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Abstract 
 

Madagascar, a country whose extraordinary levels of endemism and biodiversity are 

celebrated globally by scientists and laymen alike, yet historically has received surprisingly little 

research attention, is the setting of the present dissertation.  Here, I contribute to the need for 

applied research by: 1) focusing on the most intensely fished section of the Toliara Barrier Reef, 

the Bay of Ranobe; 2) characterizing the marine environment, the human population, and the 

fisheries; and 3) collecting the longest known time-series of data on fisheries of Madagascar, 

thereby providing a useful baseline for future analyses.  In Chapter 1, the bathymetry of the Bay 

was characterized following a unique application of the boosted regression tree classifier to the 

RGB bands of IKONOS imagery.  Derivation of water depths, based on DOS-corrected images, 

following a generic, log-transformed multiple linear regression approach produced a predictive 

accuracy of 1.28 m, whereas model fitting performed using the boosted regression tree classifier, 

allowing for interaction effects (tree complexity= 2), provided increased accuracy (RMSE= 1.01 

m).  Estimates of human population abundance, distribution, and dynamics were obtained 

following a dwelling-unit enumeration approach, using IKONOS Panchromatic and Google 

Earth images.  Results indicated, in 2016, 31,850 people lived within 1 km of the shore, and 

28,046 people lived within the 12 coastal villages of the Bay.  Localized population growth rates 

within the villages, where birth rates and migration are combined, ranged from 2.96% - 6.83%, 

greatly exceeding official estimates of 2.78%.  Annual pirogue counts demonstrated a shift in 

fishing effort from south to the north.  Gear and boat (pirogue) profiles were developed, and the 

theoretical maximum number of fishermen predicted (n= 4,820), in 2013, from a regression 

model based on pirogue lengths (R2= 0.49).  Spatial fishing effort distribution was mapped 

following a satellite-based enumeration of fishers-at-sea, resulting in a bay-wide estimate of 

intensity equaling 33.3 pirogue-meters km-2.  Landings and CPUE were characterized, with 

respect to finfish, by family, species, gear, and village.  Expansion of landings to bay-wide 

fisheries yields indicated 1,885.8 mt year-1 of mixed fisheries productivity, with an estimated 

wholesale value of 1.64 million USD per annum.                             

 

 

 

 

 

 

Keywords: Madagascar, Bay of Ranobe, Coral reef fisheries, Fisheries productivity, Economic 

valuation, Remote sensing, Multispectral, Water depth, Bathymetry, Human population 

estimation 
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PART I 

The Environment and the People:  

Communities of the Bay of Ranobe, Madagascar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Caption: Young spear-fishermen with rabbitfish (top); village meeting (bottom); satellite image of the Southwest 

Coast of Madagascar and Toliara Barrier Reef Complex (right)  
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Chapter 1 

 

Derivation of bathymetry and benthic habitat classification from 

multispectral satellite imagery 
 

1.1 Introduction 

Advances in spatial visualization and analysis technologies, such as geographic 

information systems software (GIS), spatial statistics and the growing availability of remotely 

sensed data, have allowed for the characterization of large expanses of the globe with 

comparatively little effort.  In many parts of the world, where ecological research is nearly non-

existent, satellite archival imagery may be the only reliable historical datasets available.  Use of 

spatial data in the fields of fisheries ecology and management is increasing, leading to improved 

accuracies in model predictions and giving birth to a new field, spatial fisheries ecology and 

management (Costello et al., 2010; Lorenzen, 2010).  Low-resolution, basin-wide satellite data 

products have been routinely used by fisheries oceanographers for several decades (Santos, 

2000), for example: bathymetry (Bigelow, 1999), hydrodynamics (Klemas, 2009), sea-surface 

temperature (Wentz et al., 2000), and primary productivity (Behrenfeld et al., 2001; Beman et 

al., 2005).  However, in more recent years, high spatial- or spectral-resolution satellite imagery 

(e.g., IKONOS, Sentinel-2, and WorldView 2-3 imagery) has proven to be useful in deriving 

bathymetry (Lyzenga, 1978; Strumpf and Holderied, 2003; Mishra et al., 2004) and benthic 

habitat information for coral reef ecosystems, where clear, shallow water conditions often prevail 

(Lyzenga, 1981; Andrefouet et al., 2003; Mumby and Edwards, 2002; Mumby et al., 2004; 

Hedley et al., 2012; Halls and Costin, 2016; Eugenio et al., 2017, Colin et al., 2017; Traganos 

and Reinartz, 2018; Traganos et al., 2018).  Products derived from high-resolution data sources 

allow for analyses to be conducted at finer scales, making these techniques much more amenable 
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to coral reef ecosystem studies and management applications, for example, in studies of habitat-

use (Chassot, et al., 2011 and references therein) and predictive modeling of species or habitats 

(e.g., Pittman et al., 2007; Walker, 2008; Pittman et al., 2009; Knudby et al., 2010; Yates et al., 

2016; Rees et al., 2018; Roelfsema et al., 2018).   

Given the close species-habitat associations that exist in coral reef ecosystems, a 

prerequisite to any study in this environment is a firm understanding of local bathymetry (Beger 

and Possingham, 2008; Richards et al., 2012) and the state, extent, and complexity of the benthic 

habitats (Pittman et al., 2007; Walker, 2008; Pittman et al., 2009; Knudby et al., 2010).  This 

information may then form the basis of any ecological survey design and sampling protocols.  

In this chapter of my dissertation, the foundations are laid for present and future research 

into the coral reef ecosystem and fisheries of the Bay of Ranobe.  Given the paucity of marine 

research in the region, it was necessary to begin with the quantification of some of the most basic 

metrics in nature, namely the weather and tides.  From there, basic bathymetric and benthic 

habitat mapping products were created that are used in the chapters that follow, and that may be 

useful for future research.   

 

1.2 Methodology 

Study site   

 Unlike most tropical coral reef ecosystems in the world, the climate along the coast of the 

Toliara Barrier Reef Complex is semi-arid, with average annual rainfall of ca. 417 mm, falling 

over 43 days of the year.  Mountains and plateaus along the tropical east side of the country 

capture most of the rain, creating a rain shadow that falls on the western and southern provinces.  

The austral summer of the Toliara region may be characterized by cloudless skies and scorching 
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sun for most months, with the likelihood of rain increasing during cyclone season, December - 

February.  As winter approaches, the heat gives way to strong winds and highly- fluctuating 

daytime-nighttime air temperatures.  On-site air temperature and weather data were collected 

throughout the study period, 2011-2015 (min = 10.1 C, max = 39.3 C, x̄ = 25.4 C) (Figure 

1.1a-b), while water temperature was monitored periodically, using HOBO pendant water 

temperature dataloggers, at selected sites (Figure 1.2).   

In spite of the relatively harsh terrestrial environment, the Toliara region is home to the 

unique Spiny Forests of Madagascar, where 95% of the floral species are endemic (photos, 

Figure 1.3).  Similarly, in the marine environment exists one of largest and least-known barrier 

reef systems, the Toliara Barrier Reef Complex, persisting at the southern extreme of the global 

coral reef distribution, bisected by the Tropic of Capricorn just 30 kms south of the study site, 

the Bay of Ranobe.               

The Bay of Ranobe (23º05’S, 43º33’E) is a coastal lagoon situated along the 

southwestern coast of Madagascar, approximately 20 km northwest of the provincial capital city, 

Toliara.  The Bay of Ranobe region may be geographically defined by the Manombo River and 

Fiherenana River that form the northern and southern borders, respectively.  The lagoon system 

extends ca. 32 km along its southeast-northwest axis, measures ca. 8 km at the widest point, 

covering ca. 163 km2 with maximum depths approaching 12 m within the lagoon. The lagoon 

experiences a semi-diurnal tidal regime with a spring tidal range of ±2.3 m.  The system is 

characterized by an inner reef flat composed of: patch reefs, sand, seagrass, macro-algae, and 

mangrove habitats, with a barrier reef forming the seaward boundary.  The 32 km section of 

barrier reef that delimits the lagoon from the Mozambique Channel forms part of the greater 

Toliara Barrier Reef complex.  Two reef passes divide the lagoon into three zones (Figure 1.4). 
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Figure 1.1. a) Air temperature time series from on-site weather station for years 2011-2015; b) monthly 

means for all years combined; time series trends are Generalized Additive Model-smoothed with 95% 

confidence intervals. 

 

 

 

a 

b 
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Figure 1.2.  Monthly mean of on-site air temperature (red) for year 2014 compared to water temperature 

(blue) measured by HOBO pendant dataloggers at the Rose Garden Marine Reserve, Bay of Ranobe; time 

series trends are Generalized Additive Model-smoothed with 95% confidence intervals.   

 

 

Figure 1.3. Spiny forest floral species with village of Ifaty in background; dark haze over the village 

resembling smoke is actually a swarm of locusts  
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Figure 1.4.  Bottom-right: Provinces of Madagascar with Toliara Province (shaded); Top-right magnified 

view of the coastline and the provincial capital, Toliara; Left: magnified view of the study area, Bay of 

Ranobe   
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Sonar data processing 

Tidal correction 

 Tides are the harmonic expression of multiple constituent forces acting and interacting on 

seawater, including: astronomical, radiational, and geologic / topographic.  For semi-diurnal 

tides, such as those expressed at the location of the present study, the principle harmonic 

constituents include: M2, the principal lunar semidiurnal constituent; S2, the principal solar 

semidiurnal constituent; and N2, the larger lunar elliptic semidiurnal constituent.  Amongst these 

harmonic tidal constituents, the principal lunar semidiurnal constituent, M2, is the dominant 

constituent force.  A global map of the expression of the M2 tidal constituent, in terms of tidal 

range (Figure 1.5), indicates areas of the greatest tidal range (red area), while the white isolines 

converge on the areas of lowest tidal range (blue area), known as the amphidromic points.  As 

can be seen in Figure 1.5, the coasts of Madagascar present a complex tidal environment, with 

extreme highs and lows occurring along its shores.  Despite the tidal complexity surrounding this 

island nation, there are few functioning tide stations from which reliable tidal data may be 

obtained, with no tide stations operating within the region of the present study location (Figure 

1.6; Map of the Global Sea Level Observing System, GLOSS).      

In order to standardize depth data collected using sonar, which in turn will be used to 

create a bathymetric map of the study area, a tidal correction must be applied to the sonar data.  

After applying the tidal correction, depths standardized to a specific tidal datum may be 

achieved.  Open-source tidal prediction software allow for the determination of tidal states at 

locations around the world, for example, WxTides32 and Mr. Tides for Windows and Mac 

operating systems, respectively.  Tidal predictions generated by the software are based on 

“reference stations”, where functioning tide gauges exist.  In the case of WxTides32, the  
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Figure 1.5. World map of the dominance / intensity of the M2 tidal constituent; for areas where the white 

isolines converge, amphidromic points, little or no tide exists (NASA – Goddard Space Flight Center, 

NASA-Jet Propulsion Laboratory, and Scientific Visualization Studio; https://svs.gsfc.nasa.gov) 

  

 

 

Figure 1.6. Global Sea Level Observing System stations actively collecting data (GLOSS image, 

https://www.psml.org) 
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reference tidal station is in Dar es Salaam, Tanzania.  “Subordinate stations” are locations where 

reliable historic tidal data have once been collected, where the data are then used to develop 

algorithms that allow for tidal predictions from the reference to subordinate location(s).  In the 

case of WxTides32, the algorithm used is: 

 

Dar Es Salaam, Tanzania + Corrections: High (+0:46 *0.77 +3.00) Low (+0:50 *0.77 +3.00) 

 

To compare the accuracy of the WxTides32 and Mr. Tides tidal prediction algorithms, tidal data 

were collected manually at the Port of Toliara every 10 minutes from sunrise to sunset for 7 

consecutive days, November 9-15, 2012 (Figure 1.7).  A comparison of observed versus 

predicted tidal stages indicated the accuracy of the algorithms (Figure 1.8).  While both 

algorithms appear to be in-phase with the observed waveform, the predicted amplitudes of the 

wave functions predicted by the Mr. Tides algorithm were clearly more accurate.  Consequently, 

Mr. Tides tidal predictions were used for the correction of sonar survey data.   Tidal predictions 

generated by Mr. Tides are based on the Lowest Astronomical Tide (LAT) tidal datum.  Thus, 

corrections made to the recorded sonar depths, and the resultant bathymetric mapping products, 

adopted the LAT datum as reference (See Appendix 1.1 for a comparison of common tidal 

datums).  The LAT is defined as: 

…the lowest tide level which can be predicted to occur under average meteorological  

 

conditions and under any combination of astronomical conditions. (I.H.O., 2016) 
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Figure 1.7. Manual collection of tide stage at the Port of Toliara (November 2012) 

 

  

  

 
Figure 1.8.  Comparison of tidal predictions for Toliara generated by WxTide32 (red line) and Mr. Tides 

(green line) software and observed tide levels (blue line) 
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Sonar data description  

 Raw sonar point data (n=13,563) were collected opportunistically using a consumer-

grade chartplotter (Garmin GPSMap 441s) from June 2011-May 2013.  The chartplotter was 

equipped with an integrated GPS and a dual-beam depth transducer (frequencies: 200khz/50khz, 

beamwidth: 10º/40º) that was mounted to a 6m-dive boat.  Positional accuracy was assessed 

using a hand-held GPS unit (Garmin GPSMap 76Cx) that consistently indicated good signal 

strength from multiple satellites resulting in 2-3m positional accuracies.  All GPS data were 

collected in UTM coordinates with the WGS84 datum.  Error associated with the depths 

recorded by the sonar were evaluated manually, using a decameter and lead weight (RMSE 

0.1m). 

In order to calibrate the raw sonar data, tidal data were generated in 6-minute increments 

over 12-hour periods for dates and times corresponding to sonar surveys.  Tidal states for each of 

the sonar data points was interpolated using a unique polynomial equation fitted to a 12-hour 

period that overlapped the actual survey dates and times (See Figure 1.9 for example).  Corrected 

depths (depthcorr) were calculated by adding an offset to the recorded sonar depths (depthsonar) to 

account for the difference between the mounted transducer location on the boat transom and the 

waterline (depthoffset = 0.01m), then the predicted tidal state (depthpred) was subtracted.  Once 

depths were corrected to the LAT tidal datum, the tidal state (1.36 m) at the time of the satellite 

image acquisition (depthsat) was added back to the tidally-corrected values.  

Depthcorr = depthsonar + depthoffset - depthpred + depthsat 

Depthcorr data points corresponding to values less than 1 m were removed from the 

dataset, due to the inaccuracies of the sonar measurements in shallow water.  Additionally, 

depthcorr values greater than 12 m were removed due to insufficient data for model training at  
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Figure 1.9. Software-generated (Mr. Tides) tidal prediction fitted with 4th-order polynomial equation used 

to correct sonar data to LAT 

 

depths greater than 12 m within the lagoon, where depths greater than or equal to 12 m being 

found only in the reef passes.  Calibrated sonar data (depthadj) were imported into a GIS layer for 

further evaluation (Figure 1.10).  

In conducting bathymetric surveys potential sources of error may include, but are not 

limited to: 1) instrument error, 2) tide stage correction error, and 3) error associated with the xyz 

movement and position of the survey vessel, such as heave, pitch, and roll, as related to vessel 

speed and/or weather conditions.  Moreover, the sporadic changes in bathymetry that result from 

complex seafloor topography in coral reef ecosystems, due to patch reefs and coral heads, may 

confound bathymetric error assessment.   

To assess accumulated errors in the corrected depth calculations, depthcorr, intersections 

in the sonar survey transects were intentionally planned to allow for a cross-track evaluation of 

depthcorr values originating from identical locations, but from differing dates / times / tidal stages.  

For the cross-track evaluation, data points were mapped to a satellite image using ArcGIS 9.3  
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Figure 1.10.  IKONOS RGB image of the Bay of Ranobe, with sonar track point file overlay 
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(ESRI, Redlands). Coefficients of variation were calculated for data point clusters that were 

spatially separated by less than 2m.  In total, 46 cross-track data clusters were identified, 

consisting of 2-point (n=31), 3-point (n=9), 4-point (n=5), and 7-point (n=1) clusters.  

Additionally, comparisons were made between data point clusters originating from a single day 

of sampling versus two days.  Comparisons of all data clusters (CV=0.47, n=46), single-day 

clusters (CV=0.53, n=14), and multi-day clusters (CV=0.45, n=32) suggest that much of the 

measurement error may be attributed to weather, sea-state, and/or boat speed, given that errors 

resulting from tidal prediction software would result in higher CVs in the multi-day clusters.  

Figure 1.11 illustrates the relationship between variation in boat speed and the variation in sonar 

measurements.  Although there is no clear relationship, there appears to be some effect that is 

likely confounded with weather / sea-state.  To minimize the error associated with the depth 

measurements, data points were locally averaged.  This was achieved by converting the depthadj 

shapefile to grid format (cell resolution=5m, cell value=mean), then converting the grid back to a 

shapefile, resulting in 5m-localized mean point values (n=9346). In the final shapefile, the mean 

depthcorr values represent the response variable used for regression model training and testing, 

and the point locations were used for sampling the predictor variables, the satellite data.  

Processing and analyses of the satellite imagery is described further in the following sections.   

Satellite remote sensing data 

IKONOS satellite data description 

The IKONOS satellite platform collects images in 11 km swaths, following a sun-

synchronous, circular, polar orbit, at 681 km above the earth.  Satellite sensors record 11-bit data 

composed of four multispectral bands (MS; blue, green, red, and near-infrared) and one 

panchromatic band (PAN).  An imagery grant awarded by the GeoEye Foundation provided four  
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Figure 1.11. Relationship of the coefficients of variation (CV) for recorded sonar depth and boat speed, 

with potential confounding effects of weather / sea state  

 

 

multispectral satellite images that were evaluated for the present study and described below.  A 

single scene (Image ID #470991) representing 78% of the lagoon (Figure 1.12), collected by the 

IKONOS-2 sensor was selected for further analysis (See Tables 1.1-1.2 for summary).  At the 

time of acquisition (March 16, 2007, 07:15 GMT), favorable conditions resulted in a cloud-free, 

glint-free image.  The image was received as a standard geometrically corrected product, 

projected into UTM/WGS84, in an uncompressed GeoTIFF file format.  Images representing the 

extreme north and south of the lagoon were not analyzed any further, given that these shallow, 

reef flat environments were less suitable for the boat-based fishing activities studied here.   

 

Table 1.1.  Details of the satellite images used in the present study 

   Spatial Resolution (m)   

Image ID Sensor Date MS Pan Nb. Bands Data 

470990 IKONOS-2 2007-03-19 3.28 0.81 4+pan 11-bit 

470991 IKONOS-2 2007-03-16 3.28 0.81 4+pan 11-bit 

470992 IKONOS-2 2003-10-31 3.28 0.81 4+pan 11-bit 

470998 GeoEye-1 2009-07-05 1.64 0.41 4+pan 11-bit 
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Table 1.2. IKONOS-2 band description 

Bands Bandwidth Spatial Resolution 

Blue 445-516 nm 4m 

Green 506-595 nm 4m 

Red 632-698 nm 4m 

Near Infrared 757-853 nm 4m 

Panchromatic 526-929 nm 1m 

 

 

Figure 1.12. IKONOS-2 and GEOEYE-1 images awarded by the GeoEye Foundation for full coverage of 

the Bay of Ranobe; image outlined in blue was selected for further research 
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Satellite data pre-processing 

Initial image pre-processing involves a series of processing steps of original satellite 

image data that corrects for geometric, radiometric, and atmospheric distortions present, in 

varying degrees, in all satellite images.  Geometric distortions may arise from the position of the 

satellite platform as function of: pitch, roll, yaw of the platform, or the acquisition angle.  

Radiometric calibration allows for the data recorded by the satellite, referred to as digital 

numbers (DNs) or brightness values, to be converted to an actual physical property, radiance, 

based on the custom parameters of a specific satellite sensor.  Atmospheric correction endeavors 

to account for the numerous ways in which the path between solar irradiance, the targeted study 

area, and the satellite sensor may be confounded by the scattering / absorption of atmospheric 

constituents.  Steps followed for the image pre-processing workflow are depicted in Figure 1.13, 

and described further in the sections to follow.        

 

 

Figure 1.13. Workflow for the steps followed in the processing of the selected satellite image   

Original Image
Geometric Correction: 

Spatial Accuracy 
Assessment

Radiometric 
Calibration: At-sensor 

Radiance

Radiometric 
Correction: 

Exoatmoshpheric 
Reflectance

Atmospheric 
Correction

• Image-based: Dark-
Object Subtraction

•Model-based: 6sv 

Water mask / clip 

Resample Band Layers 
to 5m resolution

Water Column 
Correction

•Lyzenga Method

•Boosted Regression 
Trees
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Geometric correction: Spatial accuracy assessment  

To assess the spatial accuracy of the IKONOS image, ground control points (GCPs) were 

created (n=25) by plotting points on the high-resolution PAN layer at semi-permanent locations, 

such as at the corners of concrete structures (See Appendix 1.2). Using a consumer-grade, hand-

held GPS (Garmin GPSMap 76cx), ground-truthing was conducted to verify GCP locations.  To 

maximize accuracy of the acquired GPS coordinates, ground-truthing was conducted at times of 

low cloud cover to allow for strong satellite fixes, with ample time being provided to allow for 

stable positioning.  Spatial error was calculated for the differences between the GCPs and the 

manually-collected coordinates (Total RMSE = 3.59 m).  Spatial accuracy indicated by the GPS, 

as a function of the number and strength of satellite fixes, were consistently in the 2-3 m range.  

Considering the spatial error associated with consumer-grade GPS units, the total calculated 

RMS error was deemed adequate for the purposes of the present study.  Moreover, with the 5-

meter spatial averaging of the sonar data, as discussed above, and the degradation of the image 

resolution to 5 meters, as discussed below, the calculated total RMSE falls within a single image 

pixel.  Lastly, as a measure to preserve the integrity of the original data that would be altered by 

a data transformation inherent in the geometric correction process, it was considered best to not 

pursue further any minor improvements that may be made through a geometric correction, given 

that the image was delivered in the desired coordinate system format, Universal Transverse 

Mercator (UTM).      

 

Total RMSE = √
1

𝑛
∑ (∆𝑋𝑖

2𝑛
𝑖 +  ∆𝑌𝑖

2) = 3.59  
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Radiometric calibration: Top-of-atmosphere radiance  

 To convert raw satellite data measured in DNs to spectral radiance, L, for each of four 

multispectral bands of the IKONOS image, Lλ, the following equation was used: 

 

𝐿𝜆 =
104∙ 𝐷𝑁𝜆

𝐶𝑎𝑙𝐶𝑜𝑒𝑓𝜆 ∙ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝜆
    Equation 1 

where, 

𝐶𝑎𝑙𝐶𝑜𝑒𝑓𝜆          = Radiometric calibration coefficient [(DN/(mW/cm2 ∙ sr)] (Table 1.3) 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝜆    = Bandwidth of spectral band λ (nm) (Table 1). 

 

Radiometric Correction: Exoatmospheric Reflectance 

Radiance was converted to apparent reflectance, or planetary reflectance, p, following 

the equation below:  

 

𝜌𝑝 =  
𝜋 ∙𝐿𝜆 ∙ 𝑑

2 

𝐸𝑆𝑈𝑁𝜆
 ∙ 𝑐𝑜𝑠𝜃𝑠

     Equation 2 

where, 

P = Unitless planetary reflectance, 

L = Radiance for spectral band  at the sensor’s aperture, 

d = Earth-Sun distance in astronomical units,  

Esun = Mean solar exoatmospheric irradiances (Table 1.4),  

s = Solar zenith angle. 
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Values for coefficients from Formulas 1-2 are found in Table 1.3.  For the Earth-Sun distance, d, 

the value was calculated by linear interpolation of bounding values provided in Table 1.4 for the 

Julian day (JD = 75), corresponding to the image acquisition date (d = 0.9961).  Solar zenith 

angle, s, is the complement of the sun angle of elevation, which is a value that is found in the 

image metadata file: 

 

s = 90 – 54.06649 = 35.9331. 

 

Application of the formulae to the IKONOS image was conducted in the Erdas Imagine Modeler 

software environment.  Both coefficients and formulae were taken from Taylor (2005). 

 

Table 1.3.  IKONOS Band-dependent Parameters 

IKONOS band 

(λ) 

CalCoefλ 

Post 02/22/01 

(DN/(mW/cm2-sr)) 

Bandwidthλ 

(nm) 

Esunλ 

(W/m2/m) 

Pan 161 403 1375.8 

Blue 728 71.3 1930.9 

Green 727 88.6 1854.8 

Red 949 65.8 1556.5 

NIR 843 95.4 1156.9 

IKONOS Planetary Reflectance and Mean Solar Exoatmospheric Irradiance (Taylor, 2005) 

 

Table 1.4. Earth-Sun distance in Astronomical Units per Julian Day 

J Day  Distance  J Day  Distance J Day  Distance J Day  Distance  J Day  Distance 

1  0.9832  74  0.9945  152  1.0140  227  1.0128  305  0.9925  

15  0.9836  91  0.9993  166  1.0158  242  1.0092  319  0.9892  

32  0.9853  106  1.0033  182  1.0167  258  1.0057  335  0.9860  

46  0.9878  121  1.0076  196  1.0165  274  1.0011  349  0.9843  

60  0.9909  135  1.0109  213  1.0149  288  0.9972  365  0.9833  

IKONOS Planetary Reflectance and Mean Solar Exoatmospheric Irradiance (Taylor, 2005) 
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Atmospheric correction 

Images captured by satellite sensors are the result of a complex series of multiple 

scattering and absorption events as solar irradiance is transmitted through the atmosphere, strikes 

the earth, and is reflected back through the atmosphere to be recorded by the sensor.  Photons, 

recorded as brightness values or digital numbers (DN), are not all reflected from the surface 

target, but are rather a composition of the target reflectance, reflectance from neighboring 

surfaces (adjacency effects), and atmospheric scattering events (Figure 1.14).   

For scientists interested in studying the earth’s surface, brightness originating from non-

targeted surfaces and scattering events, known as path radiance, contribute “noise” to the data 

that manifests itself as a haze over the image scene.  The added brightness due to path radiance is 

generally considered the reason for which uncorrected image histograms experience a substantial 

shift in pixel values to the right (Figure 1.15).  Corrective measures have been developed to 

improve the signal-to-noise ratios introduced by these atmospheric constituents.  Contributions 

by atmospheric constituents, i.e. gases, water vapor, and particulates, to the path radiance are 

dependent on the interaction of particle size(s) and wavelength(s) of light. On one side of the 

spectrum, shorter wavelengths interact more with the smaller gaseous molecules, a phenomenon 

known as Rayleigh scattering, while longer wavelengths interact with larger particles, such as 

water vapor droplets, in a process known as Mie scattering.  The proper characterization of the 

water vapor content, aerosol optical thickness (AOT) or aerosol optical depth (AOD), is 

particularly important when studies are conducted on water targets (Gordon 1995, Gordon et al., 

1997), such as the case in the present study.   
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Figure 1.14.  Illustration from Jensen (2007) depicting the multiple potential pathways in which 

scattering and non-targeted reflectance, path radiance (LP), may corrupt the signal received by the satellite 

sensor. 

 

 

 

 

Figure 1.15.  Histogram of the IKONOS blue band image file calibrated to TOA radiance; right-shifting 

of histogram related to path radiance  
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In general, the process of performing an atmospheric correction requires the subtraction 

of the augmented brightness values attributable to path radiance (Lp) from the recorded at-

satellite radiance (Ls) values.  The corrected radiance values may then be converted to reflectance 

in order to obtain surface reflectance (surface), as described in the simplified, 1-dimensional 

equation below:         

              𝜌𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =  
𝜋(𝐿𝑠−𝐿𝑝)

𝑇𝑣(𝐸0 cos(𝜃𝑧)𝑇𝑧+𝐸𝑑
 .                               Equation 3 

 

Equation 3 provides some additional key parameters including the exoatmoshperic solar 

constant, E0, the downwelling diffuse sky irradiance, Ed, the sun-earth transmittance constant, Tz, 

and the earth-satellite transmittance constant, Tv.  Variants of atmospheric correction techniques 

employed up to present differ, essentially, in the number of simplifying assumptions made to the 

variables presented in Equation 3.       

Over the past decades, atmospheric corrections techniques have been developed that may 

be categorized as: 1) image-based, requiring no in-situ data, 2) empirical techniques requiring 

some in-situ measurements, and 3) model-based techniques that employ a less simplified version 

of the Radiative Transfer Equation, requiring some in-situ measurements.  One of the earliest and 

most commonly used image-based atmospheric correction techniques is dark-object subtraction, 

DOS (Chavez, 1989).  In performing a DOS correction, a black object in the scene is selected to 

determine the radiance minimum for each band, L()min, ideally clear, deep water, i.e. optically 

deep water.  For scenes lacking optically deep water, other black surfaces or shadows are 

commonly used to determine Lmin.  Principle assumptions of the basic DOS method are that black 

objects absorb all wavelengths of visible light, thus radiance values should theoretically equal 

zero.  Any dark-object brightness values greater than zero are attributed to the path radiance and 
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subtracted from all pixel values, Ls - Lp from Equation 3.  Moreover, Equation 3 is further 

simplified by assuming the transmittance variables, Tv and Tz are unity and downwelling diffuse 

sky irradiance, Ed, is zero.  As a result, the DOS correction technique accounts for only the 

additive and not the multiplicative components of path radiance.  Some of the later modifications 

to the DOS method provided alternatives in the selection of the value of Lmin, with either 

guidance from image histograms, or in assuming that even dark-objects would have a nominal 

level of reflection set at 1%, DOS1% (Chavez, 1988; 1996; Moran et al., 1992; Song et al., 2001; 

Mahiny and Turner, 2007; Kim and Lee, 2005; Norjamaki and Tokola, 2007).   

Another commonly used atmospheric correction technique is known as the Empirical 

Line Method (ELM).  Use of the ELM is appropriate if in-situ reflectance measurements can be 

made at the time of the satellite overpass, which would not be possible for analyses of historical 

images.  To implement the ELM, spectrally homogenous targets are identified for the collection 

of on-the-ground reflectance measurements, which are then used in a linear regression of image 

radiance values from those same targets.  Linear relationships developed for the different bands 

and targets are applied to all the image pixels to correct for the atmospheric path radiance (Smith 

and Milton, 1999; Karpouzli and Malthus, 2003; Ariza et al., 2018).  

A widely-used, model-based approach to atmospheric correction that has been refined 

over the years is the 6S (Second Simulation of a Satellite Signal in Solar Spectrum) algorithm, 

formerly known as 5S, which in its current version (6SV2.1) is an open-source code that can be 

run through a website interface or downloaded (Vermote et al., 1997; Kotchenova et al., 2006; 

Kotchenova et al., 2007; Kotchenova et al., 2008).  Newer versions of the code allow for 

improved computational accuracy in the estimation of Rayleigh and aerosol scattering through an 

iterative successive orders of scattering (SOS) algorithm, and the vector version (6SV) accounts 
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for the polarizing effects of atmospheric constituents (Zhang, 2012). The SOS algorithm divides 

the atmosphere into successive layers, allowing for the computation of numerical solutions of the 

Radiative Transfer equation to be made on a layer-by-layer basis (Kothchenova et al., 2006).  In 

addition, the integrated atmospheric profiles have been expanded to include additional 

atmospheric gases (e.g. CH4, N2O, and CO), the selection of aerosol profiles, and/or 

customizable, user-defined parameterization.         

 For the present study, two different atmospheric correction methods were applied to the 

IKONOS image of the study area in order to evaluate the effects of the atmospheric correction on 

the final bathymetry map product, the DOS1% method and the 6SV approach.  For the DOS1% 

correction, an area of optically deep water was initially identified by visual assessment of image 

band files and histogram equalization enhancement of these files (Figure 1.16a-c).  Within the 

area of interest, radiance values from the three raster layers were sampled at n=50 random points 

(Figure 1.16d-e), and a band-averaged Lmin value was calculated.   

To calculate LDOS1%, Equation 2 is solved for radiance and multiplied by 1%: 

 

𝐿𝜆_𝐷𝑂𝑆1% =  𝐿𝜆_𝑚𝑖𝑛 − 0.01[(𝐸0 cos(𝜃0)) /(𝜋d2)].   Equation 4 

 

DOS-corrected, surface radiance images were generated by applying Equation 4, using the 

calculated parameter values found in Table 1.5.  Atmospheric correction calculations were 

conducted in Erdas Imagine Modeler environment using a conditional statement to avoid 

negative pixel values, for example: 

If L >= L*,  

Then L – L*,  

Else L* = 0.00001. 
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Figure 1.16. IKONOS-2 image band files: (first row) a) red band, b) green band, and c) blue band with 

histogram equalization enhancement, (second row) d) identification of optically-deep region, and e) 

random sampling of the optically-deep region applied to all bands 
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Table 1.5. Calculated values for the parameters of the atmospheric correction 

Band Lmin Cos(s) d2 Esun L1% LDOS1% 

Blue 56.062 0.810 0.992 1930.900 5.016 51.047 

Green 34.310 0.810 0.992 1854.800 4.818 29.492 

Red 15.854 0.810 0.992 1556.500 4.043 11.811 

 
 
  

To evaluate two commonly used atmospheric correction techniques, the 6SV model-

based correction was performed.  A web-based portal is available (http://6s.ltdri.org/pages 

/run6SV.html) and was used, here, to conduct simulations.  The 6SV model requires a number of 

inputs that allow specification of: 1) geometrical conditions, 2) atmospherical model, 3) target 

and sensor altitude, 4) spectral conditions, 5) ground reflectance, and 6) signal.  Selection of 

atmospherical models are of particular importance, with options to select standard atmospheric 

profiles (Table 1.6) and aerosol profiles (Table 1.7).  In order to determine the appropriate 

atmospheric profile and aerosol model, online data sources were consulted, specifically 

AERONET and MODIS.   

