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Abstract 

Low-pass Fourier filter, wavelet filter, as well as matched filter detection methods were 

used to detect baleen whale signals in northern Gulf of Mexico data collected by the Littoral 

Acoustic Demonstration Center (LADC) consortium. Some potential low frequency signals 

appeared on the matched filter output figure. The shape of the signals is in line with one of the 

typical signal shapes of fin whales--vertical down-sweeps with 18s-time interval. Another shape 

of the signals is in line with one of the call type shapes of Bryde's whales--down-sweeps with 

7s-time interval. A high-pass Fourier filter was also used to find toothed whale high frequency 

sounds in the Gulf of Mexico data. The sounds featuring click trains and codas belonging to 

sperm whales have been clearly identified.  

Keywords: LADC, Gulf of Mexico, Signal, Detection, Baleen whale, Toothed whale, 

Frequency, Filter 
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Chapter 1.Introduction 

1.1 Gulf of Mexico 

1.1.1 Geographic and geological characteristics 

The Gulf of Mexico is a coastal area of southeast North America, partly surrounded by 

land. It is connected to the Atlantic by the Florida straits between the Florida peninsula and the 

island of Cuba, and to the Caribbean Sea by the Yucatan strait between Cuba and the Yucatan 

peninsula. Both straits are about 160 kilometers wide. The longest east-west and north-south 

distances of the Gulf of Mexico are about 1,800 kilometers and 1,300 kilometers, respectively, 

with a total area of about 1.55 million square kilometers. Its northwest, north and northeast are 

the southern coast of the United States, and its west, south and southeast are the eastern coast 

of Mexico. 

 
Figure 1.1 Satellite map of Gulf of Mexico(Google, 2019). 

Figure 1.2 shows a map of the underwater topography at the bottom of the Gulf of 

Mexico. Shallow and intertidal areas (< 20 m deep) account for about 38% of the Gulf, 

continental shelves (20 to 180 m) 22%, continental slopes (180 to 3000 m) 20%, and deep-sea 

areas (> 3000 m) the remaining 20% (Love et al., 2013). 
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Figure 1.2 The underwater topography map of the Gulf of Mexico(Love et al., 2013). 

Figure 1.3 shows the bottom sediments of Gulf of Mexico. In the deep waters of the 

central Gulf of Mexico and along the coasts of Texas, Louisiana and Mississippi, the bottom 

sediments are mostly mud (Balsam and Beeson, 2003), and those off Louisiana's barrier islands 

are mostly sand. Gravel and rock matrix are found on the outer edge of the southern 

continental shelf in Texas, Louisiana, Mississippi, Alabama and Florida (Love et al., 2013). 

 
Figure 1.3 Bottom sediments map of Gulf of Mexico(Love et al., 2013). 
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1.1.2 Habitats and species 

The Gulf of Mexico coast includes more than 5 million acres of wetlands, which provides 

important habitat for both native and migrating birds. Louisiana's wetlands attract migratory 

birds that fly over the Gulf of Mexico, and in the fall, many others, including the common loon 

from the Great Lakes region, migrate to the winter waters of the Gulf of Mexico, where they 

will stay until the spring of the next year. 

Estuaries, the transitional zones between freshwater and marine environments, are 

habitats for shrimp, crabs, oyster and fish species. Coral, seagrasses and pelagic sargassum 

throughout the bay are also important habitats for fish, invertebrates and sea turtles (NOAA, 

2019a). 

Below the seabed, salt structures also form unique habitats that support chemo-

synthetic communities and reef fish such as red snapper. Seafloor sediments provide habitats 

for a variety of organisms, mainly meiofaunal communities including nematodes, protozoans 

and diatoms (NOAA, 2019a). 

In addition to the above species, one of the most fascinating marine species - marine 

mammals - can be found in the Gulf of Mexico. There are nearly 32 potential and known gulf 

marine mammal species described (Würsig, 2017), some of which are often found in the 

northern Gulf, while others are very rare. Table 1.1 lists possible species and other relevant 

information. 

Table 1.1 Potential Marine Mammal Species in Gulf of Mexico(Würsig, 2017) 

Species  Sighting General depth 

North Atlantic right whale Rare sightings  

Blue whale   

Fin whale Rare sightings  

Sei whale   

Humpback whale Rare sightings  

Minke whale Rare sightings  

Bryde’s whale Quite common sightings Upper slope 

Sperm whale Common sightings Slope and deep ocean 

Pygmy sperm whale Common sightings Slope and deep ocean 

Dwarf sperm whale Common sightings Slope and deep ocean 

Cuvier’s beaked whale Occasional sightings Deep ocean 

Blainville’s whale Occasional sightings  

Sowerby’s beaked whale   
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Gervais’ beaked whale Occasional sightings  

Killer whale Common sightings Deep ocean 

Short-finned pilot whale Common sightings Slope to deep ocean 

Long-finned pilot whale   

False killer whale Medium common sightings Upper slope to deep ocean 

Pysgmy killer whale Medium common sightings Deep ocean 

Melon-headed whale Common sightings Deep ocean 

Rough-toothed dolphin Common sightings Upper slope to deep ocean 

Risso’s dolphin Common sightings Upper slope to deep ocean 

Common bottlenose dolphin Common sightings Upper slope and shallower 
waters 

Pantropical spotted dolphin Common sightings Upper slope to deep ocean 

Atlantic spotted dolphin Common sightings Upper slope and shallower 
waters 

Spinner dolphin Common sightings Deep ocean to upper slope 

Clymene dolphin Common sightings Deep ocean and slope 

Striped dolphin Common sightings Deep ocean and slope 

Short-beaked common 
dolphin 

  

Long-beaked common 
dolphin 

  

Fraser’s dolphin Occasional sightings Deep ocean and slope 

West Indian manatee Common sightings  

 
Table 1.1 shows dolphins are often found in waters that are less than 200 meters deep 

on the shore/coast and continental shelf, while toothed whales mainly occur on continental 

slopes and deep waters. The Gulf of Mexico does not have only species that are unique to the 

Gulf. All species are found in other oceans except for the Caribbean Atlantic cows and Clymene 

and Atlantic spotted dolphins that are unique to the North Atlantic (Burger et al., 2017).  

Efforts have been made to classify and collect the species and populations of whales in 

the Gulf of Mexico, but in fact it is a difficult task for any part of the ocean in the world. The 

population dispersion and quantity estimate of cetaceans produce different results in different 

years and even different seasons. Although sound censuses and visual censuses are 

popular(Davis et al., 2002), there are not enough sound data measurements to describe 

accurately the approximate number of marine animals except sperm whales. 

As the earth and ocean environment change, factors such as climate, water 

temperature, salinity, ocean currents, noise, etc., the description and statistical information of 
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whale migration, especially for the baleen whales with migratory habits may change. This 

means that the observation (sighting) probability of some species of whales may be different 

compared with Table 1.1. 

1.2 Significance of research and listening to marine mammals 

The investigation and study of various whale populations around the world will help 

humans to have a better understanding of the distribution and living habits of this species, and 

thus help humans to adjust their behaviors in the natural ecology to help prevent damage to 

the species and thus prevent the extinction of those endangered species. Marine mammals are 

sensitive to changes in the environment, so they often act as "ecosystem sentinels" around the 

world. Therefore, the study of marine mammals helps to protect the balance of the ecological 

environment. 

Most marine mammals live in the deep ocean, which makes it difficult for them to be 

within human visual range, so it is necessary to use different methods to gain a deeper 

knowledge of marine mammals in addition to observing them visually. Acoustic detection is a 

method that is profitable for tracking marine mammals without visual tracking. 

It is important to monitor the sounds of marine mammal in any ocean area because 

they do everything by sound, such as communicating with each other and exploring their 

surroundings. The acoustic data collected includes the characteristic sounds of various whales 

as well as information about the marine environment in which they live. Computer programs 

can decode this information and match changes in marine mammal populations with 

environmental factors (LADC-GEMM, 2017). 

1.3 Passive Acoustic Methods 

Visual observational research is expensive from a time and money perspective because 

it involves training the observer and spending a lot of time driving expensive ships or planes. In 

addition, visual surveys are limited by daylight and weather conditions. The passive acoustic 

method involves fixing automatic recording instruments on the ocean floor and leaving them 

there to record cetacean vocalizations (Mellinger et al., 2007). Passive acoustic methods are 

popular because they have lower costs relative to other methods of observational research and 

are capable of collecting data for long periods of time during any day or night, in any weather 
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or ocean conditions, and from any location. The temporal and spatial distribution of sound 

recorded by passive acoustic monitoring instruments helps to study the distribution, 

movement, behavior, relative abundance and population structure of whales (Mellinger et al., 

2007). 

In the Gulf of Mexico, the LACD-GEMM project is using several techniques to collect 

acoustic data on marine mammals in particular. These devices include Automatic Underwater 

Vehicle-gliders (AUVs), the Automatic Surface Vehicle (ASVs) and the Environmental acoustic 

recording system (EARS) buoys(LADC-GEMM, 2017).  

Figure 1.4 shows the arrangement of the various data collection devices in the Gulf of 

Mexico by the LADC-GEMM project. 

 
Figure 1.4 EARS, ASVs, Gliders arrangement in Gulf of Mexico(LADC-GEMM, 2017). 

As shown in Figure 1.4, passive acoustic monitoring in an aquatic environment refers to 

the use of underwater microphones (hydrophones) to monitor and locate vocal marine 

mammals. Passive means simply listening without introducing noise into the aquatic 

environment, so this method should not be confused with active acoustic systems where a 

sound is projected into the medium (OSC, 2019). 
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1.4 Research purpose 

Many toothed whale species live in the Gulf of Mexico for a long time as shown in Table 

1.1, the most common of which is the Gulf of Mexico independent population of sperm whales. 

In this thesis, a one-minute audio sample is chosen from a mass of audio recordings containing 

toothed whales to try to find the sound signal from the sperm whale and recognize its sound 

signal characteristics and unique signal structure in the time and frequency domains. 

