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Abstract  

 

Academic research has shown throughout the years the ability of technical indicators to convey 

predictive value, informational content, and practical use. The popularity of such studies goes in 

and out over the years and today is being recognized widely by behavioral economists. Automated 

technical analysis is said to detect geometric and nonlinear shapes in prices which ordinary time 

series methods would be unable to detect. Previous papers use smoothing estimators to detect such 

patterns. Our paper uses local polynomial regressions, digital image processing, and state of the 

art machine learning tools to detect the patterns. Our results show that they are nonrandom, convey 

informational value, and have some predictive ability. We validate our results with prior works 

using stocks from the Dow Jones Industrial Average for a sample period from 1925-2019 using 

daily price observations.   
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Chapter 1 

“Reliability of Technical Stock Price Pattern Predictability” 

1. Introduction 

This dissertation uses state of the art machine learning techniques to process financial time series. 

The work explores the possibility of using image processing to recognize non-linear stock prices 

patterns thereby simulating technical trader behavior.  

Investors normally fall into either fundamental investors, or technical investors (Linton 2010), 

Elder 2002, Pring 2002, Edwards and Magee 2007, Lo, Mamaysky, and Wang 2000, Neeley, 

Rapach, Zhou 2014). Fundamental investors ignore the timing aspect of buying stocks which is a 

potential drawback since markets have been shown to move in trends over the past 100 years 

(Covel 2009).  

Technical analysis relies on past prices to identify current price behavior and trends that are 

expected to continue in the future. Literature has been back and forth on the viability of technical 

analysis. Literature in support of technical analysis include Fama and Blume 1966, Sweeney 1988,  

Han, Yang and Zhou 2013, Neeley, Rapach, Tu and Zhou 2014, Avramov, Kaplanski, and 

Subrahmanyam 2018, Osler and Chang 1995, Lo, Mamaysky, and Wang 2000, Blume, Easley, 

O’Hara 1994.  

Behavioral finance argues that investors have constraints on time, informational, and cognitive 

ability. This plays a role in the decision-making process. (Simon, 1955).  

The efficient market hypothesis doesn’t leave any room for technical analysis in current markets. 

The justification says that markets have already priced in all relevant factors regarding a stock. 

These include past prices (weak-form), all public information (semi-strong form), and all available 

information including private and insider information (strong form). The major flaw or drawback 

is that it relies on the assumption that investors are all rational in their decision-making process 

and they can obtain all available information prior to making decisions in the markets. Any point 

in time where this doesn’t hold (e.g. a Dentist taking a stock tip from a client, or a college student 

buying a stock because he wants to gamble his parents money) would lead to some degree of 
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inefficiency in markets at least according to the definitions and assumptions outlined in the 

efficient market hypothesis by Fama 1970.  

There are several papers that outline the theoretical support for technical analysis which relies on 

markets displaying some form of market efficiency, mainly that they are weak-form inefficient. 

Treynor and Ferguson 1985, in whether information has been fully incorporated into equity prices, 

Brown and Jennings 1989 using past prices to gain information in current prices. On the role of 

volume Blume, Easley, and O’Hara 1994 as well as Grundy and McNichols 1989. 

Han, Yang and Zhou 2013 provide justification for profitability in technical analysis studies as 

being investors not acting on all profitable information. Neeley, Rapach, Tu and Zhou 2014provide 

justification for why technical analysis outperforms macro fundamentals in forecasting risk 

premium in that they pick up on some omitted fundamental variable.  

Lo, Mamaysky and Wang 2000, Osler and Chang 1995, Chang and Osler 1994, automated 

technical analysis. Blume, Easley and O’Hara 1994 study the role of volume. Avramov, Kaplanski, 

and Subrahmanyam 2018 study moving averages and their predictability drowning out the effect 

of a popular momentum strategy. They also provide potential justifications.  

Empirical research documenting the inefficiencies of markets include the January effect (Huag and 

Hirschey, 2006) and the firm size effect (Van Dijik, 2011). Lo and MacKinlay (1988, 1999) on 

past prices forecasting future returns. Chang and Osler (1994), Osler and Chang (1995).  

Lo, Mamaysky and Wang (2000) said that technical indicators can be found using consecutive 

extrema in stock prices. They also said that consecutive extrema in stock prices are too noisy thus 

making it impossible to distinguish between informativeness and noise. Their methodology 

involves smoothing prices to find extrema.  

Our paper extends this work by using local polynomial regressions. We compare our results and 

find the same outcome with the same patterns in the same places according to their empirical 

sample. 

We extend this work to find extrema from pixel values in digital images. The advantage here is 

that it doesn’t rely on time series and that extrema are conveyed by only one point (a pixel).  
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Time series methods wouldn’t be able to detect these patterns in data. Lo, Mamaysky and Wang 

2000 show that simulated geometric Brownian motion detects far fewer patterns than real stock 

data.  

We match our digital image processing method to their result. We again find extrema in the same 

places and the same patterns.  

We test patterns such as head-and-shoulders, inverted head-and-shoulders, broadening top, 

broadening bottom, triangle top, triangle bottom, rectangle top, and rectangle bottom. We omit 

double top and double bottom patterns from our image processing framework and leave that to 

future work.  

We extend our results using digital image classification. This uses state of the art machine learning 

tools such as support vector machines.  

We use a sample of Dow Jones Industrial Average (DJIA) stocks to test whether image processing 

can uncover the pattern rules given training data of consecutive extrema and pattern labels for non-

DJIA stocks.  

We show that pattern rules can be uncovered by mapping the association of the true pattern with a 

series of 5 consecutive extrema, given as few as 1000 training examples. This is with a high degree 

of accuracy. 

We test the profitability of the patterns using one-day returns, three days following pattern 

completion. We test both goodnesses of fit, and difference in means. We show the patterns are 

time-varying and have most have statistically significant excess returns.  

The results of this research have potential implications for academia and industry. Namely, pattern 

statistics (we generate confidence intervals around the patterns) and program trading.  

Future work may want to aggregate the bias between the output of our classifier and trained 

professional analyst recommendation. This would create a robust pattern dataset.  

A trained professional analyst is noted to be either a CMT designation (Certified Market 

Technician) (www.cmt.org). Other designations include Market Technicians Association (MTA), 

the Nippon Technical Analysts Association (NTAA), which formed the International Federation 

of Technical Analysts (IFTA) with the Society of Technical Analysts (STA) in London. There is 



4 
 

also a Canadian Society for Technical Analysts (CST). (Edwards and Magee 1966, Linton 2010). 

The IFTA sponsors the designations for Certified Financial Technician (CFTe) program. They also 

have a Master of Financial Technical Analysis (MFTA). Further, the IFTA journal sponsors works 

that include the use of technical analysis by practitioners.  

2. Literature Review.  

The literature on this subject notes that investors come from two camps, either fundamental 

investors, or technical investors. Rarely do the investors borrow from both camps. (Neely et al 

(2013), Pring (2002), Elder (2002), Linton (2010). Covel (2009) “I have established that trading 

can be fundamentally or technically based.” The main flaw with fundamental analysis pointed out 

by technical literature is that it fails to detect entry and exit points. There is a clear distinction 

between trend following and day trading. The market moves in trends which anyone can see by 

looking at a chart of the Dow Jones Industrial Average (DJIA) over the last 98 years. Trend trading 

is what is seen to be more profitable in the long run. Technical analysis studies are broken into 

those that follow trends or determine the possible start of a new one. Moving averages are those 

that follow trends. Visual patterns are said to determine the start of a new one. No study tries to 

pick tops and bottoms (successfully). Covel (2009) notes that mechanical trading systems 

(generally used by trend followers) are based on an objective and automated set of rules. Traders 

follow these trading rules using a computer and getting themselves to buy in and sell out of a 

market. This can make life easier by eliminating the emotional aspect of trading decisions.  

There are three pillars that go into a trading system, having the system (strategy), sound money 

management, and human emotion. Balancing all three is like sitting on a three-legged stool. If one 

goes, the system (trader) goes. (Elder, 2002).  

Covel (2009) discusses that trend following is nothing new and that it goes back decades. It is just 

discovered by different traders at different times.  

Covel (2009) notes the significance of fundamental investors in creating bubbles. Noting that 

technical traders were overshadowed by fundamental investors in the 1990’s dot com bubble and 

2008 real estate and credit bubbles, that so many investors and traders with so little strategy were 

making money hand over fist that trend following disappeared from everyone's radar, even though 

they kept on making money.  
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Covel (2009) shows how trend followers have increased the bottom line when every bubble has 

popped. Creating a hypothetical index of three longtime trends following firms compared against 

the S&P 500 stock index. Dunn Capital Management, Campbell and Co., and John W. Henry and 

Co. into an equally weighted index show 1,000 from 1984-2003 turning into $6,236 on the S&P 

500, and a whopping $47,891 for trend following.  

The premise for reversal strategies is that the market goes in trends. According to Abraham Trading 

Company (ATC), (Covel, 2009) “commodity interests will, from time to time, enter into periods 

of major price change to either a higher or lower level. These price changes are known as trends, 

which have been observed and recorded since the beginning of market history. There is every 

reason to believe that prices will continue to trend.” 

Hypothetical growth of $1,000 in ATG from 1987-2003 (using a trend following strategy) shows 

$34,051 in 2003, compared to the same $1,000 in the S&P 500 growing to $4,280.  

Chesapeake Capital is another example of trend following. In the Q/A session at the annual futures 

and options expo in Chicago at the height of the dot come bubble Jerry Parker noted the dangers 

of a buy-and-hold mentality. “The strategy of buy and hold is bad. Hold for what?” On asked about 

predicting where markets are heading Paker responded “I don’t know nor do I care. The system 

that we use at Chesapeake is about the market knowing where it’s going.” On counter-trend or day 

trading: “The reason for it is a lot of traders, as well as clients, don’t like trend following. It’s not 

intuitive, not natural, too long term, not exciting enough.” Parker noted further that “We have a 

system in which we do not have to rely on our intellectual capabilities. One of the main reasons 

why what we do works in the markets is that no one can figure out what is happening.” A $1,000 

investment in Parkers fund (Chesapeake) would result in $12,633 from 1987-2003. This is 

compared with $4,114 on the S&P500 over the same horizon.  

Donchian is an influential trader. He was born in 1905 in Hartford, Connecticut. He graduated 

from Yale in 1928 with a BA in economics. He was so fascinated by trading that even after losing 

his investments in the 1929 crash, he returned to work on Wall Street. In 1930, he borrowed some 

capital to trade shares in Auburn Auto, which is an article by William Baldwin’s article on 

Donchian is referred to as “the Apple Computer of its day.” The moment after he made several 

thousand dollars on the trade, he became a market “technician,” charting prices and formulating 

buy and sell strategies without concern for an investments basic value.  
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Many chartists outsource their programming. There is some benefit however to knowing your 

tools, and what is going on under the hood. Ed Seykota is generally acknowledged to have 

programmed the first computerized trading system.  (Covel, 2009). 

Visual technical chart patterns are said to pick up on changes in trend. These are known as reversal 

patterns. (Edwards and Magee, 2007). While these patterns pick up on changes in trends, studies 

such as moving averages track trends. Moving averages are simple to compute arithmetically, as 

they are a simple mean of prices. More studies stem from the moving average such as relative 

strength index, moving average convergence divergence, stochastic momentum index, Bollinger 

bands, and more.  

Nonlinear technical chart patterns have been of interest to practitioners and academics since the 

1940s. Original research discussed these patterns and uncovered the rules from trade journals. The 

main study was whether nonlinear patterns conveyed information to investors. The tools used 

varied but original research uncovered technical chart pattern rules from trade journals, testing 

head and shoulders patterns since it was the most common visual/nonlinear pattern. The purpose 

was to discuss whether the pattern conveyed information to investors. If so, it would spark future 

research (Lo, Mamaysky, Wang 2000) if not, it could be written off as a ‘Voodoo science.’ The 

original paper found that the head and shoulder did alter the conditional distribution of returns. 

This sparked later research by Lo, Mamaysky, Wang (LMW, 2000). This paper uncovered 10 

nonlinear technical chart patterns in 5 pattern pairs. Each pair consists of a bullish and a bearish 

pattern. Bullish patterns are said to offer positive information about a stock and an investor should 

take a long position. Bearish patterns are said to offer negative information about a stock and an 

investor should take a short position. The intuition behind technical chart patterns is that all 

available information is already incorporated into the stock price, thus fundamentals won’t alter 

the distribution of returns. Investors think that nonlinearities in the chart may indicator buying 

behavior and be an indicator of future price movement. There are many studies that discuss past 

prices conveying information about future returns. Ranging from the Alexander Filter Rule (Fama 

and Blume (1966), Sweeney (1988)), to arithmetic technical chart patterns (Moving Averages, 

Relative Strength Index, Moving Average Convergence Divergence), Neely et al. (2013), Han et 

al. (2013), and nonlinear (more difficult to uncover arithmetically) patterns (Lo, Mamaysky, Wang 
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(2000)). The Intuition behind all chart patterns is that investors look at an analog stock chart image 

and use it to make decisions about future returns. It is a visual art ((LMW (2000), Linton (2010)).  

There are additional patterns outside of the ten patterns discussed by LMW 2000 and are outlined 

in some academic literature as well as trade journals (IFTA Journal, Futures Magazine), and print 

books (Edwards and Magee (2007), Linton (2010), Elder (2002), Pring (2002)). Some of these are 

discussed in a future section but include variations of the patterns tested previously by LMW 

(2000), and this paper, as well as new patterns not yet tested.  

Technical analysis literature is brought to the forefront of academic literature by LMW (2000) by 

incorporating visual chart patterns, which are harder (than the former paper by Dunis et al. (2013)) 

to compute arithmetically. Kulkarni and Harman (KH, 2011) outline some of the newer methods 

in statistical learning theory which can aid in detecting nonlinear patterns data. LMW (2000) call 

for such methods. Dunis et al. (2013) show modern methods of statistical learning theory such as 

the support vector machine (SVM, as in KH (2011)) can detect trading rules such as Moving 

Average Convergence / Divergence and Relative Strength Index.  There is little literature to date 

on the intersection of computer vision and the field of finance.  

Rule-Based Pattern Recognition: The method of LMW (2000) to uncover the patterns is built on 

kernel smoothing and bandwidth selection. Which is basically a moving average with a normal 

probability distribution on the current observation. The rules are based on identifying extrema, and 

the location of extrema. Each pattern is based on the completion of five consecutive extrema in 

rolling windows. LMW(2000) use 38 days as too long of a window would create many patterns 

that would be difficult to distinguish from noise.  

Technical analysis has been common in the cross-section of stocks since Fama and Blum (Journal 

of Business, 1966). Lo, Mamaysky, and Wang (Journal of Finance, 2000) show that visual patterns 

also contain the predictive ability and alter the distribution of returns when conditioned on them.  

The use of technical analysis is wide and varies from moving average studies, to volume, to 

nonlinear visual patterns, to Fibonacci ratios. It’s no wonder that Malkiel (1999) related the use of 

technical analysis from astronomy to astrology. To anon chartist, it can seem like voodoo, 

especially when one has only been taught the methods of the random walk.  
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Technical analysis, specifically moving averages pick up on fundamentals (Neeley et al 2013). 

Han et al (2013) discuss that profitability with technical analysis may be explained by investors 

not acting on all available information. Elder (2002) A moving average window reflects the 

average consensus of value of all market participants during the period of its window. It is like a 

composite photograph that reflects the major features of the market crowd rather than fleeting 

moods. Neeley et al (2013) show that these indicators forecast equity risk premium as well as or 

better than macro fundamentals. Which has been shown by Goyal and Welch (2008) to forecast 

the risk premium in the cross-section of stocks? Opening and closing prices are among the most 

important prices of the day (Elder (2002)). The opening price reflects all the pressures that have 

gathered while the market was closed. Openings are often dominated by amateurs who read their 

newspapers in the evening and trade in the morning. Professional traders are active throughout the 

day. (Elder (2002)) Closing prices are especially important because the settlement of trading 

accounts depends on them.  

Edwards and Magee (9th Edition, 2007) (the 4th edition was 1966). The book notes the definition 

of technical analysis. Discussing that the prices of a stock at a given time is held together by all 

available information by all people involved in the market.  

The market is constantly looking ahead, attempting to discount future development. Balancing al 

information from many different hues. Past and present information is already considered an 

old/stale. This includes fundamental information. The going price which is established by the 

market comprehends all fundamental information which the statistical analyst can hope to learn 

plus any information known only to him, or to a few insiders. In the language of Fama and Blume 

(1966) this is the strong-form efficiency. Weak-form being only past prices being reflective of the 

market information, and semi-strong form being all available public and private information but 

not an insider. Prices move in trends which tend to continue until something happens to change 

the supply-demand balance. Certain patterns or formations, levels or areas, appear on the charts 

which have a meaning and can be interpreted in terms of probable future trend development. They 

are not infallible, (in the words of Edwards and Magee (9th edition)), but the odds are definitely in 

their favor. They are more prescient than the best-informed most shrewd of statistics.  

Empirically this is supported by Neely, et al. (2013), Lo, Mamaysky, and Wang (2000), Han et al 

(2013), Fama and Blume (1966), Sweeney (1988), among others. Neeley et al (2013), show that 



9 
 

technical indicators are more predictive then fundamental indicators (outlined by Goyal and Welch 

(2008)) in the cross-section of stocks. They show that technical indicators pick up on some omitted 

fundamental information. Han et al (2013) show that patterns such as moving averages may be 

persistently profitable because investors choose not to take action on all information.  

