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ABSTRACT

In this work we study vertical, acoustic propagation in a non-homogeneous media for a

spatially-compact, time-harmonic source. An analytical, 2-layer model is developed repre-

senting the acoustic pressure disturbance propagating in the atmosphere. The validity of

the model spans the distance from the Earth’s surface to 30,000 meters. This includes the

troposphere (adiabatic), ozone layer (isothermal), and part of the stratosphere (isothermal).

The results of the model derivation in the adiabatic region yield pressure solutions as Bessel

functions of the First (J) and Second (Y) Kind of order −7
2

with an argument of 2Ωτ (where

Ω represents a dimensionless frequency and τ is a dimensionless vertical height in z (verti-

cal coordinate)). For an added second layer (isothermal region), the pressure solution is a

decaying sinusoidal, exponential function above the first layer.

In particular, the vertical, acoustic propagation is examined for various configurations.

These are divided into 2 basic classes. The first class consists of examining the pressure

response function when the source is located on boundary interfaces, while the second class

consists of situations where the source is arbitrarily located within a finite layer. In all

instances, a time-harmonic, compact source is implicitly understood. However, each class

requires a different method of solution. The first class conforms to a general boundary value

problem, while the second requires the use of Green’s functions method.

In investigating problems of the first class, 3 different scenarios are examined. In the

first case, we apply our model to a semi-infinite medium with a time-harmonic source (e−iωt)

located on the ground. In the next 2 cases, a semi-infinite medium is overlain on the previous

medium at a height of z=13,000 meters. Thus, there exist two boundaries: the ground and
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the layer interface between the 2 media. Sources placed at these interfaces represent the

2nd and 3rd scenarios, respectively. The solutions to all 3 cases are of the form A
J− 7

2
(2Ωτ)

τ−
7
2

+

B
Y− 7

2
(2Ωτ)

τ−
7
2

, where A and B are constants determined by the boundary conditions.

For the 2nd class, we examine the application to a time-harmonic, compact source placed

arbitrarily within the 1st layer. The method of Green’s functions is used to obtain a partic-

ular solution for the model equations. This result is compared with a Fast Field Program

(FFP) which was developed to test these solutions. The results show that the response given

by the Green’s function compares favorably with that of the FFP.

Keywords: Linear Acoustics, Inhomogeneous Medium, Layered Atmosphere, Boundary Value

Problem, Green’s Function Method
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CHAPTER I

Introduction

1.1 Historical Background

The phenomenon of sound and its propagation has been a source of mystery, confusion,

conjecture, and curiosity over the history of man. The investigation of sound goes back as

far as Aristotle’s idea of sound propagation (c. 384-322 B.C.) i.e. air motion was generated

by a source. The idea of the wave nature of sound grew from the observation of surface water

waves. This idea was picked up by many Greek and Roman philosophers (e.g. Chrysippus

(c. 240 B.C.) and Boethius (A.D. 480-524)[12]. Over the centuries, much speculation and

experimentation was done. In the 17th century, the idea of sound generation was extended to

the experimental result that a body vibrating at a single frequency produced air molecules

vibrating at that same frequency. This was addressed particularly by Martin Marsenne

(1636, Harmonie universelle) and Galileo (1564-1642)[12]. However, it wasn’t until the ap-

pearance of Newton’s Principia in 1686 that the study of sound was placed on a more firm,

mathematical footing. Newton considered sound as “pressure” pulses transmitted through

neighboring fluid particles. Greater development was made during the 18th century by the

likes of Euler, Lagrange, and d’Alembert through the development of continuum physics[11].

This was followed by Lord Rayleigh’s two volume treatise, “Theory of Sound” (1877 and

1878)[2].

Acoustics is the study of the science of sound as applied to various media. Today’s theories
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can be viewed as refinements to the contributions made by Euler and his contemporaries.

The use of the “new” continuum physics by Euler as applied to fluids is generally considered

the starting point of the development of today’s linear acoustic theory. Certainly, two of

Euler’s most famous equations are used unaltered to this day in the development of linear

acoustics. Since the study of acoustics is a very mature field, one may be tempted to believe

that there is little work left to be done. However, the numerous papers and journal articles

published daily speak otherwise.

In 1755, Euler developed the application of the important equations concerning the Con-

servation of Mass (or Continuity) Equation and the Momentum Equation. These equations

are the first 2 equations shown below. The third equation represents the Equation of State

which is derived from the fact that the acoustic pressure, p, is a function of the density, %,

and the entropy, η, namely, p = p(%, η).

(D%/Dt) = %∇ · u Mass Conservation (1.1a)

%(Du/Dt) = −∇p+ %b Momentum Conservation (1.1b)

Dp/Dt = c2(D%/Dt) Equation of State (1.1c)

(Dη/Dt = 0) Entropy Equation (1.1d)

From these, one can obtain a wave equation for the propagation of sound through a medium.

Here (D/Dt) ≡ ∂/∂t+u ·∇ is the Material Derivative and u is the flow velocity (wind). For

our purposes, the medium of concern is the atmosphere (air) which is treated as an ideal gas.

Additionally, it should be noted that the pressure, p, is the sum of an ambient (background)

quantity plus the pressure perturbation caused by the passage of an acoustic wave. A similar

situation exists for the density, %. The term b represents a body force acting on the medium

which will become g, the acceleration of gravity in the negative z-direction.

The difficulty in obtaining and solving an appropriate, acoustic, wave equation for at-

mospheric conditions is due in large part to the complexity of the medium. Propagation

2



through the atmosphere must include known (experimental) functions for the air density,

the wind velocity, ground surface, turbulence, terrain, and any barriers to propagation. To

solve these problems, several mathematical models have been developed which are based

on the success of models in underwater acoustics, electro-magnetics, and seismology. These

models treat the encountered surfaces as a boundary value problem. To this end, there are 3

accurate models developed to treat accoustic propagation. Without going into detail, these

are called the Fast Field Program (FFP), the Crank-Nicholson Parabolic Equation (CNPE),

and the Green’s Function Parabolic Equation (GFPE).

1.2 Historical Relevance

In this study, we examine acoustic wave propagation in non-homogeneous, layered medium.

In this respect, the layering of the atmosphere provides a perfect backdrop for such an anal-

ysis. As one moves vertically upwards in the atmosphere, the pressure and density change

dramatically. Much information and data are known about how these variables change with

height and, thus, provide a well-defined model system for investigation.

The origin of these ideas (studying vertical, sound propagation) goes back a century and

a half as they were first addressed in the literature by Poisson and Rayleigh around 1890.

At the same time (1879), Horace Lamb [10] published his famous work, Hydrodynamics, in

which he commenced his study of Atmospheric Waves in Section 309, where he stated, ”The

theory of waves travelling vertically in the atmosphere is of some interest as an example of

wave-propagation in a variable medium.” Then, he commences to analyze this problem for

an atmosphere with a constant temperature and one with a temperature gradient. However,

his analysis is performed stating particle displacement, and, later, extends it to acoustic

pressure.

He proceeds to study this problem by assuming an adiabatic relation between pressure

and density (we do likewise) as a function of 2 atmospheres and solves for the particle

displacement for a constant temperature (Sec. 309).

3



The study we embark upon in this work does not include any horizontal flow (wind),

but it is none the less relevant. Such velocity fields are pertinent to such areas as sound

interaction with the upper boundary layer as well as remote sensing of the vertical, velocity

structure. The problem posed is that for an inhomogeneous atmosphere which was first

studied in-depth by Lamb [10]. It is a topic addressed in many texts [14, 17, 7] and articles

[9, 15, 6, 13, 5, 8] as well.

In this work, an analytical model is developed in Chapter 2 which addresses the effect on

vertical, acoustic propagation from a spatially-compact, time-harmonic source through non-

homogeneous, layered media. In particular, the parameters of this study examine acoustic

propagation in a layered atmosphere ranging from the Earth’s surface to a vertical height of

30,000 meters. This range includes the troposphere, ozone layer, and part of the stratosphere.

The density profiles for the layered media used in this work are derived in Appendix B and

are of an algebraic and exponential form. The model yields an equation for the pressure

perturbation with height. Generally speaking, this is advantageous as pressure quantities

offer more physical insight into the various effects than, perhaps, particle displacement or

velocity. In all scenarious studied, our source is harmonic in time (e−iωt) and compact in

space (δ(z − zs)). Here ω is the angular frequency, t represents time, δ is the Dirac delta

function, and its arguments are the independent variable z with zs being the source location.

In the remaining chapters numerous scenarios are examined with our model. These sce-

narios are divided into 2 basic classes where each class requires a different method of solution.

The first class is analyzed in Chapter 3. This consists of examining the pressure response

function when the source is located on boundary interfaces. Thus, this class conforms to a

general boundary value problem. In investigating problems of this class, 3 different scenarios

are examined. In the first case, we investigate the pressure response function in a semi-

infinite, adiabatic medium with a time-harmonic source resting on the ground. In the next

2 cases, a semi-infinite medium is overlain on the previous medium at a height of z=13000

meters. This results in a finite layer between the ground and the semi-infinite medium above

(adiabatic region). Thus, there now exist two boundaries: the ground and the layer inter-

4



face between the 2 media. These represent the geometries for the 2nd and 3rd scenarios,

respectively.

Chapter 4 examines the second class which consists of geometries where the source is

arbitrarily located within the 1st layer. The nature of this problem requires a different

method of solution whereby we chose the use of Green’s functions. This method is used

to obtain a particular solution for the model equations. These are examined individually

and in conjunction with the complementary solution. Next, Chapter 5 develops a Fast Field

Program for the wave field within the finite layer and is used to compare results from the

Green’s function problem. The comparisons show that the response given by the Green’s

function compares favorably with that from the FFP.

Finally, in Chapter 6, conclusions are given resulting from the foregoing analyses and

comparisons.

5



CHAPTER II

Development of an Analytic Pressure Model

In this work, we develop a model representing vertical, acoustic propagation in a layered,

non-homogeneous atmosphere. A depiction of this model is shown in Figure 2.1. Here the

2 layers of the model are shown with the first layer terminating at a height of z=13000

meters with the second layer terminating at 30,000 meters. The lower layer is representative

of the troposhere (adiabatic region), while the second layer extends into the stratosphere

(isothermal region). This work develops an ordinary differential equation (ODE) which

represents sound propagation through each of these layers. After developing the ODE,

various scenarios are investigated by locating the acoustic source at various locations of

Layer 1 (shown in the model diagram). In particular, we study the results for the source

located on the 2 boundaries of Layer 1, as well as, the results for arbitrarily placing the

source within Layer 1.

6



Figure 2.1: 2-Layered, Non-Homogeneous Atmosphere Model

2.1 Development of Pressure ODE for a Layered,

Non-Homogeneous Medium

In order to develop our model, one starts with Euler’s equation for Mass Conservation

and the Continuity Equation as well as an Equation of State.
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(D%/Dt) = −%∇ · u (2.1a)

%(Du/Dt) = −∇p+ %b (2.1b)

Dp/Dt = c2(D%/Dt), (Dη/Dt = 0) (2.1c)

where c is sound velocity, % is the density function in the vertical direction (z), p is the

acoustic pressure variation, u is the acoustic velocity in the vertical (z) direction, b is the

body force, and D
Dt

= ∂
∂t

+~V ·∇ is the Material Derivative. At this point, one assumes that the

total quantity measured is the sum of an ambient function plus a propagating disturbance.

The ambient function may also be referred to as the average or background function. This

is indicated here where the subscript ”av” represents the average or ambient function and

the unscripted variable is the propagated disturbance:

pa = pav(z) + p (2.2a)

%a = %av(z) + % (2.2b)

va = (uav(z) + u, vav(z) + v,w) (2.2c)

At this point, we consider the fact that we are working towards a windless model and

set the velocities in the x- and y-directions to zero. This leaves only 3 remaining equations

which require solving. To this end, we write the remaining variables explicitly in terms of

their time-harmonic dependence and make a variable transformaion as shown below:

p→ Pe−iωt

%→ ΩDe−iωt

u→We−iωt.

With this transformation and linearization, equations (2.1a)–(2.1c) and (2.2a)–(2.2c)

8



yield our 3 algebraic expressions below which are to be solved simultaneously:

-iωΩD + %
′

avW + %avW
′
= 0 (2.3a)

-iωW + %−1
av P

′
+ g%−1

av ΩD = 0 (2.3b)

-iωP− %avgW = -iωc2ΩD + c2%
′

avW, (2.3c)

where ω is the angular frequency of the continuous source. Although these equations are in

algebraic form, they contain derivative terms. Thus, the solution in terms of P will be a

differential equation for P. Details of linearization with the above transformations are given

in Appendix A.

First, solving (2.3c) for Ω and substituting into (2.3b), one arrives at

− iωW + %−1
av P

′

+ g
%−1
av

c2
(P +

1

iω
(%avg + c2%

′

av)W) = 0.

(2.4)

This yields the following equation for W

W =
%−1
av P

′
+ g%−1

av

c2
P

(iω − g%
−1
av

c2
1
iω

(%avg + c2%′av))
, (2.5)

from which an equation for the derivative, W
′
, can be found as

W
′
=

P
′′

+ g
c2

P
′

(iω%av − g
c2iω

(c2%′av + %avg))

−
(P
′
+ g

c2
P)(iω%

′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))2
.

(2.6)

Using (2.5) and (2.6) in (2.3a), a clearer expression for the pressure develops as shown

9



here

P
ω2

c2
%av + %

′

av

g

c2
P + %avP

′′
+

−%av(P
′
+ g

c2
P)(iω%

′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))
= 0.

(2.7)

After collecting terms common to P
′′
, P

′
, and P, (2.7) can be rewritten as

P
′′ − P

′

[
(iω%

′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))

]
+

P

[
ω2

c2
+
%
′
av

%av

g

c2
+

g

c2

(iω%
′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))

]
= 0,

(2.8)

which can be manipulated into the following form

P
′′ − P

′
{

d

dz
ln(%av) +

d

dz
ln
[
ω2
]}

+ P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2

{
d

dz
ln(%av) +

d

dz
ln
[
ω2c2

]}]
= 0.

(2.9)

Finally, arguments can be made regarding the magnitude and significance of various terms

above. These are given in Appendix A prior to equation (A.35). With these reductions, one

arrives at the desired equation:

P
′′ −

(
%
′
av

%av

)
P
′
+

(
ω2

c2

)
P = 0. (2.10)

2.2 Pressure Equation with Linear Density Variation (1st Layer)

Next, we study (2.10) in an adiabatic layer. The density, pressure, temperature, and

sound speed profiles are given by (see Appendix B) :
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%av(z) = %0

[
1− z

l

]χ
Density Equation (2.11a)

p = p0(1− z

l
)χ+1 Pressure Equation (2.11b)

T = T0(1− z

l
) Temperature Equation (2.11c)

c(z) = c0

[
1− z

l

] 1
2

Sound Speed Equation (2.11d)

In the above formulas, all of the variables with ”0” subscript represent the corresponding

quantity at the ground level i.e. z = 0. Here, z, of course, is the vertical coordinate and is

positive upwards. Consequently, z varies from the surface height z = 0 to a height l, where

we have l := (χ + 1)H and χ(≥ 0) is a (known) constant such that the temperature T is

always decreasing as we move upwards in the atmosphere (z increasing). Or, in other words,

as stated by Reference[9] (as taken from Reference[10]), T
′
, the gradient of the temperature,

is always negative and constant-valued. Additionally, the constant H, as referenced in [10],

is the height of the ’homogeneous atmosphere’ defined as H :=
c20

(γg)
. Here γ is equal to the

ratio of specific heats at constant pressure and volume. That is, γ := cp
cv

. This ratio can

assume the values of 5
3

or 7
5

for an ideal monoatomic or polyatomic gas, respectively. Our

work will use the value for γ = 7
5
.

Proceding with the derivation, it should be noted that all primes (’ ) on variables represent

a derivative with respect to z. Using Equation (2.11a), its derivative may be written as

%
′

av(z) = %0χ
[
1− z

l

]χ−1

(−1

l
) (2.12)

Hence, the ratio %
′
av

%av
required in Equation(2.10) is:

%
′
av

%av
= −1

l

χ

(1− z
l
)

(2.13)

Substituting the newly found expressions for %
′
av

%av
and c(z) into (2.10), one obtains
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P
′′

+

(
1

l

χ

(1− z
l
)

)
P
′
+

(
ω2

c2
0

[
1− z

l

])P = 0 (2.14)

(Please note that a power of 2 term is not included on the term
[
1− z

l

]
with the definition

for c2 in Equation (2.10). )

We can now derive a dimensionless equation for Equaton (2.14) by substituting Z = z
l
.

This substitution yields

1

l2
d2P

dZ2 +
1

l2
χ

1− Z

dP

dZ
+

ω2

c2
0(1− Z)

P = 0 (2.15)

Finally, defining Ω = ωl
c0

, the end result is

(1− Z)
d2P

dZ2 + χ
dP

dZ
+ Ω2P = 0 (2.16)

Continuing our developement to arrive at a Bessel’s equation, we make the substitution

of τ =
√

1− Z. One can now take the various derivatives with respect to τ using the chain

rulle as follows:

dP

dZ
=

dP

dτ

dτ

dZ

where

dτ

dZ
= −1

2

1√
1− Z

= − 1

2τ
(2.17)

Therefore,

dP

dZ
= − 1

2τ

dP

dτ
(2.18)

Solving for the 2nd derivative term, we have
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d2P

dZ2 =
d

dZ

dP

dZ
= − 1

2τ

d

dτ

[
− 1

2τ

dP

dτ

]
= − 1

2τ

{
1

2τ 2

dP

dτ
− 1

2τ

d2P

dτ 2

}
=

{
− 1

4τ 3

dP

dτ
+

1

4τ 2

d2P

dτ 2

} (2.19)

Putting all of the parts of Equation (2.16) together, one gets

τ 2

{
− 1

4τ 3

dP

dτ
+

1

4τ 2

d2P

dτ 2

}
+− χ

2τ

dP

dτ
+ Ω2P = 0 (2.20)

This finally becomes

d2P

dτ 2
− (2χ+ 1)

τ

dP

dτ
+ 4Ω2P = 0 (2.21)

We now redefine χ by the substitution

−(2χ+ 1) = (2χ
′
+ 1). (2.22)

where the prime (’) is not indicating a derivative, but it merely marks the change of variables.