Apart from toothed whales, baleen whales have also been reported in the Gulf of 

Mexico. This thesis will focus on locating sound records of fin whales and Bryde’s whales in the 

LADC-GEMM database from 2001 to 2017 using an appropriate computer algorithm, and to 

further distinguish the sound characteristics of these baleen whales in the Gulf of Mexico from 

those in other oceans. 

1.5 Biological background 

This section contains a brief physical description and vocalization characteristics of 

several whales of interest in this thesis. 

• Sperm whale 

The sperm whale is the largest toothed creature on earth. The average male is 15 

meters long and weighs 36,000 kilograms, while the average female is 11 meters long and 

weighs 20,000 kilograms. Juvenile' heads make up about a fifth to a quarter of their body 

length, while older adult males' heads make up about a third of their body length. The head has 

a large, waxy, oil-like structure called the spermatozoa(Burger et al., 2017). 

Sperm whales live in all the oceans of the world and usually feed in waters below 500 

meters. The sperm whales in the Gulf of Mexico are mainly female, so they are on average 1.5-

2.0 meters smaller than the average of all sperm whales elsewhere (Richter et al., 2008)(Jaquet 

and Gendron, 2009). Males travel and reproduce in the Gulf of Mexico and the North Atlantic as 

well as other oceans. 

Sperm whales use echolocation in their directional clicks, which range in frequency from 

less than 100 hertz to 30 kilohertz. Most of these clicks have energy in the range of 5 to 25 

kilohertz. Sperm whales also produce repeated click-through patterns in social situations called 

codas, which may be used to attract females, compete for mates, show aggression and 
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maintain group cohesion. During foraging, sperm whales make regular, spaced clicks, 

accompanied by very fast clicks in the final stages of capturing their prey (Wahlberg, 2002). 

The following are pictures showing the appearance, whale size compared with human 

size, and world-wide distribution of sperm whales. 

 
(a) 

 
(b) 
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(c) 

Figure 1.5 (a) Mother sperm whale and her baby; (b) Size comparison of a male and female sperm whale with a 
human (16m, 11m, 1.75m respectively); (c) Map of the distribution of sightings of sperm whales(Wikipedia 

contributors, 2019a) 

• Fin whale 

Fin whales belong to the parvorder of baleen whales, which are the second largest 

species on earth after blue whales. The maximum measured length is 25.9 meters and the 

maximum recorded weight is close to 74 tons (Lockyer, 1976). Fin whales exist in all major 

oceans from polar to tropical waters, but the areas with the highest population density are 

temperate and cool waters (National Marine Fisheries Service, 2010). 

Male Fin whales produce long, loud, low-frequency sounds. Most of the sound is a 

down-swept frequency modulated (FM) pulse, between 16 and 40Hz, centered at 

approximately 20Hz. Down-swept frequencies above 50Hz and even up-swept higher than 

100Hz have occurred but are not common or only appear in specific sea areas (Castellote et al., 

2012). Each sound pulse lasts one to two seconds, and different combinations of sound pulses 

form sequences that last from a few to a dozen minutes each. Repeated sequences form the 

whale song, which usually lasts two hours or even several days. Usually the term “note” is used 

for the 20Hz pulses that compose a song. When 20Hz pulses are in irregular patterns, they are 

referred to as a “call” (Weirathmueller et al., 2017).  
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The time interval between pulses of fin whales varies in different seas and even in the 

same ocean area but in different seasons from 6 seconds to 46 seconds. Different types of fin 

whale songs are formed according to different pulse intervals. There are two main types of fin 

whale songs recorded. One is a singlet song that consists of a single, repeated note sequence 

with a fixed pulse interval and frequency; the other is a doublet song that has two primary 

notes, alternating between low frequency, high pulse interval notes and higher frequency, low 

pulse interval notes (Weirathmueller et al., 2017).  

These vocalizations are directly related to the breeding season of the species. Only male 

vocalizations have been recorded so far (Croll et al., 2002), so these vocalizations may be a sign 

of mating calls. 

The following are pictures showing the appearance, whale size compared with human 

size, and world-wide distribution of fin whales. 

 
(a) 

 
(b) 
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(c) 

Figure 1.6 Fin whale (a) appearance; (b) Size comparison with a human; (c) distribution range(Wikipedia 
contributors, 2019b) 

• Bryde’s whale 

An adult Bryde’s whale is about 13 meters long and weighs about 26,455 pounds, and 

the average length of a calf is 7 meters. Females tend to be slightly larger than males. The 

Bryde’s whales are also known as tropical whales who are found mainly in tropical, subtropical 

and warm temperate waters (61° to 72°F) around the world, from 40 degrees south latitude to 

40 degrees north latitude. They are not highly gregarious(Burger et al., 2017). 

Gulf of Mexico Bryde's whales are members of the baleen whale family and a subspecies 

of the Bryde’s whale. They live in the northeastern Gulf of Mexico, along continental shelf 

fractures 100 to 400 meters deep. The Gulf of Mexico Bryde’s Whale is one of the few non-

migrating baleen whales that live in the Gulf of Mexico throughout the year. Bryde's whales are 

vulnerable to stress and threats, such as ocean noise and whaling. Subspecies in the Gulf of 

Mexico are threatened by oil and gas activity, as well as oil spills and cleanup. Scientists believe 

there are fewer than 100 of them in the Gulf of Mexico, with 50 or fewer being mature 

individuals(NOAA, 2019b).   

Bryde’s whale can generate powerful sounds containing low frequencies. The 

calls/sounds are mainly divided into four types: down-sweep, tonal sequence, long-moan and 

pulse. The call/sound duration range is between 10μs and 7s, and the frequency is usually 
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below 900 Hz. The inter-call/phase interval varies from 6.25ms to 40mins(Rice et al., 2014a). 

Most of the calls/sounds made by Bryde's whales include several types of calls simultaneously. 

They repeat these calls every few minutes, many of which are produced as the whales move, 

and the type of call varies with the size of the group (Heimlich et al., 2005). 

The following are pictures showing the appearance, whale size compared with human 

size, and world-wide as well as Gulf of Mexico distribution of Bryde’s whales. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 1.7 Bryde’s whale (a) appearance showing faint lateral ridges; (b) Size comparison with a 
human;(NOAA, 2019b); (c)living area all over the world; (d)distribution of Gulf of Mexico Bryde’s whales(LaBrecque 

et al., 2015) 

1.6 Ocean noise 

Sound travels five times faster through water than through air, and many times farther 

than through air. Marine mammals use acoustic media to find food, mates and predators. 

However, undersea noise pollution is destroying the environment for marine life. Noise sounds 

obscure the whale's sense of hearing and being heard and disrupt critical behavior and 

communication between whales. 

The primary man-made sources of ocean noise are commercial, industrial and military. 

Cavitation noise produced by a propeller and the engine itself make huge rumble; the 

petrochemical industry uses seismic air guns to emit extremely loud pulses to the seabed; 

military sonar emits sound frequencies ranging from very low (infrasound) to very high 



14 
 

(ultrasonic) to detect a target (Noise, 2003). Sounds produced by human activities including 

communications, navigation, defense, research, exploration and fishing are also part of ocean 

noise. During seismic exploration, acoustic explosions can last for days or weeks. Human 

activities generate a wide range of noise frequencies, ranging from a few hertz to hundreds of 

kilohertz (Studds and Wright, 2007).  

Some physical processes including rainfall, sea ice rupture, undersea earthquakes and 

undersea volcanic eruptions also contribute to ocean noise. Rainstorms, for example, can raise 

the noise level of bubbles and sprays by more than thirty decibels underwater over frequencies 

from a few hundred hertz to 20,000 hertz (Andrew et al., 2002). 

Figure 1.8 summarizes the background sounds in the ocean, showing typical sound 

levels at different frequencies. 

 
Figure 1.8 The typical sound levels of ocean background noises at different frequencies (Wenz, 1962). 

Figure 1.8 is referred to as the Wenz curves. In the range of 20-500 Hz, environmental 

noise is mainly caused by the noise generated by long-distance transportation. At frequencies 
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ranging from 500 to 100,000 Hz, the bubbles associated with the spray and the breaking waves 

cause the main environmental noise, and the noise increases as the wind speed increases. At 

frequencies over 100,000 Hz, thermal noise from the random movement of water molecules 

dominates (Wenz, 1962). 

Most toothed whales produce sounds with frequencies above the noise frequency or 

have a higher sound power than the noise power at that frequency, which makes the sound of 

the toothed whale relatively easy to detect. But for baleen whales, which produce very low-

frequency sounds of low power, the sounds are just mixed in with the noise, which makes it 

harder to detect the sound of baleen whales. This is the primary difficulty of finding baleen 

whale signal in the Gulf of Mexico measured data used in this thesis. 
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Chapter 2. Data Background 

A consortium of scientists from universities, government laboratories, and scientific 

companies established the Littoral Acoustic Demonstration Center (LADC)- Gulf Ecological 

Monitoring and Modeling (GEMM) in 2001 to study shallow water ambient noise, propagation 

and marine mammal acoustics using Environmental Acoustic Recording System (EARS) buoys in 

the northern Gulf of Mexico. 

When LADC was formed, the buoys could measure signals with frequencies up to 

1000Hz. When LADC added listening to the sounds of sperm whales to its noise and 

propagation measurement mission, the buoys were modified, and the measurement frequency 

raised to 5,859Hz within 36 days. These buoys were moored in the depths of the northern Gulf 

of Mexico from 550 to 950 meters, producing clear recordings of sperm whale echolocation and 

coda clicks and other whale recordings. EARS Generation 2 buoys are now able to record one 

channel to 96kHz, or 4 channels to 25kHz, over 13 days on four 120 GB laptop disk drives (Ioup 

et al., 2016). 

Beginning with the 2001 experiment, LADC scientists studied the click and click behavior 

of sperm whales. In 2007, the study extended to the clicks of beaked whales. By 2019, baleen 

whales with very low-frequency sounds, such as Fin whales and Bryde’s whales, are considered 

for study. 