A technical analyst may go further into his claims. (Following Elder (2002) we use the pronoun 

he or his because there are more male technical analysts than female. Although Elder (2002) finds 

that females are more profitability and more in control of their emotions, there are more than twice 

as many male analysts as female.) He may offer to interpret the chart of a stock whose name he 

does not know, so long as the record of trading is accurate and covers a long enough term to enable 

him to study its market background and habits. He may suggest that he could trade with profit in 

a stock knowing only its ticker symbol, completely ignorant of the company, the industry, what it 

manufactures or sells, or how it is capitalized. This is an extreme case.  

Edwards and Magee (9th, 2000) go on to discuss that fundamental analysis is based on estimating 

a company’s earnings for both the current year and the next year and recommending stocks on that 

basis. The record on that bases, as estimated by Barron’s is that earnings estimates averaged 18% 

error in the 30 DJIA stocks for any year already completed and 54% error for the year ahead, 

choosing the 10 DJIA stocks with the best earnings estimates would have produced a 10-year 

cumulative gain of 40.5% while choosing the 10-worst would have produced a 10-year cumulative 

gain of 142.5% this is from the same Barron’s article.  

Charts are the working tools of the technical analyst. They have been developed in a multitude of 

forms and styles to represent graphically almost anything and everything that takes place in the 

market. Charts vary in type and time frame from weekly, daily, hourly, “point and figure”, 

candlestick, etc. They may be constructed arithmetic, logarithmic, or square-root-scale, or 

projected as “oscillators.” They may show moving averages, proportion of trading volume to price 

movement, average price of “most active” issues, odd-lot transactions, short interest, and an 

infinitude of other relations, ratios, and indexes all technical in the sense that they are derived, 

directly or indirectly from what has actually been transacted on the exchanges.  

The goal of many of these is to make a combination of indexes which will give a warning of a 

change in the trend without failing or going wrong. This is the job of a full-time economic analyst.  
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Technical analysis is mainly concerned with the simplest form of a stock chart – a record of the 

price range (high and low), closing price, and volume of shares traded each day. These daily graphs 

can be shown on weekly, or monthly frequencies (or intraday) for which most stocks can be 

purchased, readily made which are easily generated and commercially available on almost any 

investment software.  

Charts can be made using a piece of paper and a pencil. And some time. On a stock chart, the 

horizontal axis represents time and the verticle axis represents price. The space between the bars 

on the horizontal axis represents days, space is usually provided to plot volume, shares traded. For 

our interpretation, we only need the closing price.  

When information is processed by a computer, it takes the price time observations (time-series) 

and tries to make interpretations arithmetically. When humans process the information ocularly, 

they are making fuzzy decisions and letting the cortex do a lot of math without them realizing it. 

It is difficult for an automated system to replicate the visual art of technical analysis by a human.  

One of the earliest forms of technical analysis is the Dow Theory. Mapped out by Charles Dow 

who was born in 1851. He was an American journalist who co-founded the Dow Jones & 

Company. (Linton 2010).  

Dow mapped out some of the basic tenets of technical analysis. He also founded the Wall Street 

Journal and devised the Dow Jones Index as part of his work in researching market movements.  

When Dow died in 1902 the editor of the Wall Street Journal and two other colleagues summarized 

some 250 of Dow’s editorials to produce what we now know as Dow Theory. It can be summarized 

in six basic tenets. “ 

1. The market has three movements – primary to the major trend of about a year to several 

years, the medium swing or intermediate reaction of 10 days to 3 months and generally 

retracing 33% to 66% of the major trend and the short swing or minor movement which 

can last from hours to weeks. These movements can all be occurring simultaneously – 

trends, within trends, within trends.  

2. The trends have three phases – an accumulation phase with shrewd investors ‘in the know’ 

acting contrary to popular opinion, a public participation phase where the market catches 
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on and prices move more dramatically and a distribution phase where the astute investors 

begin to unwind their positions.  

3. The stock market discounts all news – prices quickly absorb all new information as soon 

as it becomes available. This was quite an admission from the editor of the leading 

newspaper at the time and agrees with what we now know as an efficient market 

hypothesis.  

4. Stock market averages must confirm each other – Dow also devised the Transports 

Average, which like the better-known Dow Jones Industrial Average, survives to this day. 

Calculated using rail and industry stocks respectively, Dow argued that they need to 

confirm each other for any trend in prices to be believed.  

5. Trends are confirmed by volume – Dow believed that price moves accompanied by high 

volume represent the ‘true’ market view and that price moves on low volume were to be 

taken less seriously.  

6. Trends exist until definitive signals prove that they have ended otherwise – the primary 

trend should be given the benefit of the doubt during secondary reversals. Which is the 

foundation for what is known as ‘the trend is your friend.’ Cloud Charts are especially 

helpful in knowing when a trend has ended “ 

Dow’s original ideas form the basis of the subject of technical analysis in the West as it is known 

today, it is not entirely clear how heavily these techniques were being used by the trading 

community at that time. Jeremy Du Plessis (2005) cites textbook references in the middle of the 

last century pointing to the use of Point and Figure charts pre-1900. (Linton 2010).  

According to Linton (2010), it probably wasn’t until Robert Edwards and John Magee (1948) that 

the subject of Technical analysis gained traction as a method of analysis. Their work is now in its 

ninth edition and their definition of technical analysis is still one of the most cited, noting 

“Technical analysis is the science of recording, usually in graphic form, the actual history of 

trading (meaning price changes, volumes, etc.) in a certain share, or commodity, etc., and then 

deducting from that pictured history, the probable future trend.”  

A Dow Theory Line in the chart of one of the Averages may be either a Consolidation or Reversal 

Formation and is rather more likely to be the former than the latter. A Dow Line is a loose 

Rectangle. Almost any sort of sideways price pattern is termed "Congestion" or trading area 
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provided trading volume tends to diminish during its construction (and provided it doesn't show 

broadening tendencies), constitutes as Consolidation. Most areas of consolidation are well defined, 

taking on a recognizable pattern. 

A Discussion of Nonlinear Patterns. A healthy uptrend moves up in steps. (Elder (2002)). Head-

and-shoulders tops mark the ends of uptrends. The “head” is a price peak surrounded by two lower 

peaks, or “shoulders.” A neckline connects the lows of declines from the left shoulder and the 

head. The neckline does not have to be horizontal – it may be flat, rising, or falling. A downsloping 

neckline is especially bearish – it shows that bears are becoming strong. Chang and Osler (1994) 

show the predictability of this pattern in the cross section of forex markets. It is used as a 

representative set of all nonlinear patterns. It is discussed as being the most common nonlinear 

visual pattern (Pring (2002), Elder (2002)).  An Inverse Head and Shoulders are sometimes 

referred to as a head-and-shoulders bottom (Elder (2002)). – a mirror image of a head-and-

shoulders top. It looks like a silhouette of a person upside down: the head at the lowest point, 

surrounded by two shoulders. This pattern develops when a downtrend loses its force and gets 

ready to reverse. A downtrend is summarized by making successively lower lows. The trend stops 

at the lowest low (Elder (2002)).  A strong rally from the head allows you to draw a neckline. 

When a decline from the neckline fails to reach the level of the head it creates the right shoulder. 

When prices rally from the right shoulder above the neckline on increased volume, they complete 

the head-and-shoulders bottom and a new uptrend begins.  

 Sometimes a head-and-shoulders bottom is followed by a pullback to the neckline on low volume, 

offering an excellent buying opportunity. Measure the distance from the bottom of the head to the 

neckline and project it upward from the point where the neckline was broken. This gives you a 

minimum measurement for a rally, which is frequently exceeded. 

Edwards and Magee (9th Edition, 2000) discuss that the Head-and-Shoulders pattern is a relation 

of Dow Theory. It is an adaption of the Dow Theory to the action of an individual stock. The rally 

from the decline of the head to the neckline to the top of the right shoulders to the decline that 

breaks the neckline and eventually starts a new trend. This may be why it is the most frequent and 

reliable pattern. There are several examples of this in Edwards and Magee (1966), as well as Pring 

(2002), Elder (2002) and Linton (2010).  
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All basis of technical analysis starts with Dow theory and the head-and-shoulders is a logical 

predecessor for visual patterns.  

The main difference between a head-and-shoulders top/bottom is that the prices distribute from 

the top and accumulate from the bottom. Informing both shoulders and eventually breaking out.  

 The tactics for trading inverse head and shoulders (head-and-shoulders bottom) is similar to head-

and-shoulders tops. You risk less money trading at bottoms because prices are less volatile and 

you can use closer stops. 

Additional variations include multiple head-and-shoulders, which is like it sounds. Multiple 

shoulders on the left, followed by multiple heads and multiple shoulders on the right. Almost like 

conjoined twins, with both sets of arms. The same can hold true on the reverse with multiple 

shoulders, and one or more heads. This is shown in Pring (2002), Edwards and Magee (1966,2007).  

Other formations, not related to head-and-shoulders include rounding tops and bottoms. (Linton 

(2010), Edwards and Magee (1966,2007), Pring (2002), Elder (2002)). Typically the rounding in 

price is accompanied by rounding in volume.  

Triangles are another pattern that is of importance. This is accompanied by an important theory on 

prices (following Edwards and Magee (1966,2007)). The market value of a security is determined 

solely by the interaction of supply and demand. Supply and demand are governed at any given 

moment by many hundreds of factors, some rational and some irrational. Information, opinions, 

moods, guesses. The market weighs these automatically. It would be difficult or impossible for a 

human to consider all of these factors. Disregarding minor fluctuations, prices move in trends that 

persist for an appreciable length of time. Changes in trend, which represent an important shift in 

the balance between supply and demand, however, caused, are detectable sooner or later in the 

action of the market itself.  

Triangles can be either consolidation or reversal patterns. Right angle triangles are more 

predictable (Edwards and Magee (1966, 2007)) then are symmetric triangles. Symmetrical 

triangles have no way of knowing whether they point up or down until they are broken out of. 

What is shown in the literature is that the trend will continue more often than not (i.e., an uptrend 

will remain an uptrend after price breaks from a triangle)? Right angle triangles are more 
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transparent in that we know the direction of the trend as soon as the triangle is recognized as being 

a right angle triangle. Rectangles are more similar and resemble symmetrical triangles.  

Rectangles are bounded by the top and bottom horizontal lines and consist of sideways price 

movements. On occasion, they consist of slightly upward or downward sloping parallel lines. As 

long as the breakout is trivial, it may be treated as a rectangle. There are occasions where the 

boundaries converge. If this happens, then rectangles may be treated as rectangles or symmetrical 

triangles. The end result will be the same.  

Rounding tops or head-and-shoulders may merge or form into a rectangle. The type of trading 

involved will be trivial and readily apparent when facing a rectangle or a head-and-shoulders.  

A head-and-shoulders reflects strong sellers and weak buyers, which can be seen before the 

conflict has ended. A rectangle represents a contest between the two groups of approximately equal 

strength, between owners of the stock who wish to dispose of their shares at a certain price and 

those who wish to accumulate the stock at a certain lower amount. They go back and forth until 

one group is exhausted. This happens suddenly and the price breaks out. No one can tell which 

group is going to win until the breakout happens.  

An investment trust, large shareholder, has sufficient or good reasons to sell at the top or “supply 

line” of the rectangle. Another investment trust or group of insiders has an equally good reason for 

buying at the bottom of the rectangle. The “Demand Line.” If the “spread” between the top and 

bottom line is wide enough (8-10% of the market value of the stock), the situation may attract a 

following of short trades that look to pick off the price at the supply and demand levels. If a stock 

is moving between 76, and 69 buyers may try and buy at 69 and sell at 76. Or, borrow at 76 (sell 

short) and cover at 69. This type of activity can extend the rectangle, although the number of shares 

involved is seldom enough to affect the final outcome. Trading inside a rectangle can be profitable 

at times, especially if accompanied by protective stops. These stops would go outside of the 

“supply” and “demand” lines at 76 and 69 respectively. These are for both short and long orders 

respectively.  

Rectangles were more common in the 1920s than they were in the 1950s according to Edwards 

and Magee (1966). Investors would artificially create them.  
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The SEC has stepped into no longer permit this type of activity, referred to as “wash sales.” The 

tactic is washed out by the SEC which looks for such behavior. According to Edwards and Magee 

(1966, 2007), this is probably the main reason there are fewer rectangles in the 1950s than the 

1920s. 

A clearly defined rectangle is almost as reliable as a head-and-shoulders, although not as powerful. 

Premature breakouts are slightly more frequent from rectangles than triangles.  

Pullbacks which are noted as a return of prices to the boundary of the pattern, subsequent to its 

initial breakout are more common with rectangles than with symmetric triangles. A pullback (or 

throwback) occurs within 3 days to 3 weeks in about 40% of all cases. A pullback being for a 

downside breakout and a throwback for an upside breakout.  

A rectangle is more often a consolidation pattern than a reversal. The ratio is about the same as 

with symmetrical triangles. As reversal patterns, rectangles appear more frequently at bottoms than 

at tops. Long thin, dull rectangles are not uncommon at primary bottoms, sometimes grading into 

a flat bottomed saucer or dormancy.  

A safe formula for measuring implications is given by the rectangle with. Prices should go at least 

as far in points beyond the pattern as the difference in points between the top and bottom lines as 

the pattern itself. They may go further. The brief, wide-surging forms, which are nearly square in 

shape on the chart with the active turnover, are more dynamic then the long narrower 

manifestations moves out of the latter almost always hesitate or react at the “minimum” point 

before carrying on.  

The most common form of a triangle is composed of a series of price fluctuations, each of which 

is smaller than its predecessor, each minor top failing to attain the height of the preceding rally, 

and each minor recession stepping above the level of the preceding bottom. The result is a sort of 

contracting “Dow Line” on the chart- a sideways price area of the trading range whose top can be 

more or less accurately defined by a down-slanting boundary line and whose bottom can be 

similarly bounded by an up-slanting line. This type of triangle is called a symmetric triangle. In 

the language of geometry, it might be called an acute triangle, since it is not all necessary that is 

top and bottom boundaries be of equal length or, in other words, make the same angle with the 

horizontal axis. The pattern has a strong tendency to approximate the symmetrical form, but an 
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additional name it the “coil.” This is also discussed in Elder (2002). Elder likely draws from 

Edwards and Magee (1966,2007). Edwards and Magee (2007) note that while the process of 

contraction or coiling, which make up the price action of the symmetrical triangle pattern, is going 

on, trading activity exhibits a diminished trend, which may be irregular, and persistent as time goes 

on. The converging upper and lower boundary lines of the price formation come together 

somewhere out to the right (the future in the time series) of the chart, at the apex of the triangle.  

A compact, clean-cut triangle is a fascinating picture (Edwards and Magee 1966), but it has tricky 

features. Elder (2002) denotes a true pattern reaching up and jumping out at you. If you have to go 

looking for it, it isn’t there. Beginners tend to go looking for these patterns. Breaking out of the 

apex is a false move.    

 A rectangle is a chart pattern that contains price movements between two parallel lines. They are 

usually horizontal but can sometimes slant up or down (see “Lines and Flags,” later in this section). 

Rectangles and triangles can serve as continuation or reversal patterns. You need four points to 

draw a rectangle: The upper line connects two rally tops, and the lower line connects two bottoms. 

These lines should be drawn through the edges of congestion areas rather than across the extreme 

highs and lows.  

The upper line of a rectangle identifies resistance, while the lower line identifies support. The 

upper line shows where bulls run out of steam; the lower line shows where bears become 

exhausted. A rectangle shows that bulls and bears are evenly matched. The key question is whether 

bulls or bears will eventually win the battle within this pattern. If volume swells when prices 

approach the upper border of a rectangle, an upside breakout is more likely. If volume increases 

when prices approach the lower border, a downside breakout is more likely. A valid breakout from 

a rectangle is usually confirmed by an increase in volume – a one-third to one-half higher than the 

average of the previous five days. If the volume is thin, it is likely to be a false breakout. Rectangles 

tend to be wider in uptrends and narrower in downtrends. The longer a rectangle, the more 

significant a breakout. Breakouts from rectangles on weekly charts are especially important 

because they mark important victories for bulls or bears. There are several techniques for 

projecting how far a breakout is likely to go. Measure the height of a rectangle and project it from 

the broken wall in the direction of the breakout. This is the minimum target. The maximum target 

is obtained by taking the length of the rectangle and projecting it vertically from the broken wall 
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in the direction of a breakout. Tony Plummer writes that a rectangle is a part of a spiral-like 

development of a trend. He recommends measuring the height of a rectangle, multiplying it by 

three Fibonacci ratios (1.618,2.618, and 4.236), and projecting those measurements in the direction 

of the breakout to obtain a price target. Floor traders can profit from trading short-term swings 

between a rectangle’s walls, but the big money is made by trading in the direction of a breakout. 

When trading within a rectangle, buy at the lower boundary and sell short at the upper boundary. 

Oscillators help you decide when prices are ready to reverse within a rectangle. Stochastic, the 

Relative Strength Index, and Williams %R mark price reversals within rectangles when they hit 

their reference lines and change directions. To find out whether upside or a downside breakout is 

more likely, analyze the market in a longer timeframe than the one you are trading. If you want to 

catch a breakout on a daily chart, identify the weekly trend because a breakout is more likely to go 

in its direction. Once you buy an upside breakout or sell short a downside breakout, place your 

protective stop slightly inside the rectangle. There may be a pullback to the rectangle wall on light 

volume, but prices should not return into a rectangle after a valid breakout.  

Lines and Flags: A line is a kind of a rectangle – a lengthy congestion area. In Dow theory, a line 

is a correction against the primary trend. It is a congestion zone whose height is approximately 3 

percent of the current stock market value. When the stock market “draws a line” instead of reacting 

more deeply against its major trend it shows a particularly strong primary trend. A flag is a 

rectangle whose boundaries are parallel but slant up or down. Breakouts tend to go against the 

slope of the flag. If a flag slants upward, a downside breakout is more likely. If the flag slants 

down, an upside breakout is more likely.  

