
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-22-2020

Analysis of Human Affect and Bug Patterns to Improve Software Analysis of Human Affect and Bug Patterns to Improve Software

Quality and Security Quality and Security

Md Rakibul Islam
mislam3@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Islam, Md Rakibul, "Analysis of Human Affect and Bug Patterns to Improve Software Quality and Security"
(2020). University of New Orleans Theses and Dissertations. 2779.
https://scholarworks.uno.edu/td/2779

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.uno.edu%2Ftd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2779?utm_source=scholarworks.uno.edu%2Ftd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Analysis of Human Affect and Bug Patterns to Improve Software Quality and Security

A Dissertation

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy
in

Engineering and Applied Science
Computer Science

by
Md Rakibul Islam

B.S. Khulna University, 2008
May, 2020

This dissertation is dedicated to my parents
MST. BILKIS BEGUM and
late ABUL KALAM AZAD

ii

Acknowledgements

First and foremost, I cordially express my gratitude and heartfelt thanks to my adviser Dr. Minhaz
F. Zibran for allowing me to pursue my PhD under his supervision. Dr. Zibran has always been
very supportive, caring, inspirational, and motivational. His innovative ideas and proper guiding
immensely helped me to keep myself in the right direction of my PhD journey.

I also thank the members of my thesis advisory committe, Dr. Md Tamjidul Hoque, Dr. Shengru
Tu, Dr. Linxiong Li, and Dr. Syed Adeel Ahmed who have been very supportive by providing their
invaluable assistance, and feedback at all stages of this thesis. Their criticisms, comments, and ad-
vice are critical in making this dissertation more accurate and complete. Thanks to the anonymous
reviewers for their valuable comments and suggestions in improving the work and publications pro-
duced from this thesis.

I am thankful to my fellow researchers, faculty members, and staff of the Department of Com-
puter Science for their spontaneous cooperation and encouragement. I especially thank Aayush Nag-
pal, Md Kauser Ahmmed, Pradeep Jakibanjar, and Rahul Chatterjee with whom I jointly worked on
a couple of research projects. I would also like to thank the University of New Orleans for providing
me an excellent environment for research and the financial support.

My father who dreamed and believed that I could come this far to complete my PhD. Unfortu-
nately, he is no more with us to see me fulfilling his dream. I will never be able to say to him "I have
done it because of you, and I miss you a lot". My mother always remains by my side to give me love,
courage, guidance, and everything I need to overcome any difficult situations whenever that come
on my ways. I am highly obliged to my parents, and acknowledge their significant contributions in
my every achievement.

I am also grateful to my wife MST. Shahana Islam my soul-mate and mother of our son Surahbil
Sabib Tasfi. Living in a foreign country would never had been so easy without a caring partner
like her. She has been extremely supportive of me throughout my entire PhD journey and has made
countless sacrifices to help me get to this point. She always has tried to ease my stresses with her
sweet smile and love. I believe, when our son Tasfi will be a grown-up, he will be proud by realizing
what his father has achieved, and how he has been a source of inspiration in achieving that.

Last but not least, I extend my special thanks to my sister, uncles, other family members, and my
friends Rajeeb, Reja, Jubayer, Monir, Shafiqur, Atik, Pulok, Ratul, Rana, and others at UNO who
helped me in many ways, and gave me many moments of joy.

iii

Table of Contents

List of Figures . xii

List of Tables . xvii

Abstract .xviii

1 Introduction and Motivation 1
1.1 Mining and Analyzing Human Affect in Software Engineering 2

1.1.1 Sub-problem I: Detecting developers’ sentiments and emotions and emo-
tions with high accuracy . 3

1.1.2 Contribution . 3
1.1.3 Sub-problem II: Understanding developers’ sentiments 4
1.1.4 Contribution . 4

1.2 Mining and Analyzing Impacts of Developers’ Copy-Paste Actions 5
1.2.1 Sub-problem III: Understanding impacts of developers copy-paste action . 5
1.2.2 Contribution . 6

1.3 Mining and Analyzing Fixing Patterns of Developers’ Mistakes 6
1.3.1 Sub-problem IV: Understanding fixing patterns of software bugs 6
1.3.2 Contribution . 7

1.4 Outline of the Thesis . 7

2 Background 9
2.1 Software Engineering Terminologies . 9
2.2 Sentiment Related Terminologies . 10

2.2.1 Dimensional Framework of Emotions . 10
2.2.2 A Popular Sentiment Analysis Technique in Software Engineering 11

2.3 Terminologies Related to Developers’ Copy-paste Actions 12
2.3.1 Clone Granularity . 13

2.4 Code Smell . 13
2.5 Security Vulnerabilities . 14
2.6 Summary . 15

3 Research Methodology 16
3.1 Mining and Analyzing Developers’ Sentiments 16

iv

3.1.1 Improving Sentiment Analysis in Software Engineering Text 16
3.1.2 A Comparison of Domain Specific Sentiment Analysis Tools 17
3.1.3 A Comparison of Dictionary Building Methods for Sentiment Analysis . . 18
3.1.4 Detection of Emotions in the Valence-Arousal Space 19
3.1.5 Improving Detection of Emotions in the Valence-Arousal Space 20
3.1.6 Understanding and Exploiting Developers’ Sentimental Variations 21
3.1.7 Sentiment Analysis of Software Bug Related Commit Messages 22

3.2 Mining and Analyzing Impacts of Developers’ Copy-Paste Actions 23
3.2.1 A Study on Code Smells in Categories of Clones and Non-Cloned Code . . 23
3.2.2 A Study on Security Vulnerabilities in Clones and Non-Cloned Code . . . 24
3.2.3 On the Characteristics of Buggy Code Clones: A Code Quality Perspective 24

3.3 Mining and Analyzing Fixing Patterns of Developers’ Mistakes 25
3.4 Summary . 26

4 Detecting Developers’ Sentiments 27
4.1 Introduction . 27
4.2 Exploratory Study of the Difficulties in Sentiment Analysis 29

4.2.1 Benchmark Data . 30
4.2.2 Emotional Expressions to Sentimental Polarities 30
4.2.3 Computation of emotional scores from human rated dataset 31

4.2.3.1 Illustrative Example of Computing sentimental Polarity 32
4.2.4 Sentiment Detection Using SentiStrength 32
4.2.5 Analysis and Findings . 33

4.2.5.1 Insights into SentiStrength’s Internal Algorithm 34
4.2.5.2 Difficulties in Automated Sentiment Analysis in Software Engi-

neering . 34
4.3 Leveraging Automated Sentiment Analysis . 39

4.3.1 Creating a New Domain Dictionary for Software Engineering 40
4.3.1.1 Further Enhancements to the Preliminary Domain Dictionary . . 41

4.3.2 Inclusion of Heuristics in Computation of Sentiments 42
4.3.2.1 Addition of Contextual Sense to Minimize Ambiguity 42
4.3.2.2 Bringing Neutralizers in Effect 43
4.3.2.3 Integration of a Preprocessing Phase 43
4.3.2.4 Parameter Configuration for Better Handling of Negations 44

4.4 Empirical Evaluation of SentiStrength-SE . 44
4.4.1 Head-to-head Comparison Using a Benchmark Dataset 46
4.4.2 Comparison with respect to Human Raters’ Disagreements 48

v

4.4.3 Evaluating the Contribution of Domain Dictionary 51
4.4.3.1 Comparison between the SentiStrength and SentiStrength* 52

4.4.4 Our Domain Dictionary vs. SentiStrength’s Optimized Dictionary . . . 54
4.4.4.1 Optimizing SentiStrength’s Dictionary 54
4.4.4.2 Comparison between SentiStrengthO and SentiStrength* . 55

4.4.5 Comparison with a Large Domain-independent Dictionary 57
4.4.5.1 Choosing a Domain Independent Dictionary for Comparison . . 57
4.4.5.2 Range Conversion . 58
4.4.5.3 Comparison between SentiStrengthW and SentiStrength* . 58
4.4.5.4 Manual Investigation to Reveal Cause 60

4.4.6 Comparison with an Alternative Domain Dictionary 61
4.4.6.1 Building an Alternative Domain Dictionary 61
4.4.6.2 Comparison between theNewDictionary and SentiStrength-SE’s

Dictionary . 63
4.4.6.3 Manual Investigation to Determine Reasons 64

4.4.7 Evaluating the Contributions of Heuristics 65
4.4.7.1 Further Manual Investigation 68

4.4.8 Qualitative Evaluation of SentiStrength-SE 68
4.4.9 Threats to Validity . 70

4.4.9.1 Construct Validity and Internal Validity 70
4.4.9.2 External Validity . 71
4.4.9.3 Reliability . 71

4.5 Limitations of SentiStrength-SE and Future Possibilities 72
4.6 Related work . 73
4.7 Summary . 76

5 Comparison of Sentiment Analysis Tools 78
5.1 Introduction . 78
5.2 Datasets . 79

5.2.1 JIRA Issue Comments (JIC) Dataset . 79
5.2.1.1 Emotional Expressions to Sentimental Polarities 79
5.2.1.2 Assignment of Sentiments to Text 80

5.2.2 Stack Overflow Posts (SOP) Dataset . 80
5.2.3 Code Review Comments (CRC) Dataset 81

5.3 Sentiment Analysis Tools under Study . 81
5.4 Evaluation and Findings . 81

5.4.1 Comparative Accuracy Analysis . 82

vi

5.4.2 Analysis of Agreements . 84
5.5 Threats to Validity . 86
5.6 Related Work . 86
5.7 Summary . 87

6 Detection of Developers’ Emotions 88
6.1 Introduction . 88
6.2 Emotional Model . 89
6.3 DEVA . 89

6.3.1 Capturing Arousal . 90
6.3.1.1 Combining the SEA and ANEW dictionaries 90
6.3.1.2 Adjusting the ranges of arousal scores 91
6.3.1.3 Computing arousal score for text 91

6.3.2 Capturing Valence . 91
6.3.2.1 Computing valence score for text 92

6.3.3 Emotional States from Valence and Arousal 92
6.3.4 Heuristics in DEVA . 92

6.4 Evaluation . 96
6.4.1 Creation of Ground-Truth Dataset . 96

6.4.1.1 Construction of a manageable subset 96
6.4.1.2 Manual annotation by human raters 97

6.4.2 Measurement of Accuracy . 97
6.4.3 Comparison with a Baseline . 98
6.4.4 Comparison with TensiStrength . 99

6.5 Threats and Limitations . 100
6.6 Related work . 101
6.7 Summary . 102

7 Machine Learning Based Detection of Developers’ Emotions 104
7.1 Introduction . 104
7.2 Emotional Model . 105
7.3 Marvalous . 106

7.3.1 Preprocessing . 106
7.3.2 Feature Selection . 108
7.3.3 Algorithm Selection . 110

7.4 Evaluation . 110
7.4.1 Dataset . 111

vii

7.4.2 Evaluation of ML Algorithms . 111
7.4.3 Evaluation of Features in MarValous . 113
7.4.4 Comparison with DEVA . 114

7.5 Limitations and Threats to Validity . 116
7.6 Related work . 117
7.7 Summary . 118

8 Understanding and Exploiting Developers’ Sentimental Variations 119
8.1 Introduction . 119
8.2 Methodology . 121

8.2.1 Sentiment Analysis . 121
8.2.2 Metrics . 121
8.2.3 Tuning of SentiStrength . 122
8.2.4 Data Collection . 123

8.3 Analysis and Findings . 124
8.3.1 Emotional Variations in Different Task Types 124
8.3.2 Emotional Variations in Bug-Fixing Tasks 126
8.3.3 Emotional Variations in Days and Times 128
8.3.4 Emotional Impacts on Commit Lengths 129

8.4 Threats to Validity . 131
8.5 Related Work . 132
8.6 Summary . 133

9 Sentiment Analysis in Commit Messages of Buggy Code 135
9.1 Introduction . 135
9.2 Methodology . 136

9.2.1 Data Collection . 136
9.2.2 Sentiment Analysis . 137
9.2.3 Statistical Measurements . 137

9.3 Analysis and Findings . 137
9.3.1 Overall Emotional Variations . 138
9.3.2 Hour-wise Emotional Variations . 140

9.4 Threats to Validity . 142
9.5 Related Work . 143
9.6 Summary . 143

viii

10 Roles of Affects in Software Engineering 145
10.1 Sentiments Analysis in Software Design and Quality 145
10.2 Affective Analysis in Requirement Analysis and Software Maintenance 146
10.3 Correlational Analysis between Developers’ Affects and Their Performances 154
10.4 Sentiment Analysis in Software Social Forums 156
10.5 Summary . 158

11 Code Smells in Categories of Clones and Non-Cloned Code 159
11.1 Introduction . 159
11.2 Terminology and Metrics . 161

11.2.1 Characterizing Terminologies . 161
11.2.2 Metrics . 161

11.3 Study Setup . 164
11.3.1 Subject Systems . 164
11.3.2 Clone Detection . 165
11.3.3 Vulnerability Detection . 165

11.4 Analysis and Findings . 165
11.4.1 Comparative Vulnerability of Cloned vs. Non-Cloned Code 167
11.4.2 Comparative Vulnerability of Different Types of Clones 168
11.4.3 Relatively Frequent Vulnerabilities . 169

11.5 Threats to Validity . 171
11.6 Related Work . 172
11.7 Summary . 173

12 Security Vulnerabilities in Clones and Non-Cloned Code 174
12.1 Introduction . 174
12.2 Terminology and Metrics . 176

12.2.1 Security Vulnerabilities . 176
12.2.2 Metrics . 176

12.3 Study Setup . 179
12.3.1 Subject Systems . 179
12.3.2 Code Clone Detection . 179
12.3.3 Security Vulnerability Detection . 181

12.3.3.1 Flawfinder . 181
12.3.3.1.1 Limiting false positives in Flawfinder 181
12.3.3.1.2 Effectiveness of customized configuration 182

12.3.3.2 Cppcheck . 182

ix

12.4 Analysis and Findings . 184
12.4.1 Vulnerabilities in Clones vs. Non-Cloned Code 184
12.4.2 Densities of Vulnerabilities in Different Types of Clones 187
12.4.3 Severity of Security Risks in Cloned and Non-Cloned Code 188
12.4.4 Severity of Security Risks in Different Types of Clones 189
12.4.5 Frequently Encountered Categories of Vulnerabilities 189

12.5 Threats to Validity . 192
12.6 Related Work . 193
12.7 Summary . 194

13 Characteristics of Buggy Code Clones 195
13.1 Introduction . 195
13.2 Study Setup . 196

13.2.1 Subject Systems . 197
13.2.2 Clone Detection . 197
13.2.3 Distinguishing Buggy Clones . 197
13.2.4 Computation of Source Code Quality Metrics 198

13.3 Analysis and Findings . 198
13.3.1 Complexity of Buggy and Non-buggy Clones 200
13.3.2 Size Difference of Buggy and Non-buggy Clones 201
13.3.3 Documentation in Buggy and Non-buggy Clones 202
13.3.4 Coupling in Buggy and Non-buggy Clones 203

13.4 Threats to Validity . 204
13.5 Related Work . 205
13.6 Summary . 207

14 Exposing Bug-fix Patterns 208
14.1 Introduction . 208
14.2 Methodology . 210

14.2.1 Subject Systems . 210
14.2.2 Collecting Bug-fixing Commits . 210
14.2.3 Generating Abstract Syntax Tree of Bug-fixing Changes 211

14.3 Bug-fixing Edit Patterns . 213
14.3.1 Making Sense of GumtreeSpoon’s Outputs 214
14.3.2 Mapping GSPatterns to PanPatterns . 215
14.3.3 Dominant Bug-fixing Edit Patterns . 217

14.3.3.1 Detected PanPatterns . 217

x

14.3.3.2 New bug-fixing edit patterns 218
14.3.3.3 Comparative frequencies of the new patterns 219

14.4 Dominant Nesting Patterns . 220
14.4.1 Sequential Pattern Mining of Nested Code Structures 220
14.4.2 Clustering of Nesting Patterns . 221

14.4.2.1 Selection of clustering algorithm 221
14.4.2.2 Determining optimal number of clusters 221
14.4.2.3 Defining a distance function for k-medoids 221

14.4.3 Characterization of the Clusters by Experts 222
14.4.4 Mining Results . 222

14.5 Threats to Validity . 224
14.6 Related Work . 225

14.6.1 Identifying bug-fixing edit patterns . 225
14.6.2 Identifying code-change patterns . 227

14.7 Summary . 227

15 Conclusion 229
15.1 Summary . 229
15.2 Contributions . 231
15.3 Limitations . 233
15.4 Future Research Directions . 233

Bibliography 236

A Publications Out of This Dissertation Research 261
A.1 Co-authorship . 263

Vita . 265

xi

List of Figures

1.1 Research problem and thesis organization . 2

2.1 Simple bi-dimensional model of emotions . 11

4.1 Steps to create the domain dictionary for SentiStrength-SE 40
4.2 Default configuration of parameters in our SentiStrength-SE 44
4.3 Procedural steps in developing a new alternative domain dictionary 62

6.1 Simple bi-dimensional model of emotions . 89

7.1 Two-dimensional emotion classification model. 105

8.1 Procedural Steps of Our Empirical Study . 121
8.2 Distribution of mean positive, negative, and cumulative emotional scores in commits

messages dealing with different types of tasks . 125
8.3 Hierarchical agglomerative clustering of 30 developers enumerated as 1, 2, 3,… , 30 127
8.4 Distribution of mean positive, negative, and cumulative emotional scores in commit

comments posted in different days of week . 128
8.5 Distribution of mean positive, negative, and cumulative emotional scores in commit

comments posted in different periods of day . 129
8.6 Distribution of mean cumulative emotional scores of commit comments in groups

of different lengths . 130

9.1 Procedural steps of our empirical study . 137
9.2 Distributions of positive and negative emotional scores in commits messages dealing

with bug-introducing and bug-fixing tasks . 138
9.3 Distributions of positive and negative emotional scores in (a) bug-introducing and

(b) bug-fixing commits messages . 139
9.4 Distributions of (a) positive emotional scores and (b) negative emotional scores, in

bug-introducing and bug-fixing commit messages 141

11.1 Procedural Steps of the Empirical Study . 164
11.2 Distribution of Vulnerabilities in Cloned and Non-cloned Code 166
11.3 Distribution of LOC in Cloned and Non-cloned Code 166
11.4 Densities of Vulnerabilities w.r.t. BOC . 166
11.5 Density of Vulnerabilities w.r.t. LOC . 167

xii

11.6 Hierarchical Agglomerative Clustering of Vulnerabilities 170

12.1 Procedural Steps of the Empirical Study . 179
12.2 Distribution of  (a) in Cloned and Non-cloned Code and (b) in Different Types

of Clones . 184
12.3 Densities of  w.r.t. BOC . 185
12.4 Distribution of LOC (a) in Cloned and Non-cloned Code and (b) in Different Types

of Clones . 185
12.5 Densities of  w.r.t. LOC . 186
12.6 Distribution of  (a) in Cloned and Non-cloned Code and (b) in Different Types

of Clones . 186
12.7 Densities of  w.r.t. LOC . 187
12.8 Cumulative Severity Scores of  (a) in Cloned and Non-cloned Code and (b) in

Different Types of Clones . 188
12.9 Risk Severity Scores per KLOC in Cloned and Non-cloned Code 189
12.10Densities of top six CWE categories of  per KLOC 190
12.11Densities of top five CWE categories of  per KLOC 191

13.1 Procedural Steps of the Empirical Study . 196
13.2 Distribution of Complexity Metrics’ Values in Buggy and Non-buggy Cloned Code 200
13.3 Size Metrics’ Values in Buggy and Non-buggy Clones 202
13.4 Documentation Metrics’ Values in Buggy and Non-buggy Clones 203
13.5 Coupling Metrics’ Values in Buggy and Non-buggy Clones 204

14.1 Procedural steps to identify edit patterns and nesting patterns of bug-fixing changes 209
14.2 (a) Changing a literal in an if statement to fix a bug and the presentations of the

bug-fixing change using (b) GumTree and (c) GumtreeSpoon 212
14.3 (a) Adding an if statement as a precondition to fix a bug and (b) corresponding

representation of the bug-fixing change using GumtreeSpoon 212
14.4 (a) Updating parameter type (float to int) of a method to fix a bug and (b) corre-

sponding representation of the bug-fixing change using GumtreeSpoon 214
14.5 Insertion of a constructor to fix a bug . 218
14.6 Deletion of a throw statement to fix a bug . 218
14.7 Updating implementation of a throw statement to fix a bug 218
14.8 Changing class/target of a method call to fix a bug 219
14.9 Wrapping up existing code using a for loop to fix a bug 219
14.10Steps to identify nesting patterns that host bug-fixing edits 220

xiii

List of Tables

2.1 Role of a dictionary list in computation of sentimental scores in text 12
2.2 Abridged Definitions of Common Code Smells 14
2.3 Abridged Definitions of Common Security Vulnerabilities 14