AERONET (Aerosol Robotic Network; https://aeronet.gsfc.nasa.gov/) is a global 

network of ground-based sensors specifically designed for the collection of global aerosol 

properties.  Data from the closest ground station to the study site, found on the island of Reunion, 

was sought for the month and year corresponding to the image acquisition (March 16, 2007; 

07:15 GMT).  From the available data it appeared that the ground station was not functioning on 

the day / time of image acquisition, consequently, data from the closest date was used, March 29 

(Figure 1.17).  A complete dataset for March 2008 was available, including hourly measurements 

(Figure 1.18) that was used to qualitatively assess water vapor content from the perspective of a 

monthly mean and typical hourly changes in measurement values.  As water vapor content  

 



  

29 
 

Table 1.6. 6SV Standard Atmospheric Models 

Code Atmospheric profile 

Water Vapor 

(g/cm2) 

Ozone 

(cm-atm) 

Solar irradiance 

(W/m2) 

0 No gaseous absorption 0 0 934.71 

1 Tropical 4.120 0.247 758.50 

2 Midlatitude Summer 2.930 0.319 769.09 

3 Midlatitude Winter 0.853 0.395 754.17 

4 Subarctic Summer 2.100 0.480 781.54 

5 Subarctic Winter 0.419 0.480 825.74 

6 US standard 62 1.420 0.344 794.01 

 

 

Table 1.7. 6SV Standard Aerosol Models 

Code Aerosol model Solar irradiance (W/m2) 

0 No aerosol 783.18 

1 Continental model 769.09 

2 Maritime model 778.94 

3 Urban model 751.94 

4 User’s own model 739.46 

5 Desert model 776.01 

6 Biomass burning 772.74 
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Figure 1.17. Daily water vapor density (g/cm2) measured on March 28-31, 2007 in Saint Denis, Reunion 

 

appeared to fluctuate around 3 g/cm2 for the month of March, with lower values observed in the 

morning hours, the Midlatitude Summer (2.930 g/cm2) profile was selected.  AERONET and 

MODIS (Moderate Resolution Imaging Spectroradiometer) data were used to determine the 

aerosol optical thickness (AOT) at 550 nm value that was used as input into the 6SV simulation, 

AOT = 0.1 (Figures 1.19).  The Maritime aerosol model was selected, given that the area of 

interest is the marine / sub-marine portion of the image scene.  Lastly, to characterize surface 

reflectance, the homogenous ground reflectance type with non-directional, or Lambertian, 

directionality effects were chosen as options.  (See Appendix 1.3-1.5 for 6SV output files)  

6SV model simulations were conducted for each of the three IKONOS image bands.  Results of 

simulations were used to determine band-specific values for: global gas transmittance, total 

scattering transmittance, atmospheric reflectance, and spherical albedo.  Based on the  

 



  

31 
 

 
 
 
 

 
 

Figure 1.18. Daily (top) and hourly (bottom) water vapor density (g/cm2) measurements from March 

2008 in Saint Denis, Reunion 
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relationship of top-of-atmosphere reflectance ( [TOA]) to surface reflectance ( [Surface]), 

presented in Equation 5 below, an algebraic solution for Surface may be derived, as follows: 

 

                [TOA] = Global gas transmittance x (Atmospheric Reflectance     

 + ( [Surface] x Total scattering transmittance)                  Equation 5 

 

 A = 
1

𝐺𝑙𝑜𝑏𝑎𝑙 𝑔𝑎𝑠 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 × 𝑇𝑜𝑡𝑎𝑙 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒
  ,               Equation 6 

 

B = 
𝐴𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑡𝑟𝑎𝑛𝑠𝑖𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒
 ,                                       Equation 7 

 

C = (A x  [TOA]) – B,                                                       Equation 8 

 

 [Surface] = 
𝐶

1 + 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑎𝑙𝑏𝑒𝑑𝑜 𝑥 𝐶
 .                                             Equation 9 

 

Atmospheric correction calculations were conducted in Erdas Imagine Modeler environment in a 

step-wise manner, using a conditional statement as a final step to remove any negative pixel 

values that may have resulted from the application of Equation 8, where: 

 

If  [Surface]  > 0, 

Then  [Surface] =  [Surface], 

Else  [Surface] = 0. 
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Figure 1.19. Measurements of Aerosol Optical Depth (AOD), or Aerosol Optical Thickness (AOT), 

collected by MODIS (March 16, 2007) on southwest coast of Madagascar (top); AERONET measurement 

from March 28-31, 2007, Saint Denis, Reunion (bottom) 
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Image Mask and Re-sampling  

As a final image pre-processing step, the RGB bands representing the DOS1% and 6SV 

atmospheric correction results were clipped using a water mask to delimit the study area. Clipped 

images were resampled to 5 m resolution, corresponding to the 5 meter-averaged sonar data, 

using the bilinear interpolation method (Figure 1.20).  In addition to matching spatial resolutions 

of the sonar point layer and raster layers, clipping and resampling the images resulted in a 

reduction in file sizes to facilitate the next step in the process, statistical modeling, as described 

in the following section.     

 

 

Figure 1.20. RGB image of the Bay of Ranobe after water mask, clip, and spatial resampling 
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Statistical models: Water depth retrieval  

 According to the Beer-Lambert Law of physics, the initial intensity of light, I0(), passing 

through a solution experiences an exponential decay, or attenuation.  Attenuation of the light as it 

exits the solution, I1(), is related to the concentration of any solute(s), c, the absorptivity of the 

solute(s), , and the pathlength traveled through the solution, l (Figure 1.21).  In the realm of 

ocean remote sensing, the concentration of the solution is equivalent to the turbidity of sea water, 

a parameter referred to as the diffuse attenuation coefficient, Kd.  Kd() is an apparent optical 

property of seawater that may be reliably estimated by the degree of absorption /scattering at 490 

nm and 443 nm wavelengths, with Kd (490) being the most commonly used (Lee et al., 2005).   

Based on the Beer-Lambert physical principle of the transmittance of light through a 

medium, Lyzenga (1985) developed a method for inverting the Beer-Lambert equation by log-

transforming the at-surface radiance values, or water-leaving radiance, in order to determine the 

pathlength, i.e. depth.  Water-leaving radiance values for each band are obtained through 

calibrating the image from digital numbers to radiance and performing an atmospheric 

correction, as described in the previous section.  As described in Equation 10, bands are initially 

processed by log-transforming the atmospherically-corrected radiance values.  Here, a generic 

dark-object subtraction atmospheric correction is described:  

   

Xi = ln [LTOA(i) – L∞(i)],                                         Equation 10 

 

where the log-transformed, corrected band, Xi, is calculated by taking the natural log of the 

difference of the top-of-the-atmosphere radiance values, LTOA, and the optically-deep radiance  
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Figure 1.21. Beer-Lambert Law: Attenuation of incident light, I0, passing through a solution 

 

value, L∞.  A multiple linear regression of the corrected bands, Xi, as the dependent variables and 

depth, Z, as the independent variable is used to determine the a0,i,j parameters: 

 

Z = a0 + aiXi + ajXj + ….                                       Equation 11  

 

 Since Lyzenga (1985), additional techniques have been developed for the derivation of 

water depth from remotely sensed imagery, employing various derivations of the Lyzenga 

method and/or approaches using different band combinations, band ratios, or statistical models 

(Philpot, 1989; Bierwirth et al., 1993; Sandidge and Holyer, 1998; Lee et al., 1999; Diersson et 

al., 2003; Stumpf et al., 2003; Conger et al., 2006; Lyzenga et al., 2006; Mishra et al., 2007; 

Hogrefe et al., 2008; Brando et al., 2009; Kanno, et al., 2011; Ma et al., 2014; Eugenio et al., 

2015; Pacheco et al., 2015; Shen et al., 2018).  Previous research, however, has indicated that the 

performance of these models depends greatly on the assumption of homogenous water column 
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properties, homogenous seafloor bottom types, and are limited to a maximum depth (Gao, 2009; 

Manessa et al., 2018).  In shallow coastal waters, where much of this research is conducted, the 

assumed conditions of the idealized environment are seldom the reality. 

 In the present research, the multiple linear regression-based method developed by 

Lyzenga was compared to a novel statistical approach for fitting model parameters, gradient 

boosting models (GBM), also known as boosted regression trees.  Gradient boosting is non-

parametric, machine learning regression technique with a basic regression tree-like structure.  

Unlike simple regression trees, boosting is an ensemble method, where the model is fit and re-fit 

in an iterative process that is guided by the minimization of a loss function, such as the mean 

squared error.  Tree “branches” are added and extended in a step-wise manner until the gains in 

predictive ability are outweighed by the added complexity, similar to step-wise regression.  

Complexity of the final gradient boosting model may be controlled to avoid over-fitting the data 

by adjusting several model parameters: tree complexity, learning rate and bag fraction.  Given 

that the results of the GBMs will be compared to a standard multiple linear regression model, 

without interactions, the GBM parameters were set to generate simplified tree structures: 

Tree complexity = 1 

Learning rate = 0.1 

Bag fraction = 0.5. 

 

 Multiple linear regression and boosting gradient model approaches were applied using 

the log-transformed, atmospherically-corrected RGB bands of the IKONOS image as the 

independent variables (Figure 1.22), with corrected sonar data as the dependent variable.  For the 

RGB image band files in the DOS1% treatment group, raw satellite data were calibrated to TOA 

radiance, with the DOS correction producing at-surface radiance values.  In the case of the 6SV 

treatment group, the atmospheric correction was performed on TOA reflectance, resulting in  
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Figure 1.22. Example of the log-transformed, DOS1%-corrected RGB bands used as the independent 

variable in the statistical models 

 

surface reflectance values that were used in the statistical models.  Sonar data (n= 9346) were 

randomly sampled to create 70% training and 30% testing datasets.  Multiple linear regression 

and gradient boosting models were fitted to DOS1% and 6SV corrected datasets to produce a total 

of four statistical model – dataset combinations.  Model performance criteria, adjusted R2 and 

predictive accuracy, were used to evaluate: 

• atmospheric correction techniques – DOS1% versus 6SV, and  

• statistical approaches for determining depth from multispectral imagery – multiple 

linear regression (Lyzenga method) versus gradient boosting models. 
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The final selected dataset and model were then used to create the bathymetric map of the Bay of 

Ranobe. 

Benthic habitat classification 

Over the last two decades, coral reef ecologists have taken advantage of the growing 

number, and increasing sophistication, of air- and satellite-borne spectral sensors available for 

the classification and mapping of benthic habitat complexity, composed of benthic habitat types 

and geomorphological units (Mumby et al., 1997; Mumby et al., 1998; Holden and LeDrew, 

1998; Lubin et al., 2001; Call et al., 2003).  At the same rate that these technologies have 

evolved, computing power and analytical methods have evolved at an equal pace.  For example, 

based on principles of photogrammetry, advances in computing power have allowed for the 

creation of 3-dimensional images from simple RGB cameras, a technology fueled by the drone 

industry known as “structure from motion” (SfM).  Analyses once conducted using simple linear 

regression and regression trees have been supplanted, in certain cases, by the development of 

machine learning algorithms, such as gradient boosting, as this class of analytical methods 

continuously progresses towards the refinement of artificial intelligence technologies.  Similarly,  

advances in analytical approaches to image classification have been observed in recent 

years: object-oriented classification approaches, segmentation, artificial neural networks, and 

variations of regression-tree techniques, such as the random forests and gradient boosting 

algorithms (Bakran-Petricioli et al., 2006; Hasan, et al., 2012; Wahidin et al., 2015).  Despite the 

increasing sophistication of these analysis techniques, available data quantity and/or quality may 

affect, or limit, which approach can be used.    

Although the IKONOS-2 image awarded for use in the present study, in 2011, was 

considered at that time a relatively ‘advanced’ technology, given its high spatial resolution, with 
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only three water-penetrating bands, the ability to discriminate habitat classes is limited (Mumby 

et al., 2002; Palandro et al., 2003a; Palandro et al., 2003b; Collings et al., 2018).  In addition, as 

has been indicated in previous sections, the specific image scene analyzed here suffers from 

unusually high levels of suspended sediments for a coral reef environment, thereby reducing the 

signal-to-noise ratio and further diminishing discriminatory power.  Consequently, a supervised / 

unsupervised hybrid approach was adopted, with a simple classification scheme, which allowed 

for the creation of a basic, yet reliable, product for use in later stages of the present research, and 

a foundation for future research.  

The benthic habitat sampling strategy consisted, initially, in visually identifying areas of 

uncertainty of benthic habitat types found within the lagoon system on the satellite image.  

Rather than employing a random sampling approach, these areas of uncertainty were targeted for 

underwater visual assessments and for the collection of photo-quadrats.  A total of 153 potential 

sites were identified for assessment, with surveys conducted in July 2013 (Figure 1.23).  Of the 

total number of identified sites, 140 sites were sampled that were near or at the identified 

coordinates, depending on safety and accessibility of the site.  In addition to photo-quadrats, 

series of aerial images for the Bay of Ranobe was obtained for reference purposes (Figure 1.24). 

Image processing consisted of an unsupervised classification of the water-leaving 

radiances of the atmospherically-corrected RGB image bands, using the standard ISODATA 

algorithm (Iterative Self-Organizing Data Analysis Technique).  An initial, low-cluster (3-5 

clusters) ISODATA classification was conducted to isolate and extract the geomorphological 

unit map product.  For benthic habitat classification, a “cluster-busting” approach was employed 

to initially partition the multivariate image data into fine clusters.  ISODATA clustering 

parameters were set to 25-30 clusters with 95% convergence.  Final convergence after 15 passes  
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Figure 1.23. South pass in southern part of lagoon, with some of the sites targeted for benthic photo-

quadrats marked with cross (+); examples of benthic habitat diversity: (clockwise) dense seagrass 

(Thalassodendron ciliatum), moderate density seagrass (T. ciliatum), coral thicket (Acropora spp.), and 

Sargassum spp. 
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Figure 1.24. Aerial view of the Rose Garden marine reserve (top) – a patch reef dominated by the rose-

like coral of the genus, Montipora; located near sampling point #2 on the map in Figure 1.23  
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of the data produced 14 clusters with an 80% convergence rate.  Data clusters were recoded 

manually, resulting in a re-grouping of clusters, to correspond to the best achievable benthic 

habitat classification scheme.    

 

1.3 Results 

Statistical models: Water depth retrieval  

Multiple Linear Regression 

To differentiate, in terms of performance, between the DOS1% and 6SV atmospheric 

correction techniques, radiance values of DOS-corrected band files and reflectance values of 

6SV-corrected band files were used in multiple linear regression (MLR) and gradient boosting 

models (GBM) to model depth.  Results of the MLR-DOS indicated a significant regression 

equation was found (F(3,6539) = 6128, p <0.001), with an adjusted R2 = 0.7375.  All of the 

regression terms were highly significant (Table 1.8).  Predictions of the final model were 

evaluated against test dataset, with a calculated RMSE = 1.28 m.  Similarly, the results of the 

MLR-6SV model indicated a significant regression equation was found (F(3,6539) = 5653, p 

<0.001), with an adjusted R2 = 0.7216.  For MLR-6SV model, all of the regression terms except 

the intercept were found to be highly significant (Table 1.8).  Predictions of the final MLR-6SV 

model were found to have a RMSE = 1.31 m.  (See Appendices 1.6-1.7 for regression diagnostic 

plots)        

Term plots for both of the models similarly indicate relatively strong log-linear 

relationships between radiance / reflectance and depth, particularly for the blue and green bands 

(Figure 1.25).  Interestingly, based on the principles of attenuation of light, all of the bands 

should exhibit a negative log-linear relationship with increasing water depth.  However, the blue  
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Table 1.8.  MLR-DOS regression results 

Model Coefficient Estimate Std. Error t-value Pr( >|t| ) 

MLR-DOS Intercept 14.72471 0.14234 103.44275 < 0.001 

MLR-DOS Lblu dos1 12.00551 0.12715 94.41750 < 0.001 

MLR-DOS Lgrn dos1 -14.96265 0.14598 -102.49185 < 0.001 

MLR-DOS Lred dos1 0.70173 0.07356 9.53842 < 0.001 

MLR-6SV Intercept -0.08388 0.21575 -0.38877 0.69745 

MLR-6SV Lblu 6sv 13.22919 0.14615 90.51235 0.000 

MLR-6SV Lgrn 6sv -18.69340 0.19141 -97.66052 0.000 

MLR-6SV Lred 6sv 0.91045 0.08210 11.08837 0.000 

 

and red bands demonstrate a positive relationship, which may be indicative of high levels of 

suspended sediments causing increasing levels of reflected light at depth, in the case of the blue 

band, and interactions with benthic vegetation in the case of the red band.     

The partial residual plots in Figures 1.26-1.27 illustrate how well the log-transformed 

image bands generally conform to a linear relationship.  Results of the MLR indicate that there is 

partial non-linearity in the red band, as indicated by scattering of plotted residuals.  Again, the 

low-energy, red band scatter is likely due to the influence of the reflective / absorptive properties 

of shallow-water bottom types, such as seagrasses and algae.  Greater levels of scattering in the 

blue band, as compared to the green band, are the likely result of water column constituents.   

Gradient Boosting Models 

 Results of the gradient boosting models fitted to the same DOS-corrected and 6SV-

corrected datasets indicated that there was no significant difference between the datasets in 

predicting depth.  For both the GBM-DOS1% and GBM-6SV, the optimal number of trees fitted 

were 1850 (Figure 1.28).  Similarly, the mean total deviance (5.981), mean residual deviance 
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Figure 1.25.  Regression term plots for the RGB DOS-corrected bands (top 3 plots) and RGB 6SV-

corrected bands (bottom 3 plots) 
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Figure 1.26.  Partial residual plots of the multiple linear regression model fitted with DOS1% data, with 

log blue band (top), log green band (middle), and log red band (bottom); loess fit (pink line) and linear fit 

(dashed blue line)  



  

47 
 

 

 

 

Figure 1.27. Partial residual plots of the multiple linear regression model fitted with DOS1% data, with log 

blue band (top), log green band (middle), and log red band (bottom); loess fit (pink line) and linear fit 

(dashed blue line) 
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Figure 1.28. Gradient boosting algorithm model-fitting process: iterative minimization of the loss 

function, residual deviance, as regression trees are added to the existing model; green line indicates the 

final number of trees (n = 1850), given model parameters (tree complexity = 1, learning rate = 0.1)  

 

(1.237), training data correlation (0.891), and predictive accuracy (RMSE = 1.175) were 

identical for both models.  Moreover, the ranked contributions of the independent variables used 

in the model, a relative influence score, indicated that the partitioning of variance amongst 

variables was also identical (Table 1.9, Figure 1.29), resulting in identical relationships being 

fitted for each of the model terms (Figures 1.30-1.31).  

Summary of Atmospheric Correction and Statistical Model Comparisons 

 Multiple linear regression and gradient boosting models were fitted to DOS1% and 6SV 

atmospherically corrected satellite image data to determine, firstly, which of the atmospheric 

correction techniques provided for the greatest predictive accuracy of modeled depths.  

Comparisons were based on the predictive accuracy of fitted models, as determined by the  
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Table 1.9. Relative influence scores for the gradient boosting models fitted to the 2 datasets 

Dataset Variable Relative Influence Score 

DOS1% Log(green) band 46.79155 

DOS1% Log(red) band 31.13195 

DOS1% Log(blue) band 22.07650 

6SV Log(green) band 46.79155 

6SV Log(red) band 31.13195 

6SV Log(blue) band 22.07650 

 

 

 

 

Figure 1.29. Visualization of relative influence scores for the DOS1% (top) and 6sv (bottom) models 
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Figure 1.30. Functional relationships of the gradient boosting model fitted to log-transformed, DOS1% 

data for each band: blue (top), green (middle) and red (bottom) 
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Figure 1.31. Functional relationships of the gradient boosting model fitted to log-transformed, 6SV data 

for each band: blue (top), green (middle) and red (bottom) 
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minimization of the RMSE values on a test dataset, and standard regression metrics.  Metrics for 

the multiple linear regression models, the adjusted R2 and RMSE values, equaling 0.7375 / 1.28 

and 0.7216 / 1.31 m for the DOS1% and 6SV models, respectively, indicate that DOS1% 

technique performed marginally better.  Metrics of the gradient boosting models, i.e. the mean 

total deviance (5.981), mean residual deviance (1.237), training data correlation (0.891), and 

predictive accuracy (RMSE = 1.175), produced identical results for the two datasets, indicating 

no clear advantage of either atmospheric correction method was detected using the gradient 

boosting model approach.   

 Secondly, comparisons were made between the accuracy of the multiple linear 

regression-based Lyzenga depth retrieval approach and that of the more modern, non-parametric, 

machine learning algorithm, gradient boosting.  Predictive accuracy of the GBM versus MLR, 

1.175 m versus 1.28-1.31 m, respectively, indicate the improved predictive abilities of even a 

simplified (tree complexity = 1) boosted model.  Furthermore, the non-parametric nature of the 

GBM appears to have benefitted from the information content of the red band.  In the case of the 

linear model, linear constraints on the functional relationship produced a weakly positive 

relationship for the red band (Figures 1.26 - 1.27).  However, contrary to the linear model, the 

unconstrained GBM algorithm appears to have benefited, to some extent, from some of the 

unexploited information content in the blue and red bands (Figures 1.30 – 1.31).  Figure 1.32 

illustrate some of the biases that remain in the model residuals at the extremes of the depth range, 

where in the case of the GBM plot, residuals occur closer to the zero centerline. 

Despite the simplicity of the approach, the statistical models trained and tested with the 

DOS1% datasets provided marginally higher prediction accuracies, proving why the technique is 

still in-use today (e.g. Kanno and Tanaka, 2012; Figueiredo et al., 2016; Manessa et al., 2018).   
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Figure 1.32. Model residuals plotted against water depth to illustrate biases resulting from each model 

type, MLR (top) versus GBM (bottom), particularly at depth extremes 
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Gradient Boosted Model Optimization 

In terms of statistical models, comparisons demonstrated that the gradient boosting model 

not only provided marginally higher prediction accuracies, as compared to multiple linear 

regression, but also this technique provides the ability to fine tune the results by optimizing the 

model parameters, e.g. tree complexity and learning rate.  Consequently, DOS1% data were 

modeled using gradient boosting approach to produce the final bathymetric map. 

For the final model, tree complexity was increased (tree complexity = 2) to allow for 

some of the interaction effects that are likely occurring between RGB bands, benthic vegetation, 

and water depth in the shallow-water coastal zone.  Output of the final gradient boosting model, 

comprised of 1950 trees, indicated a mean residual deviance = 0.81, a training data correlation = 

0.93, and a predictive RMSE = 1.01 m.  Relative influence scores suggested that, indeed, some 

of the explained portion of the variance shifted from the green band to the red and blue bands 

(Table 1.10), resulting in modifications to the functional relationships depicted in the term plots 

(Figure 1.33). A plot of the model residuals versus depth illustrates the reduction in model biases 

at extreme depths, as the residuals at the extremes move closer to the zero centerline (Figure 

1.34).  Prediction results of the final model were mapped to create the bathymetric map product 

(Figure 1.35).      

Benthic Habitat and Geomorphology Products 

  The supervised / unsupervised hybrid classification approach of the IKONOS scene, 

after re-grouping and processing, produced four geomorphologic units and five basic benthic 

habitat types: 

Geomorphological units 

1. Intertidal zone    2. Reef Flat or Lagoon Floor 
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Table 1.10. Comparison of relative influence scores for the final GBM, tree complexity = 2, versus the 

scores for the GBM with tree complexity =1 

 
Dataset Tree Complexity Variable Relative Influence Score 

DOS1% 2 Log(green) band 36.2054 

DOS1% 2 Log(red) band 35.4638 

DOS1% 2 Log(blue) band 28.3308 

DOS1% 1 Log(green) band 46.79155 

DOS1% 1 Log(red) band 31.13195 

DOS1% 1 Log(blue) band 22.07650 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.33. Term plots of the final gradient boosting model for each model term: log(blue), log(green), 

and log(red) (clockwise) 
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Figure 1.34. GBM final model residuals versus depth 

 

Figure 1.35. Bathymetric map product created from the prediction of the final gradient boosting model  
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3. Patch Reefs     4. Barrier Reef Crest 

Habitat types: 

1. Macroalgae     4. Sand / Silt 

2. Seagrass / Macroalgae Mix   5. Sand 

3. Seagrass 

 

The inability to spectrally differentiate habitat types from multispectral image scenes, with 

few bands and low signal-noise, is illustrated by, amongst other things, the black patches found 

throughout the lagoon (Figure 1.36).  The black patch at the north end of the lagoon is the result 

of high levels of suspended sediments originating from the river in the north, the Manombo 

River.  Sporadic black patches and linear features are the result of seagrass windrows on the 

water surface.  At the north pass, the optically-deep water, naturally, provides no signal of 

bottom reflectance, however, just inside the lagoon the water shallows and a seagrass bed is 

spectrally “confused” with deep water.  Even at the shallow depths of the intertidal and sub-tidal 

zones, black patches occur where seagrass / macroalgae bottom types are spectrally 

indistinguishable from deep water.  Given the quality of the image data, a formal accuracy 

assessment was not performed.          

 

1.4 Discussion 

In this chapter, the foundations were laid for future coral reef fisheries and ecological 

research in the Bay of Ranobe through the characterization and quantification of some of the 

most fundamental aspects of the marine environment: weather, water depth, and benthic habitat  
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Figure 1.36. Benthic habitat classification for the Bay of Ranobe, with classes including: macroalgae, 

seagrass / macroalgae, seagrass, sand / silt, and sand (top); geomorphological zones of the Bay (bottom-

left); example of cluster-busting classification of the intertidal zone 

 

• Macroalgae 

• Seagrass / Macroalgae 

• Seagrass 

• Silt / Sand 

• Sand 
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complexity.  In the process of creating the principle products of this section, the benthic habitat 

and bathymetry maps, basic data collection and assessments were required, given the lack of 

historical research, which began with characterization of the most basic natural phenomenon, the 

tides. 

After comparisons were made between observed and predicted tide levels, the most 

reliable source of tidal prediction software for the region was determined to the open-source Mr. 

Tides software package.  Predicted tide levels were used to correct the sonar dataset that was 

collected using consumer-grade equipment in an opportunistic manner.  Although concerns could 

be raised relative to the potential inaccuracies associated with the consumer-grade sonar and/or 

GPS equipment used here, any inaccuracies of the sonar data, however, likely fall within the 

margins of error of the tidal predictions.  Moreover, reducing the resolution of the analyses to 5 

m may have compensated, to some extent, for any positional inaccuracies attributable to the GPS 

unit.  Nonetheless, the opportunistic sampling of sonar data did have the potential to affect the 

final models, due to the spatially unbalanced distribution of sample points.  As a consequence of 

this sampling approach, data points were, naturally, more intensively collected near the point of 

origin, or at the location from which the boat was launched.  Sampling intensity then radiates out 

from the point of origin as an inverse-distance weighted function.  Consequentially, the over-

sampling of the shallow-water intertidal zone near the point of origin could have introduced 

biases into the regression models.  Specifically, biases associated with the disproportionate 

amount of shallow-depth data that could prove influential to the determination of the regression 

slope, particularly for the red band where inherently the range of depths are already limited by 

the low-energy nature of longer wavelengths. Sources of biases implicated here are not limited to 

only the z-axis, but also potentially in the xy-axes, as well. Given the heterogeneity of the water 
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column properties across the lagoon, disproportionate sampling of the southeast corner of the 

lagoon could have failed to capture the variance present in the study site. The regression partial 

residual plots (Figures 1.26-1.27) do not appear, however, to justify these concerns.  In the plots, 

particularly the plot of the red band model term, the mass of points on the left end of the fitted 

line is clearly visible.  Regardless, the smooth-fit loess function does not deviate substantially 

from the linear model fit, indicating that the linear model was not unduly biased by the sampling 

strategy.   

Secondly, of the comparisons made in the present chapter, the DOS1% and 6SV 

atmospheric correction techniques were evaluated for the specific image scene used here.  

Within-model comparisons were made to determine which of the atmospheric correction 

techniques produced the best results in terms of prediction accuracies, whereas between-model 

comparisons were used to compare statistical approaches to modeling depth, which is discussed 

further in the paragraph(s) below.  Results of the multiple linear regressions indicated that the 

model fit using the DOS1% dataset provided slightly more accurate prediction results than the 

6SV-corrected dataset, RMSE = 1.28 m and 1.31 m, respectively.  Comparisons made using the 

same datasets fitted with the gradient boosting model produced identical results, RMSE = 1.175, 

indicating no difference between the datasets in predicting depth.  Slight differences observed in 

the prediction accuracies of the multiple linear regression models for the two datasets could be 

attributed to the fact that for the DOS1% correction data were calibrated to radiance values, 

whereas for the 6SV dataset values were calibrated to reflectance, resulting in a difference of 

data ranges affecting regression mechanics and not necessarily the accuracy of the datasets per 

se.  Trials were conducted on centered and normalized datasets that did not produce results that 

significantly differed from those presented here.  In general, as there were no significant 
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statistical differences between the atmospheric correction techniques, the simplest approach was 

selected for use in the principle comparison of this study, the depth retrieval models.   

One of the earliest, and often cited, approaches to retrieving water depths from 

multispectral imagery has become to be known as the Lyzenga Method.  Based on the principles 

of physics that describe the exponential decay, extinction, or attenuation, of wavelengths of light 

at depth, the Lyzenga method consists of the fitting of a log-linear regression model to the bands 

of multispectral imagery.  Typically, only the blue and green wavelengths are used, given their 

abilities to penetrate water to greater depths, with blue (450 nm) reaching 200 m in depth in the 

clear waters of the open ocean.  Depths attained by light decrease substantially in the coastal 

areas, where suspended sediments, phytoplankton, and other chromophores (i.e. collectively, the 

diffuse attenuation, Kd) scatter and absorb to varying degrees.  Although the log-linear 

relationship between depth and light penetration may be robust in the presence of some 

suspended or dissolved chromophores, a key assumption of this approach is that chromophores 

are homogenously distributed throughout the water column, vertically and laterally.  In other 

words, it is assumed that the processes governing Kd are stationary.   

Theoretically, the relatively direct application of the Beer-Lambert Law, as is done 

following the Lyzenga Method, is applicable at specific times and locations.  However, given 

that coastal waters are generally characterized as hydrologically complex and dynamic 

environments, it may be more commonly the case that the processes governing suspended and/or 

dissolved species are non-stationary.  As such, the relationship between depth and light may be 

log-linear for individual discretized “packets” of water with specific Kd properties and depth 

combinations, then a different log-linear relationship for a different water packet, so on and so 

forth.  However, collectively these packets of water would exhibit a non-linear relationship.   
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Another conceptual model that may be appropriate, here, is to consider the water column, 

from an overhead perspective, as a mosaic of water column properties and depths for which a 

classification approach is appropriate.  Regression tree modeling approaches are often used in 

such cases, where the classification or modeling of discontinuous phenomena is required. A tree-

based regression approach, known as a gradient boosting model (GBM) was used to predict 

depths and produce a bathymetric map of the study area.  Prediction accuracy of the GBM was 

compared to that of the standard Lyzenga Method.  Rather than just the blue and green bands, the 

RGB bands were used for both models, with the parameters regulating complexity of the GBM 

set low for initial comparison purposes (tree complexity =1).  Using a testing dataset, predictive 

accuracies of the models were determined to be 1.28 m and 1.175 m for the linear regression and 

GBM approaches, respectively.  Increased tree complexity (tree complexity = 2) provided 

improvements on prediction results, RMSE = 1.01 m.  In increasing tree complexity even further, 

submeter accuracies are attainable, however, risk of overfitting the model also increases.  To 

fully optimize the GBM, ideally, an independent testing dataset would be available, rather than 

just a subset of the data used for training purposes.  For the final GBM, tree complexity = 2 and 

the DOS1%-corrected image files were used as input to create the bathymetry map shown in 

Figure 1.35.  

Differences in the predictive accuracies between the non-parametric GBM and the linear 

regression models indicates the presence of non-linearities, potentially non-linear interactions 

that are not captured by the regression model.  In addition, the positive slope of the blue and red 

band terms in the fitted linear regression model, as compared to the form of the functional 

relationships achieved by the GBM approach are likely the result of the high suspended 

sediments predominantly affecting the blue band, and interference from bottom type(s) affecting 
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the red band.  Nonetheless, considering the quality of the satellite image, accuracies of the 

Lyzenga Methods are consistent with published literature, with reported accuracies ranging from 

RMSE= 0.49 m – 1.27 m (Lyons et al., 2011; Bramante et al., 2013; Manessa et al., 2016).  At 

the time that these analyses were first conceived, there were no published studies, known to the 

author, where the gradient boosting approach was used to model remote sensing data to retrieve 

water depth.  Since, some studies have been conducted using statistical approaches that are 

similar, such as random forest regression and least square boosting, where accuracies attained 

were in the range of 0.50m - 0.85 m (Mannessa et al., 2016; Mohamed et al., 2016).     

Results of these analyses were presented at the Western Indian Ocean Marine Science 

Association (WIOMSA) Symposium held in Maputo, Mozambique in 2013. (See Appendix 1.8 

for presented poster) 
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Appendix 

 

 
 
Appendix 1.1. Tidal datum commonly used in maritime navigation and bathymetry charts; Mean Lower 

Low Water (MLLW) conventionally used in U.S. charts; Lowest Astronomical Time (LAT) 

conventionally used in the U.K. and Australia (https://en.wikipedia.org/wiki/Chart_datum 

#/media/File:Tide_legal_use.gif) 

 



  

73 
 

 

Appendix 1.2. IKONOS PAN image used for the identification of ground-truthing targets  
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Appendix 1.3. 6SV model output: blue band (450-530 nm) 
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Appendix 1.3 cont. 6SV model output: blue band (450-530 nm) 
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Appendix 1.3 cont. 6SV model output: blue band (450-530 nm) 
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Appendix 1.4. 6SV model output: green band (520-610 nm) 
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Appendix 1.4 cont. 6SV model output: green band (520-610 nm) 
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Appendix 1.4 cont. 6SV model output: green band (520-610 nm) 
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Appendix 1.5. 6SV model output: red band (640-720 nm) 
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Appendix 1.5 cont. 6SV model output: red band (640-720 nm) 
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Appendix 1.5 cont. 6SV model output: red band (640-720 nm) 
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Appendix 1.6. Regression diagnostic plots for the multiple linear regression of DOS1% data 
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Appendix 1.6 cont. Regression diagnostic plots for the multiple linear regression of DOS1% data 



  

85 
 

 

 

 

 

Appendix 1.7. Regression diagnostic plots for the multiple linear regression of 6SV data 
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Appendix 1.7 cont. Regression diagnostic plots for the multiple linear regression of 6SV data 
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Appendix 1.8. Research poster presented at the Western Indian Ocean Marine Science Association annual symposium, 2013  
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Objective !
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  Lyzenga Method ! ! ! !         Boosted Regression Tree!
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Vezo Fishing Communities: Small-area population estimates, 

demographics, and socioeconomics 
  

 

2.1 Introduction 
 

 As one of the only countries in the world where per capita GDP has continuously 

declined over the last 30 years (Figure 2.1), Madagascar is considered one of the poorest 

countries by many measures.  In 2015, the World Bank adjusted the international poverty level, 

which was previously based on economic data from 1996, from $1 per day to the current 

definition of $1.90 per day.  Nonetheless, with 90% of the population of Madagascar living on 

less than $2 per day, while 77% live on less than $1.25 per day, the country’s poverty crisis is 

clearly widespread and severe (Akire et al., 2011; World Bank, 2014; Pamen and Kuepie, 2017).   

