
3llpFH_B 
3lwkFH_A 
3lwxFH_A 
3lxpFH_A 
3lxyFH_A 
3ly7FH_A 
3m70FH_A 
3m7aFH_A 
3m86FH_B 
3maoFH_A 
3mhsFH_A 
3mhwFH_U 
3mi4FH_A 
3mm6FH_A 

3mswFH_A 
3mzvFH_B 
3n3sFH_A 
3n6yFH_B 
3n7oFH_A 
3nclFH_A 
3nepFH_X 
3njnFH_C 
3nn1FH_A 
3no3FH_A 
3npdFH_A 
3nqxFH_A 
3nxgFH_E 
3nyyFH_A 
3o3uFH_N 
3oa2FH_C 
3oblFH_B 
3obuFH_A 
3ol0FH_A 
3oseFH_A 
3p1gFH_A 
3p6lFH_A 
3p9pFH_A 
3pcvFH_A 
3pe7FH_A 
3pf2FH_A 
3phsFH_A 
3pjyFH_B 
3pt1FH_A 
3q4tFH_A 
3q5yFH_A 
3qe1FH_A 
3qhzFH_M 
3qqiFH_B 
3qyqFH_C 
4ubpFH_A 
6rxnFH_A 
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A.2 Complete Atom Type Merge Graphs for KB_Top500 and 
KB_Top500_1.00vdw 

On the next pages are given the complete atom type merging graphs for the four original PMFs 

(see Sections 3.2.1.2 and 3.3.1). These graphs are large and are broken into panes for formatting 

purposes. They were generated using the open source program GRAPHVIZ. 

 The following key applies to all of them. Each node represents an atom type and each atom 

type is enclosed in a colored polygon (with a circle used as an additional shape). Each atom type is 

colored coded to their element according to standard colors: nitrogen – blue, carbon – black, 

oxygen – red, and sulfur – yellow. Each atom type enclosed in a polygon indication its position in 

its amino acid. Backbone atoms (except Cabgdeh) are enclosed in a diamond. For all other atom 

types, the number of sides of their polygon indicates side chain position. CA is enclosed in a 

triangle, Cb a square, Cg a pentagon, and so on. Atom types at the h level are enclosed in a circle.  

 Each level of the graph corresponds to a PMF. All 167 atom types on the first level are the 

atom types in the unmerged PMF. The atom types on the next level are those of the PMF 

generated after one iteration of merging, and so on. Merged atom type are denoted by a single 

atom type identifier. For example, after atom types FCA and LCA are merged in KB_Top500 

Pane 1, the combined atom type is denoted as LCA. 
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A.2.1 Atom Type Merge Graph for KB_Top500 

  

Figure A.1: Atom Type Merge Graph: KB_Top500, Pane 1 
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Figure A.2 Atom Type Merge Graph: KB_Top500, Pane 2 
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Figure A.3 Atom Type Merge Graph: KB_Top500, Pane 3 
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Figure A.4 Atom Type Merge Graph: KB_Top500, Pane 4 
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Figure A.5 Atom Type Merge Graph: KB_Top500, Pane 5 
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Figure A.6 Atom Type Merge Graph: KB_Top500, Pane 6 
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A.2.2 Atom Type Merge Graph for KB_Top500_1.00vdw  

Figure A.7 Atom Type Merge Graph: KB_Top500_1.00vdw, Pane 1 
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Figure A.8 Atom Type Merge Graph: KB_Top500_1.00vdw, Pane 2 
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Figure A.9 Atom Type Merge Graph: KB_Top500_1.00vdw, Pane 3 
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Figure A.10 Atom Type Merge Graph: KB_Top500_1.00vdw, Pane 4 
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Figure A.11 Atom Type Merge Graph: KB_Top500_1.00vdw, Pane 5 
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Figure A.12 Atom Type Merge Graph: KB_Top500_1.00vdw, Pane 6 
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