If you see a downsloping flag in an uptrend, place a buy order above the latest peak of the flag to 

catch an upside breakout. A rising flag in an uptrend marks distribution, and a downside breakout 

is more likely. Place an order to sell short below the latest low of that flag. Reverse the procedure 

in downtrends.  

Triangles: A triangle is a congestion area whose upper and lower boundaries converge on the right. 

It can serve either as a reversal or, more often, as a continuation pattern. Some technicians call 

triangles coils. The market winds up and the energy of traders becomes compressed, ready to 

spring from a triangle.  
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A small triangle whose height is 10 to 15 percent of the preceding trend is more likely to serve as 

a continuation pattern. Many uptrends and downtrends are punctuated by these triangles, as 

sentences are punctuated by commas. Large triangles whose height equals a third or more of the 

preceding trend are more likely to serve as reversal patterns. Finally, some triangles simply fizzle 

out into listless trading ranges.  

Triangles can be divided into three major groups, depending on their angles. The upper and lower 

lines of symmetrical triangles converge at the same angles. If the upper line is inclined 30 degrees 

to the horizontal, then the lower line is also inclined 30 degrees. Symmetrical triangles reflect a 

fair balance of power between bulls and bears and are more likely to serve as continuation patterns. 

An ascending triangle has a relatively flat upper boundary and a rising lower boundary. Its flat 

upper boundary shows that bulls are maintaining their strength and can lift prices to the same level, 

while bears are losing their ability to drive prices lower. An ascending triangle is more likely to 

result in an upside breakout. A descending triangle has a relatively flat lower boundary, while its 

upper boundary slants down. It's flat lower boundary shows that bears are maintaining their 

strength and continue to drive prices down, while bulls are losing their capacity to lift prices. A 

descending triangle is more likely to lead to a downside breakout. Volume tends to shrink as 

triangles get older. If volume jumps on a rally toward the upper boundary, an upside breakout is 

more likely. If volume becomes heavier when prices fall toward the lower boundary, a downside 

breakout is more likely. Valid breakouts are accompanied by a burst of volume – at least 50 percent 

above the average for the past 5 days. Valid breakouts occur during the first two-thirds of a triangle. 

It is better not to trade breakouts from the last third of a triangle. If prices stagnate all the way into 

the apex, they are likely to remain flat. A triangle is like a fight between two tired boxers who keep 

leaning on each other. An early breakout shows that one of the fighters is stronger. If prices stay 

within a triangle all the way into the apex, that shows that both boxers are exhausted and no trend 

is likely to emerge. Charts of related markets often show triangles at the same time. If gold, silver, 

and platinum all trace triangles and gold break out to the upside, then platinum and silver are likely 

to follow. This approach works well with currencies, especially with closely related ones, such as 

the German Mark and Swiss Franc. It also works with stocks in the same group – compare General 

Motors to Ford but not to IBM. Triangles provide a minimum target for a move following a 

breakout. Measure the height of a triangle at its base and project vertically from the point where 

the triangle was broken. If you are dealing with a small triangle in the midst of a dynamic trend, 
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that minimum measurement is likely to be exceeded. You can also the Fibonacci projections 

mentioned earlier. Trading Rules: It’s better not to trade minor swings within a triangle unless that 

triangle is very large. As a triangle grows older, the swings become narrower. Profit potential 

shrinks, while slippage and commissions continue to take just as bad a bite from your account as 

before. If you trade inside a triangle, use oscillators such as Stochastic and Elder-ray. They can 

help you catch minor swings. In trying to decide whether a triangle on a daily chart is likely to lead 

to the upside or a downside breakout, look at the weekly chart. If the weekly trend is up, then a 

triangle on the daily chart is more likely to break out to the upside, and vice versa. When you want 

to buy an upside breakout, place a buy order slightly above the upper boundary of a triangle. Keep 

lowering your order as the triangle becomes narrower. If you want to short a downside breakout, 

place a sell order slightly below the lower boundary. Keep raising it as the triangle becomes 

narrower. Once you are in a trade, place a protective stop slightly inside the triangle. Prices may 

pull back to the wall, but they should not return deep inside a triangle following a valid breakout. 

When a breakout from a triangle is followed by a pullback, pay attention to volume. A pullback 

on heavy volume threatens to abort the breakout, but a pullback on light volume offers a good 

opportunity to add to your position. When prices approach the last third of a triangle, cancel your 

buy or sell orders. Breakouts from the last third of a triangle are very unreliable.  

Atypical Triangles: A pennant is a small triangle whose lines are slanted in the same direction. 

Pennants that slant against the trend serve as continuation patterns. There is an old saying “The 

pennant flies at half-mast” – a rally is likely to travel as far after the pennant as it did before. A 

pennant that slants in the direction of the trend indicates exhaustion – a trend is nearing a reversal. 

A widening triangle occurs when prices set a series of higher highs and lower lows. This pattern 

shows that the market is becoming hysterically volatile, with bulls and bears pouring in. The fight 

between bulls and bears becomes too hot for the uptrend to continue – a widening triangle kills an 

uptrend. A diamond starts out as a widening triangle and ends as a symmetrical triangle. You have 

to squint very hard to recognize it. Diamonds are prime examples of Rorschach-type patterns for 

chartists. If you look hard enough, you will find them, but their trading usefulness is minimal. 

Double Tops and Double Bottoms are rare. Triple tops and bottoms are even rarer. Most often they 

are misinterpreted as another reversal form. They can seldom be determined until prices have gone 

a long way from them.  
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A double top is formed when a stock advances to a certain level with, usually high volume and 

approaching the top figure, then retracts with diminishing activity, then comes up again to the same 

(or practically the same) top price as before with some pickup in turnover, but not as much as the 

first peak, and then finally turns down  a second time for a major or consequential intermediate 

decline. A double bottom is the same picture, upside down. The triple type makes three tops (or 

bottoms) instead of two. Most often they are misinterpreted as another reversal form. They can 

seldom be determined.  Double tops occur when prices rally to the area of the previous high. 

Double bottoms occur when prices fall near the previous low. The second top or bottom can be 

slightly above or below the first. This often confuses beginning analysts. Savvy traders use 

technical indicators to identify double tops and bottoms. They are often market by bullish and 

bearish divergences. Buying at double bottoms and selling short at double tops offer some of the 

best trading opportunities.  

Double bottoms and double tops can be extended to show triple bottoms and triple tops. They have 

the same form but multiple tops from before the breakout.  

For double tops, if two tops are more than a month apart, they are not likely to belong to the same 

consolidation or congestion formation. If the reaction between the first and second high reduces 

prices by 20% of their top value, the odds favor a double top interpretation. There are cases where 

the two peaks occur 2 or 3 weeks apart, and the valley between them only descends about 15%. 

Most true double tops develop 2 or 3 months apart. Generally speaking, the time element is more 

critical than the depth of the reaction between the tops.  

Double bottoms are the same as double tops but on the reverse. Logically if there are double tops 

and double bottoms there are triple tops and triple bottoms. Triple tops are wide enough space with 

deep and usually rounding reactions between them.  

The above paragraphs discuss most reversal patterns. Additional pattern types include broadening 

formations. They are sometimes called “inverted triangles” because, starting with very narrow 

fluctuations, they widen out between diverging rather than converging boundary lines. They are 

classified in Edwards and Magee (1966,2007) as broadening patterns because except for the 

inverted resemblance to a triangle they have different implications.  
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If symmetrical triangles are areas of “double” between groups of investors, and rectangles are 

“conflict” Broadening formations is a situation when the public is misinformed and overreacting 

to rumors. Broadening formations have multiple forms.  

The “symmetrical” form consists of a series of price fluctuations across a horizontal axis, with 

each minor top higher and each minor bottom lower than its predecessor. The pattern may be 

roughly marked off by two diverging lines, the upper sloping (from left to right) and the lower 

sloping down. These are loose and irregular. As symmetrical triangles are compact and regular. 

The tops and bottoms within the formation tend to fall with fair precision on those boundary lines. 

In a broadening formation, the rallies and declines usually do not step at clearly marked boundary 

lines.  

Three Major Groups of Indicators: Indicators can help you identify trends and their turning points. 

They can provide a deeper insight into the balance of power between bulls and bears. Indicators 

are more objective than chart patterns. The trouble with indicators is that they often contradict one 

another.  

Types of Divergences: Oscillators, as well as other indicators, give their best trading signals when 

they diverge from prices. Bullish divergences occur when prices fall to a new low while an 

oscillator refuses to decline to a new low. They show that bears are losing power, prices are falling 

out of inertia, and bulls are ready to seize control. Bullish divergences often mark the end of 

downtrends.  

Bearish divergences occur in uptrends – they identify market tops. They emerge when prices rally 

to a new high while an oscillator refuses to rise to a new peak. A bearish divergence shows that 

bulls are running out of steam, prices are rising out of inertia, and bears are ready to take control. 

There are three classes of bullish and bearish divergences. Class A divergences identify important 

turning points – the best trading opportunities. Class B divergences are less strong, and class C 

divergences are least important. Valid divergences are clearly visible – they seem to jump from 

the charts. If you need a ruler to tell whether there is a divergence, assume there is none. Class A 

bearish divergence occurs when prices reach a new high but an oscillator reaches a lower high than 

it did on a previous rally. Class A bearish divergences usually lead to sharp breaks. Class A bullish 

divergences occur when prices reach a new low but an oscillator traces a higher bottom than during 

its previous decline. They often precede sharp rallies.  
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Class B bearish divergences occur when prices make a double top but an oscillator traces a lower 

second top. Class B bullish divergences occur when prices make a double bottom but an oscillator 

traces a higher second bottom.  

Class C bearish divergences occur when prices rise to a new high but an indicator stops at the same 

level it reached during the previous rally. It shows that bulls are becoming neither stronger nor 

weaker. Class C bullish divergences occur when prices fall to a new low but the indicator traces a 

double bottom.  

Class A divergences almost always identify good trades. Class B and C divergences more often 

lead to whipsaws. It is best to ignore them unless they are strongly confirmed by other indicators.  

Triple Bullish or Bearish Divergences consist of three price bottoms and three oscillator bottoms 

or three price tops and three oscillator tops. They are even stronger than regular divergences. In 

order for a triple divergence to occur, a regular bullish or bearish divergence first has to abort. 

That’s another good reason to practice tight money management! If you lose only a little on a 

whipsaw, you will not suffer – and you will have both the money and psychological strength to re-

enter a trade. 

Candlestick charts originated in Japan several centuries ago, but have recently gained a following 

in other countries. This is an alternative to the familiar bar chart (Pring, 2002).  

A typical candle consists of two parts: the real body, that is, the rectangular part, and the shadow 

or wick, that is, the two vertical extensions. The top and bottom of the rectangle are determined by 

the opening and closing prices for the day. If the closing price is above the opening (the real body), 

it is plotted in white. When the close is below the opening, it is plotted in black. The top of the real 

body represents the opening price, the bottom the close. This is reversed in the case of a white 

rectangle where the close is plotted at the top and the open at the bottom.  

The thin, vertical shadow lines from the real body reflect the high and low for the day. Since the 

closing and opening prices can be identical, or identical with the high or low, there are a number 

of possible combination that needs to be represented.  

Candlesticks provide essentially the same information as bar charts, but their more pronounced 

visual representation of the material enables technicians to identify characteristics that are less 
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obvious on bar charts. Certain phenomena in bar charts have been given their own names, such as 

key reversal days or island reversal days, likewise, with candles. Because of the large number of 

potential variations for both individual days and price formations on encompassing several days, 

it is common practice to give exotic names to the various possibilities.  

These are outside the scope of this research but would serve as a compliment or extension. Nielson 

(2001) covers these, as well as Pring (2002). Candlesticks may be used on their own or combined 

with reversal patterns. They hold their own on identifying short-term reversals and continuation 

situations.  

Lo, Mamaysky, and Wang (2000) discuss the predictability of five pattern pairs previous 

discussed, but not tested by Chang, Osler (1994). These patterns include Head and Shoulders, 

Inverse Head and Shoulders, Broadening Top, Broadening Bottom, Triangle Top, Triangle 

Bottom, Rectangle Top, Rectangle Bottom, Double Top, Double Bottom. Chang, Osler (1994). 

Nonlinear visual technical patterns are used widely by practitioners (LMW (2000), Chang and 

Osler (1994), Pring (1988). Volume is widely accepted by both practitioners and academics as 

being useful in forecasting returns. Practitioners and academics have been at odds over the validity 

of the technical analysis. (Blume, Easley, O’Hara (2000)). Nonlinear visual patterns are shown to 

be predictive when the volume is increasing (Lo, Mamaysky, Wang (2000)), but the evidence is 

inconclusive when the volume is decreasing. 

de. Malkiel(1999) the author of a Random Walk Down Wall Street refers to technical analysis as 

about as useful as astrology. In response to this Lo, Mamaysky, and Wang (2000) note in their 

paper that Lo and Mackinlay reject the random walk for a large portion of the aggregate stock 

market (1967-1999). 

LMW (2000) notes “Technical analysis, known as ‘charting’, has been a part of financial practice 

for many decades but this discipline has not received the same level of academic scrutiny and 

acceptance as more traditional approaches such as fundamental analysis.” 

“It has been argued that the difference between fundamental analysis and technical analysis is not 

unlike the difference between astronomy and astrology. Among some circles, technical analysis is 

known as ‘voodoo finance.’” Lo and Mackinlay (1988, 1999) have shown that past prices may be 
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used to forecast future returns to some degree, in rejecting the Random Walk Hypothesis for 

weekly U.S. stock indexes.  

Campbell, Lo, and MacKinlay(1997, 43-44) provide an example of the linguistic barriers between 

technical analysts and academic finance:“The presence of clearly identified support and resistance 

levels, couple with a one-third retracement parameter when prices lie between them, suggests the 

presence of strong buying and selling opportunities in the near-term.” “The magnitudes and decay 

pattern of the first twelve autocorrelations and the statistical significance of the Box-Pierce Q-

statistic suggest the presence of a high-frequency predictable component in stock returns.” Our 

findings suggest a high degree of nonrandomness in uncovering the nonlinear visual patterns. Over 

9500 daily price observations on a single security, we find that at most 68 patterns are uncovered 

(Head and Shoulders). Chang and Osler (1994) weren’t wrong to test Head and Shoulders as a 

subset of the full pattern group. This leads into part two where we use the patterns from chapter 1 

as a benchmark for digital image processing. We test whether image processing can detect the 

patterns and benchmark for speed and accuracy. Recently CJ Neely (2010) ties in the use of both 

fundamental and technical analysis in studying the equity risk premium. Finding that technical 

indicator perform just as well, if not better than traditional macroeconomic variables. Jasemi, 

Milad, and Ali M. Kimiagari. (2012), note that moving averages are one of the most popular and 

easy to use tools available for technical analysts. They form the building blocks for other technical 

indicators and overlays. Many studies consider the use of technical indicators in event study from 

Fama and Blume (1966), Sweeny (1988), and more recently  Neely (2010) and Han, Yufeng, Ke 

Yang, and Guofu Zhou (2013) study technical indicators on the equity risk premium, and Fama 

French 3 factors, and capital asset pricing model (CAPM).  

Fama and Blume (1966) note in recent literature there has been considerable interest in the theory 

of random walks in the stock-market prices. The basic hypothesis of the theory is that successive 

price changes in individual securities are independent random variables. Independence implies, 

that the history of a series of changes cannot be used to predict future changes in any “meaningful” 

way. The first order coefficients for the daily price changes of the individual securities are positive 

in twenty-two out of thirty cases, and the average value of the coefficients is 0.026. The results are 

consistent with the small degree of persistence on a very short-term basis that was uncovered by 

the filter tests. The discussion suggests that for measuring the direction and degree of dependence 
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in price changes, the standard tools are probably as powerful as the Alexandrian filter rules. 

Sweeney (1988) notes an application of ½ of 1 percent filter rules remains profitable for floor 

traders. Why the markets seem weak-form inefficient at their level of transaction costs. One answer 

is that the cost of a seat on the exchange is the present value of the profits that could be made. This 

does not explain why current seat holders have not competed for these profits to zero; there are too 

many of them to argue that a successful conspiracy is at work. Han, Yufeng, Ke Yang, and Guofu 

Zhou (2013) document that an application of a moving average timing strategy of technical 

analysis to portfolios sorted by volatility generates investment timing portfolios that substantially 

outperform the buy and hold strategy. For high-volatility portfolios, the abnormal returns, relative 

to the capital asset pricing model (CAPM) and the Fama-French 3-factor models, are of great 

economic significance and are greater than those form the well-known momentum strategy. Recent 

papers by Neely, Rapach, Tu, and Zhou (2013) confirm the predictability of technical indicators, 

in the face of macroeconomic variables. Noting that macroeconomic indicators outline by Goyal 

and Welch (2008) are actually less predictive than technical indicators in the cross-section of 

stocks. Avramov, Kaplanski, and Subrahmanyam (2019) suggest that a modern application a 

moving average strategy (named Moving Average Deviation) shows predictability, drowns out 

momentum and profitability (before transaction costs) in the U.S. aggregate stock market. NYSE, 

Nasdaq, AMEX (CRSP) data.  Other technical indicators (Relative Strength Index, Moving 

Average Convergence Divergence, among others) are used but are based on the moving average. 