4.1 Example of annotation of an issue comment by four human raters 30
4.2 The role of the dictionary lists in SentiStrength’s computation of sentimental

scores in text . 33
4.3 Frequencies of difficulties misleading sentiment analysis 34
4.4 Inter-rater disagreements in interpretation of sentiments 41
4.5 Textual characteristics of the words in the datasets 45
4.6 Structure of 2 × 2 contingency matrix of McNemar’s test for tools a and b 45
4.7 Head-to-head comparison of performances of the four tools/toolkits 47
4.8 Contingency matrix of McNemar’s test in comparison between the original

SentiStrength and SentiStrength-SE . 47
4.9 Comparison of tools’ accuracies for Set-A and Set-B issue comments 50
4.10 Contingencymatrix ofMcNemar’s test between the accuracies of SentiStrength-SE

and the original SentiStrength in Set-A dataset 50
4.11 Contingencymatrix ofMcNemar’s test between the accuracies of SentiStrength-SE

and the original SentiStrength in Set-B dataset 51
4.12 Comparison of performances between SentiStrength and SentiStrength* 52
4.13 McNemar’s test between SentiStrength and SentiStrength* 53
4.14 Examples of assigning sentiment scores to labeled comments 54
4.15 Comparison of performances of SentiStrengthO and SentiStrength* 56
4.16 Contingencymatrix forMcNemar’s test between SentiStrengthO and SentiStrength* 56
4.17 Conversion of valence scores from [+1,+9] to [-5,+5] 58
4.18 Comparison of performances of SentiStrengthW and SentiStrength* 59
4.19 Contingencymatrix forMcNemar’s test between SentiStrengthW and SentiStrength* 60
4.20 Inter-rater disagreements in interpretation of sentiments 63
4.21 Comparison of performances of SentiStrength-SEN and SentiStrength-SE 63
4.22 Contingency matrix for McNemar’s test between SentiStrength-SEN and

SentiStrength-SE . 64
4.23 Contributions of heuristics in SentiStrength-SE 66

xiv

4.24 Contingency matrix for McNemar’s test between SentiStrength-SE and
SentiStrength* . 67

4.25 Uses of (domain-independent) tools for sentiment analysis in software engineering 74

5.1 Summary of the Datasets Used in this Study . 79
5.2 Tools’ Accuracies for JIC Dataset and for SOP Dataset 83
5.3 Tools’ Accuracies for Code Review Comments Dataset 83
5.4 Agreements between Tool-pairs in the Detection of Sentiments 84
5.5 Agreements among Tool-trio in the Detection of Sentiments 85

6.1 Conversion of arousal scores from [+1,+9] to [-5,+5] 91
6.2 Emoticons expressing different emotions . 94
6.3 Interjections expressing different emotions . 94
6.4 Temporal terms included in the DEVA dictionary 95
6.5 Task completion indication terms in DEVA . 95
6.6 Inter-rater disagreements in categories of emotions 97
6.7 Comparison beween DEVA and Baseline . 98
6.8 Comparison between DEVA and TensiStrength 100

7.1 A customized stop-words list . 107
7.2 Categories of Software-specific Name Entities . 107
7.3 Emoticons and interjections expressing different emotions 109
7.4 Number of comments in categories of emotions 111
7.5 Comparison of ML algorithms in classification of emotional states 112
7.6 Comparison of features in MarValous . 112
7.7 Comparison between DEVA and MarValous . 115
7.8 Contingency matrix of McNemar’s test . 115

8.1 Examples of commit comments and computation of their emotional scores 123
8.2 Commits of different task categories andMWW tests between positive and negative

emotions in them . 125
8.3 MWW tests between cumulative emotional scores of commit messages dealing with

different types of tasks . 125
8.4 MWW tests over(d) scores of commit messages written by developers in each cluster127
8.5 MWW tests over cumulative emotional scores of commit messages written in differ-

ent days of week . 128
8.6 MWW tests over cumulative emotional scores of commit messages written in differ-

ent times of a day . 129

xv

8.7 Number of commit messages with different lengths (in words) and cumulative emo-
tional scores . 130

9.1 Subject Systems . 136
9.2 Results of MWW tests between positive and negative emotional scores of different

commit types posted in different times of a day 140
9.3 Results ofMWW tests of emotional scores between bug-introducing and bug-fixing

commit messages posted in different times of a day 141

11.1 Abridged Description of Major Vulnerabilities Found in the Subject Systems . . . 162
11.2 NiCad Settings For Code Clone Detection . 165
11.3 MWW tests over densities of vulnerabilities w.r.t. BOC in different categories of clones168
11.4 MWW tests over densities of vulnerabilities w.r.t. LOC in different categories of clones168
11.5 Vulnerabilities Dominating in Cloned and Non-cloned Code 170
11.6 MWW tests between density-distributions in cloned and non-cloned code for vulner-

abilities of each cluster . 171

12.1 Security vulnerabilities frequently identified in the systems 177
12.2 Subject systems and their LOC in cloned and non-cloned code 180
12.3 NiCad Settings For Code Clone Detection . 180
12.4 Reduction of false positives in vulnerability detection using the customized config-

uration of Flawfinder . 182
12.5 Detected security vulnerabilities and their severity in cloned and non-cloned code . 183
12.6 MWW tests over densities of top six CWE categories of  per KLOC in cloned

and non-cloned code . 190
12.7 MWW tests over densities of top five CWE categories of  per KLOC in cloned

and non-cloned code . 191

13.1 Subject Systems . 197
13.2 Source Code Quality Metrics Used in this Study 199
13.3 MWW Tests over the Distribution of ComplexityMetrics for Buggy and Non-buggy

Clones . 201
13.4 MWW Tests over Average Values of Size Metrics in Buggy and Non-buggy Cloned

Code . 201
13.5 MWW Tests over Average Values of Documentation Metrics in Buggy and Non-

buggy Cloned Code . 202
13.6 MWW Tests over Average Values of Coupling Metrics in Buggy and Non-buggy

Method Clones . 203

xvi

14.1 Subject Systems . 211
14.2 Distributions of PanPatterns identified in our dataset using GumtreeSpoon 216
14.3 Distributions of New Edit Patterns Identified in our Dataset using GumtreeSpoon . 217
14.4 Dominant Nesting Patterns That Host Bug-Fixing Edits 223

xvii

Abstract

The impact of software is ever increasing as more and more systems are being software operated.
Despite the usefulness of software, many instances software failures have been causing tremendous
losses in lives and dollars. Software failures take place because of bugs (i.e., faults) in the software
systems. These bugs cause the program to malfunction or crash and expose security vulnerabilities
exploitable by malicious hackers.

Studies confirm that software defects and vulnerabilities appear in source code largely due to the
human mistakes and errors of the developers. Human performance is impacted by the underlying
development process and human affects, such as sentiment and emotion. This thesis examines these
human affects of software developers, which have drawn recent interests in the community. For cap-
turing developers’ sentimental and emotional states, we have developed several software tools (i.e.,
SentiStrength-SE, DEVA, and MarValous). These are novel tools facilitating automatic detection
of sentiments and emotions from the software engineering textual artifacts.

Using such an automated tool, the developers’ sentimental variations are studied with respect
to the underlying development tasks (e.g., bug-fixing, bug-introducing), development periods (i.e.,
days and times), team sizes and project sizes. We expose opportunities for exploiting developers’
sentiments for higher productivity and improved software quality.

While developers’ sentiments and emotions can be leveraged for proactive and active safeguard
in identifying and minimizing software bugs, this dissertation also includes in-depth studies of the
relationship among various bug patterns, such as software defects, security vulnerabilities, and code
smells to find actionable insights in minimizing software bugs and improving software quality and
security. Bug patterns are exposed through mining software repositories and bug databases. These
bug patterns are crucial in localizing bugs and security vulnerabilities in software codebase for fix-
ing them, predicting portions of software susceptible to failure or exploitation by hackers, devising
techniques for automated program repair, and avoiding code constructs and coding idioms that are
bug-prone.

The software tools produced from this thesis are empirically evaluated using standard measure-
ment metrics (e.g., precision, recall). The findings of all the studies are validated with appropriate
tests for statistical significance. Finally, based on our experience and in-depth analysis of the present
state of the art, we expose avenues for further research and development towards a holistic approach
for developing improved and secure software systems.

Keywords: Software Engineering; Human affects; Sentiment; Emotion; Software Bug; Software
Security; Code Quality.

xviii

Chapter 1

Introduction and Motivation

Software systems have become ubiquitous these days, and technology rarely exists today without
a software interface or component. The impact of software is ever increasing as more and more
systems are being software operated. Since the emergence of software systems, many instances of
software failures have been causing tremendous losses in lives and dollars. Software failures take
place because of bugs (i.e., faults and security issues) in the software systems. The battle against
software bugs exists since software existed.

One of the main reasons why bugs exist is disappointingly simple: software is developed by
humans and humans are prone to error. Studies [1, 2] also confirm human error as one of the primary
causes of software defects. As a primary cause of software defects, human error can be the key in
understanding and minimizing software defects [2]. Surprisingly, much of software engineering
research in the last decade is technical and deemphasizes the human factors [3, 4, 2] that are mainly
liable for human error. In this thesis, we mine and analyze one important human factor, i.e., human
affect (e.g., feelings, sentiments, and emotions) that can be exploited in minimizing and identifying
human error to develop high-quality software systems.

Although companies, such as Facebook, Google, andMicrosoft take various initiatives to ensure
developers’ positive affective states tominimize human errors, it can notmake sure error/mistake free
programming. Thus, companies also take many measurements at source code level, such as software
testing [5, 6, 7, 8], and source code analysis (e.g., bug localization) [9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21] to tackle software bugs. Despite taking those measurements, a great amount of
software systems are regularly shipped with both known and unknown defects [22]. Indeed, there
are more bugs in real-world programs than human programmers can realistically address [23]. Thus,
in this thesis, we also analyze source code to identify actionable insights to minimize software bugs.

According to psychology, interestingly, far from being random, humans’ mistakes tend to fall
into recurrent patterns [24]. Developers, being human, frequently exhibit patterns in making deci-
sions and solving problems, and also in the errors/mistakes committed by them. Mistakes of similar
patterns are fixed in similar fashions, i.e., patterns exist in the mistakes’ fixings too. Knowing and an-
alyzing the patterns of the mistakes and their fixings can help developers in avoiding those mistakes,
and also in generating solutions automatically for them. Thus, we also mine and analyze patterns in
fixings of developers’ mistakes that result in software bugs.

1

While taking cares of developers’ affects, and making them aware of the patterns of the common
mistakes can minimize software bugs, and improve software quality, there will be still unexpected
issues in source code. Developers’ malpractices during development can lead to software bugs and
poor code quality. Developers often apply copy-paste technique when they are stressed (due to time
pressure), or inexperienced. However, the copy-paste technique is dangerously a bad practice [25]
since that may propagate software bugs, security vulnerabilities and other issues that hamper code
quality. Thus, we also mine and analyze developers’ copy-paste practice to identify its impacts on
software bugs and code quality.

In this thesis, we take on a holistic approach to mine and analyze (i) human affects expressed in
natural language texts (e.g., commit comments), and (ii) patterns of bugs identified in source code to
gain actionable insights that can be leveraged in minimizing bugs and improving quality and security
of software systems. In Figure 1.1, we pictorially summarize the research problem and divide that
into sub-problems that we address in this thesis. In the following, we also elaborately discuss the
research sub-problems, and briefly mention our contributions with respect to the sub-problems.

Analyzing Human
Affects and Bug

Patterns in Source
Code Repositories

 Detecting developers’
sentiments & emotions

Sub-problem I

Understanding impacts
& role of developers’

sentiments
Sub-problem II

Understanding impacts
of developers copy-

paste action
Sub-problem III

 Understanding fixing
patterns of developers

mistakes that cause
software bugs

Sub-problem IV

Research problem

 Analyzing Human
Affects Expressed in

Natural Language Text

 Analyzing Bug
Patterns Found in

Source Code

Sub-problem Chapters address
the sub-problems

Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 8
Chapter 9
Chapter 10

Chapter 11
Chapter 12
Chapter 13

Chapter 14

Figure 1.1: Research problem and thesis organization

1.1 Mining and Analyzing Human Affect in Software Engineering

Sentiments influence people’s activities and interactions, and thus sentiments affect task quality, pro-
ductivity, creativity, group rapport, and job satisfaction [26, 27, 28]. Software development, being

2

highly dependent on human efforts and interactions, is more susceptible to sentiments of the practi-
tioners. Hence, a good understanding of the developers’ sentiments and their influencing factors can
be exploited for effective collaborations, task assignments [29], and in devising measures to boost
up job satisfaction, which, in turn, can result in increased code quality and productivity [30], and
reduced software bugs.

Attempts are made to capture the developers’ sentiments in the workplace by means of tradi-
tional approaches such as interviews, surveys [31], and biometric measurements [32]. Capturing
sentiments with the traditional approaches is more challenging for projects relying on geograph-
ically distributed team settings and voluntary contributions (e.g., open-source projects) [33, 34].
Moreover, the traditional approaches involving direct observations and interactions with the devel-
opers often hinder their natural workflow. Thus, to supplement or complement those traditional
approaches, recent attempts detect sentiments from the software engineering textual artifacts such
as issue comments [35, 36, 34, 37, 38, 39, 40, 41], email contents [42, 43], and forum posts [4, 44].

1.1.1 Sub-problem I: Detecting developers’ sentiments and emotions and emotions
with high accuracy

For automated extraction of sentiments from textual artifacts in the software engineering domain,
three tools (i.e., SentiStrength [45], NLTK [46], and Stanford NLP [47]) are used while the use of
SentiStrength is found dominant [48, 49]. However, software engineering studies [35, 36, 37, 48,
50, 41, 51, 43] involving sentiment analysis repeatedly report concerns about the accuracy of those
sentiment analysis tools in the detection of sentimental polarities (i.e., negativity, positivity, and
neutrality) of plain text contents. For example, when applied in the software engineering domain,
SentiStrength and NLTK are respectively reported to have only 29.56% and 52.17% precision in
identifying positive sentiments, and even lower precision of 13.18% and 23.45% respectively in the
detection of negative sentiments [48, 43].

Those sentiment analysis tools are developed and trained using data from non-technical social
networking media (e.g., twitter posts, forum posts, movie reviews) and when operated in a technical
domain such as software engineering, their accuracy substantially degrades largely. Thus, the soft-
ware engineering community demands a more accurate automatic sentiment analysis tool [35, 36,
38, 48, 50, 52, 41, 53, 43].

1.1.2 Contribution

To address the sub-problem I, first, using a large benchmark dataset, we carry out an in-depth ex-
ploratory study for exposing the difficulties in automatic sentiment analysis in textual content in a
technical domain such as software engineering. To the best of our knowledge, this is the first in-
vestigation conducted on a public benchmark dataset to identify challenges of sentiment analysis

3

in software engineering. Then, we propose techniques and realize those in SentiStrength-SE,
a prototype tool that we develope for improved sentiment analysis in software engineering textual
content. The tool is also made freely available online [54]. We further conduct a qualitative evalua-
tion of our tool. Based on the exploratory study and the qualitative evaluation, we outline plans for
further improvements in automated sentiment analysis in the software engineering area.

We also compare the performance of SentiStrenghth-SE against its latter developed domain-
specific counterparts (e.g., Senti4SD [55], EmoTxt [56]) to identify the strengths and weaknesses of
the domain-specific tools for future considerations. Finally, we select four dictionaries, developed
using four distinct methods, to quantitatively compare their sentiment detection performances in
software engineering textual artifacts [57] to identify which methods have higher/lower potential to
perform well in constructing a domain dictionary to fit in SentiStrenghth-SE.

Then, we develop another tool DEVA [58] that is capable of detecting four emotional/sentimental
states such as excitement, stress, depression, and relaxation. For empirical evaluation of DEVA,
we construct a ground-truth dataset consisting of 1,795 JIRA issue comments, each of which are
manually annotated by three human raters. This tool along with the ground-truth dataset are also
made freely available online [59].

Next, we develop MarValous, which is the firstMachine Learning (ML) based tool that performs
significantly better than DEVA in detecting individual emotional states excitation, stress, depression,
relaxation and neutrality from software engineering texts. By using nine preprocessing steps and
seven features, we have developed the tool MarValous that consists of nine popular and effective
supervised ML algorithms for emotion/sentiment analysis.

1.1.3 Sub-problem II: Understanding developers’ sentiments

Few studies have been performed in the past for understanding the role of sentiments on software
development and engineering. Some of those earlier studies address when and why employees get
affected by sentiments [26, 34, 4, 41, 43], whereas some other work address how [60, 61, 62, 63, 31]
the sentiments impact the employees’ performance at work.

Despite few earlier studies, software engineering practices still lack theories and methodologies
for addressing human factors including sentiments [3, 4]. Hence, the community calls for research
on the roles and impacts of sentiments in software engineering [61, 28, 64].

1.1.4 Contribution

In this thesis, we conduct a quantitative empirical study of the sentimental variations in different
types of development activities (e.g., bug-fixing tasks), development periods (i.e., days and times)
and in projects of different sizes involving teams of variant sizes [37, 38]. The study also includes
an in-depth investigation of sentiments’ impacts on software artifacts (i.e., commit messages) and

4

exploration of scopes for exploiting sentimental variations in software engineering activities. The
findings from this work add to our understanding of the role of sentiments in software development
and expose scopes for exploitation of sentimental awareness in improved task assignments and col-
laborations, which ultimately result in high-quality software.

We also study the sentimental variations in bug-introducing and bug-fixing commit mes-
sages [65]. The results advance our understanding of the extent to which sentiments affect tasks that
result software bugs, and how such bug-introducing commits differ from bug-fixing ones in terms
of the sentiments expressed in the commit messages.

1.2 Mining and Analyzing Impacts of Developers’ Copy-Paste Actions

Developers often reuse existing code by copy-paste to increase their productivity. Such a reuse
mechanism typically results in duplicate or very similar code fragments commonly known as code
clones. Aside from such deliberate cloning, unintentional clones are also created for various reasons
under diverse circumstances [66, 67]. Software systems typically have 9%-17% [68] cloned code,
and the proportion is sometimes found to be even 50% [69] or higher [70].

Despite few benefits [71] of cloning, code clones are detrimental in most cases [71, 72, 73]. Code
clone is a notorious code smell (i.e., a symptom indicating source of future problems) [74], that cause
serious problems such as reduced code quality, code inflation, program faults, security vulnerabil-
ities, and bugs propagation [72, 75]. Clones are thus a major contributor to the high maintenance
cost for software systems, and as much as 80% of software costs are spent on maintenance [76].
Therefore, it is necessary to keep the number of clones at the minimum and to remove them from
source code by refactoring. However, not all the clones in a software system are harmful [71], nei-
ther it is feasible to remove all the clones in source code by refactoring [77, 75]. Therefore, we must
distinguish the context and characteristics of clones, which make them malign as opposed to the
benign clones.

Towards this goal, several studies have been performed in the past to examine or exploit compar-
ative stability of clones as opposed to non-cloned code [78, 79, 80, 81, 82], relationships of clones
with bug-fixing changes [25, 72, 83, 84, 85, 86, 87, 88, 89], and the impacts of clones on program’s
changeability [73, 90, 91].

1.2.1 Sub-problem III: Understanding impacts of developers copy-paste action

Earlier attempts [85, 86, 87, 89] to determine detrimental impacts of developers copy-paste actions,
that result in code clones, relied on long-term history of bug fixing changes preserved in version
control system. While such studies make important contributions, their approaches do not fit well
for proactive clone management, especially at the early stages of software development process
where significantly long history of bug-fixing changes are not available. Therefore, to determine the

5

detrimental impacts of code clones, we need to apply static source code analysis techniques that do
not require any bug-fixing history.

Moreover, software security has become one of the most pressing concerns recently. However,
the security aspects of code clones have never been studied before, although copy-paste of vulnerable
components and source code (i.e., code clones) multiply security vulnerabilities [92, 93, 94].

1.2.2 Contribution

To gain insights into detrimental implications of code cloning, we use static code analysis tech-
niques to mine code smells and security vulnerabilities and study them in cloned and non-clone
code [95, 96]. Using statistical analyses, we derive insights into how the code smells and security
vulnerabilities cause software bugs and impact code quality of cloned code compared to non-clone
code. We also conduct another study on the characteristics of buggy clones from a code quality
perspective [97].