There were some marine mammal acoustic experiments performing by LADC in the 

northern Gulf of Mexico from 2001 to 2017, and all experiments used EARS buoys. The 

following table shows the parameters of part of the experiments: 

Table 2.1 The parameters of LADC experiments 

Buoys Time Location in 
Gulf of 
Mexico 

Depth(m) Above 
bottom(m) 

Sampling 
rate(kHz) 

Other 
events 

LADC 01 7/16/2001-
8/21/2001 

Northeastern  600,800, 
1000 

50 11.7 Tropical 
Storm Barry 

passed within 
100 nmi 

LADC 02 8/19/2001-
9/15/2001 

North central  600,800, 
1000 

50 11.7 Tropical 
Storm Isidore 
passed with 

73 nmi; 
Hurricane Lili 
passed within 

116 nmi 
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LADC 07 7/3/2007-
7/14/2007 

South of 
Atchafalaya 

Bay 

750-800  192  

 2015,2017 North  1000-2000 289(300m 
mooring) 
537(500m 
mooring) 

192  

 
Figure 2.1(a) shows the location of the LADC 01 and LADC 02 experiments. The white 

cross lines represent the position of LADC 01 and LADC 02 experiments. The three yellow pins in 

Figure 2.1(b) show the location of 2017 experiments sites. They were located between the 

shallow sea and the continental slopes in the northern Gulf of Mexico, and the bottom of the 

water is dominated by muddy sediments. 

 
(a)                                                                                                    (b) 

Figure 2.1 Location of (a)2001 LADC 01 and LADC 02 experiments(Ioup et al., 2016); (b)2017 experiments 
sites(Sidorovskaia et al., 2017) 
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Chapter 3. Methods and Techniques 

Much mathematical knowledge and many algorithms are used in signal processing. This 

section of this chapter will theoretically elaborate and discuss the methods of calculation and 

problem solving used in this thesis. 

3.1 Fourier Transform  

The Fourier transform is a linear integral transform used to transform a signal between 

the time domain (or space domain) and the frequency domain. It has many applications in 

physics and engineering. In the time domain, the intensity of signal distribution over time is 

presented, while in the frequency domain, the frequency distribution of the signal can be 

intuitively reflected.  

The function F(s) generated by the Fourier transform, also known as the spectrum, is 

called the Fourier transform of the original function f(x). In many cases, the Fourier transform 

is invertible, that is, the original function f(x) can be obtained from F(s). Both f(x) and F(s) are 

complex functions, but often f(x) is a real function. F(s) is always a complex function, which 

uses a complex number to represent amplitude and phase or real and imaginary parts. 

The Fourier transform includes the Continuous Fourier Transform (CFT) and the Discrete 

Fourier Transform (DFT). The definition of the continuous Fourier transform in integral 

form(Bracewell, 2000) is, 

 𝐹(𝑠) = ∫ 𝑓(𝑥)𝑒−𝑖2𝜋𝑥𝑠 𝑑𝑥
∞

−∞
 (3.1) 

 𝑓(𝑥) = ∫ 𝐹(𝑠)𝑒𝑖2𝜋𝑥𝑠𝑑𝑠
∞

−∞
 (3.2) 

Equation (3.1) shows F(s), the forward Fourier transform of f(x). The independent 

variable x represents time (in seconds), and the transformation variable s represents frequency 

(in Hertz). Equation (3.2) shows that f(x) can be recovered from F(s) by the inverse Fourier 

transform. 

 Data processing on a digital computer uses the DFT, which is the discrete form of the 

Fourier Transform in both the time domain and frequency domain, transforming the time 

domain samples of signal into the frequency domain samples of the Discrete Time Fourier 

Transform (DTFT). Because digital systems can only handle discrete signals of finite length, both 
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x and s must be discretized and of finite length, and the corresponding Fourier transform must 

be established. For the N-point sequence {xk}=x0, x1, …, xN-1, its DFT is (Brigham, 1988), 

 𝑋𝑛 = ∑ 𝑥𝑘𝑒
−𝑖2𝜋𝑘𝑛

𝑁𝑁−1
𝑘=0 , n = 0, 1, … , N − 1 (3.3) 

{Xn}=X0, X1, …, XN-1. The inverse transform of the Discrete Fourier Transform (IDFT) 

is(Brigham, 1988), 

 𝑥𝑘 =
1

𝑁
∑ 𝑋𝑛𝑒𝑖

2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0 , 𝑘 = 0, 1, … , N − 1 (3.4) 

In practical computing, the Fast Fourier Transform (FFT) replaces the Discrete Fourier 

Transform (DFT). The FFT is a method of rapidly computing the DFT or its inverse Transform of a 

sequence. The FFT quickly calculates such a transformation by decomposing the DFT matrix into 

a product of sparse (mostly zero) factors(Van Loan, 1992). Using FFT calculations will yield the 

same results as the DFT calculations, but it can reduce the complexity of DFT calculations from 

N2, which is required for DFT definition calculations as shown in equation (3.3), to 

N\log2N(Higgins, 1976). Take N=1024 for example: the DFT will compute 1048596 times, while 

the FFT will compute 10240 times, that is, the FFT computes 27 times faster than the DFT. The 

FFT takes advantage of the symmetry of the Fourier Transform so there is no loss of accuracy. 

3.2 Properties and theorems of the Fourier transform  

In practical applications of the Fourier transform, its properties and theorems - both in 

the mathematical and graphical sense - can better explain changes in the time or frequency 

domains. The following are some properties and theorems of Fourier transforms which are 

widely used (Bracewell, 2000). 

• Similarity theorem 

If f(x) has the Fourier transform F(s), then f(ax) has the Fourier transform |a|-1F(s/a). 

 ∫ 𝑓(𝑎𝑥)𝑒−𝑖2𝜋𝑥𝑠 𝑑𝑥 =
1

|𝑎|
𝐹(

𝑠

𝑎
)

∞

−∞
 (3.5) 

This theorem shows that when the time scale of the left-side is compressed, it 

corresponds to an expansion of the frequency scale of the right-side. In addition, when one 

member of the transformation pair expands horizontally, the other element not only contracts 

horizontally but also grows vertically, so that the area underneath it remains unchanged. 

• Shift theorem 



20 
 

If f(x) has the Fourier transform F(s), then f(x-a) has the Fourier transform e-i2πasF(s). 

 ∫ 𝑓(𝑥 − 𝑎)𝑒−𝑖2𝜋𝑥𝑠 𝑑𝑥 = 𝑒−𝑖2𝜋𝑎𝑠𝐹(𝑠)
∞

−∞
 (3.6) 

This theorem indicates that if a given function moves an amount a in the positive 

direction in the function domain, the amplitude of the Fourier component does not change but 

the phase changes. According to this theorem, the phase delay of each component is 

proportional to s, that is, the higher the frequency, the greater the change in phase angle. 

• Convolution theorem 

The convolution of f and g is written as 𝑓 ∗ 𝑔 = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)
∞

−∞
𝑑𝜏. It is defined as the 

integral of the product of the two functions after one is reverse and shifted. 

If f(s) has the Fourier transform F(s) and g(x) has the Fourier transform G(s), then f(x) 

* g(x) has the Fourier transform F(s)G(s); that is, convolution of two functions means 

(complex) multiplication of their transforms. 

 ∫ [∫ 𝑓(𝑥′)𝑔(𝑥 − 𝑥′) 𝑑𝑥 ′
∞

−∞
]𝑒−𝑖2𝜋𝑥𝑠 𝑑𝑥 = 𝐹(𝑠)𝐺(𝑠)

∞

−∞
 (3.7) 

This theorem and its inverse theorem play an important role in transforming a function, 

which can be thought of either as the convolution of two other functions, or the product of two 

other functions. 

• Autocorrelation theorem 

Given a signal f(t), the autocorrelation is defined as the integral of f(t) with itself, at lag 

τ. The autocorrelation is written as 𝑓 ⋆ 𝑓 = ∫ 𝑓(𝑡 + 𝜏)𝑓(𝑡)̅̅ ̅̅ ̅̅ 𝑑𝑡
∞

−∞
, where 𝑓(𝑡)̅̅ ̅̅ ̅̅  represents the 

complex conjugate of f(t). If f(x) has the Fourier transform F(s), then its autocorrelation 

function ∫ 𝑓∗(𝑢)𝑓(𝑢 + 𝑥)𝑑𝑢
∞

−∞
 has the Fourier transform |F(s)|2. 

 ∫ |𝐹(𝑠)|2𝑒𝑖2𝜋𝑥𝑠𝑑𝑠 = ∫ 𝑓∗(𝑢)𝑓(𝑢 + 𝑥)𝑑𝑢
∞

−∞

∞

−∞
 (3.8) 

The autocorrelation theorem is a special case of the cross-correlation theorem, and the 

autocorrelation function of a signal is the Fourier transform of its power spectrum 

For the DFT, the expressions of the theorems which are widely used are (Bracewell, 

2000): 

Shift theorem:  

 𝑓(𝜏 − 𝑇) ⊃ 𝑒−𝑖2𝜋𝑇(
𝜈

𝑁
)𝐹(𝜈) (3.9) 
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(Cyclic) Convolution theorem: 

 𝑓1(𝜏) ∗ 𝑓2(𝜏) ⊃ 𝑁𝐹1(𝜈)𝐹2(𝜈) (3.10) 

In the practical cyclic convolution computing, padding with zeros is necessary to 

wraparound and aliasing, possible in either domain. 

Autocorrelation theorem: 

 ∑ 𝑓1(𝜏′)𝑓2(𝜏′ + 𝜏)𝑁−1
𝜏′=0 ⊃ 𝑁|𝐹1(𝜈)|2 (3.11) 

which is also the expression of the power (energy) spectrum.  

Comparing the equations from (3.5) to (3.11), the arguments used in the CFT and DFT 

formulas are different, but the meaning of the transformation is the same. 

3.3 Fourier filter 

In measured physical data, the signal is often mixed with noise. There are many ways to 

remove noise from the signal, one of which is to filter out unwanted frequencies in the 

frequency domain. 