As explained above, one interesting choice for χ is χ = 1
γ−1

. Here we choose γ = 7
5

since

air is a diatomic molecule. This yields a value χ = 5
2
. And a corresponding value of χ

′
= −7

2
.

Hence, Equation (2.21) now becomes

d2P

dτ 2
+

(2χ
′
+ 1)

τ

dP

dτ
+ 4Ω2P = 0 (2.23)

Equation (2.23) is an Euler-type equation and, thus, one way of transforming it is to

assume a solution of the form P = X
τχ

. Here we are looking for a final equation for X and

we have also changed χ
′

to χ for convenience. With this in mind, we commence finding the

individual derivatives:
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dP

dτ
=

d( X
τχ

)

dτ
= X

d( 1
τχ

)

dτ
+

1

τχ
dX

dτ
= − χ

τχ+1
X +

1

τχ
dX

dτ
(2.24)

Continuing, we have for the 2nd order derivative:

d2P

dτ 2
=

d

dτ

[
− χ

τχ+1
X +

1

τχ
dX

dτ

]
(2.25)

Or,

d2P

dτ 2
= − χ

τχ+1

dX

dτ
+
χ(χ+ 1)

τχ+2
X− χ

τχ+1

dX

dτ
+

1

τχ
d2X

dτ 2
(2.26)

Combining terms common to the 1st order derivative, we have

d2P

dτ 2
=

1

τχ
d2X

dτ 2
− 2χ

τχ+1

dX

dτ
+
χ(χ+ 1)

τχ+2
X (2.27)

Now, combining all of the terms of Equations (2.24) and (2.26) with Equation (2.23), we

have

[
1

τχ
d2X

dτ 2
− 2χ

τχ+1

dX

dτ
+
χ(χ+ 1)

τχ+2
X

]
+

(2χ+ 1)

τ

[
− χ

τχ+1
X +

1

τχ
dX

dτ

]
+ 4Ω2 X

τχ
= 0 (2.28)

This may distributed as below:

[
1

τχ
d2X

dτ 2
− 2χ

τχ+1

dX

dτ
+
χ(χ+ 1)

τχ+2
X

]
+

[
−χ(2χ+ 1)

τχ+2
X +

(2χ+ 1)

τχ+1

dX

dτ

]
+ 4Ω2 X

τχ
= 0 (2.29)

Adding terms with like differential orders, we have

1

τχ
d2X

dτ 2
+

1

τχ+1

dX

dτ
− χ2

τχ+2
X + 4Ω2 X

τχ
= 0 (2.30)

This finally yields our Bessel function equation for the lower layer:
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τ 2 d2X

dτ 2
+ τ

dX

dτ
+ (4Ω2τ 2 − χ2)X = 0 (2.31)

where X satisfies Equation (2.31). Additionally, (2.31) is a Bessel equation of order χ = −7
2

and of argument 2Ωτ . The solution for X admits solutions of Bessel’s equation of the First

(Jχ(2Ωτ)) and Second Kind (Yχ(2Ωτ)) . Thus a general solution for the pressure,P, may be

written as

P = A
Jχ(2Ωτ)

τχ
+B

Yχ(2Ωτ)

τχ
, (2.32)

where A and B are constants to be determined from boundary conditions. As a reminder,

τ =
√

1− z
l

=
√

1− Z, where l = 30, 000 meters. Both τ and Z are dimensionless and are

used interchangeably when needed for purposes of clarifying various results.

Hence, (2.32) is the governing Bessel’s equation of order χ and argument 2Ωτ which will

be used for finding solutions in the lower layer(s) of all the models herein.

2.3 Pressure Equation with Exponential Density (2nd Layer)

We now turn our attention to developing the equation which represents the top semi-

infinite layer, overlaying a finite layer. This result will then be coupled with that for the

bottom layer (via the boundary conditions at the common interface) in order to form the

complete model. Hence, we start with the differential equation for the pressure (2.10). But,

instead of using the dimensionless variable Z, we use the coordinate variable z. Then, after

working with the density function %av(z), we will renormalize the equation appropriately.

Next, we start with a common model for %av(z) which may be found in [11] , that is, the

exponential form

%av = %0e
(− z

H ) ⇒ %
′

av = − 1

H
%av, (2.33)

where H corresponds to the height of the ’homogeneous atmosphere’ as quoted by Lamb.
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For such an atmosphere, one may write the sound speed in the medium as

c2 = γgH⇒ H =
c2

γg
, (2.34)

where γ is the ratio of specific heats.

Writing the pressure equation in terms of the Cartesian variable z, we have

d2P

dz2 −
(
%
′
av

%av

)
dP

dz
+

(
ω2

c2

)
P = 0. (2.35)

Expressing this again in terms of Z and multiplying through by l2, then, (with Ω2 = ω2l2

c2
),

we obtain

d2P

dZ2 +
(

l
γg

c2

) dP

dZ
+ Ω2P = 0. (2.36)

Next, we designate the term
(
lγg
c2

)
by α and notice that all of the coefficients of Equation

(2.36) are constants. Given that a differential equation whose coefficients are constants has

solutions which are of the form emz, one can easily solve the characteristic equation and get

the pressure, P.

The characteristic equation resulting from (2.36) is

m2 + αm + Ω2 = 0, (2.37)

and its solution is given by

m = −α
1∓ i

√
4Ω2

α2 − 1

2
. (2.38)

Substituting the result for the positive root in the exponential, the pressure P may be

written with respect to the bottom of the 2nd layer (Z2) as

P = Ce
−α[Z−Z2]

2 cos(α

√
4Ω2

α2 − 1

2
(Z− Z2)), (2.39)

where C is the boundary value constant which must be solved in order to match the solution
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in the lower layer. This will be done below for each specific model configuration.

Due to our previous choice of m from (2.38), one notices that propagation in (2.39) only

occurs when the term 4Ω2

α2 − 1 ≥ 0. Thus, one can define the minimum value for Ω for which

this occurs and label it Ωc where the c means ”critical value.” This value is then determined

to be

Ωc =
α

2
, (2.40)

where α is defined for a specific sound speed c1 as

α =
γgl

c2
1

, (2.41)

and c1 is the sound speed occurring at z = z2 (which is the minimum z at which (2.39)

applies).

Since two of the models below have this critical propagation criterion, frequencies for all

of the models will be couched in terms of multiples of Ωc. The frequencies will be labeled as

fc with Ω = fc ∗ Ωc.

Furthermore, Ω can be redefined from earlier as Ω = ωl
c1

, where c1 is the sound speed at

the base of layer 2.. Combining the definition of Ω, Ωc, and α, one may calculate the lowest

propagating angular frequency ω by equating Ω = α
2
. Doing so reveals a cut-off frequency

for ωc of 26.5 mHz!
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CHAPTER III

The 3 Models

3.1 Model 1: Simple, Semi-Infinite Half-Space

In order to understand the solutions to the adiabatic atmosphere more clearly, it is helpful

to examine plots of the relevant Bessel functions. Figure 3.1 shows the Bessel functions of the

First (J) and Second (Y) Kind of order −7
2
. The behavior of these functions is quite different

from their counterparts of non-negative, integer order. For these orders, it is common for

the Y solution to be infinite at the origin (z = 0). However, here both functions are finite at

the origin while the J function becomes infinite at infinity (modeled by the top boundary).

This will become important for solving the boundary problems below.
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Figure 3.1: Bessel Functions of First and Second Kind for Order −7
2

in z

The adiabatic density model is the non-homogeneous, layered function chosen for the

semi-infinite, half-space of the 1st model. As previously found, the relevant Bessel’s equation

is given by (2.31) while the total solution is expressed in (2.32). Only the solution of the

2nd Kind (Y ) is allowed since the J solution goes to infinity as l→∞.

Since there is only one boundary in this model, there exists only one boundary condition.

However, the solution contains 2 unknown, boundary values. We write the only boundary

value condition as

P1|Z=0 = P0, (3.1)

where the general solution is given by

P = A
Jχ(2Ωτ)

τχ
+B

Yχ(2Ωτ)

τχ
. (3.2)

as already found in Chapter II.
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For resolving the 2nd boundary condition, one considers the behavior as the function

approaches infinity (τ = 1 or Z = l). This behavior is seen in figure 3.1. One notices that

the J Bessel function blows-up as Z→ l, therefore, the coefficient A must be 0.

Thus, the new pressure equation to be solved for this model becomes:

P = B
Yχ(2Ωτ)

τχ
, (3.3)

where B is the unknown boundary value constant. Here, again, χ = −7
2

and τ =
√

1− z
l

=
√

1− Z.

The only boundary condition for this model is that the pressure P = P0 at the base of

the half-space(τ = 0). Applying this condition to (3.3), we find that

B =
P0

Y− 7
2
(2Ω)

, (3.4)

with the total pressure solution becoming

P =
P0

Y− 7
2
(2Ω)

Y− 7
2
(2Ωτ)

τ−
7
2

. (3.5)

P =
P0

Yχ(2Ω)

Yχ(2Ωτ)

τχ
. (3.6)

3.2 Model 1 Results

Model 1 consists only of a semi-infinite, half-space with an adiabatic density function.

Hence, it is a single layer for which the Bessel functions are the only solutions. Since, the

medium is semi-infinite, there is no cut-off frequency (as in Models 2 and 3) which would need

to be addressed when considering the possible range of propagating frequencies. However,

since a cut-off does arise for the other 2 models, it is useful to consider the propagating

frequencies for all of the models in terms of multiples (fc) of the cut-off frequency (Ωc).

Since Model 1 is the simplest of the 3 models, it is very useful in identifying some
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interesting behavior common to all of the models. In the course of this research, the author

noticed large, amplitude fluctuations as a function of the frequency multiplier (fc) among

the solutions for each model. In particular, there appeared certain frequencies in which the

functions grew considerably larger than at other frequencies. This is illustrated with figures

3.2 and 3.3.

The first plot, Figure 3.2 below, shows the raw pressure functions without the boundary

value constant (BVC), B, multiplying the solution. Here, the frequency multiplier, fc, takes

on the 3 values of 2.0, 2.2, and 2.213. There are a couple of results to observe in this

plot. First, one can notice that there is not a large amplitude range among the 3 functions.

Additionally, one should note that all of these solutions are initially negative.

fc=2.0

fc=2.2

fc=2.213

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

Z

Figure 3.2: Semi-Infinite Half-Space Pressure Functions with fc = 2.0, 2.2, and 2.213 with
Ωc in terms of τ .

However, upon multiplying by the boundary value constant B, one can observe the im-

portant effect of this constant on the solution in Figure 3.3. First, one notices the large

spread in amplitudes in contrast to those in Figure 3.2. (Note the scale change between the
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2 figures.) Second, the amplitudes now have opposite signs compared to that of the previous

figure. And, third, as required, the boundary value constant, B, fixes the pressure to P0 = 1

at Z = 0. Additionally, the source location in all pressure plots is indicated by a circle. On

this plot, one will notice the circle at (0,1) on the plot.

OO

fc=2.0

fc=2.2

fc=2.213

0.0 0.2 0.4 0.6 0.8 1.0
-30

-20

-10

0

10

20

30

Z

P

Figure 3.3: Semi-Infinite Half-Space Bessel Function with fc = 2.0, 2.2, and 2.213 with Ωc

in terms of τ(Z).

Since the difference between the plots in Figures 3.2 and 3.3 is the presence of the bound-

ary value, it appears that amplitude sensitivity is attributable to the boundary value con-

stant, B, as a function of frequency. This can be shown more quantitatively and conclusively

in the next figure.
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Figure 3.4: Boundary Value Constant as a function of fc. Dots identify values for fc = 2.0,
2.2, and 2.213 (left to right).

Figure 3.4 shows the values of the boundary value constant B plotted as a function of

the frequency, fc, on the boundary at z = 0. One will notice that the 3 ”dots” on this plot

represent the 3 relatively close frequencies fc = 2.0, 2.2, and 2.213. One may also observe

that these points occur on the negative (bottom) half of the plot. This substantiates that the

minus B values are responsible for the inversion of the original functions. Hence, from looking

at this plot, it is relatively easy to choose frequencies whose resulting solutions may be either

large or small, or positive or negative with respect to the original functions. Usually, one

solves these boundary value problems for a single frequency, possibly, unaware of what may

be occurring at other frequencies. Since the boundary constant is given by 1
J(2Ω)

, infinities

of this function as a function of frequency correspond to the zeros of J(2Ω).

A similar example is shown in the following figures for Model 1.
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Figure 3.5: Semi-Infinite, Half-Space Bessel Function for fc = 2.735, 2.748, and 2.752 with
Ωc in terms of τ(Z).

Figure 3.5 shows the Bessel pressure solutions for 3 relatively close frequencies of fc =

2.735, 2.748, and 2.752. One can observe that these plots virtually overlay each other.

However, when the boundary value constant B is applied, one can notice its effect. Two of

the curve’s initial amplitudes become negative, while that of the third is positive. This is the

same behavior as seen in the previous example due to the effect of the BVC, B. Nevertheless,

this can again be explained by the plot for the values of B versus fc in Figure 3.7. Here one

observes that the point with the highest value for B is the lowest frequency curve (fc=2.735)

and is positive. Hence, it has the greatest amplitude of all three curves. The next two curves

of higher frequencies are seen to have smaller values for B which are negative. This resuts

not only in a decreased amplitude with respect to the first curve (fc=2.735), but also an

inversion from their initial form.
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Figure 3.6: Semi-Infinite Half-Space Bessel Function for fc = 2.735, 2.748, and 2.752 with
Ωc in terms of τ(Z).
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Figure 3.7: Boundary Value Constant as a function of fc. Dots identify values for fc = 2.735,
2.748, and 2.752 (left to right).

3.3 Prelude: Models 2 and 3

Models 2 and 3 consist of 2 layers in which both scenarios having a finite-layered medium

at the bottom overlain with a semi-infinite one on top. Lamb’s density function is used to

represent the atmosphere in the lower layer and an exponential model is used in the upper

layer. We take the height of the 1st layer to be z2 = 13,000 meters and perform calculations

in the 2nd medium only to a height of l=30,000 meters. The solution in the lower medium

is termed P1 and that of the upper region is termed P2.

The general pressure solution in layer 1 (as found previously) is

P1 = A
Jχ(2Ωτ)

τχ
+B

Yχ(2Ωτ)

τχ
, (3.7)

and that for the upper region is
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P2 = Ce
−α[Z−Z2]

2 cos(α

√
4Ω2

α2 − 1

2
(Z− Z2)), (3.8)

where the value for α is set using the value of the sound speed at Z = Z2, namely, c1. We

will still call this α as shown here:

α =
γgl

c2
1

(3.9a)

Ω2
c =

ω2l2

2c2
1

. (3.9b)

3.4 Model 2: Bottom Source, Layered, Semi-Infinite Half-Space

In this model, the source is located at the lower boundary of the 1st medium. In order

to find the solution for a time-harmonic signal, one must apply the appropriate boundary

conditions to (3.7) at the bottom of the 1st layer (Z = 0 or τ = 1) and (3.8) at the top of the

1st layer (bottom of the 2nd layer) (Z = Z2 or τ = τ2) in order to determine the constants

A, B, and C.

These 3 boundary conditions can be illustrated as shown below:

P1|Z=0 = P0 (3.10a)

P1|Z=Z2
= P2|Z=Z2

(3.10b)

P
′

1

∣∣∣
Z=Z2

= P
′

2

∣∣∣
Z=Z2

, (3.10c)

where P0 is the source pressure. Applying these boundary conditions to equations (3.7) and

(3.8), one obtains the following set of equations:

P0 = P|τ=1 = A

[
Jχ(2Ωτ)

τχ

]∣∣∣∣
Z=0

+B

[
Jχ(2Ωτ)

τχ

]∣∣∣∣
Z=0

(3.11)
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A

[
Jχ(2Ωτ)

τχ

]∣∣∣∣
τ=τ2

+B

[
Jχ(2Ωτ)

τχ

]∣∣∣∣
τ=τ2

= C

e−α[Z−Z2]
2 cos(α

√
4Ω2

α2 − 1

2
(Z− Z2))

∣∣∣∣∣∣
Z=Z2

(3.12)

A

[
Jχ(2Ωτ)

τχ

]′∣∣∣∣∣
τ=τ2

+B

[
Jχ(2Ωτ)

τχ

]′∣∣∣∣∣
τ=τ2

= C

e−α[Z−Z2]
2 cos(α

√
4Ω2

α2 − 1

2
(Z− Z2))


′∣∣∣∣∣∣∣
Z=Z2

.

(3.13)

In the above equations, the single quote mark (′) represents the derivative of the quantity

in brackets ([ ]) with respect to z. The system of Equations (3.11)–(3.13) can be solved

analytically for the 3 constants A, B, and C. This effort is undertaken in Appendix C. It

should be noted that the free variable in these equations is Ω. For purposes of later analysis,

this variable is cast in terms of the cut-off frequency in the top layer. That is, we frame

our solutions in terms of multiples of the cut-off frequency. This is given by Ωc = α
2

and

Ω = fc ∗ Ωc. Additionally, one must be aware that the boundary value constants need to be

recalculated each time the frequency multiple,fc, is changed.

3.5 Results for Model 2

Below, we show some pertinent results for Model 2 with a time-harmonic source of various

frequency multiples (fc) of the cut-off frequency (Ωc). Here, we have chosen 3 frequencies

which are reasonably near the cut-off frequency which is defined as fc=1. The values chosen

in Figure 3.8 are fc = 2.0, 2.2, and 2.58 times the cut-off frequency. There are a couple of

observations to be noted about these plots. First, the plots span both the 1st and 2nd layer

and extend to the top of the 2nd layer. Second, there is no discontinuity at the top of the

1st layer (z = 13,000 m or Z = 0.43). This is due to the effect of the 3rd boundary condition

(Equation (3.13)) which matches the slopes at the boundary between the 2 layers. And,

third, the envelope of the pressure function is decreasing with increasing height.
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Figure 3.8: Pressure (P) vs. Height (Z) for fc = 2.0, 2.2, and 2.58 (left to right).