Findings from the earlier studies add to our understanding of the characteristics and impacts of
clones, which can be useful in clone-aware software development and in devising techniques for
minimizing the negative impacts (e.g., software bugs) of code clones and increasing code quality.

1.3 Mining and Analyzing Fixing Patterns of Developers’ Mistakes

We also mine and analyze fixing patterns of developers’ mistakes that cause software bugs. Efforts
to fix bugs consume a vast amount of total expenses in software maintenance [98] while nearly 80%
of software cost is spent in maintenance [76]. Typical bug-fixing efforts mainly involve two types
of tasks: (a) localization of bugs in source code, and (b) bug-fixing edits to the source code. A deep
understanding of the common bug-fixing patterns can immensely help in minimizing efforts in both
of these tasks and also contribute to devising techniques for automated program repair (APR). A
good understanding of the bug-fixing patterns can also help a developer to proactively avoid writing
code that leads to program faults.

1.3.1 Sub-problem IV: Understanding fixing patterns of software bugs

Earlier studies on discovering bug-fix patterns remained focused on bug-fixing edit patterns, which
include bug-fixing changes to the source code at a very fine-grained level without capturing the
nesting levels of the surrounding code. Thus, earlier studies are limited in two ways: (i) a very fine-
grained level presentation of patterns makes it difficult to perceive easily by a human, and (ii) those
studies missed nested code structure (i.e., nesting patterns), which is an important aspect of bug-fix
patterns.

6

1.3.2 Contribution

In this work, we capture both bug-fixing edit patterns and nesting patterns (i.e., frequent nested code
structures) of bug-fixing edits through an in-depth (quantitative and qualitative) analysis of 4,653
buggy revisions of five software systems drawn from diverse application domains. We identify a
total of 38 bug-fix patterns organized in 14 categories. This is the highest number of bug-fix patterns
identified in a single study. Four of these patterns are completely new, and 34 of them confirm those
reported in earlier studies. We also study locations of bug-fix changes in nested code structures and
identify 37 nesting patterns that hold the majority of the bug-fix edits. These nesting patterns are
new (i.e., never targeted before), and add a new dimension in our understanding of bug-fix patterns.

1.4 Outline of the Thesis

In this chapter (Chapter 1), we have introduced the research problem and its sub-problems along with
their backgrounds. We also briefly mentioned the contributions with respect to the sub-problems.
The remaining of this thesis is organized as follows. Chapter 2 presents the terminologies and con-
cepts that develop the background to follow the remaining of the thesis. Chapter 3 describes the
research methodology where we briefly describe each work with respect to the problem and motiva-
tion it addresses, and how we solve the problem.

Chapter 4 to Chapter 14 are related to the respective sub-problems as shown in Figure 1.1.
In Chapter 4, we identify the challenges of detecting sentiment from software engineering texts
and describe how the identified challenges are addressed to develop the first software engineer-
ing domain specific sentiment analysis tool SentiStrength-SE. We compare the performance of
SentiStrength-SE tool against its counterparts in Chapter 5. In Chapter 6, we present the first
emotions analysis tool, DEVA, which is especially designed for software engineering text to capture
excitation, stress, depress, and relaxation. Later, using machine learning and natural language pro-
cessing techniques, we develop the tool MarValous, which is an improved version of DEVA. The
development procedure of MarValous and its evaluation results are presented in Chapter 7.

Chapter 8 presents a quantitative empirical study of the sentiment variations in different types
of development activities (e.g., bug-fixing tasks) and development periods (i.e., days and times), in
addition to in-depth investigation of emotions’ impacts on software artifacts (i.e., commit messages)
and exploration of scopes for exploiting emotional variations in software engineering activities. In
Chapter 9, we present a study of sentiment variations in bug-introducing and bug-fixing commit
messages that helps in understanding of the extent to which sentiments impact software development
tasks. In Chapter 10, we identify the roles of human affects, i.e., sentiments and emotions in various
software engineering activities.

7

In Chapter 11, we describe a comparative study on different types of clones (i.e., copy-pasted
code) and non-cloned code on the basis of their code-smells. To explore and understand the security
vulnerabilities and their severity in different types of clones compared to non-clone code, we present
a study in Chapter 12. Chapter 13 presents a comparative study to distinguish the characteristics
(from a code quality perspective) of buggy and non-buggy clones. Chapter 14 presents an in-depth
quantitative and qualitative analysis of buggy revisions in understanding of the common patterns of
bug-fixing changes. Finally, Chapter 15 concludes this thesis.

Major parts of this thesis are already published in peer reviewed journals and international con-
ferences. A list of publications that are outcomes of this dissertation research are presented in Ap-
pendix A.

8

Chapter 2

Background

In this chapter, we introduce the terminologies and concepts necessary to develop the background
that will help to follow the remaining of this thesis. We begin with the definitions of software
engineering terminologies in Section 2.1. Section 2.2 and Section 2.3 respectively describe the
terminologies and concepts related to sentiments and developers’ copy-paste practice. In Section 2.4
and Section 2.5, we respectively introduce code smells and security vulnerabilities that can be spread
in source code due to developers’ copy-paste practice. Finally, Section 2.6 summarizes the chapter.

2.1 Software Engineering Terminologies

Software Bug: A software bug is an error, flaw, failure or fault in a computer program or system
that causes it to produce an incorrect or unexpected result, or to behave in unintended ways.

Issue Repository: An issue repository provides a great facility to describe and keep track of any
type of issue such as tasks, enhancements, and bugs for a software project. In an issue repository,
an issue can be shared and discussed among the team members in written form.

Issue Comments: In an issue repository, all the descriptions of issues and discussions among
team members (about those issues) happen in written forms, which are known as issue comments.

Version Control System: A version control system keeps track of every modification to the
code in a special type of software repository. It helps a software team to manage changes to source
code over time.

Code Commit: In version control systems, a code commit adds the latest code changes to a
shared code repository.

Commit messages: While committing code in a version control system, a developer usually
describes or illustrates his code using a textual message, which is known as a commit message or
comment.

Bug-introducing commit: A type of code commit, which introduce a bug in software, is known
as a bug-introducing commit.

Bug-fixing commit: A code commit that fixes a bug is known as a bug-fixing commit.

9

2.2 Sentiment Related Terminologies

Sentiment: According to the Merriam-Webster online dictionary [99], sentiment refers to an
attitude, thought, or judgment prompted by feeling. In other words, sentiment is the attractiveness
(or adverseness) to an event, object, or situation [100].

There are mainly two types of sentiments as follows.
1. Positive sentiment, which expresses positive feeling toward an object or action. As for exam-

ple, in the following text, the writer expresses positive sentiment.
Example: I love to fix the bug in the software.

2. Negative sentiment, which expresses negative feeling toward an object or action. As for ex-
ample, in the following text, the writer expresses negative sentiment.
Example: The bug seems very nasty to solve.

A feeling without sentiment is neutral in sentiment.
Emotion: Emotions are the expressions of affect and/or feelings. Similar to this thesis, in many

studies, the concepts of emotions, sentiments, feeling and affect are also used interchangeably [101,
102].

Arousal: Arousal represents the intensity of emotional activation [103]. It is the sensation of
being mentally awake and reactive to stimuli, i.e., vigor and energy or fatigue and tiredness [104]. In
the following example, the three exclamation signs at the end of the comment, express high arousal
of the comment writer.

Example: I am very happy to see it is useful and used !!!."

2.2.1 Dimensional Framework of Emotions

Here we present a simple bi-dimensional model [105, 61] of emotions, which is a variant of the
dimensional framework, commonly known as VAD (aka PAD) model [106]. In the bi-dimensional
model, as shown in Figure 7.1, the horizontal dimension presents the sentimental polarities also
known as valence and the vertical dimension indicates the levels of arousal.

The dimensions are bipolar where the valence dimension ranges from negative to positive and
the arousal dimension ranges from low to high. Many emotional states of a person can be determined
by combining valence and arousal. For example, positive valence and high arousal, in combination,
indicate the emotional/sentimental state excitement. However, instead of deriving many emotional
states, for simplicity a large number studies use a set of four major classes of emotional states that
include excitement, stress, depression, and relaxation [61, 107].

10

Positive
Valence

Negative
Valence

High Arousal

Low Arousal

RelaxationDepression

Stress Excitation

Figure 2.1: Simple bi-dimensional model of emotions

As shown in Figure 7.1, the four emotional states are very distinct, as each state constitutes
emotions, which are quite different compared to the emotions of other states [105]. Thus, the model
is unequivocal to recognize emotions, simple and easy to understand.

2.2.2 A Popular Sentiment Analysis Technique in Software Engineering

Sentiment analysis using a lexical based technique on a given piece of text (e.g., a commit message)
c computes a pair ⟨�c , �c⟩ of integers, where +1 ≤ �c ≤ +5 and −5 ≤ �c ≤ −1. Here, �c and �c
respectively represent the positive and negative sentimental scores for the given text c.

A given text c is considered to have positive emotions if �c > +1. Similarly, a text is held
containing negative emotions when �c < −1. Note that, a given text can exhibit both positive and
negative emotions at the same time, and a text is considered emotionally neutral when the emotional
scores for the text appear to be ⟨1,−1⟩.

Procedure to compute sentimental scores: A lexicon-based sentiment classifier (LSC) main-
tains a dictionary of several lists of words and phrases as its key dictionaries to compute sentiments
in texts. Among these lists, the sentimental words list, list of booster words, list of phrases, and list
of negations words play a vital role in the computation of sentiments. The entries in all these lists
except the list of negation words are pre-assigned with sentimental scores. The negation words in
the fourth list are used to invert the sentimental polarity of a term when the term is located after a
negation word in a text.

For an input sentence, an LSC extracts individual words from the sentence and searches for each
of the individual words in the sentimental words list to retrieve the corresponding sentimental scores.
A similar search is made in the list of booster words to strengthen or weaken the sentimental scores.

11

Table 2.1: Role of a dictionary list in computation of sentimental scores in text
Sample
Sentence

Sent. Score Dictionary
Lists in Use Explanation�c �c

It’s a good
feature. 2 -1 Sentimental

Words
The sentimental score of the word
‘good’ is pre-assigned to 02;
so the sentence is assigned positive score 02.

It’s a very
good
feature.

3 -1 Booster
Words

As booster word ‘very’ is used
before the sentimental word,
the sentence is assigned a positive score 03

It’s not good
feature. 1 -2 Negations

Sentimental polarity of the sentimental
word is inverted in
here due to the use of the negation
word ‘not’ before sentimental word

It’s a
killer feature 2 -1 Phrases

“killer feature" is a phrase in the
dictionary with positive score 02.
Although the word ‘kill’ carries negative sentiment,
its effect is overridden by the sentimental
score of the enclosing phrase

The list of phrases is used to distinguish groups of words as commonly used phrases. When such a
phrase is identified, the sentimental score of the phrase overrides sentimental scores of the individual
words, which constitute the phrase. The examples in Table 4.2 articulate how an LSC depends on a
dictionary list for computing sentimental scores in plain texts.

2.3 Terminologies Related to Developers’ Copy-paste Actions

As stated earlier, developers’ copy-paste actions can result in duplicate or similar code fragments,
which are roughly known to be code clones. In the following, we present the definitions of different
types of code clone.

Type-1 Clones: Identical pieces of source code with or without variations in whitespaces (i.e.,
layout) and comments are called Type-1 clones [67].

Type-2 Clones: Type-2 clones are syntactically identical code fragments with variations in the
names of identifiers, literals, types, layout and comments [67].

Type-3 Clones: Code fragments, which exhibit similarities as of Type-2 clones and also allow
further differences such as additions, deletions or modifications of statements are known as Type-3
clones [67].

Notice that by the definitions above, Type-2 clones include Type-1 while Type-3 clones include
both Type-1 and Type-2. Let, T1, T2, and T3 respectively denote the sets of Type-1, Type-2, and Type-
3 clones in a software system. Mathematically, T1 ⊆ T2 ⊆ T3. Thus, we further define two subsets
of Type-2 and Type-3 clones as follows.

12

Pure Type-2 Clones: A set of pure Type-2 clones include only those Type-2 clones that do not
exhibit Type-1 similarity. Mathematically, T p2 = T2 − T1, where T p2 denotes the set of pure Type-2
clones.

Pure Type-3 Clones: A set of pure Type-3 clones include only those Type-3 clones, which do
not exhibit similarities at the levels of Type-1 or Type-2 clones. Mathematically, T p3 = T3−T2, where
T p3 denotes the set of pure Type-3 clones.

2.3.1 Clone Granularity

The definitions of all three types of clones are based on the notion of the code segment, and contigu-
ous portion of code at different levels of granularity have been used in the literature. As concerned
with source code, the most commonly used granularities are at the level of the entire source file,
class definition, method body, code block, and statements, which yield the notion of code clones of
the following five types:

File clone: When two files are found to have contained similar enough source code, they are
called file clones.

Class clone: Two classes of object-oriented source code can be considered as class clones if
they have an identical or near-identical code.

Function clone: Two functions are considered as clones when the bodies of the functions consist
of code that is similar enough.

Block clone: When two blocks of code (marked with opening and closing braces or indentation,
or the like) are similar enough, they are called block clones. To consider clones at the granularity of
blocks, one must decide how to deal with nested blocks (i.e., blocks inside another block).

Arbitrary statements clone: When two groups of statements at arbitrary regions of the source
file are found to be similar enough, they are also regarded as clones.

2.4 Code Smell

Code smells are certain structures or patterns in code that indicate violations of fundamental de-
sign principles, which negatively impact design quality. Code smells are usually not bugs; they are
not technically incorrect and do not prevent the program from functioning. Instead, they indicate
weaknesses in design that may slow down development or increase the risk of bugs or failures in the
future. Few commonly found code smells are listed and briefly describe in Table 11.1.

13

Table 2.2: Abridged Definitions of Common Code Smells
Code Smell Definition

LawOfDemeter Program unit needing too much knowledge about other units.
LocalVariableCouldBeFinal Local variable assigned only once but not declared final.
ShortVariable A field, local, or parameter with a too short name.
OnlyOneReturn Method with more than one exit points.
IfStmtsMustUseBraces ‘if’ statements without accompanying curly braces.
AssertionsShouldIncludeMes-
sage Assertions including no error message.

UselessParentheses Useless parentheses in code.
IfElseStmtsMustUseBraces ‘if-else’ statements without accompanying curly braces.
AvoidInstantiatingObjectsIn-
Loops Instantiation of new objects inside loop.

2.5 Security Vulnerabilities

A software security vulnerability is defined as a weakness in a software system that can lead to a
compromise in integrity, availability or confidentiality of that software system. For example, buffer
overflow and dangling pointers are two well-known security vulnerabilities. The cybersecurity com-
munity maintains a community-developed list of common software security vulnerabilities where
each category of vulnerability is enumerated with a CWE (Common Weakness Enumeration) num-
ber [108]. For example, CWE-120 refers to those vulnerabilities that fall into the CWE category of
classic buffer overflow. More examples of security vulnerabilities along with their CWE enumera-
tions are presented in Table 12.1.

Table 2.3: Abridged Definitions of Common Security Vulnerabilities
Security Vulnerability Description

Buffer Overflow An application attempts to write data past the end of a buffer (CWE-120).
Uncontrolled Format String Submitted data of an input string is evaluated as a command by the application

(CWE-134).
Integer Overflow The result of an arithmetic operation exceeds the maximum size of the integer

type used to store it (CWE-190).
Null Pointer Dereference Dereference a pointer that is null (CWE-476).
Memory Leak Not release allocated memory (CWE-401).
Null Termination Errors A string is incorrectly terminated (CWE-170).

14

2.6 Summary

In this chapter, we have introduced the terminologies and preliminary concepts that help in forming
the foundation to understand the thesis. At the beginning of the chapter, we have presented dif-
ferent terminologies of software engineering. Then, we have introduced the terminologies related
sentiments. We have also introduced the two-dimensional emotional model and discussed a popular
lexical-based sentiment analysis technique. Latter, we have presented definitions of different types
of code clone and granularity. We have also described how code clones can appear in the source
code due to the developers’ intention or even without their awareness. Finally, we have introduced
code smell and security vulnerability along with examples.

15

Chapter 3

Research Methodology

In this chapter, we briefly describe the research methodologies followed to address the problem de-
fined in Chapter I. Our research methodology for addressing the problem comprised of the following
aspects: (i) describing a problem’s background, (ii) our objective/solution, (iii) methodology to ful-
fill the objective/solution, and (iv) result.

To address sub-problem I (i.e., accurately detecting sentiment and emotion), we develop three
state-of-the-art software engineering domain specific tools (i.e., SentiSrength-SE, DEVA, and
MarValous), which are described in subsection 3.1.1, subsection 6.3, and subsection 3.1.5 respec-
tively. We further address sub-problem I by comparing our SentiSrength-SE against its domain
specific counterparts in subsection 3.1.2. In subsection 3.1.3, we compare four dictionaries, devel-
oped using four distinct methods, to compare their sentiment detection performances in software
engineering textual artifacts.

To address sub-problem II, respectively in subsection 3.1.6 and subsection 3.1.7, we describe
two studies conducted to understand and exploit sentiments in software engineering activities. To
address sub-problem III (related to developers’ copy-paste actions), we present three studies in sub-
section 3.2.1, subsection 3.2.2, and subsection 3.2.3 respectively. To address sub-problem IV, we
present the study in subsection 3.3. Finally, we summarize the chapter in Section 3.4.

3.1 Mining and Analyzing Developers’ Sentiments

In this section, first, we describe the work performed to advance state-of-the-art tools for sentiment
analysis in software engineering. Then, we describe the empirical studies wherewemine and analyze
sentiments expressed in software engineering textual artifacts.

3.1.1 Improving Sentiment Analysis in Software Engineering Text

Problem Background: Here we address the sub-problem I that we have described along with
its background in subsection 1.1.1. Recalling, the software engineering community demands a more
accurate and automatic sentiment analysis tool.

Objective: To address the sub-problem I, first, we aim to identify the difficulties responsible for
low accuracy of general purpose sentiment tools when applied in the software engineering domain.

16

Then, the identified difficulties are carefully addressed to develop a tool for improved sentiment
analysis in text especially designed for application in the software engineering domain.

Methodology: Using a benchmark dataset, we carry out an in-depth exploratory study and ex-
pose 12 difficulties in automatic sentiment analysis in textual content in software engineering. To
overcome the majority of those difficulties, we develop a domain dictionary specific for software
engineering text. We also develop a number of heuristics to address some of the other identified dif-
ficulties. Our new domain dictionary and the heuristics are integrated into SentiStrength-SE, a
tool we develop for improved sentiment analysis in textual contents in a technical domain, especially
in software engineering.

Results: Over a large dataset consisting of 5,600 issue comments, we carry out quantitative
comparisons of our domain-specific SentiStrength-SE with the three most popular domain in-
dependent tools/toolkits (i.e., NLTK [46], Stanford NLP [47], and the SentiStrength [45]. The
empirical comparisons suggest that our domain-specific SentiStrength-SE is significantly supe-
rior to its domain independent counterparts in detecting sentiments in software engineering textual
artifacts.

3.1.2 A Comparison of Domain Specific Sentiment Analysis Tools

Problem Background: Sentiment Analysis (SA) in software engineering (SE) text has drawn
immense interests recently. The poor performance of general-purpose SA tools, when operated on
SE text, has led to the recent emergence of domain-specific SA tools specially designed for SE text.
However, these domain-specific tools were tested on a single dataset and their performances were
compared mainly against general-purpose tools. Thus, two things remain unclear: (i) how well these
tools really work on other datasets, and (ii) which tool to choose in which context.

Objective: We aim to answer two following questions: (i) Can we identify a tool, which shows
the highest accuracy across different datasets? (ii) To what extent do the different sentiment analysis
tools (dis)agree with each other?

Methodology: We select two machine learning based tools Senti4SD [55] and EmoTxt [56] and
a rule based tool SentiStrength-SE [109, 110], that are designed to detect sentiments in software
engineering texts. Then, we operate those three tools on three ground-truth datasets collected from
the JIRA issue comments [52], Stack Overflow posts [55] and code review comments [111]. For
each tool, the accuracy of sentiment detection is measured in terms of precision, recall, and F-
score separately computed for each of the three sentimental polarities (i.e., positivity, negativity and
neutrality). We also compute agreements among the tools for each sentiment.

Results: Our study reveals that the individual tools exhibit their best performance on the dataset
they were originally tested at the time of their release. The overall accuracies of the tools tend to
decrease when they are operated on a different dataset. The accuracies of the tools largely vary across

17

different datasets and sentimental polarities. Thus, none of the tools demonstrates substantially
superior accuracies across sentiments and datasets. However, SentiStrength-SE is found to have
consistently exhibited the highest recall and F-score while maintaining competitive precision across
all the datasets and sentiments.