Set W(f) as the filter factor, f1(t) as the input and f2(t) as the output functions in the 

time domain. Filtering the signal in the frequency domain is essentially analyzing f1(t) into its 

spectrum, multiplying each spectrum component by the corresponding transfer function W to 

get the spectrum of f2(t), and then synthesizing f2(t) from its spectrum(Bracewell, 2000). Thus  

 𝐹2(f) = W(f)𝐹1(f) (3.12) 

where F1(f) and F2(f) are the Fourier transform of f1(t) and f2(t), respectively. Then 

 𝑓2(𝑡) = ∫ 𝑊(𝑓)𝐹1(𝑓)𝑒𝑖2𝜋𝑓𝑡𝑑𝑓
∞

−∞
 (3.13) 

Equations (3.12) and (3.13) show the Fourier filter W(f) can first work in the frequency 

domain with F1(f), and then the inverse Fourier transform can obtain the output function f2(t) 

in the time domain (the filter of the original input function f1(t)). Figure 3.1 gives an example of 

how the Fourier filter works on data. 
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(a)                                                                                             (b) 

 
(c)                                                                                            (d) 

 
(e)                                                                                            (f) 

Figure 3.1 Fourier filter applied to measured data; (a) original unfiltered data; (b) FFT of original unfiltered 
data and detail; (c) 10Hz low-pass boxcar filter in transform domain; (d) FFT of filtered data; (e) comparison of 

unfiltered data and filtered data; (f) comparison of unfiltered data and normalized filtered data. 

Figure 3.1(a) shows 60 seconds sound signal f1(t) in the time domain, and Figure 3.1(b) 

shows F1(f) which is the Fourier transform of f1(t) in the frequency domain. Here the filter 

factor W(f) is a 10 Hertz low-pass rectangular (boxcar) function shown in Figure 3.1(c). Because 

of the boxcar filter, the signal with frequencies below magnitude 10 Hertz will be removed. 
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Figure 3.1(d) shows F2(f) which is the result of filtered data where only signals below 10 Hertz 

were retained in the frequency domain. Figure 3.1(e) and Figure 3.1(f) shows the comparison 

between original unfiltered data f1(t) and after applying the inverse Fourier transform (IFFT) to 

the filtered data (f2(t) in time domain). As can be seen, it is obvious that many of the original 

signals were filtered out, all of which were above 10 Hertz. 

According to the convolution theorem mentioned in section 3.2, transformation 

multiplication corresponds to the convolution of the original function, so f2 can be directly 

derived from f1, that is, 

 𝑓2(𝑡) = 𝑤(𝑡) ∗ 𝑓1(𝑡) (3.14) 

where w(t) is the Fourier transform of W(f). The two procedures are shown schematically as 

follows: 

f1(t)   ⊃   F1(f) 

conv        multi 

w(t)   ⊃   W(f) 

ǁ               ǁ 

f2(t)   ⊃   F2(f) 

Moreover, the rectangular function and the sinc function are a transform pair, that is, in 

the time domain the sinc function is convolved with the original data to produce the filtered 

data. According to the similarity theorem mentioned in section 3.2, the narrower the 

rectangular function in the transform domain (the narrower the passband), the wider the time 

and the lower the amplitude of sinc function in time domain, so that the wider sinc function 

makes the filtered data smoother.  
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 (a)                                                                                           (b) 

Figure 3.2 Comparison between original data and (a) IFFT with 50Hz low-pass filter in small amounts; (b) 
IFFT with 10Hz low-pass filter in small amounts 

Figure 3.2 is a detailed comparison between a 50Hz and a 10Hz low-pass filter. The 

character and amplitude of the 10Hz low-pass filtered data are smoother and smaller than 

those of the 50Hz low-pass filtered data because the 10Hz low-pass band used is narrower than 

the 50Hz low-pass band in the transform domain. 

3.4 Power spectral density 

The power spectral density (PSD) is often used when the energy of a signal is 

concentrated over a limited time interval, especially when its total energy is limited. It refers to 

the spectral energy distribution per unit time, which is applicable to signals that exist at all 

times or for a sufficiently large period, or within an infinitely long-time interval (Petre and 

Moses, 2005).  

For continuous signals in time, the PSD describes how the power of a signal or time 

series is distributed over frequency. It shows the strength of the energy as a function of 

frequency. In other words, it shows at which frequencies the energy is strong and at which 

frequencies it is weak. The power can be the actual physical power, and the abstract signal that 

is more convenient to process can be simply represented by the squared value of the signal (the 

energy). 

For some signals of interest, the truncated Fourier transform is used, that is, the signal is 

only integrated over a finite interval to calculate the Fourier transform F(s) to analyze the 

frequency content of the signal f(t). 

 F(s) =
1

√𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝑤𝑡𝑑𝑡

𝑇

0
 (3.15) 
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This is the amplitude spectral density and the power spectral density can be defined 

as(Miller and Childers, 2012): 

 P(f) = lim
𝑇→∞

𝐸[|𝐹(𝑠)|2] (3.16) 

here E is the expected value. Equation (3.16) can be written as(Miller and Childers, 2012): 

 𝐸[|𝐹(𝑠)|2] =
1

𝑇
∫ ∫ 𝐸[𝑓∗(𝑡)𝑓(𝑡′)]𝑒𝑖𝑤(𝑡−𝑡′)𝑑𝑡𝑑𝑡′𝑇

0

𝑇

0
 (3.17) 

Equation (3.17) shows the PSD is a Fourier transform pair with the autocorrelation 

function of the signal. This is the same result as described in equation (3.11), which is the 

autocorrelation theorem. 

3.5 Window function 

A window function is zero outside a selected interval and is usually symmetric and close 

to the maximum in the middle of the interval. When a function is multiplied by a window 

function, the product is almost zero outside the interval, that is, only the overlaps are left, that 

is, the "window view" (Weisstein, 2003). 

Since the FFT can only transform finite-length time domain data, it is sometimes 

necessary to perform signal truncation on the time domain signal. Even for periodic signals, if 

the length of the truncation is not an integer multiple of the period, there will be a leak in the 

intercepted signal. In order to minimize this leakage error, a weighting function, also called a 

window function, is required. Windowing can make the time domain signal better meet the 

periodic requirements of FFT processing and reduce leakage(National Instruments, 2019). 

Different window function weightings are different, and the time domain shape and 

frequency domain characteristics of different time windows are different. Different window 

functions can be used for signal interception based on signal type and analysis purpose. The 

most commonly used window functions are the Rectangular, Hann, Hamming, Blackman, Kaiser 

and so on. The following are the descriptions of the Rectangular window, Hann window and 

Hamming window, where M is used for the length of the impulse response which is equal to 64. 

• Rectangular window 

 w(n) = {
1, 0 ≤ 𝑛 ≤ 𝑀,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.18) 
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 (a)                                                                                          (b) 

Figure 3.3 Rectangular window in (a) time domain and (b) frequency domain 

The rectangular window is the simplest window, and all data values except M are 0. 

Passing a rectangular window is equivalent to giving the signal of length M no window. The 

advantage of this kind of window is that the main lobe is relatively concentrated, that is, the 

Rectangular window has the narrowest main lobe, and thus, for a given length, it should yield 

the sharpest transitions at a discontinuity. The disadvantage is that, as Figure 3.3(b) shows, the 

first side lobe is only about 13 dB below the main peak, resulting the oscillations of 

considerable size around discontinuities. The side lobes are high and have negative side lobes, 

which leads to high frequency interference and leakage, and even a possible negative spectrum 

phenomenon(Oppenheim et al., 1998)(Wikipedia contributors, 2019c). 

• Hann window 

 w(n) = {
0.5(1 − cos (

2𝜋𝑛

𝑀
)), 0 ≤ n ≤ M

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.19) 

 
(a)                                                                                            (b) 

Figure 3.4 Hann window in (a) time domain and (b) frequency domain 



27 
 

The Hann window is also called a raised cosine window. The Hann window can be 

viewed as the sum of the spectra of the three rectangular time windows, or the sum of the 

three sinc(t) functions, which cancel out the side lobes, eliminating high-frequency 

interference and leakage energy. The Hann window is superior to the rectangular window in 

reducing leakage view, but the widening of the Hann window main lobe is equivalent to the 

broadening of the analysis bandwidth and the decline of frequency resolution(Harris, 1978). 

• Hamming window 

 w(n) = {
0.54 − 0.46cos (

2𝜋𝑛

𝑀
), 0 ≤ n ≤ M

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.20) 

 
(a)                                                                                           (b) 

Figure 3.5 Hamming window in (a) time domain and (b) frequency domain 

The Hamming window causes the first sidelobe of Hann window to be largely 

eliminated, resulting in a sidelobe only 1/5 the height of the Hann window. 

The Table 3.1 shows some parameters of the three windows, the values were given by 

MATLAB. 

Table 3.1 Parameters of windows 

 Leakage Factor (%) Relative sidelobe 
attenuation (dB) 

Main lobe width (-
3dB) 

Rectangular window 9.14 -13.3 0.027344 

Hann window 0.05 -31.5 0.042969 

Hamming window 0.03 -42.5 0.039063 

 
The main purpose of windowing is to replace the rectangular window function present 

on all the signal samples with a relatively smooth window function, so that the mutations at 

both ends of the truncated time domain waveform become smoother or smaller. Because the 
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leakage of the first sidelobe is the largest, the first sidelobe of the spectrum window should be 

lowered to reduce the leakage (Tan, 2017). Table 3.1 shows the most attenuation of side lobes 

is the Hamming window, and its corresponding leakage is the least, as shown in the Table 3.1.  

The main lobe width primarily affects signal energy distribution and frequency 

resolution. The actual resolution in the frequency domain is the product of the effective noise 

bandwidth and the frequency resolution. Therefore, the wider the main lobe, the wider the 

effective noise bandwidth, and the worse the frequency resolution is in the case of the same 

frequency resolution(National Instruments, 2012). Comparing the three windows in Table 3.1, a 

Rectangular window has the narrowest main lobe, while a Hann window has the widest. The 

narrower the main lobe, the more accurate the frequency resolution, so the frequency 

resolution of a Rectangular window is higher than in the other two windows. 

3.6 Short Time Fourier Transform 

Another form of Fourier transform is the Short Time Fourier Transform (STFT), also 

known as a Windowed Fourier Transform or Short Distance Fourier Transform, which is used to 

determine the frequency and phase of a local part of a signal that varies with time. In fact, the 

process of calculating the STFT is to divide the long signal into several short isometric signals, 

and then calculate the Fourier transform of each short segment. The reason for using this 

method is that for signals whose amplitude and frequency do not change too quickly, short 

fragments can be represented by signals whose frequency is close to constant (Zimmer, 2011). 