 Over the past decade the definition of poverty has been expanded from a simple monetary 

index to more inclusive multidimensional approaches.  For example, the Oxford 

Multidimensional Poverty Index (MPI) is comprised of measures of education, health, and 

standards of living.  The Human Development Index (HDI), developed by the United Nations 

Development Program, is a composite index comprised of the basic dimensions of human 

development: 1) the ability to lead a long and healthy life, measured by the life expectancy at 

birth, 2) the ability to acquire knowledge, measured by the mean years of schooling, and 3) the 

ability to achieve a decent standard of living, measured by gross national income (GNI) per 

capita (UNDP, 2018).  In terms of health and education, as compared to other sub-Saharan 

African countries, Madagascar scores on the higher end of the scale, given the comparatively  

Chapter 2   
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Figure 2.1. GDP per capita: Madagascar compared to other African countries: Ivory Coast (Cote 

d’Ivoire), Burkina Faso, Cameroon (Cameroun), Benin, and Sub-Saharan Africa (Afrique subsaharienne) 

as a whole (Source: Razafindrakoto et al., 2017) 

 

 

high life expectancy at birth (66.3 years) and expected years of schooling (10.6 years).  In 

addition, the prevalence of HIV in Madagascar is quite low, as compared to other sub-Saharan 

countries.  On the other hand, the country continuously struggles to control outbreaks of bubonic 

plague, as a result of poor waste management and rat infestations in the larger cities and prisons 

(Boisier et al., 1997; Andrianaivoarimanana et al., 2013).  Similarly, although Madagascar 

performs comparatively well in a sub-Saharan context for the mean number of years of 

schooling, only 15% of Malagasy teachers have received any formal training (World Bank, 

2014).   In terms of ‘the ability to achieve a decent standard of living’ criteria of the HDI, the 
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GNI per capita score for Madagascar of $1358 per year is low even amongst other sub-Saharan 

countries (Figure 2.2), resulting in an overall HDI score (HDI=0.519) and ranking of 161 out of 

189 countries (UNDP, 2018).  

While sources of demographic and economic indicators exist at the national level, 

information and disaggregated data sources at finer scales, such as sub-national, provincial or 

local level, are limited or non-existent.  The lack of fine-scale demographic and socioeconomic  

data greatly complicates the task of identifying and targeting local communities in need of 

conservation, natural resource management, medical, and other humanitarian interventions.  This 

problem has been recognized by the wider community of international development and 

conservation organizations, and over the past decade, efforts have been made to collect and 

disseminate finer-scale information.  However, the accuracy of many of these efforts, in the case 

of Madagascar, is questionable, given that the source of data is often from the outdated census 

information collected in 1993 by the national census bureau of Madagascar, Institut National de 

la Statistique (INSTAT).   

Given the clear linkages between human population density to epidemiology, and poverty 

to public health, many medically-related studies have attempted to disaggregate census data to  

obtain information at a meaningful scale (Baker et al., 2013).  For example, epidemiological 

studies of Malaria (Clouston et al., 2015; Kang et al., 2018) and Typhoid Fever (Marks et al., 

2016) applied a spatially-explicit regression model to determine spatial patterns and relationships 

between disease prevalence and the accessibility of healthcare facilities based on the prevalence 

of poverty at the provincial and commune level.  However, even at this level of detail, the level 

of aggregation of the data limits the datasets usefulness (see Figure 2.3, Administrative 

boundaries).   
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Figure 2.2.  Percentage of population living in extreme poverty by country (Source: 

https://ourworldindata.org/extreme-poverty) 

 

 

A clear need exists for high-resolution, reliable estimates of global human population 

distributions, demographics, and dynamics, whether for poverty relief, epidemiology, disaster 

response, national security, sustainable development, or natural resource management.  Over the 

years, the problem of spatially disaggregating census data to a more exploitable resolution has 

come to be known as the “small-area estimate” problem.  In the past decade, a number of 

institutions and governments have risen to the challenge, forming large, international 

collaborations.  For example, the Center for International Earth Science Information Network of 

the Earth Institute, Columbia University (www.ciesin.columbia.edu) has worked in collaboration  
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Figure 2.3. Madagascar administrative boundaries used for the aggregation of census data: province (Faritany), district (Fivondronas), and 

commune (Firaisanas) (Mistiaen et al., 2002) 
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with the NASA Socioeconomic Data and Applications Center (SEDAC, www.sedac.ciesin. 

columbia.edu), and a number of other international organizations and collaborative groups, such 

as the organization, WorldPop (www.worldpop.org), and University of Southampton 

(www.southampton.ac.uk).  As a result, more sophisticated methods are being developed and 

employed, with advances in modern computing power, to estimate small-area human population 

distributions around the world (Wardrop et al., 2018).    

Since the 1970’s, a growing body of research has focused on the applications of remotely 

sensed images and various statistical modeling approaches to study land-use / land- change and 

urban expansion as a proxy for human population growth (e.g. Clayton and Estes, 1980; Iisaka 

and Hegedus, 1982; Hasse and Lathrop, 2003; Allen and Lu, 2003; Sudhira et al., 2004, Wu et 

al., 2005), and the consequences thereof, in terms of declining biodiversity and the impacts on 

global climate change (Houghton, 1999; Kalnay et al., 2003; Jetz et al., 2007).  Small-area 

human population estimation methods often employ a dasymetric approach, where the 

geographic units, or administrative boundaries, of course-scale population census datasets are 

further sub-divided into smaller areal estimates based on ancillary information and statistical 

models.  Within the course-scale geographic unit, population counts are attributed to areas that 

are more suitable for human settlement, such as land versus water, or slope characteristics, 

resulting in the spatial disaggregation of the census data.  Statistical models used in the spatial 

disaggregation of census data commonly use covariates derived from remotely-sensed data 

sources, including: land cover, slope, primary productivity, observed lights at night, visible 

infrared, and climatic data, such as rainfall and mean annual temperature (Stevens et al., 2015).  

Improvements in the spatial resolution of satellite imagery in recent years have allowed, in 



  

94 
 

certain cases, the enumeration of houses, or dwellings, as an additional covariate (Li and Weng, 

2005; Hillson et al., 2015).   

Today, access to high-quality satellite imagery captured at much higher spatial and 

spectral resolutions than ever before, combined with significant improvements in computing 

power and statistical machine learning algorithms, has resulted in the production of the highest 

resolution human population datasets to date (Tatem et al., 2007; Anderson et al., 2014; Stevens 

et al., 2015; Grippa et al., 2019).  For Madagascar, the 100 m resolution map produced by the 

WorldPop (www.worldpop.org) program, following the methodology of Stevens et al. (2015), 

represents the best estimates of population distributions at present (Figure 2.4).  The accuracy of 

even the most sophisticated, state-of-art approaches to producing small-area human population 

estimates, however, are challenged by the conditions encountered in developing countries.  In the 

case of Madagascar, where between 2010 -2013, 66% of the population lived in rural areas and 

<10% of the rural population had access to electricity (Data: World Bank https://data.worldbank 

.org, accessed May 23, 2019), the commonly used covariate of lights-at-night would clearly be of 

limited value.  The relationship between human population density and that of the most 

commonly used covariate, land-use / land-change (LULC), varies widely between developed and 

undeveloped countries, between urban and rural populations, and even within the rural sector of 

the population.  Clearly, the terrestrial footprint of a village of farmers substantially differs from 

that of a village of herders, while the terrestrial footprint of fishing communities would pose 

even greater challenges to detection, such is the case in the present study (Figure 2.5).  Ideally, 

statistical models used to interpolate population densities would have the ability to accommodate 

the nonstationary nature of this functional response.  Furthermore, even with modern day 

computing power, current global human population mapping initiatives are required to limit their 
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Figure 2.4.  Madagascar human population distribution map at 100 m grid resolution, with map legend 

colors corresponding to the number people per hectare along the coast of the Bay of Ranobe, and 

locations of the 12 villages of Bay (black polygons); (inset, left-top) view of study location within country 

(red polygon); (inset, bottom-left) regional view of study location relative to the city of Toliara (dark 

blue) (Source: WorldPop, 2017; version 2.0 estimates adjusted to United Nations Population Division 

estimates) 
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Figure 2.5. IKONOS panchromatic image illustrates the fishing village of Ifaty (yellow polygon) 

separated by an area of salt flats from the herding village of Tsivinoe (red circle), with the outlying areas 

of land-use / deforestation 

 

 

processing demands to some extent.  Often, this is achieved through the use of images of mid-

range spatial and spectral resolutions, namely Landsat products (30 m resolution) (Frye et al., 

2018).  In a village setting, where many houses measure 4-5 m wide by 6-7 m long, mid-range 

resolution imagery prohibits the identification of individual dwellings, and thus, the use of one of 

the more powerful and direct measures of human population, the enumeration of households 

(Figure 2.6).  Moreover, given that the majority of dwellings are constructed of dry vegetation, 

their spectral signatures would be nearly indistinguishable from the surrounding vegetation with 

only a limited number of image bands (pers.obs.), making an automated object-based recognition 

routine infeasible (Figure 2.7).                              
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Figure 2.6.  IKONOS high-resolution panchromatic image used to illustrate resolution required to 

conduct dwelling unit enumeration; inset demonstrates the typical resolution of LandSat products (30 m) 

and the loss of discernibility of dwelling units at reduced resolution  

 

 

 

Figure 2.7. Photo illustrates roofing material and sized of typical village-style houses 
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Over a backdrop of extreme poverty, natural resource depletion, and political instability, 

since the 1990’s, the government of Madagascar has pursued an agenda of decentralization, a 

movement that became popular and swept across the African continent starting in the mid-1980’s 

(Brosio, 2000).  In 1996, the government of Madagascar adopted a law, known as GELOSE 

(Gestion Locale Sécurisé), that allows for the limited transfer of the rights and responsibilities 

associated with natural resource management to local communities.  Although decentralization, 

in an idealized world, could potentially enhance democratic processes and allow for increased 

involvement and input from communities in regards to local issues, a lack of infrastructure and 

source of revenue (i.e. tax base) for local governments leads to less than ideal outcomes (Kull, 

2002; Sarrasin, 2009; Pollini and Lassoie, 2011; Burnod et al., 2013; Cullman, 2015).  In fact, it 

has the potential to make things much worse in adding additional layers of government 

susceptible to corruption and bribery (Fan et al., 2009; Burnod et al., 2013).      

 At the village level, the national GELOSE law provided recognition of a traditional 

system that had been in-use for generations of setting community standards, rules, or guidelines, 

known locally as a dina.  Later, the GELOSE framework was supported further with additional 

laws (Law number 2001-004 of October 25, 2001, Portant réglementation générale des Dina en 

matière de sécurité publique) that provided a path to legitimize dinas through the local court 

system, homologation, which at the same time, allowed for some scrutiny and oversight of the 

village laws being created.  Over the decades that followed the formalization of the dina, as an 

instrument for natural resource management and conservation, international organizations seized 

upon the opportunity to promote community-based approaches through the creation of dinas 

(Rakotoson and Tanner, 2006; Andriamalala and Gardner, 2010; Harris, 2011).     
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 Historically, natural resource management and conservation research has focused on the 

ecological needs, distributions, and abundances of plants / wildlife species of concern.  

Nonetheless, a growing body of research has focused on ‘bridging the gap’ between the needs of 

local communities and the needs of wildlife, an approach that has come to be known as Social 

and Ecological Systems research (SES) (e.g. Cinner and Pollnac, 2004; Cinner et al., 2009).  

Given that marine fisheries resources are a key source of income and nutrition in the developing 

world, an understanding of the demographic, socioeconomic, and cultural factors that affect 

fishing effort intensity and distribution are of critical importance.  Demographic processes, such 

as population growth and immigration / emigration resulting from environmental degradation 

and/or political instability, may lead to the erosion of traditional values, customs, and taboos, 

thereby undermining the role(s) of traditional village leaders, usually village elders and the chief 

(Jones et al., 2008; Wahab et al., 2012; Merkle et al., 2017).  Erosion of culture and of the role 

of traditional leaders may then lead to the erosion of customary forms of resource management, 

such as adherence to local dinas (Cinner et al., 2007).  In addition, socioeconomic factors, e.g. 

wealth, age, education, distance to market, play a significant role in determining the intensity, 

distribution, and selectivity of the fishing pressure, having clear implications on the choice, use, 

and acceptability of fisheries management measures, such as the placement of marine reserves 

(Cinner and Pollnac, 2004; Cinner, 2007; Klein et al., 2008; Ban and Klein 2009; Cinner et al., 

2009; Brewer et al., 2012).  Naturally, the imposition of management-related restrictions of 

resource-use on communities living in extreme poverty requires substantial community 

acceptance, or else will suffer serious compliance issues (Westerman and Gardner, 2013).  Even 

in the face of severe depletion of fisheries resources, research has shown that it is those living in 
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extreme poverty that are the least likely to exit the fishery and seek alternatives (Cinner et al., 

2008). 

 The aim of the present chapter is to address existing knowledge gaps through a 

descriptive approach, allowing for the characterization and quantification some of the basic 

socioeconomic information relevant and useful to fisheries management and conservation.  

Specifically, the research presented here will provide:  

1. Estimates of human populations inhabiting the coastal villages of the Bay of 

Ranobe, as an indicator of fishing effort; 

2. Patterns of infrastructure development, as an indicator of demographic processes 

and recent shifts in human population density; 

3. Estimates of income of fishermen and the economic value of fisheries products, as 

an economic indicator of poverty level and for use as the baseline, or threshold, to 

be exceeded by international development organizations considering alternative 

livelihood projects.  

 

  

2.2 Methodology 

Study site   

 The greater Bay of Ranobe community, as defined here, is composed of the villages 

bounded by the escarpment of the Mahafaly Plateau in the east, the coastline to the west, and the 

Manombo River and Fiherenana River to the north and south, respectively.  The 21 villages 

within the region are comprised, predominantly, of 3 of the 18 known ethnicities of Madagascar: 

Mahafaly, Sakalava, and Antandroy (Grenier, 2013) (Figure 2.8a).  Although, technically, not 

considered one of the official ethnic groups, the semi-nomadic, fishing communities that inhabit 
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the southwest coast of Madagascar are known as the Vezo, meaning “those that struggle with the 

sea” (Astutti, 1995).  The cultural identity of the Vezo people appears to be linked more to their 

lifestyle than to their ancestral lineage (Grenier, 2013).  Similarly, the people that live on the 

“interior” of the island that farm and raise livestock are known as the Masikoro. Of the 21 

villages within the greater Bay of Ranobe community, there are 9 inland Masikoro villages and 

12 Vezo villages located along the coast, whose location and distribution are largely determined 

by proximity to the only transport route.  Access to goods, services, and movements of people 

within the region are regulated by a single road, namely the National Road- 9, or Route 

Nationale-9. The 12 Vezo villages, representing the Vezo fishing community of the Bay of 

Ranobe, are the subject of the research presented here, and include, from south to north (Figure 

2.8b):      

1. Ambotsibotsike     7. Amboaboaka   

2. Tsongeritelo      8. Madiorano 

3. Beravy       9. Betsibaroka 

4. Ambalaboy      10. Ambolomailaka 

5. Ifaty       11. Andrevo 

6. Mangily      12. Fitsitke. 

 

In general, the 12 Vezo villages of the Bay of Ranobe are quite similar in terms of the 

livelihoods of the inhabitants, which are inextricably linked to the sea and marine resources.  On 

average, 70% of the inhabitants directly engage in fishing activities as their primary source of 

income, while approximately 20% cite fishing as a secondary revenue-generating activity.  

Indirectly, sales and distribution of fisheries products accounts for the primary activity of 2.5%  
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Figure 8. a) b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8.  a) The 21 villages of the Bay of Ranobe community (red cirlces, left);  b) the 12 coastal Vezo 

villages (yellow polygons, right) and mangroves at the north-south extremes fo the Bay (green polygon) 

 

of the population, with 34% participating as a secondary occupation (Davies et al., 2009).  It is 

worth noting, however, that the study conducted by Davies et al. (2009) was fairly limited in 

scope, with surveys conducted over only several months in the 3 southern villages of Beravy, 

Ifaty, and Mangily.  Some spatial variation in occupation percentages likely exists as a function 

of distance from the principle markets in the provincial capital, Tulear.  Additionally, the 

inclusion of the biggest tourism destination in the study area, Mangily, may have influenced the 

calculated percentages.  Nonetheless, documented percentages of participation in the fishery may 

be generally applicable and are indicative of the heavy reliance of the Vezo community on 

fisheries resources.              
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Population Estimates and Demographics – Enumeration of Dwelling Units 

Population estimates, and decadal change thereof, for the 12 Vezo villages of Bay of 

Ranobe were determined following a bottom-up approach, in which dwelling units were 

enumerated and correlated to the Bay-wide average number of persons-per-dwelling calculated 

from micro-census surveys (Wu et al., 2005; Cardenas-Silvan et al., 2010; Udjo, 2015; Wardrop 

et al., 2018).  Population estimates for each village were determined to provide a 

contemporaneous index of fishing effort corresponding to the fisheries data collection campaign 

that occurred from 2013-2015.  Additionally, population demographic information was examined 

to provide insights into the spatially changing fishing pressures exerted on local fisheries 

resources in the decade leading up to the fisheries research presented in chapters 3-4. 

 To enumerate dwelling units, four IKONOS panchromatic images (Table 2.1) were used 

to, initially, create a sampling grid in ArcGIS to aid in the systematic enumeration of dwelling 

units.  From the high-resolution panchromatic images, a coastline shapefile was created to which 

a 1-km buffer was added to encompass the entirety of the coastal fishing villages.  Given that all 

fishermen must leave their boats on the beach, their houses are never far away from the shore, 

with the majority being within hundreds of meters from the beach (pers. obs.).  The 1-km buffer 

polygon of the shoreline was bisected to obtain the landward side (42.77 km2) (Figure 2.9a).  

Within the buffer polygon, a 100 m grid was created and divided into 4 arbitrary zones to 

facilitate the workflow (Figure 2.9b).  Each grid cell was labeled with a unique ID (n= 5173) and 

the 4 grid sections were exported as kml files for importation into Google Earth (Figure 2.10).        

Enumeration of dwelling units was conducted using the high-resolution imagery of 

Google Earth (Yang et al., 2012), with the Google Earth time-lapse feature allowing for the 

determination of changes in the number of dwelling units over a 12-year period.  A dual monitor 
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Table 2.1.  Details of the panchromatic images (Pan) used in the present study 

   Spatial Resolution (m)   

Image ID Sensor Date MS Pan Nb. Bands Data 

470990 IKONOS-2 2007-03-19 3.28 0.81 4+pan 11-bit 

470991 IKONOS-2 2007-03-16 3.28 0.81 4+pan 11-bit 

470992 IKONOS-2 2003-10-31 3.28 0.81 4+pan 11-bit 

470998 GeoEye-1 2009-07-05 1.64 0.41 4+pan 11-bit 

 

 

 

 

 
 
Figure 2.9. a) 1-km buffer region created as boundary on landward side of the shore; b) 100 m grid 

divided into sections for export to Google Earth 
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Figure 2.10. 100-m grid shapefile imported into Google Earth, labeled with unique numbering system for 

individual grid cells, corresponding to dwelling-unit count (top); close-up view demonstrates clarity of 

image and resolution; note, individual boats, pirogues, visible on beach (bottom)   
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system was used in which visual counts of dwelling units, corresponding to a uniquely identified 

grid cell, were recorded into the attribute table of the original 100 m grid shapefile in ArcGIS.  

Dwelling units falling within the established grid system were systematically counted at four 

points in time, covering a period of 12 years.  Specific dates within a given year were selected to 

achieve the best overall consistency between the different villages.  However, given that the 

availability and quality of image tiles varied, whenever specific image-dates were unavailable 

the next closest date was used.  For example, the top row of Table 2.2 illustrates a case-in-point, 

where the most closely aligned image-dates for the villages of Ambotsibotsike, Ifaty, and 

Betsibaroka are 7-Mar-16, 7-Mar-16, and 29-Feb-16, respectively.  Additionally, the time steps,     

t, for a given period and village were selected based on image availability and quality:   t1 

(2004-2009),  t2 (2009-2012), and  t3 (2012-2016).  (Table 2.2) 

 Percent change in the number of dwelling units was calculated for each village and time 

step ( t1-3).  Percentages were then annualized for standardization purposes by determining the 

number of days between time steps, then dividing by 365 days.  Annualized percent change was 

calculated by dividing the change in dwelling unit, DU, by fractional years, Y (Table 2.3).     

 

Annualized % Change = ((DUt – DUt+1) / DUt+1) / Y 

 

Population Estimates and Demographics – Residential Headcount / Micro-census 

 In order to generate population estimates based on the enumeration of dwelling units, a 

micro-census survey was conducted March-May 2015 to determine the average number of  

people per household and per building.  Villages were first delimited in GIS based on actual 

and/or effective village limit, when the actual boundaries were unknown.  Effective village limit  
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Table 2.2.  Selected image dates for each of the 12 Vezo villages 

Village Date Village Date Village Date 

Ambotsibotsike 7-Mar-16 Ifaty 7-Mar-16 Betsibaroka 29-Feb-16 

  12-Sep-12   12-Sep-12   15-Mar-12 

  9-Jun-09  9-Jun-09  4-Apr-09 

  24-Apr-04   29-Apr-04   24-Apr-04 

Tsongeritelo 7-Mar-16 Mangily 16-Feb-16 Ambolomailaka 29-Feb-16 

  12-Sep-12   12-Sep-12   5-Mar-13 

  20-Jun-09  9-Jun-09  4-Apr-09 

  24-Apr-04   29-Apr-04   24-Apr-04 

Beravy 7-Mar-16 Amboaboaka 16-Feb-16 Andrevo 29-Feb-16 

  12-Sep-12   12-Sep-12   15-Mar-12 

  9-Jun-09  9-Jun-09  4-Jul-09 

  24-Apr-04   29-Apr-04   24-Apr-04 

Ambalaboy 7-Mar-16 Madiorano 29-Feb-16 Fitsitke 23-Feb-16 

  12-Sep-12   15-Mar-12   15-Mar-12 

  9-Jun-09  4-Apr-09  4-Jul-09 

  29-Apr-04   24-Apr-04   15-Jun-03 

 

 

Table 2.3. Fractional year, Y, per time-step and village 

Village Y Village Y Village Y 

Ambotsibotsike 3.48 Ifaty 3.48 Betsibaroka 3.96 

  3.26   3.26   2.95 

  5.13  5.12  4.95 

Tsongeritelo 3.48 Mangily 3.43 Ambolomailaka 2.99 

  3.23  3.26  3.92 

  5.16   5.12   4.95 

Beravy 3.48 Amboaboaka 3.43 Andrevo 3.96 

  3.26   3.26   2.70 

  5.13  5.12  5.20 

Ambalaboy 3.48 Madiorano 3.96 Fitsitke 3.95 

  3.26  2.95  2.70 

  5.12   4.95   6.06 
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was defined as a polygon of the area encompassing >90% of the residential structures.  Target 

villages were selected for the micro-census to maximize the spatial variation along the coastline 

of the Bay of Ranobe, and included the villages of: Ifaty, Mangily, Betsibaroka, Ambolomailaka, 

and Fitsitke.  Within each of the village polygons random points were generated, representing 

sample locations.  Households located at or near the random points were surveyed, if the head(s) 

of the household were present (Figure 2.11).  In addition to headcounts, data were collected on 

the number of buildings associated with the family, considering that many families may have 

separate building structures for sleeping and cooking that would be included in dwelling unit 

count.  Census data allowed for the calculation of the average number of people per structure 

multiplier used in conjunction with the dwelling unit count, allowing for the estimation of village 

populations. 

Fisheries Socioeconomic Surveys 

 During the first year of the fisheries surveys (2013 – 2015), socioeconomic surveys were 

conducted from May-October 2013 on fishermen originating from the same villages targeted by 

the fisheries surveys: Beravy, Ifaty, Ambolomailaka, and Andrevo.  It is worth noting that, 

culturally, all boat-based fishing activities, which is the subject of the present dissertation, are 

conducted by men, hence the use of the term “fishermen” and not the gender-neutral term 

“fisherfolk”.  In Vezo culture, women and children actively participate in intertidal gleaning 

activities, but are not usually involved in boat-based activities.  Thus, all fisheries-related survey 

information was provided by the fishermen of the targeted villages, and is discussed further in 

Chapter 3.   

Survey questions were designed to obtain sociological, demographic, and economic data 

on those directly involved in the Bay of Ranobe, day-time, boat-based fisheries.  Questions  
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Figure 2.11.  Spatial distribution of household surveys conducted (red circles) in the villages of Ifaty, 

Mangily, Amboaboaka, Betsibaroka, Ambolomailaka, and Fitsitke, south to north  
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addressed each individual member of a given boat-based group from the “head fishermen”, or 

boat owner, to all others assisting.  Sociological and demographic questions assessed the 

fishermen’s village of origin, village of birth, year in which they moved (if applicable), age, and 

number of children.  The economic portion of the survey strived to understand the financial 

benefits obtained by the fishermen, specifically addressing the number, weight, and species of 

catch kept by the fishermen for personal consumption versus the portion of the catch that was 

destined to be sold.  Additionally, information was collected on the anticipated price that would 

be obtained for the various species and quantities to be sold, as an indicator of revenue.  (See 

Appendix 2.1 for datasheet)           

Surveys were conducted following a spatially stratified design in which the designated 

landing zones of targeted villages were divided into 3 sub-zones, whose assigned length of 

shoreline was inversely proportional to the number of boats on the beach in order to maintain 

consistency in the total number of boats within a specific zone.  Additionally, the use of sub-

zones ensured that the entire shoreline within the targeted village were covered by the sampling 

effort.  Landing zone lengths varied from approximately 500 m to 1025 m (Figure 2.12).  A 

trained team of 3-4 people recruited from the local population collectively formed the fisheries 

data collection team, with one member of the team tasked with the socioeconomic survey as the 

others surveyed the catch.  A ticketing system was used in which, at sunrise, tickets were 

distributed following a roving survey approach, as the survey team systematically patrolled the 

zone encountering fishermen as they depart (Ma et al., 2018).  Fishermen that received a ticket in 

the morning were intercepted as they returned for surveying purposes.  Given that the boats used 

in the Bay of Ranobe fisheries are unregistered / unmarked, hand-made canoes, a fully 

randomized approach based on registration numbers was not feasible for the purposes of this  
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Figure 2.12. Village landing zones (LZ) divided into sub-zones (green, orange, and red) for surveying 

purposes: a) Andrevo (LZ = 785m), b) Ambolomailaka (LZ= 500m), c) Ifaty (LZ= 620m), and d) Beravy 

(LZ= 1025m) 

 
 

 

 

 

 

a b 

c d 
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study.  An early attempt was made, by the author, to register all of the boats participating in local 

fisheries: a numbering system was devised and hundreds of boats had registration numbers 

painted on the hulls.  However, strong winds and blowing sands, removed nearly all of the 

registration numbers from most of the boats within 3-5 months.          

 

2.3 Results & Discussion 

Population Estimates 

 To determine human population distributions and densities contemporaneous to the 

fisheries data collection campaign, dwelling unit counts were conducted on residential structures 

within a distance of 1 km of the shoreline along the entire coast of the Bay of Ranobe, using 

Google Earth images from 2016 that covered an area of 42.77 km2 at a 100 m grid resolution.  

Household micro-census surveys conducted at random points (n= 124) were used to determine 

the average number of people per building (mean = 3.27, SD= 0.99) in 6 of the 12 coastal 

villages of the Bay: Ifaty (n= 31), Mangily (n= 10), Amboaboaka (n= 8), Betsibaroka (n= 54), 

Ambolomailaka (n= 18), and Fitsitke (n= 3). Previous household survey studies have found 

similar results, with the mean number of persons per sleeping room ranging from 3.0 – 3.4, while 

70% of households have only 1 sleeping room (https://www.statcompiler.com)(See Table 

Appendix 2.2).  Expansion of dwelling unit counts to population numbers produced a total 

population for households living within 1 km of the shore in the year 2016 equaling 31,850 

people, with 28,046 persons living within the boundaries of the coastal villages studied, here 

(Figure 2.13).  

 Since the last national population census, in 1993, the government of Madagascar has 

been projecting national population numbers based on estimated global rates of population  
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Figure 2.13. Population distribution within 1 km of shore per 100 m grid cell; map legend symbology 

based on deciles of population count per grid cell 
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growth that have fluctuated annually, with gradual declines observed during the period 2007-

2016 from 2.888% to 2.689%, respectively (https://data.worldbank.com).  For comparison 

purposes, population estimates made in 2007 for the villages of the Bay of Ranobe were obtained 

from a governmental online source and projected for 2016 based on the average rate of growth of  

2.78%.  Population projections, based on 2.78% growth, are compared to the population 

estimates calculated from the dwelling unit census and sociological surveys (Table 2.5).   

Results of the comparison demonstrate that the population estimates and growth rates 

calculated following the methods of the present study differ substantially from the official 

estimates and rates.  On a village-by-village basis, growth rates varied from 2.96% to 6.83%, 

with an average growth rate of 4.63%, as compared to the national average of 2.78%.  Although 

the growth rates calculated for the Bay of Ranobe coastal villages are substantially higher than 

the national average, previous research has found that growth rates in the poorest regions of the 

country are considerably greater than the national average, ranging from 3% - 4% in many areas 

of Madagascar and even +4% in others (Harrison et al., 2000; Bruggemann et al., 2012).  

Elevated population growth rates in the Bay of Ranobe are likely attributable to multiple factors: 

1) increased birth rates that are commonly observed amongst the poorest households as a 

response to create more “helping hands” around the house (Delaunay, 2013); 2) waves of 

immigration in response to catastrophic events, such as drought, locust outbreaks, and general 

food insecurity that periodically occurs in southern Madagascar (FAO, 2016; IOM, 2017); 3) 

urban exodus associated with violence resulting from periods of political instability (See “2009 

Malagasy political crisis”, Wikipedia); 4) a general attraction to the area for the exploitation of 

marine resources, and/or employment opportunities in the local eco-tourism sector (pers. obs.).   
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Table 2.4. Population estimates per village based on projections of a global average population 

growth rate of 2.78% (2007 and 2016), values used by the government of Madagascar, and 

population estimates based on dwelling unit counts for 2004 and 2016  

 

 Population Projection @2.78% Population Estimates  

Village 2007* 2016 2004 2016 

Growth 

rate 

AMBOTSIBOTSIKE 864 1106 889 1262 2.96% 

TSONGERITELO 1,049 1343 824 1442 4.77% 

BERAVY 853 1092 988 1691 4.58% 

AMBALABOY 762 975 471 870 5.25% 

IFATY 2,130 2726 1628 2338 3.06% 

MANGILY 1,818 2327 3231 6363 5.81% 

AMBOABOAKA 946 1211 713 1203 4.45% 

MADIORANO 383 490 664 1125 4.49% 

BETSIBAROKA 472 604 464 1027 6.83% 

AMBOLOMAILAKA 964 1234 1861 3734 5.97% 

ANDREVO 900 1152 1887 3044 4.06% 

FITSITIKE 1,683 2154 2678 3947 3.28% 

Total 12,824 16,413 16,298 28,046   

*https://www.madacamp.com/images/madagascar/Effectif_Population_par_Fokontany_Madagascar.xls 

 

As a final note on population growth rate estimates for Madagascar, one month prior to 

submitting the present dissertation (August 2019), the government of Madagascar published 

provisional results of the most recent population census, conducted from May-June 2018 

(INSTAT-CCER, 2019).   Unsurprisingly, growth rates were significantly higher than the 2.78% 

average that has been used by the government since 1993.  According to the latest figures, 

growth in the population between the years 1993 – 2018 reached 3.01% as a national average, 

resulting in a total population of 25,680,342 people.  Regional growth rates varied considerably 

from 2.29% - 4.81%, with the region of the present study, Atsimo-Andrefana, exhibiting a 3.60% 

growth rate. 

A comparison of the population map product from the present study (Figure 2.13) to the 

map produced by the WorldPop algorithm (Figure 2.4) demonstrates some of key shortcomings 
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of this method, as identified in the Introduction.  Specifically, in regions of the world where 

access to electricity is limited or non-existent, the lights-at-night covariate used in the statistical 

model is ineffective.  More importantly, the relationship between patterns of land-use and 

population density may be highly irregular in certain regions of the world, such is the case for the 

Bay of Ranobe.  The WorldPop map (Figure 2.4) correctly identifies a center of population 

density to the south of the Bay of Ranobe, which represents the urban population of the 

provincial capital city, Toliara.  Following the WorldPop map north from Toliara, there is some 

indication of coastal populations, particularly for the biggest village in the area, Mangily. High 

population densities are then erroneously detected in the village of Fitsitke, which is constructed 

on a sand spit naturally lacking vegetation.  However, the WorldPop algorithm appears to 

interpret this as human-caused land transformation.  Moreover, at the point where the principle 

route turns away from the coast (see Figure 2.8a), it can be seen that the population identified in 

the WorldPop map corresponds to the 5 villages along the route nationale south of the Manombo 

River.  The footprint of these 5 agricultural villages is disproportionately large, with respect to 

their actual populations, due to the fact that this area represents the site of a previous irrigation 

project.  Diversions of water from the Manombo River to this area have allowed for a greater 

expanse and intensity of cultivation than is normally observed in this arid region.  A 

disproportionately high land-use / land change rate relative to local human population numbers 

and proximity to the route national, covariates used in the model, likely resulted in the prediction 

biases observed in the WorldPop population distribution predictions for the Bay of Ranobe 

communities.  Although some degree of prediction error is understandable, with a significant 

proportion of the world’s population living near the coast, systematic biases resulting in the 

underestimation of coastal populations could have serious consequences.      
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Demographics  

Dwelling units counts conducted for years 2004, 2009, 2012, and 2016 allow for the 

quantification of the shifts in population density that occurred leading up to, and throughout, the 

study period: T1 (2004-2009), T2 (2009-2012), and T3 (2012-2016). Given that the majority 

of village houses are impermanent structures, with walls and roofing materials built of dry 

grasses and wood, they can be easily erected, disassembled, and moved, thereby acting as a 

reliable proxy of human population movements.  Figure 2.14 illustrates the overall pattern of 

development of the coastline during the period 2004 – 2016, with the open spaces between the 

villages that existed in 2004 becoming developed.    