From agreement analysis among the tools, we find that the tools’ agreements largely vary (be-
tween 49.74% and 94.70%) depending on the datasets they are operated on and the sentimental po-
larities they detect. The tools’ agreements remain the lowest in the detection of negative sentiments.
Their accuracies also remain lower in the detection of negative sentiments compared to non-negative
sentiments. Thus, we suspect that all the tools more or less struggle in accurately detecting negative
sentiments in SE text.

3.1.3 A Comparison of Dictionary Building Methods for Sentiment Analysis

Problem Background: Sentiment Analysis (SA) in Software Engineering (SE) texts suffers
from low accuracy primarily due to the lack of an effective dictionary. The use of a domain-specific
dictionary can improve the accuracy of SA in a particular domain. To build a dictionary, several
approaches [112, 113, 114, 115] have been attempted in the past resulting in variations in their
performances [114, 116, 115]. The construction of a domain dictionary is a tedious task [115] and
it is often difficult to know in advance which approach for dictionary building can suite better for a
particular domain [113]. A few studies were conducted on texts from non-technical domains (e.g.,
movie and restaurant reviews) to find out appropriate dictionaries for those domains [114, 117].
However, no such study was performed for a technical domain such as SE.

Objective: To identify the dictionary building methods, which have higher/lower potential to
perform well in constructing a domain dictionary for SA in SE texts.

Methodology: In this study, we use our recently developed SA tool SentiStrength-SE [110].
This lexical tool is developed in a modular manner to allow replacing its default dictionary with a
different one. we study four different dictionaries (SentiStrength [45], AFINN [118], MPQA [119],
and VADER [120]). We select four dictionaries based on their well-establishment in SA and recency
of their development. In addition, we make sure that those selected dictionaries are developed using
distinct methodologies. We use a benchmark dataset [52], which is the only publicly available such
dataset in the SE domain [110, 52]. In our work, we use the Group-2 and Group-3 portions of
the dataset [52] containing 1,600 and 4,000 issue comments extracted from the JIRA issue tracking
system. For each of the four dictionaries, we configure SentiStrength-SE to use that particular
dictionary and run the tool on issue comments. The outputs of the tool are compared with the
annotated benchmark dataset to compute the performance of each dictionary in terms of precision,
recall (and F-score) in the detection of positive, negative, and neutral sentiments.

18

Results: Considering the overall average accuracy, the SentiStrength dictionary appears to
have performed the best, followed by AFINN and VADER. Although AFINN performs slightly better
than SentiStrength in detecting positive and neutral sentiments, its performance is much worse
compared to SentiStrength in detection of negative sentiments. Thus, AFINN falls behind the
SentiStrength dictionary in overall accuracy.

It is interesting that MPQA is found to have performed the worst, although the dictionary incorpo-
rates contextual information and subjectivity. SE text being informal, containing technical jargons,
often including misspelled words and grammatically incorrect sentences can be among the reasons
for MPQA’s poor performance in our study. Thus, it appears that simple lexicon-based approaches for
dictionary creation work better for SA in SE text.

3.1.4 Detection of Emotions in the Valence-Arousal Space

Problem Background: Software engineering specific sentiment analysis tools are limited in
capturing sentiments at the necessary depth [50]. Existing approaches are able to detect valence
(i.e., positivity and negativity of emotional polarities) only and fail to capture arousal or specific
sentimental/emotional states such as excitement, stress, depression, and relaxation. At work, soft-
ware developers frequently experience these sentiments [31], which can be attributed to their work
progress. For example, a developer typically feels relaxed, if he makes enough progress in his as-
signed jobs. Otherwise, the developer feels stressed. Thus, these sentiments need to be identi-
fied [121] with improved accuracy where the existing approaches fall short [50].

Objective: We develop an emotion analysis tool DEVA, which is capable of capturing the afore-
mentioned sentimental/emotional states through the detection of both arousal and valence in software
engineering text.

Methodology: DEVA applies a dictionary-based lexical approach particularly designed for op-
eration on software engineering text. For the capturing both arousal and valence, the tool uses two
separate dictionaries (an arousal dictionary and a valence dictionary) that we develop by exploiting
a general-purpose dictionary and two domain dictionaries especially crafted for software engineer-
ing text. DEVA also includes a preprocessing phase and seven heuristics to improve the accuracy of
detection of those sentiments.

Results: For empirical evaluation of DEVA, we construct a ground-truth dataset consisting of
1,795 JIRA issue comments, each of which are manually annotated by three human raters. This
dataset is also a significant contribution to the community. From a quantitative evaluation using this
dataset, DEVA is found to have achieved 82.19% precision and 78.70% recall. We also implement
a baseline approach and compare that against DEVA. A recently released similar, (but not identical)
tool TensiStrength [122] is also compared against our DEVA. From the comparisons, DEVA is found
substantially superior to both the baseline and TensiStrength.

19

3.1.5 Improving Detection of Emotions in the Valence-Arousal Space

ProblemBackground: While the dictionary and rule based emotionmining tool DEVA performs
better compared to its counterparts, it comes with a few limitations, such as out of vocabulary word
and unseen rules, which are specific to dictionary and rule based tools. Such limitation can be
overcome using Machine Learning based techniques.

Objective: We develop the first Machine Learning (ML) based tool MarValous for improved
detection of four emotional states excitation, stress, depression, and relaxation expressed in software
engineering texts.

Methodology: For improved classification performances, MarValous consists of two major
modules: (i) data preprocessing and (ii) feature selection. In the preprocessing phase, we sani-
tize the input text to get rid of probable noises (e.g., code snippets, URL, and numeric expressions),
which otherwise could mislead classification. From the sanitized texts, we select seven features that
include (i) n-gram, (ii) emoticons, (iii) interjections, (iv) exclamation mark, (v) uppercase words
(e.g., GOOD), (vi) elongated words (e.g., goood), and (vii) use of +1 and −1 in sentences (it is
a common practice of developers to put +1 and −1 to express positive and negative emotions in
comments while discussing technical issues among them in Stack Overflow and JIRA).

Then, we select following nine ML algorithms based on their popularity in sentiment/emotion
classification.

(i) Adaptive Boosting (AB) [105], (ii) Decision Tree (DT) [105, 123], (iii) Gradient Boosting
Tree (GBT) [124], (iv) K-nearest Neighbors (KNN) [105], (v) Naive Bayes (NB) [105, 125], (vi)
Random Forest (RF) [126], (vii) Multilayer Perceptron (MLP) [127], (viii) Support Vector Machine
with Stochastic Gradient Descent [123] (SGD), and (ix) Linear Support VectorMachine (SVM) [105,
128].

Results: To evaluate the performance of MafrValous, we create a unifying dataset by combin-
ing two different benchmark datasets created by Islam and Zibran [129] and Novielli et al. [130]. To
identify the best ML algorithm with the best features’ combination, we run each of the algorithm us-
ing different combinations of the features on the dataset. From quantitative evaluations, we find that
the algorithm SVMwith all the seven features performs the best. Then, we have released MarValous
by setting SVM as its default algorithm while enabling all those features in it.

Then, we compare the performance of MarValous against the only available baseline tool DEVA.
From a quantitative evaluation we find that, on average, across all the emotions, MarValous out-
performs the baseline, as it has achieved 19.04% higher precision and 8.19% higher recall values
compared to DEVA.

20

3.1.6 Understanding and Exploiting Developers’ Sentimental Variations

Problem Background: We address the sub-problem II described along with its background
in subsection 1.1.3. Recalling, here the software engineering community demands more empirical
studies to understand the roles and impacts of sentiments in the software engineering domain.

Objective: To address sub-problem II, we aim to conduct a quantitative empirical study on the
characteristics and impacts of sentiments extracted from developers’ commit messages.

Methodology: To meet the objective, we ask the following five research questions to answer.
(i) RQ1: do developers express different levels (e.g., high, low) and polarity (i.e., positivity, nega-
tivity, and neutrality) of sentiments when they commit different types (e.g., bug-fixing, new feature
implementation, refactoring, and dealing with energy and security-related concerns) of development
tasks? (ii) RQ2: can a group of developers be distinguished who express more sentiments (positive
or negative) in committing a particular type (e.g., bug-fixing) of tasks? (iii) RQ3: do the developers’
polarity (i.e., positivity, negativity, and neutrality) of sentiments vary in different days of a week and
in different times of a day? (iv) RQ4: do the developers’ sentiments have any impact on the lengths
of commit comments they write? and (v) RQ5: do the sizes of the projects and development teams
have any impacts on the developers’ emotional states at work?

We study commit messages for open-source projects obtained through Boa [131]. Boa is a re-
cently introduced infrastructure with a domain specific language and public APIs to facilitate mining
software repositories. We use the largest (as of February 2016) dataset from Boa, which is catego-
rized as “full (100%)" and consists of more than 7.8 million projects collected from GitHub before
September 2015.

From this large dataset, we select the top 50 projects having the highest number of commits.
We study all the commit messages in these projects, which constitute 490,659 commit comments.
Associated information such as committers, commit timestamps, types of underlying work, revisions
and project IDs are kept in a local relational database for convenient access and query.

For each of the commit messages, we compute the sentimental scores. Then, to answer a research
question, we identify the required attributes from the collected dataset, and then, conduct various
statistical analyses between the identified attributes and computed emotional scores. For example,
to answer RQ1, we identify types of tasks of each of the commit messages and calculate a task-type
wise emotional score. Then, we conduct Mann-Whitney-Wilcoxon (MWW) statistical test [132] to
verify whether developers express different levels of sentiments when they commit different types
of tasks.

Results: It is found that the polarities of the developers’ sentiments significantly vary depending
on the type of tasks they are engaged in. The developers express equally high positive and negative
sentiments in committing in energy-aware tasks compared to other tasks. With respect to the po-
larities of commit messages, positive sentiments are found to be significantly higher than negative

21

sentiments in commits for bug-fixing and refactoring tasks. On the other hand, negative sentiments
are significantly higher in security-related commits. Surprisingly, the same scenario is found for new
feature implementation commits.

A significant positive correlation is found between the lengths of commit messages and the sen-
timents expressed in developers. When the developers remain emotionally active, they tend to write
longer commit comments. The developers tend to render in themmore positive sentiments when they
work in smaller projects or in smaller development teams, although the difference is not very large.
Surprisingly, no significant variations are found in the developers’ sentiments in commit messages
posted at different times and days of a week.

Based on emotional contents in commit messages, a group of developers can be distinguished
who express more positive sentiments at bug-fixing commit messages, another group with the oppo-
site trait, and the third group of developers who equally render both positive and negative sentiments
at bug-fixing activities. The same approach can be applied for other types of tasks to distinguish
potential developers for improved tasks assignment.

3.1.7 Sentiment Analysis of Software Bug Related Commit Messages

Problem Background: Few studies have successfully used sentiment as a factor in prioritizing
applications’ features to develop [133] and in predicting qualities of developers’ interactions (e.g.,
asking questions and answering) in technical forums [134, 135, 136] and bug severity [137]. Con-
sidering the above studies, it deems sentiments can be an influential factor to be used in complex
machine learning and deep learning systems to predict bugs (i.e., buggy commits) in software. How-
ever, before using sentiments to predict bugs, we need to empirically evaluate of such possibility in
the context.

Objective: To address sub-problem II, here we study the variations of polarities (i.e., posi-
tivity, negativity, and neutrality) of sentiments expressed in two types of commit messages, (i) bug-
introducing and (ii) bug-fixing, which are posted by developers contributing to open-source projects.

Methodology: In particular, we ask and answer the following two research questions- (i) RQ1:
do developers express different levels (e.g., high, low) and polarity (i.e., positivity, negativity, and
neutrality) of sentiments in bug-introducing and bug-fixing commits? (ii) RQ2: do the developers?
polarity (i.e., positivity, negativity, and neutrality) of sentiments vary in different times of a day in
bug-introducing and bug-fixing commits.

To address the aforementioned research questions, we extract bug-introducing and bug-fixing
commit messages from three selected projects. To study the relationship between developers sen-
timents and times of a day when commit comments are posted (i.e., RQ2), we divide the 24 hours
of a day in three periods (a) 00 to 08 hours as before working hours, (b) 09 to 17 hours as regular
working hours and (c) 18 to 23 hours as after working hours. Then, for each project, we organize the

22

commit messages into three disjoint sets based on their timestamps of posting. Then, we compute
emotional scores of commit messages using the tool SentiStrength-SE [110, 109], which is the
first domain specific sentiment analysis tool for software engineering texts. Finally, to answer the
research questions we conduct statistical analyses.

Results: In our study, we find that both bug-introducing and bug-fixing commit messages have
overall statistically significantly higher positive emotional scores compared to negative emotional
scores. We also observe similar findings while analyzing emotional scores in the bug-introducing
and bug-fixing commit messages with respect to three working periods. An exception is found in
the latter case where no significant difference found between positive and negative emotional score
in bug-fixing commit messages posted during after work hours.

While comparing with respect to a particular sentiment (i.e., for positive or negative sentiment),
we find no significant difference between overall emotional scores in bug-introducing and bug-fixing
commit messages. The earlier finding also holds true while analyzing emotional scores in bug-
introducing and bug-fixing commit messages with respect to three working periods with an excep-
tion where positive emotional scores are significantly higher in bug-fixing commits posted during
working hours.

3.2 Mining and Analyzing Impacts of Developers’ Copy-Paste Actions

Here, we address the sub-problem III described along with its background in subsection 1.2.1. Us-
ing state-of-the-art static analysis tools, we mine code smells and security vulnerabilities in cloned
and non-clone code, and compute various metrics (e.g., densities of those code smells and security
vulnerabilities in terms of line and block) to compare and analyze them in different types of clones
and non-clone code. We also present another comparative study on the characteristics of the buggy
and non-buggy clones from a code quality perspective. In the following subsection 3.2.1, subsec-
tion 3.2.2, and subsection 3.2.3, we present the studies conducted to address sub-problem III.

3.2.1 A Study on Code Smells in Categories of Clones and Non-Cloned Code

Objective: To address sub-problem III, we conduct a study to identify relationships of code
smells with different types of code clones and non-clone code.

Methodology: Using a clone detection tool NiCad, we detect different types of code clones
in 97 software systems. For the detection of vulnerabilities in source code, we use PMD (version
5.3.2) [12], which applies a static rule-based approach for source code analysis and identification of
potential vulnerabilities in a software system. Upon detection of the clones and code smells, for each
of the subject systems, we identify the co-locations of code clones and code smells, distinguish the
code smells located in non-cloned portion of code, and compute densities of code smells in cloned

23

and non-cloned code with respect to (w.r.t.) syntactic blocks of code (BOC) as well as w.r.t. lines of
code (LOC).

Results: We have found no significant differences between the densities of vulnerabilities in
code clones and clone-free source code. Surprisingly, among the three categories (i.e., Type-1, pure
Type-2, and pure Type-3) of clones studied in our work, Type-1 clones are found to be the most vul-
nerable whereas pure Type-3 are the least. In addition, our study identifies a set of five vulnerabilities
that appear more frequently in cloned code compared to non-cloned code. Another set of 11 vulner-
abilities are also distinguished, which are more frequently found in non-cloned code as opposed to
cloned code.

3.2.2 A Study on Security Vulnerabilities in Clones and Non-Cloned Code

Objective: To address sub-problem III, we conduct another comparative study on security vulnera-
bilities and their severities in different types of clones compared to non-clone code.

Methodology: Using a state-of-the-art clone detector and two reputed security vulnerability
detection tools, we detect clones and vulnerabilities in 8.7 million lines of code over 34 software
systems. After detecting clones and vulnerabilities in the software systems, we determine locations
of the detected vulnerabilities in different types of code (i.e., cloned and non-cloned code). A vulner-
ability is said to be located in cloned code if the reported source code line number of that vulnerability
included in a cloned block, otherwise, the vulnerability is located in the non-cloned block. For each
of the subject systems, we identify the co-locations of code clones and vulnerabilities, distinguish
the vulnerabilities located in a non-cloned portion of code. Then, we perform a comparative study
of the vulnerabilities identified in different types of clones and non-cloned code.

Results: Our study reveals that the security vulnerabilities found in code clones have higher
severity of security risks compared to those in non-cloned code. However, the proportion (i.e.,
density) of vulnerabilities in clones and the non-cloned code does not have any significant difference.

3.2.3 On the Characteristics of Buggy Code Clones: A Code Quality Perspective

Objective: To address sub-problem III, we again conduct a comparative study to analyze char-
acteristics of the buggy and non-buggy clones from a code quality perspective.

Methodology: We select 2,077 bug-fixing revisions of three open-source software systems writ-
ten in Java. We use the NiCad [138] clone detector (version 3.5), to detect method/function clones
having at least five lines of code in those selected revisions. Clones that are affected by the bug-fixing
commits are identified as buggy clones while the rest other clones are considered non-buggy.

Using a free version of SourceMeter [139] (version 8.2.0-x64-linux), we compute 29 source
codemetrics for each of the buggy and non-buggy clones. We use total 29 source code qualitymetrics
grouped into four categories- (i) complexity metrics, which measure the complexity of source code

24

elements; (ii) size metrics, which measure the basic properties of the analyzed system in terms of
different cardinalities (e.g., number of code lines). (iii) documentation metrics, which measure the
number of comments and documentation of source code elements in the system; and (iv) coupling
metrics, whichmeasure the inter-dependencies of source code elements. The, we statistically analyze
the code quality metrics’ values in buggy and non-buggy cloned code.

Results: In our study, we have found that buggy clones have higher complexity and lower main-
tainability compared to non-buggy cloned methods. Moreover, buggy clones are found to be larger
in size measured in terms of the number of statements and lines of code. Surprisingly, we have found
that the non-buggy method clones have a higher number of parameters while too many parameters
in functions are generally considered problematic and recognized as a code smell [74].

As expected, compared to non-buggy clones, documentation quality of buggy clones are found
inferior. Overall, buggy clones are found to be more coupled than non-buggy clones. However,
it is interesting to have found that the buggy cloned methods have significantly higher outgoing
dependencies (i.e., outgoing invocations) compared to non-buggy clones. In the case of incoming
dependencies, no significant difference is found between buggy and non-buggy clones.

3.3 Mining and Analyzing Fixing Patterns of Developers’ Mistakes

Objective: We address the sub-problem IV described along with its background in subsec-
tion 1.3.1. In this work, we capture both bug-fixing edit patterns and nesting patterns (i.e., frequent
nested code structures) of bug-fixing edits through an in-depth (quantitative and qualitative) analysis
of 4,653 buggy revisions of five software systems drawn from diverse application domains.

Methodology: For each subject system, we collect the bug-fixing revisions. Then, for each bug-
fixing revision, using AST based code differencing tools, we detect differences between the bug-
fixing revision and its immediate previous revision. Collections of such AST differences are then
analyzed to detect bug-fixing edit patterns and dominant nested code structures of code changes to
fix bugs.

Results: In this work, we have reported 38 bug-fixing edit patterns, which is the highest number
of bug-fixing edit patterns identified in a single study. Moreover, we have discovered four new bug-
fixing edit patterns. The rest 34 identified bug-fixing edit patterns confirm those reported earlier.

Using sequential pattern mining and clustering techniques, we have also exposed 37 new bug-
fixing nesting patterns, which capture the locations of the bug-fixing edits within the nested code
structure surrounding them. These new set of nesting patterns is a novel contribution that adds a
new dimension to our understanding of bug-fixing patterns.

Our analysis of the nesting patterns reveals additional insights into bug-fix patterns. We have
found that any nodes/blocks associated with if blocks are the most bug-prone. The nesting pattern
“if block inside loop block” experience the highest number bug-fixing edits, followed by the “if

25

block inside another if block” nesting pattern. Our analysis of the nesting patterns also indicates
nodes/blocks inside try-catch and synchronized are bug-prone.

3.4 Summary

In this chapter, we have presented our research methodologies that are used to address sub-problems
I, II, III and IV. To address sub-problem I, we have developed two state-of-the-art tools (i.e.,
SentiStrenghth-SE and DEVA) to detect sentiments/emotions at different levels. We have also
compared our tool SentiStrenghth-SE against its domain-specific counterparts and found that
SentiStrenghth-SE shows consistently higher recall value compare to other tools. However, our
DEVA is the only tool available to detect excitement, stress, depression, and relaxation in software
engineering textual artifacts. We have also compared four dictionaries, developed using four dis-
tinct methods, to compare their sentiment detection performances in software engineering textual
artifacts.