The Fourier transform only provides information on frequency component amplitudes but does 

not provide time information; the STFT clearly provides both kinds of information. This method 

of time-frequency analysis is extremely helpful in analyzing signals whose frequency changes 

with time. 

The amplitude X (t, f) of the Short Time Fourier Transform is used to present a standard 

procedure for the time-varying signal, that is, a spectrogram. The definition of the STFT is: 

 X(t, f) = ∫ 𝑤(𝑡 − 𝜏)
∞

−∞
𝑥(𝜏)𝑒−𝑖2𝜋𝑓𝜏𝑑𝜏  (3.21) 

Here equation (3.21) shows to start in the time domain, take the one-dimensional 

Fourier transform of a function x(t) multiply by a window function w(t) (that is not zero for 

only a period of time), and then move this window function along the time axis to get a set of 
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Fourier transforms X(t,f) that are arranged in a two-dimensional representation. The result is a 

complex function representing the magnitude and phase of the signal as a function of time and 

frequency (Allen, 1977). 

3.7 Spectrogram 

The two-dimensional spectrum obtained by the Fourier transform decomposes a 

complex wave into spectral components, but it cannot simultaneously reflect their changes 

over time. The Short Time Fourier Transform is capable of simultaneously analyzing the time 

variable and the frequency distribution of the wave, but the three-dimensional image is not 

easy to observe and analyze on paper. The spectrogram can describe how the various 

frequency components of the wave change over time, and based on the time-frequency 

analysis method, the third-dimensional value is usually represented by color in the form of a 

heat map(Smith, 2011). 

Time-frequency analysis uses the STFT to analyze the signal. The DFT is performed after 

multiplying by a window function, so the frequency component of the signal can be obtained in 

this short period of time (Allen and Rabiner, 1977). Finally, time-frequency analysis of the entire 

signal can be used to obtain the time-frequency distribution of the signal. This is the principle of 

spectrogram generation, and this process essentially corresponds to computing the squared 

magnitude of the STFT of the signal s(t), that is, for a window w, spectrogram (t, w) =|STFT (t, 

w) |2(National Instruments, 2008). 

Take a small piece of a measured signal for example, as shown in the figures below of a 

3-millisecond signal containing 35 sample points. A 10-point Hann window function is used with 

the sample data, with a different number of zeros padded before and after the window. The 

spectrogram is obtained by the STFT of the windowed signal. The figures below show the main 

process. 
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Figure 3.6 Signal with Hann window 

Figure 3.6 shows the Hann window function applied to a piece of signal at different 

times of 1.0112 ms, 1.18187 ms and 1.43789 ms, and the red lines highlight the Hann window 

code fragment for the Fourier transform, whose results are shown below the time series. The 

corresponding maximum frequencies appear at 5356.8 Hz, 5022 Hz and 4017.6 Hz, respectively. 

These three frequencies with strong amplitudes appearing at specific time points appeared in 

brighter colors on the spectrogram as below. 
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Figure 3.7 Signal spectrogram 

The spectrogram shows time and frequency in two dimensions. Figure 3.7 shows the 

spectrogram of the same 3 milliseconds as in Figure 3.6. The main signal pulse occurs in a time 

range of 1 to 1.5ms, the same as in Figure 3.6, and with center frequency around 4250 Hz, and 

frequency range from 3000Hz to 5500Hz, which includes the three frequencies with strong 

amplitude shown in Figure 3.6. 

3.8 Matched filter 

Convolution is an overlapping relation between two functions, and the result reflects 

the overlap of the two functions. Convolution of a function of a given frequency band with a 

function of another frequency band is to filter the latter, where only the overlapped frequency 

band of the latter can pass through the filter well. 

In signal processing, the correlation between a known signal and an unknown signal is 

used to detect the existence of the known signal in the unknown signal. In other words, the 

unknown signal is convolved with the conjugate time inversion of the known signal to obtain a 

matching filter (Turin, 1960).  

A matched filter is the optimal linear filter to maximize the signal-to-noise ratio (SNR). 

The following section derives the matched filter (Wikipedia contributors, 2019d): 

 y[𝑛] = ∑ ℎ[𝑛 − 𝑘]𝑥[𝑘]∞
𝑘=−∞  (3.22) 
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where x[k] is the input function and y[n] is the filtered output. Equation (3.22) is the 

discrete-time system expression. The continuous-time system expression is similar, with 

summations replaced with integrals.  

The input signal x is composed of desirable signal s and additional noise v: 

 x = s + v (3.23) 

The output y is the inner product (convolution) of the filter h and the input signal x. It 

also consists of the ys -outcome of the signal of interest through the filter system and yv -

outcome of the input signal’s noise part through the filter system:    

 y =  ∑ ℎ∗[𝑘]𝑥[𝑘] = ℎ𝐻𝑥 = ℎ𝐻𝑠 + ℎ𝐻𝑣 = 𝑦𝑠
∞
𝑘=−∞ + 𝑦𝑣  (3.24) 

where hH denotes the conjugate transpose of h. The conjugate transpose of a matrix A 

is formally defined by AH=(A*)T=(AT)*, where AT denotes the transpose and the A* denotes 

the matrix with complex conjugated entries(Wikipedia contributors, 2019e). 

The signal-to-noise ratio is the ratio of the output power of the desired signal to the 

output power of the noise: 

 SNR =  
|𝑦𝑠|2

𝐸{|𝑦𝑣|2}
 (3.25) 

where E denotes expectation. The normalized matched filter can be derived to be(Kay, 

1993),  

 h =
1

√𝑠𝐻𝑅𝑣
−1𝑠

𝑅𝑣
−1𝑠 (3.26) 

 𝑅𝑣 = 𝐸{𝑣𝑣𝐻} (3.27) 

where vH denotes the conjugate transpose of v, and Rv is the covariance matrix of the 

noise.  

For a given signal and system, amplitude-frequency characteristics more represent the 

frequency characteristics, while phase-frequency characteristics more represent the time 

characteristics. The matched filter makes the phase frequency characteristic of the filter 

conjugate with the phase frequency characteristic of the signal and makes all the frequency 

components of the output signal superimposed in the same phase at the output end to form 

the peak value. The matched filter can also make the amplitude-frequency characteristics of the 

signal weight the input waveform so as to receive the signal energy most effectively and 



33 
 

suppress the output power of the noise. Whether in the time domain or frequency domain, the 

matched filter fully ensures that the signal passes through as much as possible, and the noise 

passes through as little as possible, so as to obtain the maximum SNR output (Haykin, 2001). 

In practical application of the matched filter, it is often necessary to construct a replica 

which is a signal waveform that can be used as input to the matched filter. A very high quality 

(noise free) real signal or an artificial signal that reflects the real signal frequency function as 

accurately as possible can be used as a replica. Between replica and signal data, the FFT-based 

finite impulse response (FIR) filtering using overlap-add method will filter the data (Zimmer, 

2011). 

3.9 Cross-correlation 

The cross-correlation function in signal analysis represents the degree of correlation 

between the two-time series, that is, the degree of correlation between the values of two 

signals at any two different times. When describing the correlation between two different 

signals, the two signals can be either random signals or well-known signals.  

The cross-correlation f(x) of two real functions g(x) and h(x) is defined as (Bracewell, 

2000): 

 f(x) =  g ⋆ h = ∫ g(u − x)h(u)du
∞

−∞
  (3.28) 

When the functions are complex it is customary to define the (complex) cross-

correlation function as g* scans h, where g* is the complex conjugate of g 

 𝑔∗ ⋆ h = ∫ 𝑔∗(𝑢 − 𝑥)ℎ(𝑢)𝑑𝑢 = ∫ 𝑔∗(𝑢)ℎ(𝑢 + 𝑥)𝑑𝑢
∞

−∞

∞

−∞
   (3.29) 

For discrete functions, the cross-correlation is defined as: 

 𝑔 ⋆ ℎ(n) = ∑ 𝑔∗(m − n)h(m)∞
m=−∞    (3.30) 

Mathematically, cross-correlation can be considered to be figure out how much h 

should move on the x axis to be equal to g, that is, slide the h function along the x axis, 

calculate the integral of their product at each h position. When the functions match, the value 

of g⋆h is maximized. In practical applications, cross correlation is often used to search in longer 

signals for shorter known features. After calculating the cross-correlation of two signals, the 

maximum value of the cross-correlation function represents the time point for the optimal 

alignment of signals. 
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3.10 Wavelet denoising 

Wavelets are basis function wj,k(t) in continuous time. A basis is a set of linearly 

independent functions that can be used to produce all admissible function f(t)(Strang and 

Nguyen, 1996). 

 f(𝑡) = ∑ 𝑏𝑗,𝑘𝑤𝑗,𝑘(2𝑗 − 𝑘)𝑗,𝑘     (3.31) 

The time series f(t) has the characteristics of nonlinearity and high signal to noise ratio. 

Wavelet theory is developed according to the requirements of time-frequency localization. It has 

the characteristics of adaptive and “mathematical microscopy” and is especially suitable for the 

processing of non-stationary and nonlinear signals(“7 The Mathematical Microscope: Waves, 

Wavelets, and Beyond | A Positron Named Priscilla: Scientific Discovery at the Frontier | The 

National Academies Press,” n.d.). 

The wavelet method used for time series denoising is nonlinear thresholding, best used 

when the signal-to-noise ratio is large. The energy of the useful signal after wavelet transform is 

concentrated in a small number of wavelet coefficients, while white noise is still scattered over a 

large number of wavelet coefficients in the wavelet transform domain. The value of the wavelet 

coefficient of the useful signal is relatively larger than the value of the wavelet coefficient of the 

noise with less energy and smaller amplitude. Therefore, from the magnitude of the coefficients 

in the spectrum, the useful signal and noise can be separated. 