 To evaluate incremental changes in population distribution for time periods T1-T3, the 

percent change that occurred within each time period was calculated and mapped (Figure 2.15; 

Table 2.5).   In the earliest time period, T1, the general economy of Madagascar was on the rise 

and the tourism sector was growing.  The highest growth rate during this period was observed for 

the village of Mangily (12.5%), known primarily as an international tourist destination, and 

secondarily, as a vacation destination for residents.  As such, within the village of Mangily, there  

are a number of internationally-recognized hotels and restaurants.  The northern cluster of 

villages, including the villages of Betsibaroka (10.10%), Ambolomailaka (9.2%), and Madiorano 

(7.9%), also exhibited high percentages of growth during this period.  Again, tourism is likely 

the most significant factor here, as well, with the village of Ambolomailaka hosting 2-3 large 

hotels that target international tourists, while the village of Madiorano is the preferred vacation 

destination in the Bay-area for residents.  On the other hand, in the case of Betsibaroka, no 

tourist infrastructure exists, thus the relatively high growth observed here is likely due to the  
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Figure 2.14. Number of dwelling units per 100 m grid cell (10,000 m2) within 1 km of the coast for years 

2004 (left) and 2016 (right)  
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Figure 2.15.  Spatial representation of percent change in dwelling unit counts for the 3 time periods, T1-T3, studied here: 2004-2009, 2009-2012, 

2012-2016  
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Table 2.5. Percent change in dwelling unit count for 3 time periods, T1-T3, spanning years 2004 

– 2016 

 

 Annual % Change 

Village 2004-2009 2009-2012 2012-2016 

 T1 T2 T3 

Ambotsibotsike -2.50% 13.6% 3.7% 

Tsongeritelo 1.50% 10.8% 5.8% 

Beravy 0.80% 12.5% 4.9% 

Ambalaboy 5.30% 11.1% 2.0% 

Ifaty 4.20% 2.7% 2.4% 

Mangily 12.50% 4.1% 1.7% 

Amboaboaka 1.30% 7.2% 8.1% 

Madiorano 7.90% 4.9% 1.6% 

Betsibaroka 10.10% 12.9% 1.7% 

Ambolomailaka 9.20% 6.8% 3.0% 

Andrevo 3.50% 8.9% 2.6% 

Fitsitke 2.60% 4.6% 3.3% 

 

proximity of the village to these former tourist destinations.  Residents of Betsibaroka were 

likely benefitting from the growing need of resources driven by the tourist industry, acting as 

suppliers of fish, charcoal, and/or wood for construction, which fueled comparatively high 

growth in the village.            

 In contrast to the comparatively high growth associated with villages involved directly / 

indirectly with the tourism sector, the southern villages that are closest to the regional capital, 

Toliara, exhibited the lowest, and even negative, growth rates during the T1 period: 

Ambostkebotske (-2.50%), Tsongeritelo (1.5%), Beravy (0.80%), and Amabalaboy (5.30%).  

Low growth in the southern villages of the lagoon may be a reflection of the depletion of 

fisheries resources that had already occurred by the early 2000’s, as a result of the demand of the 

nearby urban population of Toliara.  The negative correlation between distance to markets and  

abundance of fisheries resources is a well-documented phenomenon (e.g. Brewer et al., 2009; 
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Brewer et al., 2012; Brewer et al., 2013; Cinner et al., 2013).   

 During the T2 period (2009-2012), a near complete reversal occurred, where the southern 

villages with the lowest growth rates became the fastest growing villages, and the growth in the 

villages associated with tourism declined dramatically.  Reversal in growth trends observed 

during this period, particularly the double-digit growth in southern villages of Ambostkebotske 

(13.50%), Tsongeritelo (10.8%), Beravy (12.5%), and Amabalaboy (11.1%) and the substantial 

reductions in tourism-related growth, are likely the direct result of the 2009 political crisis.  In 

2009, a coup d’état abruptly ended a brief period of economic growth, with the eruption of 

violence in some cities, tourism suddenly and dramatically declined and local residents fled the 

violence and looting of the urban centers.  Unfortunately, this phenomenon has occurred on 

multiple occasions in Madagascar’s history and is considered the principle contributing factor to 

the country’s overall sub-standard level of development and economic well-being (Figure 2.16).  

During the T3 period (2012-2016), growth in all the villages stabilized, with growth rates 

ranging from 1.6% - 8.1%. 

Fisheries Socioeconomics 

 Fisheries socioeconomic surveys were conducted from May – October 2013 that 

specifically targeted fisherman participating in boat-based fishing activities from the villages 

where surveys of catch were conducted.  Survey questions were designed to elicit sociological 

information from each fisherman, such as family and origin information, and the economic data 

necessary to obtain estimates of revenue, such as percent of catch kept vs. sold and selling prices.  

In total, n= 968 fishermen participated in the survey from the four targeted villages: Beravy (n= 

190), Ifaty (n= 240), Ambolomailaka (n= 225), and Andrevo (n= 313).  Responses to questions 

concerning age resulted in an overall average age of 28.1 years, with a range of 6 – 80 years old.   
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Figure 2.16. Short-lived periods of economic growth in Madagascar, GDP per capita (black line, primary 

y-axis), interrupted by political crises (crise politique), including the political crisis that occurred during 

the present study, 2009 – 2013; GDP growth rate (gray line, secondary y-axis (%)) (Source: 

Razafindrakoto et al., 2017)   

 

In response to number of children, survey results produced an average of 2.4 children, with a 

range of 0 – 21 (See Table 2.7 for summary per village).  Given that polygamy is commonly 

practiced in villages across Africa, and specifically amongst the Vezo, it is indeed feasible that 

an older man (60-80 y.o.), with 3 – 4 wives, fathered 20+ children.   In addition to age and 

family size, fishermen were asked their village of residence and village of birth to evaluate the 

percentage of fishermen that were native to the village in which they are currently living, and the 

general level of immigration experienced within the village.  Results of fishermen surveyed at 

landing points within each of the targeted villages indicated that the percentage of native 

fishermen for Beravy, Ifaty, Ambolomailaka, and Andrevo, were 70.5%, 76.2%, 44.9%, and 

55.9%, respectively.  The percentage of native vs non-native fishermen in a village may serve as  

an indicator of cultural values and respect for village authorities, which in turn, would have 

implications on the level of compliance to community-based fisheries regulations.  As discussed  
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Table 2.6.  Average ages and family size of fishermen per village 

  

  Age Number of Children 

Village n Mean SD Min Max Mean Min Max 

Beravy 190 27.69 11.76 12 70 2.27 0 12 

Ifaty 240 26.86 12.41 7 80 2.02 0 21 

Ambolomailaka 225 27.74 12.24 6 77 2.27 0 11 

Andrevo  313 30.09 13.98 12 80 2.94 0 20 

 

 

in the Introduction section, locally-based rules or laws, known as dinas, are a commonly-used 

instrument for the management of natural resources in Madagascar.  Enforcement of dinas relies 

on community compliance and the committee of village elders, hazomanga, of which the village 

chief is a member.  In rare cases, dina-related infractions could be, and have been, pursued in the 

criminal court system.  However, the legal framework required to bridge village law and the 

justice system has not been adequately detailed to produce efficient and satisfactory results.  

 For the economic portion of the survey questions, data were collected on the weights of 

fish kept by the fishermen for personal consumption, the weight and identity of species sold, and 

the price received by the fishermen for their catch from a single-day trip.  Data on weights of 

catch kept and/or sold were, initially, analyzed to determine the percentage / frequency / 

probability of the four potential outcomes of a fishing-trip event: 1) frequency of events of zero 

catch, thus zero fish kept for consumption and zero fish sold (0/0), the frequency of trips 

resulting in zero fish kept and positive sales (0/+), the frequency of trips in which all catch was 

kept for consumption and zero sold (+/0), and the frequency of trips resulting in enough catch for 

both personal consumption and sales (+/+).  Of the total number of responses (n= 2696), 6.2 % 

of the fishing days resulted in zero catch for the period surveyed.  For successful fishing days, 

69.2% fishermen sold all of their catch and kept none for personal consumption, while 12.9% 
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kept all of their catch for personal consumption, and 11.7% caught enough to keep a portion and 

sell the rest.  (See Table 2.8 for a summary of results per village)            

 Analyses of weights and economic value of surveyed catches indicated that the overall 

average quantity of fisheries products kept for daily consumption of x̄= 0.23 kg versus the weight 

of products sold, x̄= 3.70 kg.  On average, 6.3% of the catch was kept for personal consumption, 

while the portion destine for sale generated a revenue of $3.11 per trip, selling at a price of $0.86 

/ kg (See Table 2.9 for a summary of results per village).  Table 2.10 provides a listing of 

fisheries species identified in the catch, including finfish and economically important 

invertebrate species, ranked by average price per kilogram. Economic value of landings is 

discussed further in Chapter 4.     
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Table 2.7.  Counts and percentages of fishing daytrip outcomes, kept versus sold, per village 

 

 

 Counts  Percentages 

 0 Kept 0 Kept (+) Kept (+) Kept  0 Kept 0 Kept (+) Kept (+) Kept 

Village 0 Sales (+) Sales 0 Sales (+) Sales Total 0 Sales (+) Sales 0 Sales (+) Sales 

Ambolomailaka 33 417 43 55 548 6.0% 76.1% 7.8% 10.0% 

Andrevo 48 532 106 76 762 6.3% 69.8% 13.9% 10.0% 

Beravy 10 276 69 37 392 2.6% 70.4% 17.6% 9.4% 

Ifaty 69 429 88 123 709 9.7% 60.5% 12.4% 17.3% 

 

 

 

 

Table 2.8.  CPUE, total and average weights, and average sales prices of catch per village 

 

  Total Wt Average Wt  Average Sale Price  
Village Trip Ct1 Kept (kg)  Sold (kg) Kept (kg) Sold (kg) % Kept (Wt) MGA USD3 USD/kg 

Ambolomailaka 654 89.66 2853.62 0.16 5.26 3% 8189.30 3.69 0.70 

Andrevo 858 134.01 2341.24 0.18 3.08 5% 5665.74 2.55 0.83 

Beravy 415 153.01 1248.85 0.39 3.19 11% 7570.57 3.41 1.07 

Ifaty 769 147.24 2335.93 0.21 3.29 6% 6237.41 2.81 0.85 

 

1. Trip Count equals the number of fishermen interviewed per day per village 

2. Conversion of Malagasy Ariary (MGA) to USD based on conversion from Oct 15, 2013 (1 USD: 0.00045 MGA)  
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Table 2.9.  Species identified in the catch ranked by economic value in local currency, Malagasy 

Ariary (MGA) 

 

 

Freq 

occurrence 

Total 

Wt. Avg Wt. 

Avg. 

Price / kg 

SD 

Price 

Species  in catch Sold (kg)  Sold (kg) (MGA) (MGA) 

Scoberomorus commerson 2 11.50 5.75 7082 2649 

Parupeneus barberinus 1 3.60 3.60 5833 - 

Lobster (unidentified spp) 23 88.52 3.85 5535 2731 

Kyphosus vaigiensis 2 6.10 3.05 4586 357 

Squid (unidentified spp) 94 199.24 2.12 3729 1014 

Lutjanus kasmira 2 11.18 5.59 3647 644 

Hemiramphus far 3 8.82 2.94 3603 1898 

Scarus psittacus 3 9.87 3.29 3532 572 

Chlorurus cynaescens 1 2.02 2.02 3465 - 

Lutjanus quinquelineatus 3 7.34 2.45 3359 2396 

Terapon jarbua 1 3.06 3.06 3268 - 

Lutjanus fulviflamma 2 2.06 1.03 3242 568 

Caesio xanthonota 1 3.40 3.40 3235 - 

Myripristis adusta 1 25.70 25.70 3113 - 

Strongylura incisa 10 32.65 3.27 3003 606 

Siganus spinus 5 17.05 3.41 2995 1479 

Siganus sutor 113 441.65 3.91 2893 1557 

Caesio caerulaurea 6 22.51 3.75 2765 1656 

Rhychobatus djiddensis 2 5.06 2.53 2749 1924 

Gymnothorax undulatus 1 4.80 4.80 2708 - 

Mulloidichthys flavolineatus 21 81.42 3.88 2641 1133 

Mulloidichthys vanicolensis 2 12.04 6.02 2611 820 

Herklotsichthys quadrimaculatus 24 232.05 9.67 2610 2603 

Plectorhincus gibbosus 4 10.51 2.63 2604 916 

Leptoscarus vaigiensis 31 97.00 3.13 2591 1206 

Scarus ghobban 12 53.12 4.43 2569 1079 

Lethrinus nebulosus 4 32.41 8.10 2566 483 

Naso brevirostris 1 0.90 0.90 2556 - 

Abudefduf sexfasciatus 1 4.70 4.70 2553 - 

Gerres filamentosus 38 150.51 3.96 2540 773 

Tripterodon orbis 1 3.18 3.18 2516 - 

Taeniura lymna 1 1.60 1.60 2500 - 

Cetoscarus bicolor 1 0.80 0.80 2500 - 

Acanthurus xanthopterus 1 5.20 5.20 2500 - 

Lethrinus harak 51 126.76 2.49 2489 2443 

Naso unicornis 6 34.66 5.78 2488 661 
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Table 2.9 cont.  Species identified in the catch ranked by economic value in local currency, 

Malagasy Ariary (MGA) 
 

Chelinus trilobatus 17 59.07 3.47 2457 719 

Lethrinus borbonicus 20 28.22 1.41 2417 847 

Priacanthus hamrur 2 6.56 3.28 2412 44 

Hyporhampus affinis 5 8.35 1.67 2373 1007 

Naso annulatus 1 8.47 8.47 2361 - 

Calotomus spinidens 1 8.95 8.95 2346 - 

Plectorhincus gaterinus 2 13.58 6.79 2317 259 

Platycephalus indicus 2 4.53 2.27 2260 715 

Pempheris mangula 8 108.52 13.57 2252 1165 

Cheilio inermis 1 4.90 4.90 2245 - 

Plectorhincus flavomaculatus 7 12.54 1.79 2237 515 

Leptomelanosoma indicum 2 21.40 10.70 2235 880 

Sargocentron diadema 5 34.95 6.99 2186 665 

Plectorhincus paulayi 1 6.95 6.95 2158 - 

Thalassoma hebracium 1 3.30 3.30 2121 - 

Spratelloides delicatulus 14 200.33 14.31 2116 660 

Octopus cyanea 322 1036.23 3.22 2100 1862 

Papilloculiceps longiceps 22 89.12 4.05 2083 597 

Lethrinus rubriooperculatus 4 13.51 3.38 2052 774 

Acanthurus triostegus 2 10.17 5.09 1986 1031 

Sphryaena barracuda 1 2.52 2.52 1984 - 

Lethrinus olivaceous 2 9.03 4.52 1980 28 

Scomberoides commersonnianus 13 58.53 4.50 1967 821 

Abudefduf vaigiensis 10 27.52 2.75 1937 792 

Lethrinus lentjan 2 3.72 1.86 1916 476 

Monotaxis grandoculis 1 2.88 2.88 1910 - 

Shrimp (unidentified spp ) 2 7.00 3.50 1795 181 

Chirocentrus dorab 15 65.91 4.39 1783 463 

Naso fageni 1 3.40 3.40 1765 - 

Conger cinerus 10 42.44 4.24 1748 869 

Torpedo sinuspersici 2 3.70 1.85 1632 893 

Gymnothorax javanicus 2 6.22 3.11 1563 91 

Plotosus lineatus 48 328.16 6.84 1563 1000 

Sphyrna lewini 1 16.20 16.20 1543 - 

Fistularia commersonii 1 8.64 8.64 1389 - 

Taeniamia fucata 3 18.60 6.20 904 103 

Heteropriacanthus cruentatus 1 1.30 1.30 769 - 
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Appendix 
 

 

 
Appendix 2.1.  Fisheries socioeconomic survey datasheet 
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% Households 

with one room 

for sleeping 

% Households 

with two rooms 

for sleeping 

% Households 

with three or 

more rooms for 

sleeping 

Mean number of 

persons per 

sleeping room 

Mean number of 

household 

members 

  

Country Survey 

Madagascar 2016 MIS 70.1 23 6.9 3 4.2 

Madagascar 2013 MIS 69 24.1 6.8 3.2 4.6 

Madagascar 2011 MIS 66.1 24.8 9 3.4 4.9 

Madagascar 2008-09 DHS 68.9 24.1 6.6 3.4 4.7 

Madagascar 2003-04 DHS     4.6 

Madagascar 1997 DHS 71.7 21.5 6.7 3.6 4.9 

Madagascar 1992 DHS 66.3 25.1 8.4 3.4 5.2 

https://www.statcompiler.com/en/     
 

Appendix 2.2. Results of database query: The STATcompiler, Demographic and Health Surveys (DHS) of U.S. Agency for 

International Development (USAID); accessed September 2019    
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PART II 

Artisanal fisheries of the Vezo communities  

of the Bay of Ranobe: Effort and catch dynamics 
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Vezo Artisanal Fisheries: Fishing capacity, nominal effort, and 

spatio-temporal dynamics 

 

3.1 Introduction 

Global Fisheries 

Since the 1970’s, global fishing capacity and effort have steadily increased, with growth 

stabilizing as recently as 2010, attaining levels 6-10 times of those observed in the 1950’s 

(Watson et al., 2013; Bell et al., 2016).  Throughout much of this period, the European fleets 

dominated global fisheries (Anticamara et al., 2010), however at some point between the years 

2000 and 2010, the Asian fleets began to dominate (Bell et al., 2016), increasing their effective 

fishing effort 25-fold since 1950 (Watson et al., 2013). According to the Food and Agriculture 

Organization (FAO), by 2007, 52% of global fish stocks were considered fully exploited, 28% 

were overexploited, and 20% were moderately exploited (Anticamara et al., 2010).  After 40 

years of increasing industrialization and continuous growth in global fishing effort, catches 

peaked at 90 – 130 million tons sometime between the late 1980’s and 1990’s, and began 

declining at a rate of approximately half million ton per year, more than a decade prior to the 

eventual stabilization of effort in 2010 (Swartz et al., 2010; Watson et al., 2013; Bell et al., 

2016; Pauly and Zeller, 2016).   

The growth of fisheries effort and landings of the 1970’s to the 1990’s was fueled largely 

by geographic expansion, as fishing fleets of the industrialized countries abandoned the over-

fished waters of the northern hemisphere and began fishing the seas of the southern hemisphere 

(Swartz et al., 2010), initiating a cycle of global serial depletion of fisheries resources 

Chapter 3   
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(Armstrong et al., 1998; Karpov et al., 2000; Ainley and Blight, 2009; Anderson et al., 2011; 

Cardinale et al., 2011; Srinivasan, et al., 2012).  Consequently, geographic expansion and 

seemingly untapped resources of the southern hemisphere fueled the growth of global fisheries 

from the 1980’s to 1990’s.  By the mid-1990’s, the average distance traveled by fleets had 

doubled, catch per unit area declined by 22% (Tickler et al., 2018), and one-third of the ocean 

and two-thirds of the continental shelves were exploited at levels that surpassed the primary 

productivity of these regions by 10% according some estimates (Swartz et al., 2010), while 

others have found fisheries yields exceeding primary production by as much as 17 – 112% 

(Chassot et al., 2010).   

The global decline of fisheries landings, in the 1990’s, marks the tipping point where 

further geographic expansion was no longer viable, as fleets gradually over-exploited the 

fisheries resources of all the large marine ecosystems (LMEs) of the globe, covering more than 

90% of the world’s oceans (Tickler et al., 2018) at levels exceeding their average primary 

productivity (Watson et al., 2014).  Unsurprisingly, at the time of globally-declining fisheries 

resources, illegal, unreported, and unregulated (IUU) fishing activities reached historic levels 

(Agnew et al., 2009).  Ultimately, the excess capacity of the global industrialized fishing fleets 

that lead to the legal overfishing of LMEs, combined with the pervasive IUU fishing activities 

that infringe upon the exclusive economic zones (EEZs) and territorial waters of developing 

countries, jeopardize livelihoods and food security of the world’s poorest people (Pauly et al., 

2005; Pauly, 2006; Flothmann et al., 2010; Watson et al., 2013).  Case in-point, in West Africa 

alone, estimated IUU catches are equivalent to 65% of the legal reported catch, representing an 

economic loss of 2.3 billion USD annually (Doumbouya et al., 2017).  Likewise, in the Western 

Indian Ocean region, estimates of the percentage of unreported catch are at 50-60% of the 
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reported catch, however, reported catch statistics vary wildly from year-to-year, casting doubt on 

any estimates of catch (Van der Elst et al., 2005).        

To fully appreciate and understand the impacts and reach of global fisheries, spatial 

information is critical.  It has been recognized for over two decades the importance of spatialized 

catch per unit effort (CPUE) information to fisheries management (Swartzmann et al., 1992; 

Booth, 2000; Walters, 2000; Walters, 2003; Wilen, 2004; Babcock et al., 2005; Bordalo-

Machado, 2006), and the risks of ignoring spatial structure (Tian et al., 2009; Ying et al., 2011; 

Guan et al., 2013).  However, limited progress was made in the early years, likely due to 

technological limitations that would have permitted only visual representations at scales too 

coarse to provide any insights.  More recently, researchers have begun employing novel 

techniques to acquire spatialized fishing effort and catch data at finer resolutions through the use 

of: aerial surveys (Tinsman and Whitmore, 2006; Smallwood et al., 2012), vessel-based 

sightings (Breen et al., 2014; Turner et al., 2015), participatory approaches (Pascual et al., 2013; 

Selgrath et al., 2017; Thiault et al., 2017), the Automatic Identification System (AIS) (Natale et 

al., 2015), the Vessel Monitoring System (VMS) in combination with logbook data (Wit and 

Godley, 2007; Bastardie et al., 2010; Gerritsen and Lordan, 2011; Joo et al., 2015), and satellite 

data (Al-Abdulrazzak and Pauly, 2014).  From these sources of data, mapping products of 

increasing resolution and sophistication are being created from the spatially less-detailed FAO 

landings statistics to the more detailed AIS / VMS datasets of commercial fisheries (Watson and 

Kitchingman, 2004; Dunn et al., 2010; Stewart et al., 2010; Watson and Pauly, 2013; Kroodsma 

et al., 2018).  Technological advances, as with the vast majority of previous works in fisheries 

science, have largely focused on and benefitted the commercial fisheries sector, neglecting 

small-scale fisheries that are, arguably, of equal or even greater importance economically and 
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ecologically (Batista et al., 2014; Kolding et al., 2014; Junior, et al., 2016; Selgrath et al., 2018).  

Some progress is being made, however, as research attention begins to turn towards coastal 

fisheries issues, a critical piece of the puzzle that has been historically absent (Stewart et al., 

2010; Johnson et al., 2017; Selgrath et al., 2018).                         

Of the 120 million people that are directly dependent on capture fisheries, 90% work in 

the small-scale fisheries (SSF) sector, whose catch represents more than 50% of the global total 

(World Bank/FAO/WorldFish, 2010; Mills et al., 2011).  Most SSF may be classified as IUU 

fisheries, as there is little to no data being systematically collected on, ostensibly, the largest sub-

sector of fisheries.  Unlike commercial fisheries, research into SSF has substantially lagged, 

gaining some attention over the past decade (Purcell and Pomeroy, 2015).  In part, the lack of 

research in the SSF sector may be explained by the difficult situational, socio-political, and/or 

environmental contexts in which SSFs are embedded, and the unique nature of the unorganized 

and spatially dispersed landings along potentially hundreds of kilometers of shoreline (Salas et 

al., 2007).  Moreover, the multi-species catches taken with multiple gears, which are often 

modified, complicates data analyses once surveys are completed.  The very definition of small-

scale fishery is rather ill-defined, and is sometimes used interchangeably with the term artisanal 

fisheries (Halim et al., 2019; Smith and Basurto, 2019).  Many adopt the FAO definition of 

artisanal fishery:       

Traditional fisheries involving fishing households (as opposed to commercial 

companies), using relatively small amount of capital and energy, relatively small fishing 

vessels (if any), making short fishing trips, close to shore, mainly for local consumption 

(FAO Fisheries and Aquaculture Department, FAO, 2014). 
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Although the definition remains vague and has been applied to fisheries ranging from a one-man 

canoe to a 20m trawler, for the present study emphasis is placed on the low-tech / high-

artisanality end of the spectrum, as described by Batista et al. (2014), in characterizing the 

fisheries of the Vezo communities of southwest Madagascar.     

Commercial and artisanal fisheries of Madagascar 

In Madagascar, the legal commercial fisheries sector is limited to shrimp trawling 

operations that have occurred mainly along the west coast since the 1960’s (Van der Elst et al., 

2009; Le Manach et al., 2012), and through a series of fishing agreements with the European 

Union dating back to 1986 (Le Manach et al., 2013),  fishing rights to the country’s tuna 

resources are permitted for the seining and longlining fleets of Spain, Portugal, Italy, and France.  

Commercial harvests are almost entirely exported along with most of their economic and 

nutritional value.  At a smaller scale, an artisanal fishery exists for sea cucumbers that are 

exported both legally and illegally (McVean et al., 2005; Purcell et al., 2013) to supply the 

demands of Chinese markets, as well as other targeted invertebrates (Barnes and Rawlinson, 

2009).  Similarly, the legal artisanal shark fishery has been commandeered to support the illegal 

international trade in shark fins (McVean et al., 2006; Robinson and Sauer, 2013).  At a national 

level, a ban was placed on the marine turtle fishery through presidential decree in 2006, however 

the fishery still persists largely unencumbered (Rakotonirina and Cooke, 1994; Walker and 

Roberts, 2005; Humber et al., 2011).  Artisanal finfish fisheries are likely the single most 

important fishery in terms of biomass productivity and economic benefits provided to the 

Malagasy people, yet comparatively have received little research attention (Van der Elst et al., 

2005).  In a comparison of marine fisheries publications originating from nine Western Indian 

Ocean countries, only 1.4% of the research publications addressed the marine fisheries of 
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Madagascar (Van der Elst et al., 2005), e.g. Laroche and Ramananarivo (1995) and Laroch et al. 

(1997).  Since, a few studies have been published, documenting the artisanal finfish fisheries 

catch and effort, either through direct observation (Doukakis et al., 2008; Davies et al., 2009; 

Brenier et al., 2011) or fishermen interviews (Barnes-Mauthe et al., 2013),  with study sites 

located in the southwest (Davies et al., 2009; Brenier et al., 2011; Barnes-Mauthe et al., 2013) 

and in the north of the country (Doukakis et al., 2008).  One of the published studies from 

southwest Madagascar (Davies et al., 2009) was conducted in the Bay of Ranobe, which is the 

location of the present study.               

Artisanal fisheries of the Vezo 

Origins of the people of Madagascar, the Malagasy, may be traced back, at least in part, 

to the arrival of Austronesians in ca. 500 ACE (Chambers, 2001) (Figure 3.1).  Seafaring 

technologies used by the modern-day Vezo fishermen remain largely unchanged from that of its 

founders, where the more ancestral vessel design is characterized by a single-outrigger style, 

dug-out canoe equipped with a diagonally-mounted mast and triangular mainsail, generally 

known as the proa.  The variant of this design used in Madagascar often consists of a square sail 

mounted to a double mast, or double sprit, arranged in a v-shape, indicating the likely influence 

of Indian and/or Sri Lankan cultures (Mahdi, 1999) (Figure 3.2).  Known locally by the Vezo as 

a lakana (Malagasy), elsewhere in Madagascar as lakagna, (Malagasy), the vessel will 

hereinafter be referred to by the more generally-used term, pirogue (French).   

Pirogues are constructed from a locally-harvested tree, Givotia madagascariensis (family 

Euphorbiaceae), known locally as farafatse, whose soft, low-density wood is similar to that of 

the balsa, Ochroma lagopus, originating from Central and South America.  Historically, pirogues 

were likely constructed from a single trunk, however, as trunks decrease in diameter due to   
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Figure 3.1.  Early movement of peoples from the Austronesian region to Madagascar (image reproduced 

from Chambers, 2001) 

 

 

 

Figure 3.2.  Drawing of the Vezo pirogue (image reproduced from Astuti, 1991) 
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overharvesting of this species, a single trunk may be carved to form the floor and partial side-

walls of the hull.  Side-walls may be extended with planks and gunwale attached, without the use 

of metal, using a specific drilling technique and wooden dowels.  Tar is applied below the 

waterline to provide additional water-proofing.  Cross-bracing and masts are constructed from a 

select number of hardwood species. 

In Vezo society, the pirogue is an object of central importance to their cultural identity 

(Astuti, 1991).  Boys from an early age learn to construct small toy pirogues, and shortly 

thereafter, are sharpening their skills using the full-size version (Figure 3.3).   As in many 

traditional fishing cultures, boat-based fishing activities are considered the work of males, 

whereas females and small children, mainly but not exclusively, spend parts of their day fishing 

on-foot, gleaning in the intertidal zone, collecting shell fish, urchins, octopus, sea cucumbers, 

and maybe some fish trapped in intertidal pools (Barnes and Rawlinson, 2009) (Figure 3.4).  

Once fishermen return mid-day, women play the principle role in the commercialization of the 

fisheries products (Figure 4.5).  Catches may be sold directly by the family within the village of 

residence or in neighboring villages, sold to a local collector that ensures the transport and sale 

of fisheries products in the city, Toliara, or an attempt may be made by the families to get better 

prices for their products by personally rushing them via local transport, bush-taxi, to the scattered 

fisheries markets throughout the city. 

 Here, in Chapter 3, data collection and analyses focused on the characterization of fishing 

effort associated with the day-time, pirogue-based, finfish fisheries of the Bay of Ranobe, 

Madagascar.  In-depth analyses of gears, spatial and temporal components of fishing effort, and 

considerations of factors influential in determining the realized fishing effort allow for the 

distinction of latent effort versus actual effort.    
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Figure 3.3. Stages of construction of the Vezo pirogue (a-b); the apprenticeship of young Vezo boys, 

acquiring boating and navigation skills (c-e)  
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Figure 3.4.  Women (n=13) collecting marine resources, intertidal gleaning  

 

 

 

  

 
 

Figure 3.5.  Fishermen returning with the day’s catch, with collection and marketing activities 

commencing immediately upon landing  
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3.2 Methodology 
 

Study Site 

 

The Bay of Ranobe (23º05’S, 43º33’E) is a coastal lagoon situated along the 

southwestern coast of Madagascar, approximately 20 km northwest of the provincial capital city, 

Toliara.  The Bay of Ranobe (BoR) region may be geographically defined by the Manombo 

River and Fiherenana River that form the northern and southern borders, respectively.  The 

lagoon system extends ca. 32 km along its southeast-northwest axis, measures ca. 8 km at the 

widest point, covering ca. 163 km2 with maximum depths approaching 12 m within the lagoon. 

The lagoon experiences a semi-diurnal tidal regime with a spring tidal range of ±2.3 m.  The 

system is characterized by an inner reef flat composed of: patch reefs, sand, seagrass, macro-

algae, and mangrove habitats, with a barrier reef forming the seaward boundary.  The 32 km 

section of barrier reef that delimits the lagoon from the Mozambique Channel forms part of the 

greater Toliara Barrier Reef complex.  Two passes naturally divide the lagoon into three zones 

(see Chapter 1 for further description of the environment). 

 Lifestyles of the inhabitants of the 12 villages of the Bay of Ranobe are quite similar in 

that they are inextricably linked to the sea and marine resources.  However, some differences do 

exist between the villages, relative to fishing activities, that are likely attributable to the location 

of the village along the shore of the Bay and access to fishing grounds.  Villages located near the 

mangroves in the north and south of the Bay tend to fish with seine nets to capture smaller fish 

and invertebrates, such as mangrove crabs.  Moving along the coast from the northern and 

southern extremes, the villages closest to the two principle passes in the reef tend to fish the 

passes and will venture not far outside the pass to fish deeper waters.  Villages located more 

centrally along the coast have the farthest to travel to the barrier reef, thus tend to fish the patch 
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reefs of the lagoon, but will travel to the backreef slope of the barrier reef.  Although these 

tendencies are gross generalizations, and in reality, fishermen travel widely with ranges 

overlapping substantially, accessibility to fishing grounds affects the size of fish and species 

caught, which in turn, has ecological and economic repercussions.  

Datasets 

To address the objectives of the study and characterize the fishing effort of the BoR, six 

independent datasets were collected and analyzed: 1) Annual Pirogue Count, 2) Pirogue 

Registration, 3) Weather Data, 4) Fishing Effort, 5) Daily Pirogue Count, and 6) Spatialized 

Effort.  Datasets and methodologies are described below.    

Annual Pirogue Count  

As a first step in characterizing the fishing effort of the BoR, the fisheries team, 

consisting of 3-4 people, surveyed the beaches of the 12 coastal villages to establish the number 

of pirogues per village.  Pirogue counts were conducted opportunistically at times when weather 

deterred fishermen from going to sea, and the number of beached pirogues was maximized, 

which usually occurs during the summer months.  Counts were conducted at the outset of the 

fisheries data collection campaign in 2013, and again at the end of the study in 2015.   

Pirogue Registration 

After acquiring pirogue counts from all the villages in 2013, and the selection was made 

of the four villages targeted for fisheries surveys, a Pirogue Registration campaign was initiated 

(March-April 2013).  For the Pirogue Registration, the fisheries team circulated between the 

villages selected for the fisheries landings survey, namely Andrevo, Amobolimailaka, Ifaty, and 

Beravy, collecting data on pirogue lengths. Measured pirogues were marked with registration 

numbers using spray paint and stencil in an opportunistic manner.  Although having unique 
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identifiers marked on all of the pirogues from the participating villages would have facilitated 

fisheries data collection and management, unfortunately, during the following cyclone season, all 

of the registration numbers were removed by rain and blowing sand.  Nonetheless, pirogue-

length data was collected on 70% of the pirogues, providing a representative sample that is 

analyzed and discussed further in the Results section.     

Weather Data 

A solar-powered Davis Vantage Pro weather station was used to collect windspeed and 

direction data at 30-minute intervals throughout the study period.  The weather station was 

mounted atop a water tower, approximately 15m above sea-level, at the base of operations for 

the project located in the village of Ifaty.  Directionality of the wind vane was calibrated using a 

Suunto Kb-14 Precision Global Compass.  A datalogger installed in the weather station allowed 

for periodic downloading of data.    