The above indicators are the ones that are tested in Zhou et al (2013) and are found to be highly 

predictive in the cross-section of stocks. Nonlinear visual chart patterns are different from moving 

average based strategies in that they are largely in the eye of the beholder. Lo, Mamaysky, Wang 

(2000) provide a framework for identifying nonlinear visual patterns objectively. Visual nonlinear 

patterns were first discussed academically by Chang and Osler 1994. They test the head and 

shoulders pattern as a subset of all visual patterns, noting patterns later tested by Lo, Mamaysky, 

Wang (2000) as well as patterns to be tested outlined in Pring (1998). Lo et al (2000) find that 

stock returns can be predicted by visual chart patterns and the patterns may contain some practical 

value. They are careful to note predicted does not necessarily mean profitable. McLean and Pontiff 

(2016) the findings point to mispricing as the source of predictability. Post-publication, stocks in 

characteristic portfolios experience higher volume, variance, and short interest, and higher 

correlations with portfolios that are based on published characteristics. Neely further discusses 
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four types of theoretical models in the literature that seek to explain technical indicators in asset 

pricing. They are noted below.  

The first type of theoretical model recognizes differences in the time for investors to receive 

information. Under this friction, Treynor and Ferguson (1985) show that technical analysis is 

useful to assess whether information has been fully incorporated into equity prices, while Brown 

and Jennings (1989) demonstrate that past prices enable investors to make better inferences about 

price signals. In addition, Neely points out that Grundy and McNichols (1989) and Blume, Easley, 

and O’Hara (1994) show that trading volume can provide useful information beyond prices.  

An additional type of model is Cespa and Vives (2012) who show that asset prices can deviate 

from their fundamental values if there is a positive level of asset residual payoff uncertainty and/or 

persistence in liquidity trading. In this setting, rational long-term investors follow a trend. In the 

real world, different responses to information are more likely during recessions, due to 

consumption smoothing asset sales by households that experience job losses and liquidation sales 

of margined assets by some investors (Neely). These factors help to explain why we find that 

technical indicators display enhanced predictive ability during recessions. 

The next type of model allows for underreaction and overreaction to information. Due to 

behavioral biases, Hong and Stein (1999) explain that, at the start of a trend, investors underreact 

to news; as the market rises, investors subsequently overreact, leading to even higher prices. 

Similarly, positive feedback traders – who buy (sell) after asset prices rise (fall) – can create price 

trends that technical indicators detect. George Soros (2003) argues that positive feedback can alter 

firm fundamentals, thereby justifying to a certain extent the price trends. Edmans, Goldstein, and 

Jiang (2012) show that such feedback trading can occur in a rational model of investors with 

private information.  

The last model outlined in Neely (2010) shows that models of investor sentiment shed light on the 

efficacy of technical analysis. Since Keynes (1936), researchers have analyzed how investor 

sentiment can drive asset prices away from fundamental value. DeLong, Shleifer, Summers, and 

Waldmann (1990) show that, in the presence of limits to arbitrage, noise traders with irrational 

sentiment can cause prices to deviate from fundamentals, even when informed traders recognize 

the mispricing.  
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These papers seek to explain why technical indicators may forecast the equity premium. Neely 

outlines that theoretical models based on information frictions help to explain the predictive value 

of the technical indicators. Empirically, Moskowitz, Ooi, and Pedersen (2012) find that pervasive 

price trends exist across commonly traded equity index, currency, commodity, and bond futures. 

Neely notes that insofar as the stock market is not a pure random walk and exhibits periodic trends, 

technical indicators should prove informative, as they are primarily designed to detect trends.  

Lo, Mamaysky, Wang (2000) state that technical analysis, also known as “charting” has been a 

part of financial practice for many decades, but the discipline has not received the same level of 

academic scrutiny and acceptance as more traditional approaches, such as fundamental analysis.  

The article tests subjective chart patterns such as head and shoulders and double bottom which 

confirms some information may be obtained. This is backed up by literature in the late 1960s and 

1980s by Fama and Blume (1966), and later RJ Sweeney (1988) which show the predictive power 

of filter rules in cross-sectional stock returns.  

Chang and Osler (1994) discuss the first study of nonlinear visual chart patterns in academic 

literature. Pulling the rules of the head and shoulders pattern from trade journals. The pattern was 

found to be predictive in the cross-section of forex markets. Chang and Osler (1994) note that there 

are more nonlinear visual patterns than just the Head and Shoulders pattern which are outlined in 

Pring (1988). The patterns are said to be highly predictive according to practitioners. Chang and 

Osler left additional patterns for future work. Some of the patterns are picked up in Lo, Mamaysky, 

and Wang (2000).  

From Chang and Osler (1994) Results show the head-and-shoulders trading rule appears to have 

some predictive power for the German mark and yen but not for the Canadian dollar, Swiss franc, 

French franc, or pound. Nonetheless, if one had speculated in all six currencies simultaneously, 

profits would have been both statistically and economically significant. Taken individually, profits 

in the markets for yen and marks are also substantial when adjusted for transactions costs, interest 

differentials, or risk. These results are robust to changes in the parameters of the head-and-

shoulders identification algorithm, changes in the sample period, and the assumption that exchange 

rates follow a GARCH process rather than a random walk. These results are inconsistent with 

virtually all standard exchange rate models and could indicate the presence of market 

inefficiencies.  
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Technical analysis, the prediction of price movements based on past price movements, has been 

shown to generate statistically significant profits despite its incompatibility with most economists’ 

notions of “efficient markets.” In the stock market, excess profits based on technical trading rules 

are documented by Brock, Lakonishok, and LeBaron (1992), and in the foreign exchange market 

such excess profits are found by Dooley and Shafer (1984); Logue, Sweeney, and Willett (1978); 

Sweeney (1986)l; and Levich and Thomas (1993).  

Tests of technical analysis have largely limited their attention to techniques that are easily 

expressed algebraically, namely filter rules and moving average. Practitioners, however, rely 

heavily on many other techniques, including a broad category of exclusively visual patterns. 

Typically known by fanciful names, this category includes “head and shoulders,” “rounded tops” 

and “bottoms,” “flags,” “pennants,” and “wedges.” Highly nonlinear and complex, trading rules 

based on these patterns normally cannot be expressed algebraically.  

The purpose of this paper is to begin evaluating this large set of visual nonlinear trading rules by 

focusing on one of the best-known patterns, head, and shoulders. Technical analysts claim that this 

pattern identified when the second of a series of three peaks is higher than the first and the third, 

presages a trend reversal. The computer-based identification algorithm locates such patterns using 

local maxima and minima.  

Since the head-and-shoulders pattern is considered by practitioners to be one of the most, if not 

the most, reliable of all chart patterns, it represents a natural point of departure for empirical 

research. If trading based on this pattern generates excess profits, investigating other patterns may 

prove interesting. Conversely, if profits are insignificant, then this entire branch of visually based 

technical analysis may be called into question.  

The authors test the head-and-shoulders rule on daily spot rates for six currencies against the dollar: 

the yen, German mark, Canadian dollar, Swiss franc, French franc, and pound. Their data cover 

the entire floating rate period (from March 19, 1973, to June 13, 1994), a twenty-one-year span 

that provided the authors with more than 5,500 daily observations. Currency markets seem 

especially appropriate for testing technical signals, as they are characterized by very high liquidity, 

low bid-ask spreads, and round-the-clock decentralized trading. Furthermore, because of their size, 

these markets are relatively immune to insider trading. In any event, technical analysts claim that 

“the principles that underlie the analysis of currencies from a technical aspect are basically the 



29 
 

same as those used in any other financial market or for individual stocks” (Pring 1985, p. 466). 

The authors are aware of only two studies that evaluate – for any market – the visual, nonlinear 

patterns that are the focus of this paper. The two studies come to different conclusions: Levy (1971) 

tests the predictive power of all thirty-two possible five-point chart patterns, including the head 

and shoulders. He finds no evidence of profitable forecasting ability. As discussed later, the authors 

question the validity of the results. Brock et al. (1992), find that breakouts from observed trading 

ranges are meaningful predictors of short-term returns in the Dow Jones Index during 1897-1986, 

a result corroborating technicians’ claims regarding “support” and “resistance” levels. In short, 

research on these visual trading patterns is both scarce and inconclusive; thus, as Neftci (1991) 

notes, these visually based strategies are currently “a broad class of prediction rules with unknown 

statistical properties.”  

The study can be viewed as contributing to a growing body of research testing for nonlinear 

dependence in financial prices. Early tests for the presence of nonlinearities, testing the null 

hypothesis of i.i.d. behavior, indicate that nonlinearities are indeed present in stock markets Hsieh 

1991 and in floating exchange rates (Hsieh 1989). The form of these nonlinearities remains 

unclear. Modeling financial prices as a GARCH process seems to capture some of the 

nonlinearities indicated by more general tests; more specifically, it is helpful for predicting 

volatilities (Hsieh 1989). Other sources of nonlinearity are also consistent with the data. Another 

potential source of nonlinearity is chaos, although a few available tests fail to confirm its existence 

in exchange rate data. These tests may be helpful in identifying another specific form of exchange 

rate nonlinearity that is consistent with data on floating exchange rates.  

There are three parts to the methodology by which the authors calculate and interpret the profits 

earned by taking foreign exchange positions once the pattern is recognized. The first part is an 

objective, computerized, identification of the head-and-shoulders pattern itself. The second part is 

a strategy, replicable in real time without the knowledge of the future, for entering and exiting 

speculative positions after recognizing such patterns. The third part concerns evaluating whether 

the profits obtained from this trading rule imply that there were predictable profit opportunities in 

the data.  

The approach in this paper is to evaluate whether these profits are statistically greater than those 

that would have been found had there been no intertemporal dependence in exchange rate changes. 



30 
 

They identify reliable confidence intervals via the bootstrap methodology, implemented by 

constructing 10,000 new exchange rate series. In each simulated series, daily changes are 

determined by drawing randomly, with replacement, from the original series of exchange rate 

changes and applying these changes consecutively to the exchange rate’s actually starting value. 

When we apply our trading rules on these constructed series, we obtain a distribution for profits 

under the null hypothesis that there are no predictable profit opportunities. From this distribution, 

we calculate confidence intervals.  

Technical nonlinear patterns are different from moving averages (and patterns comprised of 

moving averages) in that they are harder to test arithmetically. Lo, Mamaysky and Wang (2000) 

provide a framework for testing such patterns, using the pattern rules from Edwards and McGee 

(1966). These are largely based on kernel density estimation and polynomial regressions. This is 

discussed in the next section.  A subset of the visual patterns (discussed later) are tested by Lo, 

Mamaysky, and Wang (LMW, 2000) for both predictability and informational value. Noting both 

the discrimination from academic literature on technical studies and how difficult it is to compute 

them arithmetically. The authors further discuss the ease at which to rebalance a portfolio using 

modern quantitative finance techniques compared with the difficulty to objectively obtain and test 

a visual pattern such as the head-and-shoulders. Despite their validity and viability, they have a 

bad wrap in the literature. Often being referred to as being as useful as astrology, or similar to 

alchemy. (LMW, 2000), Covel (2009).  

LMW (2000) find out that the patterns have predictive ability, and contain some informational 

value. Citing previous studies by Blume, Easley, and O’Hara (1999) which consider the joint 

distribution between prices and volume containing predictive power. Academia seems to be okay 

with prices and volume being predictive, but not prices and past prices (LMW, 2000).  

The paper by LMW (2000) was groundbreaking in that being published in a top finance journal, it 

showed that visual patterns are worth their salt and are predictive in the cross-section of both the 

NYSE/AMEX and Nasdaq. The authors are careful to point out that predictability does not 

necessarily mean profitability.  

Future work by LMW (2000) is noted to come up with more rigorous ways to develop the patterns. 

The authors rely on smoothing estimators (discussed in a later section) and call for the use of a 

local polynomial kernel. They also call for new ways to obtain the patterns. We address both.  
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Our paper picks up where LMW (2000) left off in first computing an objective method for finding 

the patterns and by contributing new methods to uncover the patterns (i.e. digital image processing) 

which is discussed in further sections.  The first methodology deals with detecting the patterns 

objectively (LMW (2000), relied heavily on visual inspection). The second part discusses whether 

image processing can detect the patterns in data which is the cornerstone for our research question 

(can image processing be a useful tool for economists?). Once we know what the patterns look 

like, and how to detect them objectively and arithmetically, we can use them for benchmarking on 

new methods.   

3. Nonparametric Estimation 

Hurvich and Simonoff (1998) discuss nonparametric estimation of an unknown smooth regression. 

The methodology was popular in the literature around the time of Lo, Mamaysky, and Wang 

(2000).  

Nonparametric data assumes we have data 𝑦 = (𝑦1, . . . , 𝑦𝑛)′ generated by the model 

𝑦𝑖 = 𝑚(𝑥𝑖) + 𝜖𝑖 ∀ i=1,…,n (1) 

Where m(.) is an unknown smooth function, the 𝑥𝑖are given real numbers in the interval [a,b] and 

the 𝜖𝑖 are independent random variables with mean 0 and variance 𝜎0
2. Either the predictor vector 

x is non-random, or the y is conditional on the observed values if it is random. In our case, x is a 

state variable for prices.  

Hurvich and Simonoff (1998) note that many different estimators of m have been proposed. In 

research by Lo, Mamaysky, and Wang (2000) the authors call for the use of local polynomial 

estimators in finding smooth data from prices.  

A pth-order local polynomial estimator is defined as the constant term 𝛽^
0 of the minimizer of  

∑{𝑦𝑖 − 𝛽0−. . . −𝛣𝑝(𝑥 − 𝑥𝑖)𝑝}2𝐾(
𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 
(2) 

Where k is the kernel function, generally taken to be a symmetric probability density function with 

finite second derivative (Hurvich and Simonoff (1988)). Typical choices of p are 0,1,2 and 3. We 

use local constant (p=0). There are said to be asymptotic and boundary bias correction advantages 
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with local linear (p=1) and local cubic (p=3) estimators over local constant (p=0) and local 

quadratic (p=2). We use a local constant estimator following Lo, Mamaysky, and Wang (2000).  

Other estimators include a Gasser-Muller convolution kernel estimator (Gasser and Muller, 1979) 

and smoothing splines.  

A crucial step in estimating m is choosing the smoothing parameter (h for the local polynomial 

and kernel estimators), which controls the smoothness of the resultant estimate. Automatic 

smoothing parameter selectors generally fall into two broad classes of methods: classical and plug-

in approaches. Classical methods are based on the minimization of an approximately unbiased 

estimator of either the mean average squared error  

𝑀𝐴𝑆𝐸 =
1

𝑛
𝐸[(𝑚^

ℎ − 𝑚)′(𝑚^
ℎ − 𝑚)] 

(3) 

(e.g. generalized cross-validation (GCV); Craven and Wahba (1979)) or Akaike information 

criterion (AIC); Akaike (1973)).  

There are many kernel estimators to use when doing this. A Gaussian kernel is the most common 

approach. In contributing to their work we use a local polynomial regression. This is discussed 

below.  

Smoothing data to find the patterns involves using kernel density estimators to find extrema on the 

prices. Local polynomial regression is what we use to carry this out. There are many different 

kernels to choose from, the Gaussian kernel is a popular choice. Other kernels include cosine, 

rectangular, sigmoid to name a few. (From Kedd (2015)). To adjust the degree of smoothness we 

set a bandwidth (h) in our function. Härdle (1990). These are referred to also as penalty functions. 

Penalty functions and bandwidth selection are also discussed in Hurvich and Simonoff (1998), and 

Kedd(2015).  

Turluch - Bandwidth Selectors for KDE - popular approach is to visually select the best one. 

Härdle, Linton (1994)- Kernel Density Estimators, different kernels for smoothing. Gaussian is 

more popular.  

Choice of H is more important than the kernel density estimator itself. We don't know the 

bandwidth because we don't know the density of our function. So we have to compute the optimal 

value. This is the tradeoff between computing optimal bandwidth and plug-in methods. When we 
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plug in we inspect the data for how smooth we want it. So, if we had a window where we know 

there is a chart pattern we can visually inspect h to fit the data so that it meets our rule criteria. 

Turlach (1993) discusses how this is not replicable. Which is what we find when we try and use 

just cross-validated (objective) bandwidth. Our estimates are off by a few days etc. LMW (2000) 

calls for updated methods to uncover the patterns objectively, mainly select h in a replicable way. 

When we do this, our price becomes an approximation of the price using kernel smoothers and an 

error term.  

Lo, et al (2000) directly call for new more rigorous methods for uncovering the patterns based on 

their methodology in their introduction. They also call for a new methodology for uncovering the 

patterns. We discuss both. The former in this chapter, the later in the next.   

Minimization Functions Golden-section finds extremum by narrowing the range of values inside 

which the extremum is known to exist. The name comes from maintaining the function values for 

triples of points with distance from the golden ratio. This is the limit of the Fibonacci search. 

Newton’s method in optimization is derived from calculus in finding the zeros of a known function, 

starting at an initial guess. This follows the methodology above and makes sure that our objective 

bandwidth can match the data from the original paper.  

Following Lo, Mamaysky, and Wang (2000) we rescale our variable K(u) to follow the probability 

density function.  

𝐾ℎ(𝑢) ≡
1

ℎ
𝐾(

𝑢

ℎ
), ∫ 𝐾ℎ(𝑢)𝑑𝑢 = 1 

 

(4) 

 

If h is very small, the averaging will be done to a small neighborhood (small number of 

observations) around 𝑋𝑡𝑠. If h is very large, the averaging will be done over larger neighborhoods 

of the 𝑋𝑡𝑠.Therefore controlling the amount of averaging reflects the degree of smoothness, and 

thus adjusting the smoothing parameter h, this is referred in the literature (Scott and Sain 2005, Lo 

Mamaysky Wang (2000)) as the bandwidth.  
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Some kernel estimators we use in this paper are in the table below. The equations come from 

Applied Statistics Lecture Notes by M. de Carvalho and J. Blanchet. Institute of Mathematics, 

Analysis, and Applications. EPF Lausanne.   