As was previously done for Model 1 in Figure 3.4, a similar frequency dependence of the

boundary value constants is derived and plotted. However, whereas in Model 1, there was

only one constant (B), in Model 2 (and 3), there are two constants A and B. In order to

show the effect of these constants, as a function of frequency, we choose to plot the ratio

B
A

. The equation showing the relationship between these two constants is given in (C.17) in

Appendix C. The plot showing the ratio B
A

is shown below in Figure 3.9.
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Figure 3.9: Boundary Value Constant ratio, B
A

, where dots identify values for fc=2.0, 2.2,
and 2.58 (left to right).

As done previously, we have plotted ”dots” on the graph for the corresponding frequencies

plotted in figure 3.8. One should note that these all lie on the same curve. Additionally, for

frequencies fc = 2.0 and 2.2 (which have negative amplitudes in figure 3.9), their plots start

downward as shown in 3.8. However, for fc = 2.58, which has a positive pressure amplitude,

its graph starts upward as seen in 3.8.

3.6 Model 3: Top Source, Layered, Semi-Infinite Half-Space

In the 3rd model, one has the same two-layered medium as in the 2nd case except that

the source has been moved to the top of the first layer. That is, on the boundary between the

1st and 2nd layers. Here, once again, one is faced with solving a boundary value problem for

the 3 constants A,B, and C. However, the boundary conditions are different than previously
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found and are enumerated here:

P
′

1

∣∣∣
Z=0

= 0 (3.14a)

P2|Z=Z2
= P0 (3.14b)

P1|Z=Z2
= P2|Z=Z2

. (3.14c)

Again, these conditions are applied to Equations (3.7) and (3.8). A complete derivation for

the constants A, B, and C is developed in Appendix E. A plot showing the pressure curves

for the 3 previous frequencies is shown in Figure 3.10. Here the source is located on the

boundary between the 2 layers. Hence, the source radiates into both layers simultaneously.

From the plot, one can observe the expected effect of the decline in pressure with distance

from the source.
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Figure 3.10: Model 3 Pressure Curves for fc=2.0, 2.2, and 2.58 (left to right).
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3.7 Phase Velocity

For Models 2 and 3, we find that standing wave solutions for vertical, atmospheric, wave

propagation can be represented by equation (3.7). Their general form is composed of Bessel

functions of the First and Second Kind. However, it is well known that these standing waves

are comprised of traveling waves (Hankel functions) moving in opposite directions with phase

velocity, vp. Thus, one may ask to what familiar phenomena could these functions be related

and what attributes could be ascribed to our results.

Physically speaking, if one thinks of our problem as a large cylinder whose axis passes

through the source and is perpendicular to the Earth’s radius at the surface, then traveling

waves in the z-direction become radial waves. Hence, our analogy allows us to look for the

phase velocities of these waves.

With this in mind, we define the radial waves as Hankel function [16], [3] of order −7
2

H
(1)

− 7
2

=
{

J− 7
2
(2Ωτ) + iY− 7

2
(2Ωτ)

}
. (3.15)

The phase function is then defined as

φ = tan−1

{
Y− 7

2
(2Ωτ)

J− 7
2
(2Ωτ)

}
− ωt, (3.16)

where the phase velocity, vp, is determined by

vp = −∂φ
∂t
/
∂φ

∂z
. (3.17)

Explicitly writing τ(Z) is a helpful reminder that τ(Z) is defined as

τ(Z) = (1− Z)
1
2 = (1− z

l
)
1
2
, (3.18)

where Z is the variable in the vertical direction (z) normalized by highest altitude (l) of the

model.
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Finding −∂φ
∂t

, one has

−∂φ
∂t

= − ∂

∂t

{
tan−1

{
(Y− 7

2
(2Ωτ(Z))

(J− 7
2
(2Ωτ(Z))

}
− ωt

}

= ω.

(3.19)

Next, it is necessary to find ∂φ
∂z

. Writing the spatial part of φ only, we have

∂φ

∂z
=

∂

∂z

{
tan−1

{
(Y− 7

2
(2Ω(1− z

l
)
1
2 )

(J− 7
2
(2Ω(1− z

l
)
1
2 )

}}
. (3.20)

For clarity of the remaining derivation, the order and argument of the Bessel functions

are not explicitly indicated, but still remain −7
2

and 2Ωτ , respectively. Thus, continuing

with the fraction Y (·)
J(·) = ν, one may write

∂φ

∂z
=
∂tan−1(ν)

∂ν

∂ν

∂z
. (3.21)

Performing the first partial derivative on the right-hand side, we have

∂φ

∂z
=

1

1 + ν2

∂ν

∂z
. (3.22)

Then, the other derivative on the right-hand side yields

∂φ

∂z
=

1

1 + ν2

{
∂ Y (u)
J(u)

∂u

∂u

∂z
,

}
(3.23)

where u = (2Ω(1− z
l
)
1
2 ). Continuing, we have

∂φ

∂z
=

1

1 + ν2

{
JY

′ − YJ
′

J2

∂u

∂z

}
. (3.24)

Substituting for ν in (3.24), we obtain

1

1 + ν2
=

J2

J2 + Y2 , (3.25)
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resulting in

∂φ

∂z
=

{
JY

′ − YJ
′

J2 + Y2

}
∂u

∂z
. (3.26)

Here we should note that the expression JY
′ − YJ

′
is the negative Wronskian, W, of J (u)

and Y (u). For all orders of Bessel functions, it can be shown that

JY
′ − YJ

′
= −W [J(u),Y(u)] = − 2

πu
, (3.27)

which for our value of u becomes

−W [J(u),Y(u)] =
−2

π2Ω(1− z
l
)
1
2

. (3.28)

And, for the remaining partial derivative, one has

∂u

∂z
=
∂(2Ω(1− z

l
)
1
2 )

∂z

= 2Ω
1

2(1− z
l
)
1
2

−1

l

=
−Ω

l(1− z
l
)
1
2

.

(3.29)

Finally, combining (3.19), (3.26), (3.27), (3.29) in (3.17), we obtain

vp =
ω(J2 + Y2)

−1

πΩ(1− z
l
)
1
2

−l(1− z
l
)
1
2

Ω
. (3.30)

In reducing (3.30), it should be remembered that one is addressing only those frequencies

in the layer which will propagate into the top layer. Hence, we use Ω such that

Ω = fc ∗ Ωc (3.31a)

where Ωc =
ωl

c1

(3.31b)

and c1 = c0

√
1− z2

l
. Thus,
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vp = π
Ωc0(1− z2

l
)
1
2

l
(J2 + Y2)(l(1− z

l
)) (3.32)

or

vp
c0

= πΩ
√

1− Z2(1− Z)
[
J2 + Y2

]
, (3.33)

where Z has been reconstituted.

Equation (3.33) represents the phase velocity for all of the models presented in this work.

And, as seen, all of the phase velocities are functions of the frequency fc through the Bessel

equations and Ω. Consequently, we show an example of these velocities for several different

frequencies in the figure below:

fc
1.1

1.5

2.2

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8
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Z

V
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c
o

Figure 3.11: Phase Velocity for fc = 1.1, 1.5, and 2.2.

Figure 3.11 shows phase velocities calculated for 3 different frequencies as a ratio to the

ground sound speed c0. They are shown as a function of the normalized coordinate Z for

the entire length of the 1st layer.
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3.8 Discussion

In this work, we have obtained analytical solutions to the propagation of acoustic waves in

the z-direction for a spatially-compact, time-harmonic source, assuming no wind conditions.

The analytical solutions are found to be Bessel equations of the First and Second Kind of

order −7
2

expressed in terms of a variable τ =
√

1− Z where Z is a dimensionless height.

To investigate the realistic nature of this model, we devised 3 scenarios to test the model’s

behavior.

The first scenario was termed Model 1 and consisted of a harmonic source placed at

the bottom of a semi-infinite,adiabatic half-space. The resulting pressure function was very

sensitive to the boundary value (B) at Z = 0 and, which, in turn, was critically dependent on

the frequency. The boundary value constant, B, was plotted as a function of the frequency

parameter, fc, and found that relative amplitudes could be predicted based on their positions

on the same curve of this plot (see Figure 3.4). Additionally, it could be seen that the greater

the magnitude of B, then, the steeper the increase in pressure curves from the source P0 (see

Figure 3.3).

The next 2 models were considered two layered media. The first layer was a finite,

adiabatic medium and extended from the ground (z = 0) to a height of 13,000 meters. On

top of this layer was a second, isothermal layer of semi-infinite extent. Although its extent

was infinite, for computational purposes, the point at infinity was set to a height of l=30,000

meters. Model 2 considered a harmonic source at the bottom of the first layer. Model 3

considers a source placed at this interface of two layers.

The results for Model 2 are plotted for frequencies of fc = 2.0, 2.2, and 2.58. These plots

showed similar behavior to Model 1 due to the close nature of these frequencies (see Figure

3.8). The dependence on the ratio of the boundary value constants B
A

were plotted in Figure

3.9. This result showed that the 3 pressure curves remained on the same B
A

curve (see Figure

3.9). Furthermore, it was seen that, whether pressure function proceeding from the source

was below P0 or above it, showed dependence on the sign of B
A

.
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In Model 3, the source was placed on the boundary between the 2 layers. The frequencies

for the pressure curves were the same used for Model 2. Consequently, this showed a close

grouping of the 3 curves. With the source placed on the layer boundaries, the source radiated

simultaneously into the lower and upper layers. The resulting pressure showed less oscillation

than that for Models 1 and 2, and, additionally, showed a continuous pressure decline as one

moved further from the source, in either direction.
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CHAPTER IV

Green’s Functions (GF) and Fast Field Program (FFP)

As seen in the previous chapters, an analytic model for the vertical propagation of time-

harmonic, acoustic waves has been developed. Three model scenarios were studied: 1) Source

at the bottom of a semi-infinite medium, 2) and 3) a finite, adiabatic medium with the source

on the bottom/top overlain by a semi-infinite, isothermal medium. Here, we consider time-

harmonic, point sources located within a finite, non-homogeneous medium. The lower (1st)

layer is represented by a Bessel differential equation of order χ = −7/2 and argument 2Ωτ .

The top (2nd) layer is represented by damped harmonic oscillator ODE. All solutions are

couched in terms of multiples (fc) of the cut-off frequency (Ωc) in the 2nd layer. For a source

within a layer, the solution is derived via the Green’s function method. To this end, the

model equations are solved using a Green’s function technique with validation performed

using a Fast Field Program (FFP) with a source function.

4.1 Model Review

The present model consists of a finite-layered atmosphere at the Earth’s surface topped

by a semi-infinite medium. Propagation equations were derived for both media.

We derived our model from the linearization of Euler’s equations for compressible flow

in an non-homogeneous fluid in Chapter II for a single-frequency source [14]. It was found

that the lower layer solution produced a Bessel’s ODE of the form shown here
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τ 2 d2X

dτ 2
+ τ

dX

dτ
+ (4Ω2τ 2 − χ2)X = 0. (4.1)

The solution for the pressure is given by

P =
X

τχ
, (4.2)

where X satisfies Equation (4.1). Additionally, (4.1) is a Bessel equation of order χ = −7
2

of argument 2Ωτ . The solution for X admits solutions of Bessel’s equation of the First

(Jχ(2Ωτ)) and Second Kind (Yχ(2Ωτ)) in the argument 2Ωτ . Thus a general solution for

the pressure,P, in the lower layer may be written as:

P = A
Jχ(2Ωτ)

τχ
+B

Yχ(2Ωτ)

τχ
, (4.3)

where A and B are constants to be determined from boundary conditions. For clarification,

τ =
√

1− z
l

=
√

1− Z, where l = 30, 000 meters and z is the height above the Earth’s

surface with Z the corresponding dimensionless height with respect to l. Consequently, the

finite layer extends to a height of z = z2, where z2 represents the top of the troposhpere at

13,000 meters and l terminates in the stratosphere.

The solution in the top layer was developed for an atmosphere which had an exponentially

decreasing density with height (z). It was found to be

P = Ce
−α[Z−Z2]

2 cos(α

√
4Ω2

α2 − 1

2
(Z− Z2)), (4.4)

with

α =
γgl

c2
(4.5a)

Ω =
ωl

c
. (4.5b)
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In (4.4), the pressure in the upper layer, P, does not exist until Z = Z2. At this point, α

and Ω are determined by the sound speed c at Z2.

4.2 Green’s Function Introduction

Here we begin the derivation and study of a point-source model. In this part, we con-

centrate solely on the bottom layer which has a point source (in spatial dimension) located

within the layer at an arbitrary location Z = Z1. When solving any ordinary differential

equation (ODE), there are always 2 general solutions: the particular solution and the com-

plementary solution. If the ODE is homogeneous, then there is no particular solution to

be found. However, if there is a source term, it is not homogeneous, and then there will

be a particular solution, if it can be found. One method of finding the particular solution

involves using Green’s functions. This method involves finding the particular solution where

the source term is a Dirac delta function [1] and which is defined here:

δ(x) = 0, x 6= 0 (4.6a)

f(0) =

+∞∫
−∞

f(x)δ(x) dx. (4.6b)

The method usually entails assuming homogeneous boundary conditions at the bottom

and top of layer ”1”. The homogeneous boundary conditions may be Dirichilet, Neumann,

Cauchy, or Robin. The type of boundary condition is not critical, but it is helpful if they

are homogeneous. If there are boundary conditions which are not zero, then these may

be addressed by inclusion of the complementary solution with the appropriate boundary

conditions. One will have the complete solution, when both the particular (Green’s function)

and the complementary solutions are combined.

Proceeding with finding the particular solution, the Green’s function method was a nat-

ural choice due to the inclusion of the point source in the lower layer. The 4 ”boundary”
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conditions which must be solved are readily found in most mathematical physics texts which

cover Green’s functions[1]. These are listed here for easy reference:

G
′

1(Z|Z1)
∣∣∣
Z=0

= 0 (4.7a)

G1(Z|Z1)|Z=Z1
= G2(Z|Z1)|Z=Z1

(4.7b)

G
′

2(Z|Z1)
∣∣∣
Z=Z1

− G
′

1(Z|Z1)
∣∣∣
Z=Z1

=
1

2τ 3
1

(4.7c)

G2(Z|Z1)|Z=Z2
= 0. (4.7d)

The above steps involve separating the layer at the source point (Z = Z1) into a ”top”

(2) and ”bottom” (1) layer where the numbers in parentheses correspond to the subscripts

in the above equations (these now change their meaning as used previously for our 2-layer

problem).

After the Green’s function is found, it must be convolved with a source function in order

to produce the correct solution for the given source distribution. For example, if one has the

source distribution of f(ζ), then the correct solution would be

u(Z) =

b∫
a

G(Z|ζ)f(ζ)dζ (4.8)

where the interval [a,b] includes the source distribution.

However, in the problem posed here, we are using a point source which can be represented

by P0δ(Z1− ζ) where P0 would be the pressure amplitude. Substituting this source in (4.8),

we get

u(Z) =

b∫
a

G(Z|ζ)P0δ(Z1 − ζ)dζ = P0G(Z|Z1) (4.9)

It should be noted that the solution to the Bessel’s equation is not the total solution

for the pressure. To find the pressure, we must form the pressure equation as P = g(Z|Z1)
τχ

.

However, the utility of the Green’s function is that once it is found, then the solution for any
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distributive source function may be easily found by convolving the Green’s function with the

source term.

The details of applying the steps in Equations (4.7a)–(4.7d) to the Bessel’s equation are

carried out in the next section. It should be noted that, as previously, the boundary value

constants depend on the variable Ω. Yet, furthermore, the results also depend on the source

location Z = Z1 as one would expect. Additionally, we emphasize that the solution found

in the next section is the Green’s function solely for the Bessel ODE. The complete solution

still needs to be determined and that will involve the complementary solution as well.

4.3 Particular Solution with Green’s Function and Determining

Boundary Values

As in the previous case for a harmonic source, we now must solve another boundary value

problem for an point source. However, here we must follow the boundary conditions set forth

in finding the Green’s functions. Consequently, we are only concerned with the lower layer,

as the complete solution is found in the main text. Again, we are concerned with Bessel’s

equation as previously derived and restated below:

τ 2 d2G

dτ 2
+ τ

dG

dτ
+ (4Ω2τ 2 − χ2)G = δ(τ(Z)− τ(Z1)) (4.10)

where τ1 = τZ1 indicates the source location. Again, has, as our starting point, the general

solution:

Gh = AJχ

(
2Ω
√

1− Z
)

+BYχ

(
2Ω
√

1− Z
)

(4.11)

where A and B are constants to be determined by boundary conditions and the subscript h

refers to the homogeneous solution of (4.10). The reader is reminded that τ =
√

1− z
l

and

Z = z
l
.

Now, as in the nature of the Green’s function method, we must solve the above equation
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(with different coefficients) in the region below and above the source location. Hence, the

lower layer is split by the location of the source into 2 layers in which Equation (4.11) is

solved in each layer. Thus, we will state here the general boundary conditions which must be

solved to determine constants A, B, C, and D. It should also be recognized that the boundary

conditions at the top and bottom of the 1st layer are chosen to be homogeneous. In order

to solve for the constants A, B, C, and D, 4 boundary conditions are necessary. These are

now restated below in detail with reference to the parameters of the problem such that the

subscript ”1” refers to the layer below the source location and ”2” refers to the layer above

the source location. We’ll refer to the source location as Z = Z1.

Since we will be needing the derivative of G, we will find this expression first. Using the

chain rule on (4.11), we find the derivatives to be:

d

dZ
[Jχ (2Ωτ)] = −Ω

τ
J
′

χ (2Ωτ) (4.12a)

d

dZ
[Yχ (2Ωτ)] = −Ω

τ
Y
′

χ (2Ωτ) (4.12b)

Using the expressions for the Bessel function and its derivatives in Equations (4.7a)–

(4.7d), we have the following substitutions for the Green’s functions:
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1.

{
A(−Ω

τ
)J
′

χ(2Ωτ) + B(−Ω

τ
)Y
′

χ(2Ωτ)

}∣∣∣∣
Z=0

= 0 (4.13a)

2. {AJχ(2Ωτ) + BYχ(2Ωτ)}|Z=Z1

= {CJχ(2Ωτ) + DYχ(2Ωτ)}|Z=Z1

(4.13b)

3.