Then, we have conducted a quantitative empirical study of the emotional variations in different
types of development activities (e.g., bug-fixing tasks), development periods (i.e., days and times)
and in projects of different sizes involving teams of variant sizes. The study also includes an in-depth
investigation of emotions’ impacts on software artifacts (i.e., commit messages) and exploration of
scopes for exploiting emotional variations in software engineering activities. Next, we also have
studied the emotional variations in bug-introducing and bug-fixing commit messages.

Later, we have presented a comparative study on different types of clones and non-cloned code on
the basis of their code smell. The study has found no significant differences between the densities of
vulnerabilities in code clones and clone-free source code. Then, another similar comparative study
is conducted on the basis of security vulnerabilities instead of code smells. The latter study has
revealed that the security vulnerabilities found in code clones have higher severity of security risks
compared to those in non-cloned code. Then, we have presented one more comparative study on
the characteristics of the buggy and non-buggy clones from a code quality perspective. Finally, we
have presented an in-depth study of both bug-fixing edit patterns and nesting patterns (i.e., frequent
nested code structures) of bug-fixing edits.

26

Chapter 4

Detecting Developers’ Sentiments

Accurate detection of sentiments/emotions with high accuracy is the key to conduct sentiments/emo-
tions related analysis in software engineering. However, sentiment analysis in software engineering
textual artifacts has long been suffering from inaccuracies in those few tools available for the pur-
pose. We conduct an in-depth qualitative study to identify the difficulties responsible for such low
accuracy. Majority of the exposed difficulties are then carefully addressed through building a do-
main dictionary and appropriate heuristics. These domain-specific techniques are then realized in
SentiStrength-SE, a tool we have developed for improved sentiment detection in text especially
designed for application in the software engineering domain.

This chapter is organized as follows. In Section 4.1, we provide the motivation behind this
particular work. In Section 4.2, we describe the exploratory study to identify the difficulties in
detecting sentiments. Section 4.3 describes how we develop a tool for improved sentiment analysis
by overcomingmost of the difficulties. Section 4.4 illustrates howwe evaluate our sentiment analysis
tool. In Section 4.5, we identify the limitations of the tool and future possibilities. We describe the
related work in Section 4.6. Finally, we conclude in Section 4.7.

4.1 Introduction

Emotions are an inseparable part of human nature, which influence people’s activities and interac-
tions, and thus emotions affect task quality, productivity, creativity, group rapport and job satisfac-
tion [26]. Software development, being highly dependent on human efforts and interactions, is more
susceptible to emotions of the practitioners. Hence, a good understanding of the developers’ emo-
tions and their influencing factors can be exploited for effective collaborations, task assignments [29],
and in devising measures to boost up job satisfaction, which, in turn, can result in increased produc-
tivity and projects’ success.

Several studies have been performed in the past for understanding the role of human aspects
on software development and engineering. Some of those earlier studies address when and why
employees get affected by emotions [26, 34, 4, 41, 43], whereas some other work address how [60,
37, 38, 62, 39, 63, 31, 140] the emotions impact the employees’ performance at work.

Attempts are made to capture the developers’ emotions in the workplace by means of traditional
approaches such as, interviews, surveys [31], and biometric measurements [32]. Capturing emo-

27

tions with the traditional approaches is more challenging for projects relying on geographically dis-
tributed team settings and voluntary contributions (e.g., open-source projects) [34, 33]. Moreover,
the traditional approaches involving direct observations and interactions with the developers often
hinder their natural workflow. Thus, to supplement or complement those traditional approaches,
recent attempts detect sentiments from the software engineering textual artifacts such as issue com-
ments [34, 41, 37, 38, 39, 40, 35, 36], email contents [43, 42], and forum posts [4, 44].

For automated extraction of sentiments from textual artifacts in the software engineering do-
main, three tools (i.e., SentiStrength [45], NLTK (Natural Language Toolkit) [46], and Stanford
NLP [47]) are used while the use of SentiStrength is found dominant [48, 49]. However, software
engineering studies [41, 43, 37, 35, 36, 48, 50, 51] involving sentiment analysis repeatedly report
concerns about the accuracy of those sentiment analysis tools in the detection of sentimental polar-
ities (i.e., negativity, positivity, and neutrality) of plain text contents. For example, when applied in
the software engineering domain, SentiStrength and NLTK are respectively reported to have only
29.56% and 52.17% precision in identifying positive sentiments, and even lower precision of 13.18%
and 23.45% respectively in the detection of negative sentiments [43, 48].

Those sentiment analysis tools are developed and trained using data from non-technical social
networking media (e.g., twitter posts, forum posts, movie reviews) and when operated in a technical
domain such as software engineering, their accuracy substantially degrades largely due to domain-
specific variations in meanings of frequently used technical terms. Although such a domain depen-
dency is indicated as a general difficulty against automated sentiment analysis in textual content, we
need a deeper understanding of why and how such domain dependencies affect the performance of
the tools, and how we can mitigate them. Indeed, the software engineering community demands a
more accurate automatic sentiment analysis tool [41, 43, 38, 35, 36, 50, 52, 53]. In this regard, this
chapter makes three major contributions:

• Using a large benchmark dataset, we carry out an in-depth exploratory study for exposing the
difficulties in automatic sentiment analysis in textual content in a technical domain such as
software engineering.

• We develop a domain dictionary specific for software engineering text. To the best of our
knowledge, this is the first domain-specific sentiment analysis dictionary for the software en-
gineering domain.

• We propose techniques and realize those in SentiStrength-SE, a prototype tool that we
develop for improved sentiment analysis in software engineering textual content. The tool
is also made freely available online [54]. SentiStrength-SE is the first domain-specific
sentiment analysis tool especially designed for software engineering text.

28

Instead of building a tool from scratch, we develop our SentiStrength-SE on top of
SentiStrength [45], which, till date, is the most widely used tool for automated senti-
ment analysis in software engineering [110]. From quantitative comparison with the original
SentiStrength [45], NLTK and Stanford NLP as operated in the software engineering domain,
we find that our domain-specific SentiStrength-SE significantly outperforms those domain
independent tools/toolkits. We also separately evaluate the contributions of individual major
components (i.e., the domain dictionary and heuristics) of our SentiStrength-SE in sentiment
analysis in software engineering text. Our evaluations demonstrate that, for software engineering
text, domain-specific sentiment analysis techniques perform substantially better in detecting senti-
ments accurately. We further conduct a qualitative evaluation of our tool. Based on the exploratory
study and the qualitative evaluation, we outline plans for further improvements in automated
sentiment analysis in the software engineering area.

This chapter is a significant extension to our recent work [110]. This chapter presents new evi-
dence and insights by including a deeper analysis of the difficulties in automated sentiment analysis
in software engineering text. The techniques applied in the development of SentiStrength-SE are
described in greater detail. The empirical evaluation of the tool is substantially extended with deeper
qualitative analyses and direct comparisons with NLTK and Stanford NLP in addition to the previ-
ously published comparison with the original SentiStrength. We include separate evaluations of
the individual major components (i.e., the domain dictionary and heuristics) of SentiStrength-SE.
The quantitative comparisons are validated in the light of statistical tests of significance.

4.2 Exploratory Study of the Difficulties in Sentiment Analysis

To explore the difficulties in automated sentiment detection in text, we conduct our qualitative anal-
ysis around the Java version of SentiStrength [45]. This Java version is the latest release of
SentiStrength, while the older version, strictly for use on Windows platform, is still available. As
mentioned before, SentiStrength is a state-of-the-art sentiment analysis tool most widely adopted
in the software engineering community. The reasons for choosing this particular tool are further
justified in Section 4.6.

English dictionaries consider the words ‘emotion’ and ‘sentiment’ as synonymous, and accord-
ingly the words are often used in practice. Although there is arguably a subtle difference between
the two, in describing this work, we consider them synonymous. We formalize that, aside from
subjectivity, a human expression can have two perceivable dimensions: sentimental polarity and
sentimental intensity. Sentimental polarity indicates the positivity, negativity, or neutrality of ex-
pression while sentimental intensity captures the strength of the emotional/sentimental expression,
which sentiment analysis tools often report in numeric emotional scores.

29

4.2.1 Benchmark Data

In our work, we use a “Gold Standard" dataset [52, 141], which consists of 5,992 issue comments
extracted from JIRA issue tracking system. The entire dataset is divided in three groups named as
Group-1, Group-2 and Group-3 containing 392, 1,600 and 4,000 issue comments respectively. Each
of the 5,992 issue comments are manually interpreted by n distinct human raters [52] and annotated
with emotional expressions as found in those comments. For Group-1, n = 4 while for Group-2
and Group-3, n = 3. This is the only publicly available such dataset in the software engineering
domain [52, 110].

A closed set  of emotional expressions are used in the annotation of the issue comments in the
dataset, where  ={joy, love, surprise, anger, sad, fear}. The human raters labeled each of the issue
comments depending on whether or not they found the sentimental expressions in the comments.
Formally,

 rj
i
() =

{

1, if emotion i is found in  by rater rj .
0, otherwise.

An example of human annotations of an issue comment from the dataset is shown in Table 4.1.

Table 4.1: Example of annotation of an issue comment by four human raters
Issue comment (Comment ID-53257): Thanks for the patch;
Michale. Applied with a few modifications.

Human Emotions (i)
Raters (rj) Joy Love Surprise Anger Sadness Fear
Rater-1 (r1) 1 1 0 0 0 0
Rater-2 (r2) 0 0 0 0 0 0
Rater-3 (r3) 1 0 0 0 0 0
Rater-4 (r4) 1 0 0 0 0 0
Interpretation: rater-1 found ‘joy’ and ‘love’ in the comment, while rater-3
and rater-4 found the presence of only ‘love’ but rater-2 did not identify any
of the emotional expressions.

4.2.2 Emotional Expressions to Sentimental Polarities

Emotional expressions joy and love convey positive sentimental polarity, while anger, sadness, and
fear express negative polarity. In some cases, an expression of surprise can be positive in polarity,
denoted as surprise+, while other cases can convey a negative surprise, denoted as surprise−. Thus
the issue comments in the benchmark dataset, which are annotated with surprise expression, need to
be further distinguished based on the sentimental polarities they convey. Hence, we get each of such
comments reinterpreted by three additional human (computer science graduate students) raters, who
independently determine polarities of the surprise expressions in each comments.

30

We consider a surprise expression in a comment polarized negatively (or positively), if two of
the three rates identify negative (or positive) polarity in it. We found 79 issue comments in the
benchmark dataset, which were annotated with the surprise expression. 20 of them express surprise
with positive polarity and the rest 59 convey negative surprise.

Thenwe split the set  of emotional expressions into two disjoint sets as + = {joy, love, surprise+}
and − = {anger, sad, fear, surprise−}. Thus, + contains only the positive sentimental expres-
sions and − contains only the negative sentimental expressions. A similar approach is also used in
other studies [48, 142] to categorize emotional expressions according to their polarities.

4.2.3 Computation of emotional scores from human rated dataset

For each of the issue comments in the “Gold Standard" dataset, we compute sentimental polarity
using the polarity labels assessed by the human raters. For an issue comment  rated by n human
raters, we compute a pair ⟨�rjc , �rjc ⟩ of values for each of the n raters rj (where 1 ≤ j ≤ n) using
Equation 4.1 and Equation 4.2:

�rjc =

⎧

⎪

⎨

⎪

⎩

1, if ∑

i�+
 rj
i
() > 0

0, otherwise.
(4.1)

�rjc =

⎧

⎪

⎨

⎪

⎩

1, if ∑

i�−
 rj
i
() > 0

0, otherwise.
(4.2)

Thus, if a rater rj finds the presence of any of the positive sentimental expressions in the comment
, then �rjc = 1, otherwise �rjc = 0. Similarly, if any of the negative sentimental expressions are
found in the comment , then �rjc = 1, otherwise �rjc = 0.

An issue comment  is considered neutral in sentimental polarity, if we get the pairs ⟨�rjc , �rjc ⟩
for at least n−1 (i.e., majority) raters where �rjc = 0 and �rjc = 0. If the comment is not neutral, then
we determine the positive and negative sentimental polarities of that issue comment. To do that,
using the following equations, we count the number of human raters, +() who found positive
sentiment in the comment  and also the number of raters,−(), who found negative sentiment in
the comment .

+() =
n
∑

j=1
�rjc

and −() =
n
∑

j=1
�rjc

An issue comment  is considered exhibiting positive sentiment, if at least n − 1 human raters
found positive sentiment in the message. Similarly, we consider a comment having negative sen-

31

timent if at least n − 1 raters found negative sentiment in it. Finally, we compute the sentimental
polarities of an issue comment  as a pair ⟨�ℎc , �ℎc ⟩ using Equation 4.3 and Equation 4.4.

�ℎc =

⎧

⎪

⎨

⎪

⎩

0, if  is neutral
+1, if+(C) ≥ n − 1
−1, otherwise.

(4.3)

�ℎc =

⎧

⎪

⎨

⎪

⎩

0, if  is neutral
+1, if −(C) ≥ n − 1
−1, otherwise.

(4.4)

Thus, �ℎc = 1, only if the comment  has positive sentiment and �ℎc = 1 only if the comment
contains negative sentiment. Note that, a given comment can exhibit both positive and negative
sentiments at the same time. A comment is considered sentimentally neutral when the pair ⟨�ℎc , �ℎc ⟩
for the comment appear to be ⟨0, 0⟩. An issue comment is discarded from our study if at least n − 1
human raters (i.e., majority) could not agree on any particular sentimental polarity of the comment.
We have found 33 such comments in Group-2 dataset that are excluded from our study. Similar
approach is also followed to determine sentiments of comments in another study [48].

4.2.3.1 Illustrative Example of Computing sentimental Polarity

Consider the issue comment in Table 4.1. For this issue comment, we compute the pair ⟨�rjc , �rjc ⟩ for
all four raters (i.e., n = 4). As for only one (the second rater) out of four raters we get the pair as ⟨0, 0⟩,
the comment is not considered neutral. Hence, we compute the values of+(C) and−(C), which
are three and zero respectively. +(C) being three satisfies the condition of +(C) ≥ n − 1. Thus,
�ℎc = 1, which means that the comment in Table 4.1 has positive sentiment. For the same comment
−(C) < n − 1 and so �ℎc = −1, which signifies that the comment has no negative sentiment.

4.2.4 Sentiment Detection Using SentiStrength

We apply SentiStrength to determine the sentiments expressed in the issue comments in Group-
1 of the “Gold Standard" dataset. Sentiment analysis using SentiStrength on a given piece of
text (e.g., an issue comment)  computes a pair ⟨�c , �c⟩ of integers, where +1 ≤ �c ≤ +5 and
−5 ≤ �c ≤ −1. Here, �c and �c respectively represent the positive and negative sentimental scores
for the given text . A given text  is considered to have positive sentiment if �c > +1. Similarly, a
text is held containing negative sentiment when �c < −1. Besides, a text is considered sentimentally
neutral when the sentimental scores for the text appear to be ⟨1,−1⟩.

Hence, for the pair ⟨�c , �c⟩ of sentimental scores for an issue comment  computed by
SentiStrength, we compute another pair of integers ⟨�tc , �tc⟩ as follows:

32

�tc =

{

1, if �c > +1.
0, otherwise.

and
�tc =

{

1, if �c < −1.
0, otherwise.

Here, �tc = 1 signifies that the issue comment  has positive sentiment, and �tc = 1 implies that the
issue comment  has negative sentiment.

We apply SentiStrength to compute sentimental scores for each of the issue comments in the
Group-1 portion of the “Gold Standard" dataset and then for each issue comment , we compute the
pair ⟨�tc , �tc⟩, which represents the sentimental polarity scores for .

4.2.5 Analysis and Findings

For each of the 392 issue comments  in Group-1, we compare the sentimental polarity scores
⟨�tc , �

t
c⟩ produced from SentiStrength and the scores ⟨�ℎc , �ℎc ⟩ computed using our approach de-

scribed in Section 4.2.3. We find a total of 151 comments, for which the ⟨�tc , �
t
c⟩ scores obtained

from SentiStrength do not match with ⟨�ℎc , �
ℎ
c ⟩. This implies that for those 151 issue comments

SentiStrength’s computation of sentiments are probably incorrect.
Upon developing a solid understanding of the sentiment detection algorithm of SentiStrength,

we then carefully go through all of those 151 issue comments to identify the reasons/difficulties,
which mislead SentiStrength in its identification of sentiments in textual content. We identify
12 such difficulties. Before discussing the difficulties, we first briefly describe the highlights of
SentiStrength’s internal working mechanism to develop necessary context and background for
the reader.

Table 4.2: The role of the dictionary lists in SentiStrength’s computation of sentimental scores
in text

Sample Sent. Scores Dictionary Explanationsentence �c �c list in use

It’s a good
feature. 2 -1 Sentimental

words
The sentimental score of the word
‘good’ is pre-assigned to 02; so the sen-
tence is assigned positive score 02.

It’s a very
good feature. 3 -1 Booster words

As booster word ‘very’ is used before
the sentimental word, the sentence is as-
signed a positive score 03.

It’s not a
good feature. 1 -1 Negations

Sentimental polarity of the sentimental
word is inverted in here due to the use
of the negation word ‘not’ before
sentimental word.

It’s a killer
feature. 2 -1 Phrases

“killer feature" is a phrase in the dictio-
nary with positive score 02. Although
the word ‘kill’ carries negative senti-
ment, its effect is overridden by the sen-
timental score of the phrase.

33

Table 4.3: Frequencies of difficulties misleading sentiment analysis
Difficulties Frequency (%) Scope*

D1 ∶ Domain-specific meanings of words 123 (60.00) SEDS
D2 ∶ Context-sensitive variations in meanings of words 35 (17.07) SAG
D3 ∶ Misinterpretation of the letter ‘X’ 12 (05.85) SEDS
D4 ∶ Sentimental words in copy-pasted content (e.g., code) 12 (05.85) SEDS
D5 ∶ Difficulties in dealing with negations 08 (03.90) SAG
D6 ∶ Missing sentimental words in dictionary 02 (00.97) SAG
D7 ∶ Spelling errors mislead sentiment analysis 02 (00.97) SAG
D8 ∶ Repetitive numeric characters considered sentimental 01 (00.49) SST
D9 ∶ Wrong detection of proper nouns 01 (00.49) SST
D10 ∶ Sentimental words in interrogative sentences 01 (00.49) SST
D11 ∶ Difficulty in dealing with irony and sarcasm 01 (00.49) SAG
D12 ∶ Hard to detect subtle expression of sentiments 07 (03.41) SAG
*Here, SEDS = Software Engineering Domain Specific, SAG = Sentiment Analysis in General,

SST = Specific to the SentiStrength Tool.
4.2.5.1 Insights into SentiStrength’s Internal Algorithm

SentiStrength is a lexicon-based classifier that also uses additional (non-lexical) linguistic infor-
mation and rules to detect sentiment in plain text written in English [45]. SentiStrengthmaintains
a dictionary of several lists of words and phrases as its key dictionaries to compute sentiments in
texts. Among these lists, the sentimental words list, list of booster words, list of phrases, and list
of negations words play a vital role in the computation of sentiments. The entries in all these lists
except the list of negation words are pre-assigned with sentimental scores. The negation words in
the fourth list are used to invert the sentimental polarity of a term when the term is located after a
negation word in text.

For an input sentence, SentiStrength extracts individual words from the sentence and searches
for each of the individual words in the sentimental words list to retrieve the corresponding sentimen-
tal scores. Similar search is made in the list of booster words to strengthen or weaken the sentimen-
tal scores. The list of phrases is used to distinguish groups of words as commonly used phrases.
When such a phrase is identified, the sentimental score of the phrase overrides sentimental scores
of the individual words, which constitute the phrase. The examples in Table 4.2 articulate how
SentiStrength depends on the dictionary of lists for computing sentimental scores in plain texts.

4.2.5.2 Difficulties in Automated Sentiment Analysis in Software Engineering

Table 4.3 presents the number of times we found SentiStrength being mislead by the 12 diffi-
culties as discovered during manual investigation. It is evident in Table 4.3 that domain-specific
meanings of words is the most prevalent among all the difficulties that are liable for low accuracy
of the lexical approach of SentiStrength. However, not all the difficulties are specific to soft-

34

ware engineering domain, rather some difficulties impact sentiment analysis in general (including
software engineering) while a few are actually specific limitations of the tool SentiStrength. The
right-most column in Table 4.3 indicates the scopes of the identified difficulties. We now describe
12 difficulties with illustrative examples.
(D1) Domain-specific meanings of words: In a technical field, textual artifacts include many tech-
nical jargons, which have polarities in terms of dictionary meanings, but do not really express any
sentiments in their technical context. For example, the words ‘Super’, ‘Support’, ‘Value’ and ‘Re-
solve’ are English words with known positive sentiment, whereas ‘Dead’, ‘Block’, ‘Default’, and
‘Error’ are known to have negative sentiment, but none of these words really bear any sentiment in
software development artifacts.
As SentiStrength was originally developed and trained for non-technical texts written in plain
English, it identifies those words as sentimental words, which is incorrect in the context of a technical
field such as software engineering. In the following comment from the “Gold Standard" dataset,
SentiStrength considers ‘Error’ as negative sentimental word and detects ‘Support’ and ‘Refresh’
as positive sentimental words. Thus, it assigns both positive and negative sentimental scores to the
comment, although the comment is sentimentally neutral.