A kernel estimate 𝑚^
ℎ(𝑥) will converge to m(x) with a small enough bandwidth. This is shown 

by Härdle (1990). This holds true for many estimators. The most popular choice of the kernel is 

the Gaussian Kernel and is what we use in this paper.  

Popular bandwidths are shown to be based on the trace of the smoothing parameter h. These are 

summarized in the table below.  

AICC 
1 +

2(𝑡𝑟𝐻[ℎ] + 1)

𝑛 − 𝑡𝑟𝐻[ℎ] − 2
 

GCV 
−2𝐿𝑜𝑔[1 −

𝑡𝑟𝐻[ℎ]

𝑛
] 

AIC 
2

𝑡𝑟𝐻[ℎ]

𝑛
 

T −𝐿𝑜𝑔[1 − 2
𝑡𝑟𝐻[ℎ]

𝑛
] 

Table 1 Possible Bandwidths 

Plug in estimators can also be used. These involve visually inspecting the data and then fine-

tuning the parameter h for how smooth it should be. These are probably the best for these 

estimators followed by AICC. According to Hurvich and Simonoff (1998). The drawback of 

plug-in estimators is that it isn’t automated.  

These are used in the variety of kernel functions. A popular choice being a Gaussian kernel 

because it simulates a normal distribution on each observation 𝑥𝑖. Other popular choices are the 

Epanechnikov kernel.  
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Kernel Formula 

Biweight 
𝐾(𝑢) =

15

16
(1 − 𝑢2)2𝐼{|𝑢| ≤ 1} 

Triweight 
𝐾(𝑢) =

35

32
(1 − 𝑢2)3𝐼{|𝑢| ≤ 1}, 

Cosine 𝐾(𝑢) =
𝜋

4
𝑐𝑜𝑠(

𝜋

2
𝑢) 

Epanechnikov 
𝐾(𝑢) =

3

4
(1 − 𝑢2)𝐼{|𝑢| ≤ 1}, 

Epan2 
𝐾(𝑢) =

3

4
(1 − 𝑢2)𝐼{|𝑢| ≤ 1}, 

Gaussian 
𝐾(𝑢) =

1

2√2𝜋
ⅇ−

𝑢2

2 , 𝑢 ∈ 𝑅 

Rectangular 
𝐾(𝑢) =

1

2
{|𝑢| ≤ 1} 

Triangular 𝐾(𝑢) = (1 − |𝑢|)𝐼{|𝑢| ≤ 1}, 

Sigmoid 
𝐾(𝑢) =

2

𝜋

1

ⅇ𝑢 + ⅇ−𝑢
 

Table 2  Possible Kernels 

Selecting the bandwidth is as important, if not more important than choosing the kernel (Scott 

and Sain (2005), Lo, Mamaysky, Wang (2000)). The success of the smoothing parameter is 

dependent on h. If it is too small, it will fit exactly. If it is too large it will be too smooth and be a 

poor estimator. The penalty for too smooth is that there will be no extrema found. On the 

extreme another end, it will be too many extrema which according to Lo, Mamaysky, Wang 

(2000) the reason for not finding extrema from price is that it has too many false positives.  

We show the ability of our local polynomial kernel, and AIC bandwidth on simulated data. We 

use an approximation 𝑍𝑡 for a normal distribution, with mean zero and 𝜎 = 1. We use 𝑋𝑡to 

approximate a uniform distribution between 0 and 2𝜋. We take 500 draws of each and use 

E[Y|X] ≡ 𝑌𝑡 = 𝑆𝑖𝑛(𝑋𝑡) + 0.5𝑍𝑡. We show simulated data for our sample in the plot below.  
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Figure 1. Random data following a normal distribution with sin approximation.  

Figure 2. Random data with sin approximation and AIC bandwidth  

Akaike Information Criteria (Akaike, 1973) sets the bandwidth to be too small. It fits both the 

“noise” 0.5𝜖𝑍𝑡 and also the “signal” Sin(.).  
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The normal reference rule using a normal kernel is h = 1.06 𝜎𝑛
−1

5  for univariate data. (Scott 

(2010)) this is referred to as Silverman’s rule of thumb and yields a larger bandwidth and fits the 

function better.  

 

Figure 3. Random data with sin approximation and Silverman’s bandwidth.  

 

Figure 4. Random data with Silverman’s bandwidth and Sin approximation. 

If we take too large of a bandwidth, say by increasing it to a factor of 4 * Silverman’s Rule of 

thumb we get too smooth of an estimator. 
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These are referred to Silverman’s rule of thumb. A popular method is a cross-validated function.  

𝐶𝑉(ℎ) =
1

𝑇
∑(𝑃𝑡 − 𝑚^

ℎ,𝑡)2,

𝑇

𝑡=1

 

 

 

(5) 

𝑚^
ℎ,𝑡 ≡

1

𝑇
∑ 𝜔𝛵,ℎ𝑌𝛵

𝑇

𝛵≠𝑡

 

 

(6) 

The estimator 𝑚^
ℎ,𝑡 is the kernel regression estimator applied to the price history {𝑃𝑡} with the tth 

observation omitted, and the summands are the squared errors (Following LMW (2000)), of the 

𝑚^
ℎ,𝑡s following each omitted observation. For a given bandwidth parameter h, the cross-validated 

function shows how well the kernel estimator can fit the data observation 𝑃𝑡when that observation 

is not used to construct the kernel (it is omitted). By selecting the bandwidth that minimizes this 

function we obtain asymptotic properties such as minimum mean-squared error. According to Lo, 

Mamaysky, Wang (2000) the bandwidth used by a Cross-Validated approach is too smooth 

according to the bias of trained technical analysts. They found that 0.3*h remedies this problem 

but note there are other bandwidths that fix the solution, however, change the end result overall 

(Härdle (1990)).  

Upon reconstruction, we find that 0.3*h doesn’t match the results from their paper entirely. Lo, 

Mamaysky, Wang (2000) note that a promising direction for future work is to consider alternatives 

to kernel regression. They discuss the viability of local polynomial regression, in that the former 

lack local variability in the degree of smoothing. Local polynomial regression provides local 

averaging of polynomials to obtain the estimator m(x). They discuss that these may yield important 

improvements in the pattern recognition problem. We address this in our paper.  

For minimization functions, we use the Golden Section. This is based on the Fibonacci sequence 

for the search for global maxima and minima in a function. Rather than using a rate of change as 

in Newton’s Method.  
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The Fibonacci numbers 1,1,2,3,5,8,13 have used in areas of mathematics, natural science, nature, 

and technical analysis. Their formation is such that the current number is the rest of the previous 

number, plus the one before it. Starting with 0 and 1.  

𝐹𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2𝑓𝑜𝑟𝑛 > 2 

 

(7) 

𝑓2 = 𝑓1 = 1 

 

(8) 

 

The ratio of two consecutive Fibonacci numbers 
𝑓𝑛+1

𝑓𝑛
approaches the golden ratio for large n. 

With this formula, the first Fibonacci ratios can be calculated.  

𝑙𝑖𝑚𝑛→∞

𝑓𝑛

𝑓𝑛+𝑘
= 𝑙𝑖𝑚𝑛→∞

𝑓𝑛

𝑓𝑛+1

𝑓𝑛+1

𝑓𝑛+2
. . .

𝑓𝑛+𝑘−1

𝑓𝑛+𝑘
= 𝜙−𝑘 = (

1 + √5

2
)−𝑘 

 

(9)  

𝑓0 = (
1 + √5

2
)−0 = 1 

 

(10) 

𝑓1 = (
1 + √5

2
)−1 = 0.6180 

 

(11) 

𝑓2 = (
1 + √5

2
)−2 = 0.3820 

 

(12) 

Lo, Mamaysky, and Wang (2000) discuss that finding extrema off of price is too noisy and 

resultant patterns would be impossible to distinguish from noise.  
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4. Automating Technical Analysis.  

Lo, Mamaysky, and Wang (2000) define patterns in terms of their ability to meet rules based on 

local extrema (maxima and minima). They obtain kernel estimators 𝑚^(. )  of the price for a given 

time series so that the extrema can be determined numerically. They then analyze the smoothed 

estimate 𝑚^(. )of the price for the occurrence of technical patterns.  

Lo, Mamaysky, Wang (2000) note that the last two steps are straightforward applications of kernel 

regressions. It is the first step which is estimating to be the most controversial because here it is 

mimicking the judgment of a trained professional analyst. We do not have a trained professional 

analyst handy so our best estimate is to find a solution that replicates Lo, Mamaysky, Wang (2000) 

as best as possible. If they do not meet their scrutiny, (i.e. the bandwidth selected does not yield 

good patterns) it may not be a reliable estimate of what they would see in practice and thus make 

decisions from.  

Pattern recognition is known to identify handwritten digits, faces, distinguish between animals, 

breed of dogs, objects, hands, fingerprints, self-driving cars, and other human activities, it is 

difficult to fully capture what a trained analyst would see in a stock chart.  

We propose definitions of 10 technical patterns based on their extrema. These are from Lo, 

Mamaysky, and Wang (2000) and ultimately from Edwards and Magee (1966, Chaps. VII-X): 

Other print literature (Pring, (2002), Elder (2002) discuss the patterns and show examples of 

various forms but do not develop objective rules for testing. It is possible that these other patterns, 

along with additional patterns outlined in Chang and Osler (1995) might make their way into 

literature at some point.  

Using this procedure, and armed with our Gaussian Kernel in the section above with local 

polynomial regression of order 0 we find results that match with the original samples in Lo,  

Mamaysky, Wang (2000). These are shown below, with the original results for reference. Black 

and white images are from Lo, Mamsky, Wang (2000).  

We first smooth the price data in rolling 38-day windows. We use 35 days for recognizing extrema 

and three additional days for recognizing a completed pattern.  
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A computer would only need 36 days to recognize a pattern as only one day on either side of the 

last extrema is needed. The three additional days is for a ‘human’ factor. This follows LMW 

(2000).  

We smooth price using the local polynomial kernel of order 0 and a Gaussian kernel. We use a 

modified form of the cross-validated bandwidth, named Maximum Price Deviation.  

We first smooth the data, check for extrema, then check whether there are enough extrema to 

complete a pattern. If there are, we check whether they fit any of the pattern definitions defined 

above. If they do, we log the location of extrema, kernel values, price values, and plot both for 

observation.  

Pattern windows without enough extrema to complete a pattern definition, or windows with 

enough extrema but do not meet the pattern rules are discarded. We have roughly 4800 non pattern 

windows and fewer than 70 completed pattern windows for the CTX security which spans a decade 

short of the full data set (1967-2014). We use this security to match to the original paper by Lo, 

Mamaysky, Wang (2000). The patterns in rolling windows are shown below. Patterns are found 

using maximum price deviation, with maxmiss set between 0.01 and 0.02.  

What Lo was doing was saying look, this pattern meets the rules. Let’s not be concerned with 

hitting every possible example of every pattern but populate enough examples to test if they have 

predictive power. He finds they do.  

What we want to do is take that and say let’s use computer vision techniques to teach a computer 

to better recognize the patterns the way a human would see them.  

We cross check everything in excel. We basically fit our windows with a kernel smoother using 

our bandwidth and we say look, here’s the pattern where’s the extrema. And we put each pattern 

through the rules in the paper to see if it meets them, and we see that it does. The key here is that 

it was all automatic, we didn’t have to visually inspect our bandwidth (h). 
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Head and Shoulders:  Inverse Head and Shoulders:  

E1 is a maximum 

E3 > E1, E3 > E5 

E1 and E5 are within 1.5 percent of their 

average 

E2 and E5 are within 1.5 percent of their 

average, 

E1 is a minimum 

E3 < E1, E3 < E5 

E1 and E5 are within 1.5 percent of their 

average 

E2 and E4 are within 1.5 percent of their 

average. 

Broadening Top:  Broadening Bottom:  

E1 is a maximum 

E1 < E3 < E5 

E2 > E4 

E1 is a minimum 

E1 > E3 > E5 

E2 < E4 

Triangle Top:  Triangle Bottom:  

E1 is a maximum 

E1 > E3 > E5 

E2 < E4 

E1 is a minimum 

E1 < E3 < E5 

E2 > E4 

Rectangle Top: Rectangle Bottom: 

E1 is a maximum 

tops are within 0.75 percent of their 

average 

bottoms are within 0.75 percent of their 

average 

lowest top > highest bottom, 

E1 is a minimum 

tops are within 0.75 percent of their 

average 

bottoms are within 0.75 percent of their 

average 

lowest top > highest bottom 

Table 3 Pattern Rules 
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The definition for Double Tops / Bottoms is slightly more involved. There are only two required 

tops/bottoms, E1, and E alpha. These must occur at least 22 days apart.  

Double Top:  Double Bottom:  

E1 is a maximum  

E1 and Ea are within 1.5 percent of their 

average 

ta* - t1* > 22  

E1 is a minimum  

E1 and Ea are within 1.5 percent of their 

average 

ta* - t1* > 22 

Table 3 Pattern Rules 

Following Lo, Mamaysky, Wang (2000) our algorithm uses a sample of prices {𝑃1, . . . , 𝑃𝑇}. We fit 

kernel regression in these windows, one for each subsample or window from t to t+l+d-1, where t 

varies from 1 to T-l-d+1, and l and d are fixed. Lo, Mamaysky and Wang (2000) use l=35 and d=3, 

so each window consists of 38 trading days.  

We fit each window with a kernel regression to narrow our attention to just patterns that are 

completed within the span of the window -l+d trading days. If we fit a single kernel to the entire 

dataset, many patterns of various durations would emerge, and without additional constraint, it 

would be impossible to distinguish signal from noise. The window length is fixed at l+d, but kernel 

regressions are estimated on a rolling basis and we search for patterns in each window, following 

Lo, Mamaysky, and Wang (2000).  

For a fixed window, we can only find patterns that are completed within l+d trading days. Future 

work is still left to discover patterns on a longer horizon. We focus on 35 days to follow the paper 

by Lo, Mamaysky, and Wang (2000).  

The parameter d controls for the human effect of not recognizing patterns exactly when they occur. 

We allow for a lag between pattern completion and the time it takes to detect the pattern. To do 

this we require that the final extremum that completes a pattern occurs on day t+l-1; d is the lag 

time that takes place between the pattern being completed and recognizing it. In a later section we 

compute post pattern returns on day t+l+d, that is, one day after the pattern has completed. An 

example being if a head-and-shoulders pattern has completed on day t+l-1 (having used prices 

from time t through time t+l+d-1, we compute the conditional one-day gross return as 𝑍1 ≡
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𝑌𝑡+𝑙+𝑑+1

𝑌𝑡+𝑙+𝑑
. We do not use any forward information in computing returns conditional on pattern 

completion. The lag d ensures that we are computing our conditional returns out-of-sample and 

without any “look-ahead” bias. This follows (Lo, Mamaysky, Wang (2000)).  

Within each window, we estimate a kernel regression using the prices in that window, hence:  

𝑚^
ℎ,𝑡 ≡

∑ 𝐾ℎ(𝜏 − 𝑠)𝑃𝑠
𝑡+𝑙+𝑑−1
𝑠=𝑡

∑ 𝐾ℎ(𝜏 − 𝑠)𝑡+𝑙+𝑑−1
𝑠=𝑡

, 𝑡 = 1, . . . , 𝑇 − 𝑙 − 𝑑 + 1 

 

 (13) 

𝐾ℎ(𝑧) is given earlier and h is the bandwidth parameter. 𝑚^
ℎ (𝜏)is a differentiable function of 𝜏. 

Once the function has been approximated, we can compute the extrema in the rolling window. 

We use the golden section which is a search for minima. Newton’s method is also an alternative 

for finding extrema. Lo, Mamaysky, and Wang (2000) find extrema using derivatives. For 

derivatives, we find the times 𝜏 such that Sgn(𝑚^′ℎ (𝜏))=-Sgn(𝑚′^
ℎ (𝜏 + 1)) where 𝑚′^

ℎ (𝜏) is 

the derivative of 𝑚^
ℎ with respect to 𝜏 and Sgn(.) is the signum function. If the signs of 𝑚′^

ℎ (𝜏) 

and 𝑚′^
ℎ (𝜏 + 1) are +1 and -1 respectively, then we have found a local maximum, and if they 

are =1 and +1, respectively, then we have identified a local minimum. The same holds for any 

method of finding extrema.  

Once we identify extrema we identify whether it is maxima or minima in the price series 𝑃𝑡 in 

the window range [t-1,t+1], and the original price is used to determine whether a pattern has 

occurred according to our definitions from Edwards and Magee (1966).  

If 𝑚′^
ℎ (𝜏)=0 for a given 𝜏, which occurs when closing prices stay the same for several 

consecutive days, we check whether the price we have is a local maximum or minimum. We do 

this by looking for the date s such that s = inf{s> 𝜏: 𝑚^′ℎ (𝑠)0}. We ignore the similar prices and 

move to the next logical consecutive price. Here we apply the same methodology as above, 

except we compare Sgn(𝑚′^
ℎ (𝜏 − 1) 𝑎𝑛𝑑 𝑆𝑔𝑛(𝑚^′ℎ (𝑠)). 

One consequence of this algorithm as noted by Lo, Mamaysky, Wang (2000) is that the series of 

extrema that it identifies contains alternating minima and maxima. That is if the kth extrema is a 

maximum, then the (k+1) will always be a minimum and vice versa.  