{
C(−Ω

τ
)J
′

χ(2Ωτ) + D(−Ω

τ
)Y
′

χ(2Ωτ)

}∣∣∣∣
Z=Z1

−
{

A(−Ω

τ
)J
′

χ(2Ωτ) + B(−Ω

τ
)Y
′

χ(2Ωτ)

}∣∣∣∣
Z=Z1

=
1

τ 2

∣∣∣∣
Z=Z1

(4.13c)

4. {CJχ(2Ωτ) + DYχ(2Ωτ)}|Z=Z2
= 0 (4.13d)

Solving (1) above in Equation (4.13a), we find

B = −A
J
′

χ(2Ω)

Y
′

χ(2Ω)
= −A · g (4.14)

where we are using lower case letters to represent the ratio of various quantities. This will

be quite useful later on in effecting a solution as these expressions become more and more

unweilding.

Next we rearrange the terms in (2) in Equation (4.13b) to get

[A− C] = [D− B]
Yχ(Z1)

Jχ(Z1)
(4.15)

Rewriting Equation (4.13c) in (3) above, we have

− [A− C] J
′

χ(Z1) + [D− B] Y
′

χ(Z1) =
−τ

Ωτ 2(Z1)
=

−1

Ωτ(Z1)
(4.16)
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Substituting Equation (4.15) into Equation (4.16), one has

− [D− B]
Yχ(Z1)

Jχ(Z1)
J
′

χ(Z1) + [D− B] Y
′

χ(Z1) =
−1

Ωτ(Z1)
(4.17)

Factoring and multiplying by Jχ(Z1), one has

[D− B]
{
−Yχ(Z1)J

′

χ(Z1) + Y
′

χ(Z1)Jχ(Z1)
}

=
−Jχ(Z1)

Ωτ(Z1)

(4.18)

The term in braces is the Wronskian [W ] of Jχ(Z1) and Yχ(Z1). That is,

W [Jχ(Z1),Yχ(Z1)]

=
{
−Yχ(Z1)J

′

χ(Z1) + Y
′

χ(Z1)Jχ(Z1)
} (4.19)

Thus, Equation (4.18) may be rewritten as

[D− B] =
−Jχ(Z1)

W [Jχ(Z1),Yχ(Z1)] Ωτ(Z1)
= e (4.20)

A similar process may be used with Equations (4.15) and (4.16) to solve for [A − C

resulting in:

[A− C] =
−Yχ(Z1)

W [Jχ(Z1),Yχ(Z1)] Ωτ(Z1)
= f (4.21)

Finally, the last boundary condition in (4) of Equation (4.13d) becomes

D = −C
Jχ(Z2)

Yχ(Z2)
= −C · h (4.22)

Equations (4.14), (4.20), (4.21), and (4.22) now form a reduced system of 4 equations for

the 4 unknowns A, B, C, and D. These can be solved in terms of the lower case variables
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and the results are:

A =

[
e− fh

g− h

]
(4.23a)

B =

[
e− fh

h− g

]
g (4.23b)

C =

[
e− fg

g− h

]
(4.23c)

D =

[
e− fg

h− g

]
h (4.23d)

Below we expand the expressions in Equations (4.23a)–(4.23d) in terms of their repre-

sentative functions. Thus, we have

e =
−Jχ(Z1)

W [Jχ(Z1),Yχ(Z1)] Ωτ(Z1)
(4.24a)

f =
−Yχ(Z1)

W [Jχ(Z1),Yχ(Z1)] Ωτ(Z1)
(4.24b)

g =
J
′

χ(2Ω)

Y
′

χ(2Ω)
(4.24c)

h =
Jχ(Z2)

Yχ(Z2)
(4.24d)

Hence, the constants are found to be:
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A =

−Jχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)

}{
Jχ(Z2)

Yχ(Z2)

}
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]
−
[
Jχ(Z2)

Yχ(Z2)

] (4.25a)

B =


−Jχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)

}{
Jχ(Z2)

Yχ(Z2)

}
[
Jχ(Z2)

Yχ(Z2)

]
−
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]

[

J
′

χ(2Ω)

Y
′

χ(2Ω)

]
(4.25b)

C =

−Jχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1)Yχ(Z1)]Ωτ(Z1)

}{
J
′
χ(2Ω)

Y
′
χ(2Ω)

}
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]
−
[
Jχ(Z2)

Yχ(Z2)

] (4.25c)

D =


−Jχ(Z1)

W[Jχ(Z1)Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)

}{
J
′
χ(2Ω)

Y
′
χ(2Ω)

}
[
Jχ(Z2)

Yχ(Z2)

]
−
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]

[

Jχ(Z2)

Yχ(Z2)

]
(4.25d)

Therefore, our Green’s function solution can now be written as

g(Z|Z1) =


AJχ + BYχ, 0 ≤ Z ≤ Z1

CJχ + DYχ,Z1 ≤ Z ≤ Z2

Or, more compactly written:

g(Z|Z1) =

g1(Z|Z1)

g2(Z|Z1)

 =


A

C

 Jχ(2Ωτ) +

B

D

Yχ(2Ωτ)

 ,
Z ≤ Z1

Z ≥ Z1

 (4.26)

4.4 Green’s Function Examples

Since we have now found the Green’s function solution to our layered medium, it would

prove useful to show what these functions look like. In the following diagrams, we show

the Green’s functions for various cut-off frequency multipliers, fc. The layer, within which

the Green’s function was found, is overlain by a semi-infinite medium represented by an

exponentially decaying density. The solution for this layer has a natural cut-off frequency
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which we term Ωc. Our operating frequency, Ω, is couched in terms of fc through the

relationship Ω = fcΩc. In the plots below, we show the Green’s function results for fc =2.0,

2.2, and 2.25.
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Figure 4.1: Green’s Function Solution for fc = 2.0, 2.2, 2.25

The plots shown above in Figure 4.5 shows the Green’s function for fc = 2.0. The location

of the source is circled by an oval with a red line through the center.

Comparably Figure 4.2 shows a similar plot for the Green’s function for a value of fc = 2.2.

Please note the scale differences between Figure 4.1 and Figure 4.2. Also note that these

functions only extend over the dimensions of the bottom layer. The entire solution for the

2-layer problem will be found by connecting the corresponding pressure functions to the

complementary functions.
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Figure 4.2: Pressure Solution for fc = 2.0, 2.2, 2.25

4.5 Complementary Solution

As with all differential equations, there is usually a particular solution and a comple-

mentary solution. The complementary solution is usually the most frequently encountered

equation as it is homogeneous with regards to a source term. Here, we solve for the com-

plementary solution in the finite, bottom layer. This will require again solving a boundary

value problem in which 3 constants are to be determined. These we name E, F, and H. Here

E and F are the coefficients for the Bessel function of the First and Second Kind which

constitute our Bessel solution and H is the constant for the exponentially damped function

in the top layer. The 3 conditions which will determine the boundary value constants are:

1. Derivative of the Total Pressure at Z=0 is zero.

2. Continuity of Total Pressure at Z = Z2.

3. Continuity of the Derivative of the Total Pressure at Z = Z2.
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As found previously, solutions in the lower medium require Bessel functions of the form:

X = EJχ (2Ωτ) + FYχ (2Ωτ) (4.27)

where E and F are the constants we seek. However, while (4.27) is the Bessel function

solution, it does not represent the full pressure equation. For that we must divide Equation

(4.27) by τχ . So the general pressure solution looks like

PC = E
Jχ(2Ωτ)

τχ
+ F

Yχ(2Ωτ)

τχ
(4.28)

where PC represents the pressure corresponding to the complementary solution.

Following from Equation (4.28), we have

∂PC

∂Z
=
∂τ−χ

∂Z
[EJχ (2Ωτ) + FYχ (2Ωτ)] + τχ

∂

∂Z
[EJχ (2Ωτ) + FYχ (2Ωτ)] (4.29)

In the interest of being clear in the derivation of these constants, we will use the following

abbreviations for the pressure function and its derivatives:

Jτ ≡
Jχ
τχ

(4.30a)

dJτ ≡
∂

dZ
(
Jχ
τχ

) = Jχ
∂

dZ
(

1

τχ
) +

1

τχ
∂Jχ
dZ

(4.30b)

Yτ ≡
Yχ

τχ
(4.30c)

dYτ ≡
∂

dZ
(
Yχ

τχ
) = Yχ

∂

dZ
(

1

τχ
) +

1

τχ
∂Yχ

dZ
(4.30d)

Using this terminology and writing Equations (4.28) and (4.29) in terms of Equations

(4.30a)–(4.30d), we have:

PC = EJτ + FYτ (4.31)
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and

∂

∂Z
(PC) = EdJτ + FdYτ (4.32)

where for convenient reference, the reader is reminded of the definitions below:

d

dZ
(

1

τχ
) =

χ

2

1

τχ+2
(4.33a)

d

dZ
[Jχ (2Ωτ)] = −Ω

τ
J
′

χ (2Ωτ) (4.33b)

d

dZ
[Yχ (2Ωτ)] = −Ω

τ
Y
′

χ (2Ωτ) (4.33c)

Consequently, (4.30b) and (4.30d) can be written using the above equations as

dJτ =
χ

2

1

τχ+2
Jχ(2Ωτ)− Ω

τχ+1
J
′

χ (2Ωτ) (4.34a)

dYτ =
χ

2

1

τχ+2
Yχ(2Ωτ)− Ω

τχ+1
Y
′

χ (2Ωτ) (4.34b)

It should be noted that the complementary solution cannot be found on its own merit

from the conditions listed previously. In particular, the 2nd condition is not complete. That

is, one does not have a value for the pressure at Z2 for the complementary equation. To

remedy this shortcoming, one must consider the total pressure when considering conditions

2 and 3 above. The total pressure consists of the particular solution plus the complementary

function. In our case, the particular solution is the Green’s function found previously. The

Green’s functions, or more appropriately the pressure function formed from the Green’s

functions, completes the conditions that are needed to find the complementary solution. To

write this more clearly, we write the total pressure as

PT = PG + PC (4.35)

where Pt is the total pressure, PG is the pressure derived from the Green’s Function, and Pc
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is the complementary pressure function as shown in (4.31).

We have already found the Green’s function G, however, we will need the pressure Green’s

function, PG, and the derivative of the pressure Green’s function, ∂
∂Z

(PG). These can be

derived as follows:

PG =
G

τχ
(4.36)

Applying the first boundary condition above to (4.32), one can write

{
∂

∂Z
(Pt)

}∣∣∣∣
Z=0

=

{
∂

∂Z
(PG) +

∂

∂Z
(Pc)

}∣∣∣∣
Z=0

=

{
∂

∂Z
(

g

τχ
)

}∣∣∣∣
Z=0

+ {EdJτ (2Ωτ) + FdYτ (2Ωτ)}|Z=0 = 0

(4.37)

In order to proceed, we need to find ∂
∂Z

( G
τχ

). Thus,

∂

∂Z
(

G

τχ
) = τ−χ

∂G

∂Z
+ G

∂

∂Z
(τ−χ). (4.38)

For future use, we need to evaluate (4.38) at Z = 0 and for Z = Z2. For Z = 0, we have

{
∂

∂Z
(

G

τχ
)

}∣∣∣∣
Z=0

=

τ−χ����7
0

∂G

∂Z


∣∣∣∣∣∣∣
Z=0

+

{
G
∂

∂Z
(τ−χ)

}∣∣∣∣
Z=0

(4.39)

or, with the aid of (4.33a) and (4.26), we have

{
∂

∂Z
(
G1

τχ
)

}∣∣∣∣
Z=0

=

{
χ

2

G1

τχ+2

}∣∣∣∣
Z=0

(4.40)

Similarly, for Z = Z2 and again using (4.26), we have

{
∂

∂Z
(
G2

τχ
)

}∣∣∣∣
Z=Z2

=

{
τ−χ

∂G2

∂Z

}∣∣∣∣
Z=Z2

+

{
∂

∂Z
(τ−χ)��>

0
G2

}∣∣∣∣
Z=Z2

. (4.41)
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Thus, we now have for Z = Z2

∂

∂Z
(

G

τχ
) =

{
τ−χ

∂G2

∂Z

}∣∣∣∣
Z=Z2

. (4.42)

Using (4.26), (4.30b), (4.30d), (4.34a),(4.34b) , (4.42) may be written as

{
τ−χ

∂G2

∂Z

}∣∣∣∣
Z=Z2

= C

{
− Ω

τχ+1
J
′

χ (2Ωτ)

}∣∣∣∣
Z=Z2

+ D

{
− Ω

τχ+1
Y
′

χ (2Ωτ)

}∣∣∣∣
Z=Z2

. (4.43)

Now that we have obtained expressions for the pressure Green’s functions at the bound-

aries, we can form the boundary value equations in order to find the unknown constants E,

F, and H. Starting with the lower boundary condition at Z =0 and using (4.40) in (4.37), we

have

{
∂

∂Z
(PT)

}∣∣∣∣
Z=0

=

{
χ

2

G

τχ+2

}∣∣∣∣
Z=0

+ {EdJτ (2Ωτ) + FdYτ (2Ωτ)}|Z=0 = 0. (4.44)

Next we substitute G1 from (4.26) for the Green’s function G in (4.44) and obtain

{
∂

∂Z
(PT)

}∣∣∣∣
Z=0

=

{
χ

2

AJχ(2Ωτ) + BYχ(2Ωτ)

τχ+2

}∣∣∣∣
Z=0

+ {EdJτ + FdYτ}|Z=0 = 0. (4.45)

Expanding the other terms using (4.34), we have

{
∂

∂Z
(PT)

}∣∣∣∣
Z=0

=

{
χ

2

AJχ(2Ωτ) + BYχ(2Ωτ)

τχ+2

}∣∣∣∣
Z=0

+ E

{
χ

2

1

τχ+2
Jχ(2Ωτ)− Ω

τχ+1
J
′

χ (2Ωτ)

}∣∣∣∣
Z=0

+ F

{
χ

2

1

τχ+2
Yχ(2Ωτ)− Ω

τχ+1
Y
′

χ (2Ωτ)

}∣∣∣∣
Z=0

= 0.

(4.46)
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At Z = 0, τ = 1. Therefore, (4.57) reduces to

{
∂

∂Z
(PT)

}∣∣∣∣
Z=0

=
χ

2
{AJχ(2Ω) + BYχ(2Ω)}

+ E
{χ

2
Jχ(2Ω)− ΩJ

′

χ (2Ω)
}

+ F
{χ

2
Yχ(2Ω)− ΩY

′

χ (2Ω)
}

= 0.

(4.47)

For easier manipulation, we can rename the various terms above as

a1 =
χ

2
{AJχ(2Ω) + BYχ(2Ω)} (4.48a)

e1 =
{χ

2
Jχ(2Ω)− ΩJ

′

χ (2Ω)
}

(4.48b)

f1 =
{χ

2
Yχ(2Ω)− ΩY

′

χ (2Ω)
}

(4.48c)

and solve for E as

E = −{f1F + a1}
e1

(4.49)

which in longer form is

E = −
F
{
χ
2
Yχ(2Ω)− ΩY

′

χ (2Ω)
}

+ χ
2
{AJχ(2Ω) + BYχ(2Ω)}{

χ
2
Jχ(2Ω)− ΩJ

′

χ (2Ω)
} . (4.50)

This equation relates the coefficients E and F.

Next, we apply the 2nd condition above for the total pressure at Z = Z2. This can be

expressed generically as

PT|Z=Z2
= �

�>
0

PG

∣∣∣∣
Z=Z2

+ PC|Z=Z2
(4.51)

Here we see that the pressure term from the Green’s function is 0 as this was the other

homogeneous condition that was used in finding the Green’s function coefficients. Hence, we
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are left with the following equation for the continuity of pressure at Z2:

EJτ |Z=Z2
+ F dYτ |Z=Z2

= H (4.52)

where the equation in the top layer at Z = Z2 (Appendix D, (C.4)) evaluates to H. Expanding

(4.52), we find

E
Jχ(2Ωτ2)

τχ2
+ F

Yχ(2Ωτ2)

τχ2
= H (4.53)

Again, renaming the terms in (4.53) as

e2 =
Jχ(2Ωτ2)

τχ2
(4.54a)

f2 =
Yχ(2Ωτ2)

τχ2
(4.54b)

This allows us to express (4.53) in simple form as

e2E + f2F = H (4.55)

Finally, from the 3rd condition above (which expresses the continuity of the derivative of

the total pressure), we have

∂PT

∂Z

∣∣∣∣
Z=Z2

=
∂PG

∂Z

∣∣∣∣
Z=Z2

+
∂PC

∂Z

∣∣∣∣
Z=Z2

= −α
2

H (4.56)

where again we evaluated the expression for the top layer at Z = Z2.

Substituting for the various derivatives in (4.56), we have
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{
∂

∂Z
(PT)

}∣∣∣∣
Z=Z2

= C

{
− Ω

τχ+1
J
′

χ (2Ωτ)

}∣∣∣∣
Z=Z2

+ D

{
− Ω

τχ+1
Y
′

χ (2Ωτ)

}∣∣∣∣
Z=Z2

+ E

{
χ

2

1

τχ+2
Jχ(2Ωτ)− Ω

τχ+1
J
′

χ (2Ωτ)

}∣∣∣∣
Z=Z2

+ F

{
χ

2

1

τχ+2
Yχ(2Ωτ)− Ω

τχ+1
Y
′

χ (2Ωτ)

}∣∣∣∣
Z=Z2

= −α
2

H.