Select the appropriate orthogonal wavelet base wj,k(t) and the decomposition layer 

number j and transform the noisy signal into j wavelet layers by using wavelet transform. To 

perform threshold processing on the decomposed wavelet coefficients, two types of threshold 

can be used: hard and soft. The hard threshold method preserves larger wavelet coefficients and 

sets the smaller wavelet coefficients to zero; the soft threshold method sets the smaller wavelet 

coefficients to zero and contracts the larger wavelet coefficients toward zero. The estimated 

signal after denoising by the soft threshold method is an approximate optimal estimate of the 

original signal and often has wider applicability. 
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Chapter 4. Results 

4.1 Known fin whale sound signals  

Two audio recordings will be used as the kernels for matched filtering algorithm to 

detect fin whale sound signal in the Gulf of Mexico data. One audio file is from the National 

Oceanic and Atmospheric Administration (NOAA) (NOAA, 2019c) and the other audio file is 

from the Voices in the Sea(Voices In The Sea, 2018). Though it is not clear exactly which ocean 

the signals come from, the two audio files clearly indicate different properties of a fin whale 

calls/notes. 

Figure 4.1 shows the signal amplitude versus time for a fin whale pulse train; Figure 4.2 

shows the amplitude versus frequency; and Figure 4.3 shows the spectrogram (frequency 

versus time) for the pulse train.  

 
Figure 4.1 Pulse of fin whale sounds (audio file from NOAA) 



36 
 

 
Figure 4.2 Fourier Transform of fin whale sounds (audio file from NOAA) 

 
(a) 

 
(b)                                                                                           (c) 

Figure 4.3 Pulse train of fin whale sounds spectrogram(audio file from NOAA) (a)pulse train sample in 
kilohertz; (b) pulse train sample in hertz; (c)single down-sweep sample 
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Figure 4.1, Figure 4.2 and Figure 4.3 are fin whale sounds recorded by NOAA. This sound 

is a very simple form of a 27-15Hz down-sweep signal with stereotyped center frequency 20Hz 

and without back-beat, and the pulse duration is about 1.5s. The time recording is not long 

enough to determine the pulse is a call or note, but the graph shows this series of sounds has a 

regular average inter-pulse interval (IPI) of 9s, so it is probably a regular series pattern of notes 

that compose a fin whale singlet song of repeating sequences with a single IPI (Weirathmueller 

et al., 2017).  

This recording could come from the central Mediterranean Sea where a fin whale type 

“A” call was recorded with a down-sweep from 23Hz to 17Hz, a 1s call duration and a 6-46s IPI 

(Sciacca et al., 2015). However, this recording could also be from the Northwest Atlantic where 

a fin whale song was recorded during September to January with a short pulse interval of 9.6s, 

a down-sweep from 25Hz to 17Hz, and a 1s pulse duration (Morano et al., 2012). 

Figure 4.4, Figure 4.5 and Figure 4.6 are fin whale sounds recorded by Voices in the Sea. 

This series of sounds is more complicated than that recorded by NOAA. It is not just a series of 

single form signals but includes sounds with different amplitudes and frequency. The time 

recording is not long enough to determine the pulse is a call or note, but Figure 4.4 shows the 

pulse duration is close to 2s and the IPI of each signal is different. The IPI includes 8s, 17s, 12s, 

14s, and 11s. According to the dominant IPI patterns, this could be classified as complex IPI 

(Weirathmueller et al., 2017). In addition, Figure 4.6(a) shows the center frequency of each 

signal is not exactly the same, so this may be an example of baleen whale low frequency sounds 

used for communication. If the recording time is long enough for a fin whale song, this could be 

an example of a double song including two primary notes, alternating between a low 

frequency, high IPI (note type A) and a higher frequency, lower IPI (note type B) 

(Weirathmueller et al., 2017), and relatively high frequency signals tend to have lower power 

than the center frequency. Figure 4.6(b) is a single pulse of Figure 4.6(a) which shows the 

typical down-sweep signal shape of a fin whale. In addition, Figure 4.5 indicates the sound 

frequency is approximately 15-40Hz. Usually the frequency of a mature fin whale does not 

exceed 30Hz, so one possibility is that the 40Hz frequency sound recording here is produced by 

a juvenile fin whale.  
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Figure 4.4 Pulse of fin whale sounds (audio file from Voices in the Sea) 

 
Figure 4.5 Fourier Transform of fin whale sounds (audio file from Voices in the Sea) 
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(a) 

 
(b)                                                                                        (c)                                                                         

Figure 4.6 Fin whale sounds spectrogram (audio file from Voices in the Sea) (a)pulse train sample in kilohertz; (b) 
pulse train sample in hertz; (c)single down-sweep sample 

According to the diversity and complexity of this recorded sound interval and frequency, 

this recording could come from the Northeast Pacific Ocean where irregular sequences with 

complex IPIs (Soule and Wilcock, 2013) produced by more than one fin whale have been 

recorded. Furthermore, this sound recording could also be from the Northwest Atlantic where 

additional recordings showed another five types of IPI including a short IPI around 9s in autumn 

and winter, a long IPI around 15s in spring and a transitional IPI during summer (Morano et al., 

2012). 

4.2 Fin whale sounds detection 

In new records that are considered to contain the type of sounds of interest, the kernel 

is used to automatically detect the presence of the desired sound type. Detection is achieved by 

cross-correlation between the synthesized kernel and the new record. When the signal 
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characteristics in the new record closely match the characteristics of the nuclear sound type, 

the function will show significant peaks/spikes. 

4.2.1 Synthesize fin whale matched filter kernel  

Matched filtering is the best method to detect a known signal in white Gaussian 

noise(Van Trees, 2001). Figure 4.7 shows a spectrogram of a single fin whale vocalization with a 

line drawn through the maximum values (yellow part). The signal structure is an approximately-

linear frequency down sweep with a steep negative slope in the left graph, and almost vertical 

in the right graph.  

 
(a)                                                                                         (b) 

Figure 4.7 A spectrogram of a single fin whale vocalization (a) single down-sweep (Voice in the Sea); (b) single pulse 
(NOAA) 

There is only one-line segment with two points to describe this sound: the starting point 

0 and the ending point 1. The values for time, frequency and amplitude should be measured at 

these two points. Selected points will be used to synthesize a signal representing this sound 

type in frequency-time space.  

Define f0 as the start frequency of the segment, f1 as the end frequency, d the duration 

of the segment, t the time; then f(t) is the frequency at a particular instant in time, a0 is the 

start amplitude, a1 is the end amplitude, a(t) is the amplitude at time instant t, and k(t) is the 

kernel (Mellinger and Clark, 1997). 

 f(t) = 𝑓0 +
1

2

(𝑓1−𝑓0)

𝑑
𝑡   (4.1) 

 𝑎(𝑡) = 𝑎0 +
(𝑎1−𝑎0)

𝑑
𝑡   (4.2) 

 𝑘(𝑡) = 𝑎(𝑡) sin(2𝜋 ∙ 𝑓(𝑡))  (4.3) 
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In Figure 4.7(a), the values for the two end points are f0=31.22 Hz, f1=19.38 Hz, a0=-

0.39436 volt, a1=-0.35572 volt, and d=0.24 second. In Figure 4.7(b), the values for the two end 

points are f0=27.995 Hz, f1=10.7665 Hz, a0=0.1315 volt, a1=0.21436 volt, and d=0.69 second. 

Figure 4.8 shows the synthetic matched filters k(t) in the time domain. 

 
 (a)                                                                                            (b) 

Figure 4.8 Matched filter in time domain (a) from Voice in the Sea; (b) from NOAA 

The kernel is chosen from the spectrogram, but the above equations clearly show that 

matched filtering uses the sound’s time-varying waveform in the actual computation. 

x(t) is the signal which may contain the sound to be detected. Matched filtering simply 

performs the cross-correlation, with d(t) the filter output(Mellinger and Clark, 1997).  

 d(t)  = ∑ 𝑥(𝑡0 − 𝑡)𝑡0
𝑘(𝑡0)  (4.4) 

Figure 4.9 shows a comparison of the spectrogram and the output of the matched filter. 

 
(a)                                                                                           (b) 
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 (c)                                                                                            (d) 

Figure 4.9 Comparison of the spectrogram and the output of matched filter (a) Synthetic Voice in the Sea kernel 
exactly matched with the corresponding provenance Voice in the Sea data; (b) Synthetic NOAA kernel exactly 
matched with the corresponding provenance NOAA data; (c) Synthetic NOAA kernel exactly matched with the 
signal in Voice in the Sea data; (d) Synthetic Voice in the Sea kernel exactly matched with the signal in NOAA 

To test whether the matched filter kernel was synthesized effectively, the output shown 

in Figure 4.9(a) is the cross-correlation result between k(t) synthesized from Voice in the Sea 

data and the Voice in the Sea sample audio file x(t); the output shown in Figure 4.9(b) is the 

cross-correlation result between k(t) synthesized from NOAA data and the NOAA sample audio 

file x(t); the output shown in Figure 4.9(c) and 4.9(d) are the cross-correlation results between 

k(t) synthesized from NOAA data with the Voice in the Sea sample audio file x(t) and between 

k(t) synthesized from Voice in the Sea data with the NOAA sample audio file x(t), respectively. 

The peaks/spikes in the lower graphs correspond to the time position of fin whale 

sounds, and the relative heights of the vertical axis values are significant. Compare the top and 

bottom figures, synthetic Voice in the Sea kernel and NOAA kernel exactly matched with their 

corresponding provenance data, and synthetic NOAA kernel and Voice in the Sea kernel also 

exactly matched with the signal of the other. Therefore, this test indicates that the synthetic 

kernels are effective and can be used to detect fin whale sound in the Gulf of Mexico LADC data 

after being denoised by bandpass filtering and wavelet transform. 

4.2.2 Fin whale matched filter kernel applied to Gulf of Mexico LADC data 

The kernels from Voice in the Sea were applied to samples of LADC 2001, 2015 and 2017 

data, respectively. 
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The pulses in Figure 4.10 as below were numbered, and six kernels were synthesized for 

each of the six pulses, and then matching the input signal 2001(file jd21311443) with 6 kernels, 

respectively. 