"This was probably fixed by WODEN-86 which introduced support for the

curly brace syntax in the http location template. This JIRA can now be

closed. This test case is now passing ... There are now 12 errors reported

for Woden on this test caseregenerated the results in r480113. I’ll have

the W3C reports refreshed." (Comment ID: 18059)

(D2) Context-sensitive variations in meanings of words: Apart from domain-specific meanings
of words, in natural language, some words have multiple meanings depending on the context in
which they are used. For example, the word ‘Like’ expresses positive sentiment when it is used in
a sentence such as “I like you". On the other hand, that same word expresses no sentiment in the
sentence “I would like to be a sailor, said George Washington". Again, SentiStrength identifies
the word ‘Please’ as positive sentimental word, although we find the word is used as neutral to
express request in the training dataset. For example, in the comment below, the word ‘Please’ does
not express any emotion.

"Updated in 1.2 branch. David; please download and try 1.2 beta when it

is released in a week or so.." (Comment ID: 4223)

Again, words that are considered inherently sentimental often do not carry sentiments when used to
express possibility and uncertainty. Distinguishing the context-sensitive meanings of such words is
a big challenge for automated sentiment analysis in text and the lexical approach of SentiStrength
also falls short in this regard.

35

For example, in the following issue comment, the sentimental word ‘Nice’ is used simply to ex-
press possibility regarding change of something, but SentiStrength incorrectly computes positive
sentiment in the message.

"The change you want would be nice; but is simply not possible. The

form data ... Jakarta FileUpload library." (Comment ID: 51837)

Similarly, in the comment, the sentimental word ‘Misuse’ is used in a conditional sentence, which
does not express any sentiment, but SentiStrength interprets otherwise.

"Added a couple of small points ... if anyone notices any misuses of

the document formatting ..." (Comment ID: 2463)

(D3) Misinterpretation of the letter ‘X’: In informal computer mediated chat, the letter ‘X’
is often used to mean an action of ‘Kiss’, which is a positive sentiment, and thus recorded in
SentiStrength’s dictionary. However, in technical domain, the letter is often used as a wildcard.
For example, the sequence ‘1.4.x’ in the following comment is used to indicate a collection of
versions/releases.

"Integrated in Apache Wicket 1.4.x ..." (Comment ID: 20748)

Since SentiStrength uses dot (.) as a delimiter to split a text into sentences, the ‘x’ is considered
a one-word sentence and is misinterpreted to have expressed positive sentiment.
(D4) Sentimental words in copy-pasted content (e.g., code): At commit, the developers often
copy-paste code snippets, stack traces, URLs, and camel-case words (e.g., variable names) in their
issue comment. Such copy-pasted contents often include sentimental words in the form of variable
names and the like, which do not convey any sentiment of the committer, but SentiStrength detects
those sentimental words and incorrectly associates those sentiments with the issue comment and the
committer. Consider the following issue comment, which includes a copy-pasted stack trace.

"... Stack: [main] FATAL ... org.apache.xalan.templates

.ElemTemplateElement.resolvePrefixTables ..." (Comment ID: 9485)
The words ‘Fatal’ and ‘Resolve’ (part of the camel case word ‘resolvePrefixTables’), are posi-
tive and negative sentimental words respectively in the dictionary of SentiStrength’s. Hence,
SentiStrength detects both positive and negative sentiments in the issue comment, but the stack
trace content certainly does not represent the sentiments of the developer/committer.
(D5) Difficulties in dealing with negations: For automated sentiment detection, it is crucial to
identify the presence of any negation term preceding a sentimental word, because the negation
terms invert the polarity of the sentimental words. For example, the sentence “I am not in good
mood" is equivalent to “I am in bad mood". When the negation of the positive word ‘Good’ can-
not be identified as equivalent to the negative word ‘Bad’, then detection of sentimental polarity

36

goes wrong. The default configuration of SentiStrength enables it to detect negation of a sen-
timental word only if the negation term is placed immediately before the sentimental word. In all
other cases, SentiStrength fails to detect negations correctly and often detects sentiments exactly
opposite of what is expressed in the text. During our investigation, we find substantial instances
where SentiStrength is misled by complex structural variations of negations present in the issue
comments.
For example, in the following two comments, SentiStrength cannot detect negation, which are
used before the word ‘Bad’ (in first comment) and ‘Good’ (in second comment) correctly and thus
misclassified sentiments of those comments.

"I haven’t seen any bad behavior. I was using open ssh to test

this. I used the with open ssh to disconnect;" (Comment ID:
6688)
"3.0.0 has been released; closing ... I didn’t change the jute - don’t

think this is a good idea; esp as also effects the Andrew could

you take a look at this one?" (Comment ID: 1725)

In addition, we find that SentiStrength is unable to recognized shortened forms of negations such
as, “haven’t", “havent", “hasn’t", “hasnt", “shouldn’t", “shouldnt", and “not" since these terms are
not included in the dictionary.
(D6) Missing sentimental words in dictionary: Since the lexical approach of SentiStrength is
largely dependent on its dictionary of lists of words (as discussed in Section 4.2.5.1), the tool often
fails to detect sentiments in some texts when the sentimental words used in the texts are absent in the
dictionary. For example, the words ‘Apology’ and ‘Oops’ in the following two comments express
negative sentiments, but SentiStrength cannot detect them since those words are not included in
its dictionary.

"...This is indeed not an issue. My apologies ..."

(Comment ID: 20729)
"Oops; issue comment had wrong ticket number in it ..."

(Comment ID: 36376)

(D7) Spelling errors mislead sentiment analysis: Misspelled words are common in informal text,
and thewriter often deliberatelymisspells words to express intense sentiments. For example, themis-
spelled word ‘Happpy’ expresses more happiness than the correctly spelled word ‘Happy’. Although
SentiStrength can detect some of such intensified sentiments from such misspelled sentimental
words, its ability is limited to only those intentional spelling errors where repetition of certain letters
occur in a sentimental word. Most other types (unintentional) of misspelling of sentimental words

37

cause SentiStrength fail to find those words in its dictionary and consequently lead to incorrect
computation of sentiments. For example, the word ‘Unfortunately’ was misspelled as ‘Unforunatly’
in an issue comment (comment ID: 11978) and “I’ll" was written as ‘ill’ in another (comment ID:
927). SentiStrength’s detection sentiments in both of these comments are found incorrect.
(D8) Repetitive characters considered sentimental: As described before, SentiStrength de-
tects higher intensity of sentiments by considering deliberately misspelled sentimental word with
repetitive letters. The tool also uses the same strategy for the same purpose by taking into account
repetitive characters intentionally typed in words that are not necessarily sentimental by themselves.
If anybody writes “I am goooing to watch movie" instead of “I am going to watch movie", then
the former sentence is considered positively sentimental due to emphasis on the word ‘Going’ by
repetition of the letter ‘O’ for three times.
However, this strategy also misguides SentiStrength in dealing with some numeric values. For
example, in the following comment, SentiStrength incorrectly identifies the number ‘20001113’
as a positive sentimental word encountering repetition of the digits ‘0’ and ‘1’.

"See bug 5694 for the ... 20001113 /introduction.html ... Zip file

with test case (java source and XML docs) 1. Do you use deferred DOM?

2. Can you try to run it against Xerces2 beta4 (or the latest code in

CVS?) 3. Can you provide a sample file? Thank you."

(Comment ID: 6447)

(D9) Incorrect detection of proper nouns: A proper noun can rightly be considered neutral in
sentiment. SentiStrength detects a word starting with a capital letter as a proper noun, when the
word is located in the middle or end of a sentence. Unfortunately, grammar rules are often ignored
in informal text and thus, sentimental words placed in the middle or end of a sentence often end
up starting with a capital letter, which cause SentiStrength mistakenly disregard the sentiments
in those sentimental words. The following issue comment is an example of such a case, where the
sentimental word ‘Sorry’ starting with a capital letter is placed in the middle of the sentence and
SentiStrength erroneously considers ‘Sorry’ as a neutral proper noun.

"Cool. Thanks for considering my bug report! ... About the title of

the bug; in the description; I put: Sorry for the vague ticket title. I

don’t want to make presumptions about the issue ... work for passwords."

(Comment ID: 76385)

However, the older Windows version of SentiStrength does not have this shortcoming.
(D10) Sentimental words in interrogative sentences: Typically, negative sentimental words in in-
terrogative sentences (i.e., in questions) either do not express any sentiment or at least weaken the in-

38

tensity of sentiment [45]. However, we have found instanceswhere SentiStrength fails to correctly
interpret the sentimental polarities of such interrogative sentences. For example, SentiStrength
incorrectly identifies negative sentiment in the comment below, although the comment merely in-
cludes a question expressing no negative sentiment as indicated by the human raters.

"... Did I submit something wrong or duplicate? ..."

(Comment ID: 24246)

(D11) Difficulty in dealing with irony and sarcasm: Automatic interpretation of irony in text writ-
ten in natural language is very challenging, and SentiStrength also often fails to detect sentiments
from texts, which express irony and sarcasm [45]. For example, due to the presence of the positive
sentimental words “Dear God!" in the comment below, SentiStrength detects positive sentiment
in the sentence, although the comment poster used it in a sarcastic manner and expressed negative
sentiment only.

"The other precedences are OK; as far as I can tell ... ‘zzz’; Dear

God! You mean the intent here is ... gotta confess I just saw the pattern

and jumped to conclusions; hadn’t examined the code at all. But you’ve

just made the job tougher ...?"

(Comment ID: 61559)

(D12) Hard to detect subtle expression of sentiments: Text written in natural language can
express sentiments without using any inherently sentimental words. The lexical approach of
SentiStrength fails to identify sentiments in such a text due to its high dependency on the
dictionary of lists of words, and not being able to properly capture sentence structure and semantic
meanings. Consider the following issue comment, which was labeled with negative sentiment by
three human raters although there is no sentimental words in it. Without surprise, SentiStrength
incorrectly interprets it as a sentimentally neutral text.

"Brian; I understand what you say and specification about

‘serialization’ in XSLT not ‘indenting’. As I saied before;

indenting is just the thing that we easily see the structure and data of

XML document. Xalan output is not easy to see that. The last; I think

the example of non-whitespace characters is no

relationship to indenting. non-whitespace characters must not be stripped;

but whitespace characters could be stripped. Regards; Tetsuya Yoshida."

(Comment ID: 10134)

4.3 Leveraging Automated Sentiment Analysis

We address the challenges identified from our exploratory study as described in Section 4.2.5.2 and
develop a tool particularly crafted for application in the software engineering domain. We call our

39

SentiStrength
(SS)

dictionary

Commit
comments

(CC)

Converting
wild-card

formed words
to full forms

Full formed
words of SS
dictionary

(Sw)

Lemmatization
of words

List of
lemmatized

words in
CC (Mw) List of

common
words
(Cw)

Excluding
domain
words

List of
sentimental
words (Dw)

Converting
full-formed

words to wild-
card forms

Preliminary
domain

dictionary (Pw)

Identifying
common

words

Stanford
NLP

Further
enhancement

SentiStrength-SE
dictionary (Fw)

1

2

3
4 5

6

The symbols represent the steps/actions taken to develop the dictionary. The steps/actions are enumerated in chronological order

Figure 4.1: Steps to create the domain dictionary for SentiStrength-SE

tool SentiStrength-SE, which is built on top of the original SentiStrength. We now describe
howwemitigate the identified difficulties in developing SentiStrength-SE for improved sentiment
analysis in textual artifacts in software engineering.

4.3.1 Creating a New Domain Dictionary for Software Engineering

As reported in Table 4.3, our exploratory study (Section 4.2.5.2) found the domain-specific chal-
lenges (difficulties D1, D3, D6) as the most impeding factors against sentiment analysis in software
engineering text. Hence, the accuracy of sentiment analysis can be improved by adopting a domain-
specific dictionary [143, 144, 145]. We, therefore, first create a domain dictionary for software
engineering text to address the issues with domain difficulty.

Figure 4.1 depicts the steps/actions taken to develop the domain dictionary for software engineer-
ing text. We collect a large dataset used in the work of Islam and Zibran [38]. This dataset consists
of 490 thousand commit messages drawn from 50 open-source projects from GitHub. Using the
Stanford NLP tool [146], we extract a set of lemmatized forms of all the words in the commit
messages, which is denoted asMw.

To identify the emotional words from the setMw, we exploit SentiStrength’s existing dictio-
nary. We choose SentiStrength’s existing dictionary as the basis for our new one, because, in a re-
cent study [57], SentiStrength’s dictionary building method is found superior to other approaches
(AFINN [118], MPQA [119], and VADER [120]) for the creation of software engineering domain-specific
dictionaries. We identify thosewords in SentiStrength’s original dictionary, which havewild-card
forms (i.e., words that have symbol * as suffix) and transform them to their corresponding lemmatized
forms using the AFINN [118] dictionary. For example, the entry ‘Amaz*’ in SentiStrength dic-
tionary is transformed to the words ‘Amaze’, ‘Amazed’, ‘Amazes’ and ‘Amazing’ as those are found
as emotional words in the AFINN dictionary corresponding to that particular entry. The are mainly
two reasons for using the AFINN dictionary: (i) the dictionary is very similar to the SentiStrength
dictionary as both use the same numeric scale to express sentimental polarities of words, (ii) the

40

Table 4.4: Inter-rater disagreements in interpretation of sentiments
Disagreements between Human Raters

Sentimental Polarity A, B B, C C, A
Positive 11.81% 19.68% 17.32%
Negative 08.62% 10.19% 09.41%
Neutral 18.13% 11.81% 15.69%

AFINN dictionary is also widely used in many other studies [147, 148, 149, 57]. If any wild-card
form word is not found in AFINN dictionary, we use our own wisdom to convert that word to its
lemmatized forms. Thus, by converting all short forms words to full forms and combining those with
remaining words in SentiStrength dictionary we obtain a set of words Sw. Then, we distinguish
a set Cw of words such that Cw = Mw ∩ Sw. The set Cw ends up containing 716 words, which
represent an initial sentimental vocabulary pertinent to the software engineering domain.

We recognize that some of these 716 words are simply software engineering domain-specific
technical terms expressing no sentiments in software engineering context, which otherwise would
express emotions when interpreted in a non-technical area such as social networking. There also
remain other words such as ‘Decrease’, ‘Eliminate’ and ‘Insufficient’, which are unlikely to carry
sentiments in the software engineering domain. We, therefore, engage three human raters (enumer-
ated as A, B, C) to independently identify these non-sentimental domain words in Cw. Each of these
three human raters are computer science graduate students having at least three years of software
development experience. A human rater annotates a word as neutral if the word appears to him/her
as highly unlikely to express any sentiment when interpreted in the software engineering domain.

In Table 6.6, we present sentiment-wise percentage of cases where the human raters disagree
pair-wise. We also measure the degree of inter-rater agreement in terms of Fleiss-� [150] value.
The obtained Fleiss-� value 0.739 signifies substantial agreement among the independent raters.

We consider a word as a neutral domain word when two of the three raters identify the word as
neutral. Thus, 216 words are identified as neutral domain words, which we exclude from the set Cw
resulting in another setDw of the remaining 500 words. Such neutralization of words for a particular
domain is also suggested in several studies [41, 43, 37, 38] in the literature.

Next, we adjust the words in Dw by reverting them to their wild-card forms (if available)
to comply with SentiStrength’s original dictionary. This new set of words is called as pre-
liminary domain dictionary (Pw), which has 167 positively and 310 negatively polarized words.
This preliminary dictionary is further enhanced according to the description below to create the
SentiStrength-SE dictionary (Fw).

4.3.1.1 Further Enhancements to the Preliminary Domain Dictionary

We further extend the newly developed preliminary dictionary in the light of our observations during
the exploratory study described in Section 4.2.

41

Extension with new sentimental words and negations: During our exploratory study, we find
several informal sentimental words such as, ‘Woops’, ‘Uhh’, ‘Oops’ and ‘zzz’, which are not included
in the original dictionary. The formal word ‘Apology’ is also missing from the dictionary. We have
added to the dictionary of our SentiStrength-SE all these missing words as sentimental terms
with appropriate sentimental polarities, which mitigate the difficulty D6.

In addition, we also add to the dictionary the missing shortened from of negation words as men-
tioned in the discussion of difficulty D5 in Section 4.2.5.2.
Discarding the letter ‘X’ from dictionary: We exclude the letter ‘X’ from our domain dictionary
of SentiStrength-SE to save lexical sentiment analysis from the difficulty D3 as described in
Section 4.2.5.2.

4.3.2 Inclusion of Heuristics in Computation of Sentiments

While the creation of the new domain dictionary is a vital step towards automated sentiment analy-
sis in software engineering text, we realize that the computations for sentiment detection also need
improvements. Thus, in the implementation of our domain-specific SentiStrength-SE, we incor-
porate a number of heuristics in the computation, which we describe below.

4.3.2.1 Addition of Contextual Sense to Minimize Ambiguity

Recall that, in the creation of our initial domain dictionary, we neutralized 216 words on the basis
of the judgements from three independent human raters. However, the neutralization of words is
not always appropriate. For example, in the software engineering domain, the word ‘Fault’ typically
indicates a program error and expresses neutral sentiment. However, the same word can also convey
negative sentiment as found in the following comment.

"As WING ... My fault: I cannot reproduce after holidays ... I might

add that one; too" the word ‘Fault’ expresses negative sentiment of the

comment poster." (Comment ID: 4694)
Again, the word ‘Like’ expresses positive sentiment if it is used as “I like", “We like", “He likes",

and “They like". In the most other cases the word ‘Like’ is used as preposition or subordinating
conjunction and the word can safely be considered sentimentally neutral. For example, the following
comment used the word ‘Like’ without expressing any sentiment.

"Looks like a user issue to me ..." (Comment ID: 40844)
We can observe from the above examples that some of the 216 neutralized words can actually

express sentiments when those are preceded by pronouns referring to a person or a group of per-
sons, e.g., ‘I’, ‘We’, ‘My’, ‘He’, ‘She’, ‘You’ and possessive pronouns such as ‘My’ and ‘Your’.
This contextual information is taken into account in SentiStrength-SE to appropriately deal with
the contextual use of those words in software engineering field to minimize the difficulties D1 and

42

D2. The complete list of such words is given in the SentiStrength-SE dictionary file named
‘ModifiedTermsLookupTable’, which are also vetted by the three raters. Note that to determine the
Part-Of-Speech (POS) of words in sentences, we apply the Stanford POS tagger [146].

4.3.2.2 Bringing Neutralizers in Effect

Our observations from the exploratory study (as presented in Section 4.2) reveal that sentiment of a
word can be neutralized if that word is preceded by any of the neutralizer words such as, ‘Would’,
‘Could’, ‘Should’, and ‘Might’. For example in the sentence “It would be good if the test could be
completed soon” the positive sentimental word ‘Good’ does not express any sentiment as neutralized
by the preceding word ‘Would’. We add amethod in SentiStrength-SE to enable it correctly detect
uses of such neutralizer words in sentences to be more accurate in sentiments detection. This helps
in minimizing the difficulty D2 described before.

4.3.2.3 Integration of a Preprocessing Phase

To minimize the difficulties D4, D7, D8, and D9 (as described in Section 4.2.5.2), we include a
preprocessing phase to SentiStrength-SE as its integral part. Before computation for any given
input text, SentiStrength-SE applies this preprocessing phase to filter out numeric characters and
certain copy-pasted contents such as code snippets, URLs and stack traces. To locate code snippets,
URL’s and stack traces in text, we use regular expressions similar to the approach proposed by Bet-
tenburg et al. [151]. In addition, a spellchecker [152] is also included to deal with the difficultyD7 in
identifying and rectifying misspelled English words. Spell checking also complements our regular
expression based method in approximate identification of identifier names in code snippets.