Fisheries Landing Survey – Fishing Effort Dataset 

Fisheries landing surveys were conducted from April 3, 2013 – December 18, 2015 in the 

villages of Andrevo, Ambolomailaka, Ifaty, and Beravy.   Selection of villages participating in 

the fisheries study were based on three criteria:  1) villages with the largest pirogue-based 

fisheries, as identified from the 2013 Annual Pirogue Count dataset, 2) adequate geographic 

representativity to characterize the fisheries of the entire BoR, and 3) and accessibility of the 

villages to the fisheries survey team.  Surveys were conducted on a monthly basis, with 5 days of 

fisheries data collection per village per month, totaling 20 days of surveys per month throughout 

the study period.  Scheduling of monthly surveys were based on lunar cycles, ensuring surveys 

were conducted over full-moon and new moon phases, with villages alternating monthly. For 

example, in April 2014, Beravy was surveyed for 5 days centered on the date of the full moon 
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and Ambolomailaka for 5 days of the new moon, while the other villages were surveyed in the 

intervening weeks.  In the following month, Andrevo and Ifaty were surveyed during the full 

moon and new moon, respectively, while Ambolomailaka and Beravy were surveyed during 

intervening weeks.  Alternating village and lunar phases ensured balanced sampling relative to 

lunar phases and tidal stages, and constituted the first-stage sampling frame of the fisheries 

survey design. (See Appendix 3.1 for extract of survey schedule) 

From a spatial perspective, villages often have a focal point, where the frequency of 

landings and density of beached pirogues are greatest.  The landing zone, as designated for the 

present study, extended out from the focal point of landings in both directions along the shore far 

enough to include >90% of pirogues owned by the fishermen of the targeted villages.  Another 

important point worth noting, in a village setting such as this, fishermen and their landing sites 

are not randomly distributed along the coast (pers. obs.).  Often, the more senior members of the 

village, and their family groups, occupy the more favorable areas of the beach, e.g. more 

sheltered, easier access to markets, etc., which are usually at, or near, the focal point of landing 

sites for the village.  Implications of the structured organization of landing sites extends beyond 

simple family affiliations, given that the more senior families of fishermen may be more 

experienced / skilled fishermen, and potentially, favor specific fishing gears.  Moving further-

and-further out from the focal point of landings, families that have arrived more recently to the 

village, and likely have less fishing experience, find a place along the shore to land their pirogue.  

Consequently, a gradient exists of fishing gears and experience that radiates out from the focal 

point to the margins of the village, where less experienced fishermen have established 

themselves.  In this region, the less experienced fishermen are known to use gears that require 

less skill and that are less discriminating, such as beach seines and mosquito nets.  In order to 
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obtain an unbiased and representative sample across the spectrum of gear-use and skill-level, 

village landing zones were divided into three sub-zones to ensure a balanced distribution of 

survey effort (Figure 3.6).  Sub-zones represent a subsample of the primary sampling units, the 

four targeted villages, which are fully sampled on a monthly basis.    

On a given day, the fisheries survey team travelled to the assigned village, according to 

the monthly survey schedule, and conducted fisheries surveys within a specific sub-zone.  

Survey effort would then focus on the next sub-zone the following day, cycling through the sub-

zones of all the targeted villages every month.  Before fishermen began returning to the beach 

around mid-day, timing of which was highly-dependent on tides, the first data collection task 

involved a count of the number of pirogues on the beach that had not participated in day-time 

fishing activities, within the specific sub-zone being surveyed (Figure 3.7).  After the fishermen 

have landed and the fisheries data collection portion of the survey had been completed, the 

survey team re-initiated the count of pirogues to determine the total number of pirogues present 

within the designated landing sub-zone.  The Daily Pirogue Count dataset provided estimates of 

the percentage of pirogue-use across the surveyed zones and villages, allowing for a more 

accurate assessment of latent fishing capacity, thereby providing more accurate estimates of 

actual fishing effort (see Appendix 3.2 for example datasheet). 

Following an access-point creel survey approach (Pollock, 1997) fishing effort and catch 

surveys were conducted within the designated villages and landing sub-zones, according to the 

pre-determined monthly sampling schedule, following a sampling in space and time approach 

(Stamatopoulos, 2002).  As daytime fishermen returned, which occurred over a relatively small 

window of time, the fisheries survey team initiated contact with fishermen, as they landed in a 

haphazard manner (Figure 3.8).  While one member of the survey team conducted the effort 



  

152 
 

 

Figure 3.6. Village landing zones (LZ) divided into sub-zones (green, orange, and red) for surveying 

purposes: a) Andrevo (LZ = 785m), b) Ambolomailaka (LZ= 500m), c) Ifaty (LZ= 620m), and d) Beravy 

(LZ= 1025m) 

 

 

 

a b 

c d 
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Figure 3.7. Inactive pirogues on the beach mid-morning, latent capacity 

 

 

Figure 3.8.  A view of fishermen returning to shore in a loosely coordinated manner 
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survey, the other members of the team characterized the catch, collecting species-specific length 

and weight data, which is described further in Chapter 4.  To maintain good-will and continued 

participation in the fisheries survey, incentives were provided to fishermen, in the form of coffee, 

snacks, and tobacco products, to offset the inconvenience of the data collection process, and to 

compensate for any delays that may have been caused in getting their products to the market. 

The standard objective of the fishing-effort portion of the landings survey was to collect 

data that would allow for the characterization of the spatiotemporal and gear-related components 

of daytime fishing trips.  Specific data collected included: departure / return time, number of 

people per pirogue, length of pirogue, fishing grounds, frequency of fishing for t(-1), t(-2), and t(-3)  

days, type of gear(s) used, gear characteristics (e.g. length, width, mesh size, number lines / 

hooks), number of gear sets, and depth of gear (i.e. bottom, mid-water, or surface) (see datasheet   

Appendix 3.3).  Typical gears used by modern Vezo fishermen include: gillnets, harpoons, 

spearguns, and hook-and-line (Figure 3.9 a-d).  In more recent years, the use of modified 

mosquito bed-nets has grown in popularity, as a stand-alone seining gear (Figure 3.9 e-f) and as a 

modification of existing gears, for example gill nets and beach seines with mosquito-net panel 

additions (Figure 3.10).  Use of mosquito netting in fisheries has been increasing over the past 

decade across the developing world (Bush et al., 2017; Short et al., 2018), which is likely the 

result of declining catches and the free-distribution of mosquito bed- netting by humanitarian 

organizations as part of their efforts to control malaria.  Similarly, another widely-distributed 

product whose intended use is meant to control the spread of sexually-transmitted diseases and 

reduce unwanted pregnancies has proven to be useful to Vezo fishermen.  For night-time 

speargun fishing activities, Vezo fishermen are commonly known to use condoms to water-proof  
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Figure 3.9. Commonly-used fishing gears by the Vezo of the Bay of Ranobe: gillnets (a-b), harpoons (c), 

spearguns (d), small mesh nets / mosquito netting (e-f) 
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Figure 3.10. Aerial view of typical beach seine hauling operation in the BoR; mosquito net paneling often 

inserted into wings and/or cod-end  

 

inexpensive, plastic flashlights.   Interestingly, despite these innovative applications of cheap and 

abundant materials, the fish trapping technology / techniques that are common in northern 

Madagascar (e.g. Narozanski, et al., 2011) and along the East African coast (e.g. d la Torre-

Castro and Ronnback, 2004) have not been adopted by the Vezo.  Nonetheless, as the focus of 

the present study is the daytime, pirogue-based fisheries of the BoR, only the fishing effort 

associated with the following gears are considered in future analyses:  

1) Boat seine,        2) Hook-and-line,  

3) Gillnet,       4) Mosquito Net, 

5) Gillnet modified with mosquito netting,   6) Speargun. 

7) Harpoon. 
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Although pirogues may be used to initially set a beach seine net 50 m – 100 m from shore, which 

is then hauled in by a team of 4-6 people, beach seines are excluded from any further analysis.  

Furthermore, given that beach seining activities are, spatially, highly-dispersed and highly-

variable along the coast and often occur during the night, the sampling design employed in the 

present study prohibits an accurate characterization of this specific gear-type.  

Spatiotemporal Dynamics of Fishing Effort 

Spatialized indicators of fishing effort are essential in evaluating changes in catch rates 

(CPUE), in assessing the potential impacts of fishing activities on benthic habitats, and in 

moving fisheries management towards an ecosystem-based approach (Swartzmann et al., 1992; 

Booth, 2000; Walters, 2000; Walters, 2003; Wilen, 2004; Babcock et al., 2005).  In the present 

study, fishing effort is mapped using satellite imagery, following a grid-based approach similar 

to the one used in Chapter 2 to enumerate dwelling units.   Using ArcGIS, a 500 m grid system 

was created and overlaid on the IKONOS-2 used in previous chapters, which was acquired on 

March 16, 2007 at 07:15 GMT.  Given that the spatial resolution of the multispectral bands 

associated with the image file is insufficient for the visual identification of the pirogues at-sea, 

only the Pan image was used (acquired nominal ground sampling distance - cross scan: 0.9851 m 

and along scan: 0.8977 m).  Standard deviation contrast enhancements, and minimal adjustment 

of the gamma levels, were applied to the Pan image to optimize identification of pirogues.  

Pirogues were enumerated in each grid cell, which was visually scanned in a systematic manner 

at a 1:3000 scale.  The 500 m sampling grid was converted to a .kml file and imported into 

Goolge Earth.  Similarly, the grid-based process of enumeration of pirogues at-sea was repeated 

on more recent Google Earth images (Figure 3.11).  Cloud-free and speckle-free Google Earth 

image tiles were identified that allowed for the reliable enumeration of pirogues at-sea.  Multiple  
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Figure 3.11.  IKONOS image mosaic (black / white) with 500 m sampling grid overlay and the location 

of villages targeted for fisheries surveys (green polygon); insets illustrate the resolution of the IKONOS 

image (red border) and location (red square) and that for the Google Earth image (blue border) and the 

location within the BoR (blue square); note, image resolution allows for distinction of pirogue hull and 

smaller outrigger float     
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image tiles were required to achieve complete coverage of the BoR.  Dates of image tiles used 

include: February 17, 2016, March 8, 2016, and June 3, 2018. 

Grid-based pirogues counts obtained from the four images, the IKONOS Pan image and 

three Google Earth image tiles, were converted to a commonly-used measure of spatial effort, 

boat*meters per square kilometer (pirogue*meters / km) (Stewart et al., 2010).  For the 

conversion, counts were multiplied by the mean pirogue length, as determined from the Pirogue 

Registration dataset, and divided by the grid cell area (0.25 km2).  A composite image was 

created by combining all image dates into single image, with the averaging of values only in 

areas of overlap.  In the final composite image, the shallow north-south extremes of the BoR 

were covered by single-date layers, whereas the values of the central part of the lagoon that is 

more important to the fisheries was comprised of averages based on 2-3 date-layers of data, 

depending on degree of overlap.   

 A final presentation of the spatial distribution of fisheries effort was produced from the 

grid-based spatiotemporal composite image by converting the grid polygons to points and 

applying an interpolation function.  The natural neighbor interpolation method was selected and 

used to produce the final BoR fisheries effort distribution map at a 100-m resolution.   

 

 

3.3 Results 
 

 

Fishing Capacity – Pirogue Characteristics 

 

Length data collected during the course of the Pirogue Registration campaign (March-

April 2013), were used to develop length-density profiles, and to evaluate differences that may 

exist in “fleet” characteristics amongst the villages targeted for fisheries data collection.  Length 

data were collected on pirogues from the four targeted villages: Andrevo n= (250), 
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Ambolomailaka (n=215), Ifaty (n= 221), and Beravy (n= 115), totaling 801 pirogue 

measurements (overall x̄ = 5.32 m, sd = 1.38 m, range = 3.0 – 9.0 m).  From the fleet profiles, 

informal inferences may be made on the distances traveled by fishermen from the respective 

villages to preferred fishing grounds (Figure 3.12).  For example, in general, shorter pirogues are 

likely used for fishing within lagoon on patch reefs not far from shore, while longer pirogues 

would allow fishermen to fish in the reef passes and on the exterior of barrier reef.  The length 

distribution profiles for the Andrevo (x̄ = 4.9, sd = 1.1) and Ifaty (x̄ = 5.0, sd = 1.2) fleets present 

similar right-skewed characteristics, except in the case for Andrevo a secondary peak exists in 

the profile at 6 m, indicative of a greater need / capacity to travel further.  Similarly, the length 

distributions for Beravy and Amobolomailaka are indicative of the distances traveled to fishing 

grounds, with Beravy (x̄ = 4.8 m, sd =1.0 m) being the closest to the barrier reef and having the 

smallest pirogues and Amoblomailaka (x̄ = 6.4 m, sd = 1.5 m) being the furthest from the barrier 

reef and having the longest pirogues.  Results of Levene's Test (F(3) = 11.893, p <0.001) 

indicated the existence of significant difference(s) in variances amongst village groups, violating 

the homogeneity of variance assumption of ANOVA.  Consequently, pair-wise comparisons 

were conducted amongst the four villages to determine differences in pirogue lengths, with p-

values adjusted following the Bonferroni correction method.  Results indicated that the mean 

pirogue length for the village of Ambolomailaka was significantly different from all the other 

villages (p < 0.001).  Pair-wise comparisons amongst the other villages found no significant 

differences in mean pirogue lengths (Figure 3.13).       

In 2013 and 2015, a bay-wide Pirogue Census was conducted to determine the total 

number of pirogues in all of the villages as a means of establishing the sampling universe, or 

population, of the fisheries surveys (Table 3.1).  Pirogue counts from the 2013 Pirogue Census  
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Figure 3.12. Smoothed histograms, or density profiles, of pirogue length data collected from the four 

targeted villages during Pirogue Registration campaign 

 

  

 
Figure 3.13. Boxplots of the of pirogue length data collected from the four targeted villages during 

Pirogue Registration campaign; mean pirogue length for the village of Ambolomailaka is significantly 

different from the other villages 
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Table 3.1. Total number of pirogues per the 12 villages of the Bay of Ranobe collected during 

the Annual Pirogue Count in 2013 and 2015, with targeted villages shaded 

 

 

Village Year 

  2013 2015 

Fitsitke 363 388 

Andrevo 364 338 

Ambolomailaka 263 284 

Betsibaroka 76 78 

Madiorano 92 91 

Amboaboaka 141 134 

Mangily 161 180 

Ifaty 290 244 

Ambalaboy 50 32 

Beravy 164 139 

Tsongeritelo 133 88 

Ambotsibotsike 122 97 

Total 2,219 2,093 

 

compared to the number of pirogues registered and measured in 2013 indicate that on average 

74.1% of the pirogues were accounted for from the 4 targeted villages (see Table 3.2 for 

summaries per village), while the number of registered pirogues (n= 801) represents 36.1% of 

the bay-wide pirogue count (n= 2219), according to the 2013 Pirogue Census data.  Village- 

specific length frequency data from the 4 villages that participated in the Pirogue Registration 

campaign in 2013 were used to determine total pirogue length in meters per village, as a 

component of fishing effort indices.  For the other 8 villages in which the Pirogue Registration 

campaign did not occur, thus detailed length frequencies were not available, length frequencies 

from the 4 surveyed villages were pooled and used to create a generalized histogram with 0.5-m 

bins (Figure 3.14).  Length frequencies from the generalized histogram were then used to 

calculate the number of pirogues in each length size class, from 2.5 m – 10 m in 0.5 m  

increments and scaled using the 2013 Pirogue Census data (Appendix 3.4).  Pirogue counts  

binned into size classes were multiplied by the size class to determine total length per bin, then  
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Table 3.2. Summary of pirogue lengths and counts per targeted village: counts of pirogues 

registered, and pirogue counts from census, Annual Pirogue Count 2013, and percent coverage of 

registration    

 

 

 Length (m) Ct. Pirogues Pirogue   
Village Avg SD Total Registered (2013) Census (2013) % Registered 

Ambolomailaka 6.4* 1.5 1373.8 215 263 81.7% 

Andrevo 4.9 1.1 1228.7 250 364 68.7% 

Beravy 4.8 1.0 550.5 115 164 70.1% 

Ifaty 5.0 1.2 1107.8 221 290 76.2% 

       
 

 

 
 
Figure 3.14. Generalized density profile for pirogue lengths of all pirogues recorded in the Pirogue 

Registration from the villages of Andrevo, Ambolomailaka, Ifaty, and Beravy 
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summed to obtain total length per village (Appendix 3.5).  Pirogue counts and total pirogue 

lengths per village are presented in Table 3.3, and represent a key component of the total 

potential fishing effort, or fishing capacity, that exists in the Bay of Ranobe.  

 A simple linear regression was calculated to predict the number of fishermen based on 

pirogue length.  A significant regression equation was found (F(1,12397)= 1.213x104, p< 0.001), 

with an R2 value of 0.4944 (Table 3.4).  The predicted number of fishermen is equal to -1.236 + 

0.6143* (pirogue length), with pirogue length measurements in meters.  The number of 

fishermen per pirogue increased 0.6143 for each meter increase in pirogue length.  The fitted 

linear regression is presented in Figure 3.15. 

 

Table 3.3. Pirogue counts for the 12 villages of the Bay of Ranobe, with total length in meters 

 
Village Count (2013) Total Length (m) 

Fitsitke 363 2021 

Andrevo 364 1880 

Ambolomailaka 263 1747 

Betsibaroka 76 423 

Madiorano 92 512 

Amboaboaka 141 785 

Mangily 161 896 

Ifaty 290 1524 

Ambalaboy 50 278 

Beravy 164 826 

Tsongeritelo 133 740 

Ambotsibotsike 122 679 

Total 2,219 12,311 

 

 

 

Table 3.4. Results of simple linear regression of number of fishermen and pirogue length 

Model 

Coefficients 

t-value Pr(>|t|) 

95% Confidence Interval 

Estimate Std. Error Lower Upper 

Intercept -1.236 0.0304 -40.7 <0.001 -1.2954 -1.1764 

Pir. Length 0.6143 0.0056 110.1 <0.001 0.6034 0.6252 
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Figure 3.15. Regression plot of observed number of people versus pirogue length with fitted regression 

line, confidence interval (blue) and prediction interval (red dash) (top); Component plus residual plot with 

linear fit (dashed blue) and smooth fit (magenta) 
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Based on the pirogue-length profiles for each of the 12 villages, where pirogue counts are 

distributed amongst 0.5 m length classes (described above and presented in Appendix 3.4), the 

total number of pirogue-based fishermen per village, ŷvillage, was predicted using the linear 

regression coefficients, as follows: 

𝑦̂𝑣𝑖𝑙𝑙𝑎𝑔𝑒 = ∑ 𝑛𝑖..𝑗(𝛽1 ∗ 𝐿𝐶𝑖..𝑗 − 𝛽0)
𝑗
𝑖  , 

 

where LCi…j represents length classes from 2.50 m – 10.0 m in 0.50 m increments and ni…j 

represents pirogue counts per length class.  Regression estimates for the total number of pirogue-

based fishermen per village were compared to the village-specific population estimates 

calculated for the year 2013, using the annual growth rate determined for the period from 2004-

2015 (Chapter 2).  To determine the potential human capacity per village, as a percentage of the 

village population, the predicted number of fishermen corresponding to the fishing fleets from 

each village, assuming all the pirogues counted in the census were used simultaneously, was 

divided by the population estimates.  Results indicate that the overall average percentage of the 

Bay of Ranobe community that could potentially participate in pirogue-based fishing activities 

equals 19.7%, with specific village estimates ranging from 6.6% in the village of Mangily to 

29.2% in Amboaboaka (Table 3.5).   

Fishing Capacity – Gear Characteristics 

 The principle source of data for the analyses included in the present chapter is the Fishing 

Effort dataset that includes 13,830 records of effort / gear characteristics, corresponding to the 

catches analyzed in the following chapter (see datasheet in Appendix 3.3).   In terms of fishing 

gear, the Vezo fishermen of the Bay of Ranobe use 4 principle gear types, listed in order of 
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Table 3.5. Pirogue counts, population estimates from 2013, and regression predictions of number 

of fishermen based on pirogue-length profiles, as percentage of total population per village  

 

Village 

Pirogue 

Count (2013) 

Population 

Est. (2013) 

Predicted Nb 

fishermen % Pop 

Fitsitke 363 3581 793 22.1% 

Andrevo 364 2700 705 26.1% 

Ambolomailaka 263 3136 748 23.9% 

Betsibaroka 76 841 166 19.7% 

Madiorano 92 986 201 20.4% 

Amboaboaka 141 1055 308 29.2% 

Mangily 161 5371 352 6.6% 

Ifaty 290 2135 578 27.1% 

Ambalaboy 50 746 109 14.6% 

Beravy 164 1493 305 20.4% 

Tsongeritelo 133 1253 290 23.1% 

Ambotsibotsike 122 1156 266 23.0% 

Total 2,219 24,453 4,821   

 

importance: 1) gillnets, 2) hook-and-line, 3) harpoons, and 4) spear guns.  These 4 gear types 

collectively account for 91.7% of the reported gear usage, with gillnet, hook-and-line, harpoon, 

and spear gun usage accounting for 31.8%, 24.3%, 22.5%, and 13.1%, respectively.  Other gears,  

gear modifications, and methods recorded in the Fishing Effort dataset, include: boat seining 

(4.9%), mosquito net (2.4%), and gillnets modified with mosquito netting (0.67%) (Figure 3.16 

a).  Similar to the distinct pirogue-length profiles generated for each of the 4 surveyed villages in 

the previous section, each of the villages exhibits a distinct gear-usage profile (Figure 3.16 b-e).  

As was the case with the pirogue-length profiles, again, the villages of Andrevo and Ifaty exhibit 

strong similarities in terms of gear-usage.  However, in the case of Ifaty, the use of spearguns is 

more pronounced.  The composition, and relatively even distribution, of gear-usage by fishermen 

of Amobolomailaka, suggests a less specialized approach, while fishermen of Beravy are heavily 

reliant on the use of gillnets.     
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Figure 3.16. Gear usage profiles: a) for all villages combined, b) Andrevo, c) Ambolomailaka, d) Ifaty, 

and e) Beravy (BS= boat seine, GN= gillnet, GN/MN= gillnet modified w/ mosquito net, HA= harpoon, 

HL= hook-line, MN= mosquito net, and SG= speargun)  

 

a 

b c 

d 
e 
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A GLM model was used to determine the relationship between gear type and length of 

pirogues used by fishermen.  A significant relationship was determined (χ2 (6) = 5939.90, p< 

0.001), indicating that all gear type factor levels were highly significant (see Table 3.6), 

however, due to the high variability in pirogue length (Figure 3.17), the pseudo-R2 values varied 

from 0.11-0.31, depending on method used for the calculation.  Nonetheless, coefficient 

estimates indicated the ranges of pirogue lengths commonly used by fishermen per gear type, 

where the longest pirogues were associated with gillnet, mosquito net, spear gun, gillnet 

modified, harpoon, and hook-and-line, in descending order (Figure 3.18).   

Temporal Dynamics and Realized Fishing Effort 

 

 Fishing frequency and time spent at-sea are key components to the calculation of fishing 

effort.  For the traditional Vezo fishermen, whose vessel technology consists of unmotorized 

wooden pirogues, equipped with sails made from rice sacks or cotton, the sea state and weather 

conditions play a much greater role than in industrialized fisheries in determining day-to-day 

fishing activities, and ultimately the total annual effort exerted.  In this section, multiple datasets 

are analyzed to differentiate latent fishing capacity from active annual fishing effort.  Datasets 

include: 1) wind speed and direction data collected from 2013 – 2016, with a gap in data due to 

weather station malfunction; 2) the Fishing Effort dataset that covered the period from 

04/03/2013 – 12/18/15; and 3) the Daily Pirogue Activity dataset that covered the period from 

05/02/2013 – 03/24/2015.       

Wind speeds in southern Madagascar are highly variable, as cold fronts emanating from 

the sub-Antarctic push north to Madagascar, colliding with the high day-time heat (Figure 3.19).  

Weather station data indicated an overall average wind speed of 7.43 kph for all years of data  
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Table 3.6. Summary of GLM results for model pirogue length ~ gear type  

 

Model 

Coefficients 

t-value Pr(>|t|) 

95% Confidence Interval 

Estimate Std. Error Lower Upper 

Intercept 6.39 0.04 162.94 < 0.001 6.32 6.47 

Gillnet -0.21 0.04 -5.07 < 0.001 -0.30 -0.13 

Gillnet (MN) -1.23 0.11 -10.82 < 0.001 -1.45 -1.01 

Harpoon -1.50 0.04 -34.61 < 0.001 -1.58 -1.41 

Hook/Line -1.74 0.04 -40.42 < 0.001 -1.82 -1.65 

Mosq. Net -0.92 0.07 -13.33 < 0.001 -1.05 -0.78 

Spear Gun -0.97 0.05 -21.09 < 0.001 -1.06 -0.88 

 

 

 

 
 
Figure 3.17. Boxplot of pirogue length by gear type 

 

 

 
 
Figure 3.18. Plot of scaled regression coefficients with 95% confidence intervals, indicating relative 

pirogue lengths associated with gear usage from shorter to longer pirogues (left to right) 
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availability, with speeds ranging from 0 - 62.8 kph.  During the morning hours winds are more 

stable, however, by mid-day the temperature increases and the winds become significantly 

stronger (F(1,41345) = 2223, p< 0.001) (Figure 3.20).  Predominant winds approach from the 

southwest and to a lesser extent from the southeast, and only rarely from northern directions, 

which is usually considered a sign of regional cyclonic activity (Figure 3.21).   

 To determine the effect of wind on the temporal aspects of fishing effort, as part of the 

fisheries survey campaign, data were collected pertaining to two types of indicators of daily 

fishing activity, namely time spent fishing and daily pirogue counts.  Time spent fishing, or time 

at-sea, is a standard measure of fishing efffort, where the time difference is calculated between 

the departure time and return time.  Secondly, pirogue counts were conducted within the specific 

village and fishing zone being surveyed on a given day, with the initial count being conducted 

mid-morning (median time= 11:00, range= 9:00 -13:00) after the daytime fishermen have 

departed, usually around sunrise, 5:00 – 7:00 (Figure 3.22), to determine the number pirogues 

remaining on the beach, or the unused capacity.  A second count was conducted after the 

fishermen have returned, 10:00 – 13:00 (Figure 3.22) and the fisheries data have been collected 

(median time= 13:00, range= 10:00-17:00) in order to obtain the maximum count, or total 

capacity for the specific village and fishing zone.  The percentage of active pirogues was 

calculated as 1-(pirogue count (am) / pirogue count (pm)) and used as an indicator of active 

effort.       

 From the Fishing Effort dataset, time spent fishing was anlyzed and compared to wind 

speed to determine whether wind affected the number of hours spent at-sea fishing by the 

fishermen of the targeted villages of Andrevo, Amobolomailaka, Ifaty, and Beravy.  Overall, for  
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Figure 3.19.  Daily average wind speeds color coded by year (± standard error in gray), with vertical lines 

representing the period covered by the fisheries catch and effort surveys (solid black) and the daily 

pirogue count survey (dashed black) 

 

 

 
 
Figure 3.20. Monthly averaged wind speeds (kph ± se) for the morning and afternoon hours  
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Figure 3.21. Circular histogram of wind speed (m s-1) according to wind direction counts  

 
 

 

 
Figure 3.22. Circular histogram for the departure (left) and return (right) times of fishermen recorded in 

the Fishing Effort dataset 
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Table 3.7. Average daily time spent fishing per targeted village 

 

Village Avg. Time Fishing SD n 

Andrevo 5.43 1.52 3862 

Ambolomailaka 5.36 1.92 3678 

Ifaty 4.75 1.99 4339 

Beravy 4.79 1.73 2017 

All Data 5.11 1.84 13,896 

    
 

all years of the dataset (2013-2015), an analysis of variance (ANOVA) found that significant 

differences exist between the four villages in terms of time spent fishing (F(3,13822) = 140.1, p < 

0.001).  A post-hoc comparison, using Tukey’s HSD, indicated that the average number of hours 

spent fishing by the two northern villages of Andrevo (x̄ = 5.43) and Ambolomailaka (x̄ = 5.46) 

both differed significantly (p < 0.001) from the southern villages of Ifaty (x̄ = 4.75) and Beravy 

(x̄ = 4.79) (Table 4.5).  Monthly averages of time spent fishing varied from 4.34 to 5.54 hours 

per day, where less time was spent fishing during the austral spring / summer, ostensibly the 

result of increasing air temperatures and wind speeds (Table 3.8, Figure 3.23).     

To determine the relationship between average daily time spent fishing and daily average 

wind speed, initially, a GAM was fitted to the dataset.  Results of the GAM indicated a strong 

linear relationship, thus a simple linear regression was calculated.  Alternative simple linear 

regression models were evaluated to determine the optimal window of time for windspeed to be 

included in the final model, as a means to explore the decision-making process of the fishermen. 

For example, a morning-hour (00:00 – 12:00) windspeed model was tested to determine if 

windspeeds in the hours before departure influenced time spent at-sea.  Secondly, a daytime 

(06:00 – 18:00) windspeed model to determine if windspeeds throughout day influenced time  
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Table 3.8.  Average monthly time spent fishing for the four targeted villages combined 

 

Month Avg. Time Fishing SD n 

1 4.92 1.86 24 

2 5.34 1.79 28 

3 5.10 1.70 18 

4 5.32 1.65 21 

5 5.54 2.01 16 

6 5.31 1.74 19 

7 5.31 1.56 17 

8 5.54 1.73 20 

9 5.22 1.98 18 

10 4.63 1.97 21 

11 4.66 1.94 21 

12 4.34 1.55 18 

 

 

 

 

 
 
Figure 3.23. Average monthly time (hours) spent fishing (blue line) ± standard error (gray) as compared 

to monthly average wind speeds (kph; black line) ± standard error (gray)   
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spent at-sea.  Lastly, a time-lagged model where daytime wind (06:00 – 18:00) from the previous 

day was used to determine if the knowledge of windspeed of the previous day influenced time 

spent at-sea.  The morning-hour winds model produced the poorest results and was eliminated.  

A comparison of the same-day versus the time-lagged daytime-wind model indicated that the 

windspeeds of the previous day influenced more greatly the time spent at-sea, where adjusted R2 

values equaled 0.0652 versus 0.1034, respectively.  For the final model, a significant regression 

equation was found (F(1,445)= 52.45, p< 0.001), with an adjusted R2 value of 0.1034 (Table 3.9) 

after the removal of extreme outliers (n=6).  The predicted amount time spent fishing, in hours, is 

equal to 5.700 - 0.069* (wind speed), with wind speed measurements in kilometers per hour.  

The fitted linear regression is presented in Figure 3.24 (see Appendix 3.6 for regression 

diagnostic plots). 

 Analyses similar to those conducted for windspeed, above, were also conducted on the 

Daily Pirogue Count dataset, an independent dataset of pirogue-use frequency.  A global average 

of the percentage of pirogue-use, using all data pooled (n = 351), indicated that 62.8% of 

pirogues counted within the fishing zones of the four targeted fishing villages were used on a 

daily basis.  An ANOVA was conducted to investigate differences in pirogue activity rates 

between villages, using an arcsine-square root transformation of percentages to approximate 

normality.  Results indicated that no significant difference exists in the average activity rates 

between villages (F(3, 347) = 1.385, p = 0.247), where average percentages of pirogue-use per 

village equaled: Andrevo (61.5%), Ambolomailaka (63.9%), Ifaty (60.2%), and Beravy (65.1%) 

(Table 3.10).  For visual comparison purposes, a GAM smooth line was fitted to the individual 

villages, which suggested that there may be some village-specific responses to windspeed, 

particularly at windspeeds >10 kph (Figure 3.25).    
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Table 3.9. Summary of GLM results for the model: fishing time (hr) ~ wind speed (kph), with 

the same-day wind speeds (Date model) and wind speeds from the previous day (Date-1 model) 

 

 

Model 

Coefficients 

t-value Pr(>|t|) 

95% Confidence Interval 

Estimate Std. Error Lower Upper 

Date 
Intercept 5.572 0.0978 56.986 < 0.001 5.3795 5.7638 

Wind Speed -0.055 0.0097 -5.659 < 0.001 -0.0741 -0.0359 

Date (-1) 
Intercept 5.700 0.0947 60.210 < 0.001 5.5142 5.8863 

Wind Speed -0.069 0.0095 -7.242 < 0.001 -0.0873 -0.0500 

 

 

 

 

 

 
 
Figure 3.24. Component plus residual plot for the fitted GLM fishing time ~ wind speed) with linear fit 

(blue dash line) and smooth fit (magenta line) for comparison purposes 
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Table 3.10. Average activity, measured as percentage of pirogue-use, per targeted village 

 

   Zone Counts  

Village Avg. Activity (%) SD 1 2 3 Count 

Andrevo 61.5 16.8 35 30 18 83 

Ambolomailaka 63.9 15.5 39 37 23 99 

Ifaty 60.2 19.8 33 27 19 79 

Beravy 65.1 16.4 40 32 18 90 

All Data 62.8 17.1    351 

   
   

 
 

 

 

 

 

 
 

 
Figure 3.25.  Changes in pirogue activity, percentage-use, relative to wind speed per targeted village  
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Monthly averages of the percentage of pirogue-use indicated fluctuations in activity over 

the year, with percentages varying from 54.6 % in May to 69.9% in August (Table 3.11), and a        

general correspondence to fluctuations in monthly average windspeeds (Figure 3.26).  GAM 

models were fitted to the daily pirogue activity and daily-averaged wind speed data (n = 229), 

with same-day and lagged windspeed models evaluated to determine the best fit.  Models were 

fit using the “mgcv::gam” library in R statistical software, with the standard GAM smoothing 

function and restricted maximum likelihood optimization (method=REML):  

% Pirogue Activity ~ s(Daily Average Windspeed). 

Results of the time-lagged GAM indicated that daily average windspeed was a significant 

predictor (F(2.072, 2.646) = 3.576, p =  0.0239), however the overall fit is quite poor (adjusted R2 = 

0.0365, deviance explained = 4.53%) (Figure 3.27).  Results of the same-day GAM indicated 

that windspeed was a highly significant predictor (F(4.582,5.643) = 5.124, p < 0.001) and an 

improved fit (adjusted R2 = 0.109, deviance explained = 12.7%) (Figure 3.28).  Given the 

relatively poor fit, the usefulness of either model for prediction purposes is questionable.         