 
Figure 4.10 Numbering of a kernel sequence 

After 50Hz lowpass and wavelet (Haar) filtering, the following six figures are the results 

of matching the six kernels with the input signal. 

 
(a)                                                                                            (b) 
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  (c)                                                                                           (d) 

  
  (e)                                                                                          (f) 

Figure 4.11 Comparison spectrograms of 50Hz lowpass and wavelet(Haar) filter with matching filtered by Voice in 
the Sea (a)#1 kernel; (b)#2 kernel; (c)#3 kernel; (d)#4 kernel; (e)#5 kernel; (f)#6 kernel 

It can be seen in the spectrogram and matching figure that it seems that 4 signals will 

always appear; Figure 4.11(b) matched with the 4th kernel is most obvious, and the shape of 

the signal is in line with one of the typical signal shapes of fin whale--vertical down-sweep with 

18s time interval. However, it is still not certain whether these signals are really fin whale sound 

signals because they are still not obvious/loud enough relative to background noise. Maybe 

further denoising is still necessary, or some other detection methods such as spectrogram 

correlation or neural networks are more suitable for finding low frequency baleen whale 

signals. 

Applying the kernel to the 2015 and 2017 data, even after wavelet transform filtering, 

no signals of interest have been found so far. 
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 (a)                                                                                            (b) 

Figure 4.12 Comparison 2015 data spectrogram of (a)only 50Hz lowpass; (b)50Hz lowpass and wavelet filter with 
matching filtered by Voice in the Sea kernel 

 
(a)                                                                                             (b) 

Figure 4.13 Comparison 2017 data spectrogram of (a)only 50Hz lowpass; (b)50Hz lowpass and wavelet filter with 
matching filtered by Voice in the Sea kernel 

4.3 Known Bryde’s whale call signals 

A Bryde’s whale call audio recording downloaded from Voice in the Sea, and it will be 

used to search for the Bryde’s whale call in northern Gulf of Mexico LADC data. 

 
(a)                                                                                                 (b) 
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(c) 

Figure 4.14 Bryde's whale call in (a)time domain; (b)frequency domain; (c)spectrogram 

This sample audio file lasts about 20s. As can be seen from Figure 4.14(a), it consists of 9 

pulses with different durations, but the time interval between them is almost the same. Figure 

4.14(b) shows the distribution of signal frequency, and the frequency range is from 30 to 

400Hz. But Figure 4.14(c) shows that this sample Bryde’s whale sound frequency range actually 

is around 90-170Hz, and the center frequency is about 120Hz. The call types of the signal in this 

audio contain down-sweep and tonal similar to those from the Gulf of Mexico (Rice et al., 

2014b) and Be2, Be6 and Be10 similar to those from the Gulf of California and eastern tropical 

Pacific (Oieson et al., 2003)(Viloria-Gómora et al., 2015). 

4.4 Bryde’s whale sounds detection 

Similar with the fin whale sound detection, a kernel will be synthesized from known 

signals, and then be applied to the LADC data. 

4.4.1 Synthesize Bryde’s whale matched filter kernel  

Single call was used to synthesize matched filter kernel, and similar to the fin whale 

matched filter synthesis, the information of initial and final frequencies, amplitude as well as 

the time duration are necessary to be collected.  
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(a)                                                                                              (b) 

Figure 4.15 Bryde's whale (a)single call; (b)potential 9 kernels 

Nine kernels were synthesized and applied to the original data where they came from. 

According to the test results, the 2nd and 5th kernels look better and can be used to find the 

Bryde’s whale signal in LADC data. 

 
(a)                                                                                          (b) 

 
 (c)                                                                                       (d) 

Figure 4.16 Bryde's whale (a)#2 kernel in time domain; (b)#2 kernel matched filtering with Voice in the Sea 
data; (c)#5 kernel in time domain; (d)#5 kernel matched filtering with Voice in the Sea data 
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4.4.2 Bryde’s whale matched filter kernel applied to Gulf of Mexico LADC data 

According to older reference (Edds et al., 1993), the Bryde’s whale call type in Gulf of 

Mexico were mainly “growl” (200-900Hz) and “discrete pulses” (400-610Hz) produced by calf, 

and “pulsed moan” (100-500Hz) produced by adult. However, in recent years reference (Rice et 

al., 2014b)(Širović et al., 2014), the Bryde’s whale call type in Gulf of Mexico are mainly “down-

sweep- sequences” (80-130Hz), “long-moans” (90-150Hz) and “tonal-sequences” (90-110Hz). 

Probably because of the ocean noise pollution, it seems that the Bryde’s whale had to choose 

to reduce the frequency of their vocalizations in order to be able to transmit their sounds 

further in noise pollution. A similar reduction in the frequency of sound has been found in blue 

whale vocalizations over the last 60 years (McDonald et al., 2009). 

Based on the frequency range of whale calls recorded in recent years in Gulf of Mexico, 

A bandpass filter(80-200Hz) was used to filter the data before the matched filtering operation.  

 
     (a)                                                                                           (b) 

Figure 4.17 Bryde's whale (a)#2 kernel matched filtering with LADC 2001 sample data; (b)#5 kernel 
matched filtering with LADC 2001 sample data 

The output figures show 10 peaks/spikes, and there are corresponding 10 bright vertical 

lines shown in spectrograms. According to the references, if they are potential Bryde’s whale 

call, they are probably the “down-sweep sequences” once appeared in Gulf of Mexico in 2010, 

and also similar to the “down-sweep” type Be6 once appeared in eastern tropical Pacific. But 

the time interval between each call here is about 7s, which is within the duration range of growl 

call (0.5-50s), but longer than other call types. 

The kernels were also used to apply to 2015 data. 
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(a)                                                                                           (b) 

  
(c)                                                                                             (d) 

Figure 4.18 Bryde's whale (a)#2 kernel matched filtering 5221EDD5.061 sample data; (b)#5 kernel matched filtering 
5221EDD5.061 sample data; (c)#5 kernel matched filtering 52307229.061 sample data; (d)#2 kernel matched 

filtering 522854EC.061 sample data 

It looks like there are some spikes in output of matched filtering figures, but there is no 

sound signal(shape) similar to that of Bryde’s whale calls in the corresponding time 

spectrogram. 

Therefore, it is not yet possible to conclude that the sound signals of Bryde’s whale have 

been found in the LADC data of 2001 and 2015. 

4.5 Higher frequency whale sound recordings in the time domain 

A one-minute unfiltered audio sample was recorded in the northern Gulf of Mexico in 

2001 by LADC using EARS buoys which could record up to 5958 Hz (Ioup et al., 2016). It is easy 

to hear that this audio file includes noise and signals which sound like buzzes and clicks. 
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Figure 4.19 One-minute unfiltered sample 

Figure 4.19 shows the original data for the one-minute unfiltered audio file without any 

detailed descriptions of the individual signals; there are many complex signals mixed together. 

 
(a)                                                                                               (b) 

Figure 4.20 Spectrogram of one-minute unfiltered sample (a)60 seconds sample; (b)0.3 second sample 

Figure 4.20 shows the spectrogram of the unfiltered sample. The clicks shown on the 

right graph clearly have high frequencies up to 6kHz. Noise is also present in the graph, and its 

frequency is generally lower than 1000 Hz.  

A 1000 Hz high-pass filter is applied as shown in Figure 4.21. 
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(a)                                                                                          (b) 

 
(c)                                                                                           (d) 

Figure 4.21 Detail of one-minute sample (a)one-minute sample with 1000Hz filter; (b)click train; (c)detail between 
two clicks; (d)single pulse with multi-path 

Figure 4.21 shows some detail after a 1000 Hz high-pass filter is applied to the one-

minute unfiltered sample. Comparing Figure 4.19 with Figure 4.21(a), the latter does seem to 

have less noise as the high-pass filter does remove frequencies below 1000 Hz.  

Figure 4.21(b) shows a representative click train very clearly. The time sequence in 

Figure 4.21(b) shows more than 30 clicks per second with varying amplitude, and there are 

some clicks with very short time intervals, almost overlapping. From this graph, it seems that 

the sound may be made by dolphins, whose frequency range and features are particularly 

similar to Amazon River dolphin. However, the Amazon River dolphin is a common species in 

South American countries and usually they do not swim freely into the Gulf of Mexico. Since the 

data collection includes many sperm whale’s acoustic signals, so this sound probably produced 

by sperm whale. The overlapping clicks may also happen when more than one animal produces 

sounds at almost the same time. However, Figure 4.21(c) shows a single pulse followed by 
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multiple boundary reflections(Au, 1993). Some oscillating background noise higher than 1000 

Hz appears between two single clicks, which may due to some other high-frequency noise such 

as from measuring or recording equipment, passing ships, and so on. 

Figure 4.21(d) shows a short snippet of 8ms from Figure 4.21(b) and appears to be a 

single click. It includes a large amplitude pulse followed by a sequence of weaker pulses. The 

pulses are very short, lasting about 0.7ms with 2-4 oscillations. Meanwhile, the second pulse in 

Figure 4.21(d) is not only smaller in amplitude but also phase-inverted (Zimmer, 2011). In other 

words, the deflections of the first/main pulse are first negative and then positive. However, for 

the second pulse the deflections are first positive and then negative, etc. As we know, under 

certain circumstances, an interface may cause total reflection with phase shift. The phase of the 

third pulse is the same as the phase of the first/main pulse. Therefore, the original click is 

followed by the boundary reflection and the phase reversal may indicate a surface and bottom 

reflection. 

According to the principle of optics, when light rays from a medium with a higher 

refractive index enter a medium with a lower refractive index, if the light incidence angle is less 

than the critical angel, the light is partially reflected, and the remaining sound energy enters the 

second medium as a transmitted wave. In this situation, the reflected wave does not phase shift 

because it is not totally reflected, but once the light incidence angle is equal or larger than the 

critical angle, that is with the onset of total reflection, a phase shift occurs in the reflected 

wave. 

For a surface reflection, the interface is between the water and air; for a bottom 

reflection, the interface is between the water and the solid material of the bottom. The cartoon 

diagram below illustrates the geometry of the whale sound path with a direct path (red) and 

the first three multipaths (green, blue, purple) to the recorder. 