(4.57)

or, evaluating the expression at Z = Z2, one gets

{
∂

∂Z
(PT)

}∣∣∣∣
Z=Z2

= C

{
− Ω

τχ+1
2

J
′

χ (2Ωτ2)

}
+ D

{
− Ω

τχ+1
2

Y
′

χ (2Ωτ2)

}
+ E

{
χ

2

1

τχ+2
2

Jχ(2Ωτ2)− Ω

τχ+1
2

J
′

χ (2Ωτ2)

}
+ F

{
χ

2

1

τχ+2
2

Yχ(2Ωτ2)− Ω

τχ+1
2

Y
′

χ (2Ωτ2)

}
= −α

2
H.

(4.58)

Again, renaming the terms in (4.58), we have

a3 = C

{
− Ω

τχ+1
2

J
′

χ (2Ωτ2)

}
+ D

{
− Ω

τχ+1
2

Y
′

χ (2Ωτ2)

}
(4.59a)

e3 =

{
χ

2

1

τχ+2
2

Jχ(2Ωτ2)− Ω

τχ+1
2

J
′

χ (2Ωτ2)

}
(4.59b)

f3 =

{
χ

2

1

τχ+2
2

Yχ(2Ωτ2)− Ω

τχ+1
2

Y
′

χ (2Ωτ2)

}
(4.59c)

allowing one to rewrite (4.58) as

a3 + e3E + f3F = −α
2

H (4.60)

Multiplying (4.55) by α
2

and adding it to (4.60), we have

α

2
{e2E + f2F}+ a3 + e3E + f3F = 0 (4.61)
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Collecting common terms of E and F, one can write

E
{

e2
α

2
+ e3

}
+ F

{
f2
α

2
+ f3

}
+ a3 = 0 (4.62)

Using E from (4.49) in (4.62), we have

−{f1F + a1}
e1

{
e2
α

2
+ e3

}
+ F

{
f2
α

2
+ f3

}
+ a3 = 0 (4.63)

One can now find F as

F =
a1
e1

{
e2

α
2

+ e3

}
− a3{

− f1
e1

{
e2

α
2

+ e3

}
+
{

f2
α
2

+ f3
}} (4.64)

Additionally, F may be substituted in (4.49) to find E and, then, use (4.55) to find H.

Thus, all constants are found.

Now that E and F are found, H is easily found from (4.52) which is repeated here for

convenience:

H = EJτ |Z=Z2
+ F dYτ |Z=Z2

. (4.65)

All of the constants are now known for PG and Pc, hence, the total pressure function, Pt

can be calculated and studied. Below in Figure 4.3 is shown an example of the complementary

functions for fc = 2.0, 2.2, and 2.25.

4.6 Development of General Fast Field Program

In order to validate the outcome of our computations for a Green’s function model, it

is necessary to establish some form of verification. To this end, we use the model output

from the results of a general Fast Field Program (FFP) calculation for comparison. The

FFP is a well established model [4] and is particularly accurate for vertical propagation (but

not wide-angle types of propagation). An interesting outline of this model can be found
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Figure 4.3: Complementary Solution for fc=2.0, 2.2, 2.25

in Computational Atmospheric Acoustics [14]. Since it is well established, it can offer some

verification of the results. A brief derivation of the model is given below.
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Figure 4.4: Layered Medium for FFP

Figure 4.4 depicts how a medium is divided into various layers for the FFP. In each of

the layers shown, the layers are small enough to assume that the wave number, k, within

the layer is a constant. For a layer with constant k, one may use the Helmhotz equation

to represent a plane wave travelling within the medium. Hence, the idea of the FFP is to

approximate a traveling wave within a medium by plane waves propagating within finite

layers such that each layer has a constant sound speed. This reduces the problem to solving

a 1-D wave equation within a layer for a fixed, angular frequency ω and a source represented

by −Sδδ(z− zs). In other words, one solves the wave equation

∇2Pj(zj, t)−
1

c2
j

∂2

∂t2
Pj(zj, t) = −Sδδ(z− zs)e

−iωt (4.66)
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where j is the index of the jth interface/layer. Additionally, zs is the source location. For the

homogeneous wave equation part of (4.66), one assumes a solution

Pj(z, t) = Pj(z)e−iωt (4.67)

which leads to the Helmholtz equation (after canceling the time-harmonic part)

Pj(zj) = ∇2Pj(zj) + k2
jPj(zj) = 0 (4.68)

where kj = ω
cj

This admits of 2 solutions: an upward-going wave and a downward-going wave (AB and

B coefficients, respectively below (4.69)):

Pj(zj) = Aje
ikjzj + Bje

−ikjzj . (4.69)

Note we have assumed that interface/layer j is not located at z = zs, the source layer.

The issue of how to handle the source location, zs, will be discussed later in this work.

Given an initial set of coefficients at the bottom and top of the layered medium, one could

then solve for the boundary conditions (Aj and Bj) at the jth interface as one progresses from

the bottom to the source and from the top to the source. This would require matching the

boundary conditions at each interface/layer. These conditions consist of the continuity of

pressure and normal velocity across an interface which does not contain the source. For the

source layer, the condition is the continuity of pressure across the interface and discontinuity

of normal velocity across the interface is −Sδ. Since the normal velocity is required for the

boundary condition matching, this is retrieved from [18] (Eq. 3b) and [14] (Eq. E.21) where

gravity is neglected in each case. This leads to the equation for velocity as

W = −iω−1%−1
av P

′
(4.70)

where W is the velocity in the z-direction. Now, one can frame the above boundary condi-
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tions as follows:

Pj(zj) = Pj−1(zj), j = 1, 2, ...N (4.71a)

−iω−1
j %−1

j

∂Pj(zj)

∂z
= −iω−1

j−1%
−1
j−1

∂Pj−1(zj−1)

∂z
, j = 2, ...N (4.71b)

∂Pj(zj)

∂z
=
∂Pj−1(zj−1)

∂z
− Sδ, j = s (4.71c)

%−1
1

∂P1(z1)

∂z
= %−1

0

∂P0(z0)

∂z
, j = 1 (4.71d)

One could follow the above process and solve for constants Aj and Bj at each interface

and, then, find the pressure, Pj and its corresponding derivative. However, there is a simpler

way which leads to a recursive relation between the pressure and its derivative. We show

this below.

Consider the equation for the pressure in the jth layer

Pj(zj) = Aje
ikjzj + Bje

−ikjzj . (4.72)

Its derivative is

P
′

j(zj) = ikjAje
ikjzj − ikjBje

−kjzj . (4.73)

Now, if we want to find the pressure at Pj(zj +4zj), we can write

Pj(zj +4zj) = Aje
ikj(zj+4zj) + Bje

−ikj(zj+4zj). (4.74)

Using Euler’s identity, one can expand (4.74) in terms of sine and cosine functions

Pj(zj +4zj) = Aj [cos {kj(zj +4zj)}+ isin {kj(zj +4zj}]

+Bj [cos {kj(zj +4zj)}+ isin {kj(zj +4zj}] .
(4.75)

Using trignometric identities for the sine and cosine of the sum of two arguments, (4.75)
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can be expanded further as

Pj(zj +4zj) = Aj {{cos(kjzj)cos(kj4zj)− sin(kjzj)sin(kj4zj)}}

+Aj {i {sin(kjzj)cos(kj4zj) + cos(kjzj)sin(kj4zj)}}

+Bj {cos(kjzj)cos(kj4zj)− sin(kjzj)sin(kj4zj)}

−Bj {i {sin(kjzj)cos(kj4zj) + cos(kjzj)sin(kj4zj)}} .

(4.76)

Collecting various sine and cosine terms in the anticipation of forming different exponen-

tial functions, we have

Pj(zj +4zj) = Aj [{cos(kjzj) + isin(kjzj)} cos(kj4zj)]

+Aj [i {cos(kjzj) + isin(kjzj)} sin(kj4zj)]

+Bj [{cos(kjzj)− isin(kjzj)} cos(kj4zj)]

−Bj [i {cos(kjzj)− isin(kjzj)} sin(kj4zj)] .

(4.77)

Recombining the terms in braces () into exponential functions, we obtain

Pj(zj +4zj) = Aj

[{
e(ikjzj)

}
cos(kj4zj) + i

{
e(ikjzj)

}
sin(kj4zj)

]
+Bj

[{
e−(ikjzj)

}
cos(kj4zj)− i

{
e−(ikjzj)

}
sin(kj4zj)

]
.

(4.78)

Now, combining sine and cosine terms, one has

Pj(zj +4zj) =
[
Aj

{
e(ikjzj)

}
cos(kj4zj) + Bj

{
e−(ikjzj)

}
cos(kj4zj)

]
+
[
iAj

{
e(ikjzj)

}
sin(kj4zj) + iBj

{
e−(ikjzj)

}
sin(kj4zj)

]
.

(4.79)

This can now be factored and reduced to

62



Pj(zj +4zj) =
[
Aje

(ikjzj) + Bje
−(ikjzj)

]
cos(kj4zj)

+
ikj
kj

[
Aje

(ikjzj) − Bje
−(ikjzj)

]
sin(kj4zj).

(4.80)

Identifying the first set of square brackets in (4.80) as Pj from (4.72), and the second set

of square brackets as P
′

j from (4.73), we have

Pj(zj +4zj) = Pj(zj)cos(kj4zj) + P
′

j

1

kj
sin(kj4zj). (4.81)

A similar derivation can be performed for P
′

j(zj +4zj). Here, we start with

P
′

j(zj) = ikjAje
ikjzj − ikjBje

−kjzj . (4.82)

Distributing the exponents of the exponentials as before and writing everything in terms

of sines and cosines, one has

P
′

j(zj +4zj) = ikjAj {cos(kjzj)cos(kj4zj)− sin(kjzj)sin(kj4zj)}

+ikjAj [i {sin(kjzj)cos(kj4zj) + cos(kjzj)sin(kj4zj)}]

−ikjBj {cos(kjzj)cos(kj4zj)− sin(kjzj)sin(kj4zj)}

−ikjBj [−i {sin(kjzj)cos(kj4zj) + cos(kjzj)sin(kj4zj)}] .

(4.83)

Again, forming exponential functions common to the cos(kj4zj) and sin(kj4zj) terms,

we can write

P
′

j(zj +4zj) = ikjAj

[{
e(ikjzj)

}
cos(kj4zj) + i

{
e(ikjzj)

}
sin(kj4zj)

]
−ikjBj

[{
e−(ikjzj)

}
cos(kj4zj)− i

{
e−(ikjzj)

}
sin(kj4zj)

]
.

(4.84)
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After factoring terms common to the sine and cosine functions, we have

P
′

j(zj +4zj)

= ikj
[
Aje

(ikjzj) − Bje
−(ikjzj)

]
cos(kj4zj)

+ ikj
[
iAje

(ikjzj) + iBje
−(ikjzj)

]
sin(kj4zj).

(4.85)

Multiplying the 2nd bracket ([]) through by i, one can again see that the 1st bracket

gives P
′

j(kjzj) and the 2nd bracket gives Pj(kjzj). Hence, the equation for the derivative of

P becomes

P
′

j(zj +4zj) = P
′

j(zj)cos(kj4zj)− kjPj(zj)sin(kj4zj). (4.86)

Now that we have obtained a set of recursive equations ((4.81) and (4.86)), there remains

the fact that these equations are only correct for the ratio
P
′
j(zj)

Pj(zj)
. To see this, one needs to

examine the boundary conditions under which this model was developed.

As part of this development, reference [14] specifies some very useful boundary conditions

on the bottom and top parts of the layer. On the bottom layer, let B1 = 1 in (4.72) and

(4.73) and the following boundary value equations are found:

P1(z1) = R(kz1) + 1 (4.87)

and

P
′

1(z1) = ikz1[R(kz1)− 1] (4.88)

where R(kz1) is the reflection coefficient at the bottom of layer 1, and kz1 is the corresponding

wave number.

Similarly, another set of boundary conditions is found with the specification that BN−1

= 0 and PN−1(zN)=1 at the top layer.
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Applying these conditions to (4.69), we have

PN−1(zN) = 1 = AN−1e
ikzN (zN ). (4.89)

Doing the same for (4.73), we have

P
′

N−1(zN−1) = ikzNAN−1e
ikzN zN . (4.90)

Note that by setting PN−1(zN) = 1 allows one to determine AN−1e
ikzN (zN ) = 1. This in

turn allows P
′

N−1(zN−1) to be found as ikzN . Or, stated another way, without AN−1e
ikzN zN

being known, the ratio
P
′
N−1(zN−1)

PN−1(zN )
is correct. That is,

P
′

N−1(zN−1)

PN−1(zN)
=

ikzNAN−1e
ikzN zN

AN−1eikzN zN
=

ikzN
1
. (4.91)

.

Consequently, all the ratios along the layer interfaces as calculated are correct. And,

(4.71c) gives one a manner to arrive at the correct P and P
′
. Namely, by starting at first

layer and proceeding upwards to the source as well as starting at the top layer and working

down to the source, we find that (4.71c) must be satisfied at the source.[14] This leads to

the relationship

(
P
′

nu

Pnu

)
Ps −

(
P
′

nl

Pnl

)
Ps = −Sδ, (4.92)

where n represents the layer and l and u refer to whether one is in the bottom layer (l)

moving upwards, or in the top layer (u) moving downwards. From (4.92), the source value

Ps may be determined as

Ps =
−Sδ(

P
′
nu

Pnu

)
−
(

P
′
nl

Pnl

) . (4.93)

Now that the source value Ps is found, one can scale all the values Pn by multiplying as
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below:

Ps

Pnu

, for zj > zs,

Ps

Pnl

, for zj < zs.

(4.94)

This allows one to find the proper pressure values in all the layers. This completes the

development of the FFP model. We now turn to its use in our model comparisons.

4.7 Application of FFP to GF Solutions

4.7.1 Example Results for Green’s Functions

Since we are concerned with the pressure field within a finite layer due to a source, it

is reasonable to compare the results for the GF and FFP models.. To this end, several

plots show the results of applying the two models for the same conditions by overplotting

one on the other. Since the GF model is calculated for a δ-function source term, the 2

curves (GF and FFP) are self-normalized to a value of 1 at their source location. They are

then over-plotted on each other, such that their source values match at the source location.

The outcome is that we are comparing relative pressures in order to achieve an accurate

comparison. Below we show 3 examples of these comparisons.

In the figures, the domain of the abscissa is expressed in dimensionless coordinates such

that the function extends only to the top of the finite layer as required. A small circle on all

of the diagrams indicates the source location. And, the solutions are discontinuous at the

source as dictated by the ”step” discontinuity for the boundary conditions.

Figure 4.5 shows the comparison for fc = 2.0 with a source location at Z = 0.265. There

is very good agreement between the FFP and GF from the top of the layer (Z = 0.43) until

approximately Z =0.1. An explanation for this is that exact boundary condition matches

between the 2 methods is not always easy to achieve. One issue that arises is that the FFP

formulation is framed in complex notation which has boundary conditions on the derivative
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of the pressure being imaginary. The GF method yields a completely real result.
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Figure 4.5: Comparison of GF (solid line) and FFP (dash line) Solutions for fc = 2.0,
Z1=0.265

In figure 4.6, there is another example showing the results between the GF and FFP

methods. This comparison corresponds to a value of fc = 2.2 and a source location of

Z = 0.086. Again, there seems to be reasonable agreement between the 2 curves except at

the lower locations, Z < 0.05. As before, the discontinuity at the source is observed as well

as the GF becoming zero (0) at the top of the layer and the FFP slope at Z =0 as required

by the boundary conditions.
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Figure 4.6: Comparison of GF (solid line) and FFP (dash line) Solutions for fc = 2.2,
Z1=0.086

The final plot in figure 4.7 shows once again a fair comparison between the 2 methods.

That is, one observes the discontinuity at the source, as well as, a value of zero (0) for the

Green’s function at the top. Additionally, the slope of the FFP at Z = 0 is zero (0) satisfying

its boundary condition. Despite meeting these criteria, there still exists a divergence of the

solutions at Z < 0.05. Nevertheless, these results are highly encouraging considering that

they were achieved by 2 very different, diverse methods.
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Figure 4.7: Comparison of GF (solid line) and FFP (dash line) Solutions for fc = 2.4,
Z1=0.2236

4.8 Discussion

Generally, the results shown are of great interest. The reason for this is that we have

started from 2 diverse, theoretical origins and shown that they are for most purposes equiv-

alent. That is, the new model (previously developed) began with the linearization of the

Continuity, Momentum, and Adiabatic equations in order to derive an expression for a ver-

tically, propagating wave in a non-homogeneous, layered atmosphere. This was represented

by a linear combination of Bessel functions of the First and Second Kind of order −7
2

with

argument 2Ωτ where Ω is a dimensionless frequency and τ is a dimensionless distance. Based

upon this model, a Green’s function solution was found for a source arbitrarily located within

the finite layer in which the wave propagated. Next, a completely different model was used

(FFP) which emulated the solution to the Helmholtz equation in various layers of the non-

homogeneous atmosphere. This, of course, resulted in the propagation of plane waves within
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the multiple layers and was solved by matching the boundary conditions at each layer. De-

spite the diverse beginnings of these models, they were both aimed at capturing the vertical

propagation of sound in the atmosphere. With the reasonable corroboration between the

models, it seems that this study was successful in creating, developing, and applying a novel,

unique model for vertical propagation in a layered, non-homogeneous atmosphere.
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CHAPTER V

Conclusion and Remarks

5.1 Summary and Conclusions

The results of the foregoing study are as follows:

1. From the seminal Euler equations for fluid flow, model differential equations were

derived for the vertical propagation of sound in a layered, non-homogeneous media.

2. Atmosphere was modeled as combination of layered adiabatic and isothermal regions.

The density and pressure profiles show a decrease in values as a function of height in the

adiabatic regions. The sound speed decreases as well as a function of height in this region.

However, density and pressure variation is exponential for an isothermal atmosphere and the

sound speed remains constant in this region.

3. It was found that the model equation for an adiabatic atmosphere was a Bessel equation

of order −7
2
. The corresponding solutions are Bessel functions of the First and Second Kind.

The argument for these functions is found to be 2Ωτ where Ω is a dimensionless frequency

variable and τ is a dimensionless height variable.

4. The differential equation representing the isothermal region corresponds to that of a

damped, harmonic oscillator.

5. The atmosphere is modeled as a combinations of adiabatic and isothermal regions.

The system response is investigated by placing a low-frequency, time-harmonic sound source

at various locations: a) at the layer boundaries and b) within the lower, adiabatic layer.
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6. Source on a layered boundary was modeled as a boundary value problem.

7. Source within the adiabatic, lower layer was modeled using the Green’s function

method.