 

Fishing Effort Spatiotemporal Dynamics 

 

  For the Annual Pirogue Count dataset, the total number of pirogues were counted in the 

12 villages in years 2013 and 2015 at moments of inclement weather (January – April) in order 

reasonably ensure that counts were accurate.  During this time period, a -5.7% change in the total 

number of pirogues was observed, with n = 2219 pirogues in 2013 and n = 2093 in 2015.  After 

calculating the percent change per village, a general trend emerged indicating an overall 

reduction in fishing effort and a potential shifting of effort from the southern villages to the 

northern villages (Table 4.10).         
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Table 3.11. Monthly average activity, or pirogue-use, with data from all four targeted villages 

combined 

 

Month Avg. Activity (%) SD n 

1 68.4 10.7 30 

2 61.2 13.8 31 

3 58.7 19.9 29 

4 54.6 15.5 21 

5 62.5 17.9 35 

6 64.5 22.0 26 

7 57.0 16.7 33 

8 69.9 14.4 30 

9 68.3 12.0 30 

10 63.8 20.4 30 

11 60.9 20.5 26 

12 61.8 14.5 30 

 

 

 

 
 

 
 
Figure 3.26. Monthly variations in pirogue activity, percentage of pirogues in-use, relative to the monthly 

changes in wind speed 
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Figure 3.27. Time-lagged model: GAM fit (red line) with 95% confidence intervals (blue dash) and 

model residuals (adjusted R2 = 0.0365, deviance explained = 4.53%); rug plot – marks on axes indicate 

observed data values 

 
 

 

  
 

 
Figure 3.28. Same-day model: GAM fit (red line) with 95% confidence intervals (blue dash) and model 

residuals (adjusted R2 = 0.109, deviance explained = 12.7%); rug plot – marks on axes indicate observed 

data values 
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Spatiotemporal Dynamics of Fishing Effort 

 

 Responses of fishermen to the Fishing Effort survey question regarding fishing location 

provided the first glimpse of the potential spatial diversity and wide distribution of effort 

throughout the BoR.  From the Fishing Effort dataset, representing 13,897 man*days of fishing 

effort, responses of fishermen indicated the existence of 100+ uniquely-named fishing sites.  

Although, at the time, we were unable to establish the spatial coordinates that correspond to 

these traditional fishing sites, the potential exists to produce a fishing effort distribution map of 

low resolution based solely on the geo-localization of the traditional fishing sites.  For example, 

the 500 m grid system developed for the present study was comprised of n = 735 grid cells, 

whereas 100+ locations are identified following the traditional naming system.  However, 

although sites names may be unique, actual locations, shapes, and sizes of the site may not be 

distinct nor unique across all named sites, complicating the usefulness of the information for 

survey work.  

The Annual Pirogue Count dataset, where counts were conducted in all 12 villages of the 

BoR in 2013 and 2015, provided the first evidence that a shift, or a re-distribution, of fishing 

effort had occurred during the study period.  Pirogue counts indicated that overall a 5.68% 

reduction in effort occurred across the Bay from 2013-2015.  For each village, the total percent 

change and annual percent change were calculated.  Results indicated a general decline in the 

number of pirogues present in the southern villages of the Bay, and evidence of a re-distribution 

of fishing effort to the villages in the north (Table 3.12).    

 Localization and enumeration of pirogues at-sea, based on IKONOS and Google Earth 

satellite imagery, allowed for a time-averaged characterization of the spatial distribution of 

fishing effort.  Using an IKONOS Pan image and Google Earth image tiles, initial spatial images  



  

183 
 

Table 3.12. Percent change in village fleets from 2013-2015 from Annual Pirogue Count dataset, 

with villages ordered from north to south 

 

 

Village Year 

Total % 

Change 

Annual 

Change  
  2013 2015      

Fitsitke 363 388 6.9% 3.4% North 

Andrevo 364 338 -7.1% -3.6%  

  

Ambolomailaka 263 284 8.0% 4.0% 

Betsibaroka 76 78 2.6% 1.3% 

Madiorano 92 91 -1.1% -0.5% 

Amboaboaka 141 134 -5.0% -2.5% 

Mangily 161 180 11.8% 5.9% 

Ifaty 290 244 -15.9% -7.9% 

Ambalaboy 50 32 -36.0% -18.0% 

Beravy 164 139 -15.2% -7.6% 

Tsongeritelo 133 88 -33.8% -16.9% 

Ambotsibotsike 122 97 -20.5% -10.2% South 

Total 2219 2093 -5.68% -2.84%  

 

 

  
of pirogue density were created for each of the four image dates: 16 March 2007, 17 February 

2016, 8 March 2016, and 3 June 2018, with 625, 329, 114, and 205 pirogues counted in each 

image, respectively (Figure 3.29).  A composite image was created by averaging pirogue count 

data from the multi-date imagery that was converted to pirogue*meters per square kilometer.  

Results of the grid-based spatial averaging of fishing effort indicated that approximately 60.0% 

of the grid cells experienced positive levels of fishing effort, while the fishing effort in the other 

40% of grid cells equaled zero.  In grid cells where fishing effort was greater than zero, the 

average level of fishing effort equaled 33.3 pirogue*meters / km2 per day, with an overall 

average fishing intensity for the entire lagoon equal to 17.9 pirogue*meters / km2 per day.  The 

composite image grid was converted to points, with points then being interpolated to create the 

final map image at 100 m resolution, using the natural neighbor interpolation method.  The final 
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image illustrates the locations of high fishing effort that occurs around the margins of the lagoon 

in areas of greatest depth change, where the shallow waters of the reef flat and beach shelf drop 

to floor of the lagoon, changes in depth associated with patch reefs, and in the north / south reef 

passes (Figure 3.30).          

 

3.4 Discussion 
 

 

In the present study, fishing effort data collected from 2013 – 2015 describing the Vezo 

artisanal fisheries of four villages of the Bay of Ranobe was characterized and analyzed to allow 

for a deeper understanding of the fisheries of the Bay, and to provide adequate representativity, 

in time and space, for the generalization of results.  Initially, the bay-wide pirogue census, 

Annual Pirogue Count, allowed for the establishment of the sampling frame, and the subsequent 

determination of four villages targeted for fisheries surveys (i.e. Andrevo, Ambolomailaka, Ifaty, 

and Beravy) that collectively represent 48.7% of the pirogue-based fishing effort.  From data 

collected in the targeted villages, village-specific pirogue length and gear profiles allowed for an 

appreciation of the distinct fleet characteristics that exist at the village-level, whereas, in 

averaging the data across villages, the generic profiles permit for the extrapolation of results 

across the Bay.  Regression analysis demonstrated the relationship that exists between pirogue 

length and gear-use, where intuitively, larger gears (e.g. gillnets) require larger pirogues.  Larger 

pirogues, and the use of larger fishing gears, require the involvement of more people to manage 

the pirogue / gear.  A regression equation was determined to allow for the prediction of the 

number of fishermen according to pirogue length, which was used to predict the number of 

fishermen bay-wide based on the 4 custom and 8 generic pirogue-length profiles established for 

the 12 villages of the Bay.  Prediction results indicate that approximately 21.4% of the  
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Figure 3.29. Spatial distribution of fishing effort based on the enumeration of pirogues at 500 m grid sampling resolution; colored grid cells 

indicate extent of image and intensity of effort for images from multiple dates and platforms: (left to right) IKONOS Pan image captured 16 March 

2007 and Google Earth images from 17 February 2016, 8 March 2016, and 3 June 2018 
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Figure 3.30. Spatial distribution of fishing effort (pirogue-meters km-2) within the Bay of Ranobe 

interpolated using the natural neighbor at 100m resolution, with villages indicated by orange-red polygons 

and arrows indicating the north-south passes (left); Voroni map representations of data: mean, median, 

and mode (right)   

 

Voronoi Map
Type: Mean

Dataset : fisheries_sample_zones2_pts Attribute: mean1
Voronoi Map
Type: Median

Dataset : fisheries_sample_zones2_pts Attribute: mean1

Voronoi Map
Type: Mode

Dataset : fisheries_sample_zones2_pts Attribute: mean1
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population of the Bay, as determined by human population estimates from Chapter 2, are 

involved in the pirogue-based fisheries. The results, and associated analyses, discussed above 

represent the characterization and quantification of the total fishing capacity, latent plus active 

fishing capacity, that exists in Bay of Ranobe in terms of fishermen, vessels, and gear.    

To determine the active fraction of the total fishing capacity, temporal data relevant to 

fishing effort were analyzed, namely time spent fishing and daily pirogue activity, and the 

potential effects of wind in mitigating these measures of fishing activity.  Early in the design 

phase of the fisheries survey, it was noted that, at times, periodic strong winds prohibited 

fishermen from fishing.  Given that all of the boats in the fishery are unmotorized, the effect of 

the wind on total annual effort could, theoretically, be quite substantial.  However, analyses of 

wind speed data revealed that the greatest variation and strongest winds occurred in the afternoon 

hours after most / all of the daytime fishermen had returned.  Wind is likely more influential in 

determining fishing effort in the nighttime fisheries than it is for daytime fisheries, however, that 

was not the focus of the present study.  Regression analyses of windspeed on daily averages of 

time spent fishing and the percentage of active pirogues were statistically significant, however, r-

squared values were quite low, 0.1034 and 0.109, respectively.  Interestingly, the best fit for the 

“time spent fishing” model was for wind speeds lagged by one day, whereas for the “pirogue 

activity” model the best fit was achieved using the same-day wind speeds.   Logically it seems 

that the actual time spent fishing in a given day is based upon prior knowledge of  wind patterns 

from the day(s) previous, as implied by the regression of time spent fishing, and that significant 

deviations from the fishermen’s prediction of the day’s weather could lead to the canceling of 

fishing activities, as implied by the same-day pirogue-activity regression results.  Clearly, 

weather / wind is an important factor in seasonally shaping the amount of total fishing effort (i.e. 
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time spent fishing and pirogue activity) exerted in this fishery comprised of small, sail-powered 

vessels, as illustrated in figures 3.23 and 3.26.  Results of the Daily Pirogue Counts indicated that 

the overall daytime pirogue activity was 62.8%, varying from 54.6% - 69.9% on a monthly basis.  

It is worth noting that the “inactive” fraction of pirogues may not be truly inactive, with the 

majority likely used in nighttime fishing activities and a small proportion reserved for special 

uses, such as guided trips for tourism.  Moreover, as part of the fishing effort survey, fishermen 

were asked the number of days they had fished over the previous 3 days and, if applicable, the 

reasons for which they had missed a day of fishing.  Of 115 responses, 71.3% indicated that they 

had missed a day due to wind, with most of these responses occurring in the months of 

November, December, and February.  Nonetheless, the regression analyses conducted here do 

not appear to have appreciably captured the full effect of the wind on fishing effort, likely the 

result of issues of scale, and to a lesser extent, nonlinearities.  In the present study, same-day and 

previous-day models were evaluated, however, weather effects are quite likely operating at 

multiple time-scales, necessitating a hierarchical analysis approach.  Although the fitted 

regression models were linear and quasi-linear, sailing requires some wind, thus increasing wind 

speeds are likely preferred by fishermen up to a certain extent, then wind speed becomes a 

deterrent.             

Another factor commonly known to affect departure and return times are the tides.  

Along much of the coastline of the Bay, the intertidal zone extends several hundred meters from 

shore, effectively blocking poorly-timed boat movements.  Tides synchronize, to some extent, 

fishermen returning, which can be an advantage when conducting landing surveys.  Other 

reasons provided for missed fishing days, from the fishing effort survey, include: funerals 

(10.4%), fatigue (7.8%), sickness (3.5%), and church (3.5%).  As Kroodsma et al. (2018) noted 
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the observance of holidays in the global commercial fishing fleets, for the Vezo, there are several 

holidays that are generally observed: Christmas, New Year’s, and Independence Day (June 26).  

It is interesting to note that although fishing effort may approach zero in observance of holidays, 

it intensifies in the weeks prior as a means to generate additional income and insure sufficient 

funds for food, drink, and festivities (pers. obs.).                                  

 A critical component in assessing fisheries, and in evaluating the environmental impacts 

thereof, is an understanding of the spatial distribution of fishing effort.  Research over the past 

decade has begun assessing the spatialized fishing effort for global commercial fisheries, 

however, only in more recent years has the focus turned to the substantial amount of fishing 

pressure occurring in nearshore waters exerted by the small-scale fisheries sector.  Stewart et al. 

(2010) quantified and mapped fishing pressures in coastal waters around the globe, however, the 

clear lack of data that exists for many parts of the globe, particularly Madagascar, raises 

questions about the accuracy of such efforts.  The Stewart et al. (2010) study found that fishing 

pressure along the coasts of Madagascar was relatively low (0.01 – 0.05 boat-meters km-2).  The 

present study provides the first estimates of spatial fishing effort for Madagascar that are based 

on actual satellite-based pirogue counts, with estimates of fishing pressure for the Bay of Ranobe 

(33.3 pirogue-meters km-2) greatly exceeding previous estimates.  

 Within the Bay of Ranobe, the 2013/2015 Annual Pirogue Counts indicate a re-

distribution of fishing effort from the south to the north, with a 16% change occurring from the 

village of Mangily northward.  Comparatively high fishing pressures in the lagoon south of 

Mangily, as indicated by the spatial distribution of fishing effort map product (see Figure 3.30), 

may be the underlying cause.  In Chapter 4, evaluations of catch-per-unit-effort will be 

conducted to determine whether the catch rates in the villages of the southern part of the Bay are 
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indeed declining as a result of localized fishing pressures, and whether declining catch rates are 

the potential cause of the northward migration.    
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Appendix 3.1. Excerpt from the data collection schedule designed for the fisheries surveys; 

abbreviated village names indicate location of the survey relative to the full moon (green date) 

and new moon (red date) 
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Appendix 3.2. Daily Pirogue Count data sheet          



  

200 
 

 
 

 

 
 

Appendix 3.3. Fishing Effort survey data sheet  
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Appendix 3.4. Pirogue counts per length class, with actual data for surveyed villages highlighted in gray, where estimates for villages 

not surveyed were generated from the generic density profile 

 

 

 

 

 

 

Length Bin Fitsi. Andre. Ambolo. Betsi. Madio. Amboa. Mangily Ifaty Ambala. Beravy Tsong. Ambot. 

2.50 0 0 0 0 0 0 0 0 0 0 0 0 

3.00 0 0 0 0 0 0 0 0 0 1 0 0 

3.50 11 6 2 2 3 4 5 13 2 13 4 4 

4.00 55 74 16 11 14 21 24 51 8 26 20 18 

4.50 67 92 17 14 17 26 30 68 9 27 25 23 

5.00 50 52 27 10 13 19 22 45 7 26 18 17 

5.50 39 29 24 8 10 15 17 28 5 36 14 13 

6.00 32 50 9 7 8 12 14 18 4 21 12 11 

6.50 24 25 20 5 6 9 11 20 3 7 9 8 

7.00 26 17 33 6 7 10 12 20 4 6 10 9 

7.50 24 12 43 5 6 10 11 14 3 0 9 8 

8.00 20 4 42 4 5 8 9 9 3 0 7 7 

8.50 10 3 22 2 3 4 5 4 1 0 4 4 

9.00 3 0 7 1 1 1 1 0 0 1 1 1 

9.50 0 0 1 0 0 0 0 0 0 0 0 0 

10.00 0 0 0 0 0 0 0 0 0 0 0 0 

Total 363 364 263 76 92 141 161 290 50 164 133 122 
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Length Bin  Fitsi. Andre. Ambolo. Betsi. Madio. Amboa. Mangily Ifaty Ambala. Beravy Tsong. Ambot. 

2.50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3.00 1.4 0.0 0.0 0.3 0.3 0.5 0.6 0.0 0.2 4.3 0.5 0.5 

3.50 39.7 20.4 8.6 8.3 10.0 15.4 17.6 45.9 5.5 44.9 14.5 13.3 

4.00 219.3 297.0 63.6 45.9 55.6 85.2 97.3 204.7 30.2 102.7 80.4 73.7 

4.50 301.8 412.8 77.1 63.2 76.5 117.2 133.9 307.1 41.6 121.9 110.6 101.4 

5.00 249.3 262.1 134.6 52.2 63.2 96.8 110.5 223.1 34.3 128.3 91.3 83.8 

5.50 214.4 160.2 134.6 44.9 54.3 83.3 95.1 151.6 29.5 196.1 78.5 72.0 

6.00 190.3 297.0 51.4 39.9 48.2 73.9 84.4 110.2 26.2 128.3 69.7 64.0 

6.50 156.1 160.9 127.2 32.7 39.6 60.6 69.2 127.9 21.5 46.3 57.2 52.5 

7.00 184.0 122.3 231.2 38.5 46.6 71.5 81.6 137.8 25.3 39.9 67.4 61.8 

7.50 183.5 87.4 321.1 38.4 46.5 71.3 81.4 108.3 25.3 0.0 67.2 61.7 

8.00 159.5 34.9 332.7 33.4 40.4 62.0 70.8 73.5 22.0 0.0 58.4 53.6 

8.50 88.6 24.8 187.2 18.5 22.5 34.4 39.3 33.5 12.2 0.0 32.5 29.8 

9.00 28.6 0.0 66.1 6.0 7.2 11.1 12.7 0.0 3.9 12.8 10.5 9.6 

9.50 4.3 0.0 11.6 0.9 1.1 1.7 1.9 0.0 0.6 0.0 1.6 1.4 

10.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 2020.7 1879.7 1746.8 423.1 512.1 784.9 896.3 1523.5 278.3 825.7 740.4 679.1 

             
 

Appendix 3.5. Pirogue total length per length class, with actual data for surveyed villages highlighted in gray, where estimates for 

villages not surveyed were generated from the generic density profile 
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Appendix 3.6. Regression diagnostic plots for the time-lagged regression model of average time 

spent fishing as predicted by wind speed 
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Vezo Artisanal Fisheries: Characterization of landings and 

economic valuation of the daytime, boat-based coral reef fisheries of 

the Bay of Ranobe 

 

4.1 Introduction 

Coral reef ecosystems: A global crisis  

Coral reef ecosystems (i.e., corals, seagrasses and mangroves) have been steadily 

declining for millennia, with the earliest declines being attributed to human exploitation at the 

time of hunter-gatherers (Jackson et al., 2001; Pandolfi et al., 2003).  In modern times, the rising 

demand on marine resources, pollution (i.e., sediment, chemical and nutrient), disease, sea-

surface temperature rise, ocean acidification, and other climate-related phenomena have 

accelerated the degradation of these tropical coastal habitats, resulting in the loss of abundance, 

biodiversity, and habitat structure (Knowlton, 2001; Hughes et al., 2003; Jones et al., 2004; 

Alvarez-Filip et al., 2009; Veron et al., 2009).  A growing body of research has illustrated that 

many of these stressors have cumulative effects and may interact non-linearly, resulting in even 

greater losses of biodiversity and productivity than may be predicted (Harvell et al., 1999; 

Knowlton, 2001; Jackson et al., 2001; Nugues and Roberts, 2003; Hoegh-Guldberg, 2007; Veron 

et al., 2009).     

Although quantifying the rate at which coral reef ecosystems, i.e. coral reef, seagrass, and 

mangrove habitats, are declining globally has proven difficult (Jenkins et al., 2003), particularly 

for coral reefs themselves, Pandolfi et al. (2003) estimate that all coral reef ecosystems are 20-

80% degraded relative to pristine, pre-human conditions.  At the current rate of loss, by 2030 

nearly 60% of all coral reefs may be destroyed (Hughes et al., 2003), where reefs in certain 

Chapter 4   
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regions of the world may have already suffered irrevocable damage, for example the Caribbean 

reefs (Gardner et al., 2003).  In the Indo-Pacific, which contains 75% of the world’s coral reefs, 

the average annual rate of decline of live coral cover is approximately 1% yr-1 (1500 km2) for the 

period of 1980-2003 (Bruno and Selig, 2007).  In the case of seagrasses, a recent comprehensive 

global assessment, including 215 studies, found that seagrass habitat loss is occurring at a rate of 

110 km2 yr-1, and since 1980, 29% of the global seagrass cover has disappeared (Waycott et al., 

2009).  Moreover, this rate of decline has accelerated from a pre-1940 rate of 0.9% yr-1 to a post-

1990 rate of 7% yr-1 (Waycott et al., 2009).  Similarly, 20-35% of the global coverage of 

mangrove habitat has been lost since 1980, with estimates for the annual rate of loss varying 

from 1-2.5% yr-1 (Jenkins et al., 2003; Polidoro et al., 2010).  When compared to the 0.5% yr-1 

rate of loss for tropical forests (Waycott et al., 2009), the rate at which coral reef ecosystems are 

being destroyed becomes all that more alarming, especially when considering the contribution of 

each of these habitats to the productivity of the greater ecosystem (de la Torre-Castro et al., 

2014).   

Effects of overfishing on coral reef ecosystems 

Overfishing has been one of the principle driving forces in coral reef ecosystem 

deterioration since the beginning of human civilization to the present (Pandolfi et al., 2003; 

Halpern et al., 2008).  Coral reef decline attributed to overfishing may directly result from 

structural damage, as a result of destructive fishing practices and gear entanglement, or may arise 

indirectly through disruption of community structure by the removal of ecologically important 

species.  Removal of key species, or functional groups, may impair ecosystem functioning 

through the modification of reef fish assemblages.  Often, the first sign of overfishing is the 

disappearance of the upper trophic level—large-bodied, predatory fish species (e.g., Stallings, 
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2009 and references therein).  Loss of reef predators, then leads to the targeting by fishermen of 

the next lower level, with the process continuing sequentially as the preceding trophic levels are 

depleted, known as “fishing down the food web” (Pauly et al., 1998).  However, most coral reef 

ecosystems are located in the territorial waters of developing countries, which are characterized 

by low-tech, artisanal fisheries, and high human population densities.  In such cases, organisms 

representing all trophic levels are often targeted and consumed, a phenomenon akin to “fishing 

through the food web” (Essington et al., 2006).  Regardless, both processes inevitably lead to the 

disruption of key functional relationships required to maintain coral health, in particular the 

relationship between herbivores, algae, and coral.   

On reefs, coral and algae compete for space to grow and substrate suitable for 

colonization (McCook et al., 2001).  By minimizing algal population growth, herbivores play a 

central role in reducing stress on coral caused by potential algal overgrowth (Mumby et al., 

2007).  If the role of herbivores is compromised, for example through overfishing, algae may 

rapidly colonize dead or moribund corals, thereby inducing a shift from a coral-dominated to an 

algae-dominated system, known as a phase shift (McCook et al., 1999; Hughes et al., 2005).  If 

multiple stressors are present (e.g., overfishing, elevated sea-surface temperature, high 

sedimentation, etc.), given their cumulative effects, coral death becomes more probable and the 

likelihood of a phase shift occurring increases.   

Small-scale fisheries: Artisanal fisheries  

Of the 120 million people that are directly dependent on capture fisheries, 90% work in 

the small-scale fisheries (SSF) sector, whose catch represents more than 50% of the global total 

(World Bank/FAO/WorldFish, 2010; Mills et al., 2011).  Most SSF may be classified as IUU 

fisheries, as there is little to no data being systematically collected on, ostensibly, the largest sub-
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sector of fisheries.  Unlike commercial fisheries, research into SSF has substantially lagged, 

gaining some attention over the past decade (Purcell and Pomeroy, 2015).  In part, the lack of 

research in the SSF sector may be explained by the difficult situational, socio-political, and/or 

environmental contexts in which SSFs are embedded, and the unique nature of the unorganized 

and spatially dispersed landings along potentially hundreds of kilometers of shoreline (Salas et 

al., 2007).  Moreover, the multi-species catches taken with multiple gears, which are often 

modified, complicates data analyses once surveys are completed.  The very definition of small-

scale fishery is rather ill-defined, and is sometimes used interchangeably with the term artisanal 

fisheries (Halim et al., 2019; Smith and Basurto, 2019).  Although the definition remains vague 

and has been applied to fisheries ranging from a one-man canoe to a 20m trawler, for the present 

study emphasis is placed on the low-tech / high-artisanality end of the spectrum, as described by 

Batista et al. (2014), in characterizing the fisheries of the Vezo communities of southwest 

Madagascar.     

Fisheries of Madagascar 

In Madagascar, the legal commercial fisheries sector is limited to shrimp trawling 

operations that have occurred mainly along the west coast since the 1960’s (Van der Elst et al., 

2009; Le Manach et al., 2012), and through a series of fishing agreements with the European 

Union dating back to 1986 (Le Manach et al., 2013a),  fishing rights to the country’s tuna 

resources are permitted for the seining and longlining fleets of Spain, Portugal, Italy, and France.  

Commercial harvests are almost entirely exported along with most of their economic and 

nutritional value.  At a smaller scale, an artisanal fishery exists for sea cucumbers that are 

exported both legally and illegally (McVean et al., 2005; Purcell et al., 2013) to supply the 

demands of Chinese markets, as well as other targeted invertebrates (Barnes and Rawlinson, 
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2009).  Similarly, the legal artisanal shark fishery has been commandeered to support the illegal 

international trade in shark fins (McVean et al., 2006; Robinson and Sauer, 2013).  At a national 

level, a ban was placed on the marine turtle fishery through presidential decree in 2006, however 

the fishery still persists largely unencumbered (Rakotonirina and Cooke, 1994; Walker and 

Roberts, 2005; Humber et al., 2011).  Artisanal finfish fisheries are likely the single most 

important fishery in terms of biomass productivity and economic benefits provided to the 

Malagasy people, yet comparatively have received little research attention (Van der Elst et al., 

2005).  In a comparison of marine fisheries publications originating from nine Western Indian 

Ocean countries, only 1.4% of the research publications addressed the marine fisheries of 

Madagascar (Van der Elst et al., 2005), e.g. Laroche and Ramananarivo (1995) and Laroch et al. 

(1997).  Since, a few studies have been published, documenting the artisanal finfish fisheries 

catch and effort, either through direct observation (Doukakis et al., 2008; Davies et al., 2009; 

Brenier et al., 2011) or fishermen interviews (Barnes-Mauthe et al., 2013),  with study sites 

located in the southwest (Davies et al., 2009; Brenier et al., 2011; Barnes-Mauthe et al., 2013) 

and in the north of the country (Doukakis et al., 2008).  One of the published studies from 

southwest Madagascar (Davies et al., 2009) was conducted in the Bay of Ranobe, which is the 

location of the present study. 

In the present study, a two-year continuous time-series of fisheries landings sampled 

throughout the Bay of Ranobe, representing to the author’s knowledge, the longest fisheries 

time-series collected in Madagascar, is used to: 

1. provide the first representative characterization of the landings of the Bay by 

weight at various levels of taxonomic classification; 
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2. create species profiles for the 10 most abundant species in the landings, 

including landings, standardized CPUE indices, and various length-based 

indices; 

3. determine an economic valuation of landings per annum and per fishermen. 

 

4.2 Methodology 
 

Study Site 

 

The Bay of Ranobe (23º05’S, 43º33’E) is a coastal lagoon situated along the 

southwestern coast of Madagascar, approximately 20 km northwest of the provincial capital city, 

Toliara.  The Bay of Ranobe (BoR) region may be geographically defined by the Manombo 

River and Fiherenana River that form the northern and southern borders, respectively.  The 

lagoon system extends ca. 32 km along its southeast-northwest axis, measures ca. 8 km at the 

widest point, covering ca. 163 km2 with maximum depths approaching 12 m within the lagoon. 

The lagoon experiences a semi-diurnal tidal regime with a spring tidal range of ±2.3 m.  The 

system is characterized by an inner reef flat composed of: patch reefs, sand, seagrass, macro-

algae, and mangrove habitats, with a barrier reef forming the seaward boundary.  The 32 km 

section of barrier reef that delimits the lagoon from the Mozambique Channel forms part of the 

greater Toliara Barrier Reef complex.  Two passes naturally divide the lagoon into three zones 

(see Chapter 1 for further description of the environment). 

The greater Bay of Ranobe community, as defined in the present study, is composed of 

the 21 villages bounded by the escarpment of the Mahafaly Plateau in the east, the coastline to 

the west, and the Manombo River and Fiherenana River to the north and south, respectively. Of 

the 21 villages within the greater Bay of Ranobe community, there are 12 Vezo villages located 
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along the coast.  The 12 Vezo villages, representing the Vezo fishing community of the Bay of 

Ranobe, are the subject of the research presented here, and include, from south to north (see 

Chapter 2 for further discussion):     

 

1. Ambotsibotsike     7. Amboaboaka   

2. Tsongeritelo      8. Madiorano 

3. Beravy       9. Betsibaroka 

4. Ambalaboy      10. Ambolomailaka 

5. Ifaty       11. Andrevo 

6. Mangily      12. Fitsitke. 

 

Lifestyles of the inhabitants of the 12 villages of the Bay of Ranobe are quite similar in 

that they are inextricably linked to the sea and marine resources.  However, some differences do 

exist between the villages, relative to fishing activities, that are likely attributable to the location 

of the village along the shore of the Bay and access to fishing grounds.  Villages located near the 

mangroves in the north and south of the Bay tend to fish with seine nets to capture smaller fish 

and invertebrates, such as juvenile fish, mangrove crabs, and shrimp.  Moving along the coast 

from the northern and southern extremes, the villages closest to the two principle passes in the 

barrier reef tend to fish the passes, without venturing too far outside the pass to fish deeper 

waters.  Villages located more centrally along the coast have the farthest to travel to the barrier 

reef, thus tend to fish the patch reefs of the lagoon, but will travel to the backreef slope of the 

barrier reef.  Although these tendencies are gross generalizations, and in reality, fishermen travel 

widely with ranges overlapping substantially, accessibility to fishing grounds affects the size of 
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fish and species caught, which in turn, has ecological and economic repercussions (see Chapter 3 

for further discussion).  

Fisheries landing surveys  

Fisheries landing surveys were conducted from 3 April 2013 – 18 December 2015 in the 

villages of Andrevo, Ambolomailaka, Ifaty, and Beravy.  From the landings dataset, 2 full years 

of data were selected for the analyses presented below, where year-1 is defined by the period of 1 

July 2013 – 30 June 2014 and year-2 as the period of 1 July 2014 – 30 June 2015.  Selection of 

villages participating in the fisheries study were based on three criteria:  1) villages with the 

largest pirogue-based fisheries, as identified from the 2013 Annual Pirogue Count dataset, 2) 

adequate geographic representativity to characterize the fisheries of the entire lagoon system, and 

3) accessibility of the villages to the fisheries survey team.  Surveys were conducted on a 

monthly basis, with 5 days of fisheries data collection per village per month, totaling 20 days of 

surveys per month throughout the study period.  Scheduling of monthly surveys were based on 

lunar cycles, ensuring surveys were conducted over full moon and new moon phases, with 

villages alternating monthly. For example, in April 2014, Beravy was surveyed for 5 days 

centered on the date of the full moon and Ambolomailaka for 5 days of the new moon, while the 

other villages were surveyed in the intervening weeks.  In the following month, Andrevo and 

Ifaty were surveyed during the full moon and new moon, respectively, while Ambolomailaka 

and Beravy were surveyed during intervening weeks.  Alternating village and lunar phases 

ensured balanced sampling relative to lunar phases and tidal stages, and constituted the first-

stage sampling frame of the fisheries survey design. (See Appendix 3.1 for extract of survey 

schedule) 
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From a spatial perspective, villages often have a focal point, where the frequency of 

landings and density of beached pirogues are greatest.  The landing zone, as designated for the 

present study, extended out from the focal point of landings in both directions along the shore far 

enough to include >90% of pirogues owned by the fishermen of the targeted villages.  Another 

important point worth noting, in a village setting such as this, fishermen and their landing sites 

are not randomly distributed along the coast (pers. obs.).  Often, the more senior members of the 

village, and their family groups, occupy the more favorable areas of the beach, e.g. more 

sheltered, easier access to markets, etc., which are usually at, or near, the focal point of landing 

sites for the village.  Implications of the structured organization of landing sites extends beyond 

simple family affiliations, given that the more senior families of fishermen may be more 

experienced / skilled fishermen, and potentially, favor specific fishing gears.  Moving further-

and-further out from the focal point of landings, families that have arrived more recently to the 

village, and likely have less fishing experience, find a place along the shore to land their pirogue.  

Consequently, a gradient exists of fishing gears and experience that radiates out from the focal 

point to the margins of the village, where less experienced fishermen have established 

themselves.  In this region, the less experienced fishermen are known to use gears that require 

less skill and that are less discriminating, such as beach seines and mosquito nets.  In order to 

obtain an unbiased and representative sample across the spectrum of gear-use and skill-level, 

village landing zones were divided into three sub-zones to ensure a balanced distribution of 

survey effort (Figure 4.1).  Sub-zones represent a subsample of the primary sampling units, the 

four targeted villages, which are fully sampled on a monthly basis.   

Following an access-point creel survey approach (Pollock, 1997) fishing effort and catch 

surveys were conducted within the designated villages and landing sub-zones, according to the 
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pre-determined monthly sampling schedule, following a sampling in space and time approach 

(Stamatopoulos, 2002).  As daytime fishermen returned, which occurred over a relatively small 

window of time, the fisheries survey team initiated contact with fishermen as they landed in a 

haphazard manner.  While one member of the survey team conducted the effort survey (see 

Chapter 3), the other members of the team characterized the catch.  For the year-1 dataset, July 

2013 – July 2014, the characterization of landings included the collection of species-specific 

weights and counts for the entire catch.  In year-2, following the same sampling framework, data 

collection efforts were expanded to include the collection of species-specific fork length (cm) 

and individual weights (grams).  Length measurements were collected with a standard metric 

measuring tape to the nearest centimeter, while weight measurements were collected using one 

of several precision, spring hand-scales (Pesola 1000 g x 10g, 2500 g x 20 g, and 20 kg x 200 g).  

To maintain good-will and continued participation in the fisheries survey, incentives were 

provided to fishermen in the form of coffee, snacks, and tobacco products to offset the 

inconvenience of the data collection process, and to compensate for any delays that may have 

been caused in getting their products to the market.   

In the initial months of the catch surveys, April – July 2013, a data collection sheet was 

used by surveyors that provided a list of 133 species of finfish and targeted invertebrates 

(Appendix 4.1).  Space provided on the datasheet allowed for the addition of species not 

included.  After several months, the data were compiled, with additional species that occurred 

frequently in the catch being added to the list of targeted species.  This initial 3-month period of 

the survey is considered a “training period”.  Data collected during the training period were not 

included in the analyses presented in the present chapter.        
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Figure 4.1. Village landing zones (LZ) divided into sub-zones (green, orange, and red) for surveying 

purposes: a) Andrevo (LZ = 785m), b) Ambolomailaka (LZ= 500m), c) Ifaty (LZ= 620m), and d) Beravy 

(LZ= 1025m) 

 

 

 

 

 

a b 

c d 
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4.3 Results 
 

Results of the Bay of the Ranobe angler-intercept surveys, including summaries and 

analyses of landings, catch-per-unit-effort (CPUE), and an economic evaluation of landings, are  

presented in the sub-sections below for selected gear types, e.g. boat seine, gillnet, harpoon, 

hook-and-line, and spear gun (Figure 4.2a-f).  Data used in the present analyses were collected 

during the course of 453 survey-days over the period of July 2013 - July 2015, with 228 days 

sampled in year-1 and 225 days in year-2, representing 62.0% coverage of the calendar days.  