45 
 

The advantage of using this approach is that it ignores noisy price data. For example, we could 

identify extrema every time price changes direction. For example, a price 𝑃𝑡 is identified as a 

local extremum when 𝑃𝑡−1 < 𝑃𝑡 and 𝑃𝑡>𝑃𝑡+1. Notice how we need one day on either side of the 

extrema for it to be recognized. Using this methodology would yield too many extrema and too 

many patterns to meet be visually consistent with the patterns that technical analysts find 

compelling.  

Once we have identified all of the local extrema in the window [t,t+l+d-1], we check whether the 

window has enough extrema to complete a pattern, if it does we proceed to check whether it 

meets any of the pattern definitions above. We then move to the next window [t+1,t+l+d] and we 

continue until the end of the sample [T-l-d+1,T].  

Empirical Examples (Patterns Matched to Lo, Mamaysky, Wang (2000)).  

To see how our algorithm matches up to the patterns from prior work, we use bandwidths 

mentioned above and the local polynomial kernel of order 0. We use an AICC bandwidth to find 

the patterns.  

We follow the methodology of Lo, Mamaysky, and Wang (2000) and apply the algorithm to the 

daily returns of a single security, CTX, during the five-year period from 1992-1996. Inspection 

of the paper by Lo, Mamaysky, and Wang(2000) will show similar patterns as what we find 

below.  

In each graph, the blue line is the raw price and the orange line is the kernel estimator (smoothed 

price) 𝑚^
ℎ (. ), the circles locate price observations and the diamonds denote kernel estimations 

of prices  𝑃𝑡 . The verticle line denotes the 35th day, which is the last day for finding extrema. 

Day t+l-1.  

5. Empirical Examples  

Lo, Mamaysky, and Wang (2000) confirm the ability of their process to meet their 

recommendation which is the human judgment in identifying the patterns. Our algorithm is able 

to match theirs. Using local polynomial regression, Gaussian Kernel, and AICC bandwidth. This 

meets part one of their recommendation for future work. Our patterns are checked and cross-
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referenced for meeting the same extrema dates. We obtain the same result through different 

methodology.  

We cross check our patterns in excel. We show that the extreme points on the kernels do result in 

extrema and meet the pattern rules. Double tops and bottoms are harder to test this way. The first 

8 patterns match up. It follows that our kernel values to check out with the extrema as provided 

in Mathematica. We show the pattern matching from the 5 pattern pairs outlined in Lo, 

Mamaysky, Wang (2000) below.  
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(a) 

 

(b) 

Figure 5.Head-and-Shoulders and  Inverse Head-and-Shoulders   
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(a) 

 

(b) 

Figure 6. Broadening Top and Broadening Bottom   
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(a) 

 

(b) 

Figure 8.Triangle Top and Triangle Top   
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(a) 

 

(b) 

Figure 9.Rectangle Top and Rectangle Bottom   
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(a) 

 

(b) 

Figure 10.Double Top and Double Bottom   
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Knowing that our algorithm is able to match Lo, Mamaysky, and Wang (2000) and thus the visual 

inspection of their technical analysts in the year 1999 we know that our algorithm is on par for 

extending their work. For curiosity, we extend the sample to [T-l-d+1:T] for CTX.  

For comparing patterns with a trained technical analyst, we note some of the professional societies 

below:  

From 9500 daily price observations we have the following: 

Head and Shoulders (HS):  87 

Inverse Head and Shoulders (HIS):  75 

Broadening Top (BTOP):  33 

Broadening Bottom (BBOT):  26 

Triangle Top (TTOP):  42 

Triangle Bottom (TBOT):  37 

Rectangle Top (RTOP):  36 

Rectangle Bottom (RBOT):  34 

Double Top (DTOP):  41 

Double Bottom (DBOT): 42 

Table 4. Patterns Found 

The patterns we find are shown below. Note the head-and-shoulders is the most common pattern 

found on the dataset. This is consistent with literature by Osler and Chang (1995), Linton (2010), 

Pring (2002), and Elder (2002). We have examples of all patterns above available. A few are shown 

below for proof of concept. Theses are out of sample as they were not used to fit the original 

bandwidth and local polynomial regression.  
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(a) 

 

(b) 

Figure 11. Head-and-Shoulders and Inverse Head-and-Shoulders Out of Sample 
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(a) 

 

(b) 

Figure 12. Broadening Top and Broadening Bottom Out of Sample  
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(a) 

 

(b) 

Figure 13: Triangle Top and Triangle Bottom Out of Sample 
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(a) 

 

(b) 

Figure 14. Rectangle Top and Rectangle Bottom Out of Sample  
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(a) 

 

(b) 

Figure 15. Double Top and Double Bottom Out of Sample 
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Chapter 2.  

“Reliability of Technical Stock Price Patterns and Conditional Returns”  

1. Introduction 

In this section, we take the pattern rules from the above and develop a novel set up for extracting 

extrema from pixel values. These are not time dependent. We make a thin list plot of the prices 

and smoothed prices in each rolling window. 

 In answering part two of Lo, Mamaysky, and Wang (2000)’s call for an extension we come up 

with additional ways to obtain the patterns. We do this by finding extrema from digital images of 

the patterns, rather than on time series observations. We use this by making a very small plot of 

the pattern values. Remove redundant information and obtain extreme values. We then feed this 

information into a digital image classifier in part 3. We use the above methodology (methodology 

I) to obtain our pattern windows. What we do is make a very thin plot of our price data and 

smoothed data. We take the pixel values and delete all of the duplicate information. We then find 

the extrema from these values.  

Analog image processing is the method technical analysts make decisions in stock charts. They 

process the information ocularly. They make fuzzy decisions based on how certain they are the 

image they are looking at contains a stock price pattern. This is not accounted for in prior technical 

analysis literature. This chapter aims at mimicking the way a trained technical analyst sees and 

processes information in stock charts. It may have a potential speed and accuracy advantage over 

the previous method discussed in chapter one.  

In this section, we take our pattern data and plot images of them to find the extrema from pixel 

values. We test whether the returns are dependent on the size deciles using a goodness of fit. We 

also test a difference in means using a z-test.  

We then take the pattern data and see how well a digital image classifier can uncover the patterns 

in the next section. We use held out data not included on the DJIA 30 and use it for training 

purposes this is done in part 3. We then test the ability of a digital image classifier to uncover the 

patterns on the DJIA 30. We show that with a high degree of accuracy a classifier can uncover 

both in sample and testing data.  
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2. Data 

We use the 1925-2019 CRSP data for this section and the section after to extend our pattern sample.  

We plot the survival of all CRSP components showing the average number of days a firm has 

survived. We find a high number of patterns the longer a firm has survived.  

We use 98 years for our training data to encompass all market types. The figure below shows the 

number of days a firm has survived sorted from largest to smallest. 

 

Figure 16 Number of Days  

The Y axis is days survived and the X-axis is the end date. This is for all firms in the database, 

which is around 24,000. The average survival is 7.38 years. We narrow our database to the current 

Dow Jones Industrial Average since they haven’t been tested by literature and it gives us a nice 

sample for finding patterns. The average years here is 56.32.  
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permno hcomnam htsymbol startdate enddate ndays nyears 

10107 MICROSOFT CORP MSFT 19860313 20181231 8269 33.076 

10284 AMERICAN EXPRESS CO AXP 19251231 19390731 4050 16.2 

11308 COCA COLA CO KO 19251231 20181231 24541 98.164 

11850 EXXON MOBIL CORP XOM 19251231 20181231 24541 98.164 

12490 
INTERNATIONAL BUSINESS MACHS 

COR 
IBM 19251231 20181231 24541 98.164 

14541 CHEVRON CORP NEW CVX 19251231 20181231 24541 98.164 

14593 APPLE INC AAPL 19801212 20181231 9595 38.38 

16851 DOWDUPONT INC DWDP 20170901 20181231 334 1.336 

17830 UNITED TECHNOLOGIES CORP UTX 19290411 20181231 23566 94.264 

18163 PROCTER & GAMBLE CO PG 19290812 20181231 23463 93.852 

18542 CATERPILLAR INC CAT 19291202 20181231 23379 93.516 

19502 WALGREENS BOOTS ALLIANCE INC WBA 19340215 20181231 22132 88.528 

19561 BOEING CO BA 19340905 20181231 21964 87.856 

21936 PFIZER INC PFE 19440117 20181231 19149 76.596 

22111 JOHNSON & JOHNSON JNJ 19440925 20181231 18942 75.768 

22592 3M CO MMM 19460114 20181231 18567 74.268 

22752 MERCK & CO INC NEW MRK 19460515 20181231 18467 73.868 

43449 MCDONALDS CORP MCD 19660705 20181231 13213 52.852 

47896 JPMORGAN CHASE & CO JPM 19690305 20181231 12569 50.276 

55976 WALMART INC WMT 19721120 20181231 11630 46.52 

57665 NIKE INC NKE 19801202 20181231 9603 38.412 

59328 INTEL CORP INTC 19721214 20181231 11613 46.452 

59459 TRAVELERS COMPANIES INC TRV 19721214 20181231 11613 46.452 

       

Table 5 Dow Jones Industrial Average Components.       
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Table 5. Dow Jones Industrial Average (DJIA) Components.  

The unconditional returns for the DJIA are shown below. This matches up with the summary 

statistics shown in the next section.  

 

Figure 17. Unconditional Returns  

 

 

65875 VERIZON COMMUNICATIONS INC VZ 19840216 20181231 8791 35.164 

76076 CISCO SYSTEMS INC CSCO 19900216 20181231 7274 29.096 

86868 GOLDMAN SACHS GROUP INC GS 19990504 20181231 4948 19.792 

87436 DISNEY WALT CO DIS 19991118 20010319 335 1.34 

92611 VISA INC V 20080319 20181231 2716 10.864 

92655 UNITEDHEALTH GROUP INC UNH 19841017 20181231 8622 34.488 
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3. Methodology 

We focus on the patterns that are a series of five consecutive extrema. Thus leaving out DBOT 

and DTOP. 

In this section, we focus on finding extrema from pixel values which adds to prior work (i.e. finding 

new ways to uncover the patterns). We show that the patterns are found on both methods (kernel 

smoothing with local polynomial regression) and image data the same.  

The main difference with the image data is that the extrema consist of just pixel values, rather than 

time series. This is of interest in showing the viability of a digital image classifier to be useful in 

the field of finance.  

We test our patterns for returns using the methodology from LMW, (2000). Mainly we look at 

what percent of the returns conditioned on each pattern fit into the 10 deciles of the unconditional 

returns.  

After that, we train a digital image classifier to recognize the patterns from extrema. Our goal is to 

have both accuracies both in sample and out of sample.  

We use the same methodology outlined in Chapter 1, but rather than finding our extrema from a 

time-series we find our extrema from pixel values. We then extend the sample to include the Dow 

Jones components from CRSP as outlined above.  

We discuss the implications of the return in the sections below, before concluding. The main 

results show that the pattern classifier can add value without taking away from the returns.  

We use the extreme values and match the pattern name found by the methodology in this section. 

It involves smoothing the data with local polynomial regression. Making a very thin plot of every 

point for both the kernel and the price. Deleting duplicate information. Finding extrema. We then 

use the 5 extrema in the rules from part one. The result is the same, we find the same patterns as 

what is in LMW, (2000). We showed the results of the patterns on the DJIA in the section above. 

In this section, we use digital image classification to identify the patterns.  

For enacting the returns we have two implications. 1) for bottom patterns we earn the market 

return. 2) for top patterns we earn -1 * the market return.  
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We have short entry on the market when we have a top pattern and long entry on a bottom. Short 

entry requires borrowing a security and then covering it later, thus -1*the market return. We are 

betting on the prices to go down. 

4. Results 

Here we show summary statistics for the patterns found using image processing on the DJIA 

stocks. We show both the frequency of patterns found and the pattern statistics including all 

moments.  

Frequency counts for 8 technical indicators detected among the DJIA stocks from 1925-2019. Each stock's price history 

is scanned for the occurrence of the following 8 technical indicators: head-and-shoulders (HS), inverted head-and-

shoulders (HIS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), 

rectangle top (RTOP), rectangle bottom (RBOT). The 'Raw' column shows the number of total daily prices observations 

over the sample. 

Sample Raw BBOT BTOP HS HIS RBOT RTOP TBOT TTOP Conditional 

DJIA  428,835 228 583 1488 651 262 599 286 523 4620 

 100% 4.94% 12.62% 32.21% 14.09% 5.67% 12.97% 6.19% 11.32% 100% 

Table 6. Frequency of Patterns  

This table shows the pattern distribution across the dataset for the DJIA. 32% of the patterns are 

head and shoulders. 14% of the patterns are reverse head and shoulders. 13% of the patterns are 

rectangle tops, 13% of the patterns are broadening tops. 11% of the patterns are triangle tops. With 

the exception of the reverse head and shoulders there seem to be a bias towards top reversal 

patterns compared to bottoms. 6% of the patterns are triangle bottoms.  6% of the patterns are 

rectangle bottoms.  5% of the patterns are broadening bottoms., the majority of these patterns are 

tops. Slightly more than 1% of the overall data result in patterns.  

The conditional returns for all 8 patterns are shown in the figure below. This is then analyzed in 

the summary statistics table with more moments.  
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Figure 18. Conditional Returns  

This figure shows that patterns appear to be more concentrated in recent years and that there are 

fewer patterns early in the history of the current DJIA sample.  

The return statistics are analyzed for both conditional returns, unconditional returns and by a 

pattern in the table below. We analyze all moments of returns.  
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Summary statistics for 8 technical indicators detected among the DJIA stocks from 1925-2019. Each stock's price 

history is scanned for the occurrence of the following 8 technical indicators: head-and-shoulders (HS), inverted 

head-and-shoulders (HIS), broadening top (BTOP), broadening bottom (BBOT), triangle top (TTOP), triangle 

bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT). The 'Raw' column shows the summary statistics 

for the total daily prices observations over the sample. 

Moment Raw HS HIS RTOP RBOT BBOT BTOP TBOT TTOP 

Mean .0006816 -.0013 -.0007 -.0009 .0009 .0020 .0009 .0012 -.0011 

Standard 

Deviation  

.0187 .0155 .0152 0.1392 .0124 .0176 .0172 .0142 .0180 

Median .0000 -.0004 .0000 -.0005 .0000 .0011 .0001 .0011 .0000 

Skewness .1556 -.6076 -.2247 -1.0880 .5647 .1916 1.0581 -.0960 -.6830 

Kurtosis 18.0992 6.4783 5.1681 12.5760 6.4959 6.7729 10.4434 4.4076 6.4230 

Table 7. Summary statistics for patterns.  

This shows that the raw data has the highest and lowest overall returns with the highest variance. 

The average return is lower than 6/8 patterns. The overall conditional return is 100 basis points 

higher than the raw return. The conditional returns have lower standard deviation and variance.  

We normalize the returns following:  

𝑋𝑖𝑡 =
𝑅𝑖𝑡 − 𝑀ⅇ𝑎𝑛[𝑅𝑖𝑡]

𝑆𝐷[𝑅𝑖𝑡]
 

 

 

(14) 

Recall that patterns are completed at t+l-1. We take the conditional return such that 𝑅𝑃 = 𝑙𝑜𝑔(1 +

𝑅𝑡+𝑙+𝑑+1).  For each stock, we have 8 sets of conditional returns, each conditioned on one of the 

8/10 patterns discussed previously.  

There are 4,620 patterns int he Dow from 1925-2019 (98 years).  All patterns are tested on the 

current 30 Dow Jones (DJIA) components. 228 Broadening Bottoms, 583 Broadening Tops, 1488 

Head and Shoulders, 651 Inverse Head and Shoulders, 262 Rectangle Bottoms, 599 Rectangle 

Tops, 286 Triangle Bottoms, 523 Triangle Tops. This makes 4,620 patterns.  There are 429,620 

daily price observations across all 30 stocks.  

Patterns returns are tabulated across all size deciles. The table below shows the percent of each 

pattern returns that fit into the range of returns for each decile. From LMW, 2000 if conditioning 

on the return adds informational value (incremental value) there should be more than a 10% fit. 
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The goodness of fit follows LMW (2000) where the relative frequency 𝛿^
𝑗 of conditional returns 

falling into decile j of the unconditional returns, j = 1,…,10: 

𝛿^
𝑗 =

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑖𝑛𝑑𝑒𝑐𝑖𝑙𝑒𝑗

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑟𝑒𝑡𝑢𝑟𝑛𝑠
  

 

 

(15) 

Under the null hypothesis that the returns are independently and identically distributed (IID) and 

the conditional and unconditional return distributions are identical, the asymptotic return 

distributions of 𝛿^
𝑗 are given by:  

 √𝑛(𝛿^
𝑗 − 0.1)~𝑎𝑁(0,0.1(1 − 0.1)). 

 

 

(16) 

For analyzing the goodness of fit, and the dependence of the patterns to fit in the 10 size deciles 

we use the following measure for our test statistic: 

𝑄 ≡ ∑
(𝑛𝑗 − 0.1𝑛)2

0.1𝑛
~𝑎𝜒9

2

10

𝑗=1

 

 

(17) 

Testing against the null hypothesis, the asymptotic z-test is in the table below for each value. The 

standard errors and number of observations are recorded from the population.  

We consider a goodness of fit test diagnostic in the table below. Our results suggest that the 

patterns found depend on the decile.  

This has statistical implications but not economic implications. Economically they shouldn’t since 

all of the DJIA components are large cap stocks.  