8. In order to test the validity of the GF method, a Fast Field Program (FFP) was

implemented to represent the true propagation of plane waves within a mult-layered medium.

9. Matching of the GF and FFP functions were performed through self-normalization

with the respective source values and, then, over-plotted on each other. Agreement was

generally good, however, there was some divergence of the curves at the lower, dimensionless

height of Z ¡ 0.05.

10. The phase velocity rekated to a combination of Bessel functions (Hankel functions)

was derived analytically.

In summary, this work allows one to investigate the pressure signatures of a realistic, 2-

layered, atmosphere for sources placed at various, arbitrary locations. Since the response for a

point sources were studied, the results due to more complex signals may be analyzed utilizing

the principle of superposition. Due to the very low frequencies of these signatures, they fall

into the category of the low infrasound regime. Hence, remote sensing of the atmosphere may

be accomplished to great heights. This is useful in detecting large object in the atmosphere.

In particular, such sensing can be used in detecting meteors interacting with the atmosphere

in an explosive manner. Additionally, multiple detections could be used to pinpoint impact

zones using triangulation. Use of these pressure signals are able to predict the effect that the

layered atmosphere will have on such predictions. Additionallly, the model could be used

to remotely sense the ground impedance as well as upper-level turbulence layers. This work

can be extended to investigate the role of wind speed on acoustic propagation. Furthermore,

extended sources can be an interesting topic of investigation.
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APPENDIX A

Detailed Model Derivation for Pressure Equation

A.1 Detailed Model Derivation for Pressure Equation

This appendix provides a more detailed development of the model used in this work.

A coarser rendition of the model development is given in Chapter 2. Proceeding from the

three Euler equations stated in the introduction, we derive the requisite model. The 3 Euler

equations are restated here for convenience.

0 = (D%/Dt)− %∇ · u Mass Conservation Equation (A.1a)

%(Du/Dt) = −∇p+ %b Momentum Conservation Equation (A.1b)

Dp/Dt = c2(D%/Dt)(Dη/Dt = 0) Equation of State (A.1c)

We begin the derivation with the linearization of the above equations. In order to do

this, one needs to express the total pressure, density, and velocity as a sum of an ambient

quantity plus a perturbed value. Ambient functions are represented by the subscript av

and the perturbed value has no subscript. Additionally, the complete (total) quantity is

represented by the subscript a. Hence, the following equations represent the definitions of

the total pressure, pa, total density, %a, and the fluid velocity (wind) vector,va:
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pa = pav(z) + p Linearized Pressure (A.2a)

%a = %av(z) + % Linearized Density (A.2b)

va = (uav(z) + u, vav(z) + v,w) Linearized Velocity (A.2c)

In the above equations, the functions identified with the subscript ”av” are functions of

the vertical z-component only. While the 2nd variable in each equation is a function of all 3

Cartesian components. These components represent the acoustic disturbances in pressure,

density, and velocity. Substituting the above equations in the Mass Conservation equation

and expanding the Material Derivative, one has:

∂(%av(z) + %)

∂t
+ ((uav(z) + u)i, (vav(z) + v)j,wk) · ∇(%av(z) + %)

= −(%av(z) + %)∇ · (uav(z) + u)i, (vav(z) + v)j,wk). (A.3)

One can now expand the ∇ operator to get:

∂(%av(z) + %)

∂t
+((uav(z)+u)i, (vav(z)+v)j,wk)·(∂(%av(z) + %)

∂x
i+
∂(%av(z) + %)

∂y
j+
∂(%av(z) + %)

∂z
k)

= −(%av(z) + %)(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k) · (uav(z) + u)i, (vav(z) + v)j,wk). (A.4)

Expanding the equation above based on the indicated operations, one has

∂%av(z)

∂t
+
∂%

∂t
+ (uav(z) + u)

∂(%av(z) + %)

∂x
+ (vav(z) + v)

∂(%av(z) + %)

∂y
+ w

∂(%av(z) + %)

∂z

= −(%av(z) + %)(
∂(uav(z) + u)

∂x
+
∂(vav(z) + v)

∂y
+
∂w

∂z
). (A.5)

75



It is helpful to complete the expansion in order to see more clearly which terms are

non-linear and, ultimately, to obtain the total linearized version.

∂%av(z)

∂t
+
∂%

∂t
+ uav(z)

∂%av(z)

∂x
+ u

∂%av(z)

∂x
+ uav(z)

∂%

∂x
+ u

∂%

∂x
+

vav(z)
∂%av(z)

∂y
+ v

∂%av(z)

∂y
+ vav(z)

∂%

∂y
+ v

∂%

∂y
+ w

∂%av(z)

∂z
+ w

∂%

∂z

=− [%av(z)
∂u

∂x
+ %

∂u

∂x
+ %av(z)

∂uav
∂x

+ %
∂uav
∂x

%av(z)
∂vav(z)

∂y
+ %

∂vav(z)

∂y
+ %av(z)

∂v

∂y
+ %

∂v

∂y
+ %av(z)

∂w

∂z
+ %

∂w

∂z
]

(A.6)

Now the terms which cannot be differentiated with respect to its variable are eliminated.

The functions are

∂%av(z)

∂t
= uav(z)

∂%av(z)

∂x
= u

∂%av(z)

∂x
= vav(z)

∂%av(z)

∂y
= 0 (A.7)

v
∂%av(z)

∂y
= %av(z)

∂uav
∂x

= %
∂uav
∂x

= %avz)
∂vav(z)

∂y
= %

∂vav(z)

∂y
= 0. (A.8)

And, finally, terms which are of 2nd order are dropped. These terms are:

u
∂%

∂x
,w
∂%

∂z
, %
∂w

∂z
. (A.9)

The remaining terms result in the following equation:

∂%

∂t
+ uav(z)

∂%

∂x
+ vav(z)

∂%

∂y
+ w

∂%av(z)

∂z
+ %av(z)[

∂u

∂x
+
∂v

∂y
+
∂w

∂z
] = 0. (A.10)

Next, our attention is turned to the Conservation of Momentum Equation (2.2). A similar

process of linearization can be conducted, the details of which are omitted here. However,

it should be noted that Eqn. 2.2 is a vector equation, thus resulting in an equation for each

vector component i, j, and k. The three equations are:
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î :
∂u

∂t
+ uav(z)

∂u

∂x
+ vav(z)

∂u

∂y
+ w

∂uav(z)

∂z
+

1

%av(z)

∂p

∂x
= 0 (A.11)

ĵ :
∂v

∂t
+ uav(z)

∂v

∂x
+ vav(z)

∂v

∂y
+ w

∂vav(z)

∂z
+

1

%av(z)

∂p

∂y
= 0 (A.12)

k̂ :
∂w

∂t
+ uav(z)

∂w

∂x
+ vav(z)

∂w

∂y
+

1

%av(z)

∂p

∂z
+

%

%av(z)
∗ g = 0. (A.13)

As Lamb [10] assumes (and Soloman[14] uses) the fact that the variation in pressure and

densisty from equilibrium values are connected by the adiabatic relation:

Dpa/Dt = c2(D%a/Dt). (A.14)

Using the definition of the Material Derivative and expanding the total pressure and density

in terms of its components, one has

∂p

∂t
+ va · ∇pa = c2(

∂%

∂t
+ va · ∇pa). (A.15)

Expanding this equation and retaining only terms of 1st order, we get [14]:

∂p

∂t
+ uav(z)

∂p

∂x
+ vav(z)

∂p

∂y
+ w

∂pav(z)

∂z
= c2(

∂%

∂t
+ uav(z)

∂%

∂x
+ vav(z)

∂%

∂y
+ w

∂%av(z)

∂z
). (A.16)

Finally, Equations (A.10)–(A.13) with Equation (A.16) form a set of 5 simultaneous

differential equations which can be solved for the five variables %, p, u, v, and w. However,

our model is developed for a windless condition (no fluid flow). This necessitates that the

velocity in the x- and y-directions be set to zero. By doing so, two (2) of the five (5) equations

are eliminated and we are now left with only 3 equations to solve. These are equations in the

fluctuation variables %, p, and w. The remaining equations are (A.10), (A.13), and (A.16).

In order to put these 3 equations into more tractable form, we write their variables with

an explicit, time-harmonic component. This allows one to separate the original, lowercase
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variable into an uppercase, spatial part and a time-harmonic part. This is shown here:

p→ Pe−iωt

%→ ΩDe−iωt

w→We−iωt

With the above transformed variables substituted into the 3 equations, one arrives at

the 3 algebraic equations below. Please observe that the −iω terms arise due to the time

derivatives of the harmonic part in all 3 equations. Thus, our new equations are

-iωΩD + %
′

avW + %avW
′
= 0 (A.17a)

-iωW + %−1
av P

′
+ g%−1

av ΩD = 0 (A.17b)

-iωP− %avgW = -iωc2ΩD + c2%
′

avW. (A.17c)

These equations contain derivatives, but our notation allows us to write them in an

algebraic form which can be solved simultaneously. Once solved, we obtain a 2nd order,

differential equation in P. Thus, we commence solving Equations (A.17a)–(A.17c) for the

pressure, P.

Rearranging Equation (A.17c), we can obtain an expression for Ω in terms of W and P.

This expression can then be used in Equation (A.17b) to arrive at an equation in terms of

P, P
′
, and W. This is shown here:

−iωW + %−1
av P

′
+ g

%−1
av

c2
(P +

1

iω
(%avg + c2%

′

av)W) = 0 (A.18)

Rearranging terms in Equation (A.18), one can write W in terms of P and P
′

where

W =
%−1
av P

′
+ g%−1

av

c2
P

(iω − g%
−1
av

c2
1
iω

(%avg + c2%′av))
. (A.19)
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Having found W, one can now solve Equation (A.17c) to obtain Ω in terms of P and P
′
.

This leads to the following expression:

iωΩ =
P
′
(c2%

′
av + %avg) + P(

���
���

���:
cancels

g
c2

(%avg + c2%
′
av)− ω2%av −

���
���

���:
cancels

g
c2

(c2%
′
av + %avg))

c2(iω%av − g
c2iω

(c2%′av + %avg))
. (A.20)

It should be noted that Equation (A.20) has 2 terms which cancel. These are the 3rd and

5th terms in the numerator which are marked by the arrows through them. Now that we

have iωΩ and W, only W
′

is needed in order to get an expression for P and P
′

in Equation

(A.17a). Hence, proceeding to find W
′
, one arrives at the equation:

W
′
=

P
′′

+ g
c2

P
′

(iω%av − g
c2iω

(c2%′av + %avg))
−

(P
′
+ g

c2
P)(iω%

′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))2
. (A.21)

Now one can complete the derivation for P from Equation (A.17a) by substituting the

relevant variables. Thus,

−P
′
(���

���
��: cancels

c2%
′
av + %avg) + Pω2%av

c2(iω%av − g
c2iω

(c2%′av + %avg))
+ ��

��* cancels

%
′
avP

′
+ %

′
av

g
c2

P

(iω%av − g
c2iω

(c2%′av + %avg))

+
%avP

′′
+
��

��
�* cancels

%av
g
c2

P
′

(iω%av − g
c2iω

(c2%′av + %avg))
−
%av(P

′
+ g

c2
P )(iω%

′ − g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))2
= 0.

(A.22)

Multiplying by one occurence of the denominator in Equation (A.22) results in the fol-

lowing equation:

P
ω2

c2
%av + %

′

av

g

c2
P + %avP

′′
+
−%av(P

′
+ g

c2
P)(iω%

′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))
= 0. (A.23)

Finally, collecting the like orders of derivatives in Equation (A.23), one gets

%avP
′′ − %avP

′

[
(iω%

′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))

]

+P

[
ω2

c2
%av + %

′

av

g

c2
+ %av

g

c2

(iω%
′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))

]
= 0.

(A.24)
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Dividing through by %av, one obtains a 2nd order differential equation whose leading

coefficient is 1:

P
′′ − P

′

[
(iω%

′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))

]

+P

[
ω2

c2
+
%
′
av

%av

g

c2
+

g

c2

(iω%
′
av −

g
c2iω

(c2%
′′
av + %

′
avg))

(iω%av − g
c2iω

(c2%′av + %avg))

]
= 0.

(A.25)

In order to remove the imaginary terms from (A.25), we can multiply all fractions con-

taining iω by ( -iω
-iω

) to get:

P
′′ − P

′

[
(ω2%

′
av + g

c2
(c2%

′′
av + %

′
avg))

(ω2%av + g
c2

(c2%′av + %avg))

]

+P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2

(ω2%
′
av + g

c2
(c2%

′′
av + %

′
avg))

(ω2%av + g
c2

(c2%′av + %avg))

]
= 0.

(A.26)

Next, in anticipation of making Equation(A.26) more compact and insightful, we multiply

terms inside the brackets for P as shown by the factors in braces [{ }]:

P
′′ − P

′

[
(ω2%

′
av + g

c2
(c2%

′′
av + %

′
avg))

(ω2%av + g
c2

(c2%′av + %avg))

]

+P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2
{c2

c2
}

(ω2%
′
av + {ω2

ω2} gc2 (c2%
′′
av + %

′
avg))

(ω2%av + {ω2

ω2} g
c2

(c2%′av + %avg))

]
= 0.

(A.27)

Carrying out the implied multiplicative distribution which is shown by the curly brackets

({}, one has:

P
′′ − P

′

[
(ω2%

′
av + g

c2
(c2%

′′
av + %

′
avg))

(ω2%av + g
c2

(c2%′av + %avg))

]

+P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2

({c2}ω2%
′
av + {ω2

ω2} gc2{c
2}(c2%

′′
av + %

′
avg))

({c2}ω2%av + {ω2

ω2} g
c2
{c2}(c2%′av + %avg))

]
= 0.

(A.28)
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Now an ω2 is factored from the P
′

cofficient and an ω2c2 terms is factored from the large

fraction of the P coefficient in Equation (A.28). Thus,

P
′′ − P

′

[
ω2(%

′
av + g

c2ω2 (c2%
′′
av + %

′
avg))

ω2(%av + g
c2ω2 (c2%′av + %avg))

]

+P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2

c2ω2
[
%
′
av + g

c2ω2 (c2%
′′
av + %

′
avg)

]
c2ω2

[
%av + g

c2ω2 (c2%′av + %avg)
]] = 0.

(A.29)

One will notice that, for the large fractions in Equation (A.29), the numerators are

derivatives of the denominators. Since for a function y, y′/ y = d
dz

[ln(y)]. Using this

property and with further manipulation, one arrives at the equation:

P
′′ − P

′ d

dz
ln

[
ω2%av

[
1 +

g

ω2
(
%
′
av

%av
+

g

c2
)

]]
+P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2

d

dz
ln

[
(ω2c2%av

[
1 +

g

ω2
(
%
′
av

%av
+

g

c2
)

]]]
= 0.

(A.30)

Now with the property of the logarithmic function, we can write:

P
′′ − P

′
{

d

dz
ln(%av) +

d

dz
ln

[
ω2

[
1 +

g

ω2
(
%
′
av

%av
+

g

c2
)

]]}
+P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2

{
d

dz
ln(%av) +

d

dz
ln

[
(ω2c2

[
1 +

g

ω2
(
%
′
av

%av
+

g

c2
)

]]}]
= 0.

(A.31)

In this form, it easier to estimate the relevant terms and decide which (if any) can

be omitted. Using the fact that in a homogeneous, non-moving atmosphere, the adiabatic

sound speed is given by c =
√
γ pav
%av

and the fact that the equilibrium equation for the average

pressure is p
′
av = −%avg, one arrives at the expression for p

′
av

pav
= − gγ

c2
. One may also use the

Ideal Gas Law via differentian to get:

%
′
av

%av
=

p
′
av

pav
− T

′

T
. (A.32)
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Since p
′
av

pav
is of the order of 10−4m−1 and the term T

′

T
is of the order of 0.1m−1, then an

approximate estimate for the term g(%
′
av

%av
+ g

c2
) is of the order 1. For frequencies of the order of

7 mHz, the outermost brackets ([]) of the 2 log functions reduce to 1, yielding the equation:

P
′′ − P

′
{

d

dz
ln(%av) +

d

dz
ln [[1]]

}
+P

[
ω2

c2
+
%
′
av

%av

g

c2
− g

c2

{
d

dz
ln(%av) +

d

dz
ln
[
c2 [1]

]}]
= 0.

(A.33)

This is further reduced as follows:

P
′′ − P

′
[
%
′
av

%av

]

+P

ω2

c2
+
�
�
���
cancels

%
′
av

%av

g

c2
+

−
�
�
���
cancels

g

c2

%
′
av

%av
− 2

g

c2

[
c
′

c

]
 = 0.

(A.34)

As for the ratio
∣∣∣ c′c ∣∣∣, it is normally greatest near the surface of the ground. A safe upper

limit is 0.1m−1. However, this combined with the g
c2

is of the order of 6 x 10−4m−2. Hence,

the term in parentheses in Equation (A.34) may be neglected. This leaves the following,

final form of our equation as:

P
′′ −

(
%
′
av

%av

)
P
′
+

(
ω2

c2

)
P = 0. (A.35)
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APPENDIX B

The Layered Atmosphere

B.1 The Layered Atmosphere

Our model atmosphere consists of 2 layers. The first is an adiabatic one which extends

from the ground to approximately 13000 meters and the second is isothermal which persists

from the top of the adiabatic layer to a height of approximately 30000 meters. Here, we

examine the pressure, density, temperature and sound speed functions for each layer.

Before examining specific atmospheres, we define some expressions that will be useful in

our derivations. First, we define density, %, as

% =
M

V
=

M
Mmol

V
Mmol =

n

V
Mmol ⇒ % ∝ V−1 (B.1)

where n is the number of moles of a gas, M is the total mass, Mmol is the mass per mole

(or molar mass), and V is the volume. For air, Mmol = 28.95 g
mol

.

Next, we turn to the equation for an Ideal gas:

PV = nRmolT (B.2)

where Rmol is the Universal Molar Gas Constant whose value is 8.314 JK−1mol−1 and T is

the temperature in Kelvin. Rearranging (B.2), we get
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P =

[
nMmol

V

] [
RmolT

Mmol

]
= %RT (B.3)

where R = Rmol
Mmol

is defined as the specific gas constant. The specific gas constant for air is

0.287 J
Kkg

.