To mitigate the difficultyD9 in particular, the preprocessing phase also converts all the letters of
a comment to small letters. However, converting all the letters to small letters can also cause failure
of the detection of the proper nouns such as the names of developers and systems, which is also
important as discussed in the description of difficulty D9 in Section 4.2.5.2. From our exploratory
study, we have observed that the developers typically mention their colleagues’ names in comments
immediately after some sort of salutation words such as ‘Dear’, ‘Hi’, ‘Hello’, ‘Hellow’ or after the
character ‘@’. Hence, in addition to converting all letters to lower case, the preprocessing phase
also discards those words, which are placed immediately after any of those salutation words or the
character ‘@’. In addition, SentiStrength-SEmaintains the flexibility to allow the user to instruct
the tool to consider any particular words as neutral in sentiment, in case an inherently sentimental
word must be recognized as proper noun, for example, to deal with the situation where a sentimental
word is used as a system’s name.

43

Figure 4.2: Default configuration of parameters in our SentiStrength-SE

4.3.2.4 Parameter Configuration for Better Handling of Negations

We carefully set a number of configuration parameters as defaults to our SentiStrength-SE tool
as shown in Figure 4.2. This default configuration of SentiStrength-SE is different from that of
the original SentiStrength. Particularly, to mitigate the difficulty D5 in dealing with negations,
the negation’s configuration parameter marked with a black rectangle in Figure 4.2 is set to five in
SentiStrength-SE, which enables the tool detecting negations over a larger range of proximity
allowing zero to five intervening words between a negation and a sentimental word, as was also
suggested in a previous study [144].

4.4 Empirical Evaluation of SentiStrength-SE

While making the design and tuning decisions to develop SentiStrength-SE, we remain care-
ful about the possibility that the application of a particular heuristic for improvement in one area
might have side-effects causing performance degradation in another criteria. We empirically eval-
uate our domain-specific techniques and the accuracy of domain-specific SentiStrength-SE in
several phases around seven research questions.
Dataset: For empirical evaluation of our SentiStrength-SE, we use the 5,600 issue comments
in Group-2 and Group-3 of the “Gold Standard" dataset introduced in Section 4.2.1. The ground-
truth about the sentimental polarities of those issue comments are determined based on the manual
evaluations by human raters as described in Section 4.2.3. Before conducting evalution, we present
textual characteristics of Group-2 and Group-3 datasets in Table 4.4, which indicates no substantial
differences in the characteristics of the two datasets.

44

Table 4.5: Textual characteristics of the words in the datasets

Datasets

Number
of

Distinct
Words

Complexity
Factor
(Lexical
Density)

Number
of
Sentences

Average
Sentence
Length
(in words)

Number
of
Sentences
per Comment

Group-2 5,295 21.00% 5,671 8.23 3.54
Group-3 5,527 24.30% 4,000 8.26 1.00

Metrics: The accuracy of sentiment analysis is measured in terms of precision, recall, and F-score
computed for each of the three sentimental polarities (i.e., positivity, negativity and neutrality).
Given a set S of textual contents, precision (℘), recall (ℜ), and F-score (Ⅎ) for a particular sen-
timental polarity e is calculated as follows:

℘ =
∣ Se ∩ S′

e ∣
∣ S′

e ∣
, ℜ =

∣ Se ∩ S′
e ∣

∣ Se ∣
, Ⅎ =

2 ×℘ ×ℜ
℘ +ℜ

where e represents the set of texts having sentimental polarity e, and  ′
e denotes the set of texts that

are detected (by tool) to have the sentimental polarity e.
Statistical Test of Significance: We apply non-parametric McNemar’s test [153] to verify the sta-
tistical significance in the difference of the results obtained by two tools, say a and b. As the
non-parametric test does not require normal distribution of data, this test suits well for our purpose.
We perform a McNemar’s test on 2 × 2 contingency table derived from the results obtained from
tools a and b. The structure of such a contingency table is shown in Table 4.6.

Table 4.6: Structure of 2 × 2 contingency matrix of McNemar’s test for tools a and b# of comments misclassified
by both a and b n00 n01

of comments misclassified
by b but not by a

of comments misclassified
by a but not by b n10 n11

of comments correctly
classified by both a and b

Let, Fa and Fb denote the sets of misclassified comments by a and b respectively. In the
contingency table (Table 4.6), n00 represents the number of issue comments misclassified by both
a and b (i.e., n00 = |Fa ∩ Fb|), n01 represents the number of comments misclassified by b but
not by a (i.e., n01 = |Fb − Fa|), n10 represents the number of comments misclassified by a but
not by b (i.e., n01 = |Fa − Fb|), and n11 represents the number of comments correctly classified
by both the tools. Let, S denote the set of all the issue comments correctly classified according
to the ground-truth. Thus, n11 = S − (Fa ∪ Fb). The superiority of tool b over the tool a is
observed, if n10 > n01. Otherwise, a is considered superior if n01 > n10. Such observed superiority
is considered statistically significant, if the p-value obtained from a McNemar’s test is less than a

45

pre-specified significance level �. In our work, we set � = 0.001, which a reasonable setup widely
used in the literature.

4.4.1 Head-to-head Comparison Using a Benchmark Dataset

We compare our software engineering domain-specific SentiStrength-SE with the original
SentiStrength [45] tool and two other toolkits NLTK [46] and Stanford NLP [47]. To the best
of our knowledge, these are the only domain independent tools/toolkits attempted in the past for
sentiment analysis in software engineering text [41, 40, 50, 154]. In particular, we address the
following research question:

RQ1: Does our domain-specific SentiStrength-SE outperform the existing domain independent
tools for sentiment analysis in software engineering text?

We write a Python script to import NLTK sentiment analysis package [155, 46] and run it on
texts to determine the sentimental polarities of those. NLTK determines the probability of positivity,
negativity and neutrality of a text. In addition, its also provides a compound value Cv, which ranges
between -1 to +1. A text contains positive sentiments if Cv > 0, a text will have negative sentiments
if Cv < 0. Otherwise, a text is considered sentimentally neutral when Cv = 0. Similar procedure is
also followed in another study [155] to determine sentiments of texts using NLTK.

We develop a Java program using the JAR of the Stanford NLP tool to apply it on texts to
determine their sentimental polarities. For a text Stanford NLP provides a sentiment score Sv
between zero to four where 0 ≤ Sv ≤ 1 indicates negative sentiment, 3 ≤ Sv ≤ 4 indicates positive
sentiment and Sv = 2 indicates neutral sentiment of the text [156].

We separately operate each of the selected tools and our SentiStrength-SE on the Group-2
and Group-3 portions of the “Gold Standard" dataset. Recall that Group-2 and Group-3 datasets
contain 1,600 and 4,000 issue comments respectively. For each of the three sentimental polarities
(i.e., positivity, negativity, and neutrality), we compare the tools’ outcome with the ground-truth
and separately compute precision, recall, and F-score for all the tools with respect to each dataset.
Table 4.7 presents the precision (℘), recall (ℜ), and F-score (Ⅎ) of all the tools in the detection
of positive, negative and neutral sentiments, and also the average over all these three sentimental
polarities. The highest metric values are highlighted in bold.

Notice that for the Group-2 dataset, our SentiStrength-SE consistently achieves the highest
precision, recall and F-scored compared to the rest other tools.

For the Group-3 dataset, SentiStrength-SE achieves the highest precision and F-score in
detecting negative sentiments and it achieves the highest recall and F-score in the detection of
neutral sentiments. In those few cases, where SentiStrength-SE does not achieve the best
results, it remains at the second best or marginally close to the best. In the detection of positive

46

Table 4.7: Head-to-head comparison of performances of the four tools/toolkits

D
at
a

Senti- M
et
.

Senti- Senti- NLTK Stanfordments Strength-SE Strength NLP

G
ro
up

-2

Positive
℘ 88.86% 74.48% 69.47% 79.77%
ℜ 98.81% 98.81% 81.55% 71.67%
Ⅎ 93.57% 84.93% 75.0% 75.50%

Negative
℘ 53.42% 28.22% 40.46% 13.28%
ℜ 97.66% 97.66% 54.69% 88.28%
Ⅎ 69.06% 43.78% 46.51% 23.08%

Neutral
℘ 98.14% 96.83% 69.53% 63.70%
ℜ 83.00% 52.42% 50.86% 25.57%
Ⅎ 89.94% 68.01% 58.75% 36.49%

G
ro
up

-3

Positive
℘ 41.80% 31.69% 20.32% 69.47%
ℜ 82.04% 87.79% 86.33% 81.55%
Ⅎ 55.39% 46.58% 32.89% 75.03%

Negative
℘ 68.61% 47.61% 50.65% 40.46%
ℜ 71.00% 78.40% 70.24% 54.69%
Ⅎ 69.78% 59.25% 58.86% 46.51%

Neutral
℘ 90.64% 91.28% 91.17% 69.53%
ℜ 80.05% 56.16% 45.78% 50.86%
Ⅎ 85.02% 69.54% 60.96% 58.74%

Overall
average
accuracy

℘ 73.58% 61.69% 56.93% 56.04%
ℜ 85.43% 78.54% 64.91% 62.10%
Ⅎ 79.06% 62.02% 55.50% 52.56%

sentiments in Group-3 dataset, Satnford NLP achieves the highest precision and recall, where
our SentiStrength-SE yields the second best results. Similarly, the original SentiStrength
achives the highest recall in the detection of negative sentiments in Group-3 dataset, and again
our SentiStrength-SE obtains the second best result. The highest precision (91.28% achieved
by the original SentiStrength) for neutral sentiments is only 0.64% higher than that of our
SentiStrength-SE.

Thus, if we consider the overall average accuracy, as presented at the bottom of the ta-
ble, it becomes evident that our SentiStrength-SE performs the best, followed by the orig-
inal SentiStrength and NLTK. Notice that the overall precision, recall and F-score of our
SentiStrength-SE are substantially higher than those of the second-best performing tool (i.e., the
original SentiStrength).

Table 4.8: Contingency matrix of McNemar’s test in comparison between the original
SentiStrength and SentiStrength-SE

of comments misclassified
by both a and b 748 365 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 1,527 2,924 # of comments correctly

classified by both a and b
Here, a = original SentiStrength and b = SentiStrength-SE

47

To verify whether the observed performance difference between SentiStrength-SE and the
original SentiStrength is statistically significant, we perform a McNemar’s test between the
results of these two tools. For both datasets Group-2 and Group-3, we compute n00, n01, n10 and n11
according to their specifications described in Table 4.6. In Table 7.8, we present the contingency
matrix computed for the McNemar’s test. We observe superiority of b (SentiStrength-SE) in
the contingency table as n10 > n01. According to the p-value (p = 2.2×10−16, p < �) obtained from
the test, the observed difference in the superior performance of SentiStrength-SE is statistically
significant. Based on these observations and statistical test, we now derive the answer to the research
question RQ1 as follows:

Ans. to RQ1: In the detection of sentiments in software engineering text, our domain-specific
SentiStrength-SE significantly outperforms the domain independent NLTK, Stanford NLP, and
the original SentiStrength.

4.4.2 Comparison with respect to Human Raters’ Disagreements

Recall that the issue comments in the “Gold Standard" dataset are annotated with sentiments as
identified by independent human raters. There are disagreements among human raters in the iden-
tification of sentiments in some issue comments. While humans disagree about sentiments in some
issue comments, it is likely that the automated tools will also produce different outcomes resulting
in varied precision and recall.

We, therefore, investigate to what extend the agreements and disagreements of annotations
among human raters cause deviation of results of the head-to-head comparison of tools as de-
scribed in the previous section. Particularly, we want to verify whether our domain-specific
SentiStrength-SE still outperforms the other domain-independent tools when the rater’ agree-
ments and disagreements are taken into account. Here, we address the following research question:

RQ2: Does the accuracy of SentiStrength-SE largely vary compared to its domain independent
counterparts when the agreements and disagreements among human raters are taken into account?

For this investigation, we use the Group-2 dataset where each issue comment was independently
annotated by three human raters. We distinguish two sets of issue comments from this Group-2
dataset.

i) Set-A: containing those issue comments for which all the three human raters agreed on the
sentiments expressed in those comments. This set contains 1,210 issue comments.

ii) Set-B: consisting of those issue comments for which two of the three raters agreed on the
sentiments expressed in those comments. This set contains 357 issue comments.

48

We formulate the following null and alternative hypotheses to determine the statistical signifi-
cance of improved performances of the best tool.
NullHypothesis-1 (H1

o): There is no significant difference in the performance of SentiStrength-SE
compared to the other tools in sentiment detection in the issue comments in Set-A.
Alternative Hypothesis-1 (H1

a): There exist significant differences in the performance of
SentiStrength-SE compared to the other tools in sentiment detection in the issue comments
in Set-A.
NullHypothesis-2 (H2

o): There is no significant difference in the performance of SentiStrength-SE
compared to the other tools in sentiment detection in the issue comments in Set-B.
Alternative Hypothesis-2 (H2

a): There exist significant differences in the performance of
SentiStrength-SE compared to the other tools in sentiment detection in the issue comments
in Set-B.

We now examine whether these hypotheses hold true with respect to the four tools we compare.
In the similar way as of the head-to-head comparison described in the previous section, we separately
run all the four tools including our SentiStrength-SE on Set-A and Set-B issue comments. For each
of the three sentimental polarities (i.e., positivity, negativity, and neutrality), we compute precision
(℘), recall (ℜ), and F-score (Ⅎ) for each of the tools separately over the issue comments in both
Set-A and Set-B.

For the issue comments in both Set-A and Set-B, the best tool must exhibit the significantly
improved performances compared to other tools. For testing our hypotheses, in each of Set-A and
Set-B datasets, we first identify the two tools producing better results among all the four tools. Then,
we examine if there is any significant difference in the performances of the best tool and the second
best one. If there exist significant differences between the accuracies of the top performing two tools,
discovering such would suffice for demonstrating the existence of significant difference of the best
performing tool against the other tools.

Table 4.9 presents the metrics’ values of all the tools in the detection of positive, negative and
neutral sentiments for each set of the issue comments. As seen in Table 4.9, for the issue comments
in Set-A, SentiStrength-SE consistently achieves the highest precision, recall and F-score in the
detection of positive, negative and neutral sentiments. The overall average accuracies indicate that
the original SentiStrength achieves the second best accuracies in the Set-A dataset.

Now, we perform aMcNemar’s test between the accuracies of SentiStrength-SE and the origi-
nal SentiStrength for the issue comments in Set-A dataset. The contingency table for the test is pre-
sented in Table 4.10. According to the contingency table, SentiStrength-SE (b) performs better
as n10 > n01. The performance difference is found to be statistically significant with p = 2.2×10−16

and p < �. Thus, the McNemar’s test rejects our first null hypothesis (H1
0). Therefore, the first

alternative hypothesis (H1
a) holds true.

49

Table 4.9: Comparison of tools’ accuracies for Set-A and Set-B issue comments

D
at
a

Senti- M
et
.

Senti- Senti- NLTK Stanfordments Strength-SE Strength NLP

Se
t-A

Positive
℘ 90.15% 70.46% 67.9% 83.39%
ℜ 95.33% 91.20% 61.58% 76.66%
Ⅎ 92.67% 79.50% 64.17% 79.89%

Negative
℘ 53.66% 28.17% 49.45% 9.66%
ℜ 100.00% 100.00% 54.55% 86.36%
Ⅎ 69.84% 43.96% 51.87% 17.38%

Neutral
℘ 99.44% 99.43% 77.00% 67.61%
ℜ 91.15% 58.84% 54.08% 28.40%
Ⅎ 95.12% 73.93% 63.53% 40.00%

Overall
average
accuracy

℘ 81.08% 66.02% 64.78% 53.55%
ℜ 95.49% 83.35% 56.74% 63.81%
Ⅎ 85.88% 65.79% 59.86% 45.76%

Se
t-B

Positive
℘ 72.48% 63.64% 67.32% 64.91%
ℜ 96.89% 97.92% 70.46% 57.13%
Ⅎ 82.92% 77.14% 68.86% 60.98%

Negative
℘ 51.75% 21.63% 50.74% 20.83%
ℜ 96.72% 60.65% 55.73% 90.16%
Ⅎ 67.42% 31.89% 53.12% 33.85%

Neutral
℘ 83.92% 86.21% 38.24% 38.88%
ℜ 40.87% 21.74% 33.91% 12.17%
Ⅎ 54.97% 34.72% 35.94% 18.54%

Overall
average
accuracy

℘ 69.38% 57.16% 52.10% 41.54%
ℜ 78.16% 60.10% 53.37% 53.15%
Ⅎ 68.44% 58.59% 52.72% 37.79%

Table 4.10: Contingency matrix of McNemar’s test between the accuracies of SentiStrength-SE
and the original SentiStrength in Set-A dataset

of comments misclassified
by both a and b 84 22 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 511 593 # of comments correctly

classified by both a and b
Here, a = original SentiStrength and b = SentiStrength-SE

50

Again, as seen in Table 4.9, for the issue comments in Set-B, SentiStrength-SE achieves
the highest F-score in detecting sentiments of all the three polarities. The precision and re-
call of SentiStrength-SE is also the highest in all cases except for only two. The recall of
SentiStrength-SE for positive sentiments is 96.89%, which is the second best and only 1.03%
lower than the highest. Similarly, the precision of our SentiStrength-SE in detecting neutral
sentiments is 83.92%, which is also next to the best and only 2.29% lower than the best. Also, with
respect to the overall average accuracies, SentiStrength can be considered to have achieved the
second best performance for the Set-B dataset.

Table 4.11: Contingency matrix of McNemar’s test between the accuracies of SentiStrength-SE
and the original SentiStrength in Set-B dataset

of comments misclassified
by both a and b 97 20 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 135 105 # of comments correctly

classified by both a and b
Here, a = original SentiStrength and b = SentiStrength-SE

Similar to the Set-A dataset, for the Set-B, we carry out aMcNemar’s test between the accuracies
of SentiStrength-SE and the original SentiStrength to determine whether or not there is any
statistical significant differences between the performances of these two tools. The contingency ma-
trix for the test is presented in Table 4.11. According to the contingencymatrix, SentiStrength-SE
(b) outperforms the original SentiStrength (a) with n10 > n01. The McNemar’s test with the
contingency matrix of Table 4.11 obtains p = 2.2× 10−16 and thus p < �. Thus, our second null hy-
pothesis (H2

0) is rejected and the second alternative hypothesis (H2
a) holds true, which indicates that

the superior performance of SentiStrength-SE over the original SentiStrength is statistically
significant for the issue comments in the Set-B dataset.

Thus, for both the Set-A and Set-B datasets, SentiStrength-SE significantly outperforms the
next best performer SentiStrength. Based on our observations and results from the statistical
tests over both the Set-A and Set-B datasets, we now derive the answer to the research question RQ2
as follows:

Ans. to RQ2: When the agreements and disagreements among human raters are taken into ac-
count, our domain-specific SentiStrength-SE still maintains significantly superior (compared to
its domain independent counterparts) accuracies in detecting sentiments in software engineering
text.

4.4.3 Evaluating the Contribution of Domain Dictionary

The newly developed software engineering domain dictionary is a major component of
SentiStrength-SE. Here, we carry out a quantitative evaluation to verify the contribution of the

51

domain dictionary in detecting sentiments in software engineering texts accurately. Especially, we
address the following research question:

RQ3: Does the domain-specific dictionary in SentiStrength-SE really contribute to improved
sentiment analysis in software engineering text?

For this particular evaluation, we again use the Group-2 and Group-3 datasets introduced before.
We invoke the original SentiStrength for detecting sentiments in issue comments in these datasets.
Then, we operate SentiStrengthmaking it use our newly developed domain dictionary and invoke
it for sentiment detection in the same issue comments. We use SentiStrength* to refer to the
variant of the original SentiStrength that is forced to use our domain dictionary instead of its
original one. For each of the three sentimental polarities, we separately compute and compare the
precision, recall, and F-score resulting from the tools in each dataset.

Table 4.12: Comparison of performances between SentiStrength and SentiStrength*
Data Sentiment Met. SentiStrength SentiStrength*

G
ro
up

-2

Positive
℘ 74.48% 87.56%
ℜ 98.81% 98.28%
Ⅎ 84.93% 92.61%

Negative
℘ 28.22% 53.19%
ℜ 97.66% 97.65%
Ⅎ 43.78% 68.87%

Neutral
℘ 96.83% 97.94%
ℜ 52.42% 81.85%
Ⅎ 68.01% 89.18%

G
ro
up

-3

Positive
℘ 31.69% 40.44%
ℜ 87.79% 82.01%
Ⅎ 46.58% 54.16%

Negative
℘ 47.61% 69.10%
ℜ 78.40% 72.65%
Ⅎ 59.25% 70.83%

Neutral
℘ 91.28% 91.22%
ℜ 56.16% 79.54%
Ⅎ 69.54% 84.98%

Overall
average
accuracy

℘ 61.69% 73.24%
ℜ 78.54% 85.33%
Ⅎ 62.02% 76.77%

Here, SentiStrength* is forced to use our domain dictionary instead of its own one.