We look at the deciles of the DJIA and where the patterns are found proceeding the table. This 

suggests that the deciles are time varying.  
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Goodness-of-fit statistics for conditional one-day normalized returns, conditional on 8 technical indicators, 

for a sample of 30 DJIA stocks from 1925-2019. For each pattern, the percentage of conditional returns 

that falls within each of the 10 unconditional return deciles is tabulated. If conditioning on the pattern 

provides no information, the expected percentage falling in each decile is 10%. Asymptotic z-statistics for 

this null hypothesis are reported in parentheses below the statistic. The 8 technical indicators are as follows: 

head-and-shoulders (HS), inverted head-and-shoulders (IHS), broadening top (BTOP), broadening bottom 

(BBOT), triangle top (TTOP), triangle bottom (TBOT), rectangle top (TTOP), rectangle bottom (RBOT), 

rectangle top (RTOP).  

Pattern D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Q 

(p-value) 

BBOT 6.58 

(6.83) 

10.96 

1.89 

7.02 

(5.79) 

13.16 

(6.51) 

8.33 

(3.61) 

9.65 

(0.74) 

8.77 

(2.65) 

11.40 

2.60 

14.04 

8.51 

10.09  

0.23 

12.35 

(0.19) 

BTOP 7.20 

(5.58) 

8.06 

(3.80) 

12.01 

3.90 

9.26 

(1.52) 

8.23 

(3.83) 

9.78 

(0.47) 

10.98 

2.11 

9.95 

(0.10) 

12.52 

5.32 

12.01 

5.15 

588.60 

(0.00) 

HS 8.33 

(3.33) 

10.55 

1.08 

9.68 

(0.63) 

9.21 

(1.63) 

11.22 

2.65 

9.48 

(1.11) 

11.36 

2.93 

9.07 

(1.72) 

9.41 

(1.25) 

11.69 

4.35 

6694.54 

(0.00) 

IHS 8.91 

(2.18) 

9.98 

(0.03) 

10.45 

0.87 

10.45 

0.92 

10.91 

1.96 

8.60 

(2.95) 

10.91 

1.96 

9.52 

(0.88) 

9.83 

(0.36) 

10.45 

1.14 

759.94 

(0.00) 

RBOT 11.83 

3.66 

11.45 

2.84 

8.02 

(3.85) 

9.92 

(0.16) 

13.36 

7.28 

9.92 

(0.16) 

9.92 

(0.16) 

8.78 

(2.26) 

5.73 

(9.02) 

11.07 

2.74 

17.21 

(0.05) 

RTOP 9.68 

(0.63) 

13.02 

5.92 

10.85 

1.65 

10.18 

0.38 

8.18 

(3.94) 

9.52 

(1.02) 

10.85 

1.84 

8.85 

(2.13) 

9.02 

(2.08) 

9.85 

(0.39) 

596.12 

(0.00) 

TBOT 7.34 

(5.31) 

8.04 

(3.84) 

7.34 

(5.16) 

15.03 

10.38 

10.49 

1.06 

8.04 

(4.13) 

13.99 

8.60 

8.39 

(2.98) 

9.44 

(1.18) 

11.89 

4.84 

39.74 

(0.00) 

TTOP 10.33 

0.65 

8.80 

(2.36) 

11.85 

3.60 

9.94 

(0.12) 

9.56 

(0.95) 

8.60 

(2.94) 

9.18 

(1.77) 

9.75 

(0.46) 

11.47 

3.11 

10.52 

1.32 

369.98 

(0.00) 

Table 8. The goodness of fit diagnostics.  
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We also test a Kolmogorov-Smirnov p-value for the difference in the conditional and 

unconditional distributions. The formulae behind this are shown below.  

The Kolmogorov-Smirnov test is useful for hypotheses that involve lumpness or clustering in data. 

This is what is used in Lo, Mamaysky and Wang (2000).  

The directional hypotheses are evaluated with the statistics  

𝐷+ = max
𝑥

{𝐹(𝑥) − 𝐺(𝑥)} 

 

 (18) 

𝐷− = min
𝑥

{𝐹(𝑥) − 𝐺(𝑥)} 

 

 (19) 

 

Where F(x) and G(x) are the empirical distribution function for the sample being compared. The 

combined statistic is  

𝐷 = max(|𝐷+|, |𝐷−|) 

 

 (20) 

 

The p-value for this may be obtained by evaluating the asymptotic limiting distribution. Let m be 

the sample size for the first sample, and let n be the sample size for the second sample.  

Smirnov (1933) shows that  

lim
𝑚,𝑛→∞

Pr{√mn (𝑚 + 𝑛)⁄ 𝐷𝑚,𝑛 ≤ 𝑧} = 1 − 2 ∑(−1)𝑖−1ⅇ−2𝑖2𝑧2

∞

𝑖=1

 

 

    

(21) 

 

The first five terms form the approximation 𝑃𝑎. The exact p-value is calculated by a counting 

algorithm. A corrected p-value was obtained by modifying the asymptotic p-value by using a 

numerical approximation technique:  

𝑍 = 𝜙−1(𝑃𝑎) + 1.04 min⁄ (𝑚, 𝑛) + 2.09 max⁄ (𝑚, 𝑛) − 1.35 √mn⁄ (𝑚 + 𝑛)⁄   (22) 
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𝑝 − valuⅇ = 𝜙(𝑍) 

 

(23)  

whⅇrⅇ 𝜙(. ) is the cumulative normal distribution.  

Our results are as follows.  

Kolomgrov-Smirnov test of the equality of conditional and unconditional one-day return 

distributions for DJIA stocks from 1925-2019. Conditional returns are the daily return three days 

following the conclusion of an occurrence of one of the 8 technical indicators: head-and-shoulders 

(HS), inverted head-and-shoulders (HIS), broadening top (BTOP), broadening bottom (BBOT), 

triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT). 

All returns are normalized by subtracting their means and dividing by their standard deviations. P-

values are with respect to the asymptotic distribution of the Kolomgorov-Smirnov test statistic.  

Kolmogorov-

Smirnov  

HS HIS BTOP BBOT TTOP TBOT RTOP RBOT All 

Combined 𝛾 1.0327 1.0308 1.0300 1.0097 1.0256 1.0168 1.0168 1.0171 1.0398 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 9 Kolmogorov-Smirnov  

This makes it kind of interesting to note the patterns and where they are found when broken into 

size deciles. We note the time-varying effect of the patterns below.  
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Figure 19. BBOT time-varying returns 
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Figure 20. BTOP Time-Varying Observations.  
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Figure 21. Head and Shoulders Time-Varying Observations  



73 
 

 

Figure 22. Inverted Head-and-Shoulders Time-Varying Observations.  
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Figure 23. Rectangle Bottom Time-Varying Observations.  
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Figure 24. Rectangle Top Time-Varying Observations  
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Figure 25. Triangle Bottom Time-Varying Observations  
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Figure 26. Triangle Top Time-Varying Observations 
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Figure 27. All Time-Varying Pattern Observations  

The patterns seem to be persistent across time. The larger deciles appear to be more frequent in 

more recent years.  

This tells a different story economically, that the returns are dependent on time since the sizes are 

all large gap. Economically it would make sense that a large cap has a larger market capitalization 

today than in 1935.  
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Chapter 3 “Predictability of Technical Stock Price Pattern Classification.”  

1. Introduction 

This section discusses the viability of digital image processing methods to uncover nonrandom 

patterns in financial data. Ordinary time series methods would not otherwise be able to uncover 

the patterns discussed in chapter one (i.e. autoregressive ar1). These patterns are fit with a kernel 

density estimator (smoothing parameter) derived from stock prices. Digital image processing may 

be able to replicate this process by first converting a digital image into binary values (1 and 0). 

These values represent a pixel being on (black) or off (white). If a pixel is off it contains no 

information.  

This study has potential benefits for both academia and industry. The academic benefits include 

gaining pattern statistics and confidence intervals. Aggregating any bias between professional 

analyst recommendation and the output of the classifier is another benefit. Not having to replicate 

the rigorous methodology for bandwidth selection and bypassing the need to rely on a trained 

technical analyst to engage in empirical research. We can upload the weights and have a ready to 

go classifier that will run on any program with SVM and image processing.  

For industry, the benefits include program trading. This may be useful in using hybrid patterns to 

optimize profit over out of sample data and developing a trading strategy.  

The potential contribution of such methods includes aggregating the output between professional 

analyst recommendations, speed and accuracy implications, gaining pattern statistics (confidence 

intervals). These implications are a contribution to both academia and industry via a better 

understanding of nonlinear visual chart patterns, and program trading.  

The potential advantage of using image processing methods is many. Normal time series methods 

would not be able to uncover these patterns. We can aggregate any bias between the output and 

professional recommendation, we can gain confidence intervals for the patterns, we can forecast 

with them, we can also gain hybrid patterns based on probability thresholds. We can also uncover 

the patterns on images where the raw data is not available. This has implications for academia and 

industry including market efficiency research and program trading.  



80 
 

The paper we have provided shows that the digital image classifier can successfully uncover 

patterns that were previously used and identified by kernel estimation. We show with a high degree 

of confidence that it can uncover the patterns. We also show that the bandwidth can be set 

objectively and rigorously in smoothing data which is commonly done by visual inspection. We 

have provided a framework that can feed into both academia and industry. Via pattern 

classification, pattern statistics, aggregating bias between the output and professional analyst 

recommendation, and program trading. 

Ever since computers were invented, we have wondered whether they might be made to learn. If 

we could understand how to program them to learn – to improve automatically with experience – 

the impact would be dramatic. Imagine computers learning from medical records which treatments 

are most effective for new diseases, houses learning from experience to optimize energy costs 

based on the particular usage patterns of their occupants, or personal software assistants learning 

the evolving interests of their users in order to highlight especially relevant stories from the online 

morning newspaper. A successful understanding of how to make computers learn would open up 

many new uses of computers and new levels of competence and customization. And a detailed 

understanding of information processing algorithms for machine learning might lead to a better 

understanding of human learning abilities (and disabilities) as well. 

We do not year know how to make computers learn nearly as well as people learn. However, 

algorithms have been invented that are effective for certain types of learning tasks, and a theoretical 

understanding of learning is beginning to emerge. Many practical computer programs have been 

developed to exhibit useful types of learning, and significant commercial applications have begun 

to appear. For problems such as speech recognition, algorithms based on machine learning 

outperform all other approaches that have been attempted to date. In the field known as data 

mining, machine learning algorithms are being used routinely to discover valuable knowledge 

from large commercial databases containing equipment maintenance records, loan applications, 

financial transactions, medical records, and the like. As our understanding of computers continues 

to mature, it seems inevitable that machine learning will play an increasingly central role in 

computer science and computer technology.  

The patterns LMW (2000) study are rule-based and non-linear, but common in technical trading 

circles. Standard time series analysis would fail to detect the classic patterns. Technicians employ 
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the use of charts to visually detect non-linearities. The aim of this research is to train a computer 

to visually detect non-linearities common in technical analysis and mimic the technician’s ocular 

facilities. With current digital image technology, it is possible to show pictures to a computer and 

have it process data as a human would see it. A digital classifier that can visually recognize 

common patterns in stock price data is not only novel but would have commercial and academic 

applications.  

A properly trained classifier can recognize patterns in digital images which would be unrecognized 

by untrained technical analysts and ordinary time series methods. It would be more robust to the 

pattern definitions in chapter 1 when aggregated across professional analyst recommendations. It 

would also allow us to optimize profitability over hybrid patterns in out of sample testing. For 

accuracy, we would optimize the threshold for pattern identification.  

The advantages of digital image processing over analog image processing are that analog image 

processing is left up to the interpreter. Digital image processing takes a nonparametric problem 

(analog image) and makes it parametric (digital image) by turning it into 1’s and 0’s. This allows 

for a variety of statistical methods to uncover the information and condenses a digital image in 

binary information. There are many techniques of turning an image into a vector of information 

(discussed in chapter 2). The purpose of this is to couple image processing with machine learning 

(which is also known as computer vision) and use it to mimic the way humans make decisions on 

financial data. The advantage of this to the current methods are one) aggregating bias between 

professional analyst recommendation and the classifier output. Thus making it a more robust 

pattern database. Two) gaining pattern statistics such as confidence intervals and hybrid patterns. 

Three) benchmarking for potential speed and accuracy. Four) gaining pattern profitability. Five) 

forecasting future returns based on the occurrence of chart patterns. Traditional time series 

methods (AR1, etc.) would not otherwise detect the patterns.  

2. Literature 

Support Vector Machines recognize a positive class from a negative class (Platt, 1999). This may 

be mapped through a sigmoid function to obtain the probability that a specific example belongs to 

a given class (Platt, 1999).  
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Some studies take a sliding window approach where they slide a trained classifier across the larger 

window (Dilal Triggs (2005)). Other studies locate high probability regions to test a trained 

classifier using convolutional neural networks (Redmon, (2016)).  

Some extreme examples of image processing and convolutional neural networks are shown by 

Mnih, et al. (2013) convolutional neural networks can learn how to play Atari games from 

watching videos and adjusting the penalty/loss function. These videos of games are just digital 

images shown at a fast frame rate. The AI can break the information into pixel values and process 

it with a high degree of accuracy.  

Coupling advanced statistical learning theory with digital image processing is deemed computer 

vision. Current works in this area determine to find faces(Ai, Liang, Xu. (2001), Jones, Viola 

(2003)), pedestrian detection (Dalal and Triggs (2005)) object detection (Redmon, et al. (2016)), 

and self-driving vehicles. Other topics include learning to play video games from video feed (Minh 

et al. (2013)). A natural extension to this is automating technical analysis.  

Methods by Dalal and Triggs (2005) uses support vector machines for digital image processing. 

Support Vector Machines (SVM), are a flexible implementation of classification (James, Witten, 

Hastie, Tibshirani (2013)). SVM is discussed in depth in Platt (1999), with applications in C 

language Joachims (1999). It was originally developed and discussed by Cortes, Vapnik (1995).   

3. Statistical Learning Theory  

Statistical learning theory discusses learning an outcome from input data. For quantitative data, it 

is called making predictions. For qualitative data, it is called classification. Classification may be 

applied to data such as digital images, speech, and textual analysis.  

4. Computer Vision 

Computer vision is the intersection between computer science, machine learning, probability, and 

statistical learning theory. Books on this topic include Bishop (2006); Mitchell (1997); MacKay 

(2003); Hastie, Tibshirani, and Fiedman (2005); Witten and Frank (2005); V. Vapnik (2013). 

Books on probability include Ross (2014). Books on digital image processing include Gonzalez 

and Woods (2002) and Burger and Burge (2008), Shapiro and Stockman (2000).  
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5. Classification Methodology 

We take the 400 perms that aren’t a part of the current DJIA holdings. We use them for training. 

We preprocess the data by getting extreme values from a digital image. We  

We split our training data into two sections. One using 60% training and 40% testing, and another 

using 10% training and 90% testing. Both achieve similar accuracy in the high 80%’s for training 

and testing and is robust to additional machine learning methodologies. We use both support vector 

machines and logistic regressions. We use SVM for their flexible implementation and logistic 

regression for their fast training time.  

We use the best available model from Mathematica (which ends up being a Logistic Regression) 

benchmarked on speed and accuracy. We compare the result to a Support Vector Machine, given 

that models particular flexibility and praise in the literature.  

The purpose of this section is to train a digital image classifier to make predictions in data based 

on observations it hasn’t seen before. We pre-process all of our pattern images to condense to the 

extrema from pixel values. This is used for training and testing. We show with a high degree of 

accuracy that new data can be classified to the correct (true) pattern and with a high degree of 

accuracy that training data can be classified to the correct (true) pattern. This has implications for 

both academia and industry. Namely, pattern statistics, and program trading.  

We split the data into training and testing. For training, we use patterns from stocks, not on the 

DJIA. These come from CRSP permno’s 10001-10713 and about 150 random draws. We then use 

the (held out) DJIA 30 for testing.  

Some permno’s don’t have available patterns for testing. These are normally stocks without 

enough price history. 40% of our total patterns come from our 30 DJIA stocks. The majority of 

these are ‘survivors.’ The 60% remaining come from the 407 stocks, not in our sample for testing.  

We 6721 patterns from 407 different premno’s that aren’t on the DJIA for training and have 4607 

patterns that are on the 30 DJIA for testing. We use logistic regressions for training since the results 

are not highly varied and they are faster. Training takes 11.3 seconds for 6721 examples. The 

accuracy for training is 89.5%.  If we use a Support Vector Machine for training it takes 1 minute 
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and 27 seconds with 88.3% accuracy. Patterns found for training data are shown below. Head and 

Shoulders are the most observed.  

Digital Image classification for 8 technical indicators detected among non DJIA stocks from 

1925-2019. Each stock's price history is scanned for the occurrence of the following 8 technical 

indicators: head-and-shoulders (HS), inverted head-and-shoulders (HIS), broadening top 

(BTOP), broadneing bottom (BBOT), triangle top (TTOP), triangle bottom (TBOT), rectangle 

top (RTOP), rectangle bottom (RBOT).  

BBOT BTOP HS HIS RBOT RTOP TBOT TTOP 

391 956 1803 790 317 753 529 1182 

Table 11. Training Data  

There are 6702 patterns in total. The most often pattern in training data is the head-and-shoulders. 

The second most often is the triangle top. Followed by broadening top, inverse head-and-

shoulders, rectangle top, triangle bottom, broadening bottom, rectangle bottom. Again the data is 

consistent that there are more top patterns than bottom patterns.  

The classes used in training correspond with the pattern types. They are shown with probabilities 

in the table below. For a logistic regression and Support Vector Machine Respectively:  

Training accuracy for 8 technical indicators detected among non DJIA stocks from 1925-2019. 

Each pattern is analyzed for accuracy using two methods of image classification, support vector 

machines and logistic regression. The following patterns are analyzed: head-and-shoulders 

(HS), inverted head-and-shoulders (HIS), broadening top (BTOP), broadneing bottom (BBOT), 

triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT).  