Unique identifiers assigned to individual surveyed catches per daytrip indicate a survey coverage 

totaling 9,735 trips, with 4,880 and 4,855 trips surveyed in year-1 and year-2, respectively, 

averaging 21.5 landing surveys per survey-day.    

Total landings 

Over the course of the 2-year survey period, data collected for all gear types totaled 

38,529 kg of fisheries products, with 20,685 kg in year-1 and 17,844 in year-2 (x̄= 19,264 

kg/year).  Total landings were classified into 8 basic groups, accounting for 100% of the 

landings: finfish (69.5%), sea cucumbers (11.4%), unknown mix of juvenile / larval species 

usually associated with seine netting activities (10.2%), octopus (7.4%), squid (3.5%), morays 

(2.1%), rays (1.6%), and miscellaneous species (1.0%) (Table 4.1).  Miscellaneous species 

include: lobster, cuttlefish, seahorses, crabs, and turtles.  A time-series plot illustrating changes 

in landings for the top four groups, comprising 91.9% of the landed biomass, is presented in 

figure 4.3.   Remaining analyses presented in the subsections, below, are focused on the finfish 

species component of the landings. 
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Figure 4.2. Commonly-used fishing gears by the Vezo of the Bay of Ranobe: gillnets (a-b), harpoons (c), 

spearguns (d), small mesh nets / mosquito netting used in boat seining (e-f) 

 

 

a b 

c d 

e f 
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Table 4.1. Landings by fisheries categories by total weight and percent  

  

Group Total Wt (kg) Percent Avg. % 

  Year-1 Year-2 Year-1 Year-2   

Finfish         14,369          10,057  69.5 56.3 62.9 

Sea cucumber           2,320            2,811  11.2 11.6 11.4 

Unknown              957            1,413  4.6 15.7 10.2 

Octopus           1,438            2,075  6.9 7.9 7.4 

Squid              682               661  3.3 3.7 3.5 

Moray              463               339  2.2 1.9 2.1 

Ray              265               346  1.3 1.9 1.6 

Miscellaneous              191               142  1.0 1.0 1.0 

Total          20,685          17,844      100.0 

      

  

 

 
 
Figure 4.3. Landings time-series for the 4 most abundant fisheries groups: finfish, octopus, sea cucumber, 

and unknown, representing 91.9% of landings by weight 
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Landings by finfish species 

 In addition to quantities of fish landed, the species composition of landings serve as an 

important ecological indicator for fisheries management (Nash and Graham, 2016).  Finfish 

surveyed during the course of the present 2-year study were comprised of 248 identified species  

(see Appendix 4.2 for complete species list), representing 61 families and totaling 24,426 kg.  

Relative abundance, as a percentage of the total landed weight, was calculated at the family and 

species levels.  At the family level, the 5 families representing the greatest percentage of the 

biomass of surveyed landings include, in descending order: Scaridae (10.8%), Clupeidae (9.6%), 

Siganidae (8.8%), Lethrinidae (6.9%), and Acanthuridae (6.10%) (Figure 4.4a).  At the species 

level, the 5 identified species representing the greatest percentage of the biomass, include: 

Siganus sutor (13.01%), Herklotsichthys quadrimaculatus (10.0%), Plotosus lineatus (8.1%), 

Leptoscarus vaigiensis (7.6%), and Lethrinus harak (5.6%) (Figure 4.4b).         

 Although biomass-based relative abundance of species is an important consideration in 

the characterization of a multi-species coral reef fishery, in order to assess the potential impacts 

of fisheries on reef fish communities and/or coral reef ecosystems, other metrics of abundance 

may also be instructive.  Frequency may be considered a measure of “abundance in time” that 

better captures, or characterizes, a coral reef fishery in which high biodiversity and low species 

richness are the normal state.  Daily occurrence, or the frequency of sampled days in which a 

species occurred in the catch, were calculated and ranked.  Results indicated that the 5 most 

frequently occurring species landed include: Siganus sutor (89.5%), Leptoscarus vaigiensis 

(79.7%), Lethrinus harak (78.0%), Cheillinus trilobatus (74.7%), and Scarus ghobban (70.6%) 

(Figure 4.5).      
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Figure 4.4. Relative abundance as a percentage of total surveyed finfish landings (24,426 kg) of the 50 

most abundant groups ranked in descending order by a) family and b) species  

a 

b 
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Figure 4.5. Frequency of occurrence in daily landings: 50 most frequently occurring species in landing 

296 sampling days 

 

 

Dominant species in the landings, with respect to village, vary ostensibly as a result of 

village-specific gear compositions and local environments (Figure 4.6).  Total landed weights of 

finfish surveyed by village equaled, in descending order: 8,161 kg (Ambolomailaka), 6,217 kg 

(Andrevo), 5,237 kg (Ifaty), and 4,811 kg (Beravy).  Again, a comparison was conducted to 

highlight the differences in the landings between the northern villages (Andrevo and 

Ambolomailaka) and the southern villages (Ifaty and Beravy).  Of the 20 most abundant species 

from each group, 10 species / groups were commonly present amongst the ranked groups (Figure 

4.7):         

1. Siganus sutor 

2. Leptoscarus vaigiensis 

3. Herklotsichthys quadrimaculatus 

4. Lethrinus harak 

5. Clupeidae spp 

6. Caesio caerulaurea 

7. Carangidae spp 

8. Gerres longirostris 

9. Sargocentron diadema 

10. Papilloculiceps longiceps. 
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Figure 4.6. Relative abundance of species in landings w.r.t. village, with percentages calculated as a 

function of total landings per village: Ambolomailaka (8,161 kg), Andrevo (6,217 kg), Ifaty (5,237 kg), 

and Beravy (4,811 kg) 

 



  

222 
 

 

 
 
 

Figure 4.7. Relative abundance as a percentage of total surveyed finfish landings (24,426 kg) of the 20 most abundant groups ranked in 

descending order by (a) northern and (b) southern villages; (c) of the 20 most abundant species in northern/southern, the relative abundance of the 

10 species with overlapping distributions   
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Nominal CPUE - Finfish  

A daily nominal CPUE (nCPUE) for finfish, kilograms per trip, was calculated by summing 

finfish landings (kg) per day, irrespective of gear, and dividing by the total number of surveyed 

trips for each survey-day, as follows: 

𝑛𝐶𝑃𝑈𝐸𝑓𝑖𝑠ℎ (𝑘𝑔 ∗ 𝑡𝑟𝑖𝑝−1) =  
∑  (𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑠 |𝐹𝑖𝑛𝑓𝑖𝑠ℎ) 𝑑𝑎𝑦−1

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑣𝑒𝑦𝑒𝑑 𝑡𝑟𝑖𝑝𝑠)𝑑𝑎𝑦−1 
. 

For year-1 and year-2 of the survey, annual averages were calculated based on the daily 

nCPUEfish values, x̄= 3.06 kg/trip (sd= 2.23) and x̄= 2.19 kg/trip (sd= 1.90), respectively, with an 

overall 2-year average of x̄= 2.63 kg/trip (sd= 0.62 kg/trip).  Daily nCPUE values were log-

transformed to approximate normality and a Fisher’s F-test was used to test for homoscedasticity 

of variance between year-1 and year-2 groups (F(227,223)=0.84, p= 0. 19).  A comparison of annual 

means indicated nCPUE values significantly differed between years (t= 5.58, df= 445.1, 

p<0.001).  On a monthly basis, nCPUEfish varied from 2.06 kg/trip to 3.14 kg/trip (Figure 4.8).   

A comparison of the average nCPUE with respect to surveyed villages demonstrates the 

differences that exist in the quantities of finfish landed, from north to south: Andrevo (x̄= 2.13 

kg/trip, sd= 1.19), Ambolomailaka (x̄= 3.51 kg/trip, sd= 2.77), Ifaty (x̄= 1.70 kg/trip, sd= 1.12), 

and Beravy (x̄= 3.18 kg/trip, sd= 2.32) (Table 4.2).  Differences in the village-based nCPUE 

averaged values may be attributable in part to the differences in fishing gear profiles (Chapter 3), 

local water depth, and environmental differences (Chapter 1).  Differences detected in the formal 

comparison of northern versus southern villages (t= 2.59, df= 443, p= 0.01; Figure 4.9) may be 

less attributable to differences in fishing gear compositions, as village-specific data is 

aggregated, and the environmental factors presumably become more important, specifically  
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Figure 4.8.  Monthly average nCPUE for finfish (± se) 

 

 

 

Table 4.2. Average nCPUE by village and by region, northern versus southern villages 

 
Village Landings (kg/trip) SD Count (n) 

Andrevo 2.13 1.19 114 

Ambolomailaka 3.51 2.77 116 

Avg. Northern villages 2.82*   

Ifaty 1.70 1.12 113 

Beravy 3.18 2.32 109 

Avg. Southern villages 2.44*   
 

 

 
Figure 4.9. Comparison of log(nCPUE) values for villages of the north versus south  
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differences in extent of seagrass meadows and the width/depth of the northern versus southern 

reef passes. 

 Comparisons of nCPUE, with respect to gear types, were used to determine the gear-

specific catch rates, with nCPUEfish*gear based on the following formula:  

𝑛𝐶𝑃𝑈𝐸𝑓𝑖𝑠ℎ∗𝑔𝑒𝑎𝑟 (𝑘𝑔 ∗ 𝑡𝑟𝑖𝑝𝑔𝑒𝑎𝑟
−1) =  

∑  (𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑠 | 𝐹𝑖𝑛𝑓𝑖𝑠ℎ | 𝐺𝑒𝑎𝑟) 𝑑𝑎𝑦−1

∑(𝑆𝑢𝑟𝑣𝑒𝑦𝑒𝑑 𝑡𝑟𝑖𝑝𝑠 | 𝐺𝑒𝑎𝑟) 𝑑𝑎𝑦−1 
. 

Average nCPUE values summarized by gear type indicate that the boat seining method produced 

the greatest quantities of fish (x̄= 15.35 kg/trip, SD= 20.30), followed by: gillnet (x̄= 4.34 kg/trip, 

SD = 3.70), spear gun (x̄= 3.26, SD= 2.43), hook-and-line (x̄= 2.76, SD= 2.57), and the harpoon 

(x̄= 0.82 kg/trip, SD= 1.05) (Table 4.3).  Significant differences were detected between gear 

types (F(4, 1306)= 223.9, p<0.001) of log-transformed nCPUE values using an ANOVA, with pair-

wise comparisons indicating differences between all gear types (Figure 4.10).  A month-year 

time series of nCPUE per gear type illustrates variability inherent in the relative efficiencies of 

the principle gear types used in the Bay of Ranobe fisheries (Figure 4.11). 

 

 

Table 4.3. Average nCPUE per gear type and percentage of surveys reporting gear-type 

 

Gear type nCPUE (kg/trip) SD % Usage 

Boat seine 15.35 20.30 13.15 

Gillnet 4.34 3.70 34.96 

Spear gun 3.26 2.43 22.94 

Hook-line 2.76 2.57 15.22 

Harpoon 0.82 1.05 9.81 
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Figure 4.10. Pair-wise comparisons of log(nCPUE) between gear types; significant differences indicated 

by global ANOVA (p<0.001) and between gear-type groups 

 

 

 

 
 
Figure 4.11. Average monthly nCPUE by gear type 
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Species profiles 

 Profiles were created for each of the 10 most abundant species / family groups identified 

in the landings, according to total weight (kg), as depicted in figure 4.4, including, in descending 

order:   

1. Siganus sutor         6. Lethrinus harak 

2. Herklotsichthys quadrimaculatus         7. Caesio caerulaurea 

3. Clupeidae spp         8. Ostorhinchus cyanosoma 

4. Plotosus lineatus         9. Scarus ghobban 

5. Leptoscarus vaigiensis 10. Gerres longirostris. 

 

Each species profile is comprised of multiple plots: a) an image, b) landings per month, c) 

standardized CPUE year indices, d) length-frequency histogram, e) changes in length over 

month-year, and f) length per gear type.  Standardization of CPUE was achieved using the 

generalized linear modelling (GLM) approach, where a Gaussian GLM was fitted to log-

transformed CPUE data for each of the 10 species listed, above.  The catch-rate response 

variable was calculated from catch (kg/trip) associated with gillnet gear usage, normalized by 

time spent fishing per trip, Δt.  Predictor variables for each of the species-specific models 

included sample-year, month, and gillnet length, width, and mesh size, as follows: 

(𝐶𝑎𝑡𝑐ℎ𝑠𝑝𝑒𝑐𝑖𝑒𝑠|𝑔𝑖𝑙𝑙𝑛𝑒𝑡)

∆𝑡
= 𝑠𝑎𝑚𝑝𝑙𝑒. 𝑦𝑟 + 𝑚𝑜𝑛𝑡ℎ + 𝑔. 𝑙𝑒𝑛𝑔𝑡ℎ + 𝑔. 𝑤𝑖𝑑𝑡ℎ + 𝑔. 𝑚𝑒𝑠ℎ. 

Results of the GLMs are presented in Table 4.3 and model coefficients are plotted in Figures 

4.12 - 4.13 for ease of comparison, with standardized year-effect plots included in the species 

profiles (Figures 4.14 – 4.23).  Term plots for the full model, and model diagnostic plots may be 

found in Appendices 4.4 - 4.14 and 4.15 - 4.25, respectively.      
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Table 4.4.  GLM results for the standardization of log(CPUE) for the 10 most abundant species  

 
 Dependent variable:   
 Log (CPUE) 
 S.sutor H.quad Clupeid P.line L.vaig L.harak C.caer O.cyan S.ghob G.long  

Year 2 -0.398*** -2.116*** -1.162*** 1.510 -0.299*** -0.616*** -0.062 -2.254*** -0.026 -0.438*** 
 (0.109) (0.443) (0.401) (0.893) (0.096) (0.102) (0.209) (0.502) (0.115) (0.152)            

Month 2 0.699**    0.070 -0.162   0.094 0.040 
 (0.311)    (0.247) (0.291)   (0.270) (0.398)            

Month 3 0.234  1.549*  0.713*** -1.061***   -0.426* -0.347 
 (0.257)  (0.813)  (0.194) (0.224)   (0.221) (0.319)            

Month 4 0.544** -2.034*** -0.029 -0.744 0.806*** -0.946*** -4.585***  -0.405* 0.410 
 (0.236) (0.738) (0.652) (1.621) (0.179) (0.220) (0.798)  (0.214) (0.298)            

Month 5 0.612*** -2.780*** -0.154 2.413 0.271 -1.518*** -3.627***  -0.335 -0.121 
 (0.232) (0.717) (0.616) (1.404) (0.177) (0.205) (0.760)  (0.223) (0.297)            

Month 6 0.791*** -3.632*** -1.545** -1.924 -0.210 -1.639*** -4.171*** -1.570* -0.508* 0.068 
 (0.264) (0.933) (0.643) (1.305) (0.221) (0.241) (0.749) (0.780) (0.265) (0.311)            

Month 7 0.556** -1.941** -1.961** -2.446* -0.071 -1.487*** -4.190*** -1.393 -0.405* 0.135 
 (0.242) (0.822) (0.886) (1.258) (0.203) (0.202) (0.757) (1.240) (0.221) (0.308)            

Month 8 0.667*** -2.962***   -0.366 -1.408*** -3.747*** 0.767 -0.136 0.337 
 (0.256) (0.776)   (0.267) (0.219) (0.743) (0.753) (0.235) (0.319)            

Month 9 0.349 -2.533 2.157***  -0.093 -1.201*** -3.358***  -0.580** 0.064 
 (0.295) (1.862) (0.596)  (0.269) (0.221) (0.794)  (0.255) (0.351)            

Month 10 0.943*** -2.236** 0.632 -0.860 -0.207 -0.835*** -3.131***  -0.003 0.378 
 (0.242) (0.986) (0.671) (1.335) (0.227) (0.191) (0.726)  (0.212) (0.282)            

Month 11 0.838***  -0.146  0.035 -0.290 -3.417***  0.112 0.535* 
 (0.276)  (0.560)  (0.219) (0.199) (0.756)  (0.223) (0.319)            

Month 12 0.733***  -1.078 1.074 -0.071 -0.428**   -0.297 0.288 

 (0.279)  (0.664) (1.491) (0.241) (0.217)   (0.241) (0.301) 
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Table 4.4 cont.  GLM results for the standardization of log(CPUE) for the 10 most abundant species  

            
Gear length -0.001*** 0.002** -0.002*** 0.001 0.0004*** -0.0003*** -0.001** -0.002** -0.0002** -0.0001 

 (0.0001) (0.001) (0.001) (0.001) (0.0001) (0.0001) (0.0003) (0.001) (0.0001) (0.0001)            
Gear width 0.168** -1.179 0.212 2.396 -0.276 0.432* 0.169 4.635*** 2.223 0.412 

 (0.074) (0.757) (0.170) (1.407) (0.231) (0.247) (0.147) (0.876) (1.846) (0.351)            
Gear mesh 0.375*** -0.014 -0.395* 0.804* 0.163** 0.193*** -0.428*** -0.058 0.286*** 0.208** 

 (0.043) (0.099) (0.199) (0.419) (0.066) (0.055) (0.087) (0.223) (0.082) (0.086)            
Constant 1.895*** 12.881*** 6.917*** -6.163 4.155*** 3.375*** 9.176*** -9.227*** -3.743 1.904 

 (0.406) (2.410) (1.054) (6.165) (0.844) (0.853) (0.879) (2.784) (5.548) (1.246)             
Observations 667 85 61 22 588 595 144 26 396 376 

Log Likelihood -1,086.422 -155.958 -85.154 -27.010 -829.875 -835.348 -190.554 -31.348 -512.058 -612.189 

Akaike Inf. Crit. 2,204.844 335.915 198.309 76.020 1,691.750 1,702.696 407.108 78.695 1,056.116 1,256.379  
Note: *p **p ***p<0.01 
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Figure 4.12.  GLM regression coefficients from CPUE standardization models (Table 4.3) for species 1-5   
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Figure 4.13. GLM regression coefficients from CPUE standardization models (Table 4.3) for species 6-

10   
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Siganus sutor, Shoemaker spinefoot (a.k.a African white-spotted rabbitfish) 

 

 

 

 

  

 
Figure 4.14.  Species profile – Siganus sutor: image, total landings by month (top row), standardized 

CPUE year-index (gillnet), length frequency histogram (middle row), changes in average length over 

study period, and length by gear type (bottom row); length-at maturity, Lm = unknown, Lmax= 45.0 cm SL 

(Froese and Pauly, 2019; FishBase) 
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Herklotsichthys quadrimaculatus, Bluestripe herring 

 
 

 
 

  
 
Figure 4.15. Species profile – Herklotsichthys quadrimaculatus: image, total landings by month (top 

row), standardized CPUE year-index (gillnet), length frequency histogram (middle row), changes in 

average length over study period, and length by gear type (bottom row); Lm = 10.1 cm, Lmax= 25.0 cm SL 

(Froese and Pauly, 2019; FishBase) 
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 Clupeidae spp  

 
 

  

 

 

 
Figure 4.16. Clupeidae spp: Silver-stripe round herring, Spratelloides gracilis (middle row), and the 

Goldstripe sardinella, Sardinella gibbosa (bottom row); length-based analyses not performed due to 

insufficient data (grid squares = 10 cm)  
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Plotosus lineatus, Striped eel catfish 

 

 

  

  

 
Figure 4.17. Species profile – Plotosus lineatus: image, total landings by month (top row), standardized 

CPUE year-index (gillnet), length frequency histogram (middle row), changes in average length over 

study period, and length by gear type (bottom row); Lm = 14.0 cm, Lmax= 32.0 cm TL (Froese and Pauly, 

2019; FishBase) 
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Leptoscarus vaigiensis, Marbled parrotfish (a.k.a. Seagrass parrotfish) 

 

 

  

 
 

 
Figure 4.18.  Species profile – Leptoscarus vaigiensis: image, total landings by month (top row), 

standardized CPUE year-index (gillnet), length frequency histogram (middle row), changes in average 

length over study period, and length by gear type (bottom row); Lm = unknown, Lmax= 35.0 cm TL 

(Froese and Pauly, 2019; FishBase) 
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Lethrinus harak, Thumbprint emperor (a.k.a. Blackspot emperor) 

 

 

   

  
 
Figure 4.19. Species profile – Lethrinus harak: image, total landings by month (top row), standardized 

CPUE year-index (gillnet), CPUE year-index (hook-line), length frequency histogram (middle row), 

changes in average length over study period, and length by gear type (bottom row); Lm = 19.5, Lmax= 50.0 

cm TL (Froese and Pauly, 2019; FishBase) 

 

Gillnet Hook-Line 
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Caesio caerulaurea, Blue and gold fusilier 

 

 

  

  

 
Figure 4.20. Species profile – Caesio caerulaurea: image, total landings by month (top row), 

standardized CPUE year-index (gillnet), length frequency histogram (middle row), changes in average 

length over study period, and length by gear type (bottom row); Lm = unknown, Lmax= 35.0 cm TL 

(Froese and Pauly, 2019; FishBase) 
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Ostorhinchus cyanosoma, Yellowstriped cardinalfish 

 

 

  

  

 
Figure 4.21. Species profile – Ostorhinchus cyanosoma: image, total landings by month (top row), 

standardized CPUE year-index (gillnet), length frequency histogram (middle row), changes in average 

length over study period, and length by gear type (bottom row); Lm = unknown, Lmax= 8.0 cm TL (Froese 

and Pauly, 2019; FishBase) 
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Scarus ghobban, Blue-barred parrotfish 

 

 

 
 

  

 
Figure 4.22. Species profile – Scarus ghobban: image, total landings by month (top row), standardized 

CPUE year-index (gillnet), length frequency histogram (middle row), changes in average length over 

study period, and length by gear type (bottom row); Lm = unknown, Lmax= 75.0 cm TL (Froese and Pauly, 

2019; FishBase) 
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Gerres longirostris, Strongspine silver-biddy 

 

 

  

  

 
Figure 4.23. Species profile – Gerres longirostris: image, total landings by month (top row), standardized 

CPUE year-index (gillnet), length frequency histogram (middle row), changes in average length over 

study period, and length by gear type (bottom row); Lm = 20.6 cm, Lmax= 44.5 cm TL (Froese and Pauly, 

2019; FishBase) 
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Fisheries productivity and economic valuation 

  

 Data collected on all fisheries resources during the course of the landings surveys were 

classified into 8 basic categories of fisheries and economic importance: finfish, sea cucumbers, 

octopus, unknown (i.e. organisms too small to identify), squid, moray, ray, and miscellaneous 

(i.e. low-abundance, incidental catch comprised of organisms of significant consumptive or 

economic value, for example: shrimp, crab, lobster, marine turtles, seahorses, etc.).   Annual 

averages for each category were calculated based on the 2 years of data: finfish (x̄= 12,213 kg), 

sea cucumber (x̄= 2,565 kg), octopus (x̄= 1,756 kg), unknown (x̄= 1,185 kg), squid (x̄= 671 kg), 

moray (x̄= 401 kg), ray (x̄= 305 kg), and miscellaneous (x̄= 166 kg), resulting in an overall 

average of x̄= 19,264 kg year-1.  The nominal CPUE (nCPUE) was calculated for each category 

by dividing the averaged landings by the average number of trips surveyed (x̄= 48,673.5).  

Lagoon-wide pirogue counts (Chapter 3) conducted in 2013 and 2015 were averaged (x̄= 2156) 

and used in the expansion calculation for the determination of expanded fishing effort, Effort*, 

(trips/year) and the estimation of bay-wide landings per year, according to the following formula: 

     

Effort* = Pirogue Ct (2156) * BAC (0.628) * fishing frequency (0.966) * 365 days =  

 

= 477,396 pirogue*days year-1 = trips year-1, 

 

 

where the boating activity coefficient, BAC, and fishing frequency were calculated included in 

the analyses of fishing effort in Chapter 3.  Fisheries landing data collected in the 4 target 

villages of the Bay of Ranboe were expanded to estimate the lagoon-wide annual landings by 

multiplying the nCPUE values by the expanded effort.  Results indicated the annual averaged,  
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lagoon-wide landings for the 2013-2015 study period totaled 1,885.8 metric tons per year (see 

Table 4.5 for details).  Fisheries productivity per unit area was calculated from the results of the 

expanded landings (1,885.7 mt year-1 / 163 km2 or 1,885,700 kg / 16,300 ha) and found to equal 

11.6 mt year-1 km-2 or 115.7 kg year-1 ha-1.        

 Based on market surveys conducted in year-1 of the study, and described in Chapter 3, 

the average price for fisheries resources were calculated, using the 2-year averaged exchange rate 

(2013= 2,222 MGA: 1USD; 2015= 3,333 MGA: 1USD; x̄= 2,777.5)  according to the eight-

category classification system described previously in this section.  Average values varied from 

x̄= 3729 MGA/kg (1.34 USD/kg) for squid to x̄= 1000 MGA/kg (0.36 USD/kg) for the various 

species of rays.   Expanded landings per group, which were based on the 2-year averaged 

landings, were multiplied by the average exchange rate to determine the average value of the 

lagoon-wide fisheries per category and overall (x̄= 1,644,678 USD year-1) (Table 4.6).  

Economic productivity per unit area of the Bay of Ranobe fisheries are estimated at a wholesale 

value of 10,090 USD year-1 km-2 (1,644,678 USD year-1 / 163 km2) or 101 USD year-1 ha-1. 

Lastly, results of surveys and analyses of fishing effort described in Chapter 3 were used 

to estimate the daily revenue of the Vezo fishermen of the Bay of Ranobe.  Annual pirogue count 

values from 2013 and 2015 per village were used to establish the average fleet size for the study 

period (Chapter 3).  The regression analyses of the number of fishermen per length of pirogue 

(m) was used to predict the number of fishermen (Chapter 3) per the adjusted number of pirogues 

by multiplying by the boat-activity coefficient, BAC.  Annual average landings and economic 

values of landings were attributed to each village based on the representation of the number of 

pirogues as a percentage of the lagoon-wide fleet.  The economic value of landings per village 

were divided by a full year (365 days) rather than the discounted value (i.e. 365 days*0.966 
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Table 4.5. Expansion of surveyed landings to lagoon-wide estimates of annual yield per fisheries 

class 

  

 Survey Values   Expanded 

Group Total wt (kg) Avg wt 

Avg 

trips nCPUE Effort* Yield 

 Year-1 Year-2 year-1 year-1 kg/trip trips/yr mt/yr 

Finfish 14,369 10,057 12,213 4,867.5 2.51 477,396 1,198.3 

Sea cucumber 2,320 2,811 2,565 4,867.5 0.53 477,396 253.0 

Octopus 1,438 2,075 1,756 4,867.5 0.36 477,396 171.9 

Unknown 957 1,413 1,185 4,867.5 0.24 477,396 114.6 

Squid 682 661 671 4,867.5 0.14 477,396 66.8 

Moray 463 339 401 4,867.5 0.08 477,396 38.2 

Ray 265 346 305 4,867.5 0.06 477,396 28.6 

Miscellaneous 191 142 166 4,867.5 0.03 477,396 14.3 

Total  20,685 17,844 19,264  3.95  1,885.7 

 

 

 

 

 

Table 4.6. Economic valuation of expanded landings per fisheries class 

 

Group Landings Economic Value (MGA) Value 

 mt / yr MGA/kg n SD (USD*) 

Finfish 1,198.3 2492 598 1463 1,119,925 

Sea cucumber 253.0 2132 52 2176 202,246 

Octopus 172.0 2101 323 1859 135,412 

Unknown 114.6 1064 6 479 45,706 

Squid 66.8 3729 94 1014 93,451 

Moray 38.2 1811 2 843 25,935 

Ray 28.6 1000 1 - 10,741 

Miscellaneous 14.3 2097 102 2399 11,263 

Total  1,885.8    1,644,678 

 

*Exchange rate: 2013 – 2015 average, x̄ = 2,777.5 MGA: 1 USD 
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 (fishing frequency) = 352.6 days) to determine the value of fisheries products per day per trip, as 

opposed to the average value per fished-day.  Village-specific daily values of fisheries products 

ranged from 1.17 USD per trip for the village of Ambolomailaka to 1.79 USD per trip for the 

village of Beravy, with an overall average of x̄= 1.55 USD day-1 (SD= 0.15) (Table 4.7).      

  

 

4.4 Discussion 

Landings 

During the 2-year study period, total annual landings surveyed declined in biomass by 

13.7% from 20,685 kg in year-1 to 17,844 in year-2, while the number of trips surveyed differed 

by less than 1%, 4,880 and 4,855 trips, respectively.  Of the fisheries classes, finfish represent 

the bulk of the landings (x̄= 62.9 %) and experienced the greatest decline from year-1 (69.5%) to 

year-2 (56.3%).  Declining landings of finfish were offset to some extent by a substantial 

increase (+47.6%) in the “unknown” class, and classes of invertebrate species (i.e. sea cucumber, 

octopus, squid, and rays).  A substantial increase in the unknown-class, which represents masses 

of juvenile / larval species, where many are difficult to identify (see image, Appendix 4.26), is 

generally congruent with personal observations of the growing use of small mesh gear, namely 

mosquito net / seine nets.  With 2 years of data from this study alone, observed declines in 

annual landings could be attributed to environmental stochasticity, and no conclusions can be 

drawn at this time.   

Relative abundances of landed finfish were examined by family and species to illustrate 

the diversity found within the fisheries of the Bay of Ranobe, and the significant contributions 

made by coral reef species.  At the family level, in descending order, Scaridae (parrotfish), 

Clupeidae (sardines and herrings amongst others), Siganidae (rabbitfish), Lethrinidae (emperors),
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Table 4.7. Landings (metric tons year-1) and value (USD year-1) of fisheries products per village and per fishermen (USD day*trip-1)  

 

 

 Actual Predicted  Adjusted     

Village 
Avg Pirogue 

Ct (2013-2015) 

% 

Fleet 

Fishermen 

Count1 

Pirogue 

Count2  

Fishermen 

Count2 

Landings 

(mt/yr) 

Value 

(USD/yr) 

USD/day 

(365 d) 

Value (USD) 

fishermen/day

*trip  

Fitsitke 376 17.4 820 236 515 328 286,446 785 1.52 

Andrevo 351 16.3 680 220 427 307 267,756 734 1.72 

Ambolomailaka 274 12.7 778 172 488 239 208,636 572 1.17 

Betsibaroka 77 3.6 168 48 106 67 58,739 161 1.52 

Madiorano 92 4.2 200 57 126 80 69,800 191 1.52 

Amboaboaka 138 6.4 300 86 189 120 104,890 287 1.52 

Mangily 171 7.9 373 107 234 149 130,064 356 1.52 

Ifaty 267 12.4 532 168 334 234 203,678 558 1.67 

Ambalaboy 41 1.9 89 26 56 36 31,276 86 1.53 

Beravy 152 7.0 282 95 177 133 115,570 317 1.79 

Tsongeritelo 111 5.1 241 69 151 97 84,294 231 1.53 

Ambotsibotsike 110 5.1 239 69 150 96 83,531 229 1.53 

 Total 2156 100.0 4702 1354 2953 1,886 1,644,678 4,506   

 
1. Prediction of the regression model of the relationship between the number of fishermen and pirogue length (m) (Chapter 3) based on village    

    profiles of pirogue length for the 4 targeted villages (Andrevo, Amobolomailaka, Ifaty, and Beravy) and the averaged, “generic” profile for the    

    other 8 villages 

2. Average number of pirogues for the study period (column 2) multiplied by the BAC, with a proportional adjustment to the number of fishermen 
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Acanthuridae (surgeonfish and unicornfish) were the five most abundant families (Figure 4.4a). 

At the species / species complex level, Siganus sutor (Shoemaker spinefoot; rabbitfish), 

Herklotsichthys quadrimaculatus (Bluestripe herring), other Clupeidae spp, Plotossus lineatus 

(Striped eel catfish), and Leptoscarus vaigiensis (Marbled parrotfish; a.ka. Seagrass parrotfish) 

ranked amongst the top 5 most abundant species (Figure 4.4b).  It is interesting to note that, 

when species were ranked by the percent occurrence in daily landings, ranks differed 

substantially.  The first two species that were found in landings in over 75% of the survey days, 

Siganus sutor and Leptoscarus vaigiensis, were similarly amongst the top 5 species in terms of 

biomass, however the species that followed in the ranks differed markedly: Lethrinus harak 

(Thumbprint emperor), Cheilinus trilobatus (Tripletail wrasse), Scarus ghobban (Blue-barred 

parrotfish) (Figure 4.5).   

Given that there are multiple approaches to characterizing landings, in terms of the 

relative abundances of species / families, it seems to raise questions as to how, in particular, 

fishermen would perceive and characterize their catch.  For fisheries management, biomass is 

obviously an important criterion.  However, for fishermen, the most natural approach in 

describing catches from recollections of the past could be according to fishes encountered most 

frequently, i.e. frequency of occurrence.  Recollections of past catches according to the 

frequency of occurrence combined with an imperfect knowledge of species identification may 

result in recollections based on a cognitive function that is a blend of any, or all, of the 

approaches presented here, i.e. family-based, species-based, and frequency of occurrence in daily 

landings.  While participatory fisheries management is a very broad term that can imply the 

beneficial participation of fishermen at numerous levels of the management process (Neiss et al., 

1999; Rockmann et al., 2012; Ommer et al., 2012; Stephenson et al., 2016 ), there has been a 
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growing trend in the “data poor” fisheries research community to reconstruct landings based on 

interviews probing the recent, and sometimes distant, past to obtain information on annual 

landings, effort, and/or CPUE (Kuster et al., 2005; Barnes-Mauthe et al., 2013).   Unsurprisingly, 

estimates obtained through interviews are biased, often resulting in inflated CPUE estimates, 

with the inflation rate increasing with the passage of time (Kuster et al., 2006; Daw, 2010; Daw 

et al., 2011; O’Donnell et al., 20112; Damasio et al., 2015; Aylesworth and Kuo, 2018).  This 

point is discussed further, below, relative the CPUE values determined from the present study.   