In order to correctly address the sound speed for the various atmospheres, it is necessary

to understand its wave origin. In deriving the sound speed, c, it is the proportionality

constant between the 2nd time derivative of the change in pressure to the change in density.

It is expressed as

c0 =

√
K0

%0

(B.4)

where K0 is the Bulk modulus defined generally as

K =
dp

−dV
V

=
dp
d%
%

= %
dp

d%
(B.5)

and dM = d(%V) = %dV + Vd% = 0 is used to replace −dV
V

with d%
%

.

With the above definition for K, there arises the issue that there exist different Bulk mod-

uli depending on thermodynamic conditions being used. Thus, for the isothermal condition,

one has

KT =

(
%

dp

d%

)∣∣∣∣
T

= %
d%

d%
RmolT = %

P

%
= p. (B.6)

Thus, the isothermal sound speed becomes

c0 =

√
p0

%0

. (B.7)

For an isentropic (adiabatic) bulk modulus, one has

KS =

(
%

dp

d%

)∣∣∣∣
S

= %
d[(const)%γ]

d%
= %(const)γ%γ−1 = (const)%γ = γp. (B.8)
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And, the adiabatic sound speed is

c0 =

√
γ

p0

%0

. (B.9)

B.1.0.1 Atmospheric Scale Height

Atmospheric scale height is useful as it tells one over what distances scale properties of the

atmosphere will change. Typically, one uses the value of a height for which there’s a pressure

change of 1/e. Sometimes there is confusion with scale heights for various atmospheres as

different ones can produce the same scale height. For this reason, these atmospheric models

may be confused. In addition to analyzing the properties mentioned above for the various

atmospheric layers, we will also investigate its scale height.

B.1.1 Incompressible Atmosphere (Constant Density)

If one examines an incompressible atmosphere (which is not realistic, but instructive),

one can develop the equation for the pressure decrease with height (z ) as

p = p0 − %0gz (B.10)

where p0 is the pressure at the Earth’s surface and g is the acceleration of gravity. Solving

for the height when the atmospheric pressure is 0 (p=0), one gets

p0 = %0gh0 ⇒ h0 =
p0

%0g
. (B.11)

This may also be written as

h0 =
p0

%0g
=

RT0

g
. (B.12)

Here, h0 is termed a scale height and with p0=1 atm and %0 =1.18 kg m−3, one gets a

scale factor of h0 = 8.72 km.

Turning to finding the sound speed c and using equations (B.6) and (B.7), one has
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c =

√
K

% 0

=

√
p

%0

=

√
p0 − %0gz

%0

=
√

c2
0 − gz = c0

√
1− gz

c2
0

. (B.13)

Now, from the ideal gas law equation, we can solve for temperature, T, for a constant

density, %0:

p = %0RT = p0 − %0gz⇒ T =
p0

%0R
− %0gz

%0R
=

1

R

{
c2

0 − gz
}
. (B.14)

B.1.2 The Adiabatic Layer

Since the first layer is adiabatic, it may conveniently be characterized by the adiabatic

relationship

PVγ = constant (B.15)

where γ = cp
cv

= 7
5

(for air) is the ratio of specific heats at constant pressure and volume.

Since, by (B.1) density, %, and volume, V, are inversely related, (B.15) becomes

P =
constant

Vγ (B.16)

or

P ∝ %γ (B.17)

Using temperature T and the ideal gas law, PV = nRmolT, as well as factoring (B.15),

one may write

PVVγ−1 = constant⇒ TVγ−1 = constant. (B.18)

Thus,

T ∝ %γ−1 (B.19)

by (B.1).

86



For a ’statical relationship’ between the pressure and density, one has the expression

∂P

∂z
= −%g where g is the acceleration due to gravity . (B.20)

Hence, by (B.17) and (B.20), one gets

P
′ ∝ %γ−1%

′
(where ’ represents the derivative with respect to z ) (B.21a)

−%g ∝ %γ−1%
′

(B.21b)

g ∝ %γ−2%
′
. (B.21c)

From (B.19), one finds that the right side of (B.22) is proportional to T
′
. Hence, T

′
=

constant. The consequence of this is that T is linear and is of the form:

T = mz + b. (B.22)

Using T = T0 at z=0, and T = 0 at z=l, one arrives at the following equation:

T = T0(1− z

l
) where l is the top of our atmosphere. (B.23)

Note that at z = 0, we have the surface temperature T0 and at the top of the atmosphere

z = l, the temperature, T, is 0. With the use of (B.19), one has

% ∝ T( 1
γ−1

) (B.24)

which when applied to (B.23), one obtains

% = %0(1− z

l
)

1
(γ−1) . (B.25)
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Combining (B.17) and (B.25), we find the remaining expression for the pressure as

p = p0(1− z

l
)

γ
(γ−1) . (B.26)

With the expression for adiabatic sound speed from (B.9) and equations (B.25) and

(B.26), we have

c =

√√√√γ
p0(1− z

l
)

γ
(γ−1)

%0(1− z
l
)

1
(γ−1)

. (B.27)

In our model χ = 1
γ−1

and (B.28) may be written in terms of χ and c0 as

c =

√
γ

p0

%0

√
1− z

l
= c0

√
1− z

l
(B.28)

Next, an expression for the scale height is found. Starting with

PVγ = const⇒ p(
1

%
)γ = const. (B.29)

Or, using the ideal gas equation, one can write

p(
1

%
)γ = p(

RT

p
)γ = p1−γTγ = const. (B.30)

Since we will be using the hydrostatic equation dp
dz

= −%g = − p
RT

g, we differentiate (B.30)

with respect to z :

d

dz

{
p1−γTγ

}
=

(
d

dp
p1−γ

)
dp

dz
Tγ +

(
d

dT
Tγ

)
dT

dz
p1−γ (B.31a)

= (1− γ)p1−γ−1Tγdp + γTγ−1p1−γdT = 0 (B.31b)

=
(1− γ)p1−γ−1Tγ

p1−γTγ dp +
γTγ−1p1−γ

p1−γTγ dT = 0 (B.31c)

= (1− γ)
dp

p
+ γ

dT

T
= 0. (B.31d)
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Since from above, dp
dz

= − p
RT

g, one may write

(1− γ)
dp

p
= −(1− γ)

g

RT
dz (B.32a)

(1− γ)
dp

p
= −(1− γ)

g

RT
dz = −γ dT

T
. (B.32b)

Or,

−(1− γ)
g

R
dz = −γdT⇒ − g

R
dz =

γ

γ − 1
dT. (B.33)

Integrating the right-hand side of (B.33) and rearranging terms, we get

− g
γ
γ−1

R
z = T− T0. (B.34)

Here, we note that γ
γ−1

R = cp, where cp is the specific heat of the air at constant pressure.

Applying this to (B.34), we have

T = T0 −
g

cp
z. (B.35)

Factoring T0 and rearranging the result, one has

T = T0

{
1− z

cpT0

g

}
. (B.36)

Written in this form, it is clear that the scale height is cpT0

g
. For a temperature of 300

K (surface temperature), the scale height for the adiabatic atmosphere is approximately

30.7 km. This value is very close to the scale height of our model (l = 30 km. Hence, its

justification in our use of it.

The above equations for temperature, density, pressure, sound speed, and scale height

are the equations used in our model for the adiabatic layer.
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B.1.3 The Isothermal Layer

For an isothermal atmosphere, we start with the hydrostatic equation coupled with the

Ideal Gas law. Thus,

dp

dz
= −%g. (B.37)

For the Ideal Gas law, we have

pv = nRT⇒ p =
nRT

v
⇒ p = %RT. (B.38)

Since T is constant, it must equal the temperature at the Earth’s suface, which we term

T0. Then substituting % from (B.38) on the right-hand side of (B.37), one gets

dp

dz
= − p

RT0

g. (B.39)

Rearranging (B.39) and integrating, we have

p∫
p0

dp

p
= −

z∫
0

g

RT0

dz. (B.40)

This leads to the final pressure equation

p = p0e
− g

RT0
z
. (B.41)

Since we are considering an isothermal ideal gas, one can write

p = %RT0 ⇒ % =
p

RT0

. (B.42)

Substituting for p from (B.41) into (B.42), one gets

% =

(
p0

RT0

)
e
− g

RT0
z

= %0e
− g

RT0
z
. (B.43)
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Thus, one finds that % and p have the same exponential form.

For the sound speed c =
√

p
%
, one finds upon substituing (B.41) and (B.43) for p and %,

one gets

c =

√√√√p0e
− g

RT0
z

%0e
− g

RT0
z

=

√
p0

%0

= c0. (B.44)

Thus, for an atmosphere with an exponentially, decreasing density, the sound speed is a

constant!

Next we consider the scale height for this atmosphere. Considering (B.43), one sees that

the density, %, may be rewritten as

% = %0e
− g

RT0
z

= %0e
− z

RT0
g . (B.45)

By inspection, one sees that % achieves a value of %0e−1 when z = RT0

g
. Therefore, the

scale height is

RT0

g
= h0 (B.46)

Note that this is the same scale height that was found for a constant density atmosphere

in (B.12) which is 8.72 km.
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APPENDIX C

Determining Boundary Value Constants A, B, and C

for Model 2

C.1 Determining Bondary Value Constants A, B, and C for Model

2

Here, we will combine the results for the general solutions in the lower and upper layers

in order to get the exact equation for the pressure from a time-harmonic source. To begin,

we note that the Bessel’s function derived for the lower layer was given as Equation (2.31)

and is repeated here for convenience:

τ 2 d2X

dτ 2
+ τ

dX

dτ
+ (4Ω2τ 2 − χ2)X = 0. (C.1)

The solution to this equation are the two Bessel functions of First and Second Kind with

order χ and argument 2Ωτ . Hence,

P = A
Jχ(2Ωτ)

τχ
+B

Yχ(2Ωτ)

τχ
(C.2)

where A and B are constants to be determined from the boundary conditions. We remind

the reader that τ =
√

1− Z, where Z is a dimensionless variable such that Z = z
l
. For the
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purposes of our derivations, τ will be recast in this light. Thus, our general solution in the

lower layer becomes

P1 = A
Jχ(2Ω(1− Z)

1
2 )

(1− Z)
χ
2

+B
Yχ(2Ω(1− Z)

1
2 )

(1− Z)
χ
2

. (C.3)

In a similar vein, Equation (3.8) can be rewritten in terms of the dimensionless Z s as:

P2 = Ce−{
α
2

[Z−Z2]}cos

{
α

2

√[
4Ω2

α2
− 1

]
[Z− Z2]

}
(C.4)

where, again, the constant C is to be determined by the boundary conditions.

In order to solve for the constants A, B, and C, 3 boundary conditions are necessary.

These are now stated below as:

P1|Z=0 = P0 (C.5a)

P1|Z=Z2
= P2|Z=Z2

(C.5b)

P
′

1

∣∣∣
Z=Z2

= P
′

2

∣∣∣
Z=Z2

. (C.5c)

In Equation (C.5a), the pressure at the ground level, Z = 0, is set to an arbitrary,

unspecified constant, P0 for the moment.

We will now apply the boundary conditions to our solutions for the appropriate medium.

For Equation (C.5a), we have

A
Jχ(2Ω(1− Z)

1
2 )

(1− Z)
χ
2

∣∣∣∣∣
Z=0

+ B
Jχ(2Ω(1− Z)

1
2 )

(1− Z)
χ
2

∣∣∣∣∣
Z=0

= P0 (C.6)

or

AJχ(2Ω) +BYχ(2Ω) = P0. (C.7)

It should be remembered that χ = −7/2.

Turning to the 2nd boundary condition in Equation (C.5b), we have
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A
Jχ(2Ω(1− Z)

1
2 )

(1− Z)
χ
2

∣∣∣∣∣
Z=Z2

+ B
Yχ(2Ω(1− Z)

1
2 )

(1− Z)
χ
2

∣∣∣∣∣
Z=Z2

=

Ce−{
α
2

[Z−Z2]}cos

{
α

2

√[
4Ω2

α2
− 1

]
[Z− Z2]

}∣∣∣∣∣
Z=Z2

.

(C.8)

Applying the boundary condition at Z = Z2, we have

A
Jχ

(
2Ω [1− Z2]

1
2

)
(1− Z2)

χ
2

+B
Yχ

(
2Ω [1− Z2]

1
2

)
(1− Z2)

χ
2

= C. (C.9)

With some rearrangement and substituting the value χ = −7
2
, we have

(1− Z2)
7
4

[
AJχ

(
2Ω [1− Z2]

1
2

)
+BYχ

(
2Ω [1− Z2]

1
2

)]
= C. (C.10)

This now leaves us with finding an expression for the 3rd boundary condition in Equation

(C.5c). To this end, we will need the derivatives of Equations (C.3) and (C.4). We commence

with finding the derivative of Equation (C.3). Using a general form of Equation (C.10) for

Z, we have

∂(1− Z)
7
4

[
AJ− 7

2

(
2Ω [1− Z]

1
2

)
+BY− 7

2

(
2Ω [1− Z]

1
2

)]
∂Z

= P
′

1

∣∣∣∣∣∣
Z=Z2

=
∂(1− Z)

7
4

∂Z

[
AJ− 7

2

(
2Ω [1− Z]

1
2

)
+BY− 7

2

(
2Ω [1− Z]

1
2

)]
+(1− Z)

7
4
∂

∂Z

[
AJ− 7

2

(
2Ω [1− Z]

1
2

)
+BY− 7

2

(
2Ω [1− Z]

1
2

)]
= P

′

1

∣∣∣∣
Z=Z2

(C.11)

= −7

4
(1− Z)

3
4

[
AJ− 7

2

(
2Ω [1− Z]

1
2

)
+BY− 7

2

(
2Ω [1− Z]

1
2

)]
+(1− Z)

7
4

[
A
(
−Ω [1− Z]−

1
2

)
J
′

− 7
2

+B
(
−Ω [1− Z]−

1
2

)
Y
′

− 7
2

]
= P

′

1

∣∣∣
Z=Z2

(C.12)
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−(1− Z2)
3
4

{
7

4

[
AJ− 7

2

(
2Ω [1− Z2]

1
2

)
+BY− 7

2

(
2Ω [1− Z2]

1
2

)]}
−Ω(1− Z2)

5
4

{[
AJ

′

− 7
2

(
2Ω [1− Z2]

1
2

)
+BY

′

− 7
2

(
2Ω [1− Z2]

1
2

)]}
= P

′

1

∣∣∣
Z2

.

(C.13)

Then, for the derivative of P2 from Equation (C.4), we have

C

(
−α
2

)
e−{

α
2

[Z−Z2]}cos

α2
√√√√[4

(
Ω

α

)2

− 1

]
[Z− Z2]


∣∣∣∣∣∣
Z=Z2

−C

α
2

√
4

(
Ω

α

)2

− 1

 e−{
α
2

[Z−Z2]}sin

α2
√√√√[4

(
Ω

α

)2

− 1

]
[Z− Z2]


∣∣∣∣∣∣
Z=Z2

= P
′

2

∣∣∣
Z=Z2

.

(C.14)

When Equation (C.12) is evaluated at Z = Z2, one gets the simple result:

−C
α

2
= P

′

2

∣∣∣
Z=Z2

. (C.15)

One may now eliminate C between Equations (C.10) and (C.15) to get B in terms of A.

Thus, we proceed as follows:

−α
2

(1− Z2)
7
4

[
AJ− 7

2

(
2Ω [1− Z2]

1
2

)
+BY− 7

2

(
2Ω [1− Z2]

1
2

)]
= −(1− Z2)

3
4

{
7

4

[
AJ− 7

2

(
2Ω [1− Z2]

1
2

)
+BY− 7

2

(
2Ω [1− Z2]

1
2

)]}
−Ω(1− Z2)

5
4

{[
AJ

′

− 7
2

(
2Ω [1− Z2]

1
2

)
+BY

′

− 7
2

(
2Ω [1− Z2]

1
2

)]}
.

(C.16)

Factoring terms common to A and B, we arrive at a relationship between the 2 constants:
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B = A

{[
−α

2
(1− Z2) + 7

4

]
J− 7

2

[
2Ω(1− Z2)

1
2

]
+ Ω(1− Z2)

1
2 )J

′

− 7
2

[
2Ω(1− Z2)

1
2

]}
{[

α
2
(1− Z2)− 7

4

]
Y− 7

2

[
2Ω(1− Z2)

1
2

]
− Ω(1− Z2)

1
2 )Y

′

− 7
2

[
2Ω(1− Z2)

1
2

]} . (C.17)

To avoid any further cumberson notation, we will designate the denominator in (C.14)

as E and the numerator as F. Thus (C.14) reduces to

B = A
F

E
. (C.18)

We can now use the expression for B in Equation (C.7) to obtain A. Hence,

A =
EP0

J− 7
2
(2Ω)E + Y− 7

2
(2Ω)F

. (C.19)

We now have all the constants to form the solutions from Equations (C.3) and (C.4) (The

equation for C is determined by Equation (C.9).)
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APPENDIX D

Determining Boundary Value Constants A, B, and C

for Model 3

D.1 Determining Constants A,B, and C for Model 3

The environment for Model 3 is exactly the same as that for Model 2 with the exception

that the source is now located at the top of the bottom layer i.e. on the boundary between

the lower and upper layer. Hence, the pressure equation used for the 2nd model still applies

here. Thus, we start with developing the correct values of the boundary values with the

pressure solution repeated here

P = A
Jχ(2Ωτ)

τχ
+B

Yχ(2Ωτ)

τχ
. (D.1)

If P1 and P2 are the pressures in the 1st (bottom) and 2nd (top) layers, respectively, then

boundary conditions for this model may be stated as follows:
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P
′

1

∣∣∣
Z=0

= 0 (D.2a)

P2|Z=Z2
= P0 (D.2b)

P1|Z=Z2
= P2|Z=Z2

, (D.2c)

where again prime (’) denotes the derivative with respect to Z.