Method BBOT BTOP HS HIS RBOT RTOP TBOT TTOP 

Logistic 

Regression 

.92 .94 .93 .93 .65 .67 .92 .91 

SVM .92 .93 .93 .93 .64 .66 .92 .92 

Table 12. Training Results  

The classifier misses rectangle bottom, and rectangle tops. The two classifiers are close in 

accuracy. Logistic regressions have higher overall accuracy than SVM so they are used in 

analyzing which patterns are misclassified and where. The truth tables for a logistic regression and 

SVM are omitted but are similar to that for the testing data. The following figure shows the 

misclassification of the 8 technical patterns.  
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Figure 28. Truth Table Training Data using Logistic Regressions 

On the testing data we don’t have 100% accuracy because a number of the rectangle top patterns 

are being confused with a broadening top, head-and-shoulders, or triangle top.  

We extend the classifiers to include  

Test data from the DJIA components are considered. The number of patterns are 4620. The same 

pattern classes are used from training. They are shown with probabilities below. These are the 
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same patterns from the above section. The classifier hasn’t seen these patterns before and it’s task 

is to define which pattern it is based on five consecutive extrema.  

Testing accuracy for 8 technical indicators detected among DJIA stocks from 1925-2019. Each 

pattern is analyzed for accuracy using two methods of image classification, support vector 

machines and logistic regression. The following patterns are analyzed: head-and-shoulders 

(HS), inverted head-and-shoulders (HIS), broadening top (BTOP), broadneing bottom (BBOT), 

triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT).  

Method BBOT BTOP HS HIS RBOT RTOP TBOT TTOP 

Logistic 

Regression 

.91 .92 .93 .93 .67 .69 .91 .90 

SVM .91 .91 .93 .93 .67 .67 .91 .90 

Table 13. Testing Data  

 

Figure 29. Truth Table for Tested Data using Logistic Regressions 
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Truth tables for a logistic regression and SVM are shown above. The implications are similar to 

the training data and are focused around the misclassification of a head and shoulders for a 

rectangle top and vice-versa. This seems to be a problem and is also discussed in literature. Noting 

from Edwards and Magee (2007) that a head and shoulders can slide in to a rectangle formation.   

Training and testing aren’t much different. The most misclassified patterns are rectangles. The 

most accurate patterns out of sample are the head and shoulders (inverse head and shoulders). In 

sample isn’t as important because we can never test on in sample data.  

The implications on the returns are shown below. We use the highest predicted class at the time of 

pattern completion for entering the market. Missclassification only plays a role when the pattern 

for a top is confused with a pattern for a bottom. Most of the misclassified rectangle tops are 

misclassified as a head and shoulders which has the same outcome on decision making. We still 

would enter a short position. The other misclassified rectangle tops are for a broadening top, and 

a triangle top. Again there is no information loss. There is one that is misclassified for an inverse 

head and shoulders which would be a problem, so long as the resulting trade were in the wrong 

direction. (i.e. maybe it’s trying to tell us something?)On the other way around, there are 47 

triangle tops that are misclassified as rectangle tops.  

The implications for trading and returns are only affected to the extent that the patterns change 

sign. As long as the reversal is of the same type and the pattern is recognized in the same place it 

won’t affect the outcome on returns.  

Referring back to the literature from chapter one. It is well justified by Edwards and Magee 

(1966,2007) that these patterns can be confused. A lot of the visual properties are similar for the 

patterns.  

The above two graphs show in sample and out of sample data respectively. The patterns found are 

similar in accuracy and the errors are in the same places.  

We proceed with conditioning the returns on each of the patterns as part of the output of our 

original classifier. The summary statistics are shown in the table below:  
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Enacted returns for 8 technical indicators detected among DJIA stocks from 1925-2019. Each 

pattern is enacted from the conditional returns and probabilities from classification. The 

following patterns are analyzed: head-and-shoulders (HS), inverted head-and-shoulders (HIS), 

broadening top (BTOP), broadneing bottom (BBOT), triangle top (TTOP), triangle bottom 

(TBOT), rectangle top (RTOP), rectangle bottom (RBOT).  

Moment Classification Conditional 

Returns 

Raw Conditional Returns 

Mean 0.0697 0.0684 

Standard 

Deviation 

1.56 1.57 

Median 0 0 

Skewness 21.39 22.03 

Kurtosis 4.830 4.814 

Table 14. Classifier Summary Statistics   

This shows that the two distributions, true returns and out of sample output from the classifier are 

no different. The main difference here is that instead of being 100% conditioned on the return, the 

conditional distribution is broken among all of the classes.  

When we look at the effect on individual patterns, we see that some of the patterns have returns 

outside of their true class. This isn’t possible without classification. When we restrict the returns 

to just the patterns found as truth. We get results similar to the true results without classification. 

Enacted returns for 8 technical indicators detected among DJIA stocks from 1925-2019. Each 

pattern is enacted from the conditional returns and probabilities from classification. The 

following patterns are analyzed: head-and-shoulders (HS), inverted head-and-shoulders (HIS), 

broadening top (BTOP), broadneing bottom (BBOT), triangle top (TTOP), triangle bottom 

(TBOT), rectangle top (RTOP), rectangle bottom (RBOT). 

Moment BBOT BTOP HS HIS RBOT RTOP TBOT TTOP 

Mean 0.0020 -0.0009 0.0013 -0.0007 0.0009 0.0009 0.0012 0.0011 

Standard 

Deviation  

0.0176 0.0172 0.0155 0.0152 0.0123 0.0139 0.0142 0.0180 

Table 15. Classifier Conditional Returns  

These show that the conditional returns and standard deviations are close to the result without 

digital image classification. The potential advantage of this (why use it?) is that we get the 

confidence intervals for each pattern. When one true pattern is confused for another the statistic 

changes as long as the reversal type is different.  
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6. Robustness Checks 

For an exercise we reduce the amount of training data to 1000 observations and place the remaining 

5702 unused training patterns on the testing data. We show that the classifier has similar accuracy. 

Results from holding out additional training data to reduce the number of examples to 1000 (from 

6721) doesn’t change the results on a logistic regression. We add the unused training data to our 

test sample and have similar accuracy of 87.67%.  Using SVM the classifier has 84.9% accuracy 

in sample and 84.28% out of sample.  

This shows the ability of a digital image classifier to learn the pattern rules from association 

without them being explicitly defined. This is true of the early examples as well but this has a 

lower split with the data. 1,000 training, 10,341 testing.  

Testing accuracy for 8 technical indicators detected among DJIA stocks from 1925-2019, and 

non-DJIA Stocks from 1925-2019 from 1000 training observations. Each pattern is analyzed for 

accuracy using two methods of image classification, support vector machines and logistic 

regression. The following patterns are analyzed: head-and-shoulders (HS), inverted head-and-

shoulders (HIS), broadening top (BTOP), broadneing bottom (BBOT), triangle top (TTOP), 

triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT).  

Method BBOT BTOP HS IHS RBOT RTOP TBOT TTOP 

Logistic 

Regression 

.9146 .9186 .9304 .9200 .6296 .6545 .9203 .9082 

SVM .8796 .9142 .8961 .9023 .5943 .5773 .8545 .8680 

Table 16. Robustness Check 1, Data Split 10% Training 90% Testing 

The truth tables are similar for both classifiers. The main advantage for improving this can be 

made in correctly classifying the rectangle bottom and rectangle top patterns.  
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Figure 30. Truth Table on Extended Data with Logistic Regressions  

The return implications for out of sample data are compared with the logistic regression classifier 

results to the truth (raw data). Given the high degree of accuracy we want to know if it affects the 

outcome for trading purposes. The returns from the out of sample data from classification are 

deemed ‘Classify’ and the true returns from the out of sample data are deemed ‘Raw.’ We enact 

the returns across the probabilities for each pattern. We also look at the true returns conditioned 

only on long returns and short returns.  

The last problem we look at is splitting the data the other way with 90% training and 10% testing. 

To do this we omit 1000 patterns from the non-DJIA stocks and use the remaining patterns along 
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with those that are on the DJIA for training. The purpose here is to see if we can improve our 

accuracy. We test Support Vector Machines, Logistic Regressions, and Gradient Boosted Trees.  

In Sample accuracy, and out of sample accuracy are recorded. All three examples are 81% or better 

off of the first 1500 training observations. They reach a plateau which seems to be because of the 

rectangle patterns.  

In the table below we check additional models including Random Forest (4.22s Training Time, 

86.3% in sample accuracy), Gradient Boosted Trees (19.7s training time, 87.3% in sample 

accuracy), Logistic Regression (6.35s training time, 88.4% in sample accuracy), Support Vector 

Machine (1 min 44s training time, 88.0% in sample accuracy Neural Networks (1 min 52 second 

training time, 82.7% accuracy), Naïve Bayes (2.21s training time, 75.0% accuracy), Decision Tree 

(2.76s training time, 84.6% accuracy, Markov (5.57s training time, 69.0% accuracy), Nearest 

Neighbors (2.22s training time, 85.1% accuracy), Thus confirming our results of the ability of a 

digital image classifier to learn the pattern rules from labeled examples.  

Model training time and sample accuracy for predicting 1000 observations of the following chart patterns: head-

and-shoulders (HS), inverted head-and-shoulders (HIS), broadening top (BTOP), broadneing bottom (BBOT), 

triangle top (TTOP), triangle bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT).  

Method Training Time Model Accuracy 

Logistic Regression 6.53s 88.40% 

Random Forest 4.22s 86.30% 

Gradient Boosted Trees 19.7s 87.30% 

Support Vector Machines 1 min 44s  88.00% 

Neural Networks 1 min 52s 82.70% 

Naïve Bayes 2.21s 75.00% 

Decision Tree 2.76s 84.60% 

Markov  5.57s 69.00% 

Nearest Neighbors 2.22s 85.10% 

Table 17. Model Training Time and Accuracy  

This table shows that the fastest model is a Nearest Neighbor with 85.10% accuracy on known 

examples. The highest accurate model on known examples is a Decision Tree with 84.60%. SVM, 

Gradient Boosted Trees, Random Forest and Logistic Regressions have the highest Model 

Accuracy. We compare the results of these methods in predicting our patterns in the table below.  
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Testing accuracy for 8 technical indicators detected among 1000 non-DJIA stocks from 1925-2019, from 10341 

training observations. Each pattern is analyzed for accuracy using two methods of image classification, support 

vector machines and logistic regression. The following patterns are analyzed: head-and-shoulders (HS), inverted 

head-and-shoulders (HIS), broadening top (BTOP), broadneing bottom (BBOT), triangle top (TTOP), triangle 

bottom (TBOT), rectangle top (RTOP), rectangle bottom (RBOT).  

Method BBOT BTOP HS IHS RBOT RTOP TBOT TTOP Model 

Accuracy 

Logistic 

Regression 

95.0000% 93.2039% 92.4731% 93.2642% 61.9718% 64.6288% 93.4911% 93.0946% 88.70% 

Random 

Forest 

95.1220% 95.2978% 92.7536% 95.4315% 65.6250% 66.0714% 94.1176% 94.3878% 90.10% 

Gradient 

Boosted 

Trees 

89.7436% 92.9936% 89.2794% 91.0891% 53.1250% 58.7156% 90.0585% 93.2292% 86.40% 

Support 

Vector 

Machines 

93.8272% 93.2907% 90.1304% 94.2408% 61.3333% 61.1111% 91.5663% 92.4675% 87.00% 

Table 18 Robustness Check 2. 90% Training 10% Testing 

This is where SVM really shows its flexibility. The classifiers all perform well but SVM is more 

accurate across all pattern classes.  

Gradient Boosted Trees are more accurate than Logistic Regressions for the Triangle Top Pattern 

but is similar in accuracy to both other methods.  

SVM Performs the best with 90.10% overall model accuracy. All 3 classifiers perform similarly 

on the rectangle patterns. We can see from their truth tables that the patterns are being misclassified 

for head and shoulders. Part of the misclassification with rectangle bottoms might be that there are 

so few patterns found.  
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Logistic 

Regression 

(a) 

 

Random 

Forest (b) 

 

Figure 31. Truth Tables for 90% Training, 10% Testing Data Split  
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Gradient 

Boosted 

Trees (c) 

 

Figure 31. Truth Tables for 90% Training, 10% Testing Data Split  
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Support 

Vector 

Machines 

(d) 

 

Figure 31. Truth Tables for 90% Training, 10% Testing Data Split  

This shows the misclassification is similar to all models but SVM performs better with more 

training data. This seems to be an advantage for the model and is likely the model that would be 

used on a larger dataset with more pattern observations.  

Future work would likely employ the use of more patterns for training so that the 30 DJIA 

components result in 10% testing data. Or, classifying the entire CRSP database which would 

require the use of a super computer.  

The above analyses show the viability of digital image classification in predicting visual nonlinear 

chart patterns. The training data we used is from the chart patterns identified from image data in 

part 2. We use non Dow Jones Industrial Average stocks to predict patterns from the Dow Jones 

Industrial Average stocks. The resultant classifier is highly accurate, robust to additional machine 

leraning models, and data splits. We show that the classifier can predict either training or testing 

data out of sample and is not time variant. Final conclusions for all three chapters are in the section 

below.  
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7. Pattern Prediction 

In this section we take pattern windows with enough extrema to complete a pattern but that do not 

meet any of the rules defined in section one. We use this as testing data for our machine learning 

classifier. Our goal is to see how well the model can predict patterns and hybrid patterns of the 

nonlinear technical chart patterns previously identified.  

We take all of the nonpattern trading data from our methodology in chapter two. Namely plotting 

the prices and smoothed prices. We find the extrema values and keep the windows with enough 

extrema to complete a pattern. We discard the pattern windows that have completed patterns as we 

have already analyzed those.  

The contribution here is that we can get pattern statistics from extrema that wouldn’t otherwise 

meet the pattern rules identified by Lo, Mamaysky and Wang 2000.  

For conditional returns we can take the patterns that are a top and condition on when they are a 

higher probability than the patterns that are a bottom. We can do the same for the bottom patterns 

and condition on them when they are a greater probability than the patterns that are a top. We can 

call these PTOP and PBOT. They will be our ‘hybrid’ patterns.  

The contribution is that we can test if these ‘hybrid’ patterns have any predictive ability. We can 

again compare the conditional distribution of one day returns to the unconditional distribution 

(every other day). We can also gather summary statistics. We can also test the goodness of fit 

statistic and the Kolmogorov-Smirnov for these patterns.  

8. Conclusion 

We address two calls for future work in this paper. One for advances in the rigorous methodology 

for finding patterns including using local polynomial regressions. We also address finding new 

ways to uncover the patterns using digital images. A third contribution is that we use an additional 

measure of uncovering the patterns which is through adding machine learning to predict the pattern 

trading rules. We find that a digital image classifier shows both high in sample accuracy and out 

of sample accuracy.  
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In part one we show a high degree of non-randomness in uncovering the nonlinear visual patterns. 

Over 9500 daily price observations on a single security, we find that at most 68 patterns are 

uncovered (Head and Shoulders).  

In part two we show that image processing can uncover the extrema points represented by a single 

pixel value (per extremum) and the resultant patterns are the same as in kernel smoothing methods 

which are represented by price and time observations. Prior work shows that the patterns are 

difficult to uncover on random geometric Brownian motion.   

We match the results to LMW, 2000 by extending the data to 98 years. We use local polynomial 

regressions to uncover the patterns (previous work by LMW (2000)) used kernel smoothing. Then 

we use digital image processing to uncover the extreme values from very thin plots of the values. 

Finding extrema from these values allows us to use them in the pattern rules as defined previously. 

All returns are found out of sample since patterns are completed 3 days before the returns are 

taken. 

Every pattern has at least 4 deciles with 10% or more matches when tabulating the returns. This 

shows that at 40%-50% of the deciles they contain informational value. 

In part 3 we show is that digital image processing can be useful in uncovering the patterns. We 

show that image classification can uncover pattern trading rules without them being explicitly 

defined via supervised learning. We provide 5 consecutive extrema, and the true pattern type. We 

use state of the art machine learning tools such as Support Vector Machines, Logistic Regressions, 

and Gradient Boosted Trees to uncover the pattern rules with high success.  

We show that using classifier out to condition on the pattern probabilities provides a reduced 

market exposure when patterns are showing conflicting sign. The resultant effect is a slightly 

higher average return and slightly lower standard deviation. We show that the number of patterns 

found on the DJIA is similar to that of image processing without classification which proves the 

validity of a digital image classifier to be useful in predicting stock price patterns. If we had a 

different number of patterns, or different/lower returns we would suggest that classification cannot 

uncover the patterns. This further shows the randomness of the patterns.   

The added feature of using the extrema in a digital image classifier give us pattern confidence 

intervals. They allow us to make inferences on new data that hasn’t been observed without 
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explicitly defined rules. This feeds in to future implication for academia and industry. Namely, 

program trading and market efficiency research. Additional patterns may be tested using the 

framework outlined in Edwards and Magee (2018) and bias from the classifier may be 

benchmarked against professional analyst recommendations.  

The advantages of digital image processing over the current methods for automatic pattern 

recognition are that it more closely resembles the human learning process, doesn’t require raw data 

(once a image classifier is trained), can be aggregated between the bias of the output and a 

professional analyst recommendation, can easily be adjusted to multiple time frames and additional 

patterns.  

We show that splitting the data between 60% training, 40% testing, 10% training, 90% testing, 

90% training, and 10% testing all yield similar results. SVM is a better performer with more 

training data (90% training, 10% testing) while Logistic Regressions perform better on fewer 

pattern observations. From a practical standpoint, more pattern observations would likely be used 

for training purposes and Support Vector Machines show promising results.  
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