Results of landing surveys were presented by family, species, village and gear types 

(Figures 4.4 – 4.6; Appendix 4.3) in order to facilitate comparisons with the only published study 

of the Bay of Ranobe fisheries, Davies et al. (2009).  In the Davies et al. (2009) study, landing 

surveys were conducted on the daytime, pirogue-based fishery in 3 of the southern villages of the 

Bay (i.e. Beravy, Ifaty, and Mangily).  In terms of geographic representativity, the Davies et al. 

(2009) study focuses entirely on the southern half of the Bay, with sampling occurring in the 2 

largest fishing villages in the south, Beravy and Ifaty, and in the village of Mangily.  Generally, 

Mangily would not be considered to be representative of a typical fishing village of the region, 

given that the village is known nationally and internationally as the tourist destination in the Bay 

of Ranobe area.  From results of the present study, significant differences were found in 

comparisons of species composition and nominal CPUE between the northern villages (Andrevo 

and Ambolomailaka) and the southern villages (Ifaty and Beravy) (Figures 4.7 and 4.9), 

demonstrating that indeed sampling the southern lagoon is inadequate in characterizing the 

fisheries of the Bay of Ranobe not to mention the entire southwest region of Madagascar.       

The study period for the Davies et al. (2009) study is not entirely clear, with the initial 

statement of the study period in the publication being 1 March to 21 May 2008, then later it is 
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stated that catches were sampled 7 January to 5 June 2008.  Regardless, whether 3 or 5 months of 

the year were sampled, the brief study period does not capture a full annual cycle.  The lack of 

temporal and spatial representativity likely explain the results of the Davies et al. (2009) study 

that suggest that 65% of the finfish landings can be attributed to 2 species, Sptratelloides 

delicatulus (Blue sprat) and Herklotsichthys quadrimaculatus (Bluestripe herring).  Generally, 

clupeids would not be considered a coral reef resident species, but rather a “windfall” harvest for 

low-tech, artisanal fishermen, where pulses of various species of clupeids would episodically 

enhance landings.  Species profiles developed in the present study indicate that pulses of 

Herklotsichthys quadrimaculatus and other species of clupeids do indeed occur (Figures 4.15 – 

4.16; see image, Appendix 4.27), and represent a substantial proportion of the landings by weight 

(i.e. 17% -18%) (Figures 4.4a-b), however at levels that are significantly less than the 65% of 

total landings, as reported by Davies et al (2009).  Laroche et al., (1997) documented clupeids 

comprising 10.9% of the catch in Bay of Toliara, which is the embayment just south of the Bay 

of Ranobe.  The only plausible explanation for the Davies et al. (2009) results would be that a 

strong pulse of Sptratelloides delicatulus and Herklotsichthys quadrimaculatus occurred during 

the few months of the study, to an extent that over-shadowed the landings of the other 200+ 

species, and that many of the local fishermen from the 3 targeted villages took advantage of the 

windfall harvest.  In addition to data, over the course of the present study, an extensive photo 

library of catches has been compiled by the author that clearly illustrates that it would be a gross 

mischaracterization to consider the Bay of Ranobe fisheries as a “sardine fishery” (see images 

Appendix 4.28 – 4.31).                  
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Catch per unit effort 

 Nominal CPUE (nCPUE) values were calculated for finfish species as an aggregate of the 

multi-species, multi-gear fisheries of the Bay to allow for comparisons between years, months, 

villages, and gear types.  Although the use of aggregate CPUE values for management purposes 

may be problematic (Maunder et al., 2006; Kleiber and Maunder, 2008), unlike simple landings, 

nominal CPUE values account for fishing effort and survey effort.  Results of the present study 

indicated that the annual average nCPUE for finfish equaled x̄= 2.63 kg trip-1, with significant 

declines from year-1 to year-2, and varied from 2.06 – 3.14 kg trip-1 on a monthly basis.  Village-

specific nCPUE values indicated that Ambolomailaka landings produced the greatest weight per 

trip (x̄= 3.51 kg/trip), followed by Beravy (x̄= 3.18 kg/trip), Andrevo (x̄= 2.13 kg/trip), and Ifaty 

(x̄= 1.70 kg/trip).  In chapter 3, gear profiles for each village (Figure 3.16) indicated a 

proportionately heavier reliance on net gears in Ambolomailaka and Beravy, particularly small 

mesh nets (i.e. seine nets, mosquito net, gillnet), which likely explains the elevated nCPUE 

values, as large quantities of small fish are more generally targeted.  Average nCPUE values per 

gear type (Table 4.3) are supportive of this assertion in that net gears produce CPUE values 

significantly greater than the other gears, which is especially pronounced in the case of the boat 

seine gear-type (boat seine CPUE, x̄= 15.35 kg/trip; gillnet CPUE, x̄= 4.34 kg/trip).           

 Species profiles were developed for the 10 most abundant species, according to total 

weight in landings (Figures 4.14 – 4.23).  Species-specific profiles included plots of total 

landings by month, year indices from standardized CPUE, catch-at-length histograms, changes in 

average length by month/year, and length by gear types.  Year indices from the standardized 

CPUEs indicated that the catch per unit effort for 7 of the 10 species significantly declined from 

year-1 to year-2, while a positive, yet insignificant, change was indicated for the striped eel 
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catfish, Plotosus lineatus.  For most of the species, the length-at-maturity (Lm) is unknown, 

according to the FishBase database.  However, for those species of known Lm, such as 

Herklotsichthys quadrimaculatus, Plotosus lineatus, Lethrinus harak, and Gerres longirostris, 

length-at-catch histograms indicated that the majority of the catch consisted of sexually 

immature fish, except for Plotosus lineatus, which was the only species to exhibit positive 

change from the standardized year indices.            

Fisheries productivity and economic valuation 

 Landings expanded to lagoon-wide estimates indicate that the Bay of Ranobe fisheries 

yield 1,885.7 metric tons per year of fisheries products, with a wholesale value of $1.6 million.  

Annual yield estimates were attributed to each village relative to the percentage of pirogues 

contributed by each village to the greater Bay of Ranobe fleet (n= 2156 pirogues).  Villages with 

the highest annual yields did not necessarily correspond to the greatest incomes earned by 

fishermen, given that economic valuations are divided by all fishermen.  For example, fishermen 

from the village with the highest yield, Fitsitke (328 mt year-1), earned a below-average income 

of $1.52 day-1 (x̄= $1.55 day-1) due to the total value being divided by a high number of 

fishermen (n= 820).  Although no other economic valuation studies have been conducted on the 

Bay of Ranobe fisheries, estimates provided here correspond well to the numerous 

socioeconomic and poverty studies that have been conducted in Madagascar, as discussed in 

Chapter 2, which have found that 90% of the population live on less than $2 per day.  Barnes-

Mauthe et al. (2013) estimated CPUE and conducted an economic valuation of landings in a 

number of villages along a stretch of coastline approximately 100 km north of the Bay of 

Ranobe.  However, the study followed an interview-based, participatory approach, which is 

known to suffer from inflated estimates, as discussed earlier in this section.  According to the 



  

252 
 

Mauthe et al. (2013) study, total annual finfish landings were estimated at 4,045 mt year-1, 

whereas the present study documented 1,198.3 mt year-1 based on 2 years of actual data.  

Moreover, CPUE estimates (13.6 kg per fishermen per day) were 2-3 times greater than other 

studies in the region (Laroche and Ramananarivo, 1995; Doukakis et al., 2007; Davies et al., 

2009; Brenier et al., 2011; Samoilys et al., 2017), resulting in an estimated income of $10.85 per 

fishermen per day.  Logically, if there was a stretch of coast in which fishermen were earning 

$10.85 per day, it is likely that all the fishermen in the region would have migrated to this 

hypothetical location.  Indeed, it is not coincidental that the Bay of Ranobe is known to be the 

most heavily fished area in the country (Figure 4.24).  

 

 

Figure 4.24. Distribution of coastal fishers; data collected by the Ministry of Fisheries (2011), Ministère 

de la Pêche et des Ressources Halieutiques; graphic reproduced from Le Manach et al. (2013b)  
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Appendix 

Village:    

Ticket 

#:     Fisheries Landings Datasheet: Catch survey   Date:       
                    
Species   Nb W(g) Gear Species   Nb W(g) Gear Species   Nb W(g) Gear Species   Nb W(g) Gear 

Ear-spot angelfish       Bicolour parrotfish       Dusky surgeonfish       Slingjaw wrasse       

Emperor angelfish       Blue-barred parrotffish       Blckstreak surgeonfish       Tripletail wrasse       

Manyspined angelfish       Bullethead parrotfish       Thompson's surgnfish       Yellowbreasted wrasse       

Midnight angelfish       Dusky parrotfish       Yellowfin surgeonfish       Zigzag wrasse         

Regal angelfish        Dusky-cappd parrotfish       Convict surgeonfish       Green jobfish         

Semicircle angelfish       Greenthroat parrotfish       Brushtail tang         Indian threadfin       

Chevroned butterflyfish       I.O. longnose parrotfish       Sailfin tang         Talang queenfish       

Klein's butterflyfish       Palenose parrotfish       Desjardin's sailfin tang       Trevally spp         

Saddleback butterflyfish       Redlip parrotfish       Orngestripe triggerfish       Graceful lizardfish       

Spotted butterflyfish       Russell's parrotfish       Picasso triggerfish       I.O. crocodilefish       

Threadfin butterflyfish       Seagrass parrotfish       Moustache triggerfish       Cornetfish         

Vagabond butterflyfish       Stareye parrotfish       Bignose unicornfish       Reef needlfish         

Bigeye emperor         Afr. W. spot rabbitfish       Blcktongue unicornfish       Spotted halfbeak       

Blackspot emperor       Scribbled rabbitfish       Bluespine unicornfish       Insular halfbeak       

Longface emperor       Squaretail rabbitfish       Humpback unicornfish       Slenderspine mojarra       

Pink-ear emperor       Stellete rabbitfish       Orang spine unicrnfish       Vanikoro sweeper       

Redgill emperor         Scissor-tail sergeant       Spotted unicornfish       Low fin rudderfish       

Sky emperor         Indo-pacific sergeant       White marg uniornfish       Goggle-eye bigeye       

Snubnose emperor       False-eye sergeant       African coris         Glasseye bigeye       

Yellowlip emperor       White-belly damsel       Barred thicklip wrasse       Striped catfish       

Lunar fusilier         Three-spot dascyllus       Blck-edge thcklip wrase       Moorish idol         

Scissor-tail fusilier       Bronze soldierfish       Blue-spotted wrasse       Buccaneer anchovy       

Yellowtop fusilier       Red soldierfish         Checkerboard wrasse       Delicate round herring       

Dash-and-dot goatfish       Tailspot squirrelfish       Cigar wrasse         Gold spot herring       

Indian goatfish         Bloodspot squirrelfish       Crescent wrasse       Squid         

Longbarbel goatfish       Crown squirrelfish       Dragon wrasse         Octopus         

Red spot goatfish       Long-jawed squirrelfish       Goldbar wrasse         Sea cucumber         

Rosy goatfish         Onespot snapper       Longface wrasse       Moray         

Sidespot goatfish       Black-spot snapper       Sixbar wrasse         Lobster         

Two-barred goatfish       Blue-lined snapper       Species             Nb Wt(g)   

Yellowfin goatfish       Flametail snapper                           

Yellowstripe goatfish       Humpback snapper                           

Blacktip grouper       Black sweetlips                             

Halfmoon grouper       Blck-spotted sweetlips                           

Honeycomb grouper       Dusky sweetlips                           

Longspined grouper       Gold-spotted sweetlips                           

Yellow-edged lyretail        White-barred sweetlips                           

Peacock grouper       Goldring bristletooth                           

Redmouth grouper       Two spot bristletooth                           

Saddleback grouper       Striped bristletooth                           

 

Appendix 4.1. Initial landings survey datasheet, including 133 species + morays + invertebrate groups (squid, lobster, octopus, and 

sea cucumber) 



  

261 
 

 Scientific name Common name 

1 Abudefduf sexfasciatus Scissortail sergeant 

2 Abudefduf sparoides False-eye sergeant 

3 Abudefduf vaigiensis Indo-pacific sergeant 

 Acanthuridae spp Acanthuridae spp 

4 Acanthurus blochii Ringtail surgeonfish 

5 Acanthurus dussumieri Eyestripe surgeonfish 

6 Acanthurus lineatus Lined surgeonfish 

7 Acanthurus mata Elongate surgeonfish 

8 Acanthurus nigricauda Epaulette surgeonfish 

9 Acanthurus nigrofuscus Brown surgeonfish 

10 Acanthurus tennentii Doubleband surgeonfish 

11 Acanthurus triostegus Convict surgeonfish 

12 Acanthurus xanthopterus Yellowfin surgeonfish 

13 Aeoliscus strigatus Razorfish 

14 Aethaloperca rogaa Redmouth grouper 

15 Albula glossodonta Roundjaw bonefish 

16 Aluterus scriptus Scribbled leatherjacket filefish 

17 Amblyglyphidodon leucogaster Yellowbelly damselfish 

18 Amblygobius semicinctus Halfbarred goby 

19 Anampses caeruleopunctatus Bluespotted wrasse 

20 Anampses twistii Yellowbreasted wrasse 

 Apogonidae spp Apogonidae spp 

21 Aprion virescens Green jobfish 

22 Arothron hispidus White-spotted puffer 

23 Arothron mappa Map puffer 

24 Arothron nigropunctatus Blackspotted puffer 

25 Arothron stellatus Stellate puffer 

26 Balistapus undulatus Orange-lined triggerfish 

 Balistidae spp Balistidae spp 

27 Balistoides conspicillum Clown triggerfish 

28 Balistoides viridescens Titan triggerfish 

29 Bodianus diana Diana's hogfish 

30 Bolbometopon muricatum Green humphead parrotfish 

31 Caesio caerulaurea Blue and gold fusilier 

32 Caesio lunaris Lunar fusilier 

33 Caesio xanthonota Yellowback fusilier 

34 Calotomus carolinus Carolines parrotfish 

35 Calotomus spinidens Spinytooth parrotfish 

36 Cantherhines pardalis Honeycomb filefish 

 Carangidae spp Carangidae spp 

37 Carangoides fulvoguttatus Yellowspotted trevally 

38 Carangoides gymnostethus Bludger 

   

Appendix 4.2. Species and species groups occurring in landings dataset 
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39 Caranx ignobilis Giant trevally  

40 Caranx melampygus Bluefin trevally 

41 Centropyge multispinis Dusky angelfish 

42 Cephalopholis argus Peacock hind 

43 Cephalopholis miniata Coral hind 

44 Cephalopholis urodeta Darkfin hind 

45 Cetoscarus ocellatus Spotted parrotfish 

46 Chaetodon auriga Threadfin butterflyfish 

47 Chaetodon blackburnii Blackburn's butterflyfish 

48 Chaetodon falcula Blackwedged butterflyfish 

49 Chaetodon guttatissimus Peppered butterflyfish 

50 Chaetodon kleinii Sunburst butterflyfish 

51 Chaetodon lineolatus Lined butterflyfish 

52 Chaetodon lunula Raccoon butterflyfish 

53 Chaetodon madagaskariensis Seychelles butterflyfish 

54 Chaetodon trifascialis Chevron butterflyfish 

55 Chaetodon trifasciatus Melon butterflyfish 

56 Chaetodon vagabundus Vagabond butterflyfish 

57 Chaetodon xanthocephalus Yellowhead butterflyfish 

 Chaetodontidae spp Chaetodontidae spp 

58 Cheilinus chlorourus Floral wrasse 

59 Cheilinus oxycephalus Snooty wrasse 

60 Cheilinus trilobatus Tripletail wrasse 

61 Cheilinus undulatus Humphead wrasse 

62 Cheilio inermis Cigar wrasse 

63 Cheilodipterus macrodon Large toothed cardinalfish 

64 Cheilodipterus quinquelineatus Five-lined cardinalfish 

65 Cheilopogon abei Abe's flyingfish 

66 Chilomycterus reticulatus Spotfin burrfish 

67 Chirocentrus nudus Whitefin wolf-herring 

68 Chlorurus sordidus Daisy parrotfish 

69 Chromis weberi Weber's chromis 

70 Chrysiptera annulata Footballer demoiselle 

 Cirrhitidae spp Cirrhitidae spp 

71 Cirrhitus pinnulatus Stocky hawkfish 

 Clupeidae spp Clupeidae spp 

72 Coris caudimacula Spottail coris 

73 Coris cuvieri African Coris 

74 Crenimugil crenilabis Fringelip mullet 

75 Ctenochaetus binotatus Twospot surgeonfish 

76 Ctenochaetus striatus Striated surgeonfish 

77 Ctenochaetus strigosus Spotted surgeonfish 

78 Cymolutes praetextatus Knife razorfish 

   

Appendix 4.2 cont. Species and species groups occurring in landings dataset 
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79 Dactyloptena orientalis Oriental flying gurnard 

80 Dascyllus aruanus Whitetail dascyllus 

81 Dascyllus trimaculatus Threespot dascyllus 

82 Dendrochirus brachypterus Dwarf lionfish 

83 Diagramma pictum Painted sweetlips 

 Diodontidae spp Diodontidae spp 

84 Echeneis naucrates Live sharksucker 

85 Epibulus insidiator Sling-jaw wrasse 

86 Epinephelus coeruleopunctatus Whitespotted grouper 

87 Epinephelus fasciatus Blacktip grouper 

88 Epinephelus flavocaeruleus Blue-and-yellow grouper 

89 Epinephelus hexagonatus Starspotted grouper 

90 Epinephelus lanceolatus Giant grouper 

91 Epinephelus longispinis Longspine grouper 

92 Epinephelus macrospilos Snubnose grouper 

93 Epinephelus malabaricus Malabar grouper 

94 Epinephelus melanostigma One-blotch grouper 

95 Epinephelus merra Honeycomb grouper 

96 Epinephelus polyphekadion Camouflage grouper 

97 Epinephelus rivulatus Halfmoon grouper 

98 Epinephelus spilotoceps Foursaddle grouper 

99 Epinephelus tukula Potato grouper 

 Exocoetidae spp Exocoetidae spp 

100 Fistularia petimba Red cornetfish 

101 Fowleria marmorata Marbled cardinalfish 

 Gerreidae spp Gerreidae spp 

102 Gerres longirostris Strongspine silver-biddy 

103 Gnathanodon speciosus Golden trevally 

104 Gnathodentex aureolineatus Striped large-eye bream 

 Gobiidae spp Gobiidae spp 

105 Gomphosus caeruleus Green birdmouth wrasse 

 Haemulidae spp Haemulidae spp 

106 Halichoeres hortulanus Checkerboard wrasse 

107 Halichoeres marginatus Dusky wrasse 

108 Halichoeres scapularis Zigzag wrasse 

109 Hemigymnus  melapterus Blackeye thicklip 

110 Hemigymnus fasciatus Barred thicklip wrasse 

111 Hemiramphus far Black-barred halfbeak 

112 Heniochus acuminatus Pennant coralfish 

113 Heniochus monoceros Masked bannerfish 

114 Herklotsichthys quadrimaculatus Bluestripe herring 

115 Heteropriacanthus cruentatus Glasseye 

116 Hipposcarus harid Candelamoa parrotfish 
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 Holocentridae spp Holocentridae spp 

117 Hyporhamphus affinis Tropical halfbeak 

118 Istiompax indica Black marlin 

119 Kyphosus cinerascens Blue sea chub 

120 Kyphosus vaigiensis Brassy chub 

 Labridae spp Labridae spp 

121 Lactoria cornuta Longhorn cowfish 

122 Leptomelanosoma indicum Indian threadfin 

123 Leptoscarus vaigiensis Marbled parrotfish 

 Lethrinidae spp Lethrinidae spp 

124 Lethrinus borbonicus Snubnose emperor 

125 Lethrinus harak Thumbprint emperor 

126 Lethrinus lentjan Pink ear emperor 

127 Lethrinus mahsena Sky emperor 

128 Lethrinus nebulosus Spangled emperor 

129 Lethrinus olivaceus Longface emperor 

130 Lethrinus rubrioperculatus Spotcheek emperor 

131 Lethrinus xanthochilus Yellowlip emperor 

 Lutjanidae spp Lutjanidae spp 

132 Lutjanus argentimaculatus Mangrove red snapper 

133 Lutjanus bohar Two-spot red snapper 

134 Lutjanus fulviflamma Dory snapper 

135 Lutjanus fulvus Blacktail snapper 

136 Lutjanus gibbus Humpback red snapper 

137 Lutjanus kasmira Common bluestripe snapper 

138 Lutjanus monostigma One-spot snapper 

139 Lutjanus quinquelineatus Five-lined snapper 

140 Lutjanus rivulatus Blubberlip snapper 

141 Macolor niger Black and white snapper 

142 Megalaspis cordyla Torpedo scad 

 Monacanthidae spp Monacanthidae spp 

143 Monotaxis grandoculis Humpnose big-eye bream 

 Mugilidae spp Mugilidae spp 

144 Mulloidichthys flavolineatus Yellowstripe goatfish 

145 Mulloidichthys vanicolensis Yellowfin goatfish 

146 Myripristis adusta Shadowfin soldierfish 

147 Myripristis murdjan Pinecone soldierfish 

148 Naso annulatus Whitemargin unicornfish 

149 Naso brachycentron Humpback unicornfish 

150 Naso brevirostris Spotted unicornfish 

151 Naso fageni Horseface unicornfish 

152 Naso hexacanthus Sleek unicornfish 

153 Naso lituratus Orangespine unicornfish 
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154 Naso unicornis Bluespine unicornfish 

155 Neoniphon sammara Sammara squirrelfish 

156 Novaculichthys taeniourus Rockmover wrasse 

157 Novaculoides macrolepidotus Seagrass wrasse 

158 Ostorhinchus aureus Ring-tailed cardinalfish 

159 Ostorhinchus cyanosoma Yellowstriped cardinalfish 

160 Ostorhinchus nigrofasciatus Blackstripe cardinalfish 

 Ostraciidae spp Ostraciidae spp 

161 Ostracion cubicus Yellow boxfish 

162 Ostracion meleagris Whitespotted boxfish 

163 Papilloculiceps longiceps Tentacled flathead 

164 Parapercis hexophtalma Speckled sandperch 

165 Pardachirus pavoninus Peacock sole 

166 Parupeneus barberinus Dash-and-dot goatfish 

167 Parupeneus cyclostomus Gold-saddle goatfish 

168 Parupeneus heptacanthus Cinnabar goatfish 

169 Parupeneus indicus Indian goatfish 

170 Parupeneus macronemus Long-barbel goatfish 

171 Parupeneus pleurostigma Sidespot goatfish 

172 Parupeneus rubescens Rosy goatfish 

173 Parupeneus trifasciatus Doublebar goatfish 

174 Pempheris vanicolensis Vanikoro sweeper 

175 Platax orbicularis Orbicular batfish 

176 Platycephalus indicus Bartail flathead 

177 Plectorhinchus flavomaculatus Lemonfish 

178 Plectorhincus chubbi Dusky rubberlip 

179 Plectorhincus gaterinus Blackspotted rubberlip 

180 Plectorhincus gibbosus Harry hotlips 

181 Plectroglyphidodon lacrymatus Whitespotted devil 

182 Plectropomus pessuliferus Roving coralgrouper 

183 Plectropomus punctatus Marbled coralgrouper 

184 Plotosus lineatus Striped eel catfish 

185 Pomacanthus chrysurus Goldtail angelfish 

186 Pomacanthus imperator Emperor angelfish 

187 Pomacanthus semicirculatus Semicircle angelfish 

 Pomacentridae spp Pomacentridae spp 

188 Pomacentrus aquilus Dark damselfish 

189 Priacanthus blochii Paeony bulleye 

190 Priacanthus hamrur Moontail bullseye 

191 Pristiapogon kallopterus Iridescent cardinalfish 

192 Pseudobalistes flavimarginatus Yellowmargin triggerfish 

193 

Pseudoginglymostoma 

brevicaudatum Short-tail nurse shark 

194 Pteragogus flagellifer Cocktail wrasse 
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195 Pterois antennata Broadbarred firefish 

196 Pterois volitans Red lionfish 

197 Pygoplites diacanthus Regal angelfish 

198 Remora remora Shark sucker 

199 Rhabdosargus sarba Goldlined seabream 

200 Rhinecanthus aculeatus White-banded triggerfish 

201 Rhinobatos albomaculatus Whitespotted guitarfish 

202 Sargocentron caudimaculatum Silverspot squirrelfish 

203 Sargocentron diadema Crown squirrelfish 

204 Sargocentron praslin Dark-striped squirrelfish 

205 Sargocentron punctatissimum Speckled squirrelfish 

206 Sargocentron spiniferum Sabre squirrelfish 

207 Saurida gracilis Gracile lizardfish 

 Scaridae spp Scaridae spp 

208 Scarus falcipinnis Sicklefin parrotfish 

209 Scarus ghobban Blue-barred parrotfish 

210 Scarus niger Dusky parrotfish 

211 Scarus psittacus Common parrotfish 

212 Scarus rubroviolaceus Ember parrotfish 

213 Scarus russelii Eclipse parrotfish 

214 Scarus scaber Fivesaddle parrotfish 

215 Scolopsis bimaculata Thumbprint monocle bream 

216 Scolopsis ghanam Arabian monocle bream 

217 Scomberoides commersonnianus Talang queenfish 

218 Scomberomorus commerson 

Narrow-barred Spanish 

mackerel 

 Scombridae spp Scombridae spp 

 Scorpaenidae spp Scorpaenidae spp 

219 Scorpaenopsis venosa Raggy scorpionfish 

220 Selaroides leptolepis Yellowstripe scad 

 Serranidae spp Serranidae spp 

221 Siganus argenteus Streamlined spinefoot 

222 Siganus luridus Dusky spinefoot 

223 Siganus spinus Little spinefoot 

224 Siganus stellatus Brown-spotted spinefoot 

225 Siganus sutor A.W.Rabbitfish 

 Soleidae spp Soleidae spp 

226 Sphyraena barracuda Great barracuda 

227 Sphyraena flavicauda Yellowtail barracuda 

228 Sphyraena jello Pickhandle barracuda 

 Sphyraenidae spp Sphyraenidae spp 

229 Stegastes fasciolatus Pacific gregory 

230 Stethojulis albovittata Bluelined wrasse 
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231 Stethojulis bandanensis Red shoulder wrasse 

232 Stethojulis strigiventer Three-ribbon wrasse 

233 Strongylura incisa Reef needlfish 

234 Sufflamen chrysopterum Halfmoon triggerfish 

235 Sunagocia arenicola Broadhead flathead 

 Synanceiidae spp Synanceiidae spp 

 Synodontidae spp Synodontidae spp 

236 Terapon jarbua Jarbua terapon 

 Tetradontidae spp Tetradontidae spp 

237 Thalassoma hardwicke Sixbar wrasse 

238 Thalassoma hebraicum Goldbar wrasse 

239 Thalassoma lunare Moon wrasse 

240 Thalassoma trilobatum Christmas wrasse 

241 Torpedo sinuspersici Variable torpedo ray 

242 Trachinotus blochii Snubnose pompano 

 Unknown Mixed spp 

  

243 Upeneus vittatus Yellowstriped goatfish 

244 Variola louti Yellow-edged lyretail 

245 Zanclus cornutus Moorish idol 

246 Zebrasoma desjardinii Indian sail-fin surgeonfish 

247 Zebrasoma scopas Twotone tang 

248 Zebrasoma velifer Sailfin tang 
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Appendix 4.3. Relative abundance of species by gear type for the 20 most abundant species 
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Appendix 4.3 cont. Relative abundance of species by gear type for the 20 most abundant species 
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Appendix 4.4. Term plots, component plus residual plots, for GLM model used in the 

standardization of S. sutor after removal of n= 3 outliers (pseudo-R2= 0.24) 

 

 



  

271 
 

 
Appendix 4.5. Term plots, component plus residual plots, for GLM model used in the 

standardization of H. quadrimaculatus after removal of n= 4 outliers (pseudo-R2= 0.36) 
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Appendix 4.6. Term plots, component plus residual plots, for GLM model used in the 

standardization of Clupeidae spp after removal of n= 5 outliers (pseudo-R2= 0.71) 
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Appendix 4.7. Term plots, component plus residual plots, for GLM model used in the 

standardization of P. lineatus after removal of n= 1 outlier (pseudo-R2= 0.81) 
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Appendix 4.8. Term plots, component plus residual plots, for GLM model used in the 

standardization of L. vaigiensis after removal of n= 4 outliers (pseudo-R2= 0.21) 
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Appendix 4.9. Term plots, component plus residual plots, for GLM model used in the 

standardization of L. harak (gillnet) after removal of n= 6 outliers (pseudo-R2= 0.30) 
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Appendix 4.10. Term plots, component plus residual plots, for GLM model used in the 

standardization of L. harak (hook-line) after removal of n= 4 outliers (pseudo-R2= 0.18) 

 



  

277 
 

 
Appendix 4.11. Term plots, component plus residual plots, for GLM model used in the 

standardization of C. caerulaurea after removal of n= 6 outliers (pseudo-R2= 0.44) 
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Appendix 4.12. Term plots, component plus residual plots, for GLM model used in the 

standardization of S. ghobban after removal of n= 0 outliers (pseudo-R2= 0.87) 
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Appendix 4.13. Term plots, component plus residual plots, for GLM model used in the 

standardization of S. ghobban after removal of n= 1 outlier (pseudo-R2= 0.13) 
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Appendix 4.14. Term plots, component plus residual plots, for GLM model used in the 

standardization of G. longirostris after removal of n= 2 outliers (pseudo-R2= 0.10) 
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Appendix 4.15.  GLM regression diagnostic plots for S. sutor CPUE standardization 

 

 
Appendix 4.16. GLM regression diagnostic plots for H. quadrimaculatus CPUE standardization 
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Appendix 4.17. GLM regression diagnostic plots for Clupeidae spp CPUE standardization 

 

 

 

 
Appendix 4.18. GLM regression diagnostic plots for P. lineatus CPUE standardization  
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Appendix 4.19. GLM regression diagnostic plots for L. vaigiensis CPUE standardization  

 

 

 
Appendix 4.20. GLM regression diagnostic plots for L. harak (gillnet) CPUE standardization 
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Appendix 4.21. GLM regression diagnostic plots for L. harak (hook-line) CPUE standardization  

 

 

 
Appendix 4.22. GLM regression diagnostic plots for C. caerulaurea CPUE standardization 
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Appendix 4.23. GLM regression diagnostic plots for O. cyanosoma CPUE standardization 

 

 

 

 

 
Appendix 4.24. GLM regression diagnostic plots for S. ghobban CPUE standardization 
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Appendix 4.25. GLM regression diagnostic plots for G. longirostris CPUE standardization 

 

 

 

 

 
 

Appendix 4.26. A mixed catch from a seine net haul typically composed of juvenile length 

classes, and often larval stages; dominant species here are the Three-ribbon wrasse, Stethojulis 

strigiventer, Cigar wrasse, Cheilio inermis, and Marbled (seagrass) parrotfish, Leptoscarus 

vaigiensis   
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Appendix 4.27. Bluestripe herring, Herklotsichthys quadrimaculatus November 2011 
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Appendix 4.28. Examples of complete catches sampled in Ifaty, November 2011, illlustrating 

the range of fish sizes, species diversity, and range of landed biomass (10 cm grid)   
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Appendix 4.29.  Catches sampled in Ifaty between September – December 2012; (top-left) 

Dash-and-dot goatfish (Parupeneus barberinus), thumbprint emperors (Lethrinus harak), 

shoemaker spinfoot (Siganus sutor), and strongspine silver-biddy (Gerres longirostris) (top-left);  

same species with Siganus sutor dominant in catch (top-right); same species with Gerres 

longirostris and Lethrinus harak dominant in catch (bottom-left); Myripristis spp, sammara 

squirrelfish (Neoniphon sammara), and crown squirrelfish (Sargocentron diadema) 
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Appendix 4.30. Shoemaker spinefoot (Siganus sutor) and brown-spotted spinefoot (Siganus 

stellatus) (top row); ember parrotfish (Scarus rubroviolaceus), yellow-edged lyretail (Variola 

louti), giant moray (Gymnothorax javanicus) (left middle); green turtle (Chelonia mydas) (left 

bottom); tomato hind (Cephalopholis sonnerati) and Variola louti (right) 
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Appendix 4.31. Scalloped hammerhead (Sphyrna lewini) (first row); malabar grouper 

(Epinephelus malabaricus) (August 2013) and humphead wrasse (Cheilinus undulatus) 

(September 2013) (second row); stonefish (Syanecia verrucosa) (10 cm grid; November 2011), 

and weedy scorpionfish (Rhinopias frondosa) (third row)  

 

 



  

292 
 

Vita 
 

 

Shane M. Abeare was born in Flint, Michigan, where he 

obtained his Bachelor of Science in biology, minoring in 

chemistry, from the University of Michigan.  As an 

undergraduate student, Shane participated in field research with 

professors in the Amazonian rainforests of Peru, the rainforests 

of Papua New Guinea, and in Queensland, Australia.  He also 

participated in an NSF-funded Research Experience for 

Undergraduates (REU) program at Eastern Illinois University. 

After graduating, Shane enrolled in the Peace Corps in 

Togo, West Africa, and thus began the 10-year long chapter of 

his life spent on the African continent.  From West to Central 

Africa to South Africa, and Madagascar, he worked for the 

conservation of African wildlife in national parks, and with 

communities managing local reserves.  His interests were, 

initially, focused on the conservation of terrestrial animals, and 

after having obtained a Master of Science in African 

Mammalogy and Conservation at the University of Pretoria, 

Shane volunteered on a Great White shark research project in 

South Africa, as his first foray into the realm of marine 

conservation.  Then, shortly thereafter, he accepted a position in 

the management of a national park in the Republic of Congo.   

While working in the Congo, it became apparent that both fish and wildlife conservation 

were important avenues to pursue in order to provide a holistic approach to the numerous and 

complex issues of conservation in Africa.  After having completed a Master of Science in 

oceanography, with a minor in statistics, he 

decided to continue his studies and pursue a 

PhD at the University of New Orleans, where 

he would eventually conduct his dissertation 

research on the artisanal fisheries of the Vezo 

communities of southwest Madagascar.  

Today, Shane is currently employed as 

the Senior Fisheries Biologist with the Division 

of Fish and Wildlife in the Commonwealth of 

the Northern Mariana Islands.  Although he is 

now far from Africa, he does hope to return 

some day.   

 

 

 

 


	The Vezo communities and fisheries of the coral reef ecosystem in the Bay of Ranobe, Madagascar
	Recommended Citation

	RANGE!A1:T43