53 
 

 

In the world of hydrography and marine science, backscatter is the reflection of a signal 

(such as sound waves or light waves) back in the direction from where it originated. Different 

bottom types “scatter” sound energy differently. Harder bottom types (like rock) reflect more 

sound than softer bottom types (like mud), and smoother bottom types (like pavement) reflect 

more sound than bumpier bottom types (like a coral reef)(NOAA, 2018). 

The muddy bottom and the surface water will both scatter/reflect the sound produced 

by a whale at different level. The surface water totally reflects the incidence sound wave, so the 

sound phase is shifted. But the soft muddy bottom, which has a higher refractive index than 

water, does not totally reflect the incidence sound wave, so the phase of the sound wave 

passing through the mud is not reversed. Moreover, during the sound propagation, part of the 

sound energy will be absorbed by both mud and surface water, thus reducing the energy of the 

reflected sound, especially the soft bottoms mud is usually associated with high bottom losses 

(10 to 30 dB/bounce)(“PRINCIPLES OF UNDERWATER SOUND Chapter 8,” n.d.). This explains 

why the amplitude of the latter three pulses in Figure 4.21(d) gradually decreases.  

Zooming in on the whole call train in Figure 4.21(b), the fact is not every main original 

click is followed by phase reversal reflections. The first reason may be that there is no total 

reflection. Another reason may be the presence of other vocal cetaceans. Furthermore, Figure 

4.21 shows the signal from a particular animal; the particular animal is difficult to judge from 

the time domain only, and later frequency domain analysis may provide useful information. 
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As mentioned before, this audio does sound like it contains more than one kind of 

sound. It turns out that when zoomed in another time range of the sound sample, some new 

signal characteristics do appear, as shown in Figure 4.22. 

       
(a)                                                                                        (b)                                                                      

Figure 4.22 A series of whale clicks (a)time domain; (b)spectrogram 

 Figure 4.22 shows a click train produced by a whale having the same interval between 

each click. This may be a stereotyped click sequence produced by a sperm whale, called a coda. 

Sperm whale codas are often used to communicate between individuals, and the pattern of 

sperm whale codas is different in different geographical areas. In addition, Figure 4.22 shows 

that each click seems to contain a multi-path structure, and the difference in amplitude 

between successive clicks of the coda is small. The small amplitude difference is a characteristic 

of codas. 

 
Figure 4.23 Detail of whale single click 
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Figure 4.23 is part of Figure 4.22. It shows a single click including three pulses separated 

by around 2.4ms. This multi-pulse structure is similar to that of sperm whales, and the inter-

pulse interval (IPI) has a relationship with the length of the whale (Drouant and Ioup, 2017). 

When the IPI is shorter than 5ms for smaller whales, the formula (Gordon, 1987) for the whale 

length from the IPI is  

 𝐿 = 4.833 + 1.453(𝐼𝑃𝐼) − 0.009(𝐼𝑃𝐼)2                                         (4.5) 

When the IPI is longer than 5ms for larger whales, the formula(Rhinelander and 

Dawson, 2004)for the whale length from the IPI is  

 𝐿 = 17.12 − 2.189(𝐼𝑃𝐼) + 0.251(𝐼𝑃𝐼)2                                         (4.6) 

For an IPI of 2.4ms, the calculated length is 8.27m, which could be an immature sperm 

whale. 

 In contrast to Figure 4.21(d), the sequence of clicks produced because of reflection, the 

multi-pulse structure of Figure 4.23 is produced by the sperm whale itself. This structure has 

been called bent-horn sound generation (Zimmer et al., 2005). The bent-horn theory said “a 

single pulse is generated below the blowhole at the tip of the nose. This original pulse is mainly 

backward-oriented and only some of the sound energy will leak directly into the water (called 

P0). Most of the sound energy will travel backwards towards the frontal air sac at the skull, 

where it is reflected forward. The major part of this forward reflected energy will leave the head 

through the junk, which is below the spermaceti organ, to form the powerful sonar pulse (called 

P1). The remaining part of the sound energy is reflected back inside the spermaceti organ, 

where it once again hits the forward boundary of the spermaceti organ (distal air sac) to be 

reflected again towards the skull and consequently result in secondary sonar pulses, P2, P3, etc., 

all with progressively decreasing intensity.” (Møhl, 2001)(Norris and Harvey, 1972). This bent-

horn theory gives a biological reason to explain why a group of signals can contain several 

pulses. 

The recording of the signal from different directions and orientations around the animal 

may produce different signal patterns. It is not clear which direction the data were recorded 

from the animal, but according to the bent-horn theory, the P1 should be the strongest pulse, 

the P0 should be the original pulse and the P2, P3 should be the weaker pulses. Therefore, in 
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the Figure 4.23, the left pulse could be the P0, the middle pulse could be the P1 and the right 

pulse could be the P2. This data sample probably was recorded in front of the animal (the whale 

is facing the EARS recorder) so that the receiver can first sense the original weak pulse P0, then 

the powerful pulse P1, and finally another weaker pulse P2 (Zimmer, 2011) 

 
Figure 4.24 Detail of P1 pulse 

Figure 4.24 is P1 pulse including about five oscillation lasting 1.5ms. The amplitude of 

the first two oscillations is higher and then decreases, similar to the sperm whale click. 

4.6 Higher frequency whale sound recordings in the frequency domain 

The time domain graphs show that the clicks of cetaceans are actually oscillating sound 

waves, and the frequency domain can give additional information about the frequency of these 

sound waves.  

Figure 4.25 shows the Fourier Transform of a one-minute sample in the frequency 

domain. A 703250-point Fourier transform was used with frequencies below 1000Hz removed 

by a Rectangle or boxcar window in the frequency domain to reduce noise below 1000Hz. 
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Figure 4.25 Fourier Transform of one-minute sample with 1000 Hz high-pass filter 

 The EARS receivers and recording equipment were unable to record signals above 

6000Hz in 2001. The sounds produced by dolphins, which usually have high frequencies above 

20kHz and up to 100 kHz would not be able to be recorded. It may not be correct to speculate 

the Figure 4.21(d) is a sound signal from a dolphin. In order to further determine what kind of 

animal produces the Figure 4.21(d) and Figure 4.23 signals, looking at the corresponding time 

signal in the frequency domain is very necessary, as described below.  

 
  (a)                                                                                           (b)                                                                                  

Figure 4.26 Fourier Transform fragment (a) FFT from 33.032 to 33.04 seconds; (b) FFT from 26.834 to 26.85 seconds 

Fourier analysis can show the most likely frequency from the largest peak in the Fourier 

spectrum. Figure 4.26 shows two frequency distributions from different times in the one-

minute sample of Figure 4.25, Figure 4.21(d) and Figure 4.23 show that the average time 
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intervals between two consecutive oscillation is 0.0002 seconds, which means the largest signal 

frequency should be about 5000Hz, and it does show that the highest amplitude appears 

around 4800-5200Hz in Figure 4.26. This is toward the lower end of the normal range of dolphin 

frequencies.  

The power spectrum of a time series describes the distribution of power of the 

frequency components composing that signal (Wikipedia contributors, 2019f), and is the square 

magnitude of the Fourier Transform. The power spectrum (power spectral density (PSD)) can 

thus give additional frequency information in the two-time ranges of interest. 

 
  (a)                                                                                              (b) 

Figure 4.27 Power spectrum density fragment (a) PSD from 33.032 to 33.04 seconds; (b) PSD from 26.834 to 26.85 
seconds 

The amplitude of the frequency component is proportional to the signal intensity at that 

frequency, which in turn is proportional to the power carried by the signal(Giordano, 1997). 

Figure 4.27(a) shows the signal intensity or PSD at a frequency around 3800 Hz is very strong, 

which means that at this particular sampling frequency the signal carries the highest power at 

3800Hz. Figure 4.27(b) shows the corresponding frequency carrying the highest power is 

around 5200Hz. Figure 4.27(b) shows the frequency that carries the highest signal power is the 

largest frequency in Figure 4.26(b) but Figure 4.27(a) and Figure 4.26(a) do not reflect this 

corresponding feature. This further uncertainty adds to the difficulty of determining what 

animal sounds are in Figure 4.21(d). 

Therefore, the signal in Figure 4.23 could be thought to have been produced by a sperm 

whale, and the signal in Figure 4.21(d) could have been also produced by sperm whale or 

another indeterminate toothed whale. 
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4.7 Higher frequency whale sound recordings in the time-frequency domain 

For the sperm whale single pulse in Figure 4.24 for example, the time and frequency 

range can be presented clearly in a spectrogram. 

 
Figure 4.28 Spectrogram of sperm whale single pulse of click 

The spectrogram shows signal amplitude versus both time and frequency. Figure 4.28 

shows the spectrogram of the same 3 milliseconds as in Figure 4.24 (35 sample points of data). 

The main pulse of the click of a sperm whale occurs in a time range of 1 to 1.5ms with center 

frequency around 4250Hz, and the frequency range from 3000Hz to 5500Hz. 
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Chapter 5. Conclusions  

There are a large number of marine mammals living in the Gulf of Mexico. The LADC 

database contains sound signals from many of them. After bandpass filtering low-frequency 

noise, the signals of the toothed whales are easily detected, and their sound characteristics are 

clearly expressed.  

One characteristic of sperm whale clicks is that many clicks sequences appear, some of 

which can be called coda. The special construction of the sperm whale skulls gives the 

individual pulses of their sound signals distinct structural features. 

It is not as easy to find the sound signal of the baleen whale, which has a low frequency 

signal. Their sounds are submerged in a lot of low frequency noise, so it is important to use the 

proper detection method for signals with low signal-to-noise ratio. 

This paper uses the matched filter method to try to detect the sound of fin whales and 

Bryde’s whale. Some low-frequency sound signals have been found in the 2001 LADC database, 

but it is not yet fully certain that they are the signals of fin whale or Bryde’s whale. 

In the future, other detection methods will be tried to continue to search for whale 

signals in the Gulf of Mexico LADC database, for example, using the spectrogram correlation 

and neural network methods. The latter two methods have a lower error rate than matched 

filter. 
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