Taking the boundary conditions in order, we start with (D.2a). This we write as below:

A

J− 7
2
(2Ω(1− Z)

1
2 )

(1− Z)
− 7

2
2

′
∣∣∣∣∣∣∣
Z=0

+ B

Y− 7
2
(2Ω(1− Z)

1
2 )

(1− Z)
− 7

2
2

′
∣∣∣∣∣∣∣
Z=0

= 0, (D.3)

where τ has been expanded in terms of its definition in Z and the prime (’) indicates

derivative with respect to Z. Implementing the derivative, we have

−7

4
(1− Z)

3
4

[
AJ− 7

2

(
2Ω [1− Z]

1
2

)
+BY− 7

2

(
2Ω [1− Z]

1
2

)]∣∣∣∣
Z=0

+(1− Z)
7
4

[
A
(
−Ω [1− Z]−

1
2

)
J
′

− 7
2

+B
(
−Ω [1− Z]−

1
2

)
Y
′

− 7
2

]∣∣∣
Z=0

= 0.

(D.4)

Solving (D.4) at Z = 0, we find

−7

4

[
AJ− 7

2
(2Ω) +BY− 7

2
(2Ω)

]
+
[
A (−Ω) J

′

− 7
2

+B (−Ω) Y
′

− 7
2

]
= 0. (D.5)

Collecting terms and solving for A in terms of B, we get for A:

A = −B

 7
4
Y− 7

2
(2Ω) + ΩY

′

− 7
2
(2Ω)

7
4
J− 7

2
(2Ω) + ΩJ

′

− 7
2
(2Ω)

 . (D.6)

The next boundary condition (D.2b) is, perhaps, the simplest to solve
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P2|Z=Z2
= P0 = Ce−{

α
2

[Z−Z2]}cos

{
α

2

√[
4Ω2

α2
− 1

]
[Z− Z2]

}∣∣∣∣∣
Z=Z2

. (D.7)

Evaluating (D.7) at Z = Z2 yields the following equation for C

C = P0. (D.8)

Using (D.8) in the last boundary condition (D.2c), we have

P0 =

{
A

J− 7
2
(2Ωτ)

τ−
7
2

+B
Y− 7

2
(2Ωτ)

τ−
7
2

}∣∣∣∣∣
Z=Z2

. (D.9)

Substituting for τ at Z2 and χ = −7
2

and substituting for A from (D.6), we have

P0 = B

−
 7

4
Y− 7

2
(2Ω) + ΩY

′

− 7
2
(2Ω)

7
4
J− 7

2
(2Ω) + ΩJ

′

− 7
2
(2Ω)

 J− 7
2
(2Ωτ(Z2))

[τ(Z2)]−
7
2

+
Y− 7

2
(2Ωτ(Z2))

[τ(Z2)]−
7
2

 . (D.10)

Now, B can be formally found as

B =
P0{

−

[
7
4
Y− 7

2
(2Ω)+ΩY

′
− 7

2
(2Ω)

7
4
J− 7

2
(2Ω)+ΩJ

′
− 7

2
(2Ω)

]
J− 7

2
(2Ωτ(Z2))

[τ(Z2)]−
7
2

+
Y− 7

2
(2Ωτ(Z2))

[τ(Z2)]−
7
2

} . (D.11)

Now that B is found in terms of all known quantities, A is determined and C has

previously been found. Thus, all the constants are now determined for the 3rd Model.
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APPENDIX E

Green’s Function Derivation

E.1 Determining Boundary Value Constants A, B, C, and D for

the Green’s Function

As in the previous case for a harmonic source, we now must solve another boundary

condition problem for an impulsive source. However, here we must follow the boundary

conditions set forth in finding the Green’s functions. Here, we are only concerned with the

lower layer as the complete solution is found in the main text. Again, we are concerned with

Bessel’s equation as previously derived and restated below:

τ 2 d2X

dτ 2
+ τ

dX

dτ
+ (4Ω2τ 2 − χ2)X = 0. (E.1)

This, again, has, as our starting point, the general solution:

X = AJχ

(
2Ω
√

1− Z
)

+BYχ

(
2Ω
√

1− Z
)

(E.2)

where A and B are constants to be determined by boundary conditions and the reader is

reminded that τ =
√

1− z
l

and Z = z
l
.
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Now as is the nature of the Green’s function method, we must solve the above equation

(with different coefficients) in the region below and above the source location. Hence, the

lower layer is split by the location of the source into 2 layers in which Equation (E.2) is

solved in each layer. Thus, we will state here the general boundary conditions which must

be solved to determine constants A, B, C, and D. It should also be recognized that the

boundary conditions at the top and bottom of the 1st layer are chosen to be homogeneous.

In order to solve for the constants A, B, C, and D, 4 boundary conditions are necessary.

These are now stated below where the subscript ”1” refers to the layer below the source

location and ”2” refers to the layer above the source location. We’ll refer to the source

location as Z = Z1.

X
′

1

∣∣∣
Z=0

= 0 (E.3a)

X1|Z=Z1
= X2|Z=Z1

(E.3b)

X
′

1

∣∣∣
Z=Z1

− X
′

2

∣∣∣
Z=Z1

=
1

τ 2
1

(E.3c)

X2|Z=Z2
= 0. (E.3d)

Since we will be needing the derivative of X, we will find this expression first. Using the

chain rule on (E.2), we find the derivatives to be:

d

dZ
[Jχ (2Ωτ)] = −Ω

τ
J
′

χ (2Ωτ) (E.4a)

d

dZ
[Yχ (2Ωτ)] = −Ω

τ
Y
′

χ (2Ωτ) . (E.4b)

Using the expressions for the Bessel function and its derivatives in Equations (E.3a)–

(E.3d), we have the following substitutions for the Green’s functions:
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1.

{
A(−Ω

τ
)J
′

χ(2Ωτ) + B(−Ω

τ
)Y
′

χ(2Ωτ)

}∣∣∣∣
Z=0

= 0 (E.5a)

2. {AJχ(2Ωτ) + BYχ(2Ωτ)}|Z=Z1
= {CJχ(2Ωτ) + DYχ(2Ωτ)}|Z=Z1

(E.5b)

3.

{
C(−Ω

τ
)J
′

χ(2Ωτ) + D(−Ω

τ
)Y
′

χ(2Ωτ)

}∣∣∣∣
Z=Z1

−
{

A(−Ω

τ
)J
′

χ(2Ωτ) + B(−Ω

τ
)Y
′

χ(2Ωτ)

}∣∣∣∣
Z=Z1

=
1

τ 2

∣∣∣∣
Z=Z1

(E.5c)

4. {CJχ(2Ωτ) + DYχ(2Ωτ)}|Z=Z2
= 0. (E.5d)

Solving (1) above in Equation (E.5a), we find

B = −A
J
′

χ(2Ω)

Y
′

χ(2Ω)
= −Ag (E.6)

where here we are using lower case letters to represent the ratio of various quantities. This

will be quite useful later on in effecting a solution as these expressions become more and

more unwielding.

Next we rearrange the terms in (2) in Equation (E.5b) to get

[A− C] = [D− B]
Yχ(2Ωτ(Z1))

Jχ(2Ωτ(Z1))
. (E.7)

Rewriting Equation (E.5c) in (3) above, we have

− [A− C] J
′

χ(2Ωτ(Z1)) + [D− B] Y
′

χ(2Ωτ(Z1)) =
−τ

Ωτ 2(Z1)
=

−1

Ωτ(Z1)
. (E.8)

Substituting Equation (E.7) into Equation (E.8), one has

− [D− B]
Yχ(2Ωτ(Z1))

Jχ(2Ωτ(Z1))
J
′

χ(2Ωτ(Z1)) + [D− B] Y
′

χ(2Ωτ(Z1)) =
−1

Ωτ(Z1)
. (E.9)

Factoring and multiplying by Jχ(2Ωτ(Z1)), one has
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[D− B]
{
−Yχ(2Ωτ(Z1))J

′

χ(2Ωτ(Z1)) + Y
′

χ(2Ωτ(Z1))Jχ(2Ωτ(Z1))
}

=
−Jχ(2Ωτ(Z1))

Ωτ(Z1)
.

(E.10)

The term in braces is the Wronskian [W ] of Jχ(2Ωτ(Z1)) and Yχ(2Ωτ(Z1)). That is,

W [Jχ(2Ωτ(Z1)),Yχ(2Ωτ(Z1))]

=
{
−Yχ(2Ωτ(Z1))J

′

χ(2Ωτ(Z1)) + Y
′

χ(2Ωτ(Z1))Jχ(2Ωτ(Z1))
}
.

(E.11)

Thus, Equation (E.10) may be rewritten as

[D− B] =
−Jχ(2Ωτ(Z1))

W [Jχ(2Ωτ(Z1)),Yχ(2Ωτ(Z1))] Ωτ(Z1)
= e. (E.12)

A similar process may be used with Equations (E.7) and (E.8) to solve for [A−C resulting

in:

[A− C] =
−Yχ(2Ωτ(Z1))

W [Jχ(2Ωτ(Z1)),Yχ(2Ωτ(Z1))] Ωτ(Z1)
= f. (E.13)

Finally, the last boundary condition in (4) of Equation (E.5d) becomes

D = −C
Jχ(2Ωτ(Z2))

Yχ(2Ωτ(Z2))
= −Ch. (E.14)

Equations (E.6), (E.12), (E.13), and (E.14) now form a reduced system of 4 equations

for the 4 unknowns A, B, C, and D. These can be solved in terms of the lower case variables
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and the results are:

A =

[
e− fh

g− h

]
(E.15a)

B =

[
e− fh

h− g

]
g (E.15b)

C =

[
e− fg

g− h

]
(E.15c)

D =

[
e− fg

h− g

]
h. (E.15d)

Below we expand the expressions in Equations (E.15a)–(E.15d) in terms of their repre-

sentative functions. Thus, we have

e =
−Jχ(2Ωτ(Z1))

W [Jχ(2Ωτ(Z1)),Yχ(2Ωτ(Z1))] Ωτ(Z1)
(E.16a)

f =
−Yχ(2Ωτ(Z1))

W [Jχ(2Ωτ(Z1)),Yχ(2Ωτ(Z1))] Ωτ(Z1)
(E.16b)

g =
J
′

χ(2Ω)

Y
′

χ(2Ω)
(E.16c)

h =
Jχ(2Ωτ(Z2))

Yχ(2Ωτ(Z2))
. (E.16d)

The constants written in full are shown below. However, we have omitted the 2Ω ar-

gument from the Bessel functions for brevity and replaced τ(Z1,2) with Z1,2 for the same

reason.
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A =

−Jχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)

}{
Jχ(Z2)

Yχ(Z2)

}
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]
−
[
Jχ(Z2)

Yχ(Z2)

] (E.17a)

B =


−Jχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)

}{
Jχ(Z2)

Yχ(Z2)

}
[
Jχ(Z2)

Yχ(Z2)

]
−
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]

[

J
′

χ(2Ω)

Y
′

χ(2Ω)

]
(E.17b)

C =

−Jχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1)Yχ(Z1)]Ωτ(Z1)

}{
J
′
χ(2Ω)

Y
′
χ(2Ω)

}
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]
−
[
Jχ(Z2)

Yχ(Z2)

] (E.17c)

D =


−Jχ(Z1)

W[Jχ(Z1)Yχ(Z1)]Ωτ(Z1)
+
{

Yχ(Z1)

W[Jχ(Z1),Yχ(Z1)]Ωτ(Z1)

}{
J
′
χ(2Ω)

Y
′
χ(2Ω)

}
[
Jχ(Z2)

Yχ(Z2)

]
−
[
J
′
χ(2Ω)

Y
′
χ(2Ω)

]

[

Jχ(Z2)

Yχ(Z2)

]
(E.17d)
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APPENDIX F

The Complementary Solution

F.1 The Complementary Solution

As with all differnetial equations, there is usually a particular solution and a comple-

mentary solution. The complementary solution is usually the most frequently encountered

equation as it is homogeneous with regards to a source term. In this appendix, we solve for

the complementary solution in the bottom layer. This will require again solving a boundary

value problem in which 3 constants are to be determined. These we will name E, F, and H.

Here F and H are the coefficients for the Bessel function of the First and Second Kind which

constitute our Bessel solution and G is the constant for the exponentially damped function

in the top layer (Appendix D, (C.4)). The 3 conditions which will determine the boundary

value constants are:

1. Derivative of the Pressure at Z =0 is 0.

2. Continuity of Pressure at Z = Z2.

3. Continuity of the Derivative of the Pressure at Z = Z2.

As found previously, solutions in the lower medium require Bessel functions of the form:
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X = EJχ (2Ωτ) + FYχ (2Ωτ) (F.1)

where E and F are the constants we seek. However, while (F.1) is the Bessel function

solution, it does not represent the full pressure equation. For that we must divide Equation

(F.1) by τχ . So the general pressure solution looks like

PC = E
Jχ(2Ωτ)

τχ
+ F

Yχ(2Ωτ)

τχ
(F.2)

where PC represents the pressure corresponding to the complementary solution.

Following from Equation (F.2), we have

∂PC

∂Z
=
∂τ−χ

∂Z
[EJχ (2Ωτ) + FYχ (2Ωτ)] + τχ

∂

∂Z
[EJχ (2Ωτ) + FYχ (2Ωτ)] . (F.3)

In the interest of being clear in the derivation of these constants, we will use the following

abbreviations for the pressure function and its derivatives:

Jτ ≡
Jχ
τχ

(F.4a)

dJτ ≡
∂

dZ
(
Jχ
τχ

) (F.4b)

Yτ ≡
Yχ

τχ
(F.4c)

dYτ ≡
∂

dZ
(
Yχ

τχ
). (F.4d)

Using this terminology and writing Equations (F.2) and (F.3) in terms of Equations

(F.4a)–(F.4d), we have

PC = EJτ + FdYτ (F.5)
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and

∂

∂Z
(PC) = EdJτ + FdYτ (F.6)

where for convenient reference, the reader is reminded of the definitions below:

d

dZ
(

1

τχ
) = χ

1

τχ+1
(F.7a)

d

dZ
[Jχ (2Ωτ)] = −Ω

τ
J
′

χ (2Ωτ) (F.7b)

d

dZ
[Yχ (2Ωτ)] = −Ω

τ
Y
′

χ (2Ωτ) . (F.7c)

It should be noted that the complementary solution cannot be found on its own merit from

the conditions listed previously. In particular, the 2nd condition is not complete. That is, one

does not have a value for the pressure at Z2 for the complementary equation. To remedy this

shortcoming, one must consider the total pressure when considering conditions 2 and 3 above.

The total pressure consists of the particular solution plus the complementary function. In

our case, the particular solution is the Green’s function found previously (see Appendix E).

The Green’s functions, or more appropriately the pressure function formed from the Green’s

functions, completes the conditions that are needed to find the complementary solution. To

write this more clearly, we write the total pressure as

PT = PG + PC (F.8)

where PT is the total pressure, PG is the pressure derived from the Green’s Function, and

PC is the complementary pressure function as shown in (F.5).

Applying the first boundary condition above to (F.6), one can write

∂

∂Z
(PC)

∣∣∣∣
Z=0

= {EdJτ + FdYτ}|Z=0 = 0 (F.9)

where, upon solving, we have
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E = −F
dYτ |Z=0

dJτ |Z=0

. (F.10)

This equation was sufficient in relating the constants E and F, since the Green’s function

derivative (and, consequently, its corresponding pressure derivative) was already applied at

Z=0. This was done in order to satisfy one of the homogeneous boundary conditions needed

to find the Green’s function.

Next, we apply the 2nd condition above for the total pressure at Z = Z2. This can be

expressed generically as

PT|Z=Z2
=���

��:0
PG|Z=Z2

+ PC|Z=Z2
. (F.11)

Here we see that the pressure term from the Green’s function is 0 as this was the other

homogeneous condition that was used in finding the Green’s function coefficients. Hence, we

are left with the following equation for the continuity of pressure at Z2:

EJτ |Z=Z2
+ F dYτ |Z=Z2

= H (F.12)

where the equation in the top layer at Z = Z2 (Appendix D, (C.4)) evaluates to H.

Finally, from the 3rd condition above (which expresses the continuity of the derivative of

the pressure), we have

∂PT

∂Z

∣∣∣∣
Z=Z2

=
∂PG

∂Z

∣∣∣∣
Z=Z2

+
∂PC

∂Z

∣∣∣∣
Z=Z2

= −α
2

G (F.13)

where again we evaluated the expression for the top layer at Z = Z2.

Substituting for the various derivatives in (F.13), we have

∂PT

∂Z

∣∣∣∣
Z=Z2

= CdJτ |Z=Z2
+ DdYτ |Z=Z2

+ EdJτ |Z=Z2
+ FdYτ |Z=Z2

= −α
2

H. (F.14)
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Here it should be noted that the coefficients C and D are the coefficients from the Green’s

function pressure solution and they are evaluated at Z = Z1.

Multiplying (F.12) by α
2

and adding it to (F.14), we have

C|Z=Z1
dJτ |Z=Z2

+ D|Z=Z1
dYτ |Z=Z2

+ E
{α

2
Jτ + dJτ

}∣∣∣
Z=Z2

+ F
{α

2
Yτ + dYτ

}∣∣∣
Z=Z2

= 0.

(F.15)

Substituting for E from (F.10) in (F.15) and factoring, we find the expression for F to

be:

F =
C|Z=Z1

dJτ |Z=Z2
+ D|Z=Z1

dYτ |Z=Z2

dYτ
dJτ

∣∣∣
Z=0

{
α
2

Jτ + dJτ
}∣∣
Z=Z2

−
{
α
2

Yτ + dYτ

}∣∣
Z=Z2

. (F.16)

Once F is known, the expression for E is found to be:

E = −
C|Z=Z1

dJτ |Z=Z2
+ D|Z=Z1

dYτ |Z=Z2

dYτ
dJτ

∣∣∣
Z=0

{
α
2

Jτ + dJτ
}∣∣
Z=Z2

−
{
α
2

Yτ + dYτ

}∣∣
Z=Z2

dYτ |Z=0

dJτ |Z=0

. (F.17)

Now that E and F are found, H is easily found from (F.12) which is repeated here for

convenience:

H = EJτ |Z=Z2
+ F dYτ |Z=Z2

. (F.18)

All of the constants are now known for PG and PC , hence, the total pressure function,

PT can be calculated and studied.
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