4.4.3.1 Comparison between the SentiStrength and SentiStrength*

If our domain dictionary actually contributes to improved sentiment analysis in software engineering
text, SentiStrength* must perform better than the original SentiStrength. In Table 4.4.2, we

52

present the precision (℘), recall (ℜ), and F-score (Ⅎ) obtained in detection of each sentimental
polarity. In the table, substantial (i.e., more that 1%) differences are marked in bold.

As seen in Table 4.4.2, in every case, SentiStrength* achieves higher F-score than the original
SentiStrength. Moreover, SentiStrength* shows much higher precision in all cases except for
neutral comments in Group-3 dataset. For the neutral comments in Group-3 dataset, the precision of
the original SentiStrength is marginally higher by only 0.06%. In all the cases across datasets the
precision, recall, and F-score of SentiStrength* is higher or comparable to those of the original
SentiStrength. Only in two of the 18 cases (i.e., the recall for positive and negative sentiments
in Group-3 dataset), the original SentiStrength’s performance is perceived (substantially) better
than SentiStrength*. These observations are also reflected in the overall average accuracies
presented in the bottom three rows of the table. The overall average accuracies indicate superior
performance of SentiStrength* over the original SentiStrength. Hence, the observed accuracy
of SentiStrength* is substantially higher when it is forced to use our new domain dictionary
instead of its original one. To determine the statistical significance of our observations, we perform
anotherMcNemar’s test between the results of SentiStrength* and the original SentiStrength.
As such, we formulate our null and alternative hypotheses as follows:
Null Hypothesis-3 (H3

0): There is no significant difference between the accuracies of the original
SentiStrength and SentiStrength*.
Alternative Hypothesis-3 (H3

a): There exist significant differences between the accuracies of the
original SentiStrength and SentiStrength*.

Table 4.13: McNemar’s test between SentiStrength and SentiStrength*
of comments misclassified
by both a and b 748 334 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 1,527 2,955 # of comments correctly

classified by both a and b
Here, a = original SentiStrength and b = SentiStrength*

The contingency matrix for the McNemar’s test is presented in Table 4.4.3.1. As seen in the
contingency matrix, SentiStrength* (b) exhibits higher accuracies (compared to the original
SentiStrength) as n10 > n01. The test obtains p = 2.2 × 10−16 where p < �. Thus, the test
rejects our null hypothesis (H3

0). Hence the alternative hypothesis (H3
a) holds true indicating that

the difference is statistically significant. Based on these observations and the statistical test, we
conclude that our newly created domain dictionary indeed contributes to statistically significant
improvements in sentiment analysis. Hence, we answer the research question RQ3 as follows:

Ans. to RQ3: Our newly created domain dictionary makes statistically significant contributions
to the improvement of sentiment analysis in software engineering domain.

53

4.4.4 Our Domain Dictionary vs. SentiStrength’s Optimized Dictionary

The original SentiStrength has a feature that facilitates optimizing its dictionary for a par-
ticular domain [157]. We want to verify how our domain dictionary perform in comparison with
SentiStrength’s dictionary optimized for software engineering text. In particular, we address the
following research question:

RQ4: Can SentiStrength’s dictionary optimized for software engineering text perform better
than SentiStrength-SE’s domain-specific dictionary we created?

4.4.4.1 Optimizing SentiStrength’s Dictionary

SentiStrength’s original dictionary can be optimized for a particular domain by feeding it with
a set of annotated pieces of texts. To optimize the SentiStrength’s dictionary for software en-
gineering domain, we use a dataset consists of Stack Overflow posts/comments related to software
engineering. This Stack Overflow posts (SOP) dataset contains total 4,423 comments [55, 130].
Each comment in the SOP dataset is assigned appropriate sentimental polarities (i.e., positive, neg-
ative, neutral) depending on which ones it expresses. Thus, 35% of posts are labeled with positive
sentiment and 27% are labeled with negative sentiment while 38% of the posts are labeled as neutral
in sentiment [55].

Simple annotations with sentimental polarity labels is not enough SentiStrength to be able
to use the dataset for optimizing its dictionary. For this purpose, SentiStrength requires a pair
of integer sentiment scores ⟨%c , �c⟩ pre-assigned to each comment  where +1 ≤ %c ≤ +5 and
−5 ≤ �c ≤ −1. The interpretation of these score is similar to what is described in Section 4.2.4.
%c and �c respectively represent the positive and negative sentimental scores pre-assigned to the
given text . A given text  labeled to have have positive sentiment, must be assigned a positive
sentimental score %c > +1. A higher %c indicates a higher intensity/strength of the positive emotion.
Similarly, a text labeled to have negative sentiment must be assigned a negative sentimental score
�c < −1. A lower �c signifies a higher intensity/strength of the negative emotion expressed in text
. A text labeled as neutral in sentiment, must be assigned sentimental scores ⟨1,−1⟩.

Table 4.14: Examples of assigning sentiment scores to labeled comments
Comment Text Sentiments Labeled Sentimental Scores

by Human Raters ⟨%c , �c⟩
@DrabJay: excellent suggestion!
Code changed. :-) Positive ⟨+3,−1⟩

That really stinks! I was afraid of that... Negative ⟨+1,−3⟩
A few but they all seem proprietary Neutral ⟨+1,−1⟩

54

According to the requirements described above, we derive the sentimental scores for each of
the comments in the SOP dataset. For a comment  having positive sentiment, we set % = +3.
Similarly, we set � = −3 for a comment expressing negative sentiment. Instead of using extreme
values from the domains of % and �, we choose the ones at the medians. In Table 4.4.4.1, we
present examples demonstrating how we assign sentiment scores to the labeled comments in the
SOP dataset. This dataset is then fed to the original SentiStrength for optimizing its dictionary
for software engineering text. Thus, we produce another variant of the original SentiStrength.
We refer to this variant with the optimized dictionary as SentiStrengthO.

4.4.4.2 Comparison between SentiStrengthO and SentiStrength*

SentiStrengthO and SentiStrength* only differ in their dictionaries. SentiStrengthO

uses the optimized dictionary while SentiStrength* uses the dictionary we created for
SentiStrength-SE. Thus, comparing between SentiStrengthO and SentiStrength* im-
plies a comparison between SentiStrength’s optimized dictionary and SentiStrength-SE’s
software engineering domain dictionary we created.

We invoke SentiStrengthO for detecting sentiments in issue comments in Group-2 and
Group-3 datasets and compute the values of precision (℘), recall (ℜ), and F-score (Ⅎ) in detection
of each sentimental polarity. We present the computed metrics values for SentiStrengthO and
SentiStrength* side by side in Table 4.4.4.2.

In Table 4.4.4.2, we see that SentiStrength* always achieves higher F-score than SentiStrengthO.
Moreover, SentiStrength* achieves much higher precision in all cases except for neutral
comments in Group-3 dataset. For the neutral comments in Group-3 dataset, the precision of
SentiStrength* lower than that of SentiStrengthO marginally by only 0.49%. The recall of
SentiStrength* is also substantially higher than or nearly equal to that of SentiStrengthO in
16 of 18 cases. Finally, the overall average accuracies, as presented at the bottom three rows of the
table, indicate that the overall precision, recall, and F-score of SentiStrength* are substantially
higher than SentiStrengthO.

To determine the statistical significance of our observations, we perform another McNemar’s
test between the results of SentiStrengthO and SentiStrength*. Thus, we formulate our null
and alternative hypotheses as follows:
NullHypothesis-4 (H4

0): There is no significant difference between the accuracies of SentiStrengthO
and SentiStrength*.
Alternative Hypothesis-4 (H4

a): There exist significant differences between the accuracies of
SentiStrengthO and SentiStrength*.

The contingency matrix for the McNemar’s test is presented in Table 4.4.4.2. As seen in
the contingency matrix, SentiStrength* (b) exhibits higher accuracies (compared to the

55

Table 4.15: Comparison of performances of SentiStrengthO and SentiStrength*
Data Sentiment Met. SentiStrengthO SentiStrength*

G
ro
up

-2

Positive
℘ 74.45% 87.56%
ℜ 98.68% 98.28%
Ⅎ 84.87% 92.61%

Negative
℘ 30.12% 53.19%
ℜ 97.66% 97.65%
Ⅎ 46.04% 68.87%

Neutral
℘ 96.69% 97.94%
ℜ 54.29% 81.85%
Ⅎ 69.53% 89.18%

G
ro
up

-3

Positive
℘ 26.00% 40.44%
ℜ 86.90% 82.01%
Ⅎ 40.02% 54.16%

Negative
℘ 47.13% 69.10%
ℜ 76.77% 72.65%
Ⅎ 58.40% 70.83%

Neutral
℘ 91.71% 91.22%
ℜ 58.02% 79.54%
Ⅎ 71.07% 84.98%

Overall
average
accuracy

℘ 61.02% 73.24%
ℜ 78.72% 85.33%
Ⅎ 68.74% 78.82%

Here, Note, SentiStrengthO uses the optimized dictionary
SentiStrength* uses our domain dictionary

Table 4.16: Contingency matrix for McNemar’s test between SentiStrengthO and
SentiStrength*

of comments misclassified
by both a and b 942 140 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 1,046 3,436 # of comments correctly

classified by both a and b
Here, a = SentiStrengthO and b = SentiStrength*

56

SentiStrengthO) as n10 > n01. The test obtains p = 2.2 × 10−16 where p < � and rejects our null
hypothesis (H4

0). Hence the alternative hypothesis (H4
a) holds true indicating that the difference is

statistically significant. The significantly superior accuracies of SentiStrength* implies that the
domain dictionary we created for SentiStrength-SE outperforms the original SentiStrength’s
optimized dictionary. We, therefore, answer the research question RQ4 as follows:

Ans. to RQ4: The domain dictionary we created for SentiStrength-SE performs significantly
better than the optimized dictionary of the original SentiStrength.

4.4.5 Comparison with a Large Domain-independent Dictionary

As mentioned before, domain difficulty is among the major reasons why domain-independent
sentiment analysis techniques are found to have performed poorly when operated on in technical
texts. This work of ours reveals the same as described in Section 4.2.5.2. For overcoming the domain
difficulties, we have created domain-specific dictionary and heuristics in our SentiStrength-SE.
However, compared to the existing domain-independent dictionaries available out there, our
domain-specific dictionary is small in size with 167 positively and 310 negatively polarized entries.
One might argue that a substantially large domain-independent dictionary might not suffer from the
domain difficulties we are concerned about and may perform equally, if not better than our relatively
small domain-specific dictionary. To verify this possibility, we compare the performances of our
domain-specific dictionary with a large domain-independent dictionary. Particularly, we address
the following research question:

RQ5: Can a large domain-independent dictionary perform better than the domain-specific dictio-
nary we created for SentiStrength-SE?

4.4.5.1 Choosing a Domain Independent Dictionary for Comparison

There are several domain independent dictionaries (e.g., AFINN [118], MPQA [119], VADER [120],
SentiWordNet [158], SentiWords [159], and the dictionary of Warriner et al. [160]) available for
sentiment analysis in general. Islam and Zibran [57] compared the performances of AFINN [118],
MPQA [119] and VADER [120] dictionaries in sentiment analysis of software engineering text. How-
ever, all those used dictionaries in the work of Islam and Zibran [57] can be considered to have
low coverage. On the other hand, SentiWordNet [158], SentiWords [159], and the extended ANEW
(Affective Norms for English Words) dictionary of Warriner et al. [160] are larger in size and have
higher coverage compared to AFINN, MPQA and VADER dictionaries.

Among these three high coverage large dictionaries, we opt for the extended ANEW dictionary of
Warriner et al. [160], which includes 13,915 English lemmas having 67% reported coverage [159].

57

Table 4.17: Conversion of valence scores from [+1,+9] to [-5,+5]
Score in [+1,+9] +1 +2 +3 +4 +5 +6 +7 +8 +9
Score in [-5, +5] -5 -4 -3 -2 +/- 1 +2 +3 +4 +5

We choose this dictionary for two main reasons: (i) this dictionary has already been used in soft-
ware engineering studies [161, 58]; (ii) Use of parts-of-speech (POS) as context to determine words’
polarities is found to show low accuracy in detecting sentiments in software engineering texts [57].
Therefore, we exclude SentiWords and SentiWordNet as these two dictionaries use POS as a con-
text to determine words’ polarities.

4.4.5.2 Range Conversion

In the extended ANEW dictionary of Warriner et al. [160], each word ! is assigned a valence score v!,
which is a real number between +1.0 and +9.0 signifying the sentimental polarity and strength/in-
tensity of the word!. The sentimental polarity of the word!, denoted as sentiment(!), is interpreted
according to Equation 4.5 below.

sentiment(!) =

⎧

⎪

⎨

⎪

⎩

Positive, if v! > +5.0
Negative, if v! < +5.0
Neutral, otherwise.

(4.5)

In contrast, both the original SentiStrength and our SentiStrength-SE uses integer range
[-5, +5] and a different interpretation for the same purpose. To use this extended ANEW dictionary in
SentiStrength, we convert the valence score of each word in the extended ANEW dictionary from
[+1.0, +9.0] range to [-5, +5] range. In doing that, the fractional value of v! is first rounded to its
nearest integer v̂!. Then, using the conversion scale in Table 6.1, we convert each integer valence
score v̂! in the range [+1, +9] to ! in the integer range [-5, +5]. For example, if the original
valence score of a word rounded to the closest integer is +2, it is converted to -4, according to the
mappings shown in Table 6.1. Such a conversion between ranges does not alter the original valence
strength/intensity of the words [58]. A similar approach was adopted in a recent work [58] for range
conversion of arousal scores.

4.4.5.3 Comparison between SentiStrengthW and SentiStrength*

We create another variant of the original SentiStrength by replacing its original dictionary
with the one created based on the dictionary of Warriner et al., and call this new variant
SentiStrengthW . SentiStrengthW is invoked for detecting sentiments in issue comments
in Group-2 and Group-3 datasets. Then we compute the precision (℘), recall (ℜ), and F-score (Ⅎ)
of SentiStrengthW in detection of each sentimental polarity. The computed metrics values for
SentiStrengthW and SentiStrength* are presented side by side in Table 4.4.5.3.

58

Table 4.18: Comparison of performances of SentiStrengthW and SentiStrength*
Data Sentiment Met. SentiStrengthW SentiStrength*

G
ro
up

-2

Positive
℘ 50.17% 87.56%
ℜ 99.60% 98.28%
Ⅎ 66.73% 92.61%

Negative
℘ 16.52% 53.19%
ℜ 85.94% 97.65%
Ⅎ 27.71% 68.87%

Neutral
℘ 91.11% 97.94%
ℜ 05.86% 81.85%
Ⅎ 11.01% 89.18%

G
ro
up

-3

Positive
℘ 10.40% 40.44%
ℜ 96.79% 82.01%
Ⅎ 18.79% 54.16%

Negative
℘ 28.33% 69.10%
ℜ 70.29% 72.65%
Ⅎ 40.38% 70.83%

Neutral
℘ 75.94% 91.22%
ℜ 08.23% 79.54%
Ⅎ 14.84% 84.98%

Overall
average
accuracy

℘ 45.41% 73.24%
ℜ 61.12% 85.33%
Ⅎ 52.10% 78.82%

Here, Note, SentiStrengthW uses the extended ANEW dictionary of Warriner et al. [160]
SentiStrength* uses our domain dictionary (created for SentiStrength-SE)

59

As seen in Table 4.4.5.3, in 16 of the 18 cases SentiStrength* achieves higher precision, recall,
and F-score compared to those of SentiStrengthW . SentiStrength*’s recalls for positive senti-
ments only are slightly lower than those of SentiStrengthW . Notice that, for those same case, the
SentiStrengthW ’s precision is substantially lower compared to SentiStrength*. In every case,
SentiStrength* maintains a nice balance between precision and recall in detecting sentimental
and neutral comments. Such balancing between precisions and recalls results in higher F-scores for
SentiStrength* in all cases. The overall accuracies, as presented in the bottom three rows of the
table indicates significantly higher precision, recall, and F-score of SentiStrength* compared to
SentiStrengthW . To determine the statistical significance of the observed differences in the accu-
racies, we performMcNemar’s test between the results of SentiStrengthW and SentiStrength*.
For the statistical test, we formulate our null and alternative hypotheses as follows:
NullHypothesis-5 (H5

0): There is no significant difference between the accuracies of SentiStrengthW
and SentiStrength*.
Alternative Hypothesis-5 (H5

a): There exist significant differences between the accuracies of
SentiStrengthW and SentiStrength*.

Table 4.19: Contingency matrix for McNemar’s test between SentiStrengthW and
SentiStrength*

of comments misclassified
by both a and b 1,014 68 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 3,270 1,212 # of comments correctly

classified by both a and b
Here, a = SentiStrengthW and b = SentiStrength*

The contingency matrix for the McNemar’s test is presented in Table 4.4.5.3. As seen in
the contingency matrix, SentiStrength* (b) exhibits higher accuracies (compared to the
SentiStrengthW) as n10 > n01. The test obtains p = 2.2 × 10−16 where p < �. Thus, the
test rejects our null hypothesis (H5

0). Hence the alternative hypothesis (H5
a) holds true indicating

that the differences in the accuracies of SentiStrength* and SentiStrengthW are statistically
significant. Therefore, we answer the research question RQ5 as follows:

Ans. to RQ5: For sentiment analysis in software engineering text, the domain-specific dictionary
we created for SentiStrength-SE performs significantly better than a large domain-independent
dictionary.

4.4.5.4 Manual Investigation to Reveal Cause

We conduct an immediate qualitative investigation to reveal why the large dictionary of Warriner et
al., having higher coverage, performsworse than our smaller domain-specific dictionary. We identify

60

a set of comments CWm from Group-2 dataset, which are misclassified by SentiStrengthW . From
the set CWm we distinguish another subset CSc , which are correctly classified by SentiStrength*.
Then we randomly pick 50 comments from the set CSc for manual investigation.

From the manual investigation, we find the domain-specific variations in the meaning of words
(i.e., the difficulty D1 revealed in Section 4.2.5.2) as the main reason for the low accuracies of
SentiStrengthW . For example, the following neutral comment is identified to have both nega-
tive and positive sentiments by SentiStrengthW .

"... crash for the same reason. Made some local fixes here." (Comment
ID: 149494)

The above comment is misclassified to have both positive and negative sentiments due to the
presence of the words ‘Crash’ and ‘Fix’, which are negatively and positively polarized words respec-
tively in the domain-independent ANEW dictionary of Warriner et al. [160]. In software engineering
domain, both the words are neutral in sentiments. Due to the same reason, in detection of neutral
comments, the performance of the dictionary ofWarriner et al. is even worse than both the optimized
and default dictionary of the original SentiStrength.

4.4.6 Comparison with an Alternative Domain Dictionary

Recall that our domain dictionary for SentiStrength-SE is developed using commit mes-
sages only. There is a possibility that a domain dictionary built on text from diverse sources may
offer better performance. Thus, to verify this possibility, we create a second domain dictionary
using text from diverse sources and compare this new alternative dictionary with the dictionary of
SentiStrenght-SE. In particular, we address the following research question:

RQ6: Can a domain dictionary developed using texts from diverse sources perform substantially
better than SentiStrength-SE’s domain dictionary developed based on commit messages only?

4.4.6.1 Building an Alternative Domain Dictionary

In addition to the 490 thousand commit messages used to develop SentiStrength-SE’s dictionary,
we obtain 1,600 Code Review Comments (CRC) [162], 1,795 JIRA Issue Comments (JIC) [58] and
4,423 Stackoverflow posts (SOP) [55]. We use software engineering texts from these diverse datasets
to build the alternative domain dictionary.

Figure 4.3 depicts the steps/actions performed to develop this new dictionary. Here, in the first
three steps (i.e., step-1 through step-3), we first produce a set S that includes all distinct words from
all the four datasets. Then, we derive another set Cw of 1,198 words that are common in both S and
the domain-independent dictionary of the original SentiStrength. These three steps are similar to

61

SentiStrength
(SS)

dictionary

Converting
wild-card

formed words
to full forms

Full formed
words of SS
dictionary

(Sw)

Lemmatization
of words

List of
lemmatized

words in
datasets

(Mw)

List of
common

words
(Cw)

Excluding
domain
words

 Dw

Converting
full-formed

words to wild-
card forms

Identifying
common

words

Stanford
NLP

New domain
dictionary (Nw)

Commit
Comments (CC)

Code Review
Comments (CRC)

JIRA Issue
Comments (JIC)

Stackoverflow
Posts (SOP)

Datasets

Identifying
Cw Ew

Uw

SentiStrength
-SE (SSE)
dictionary

Converting
wild-card

formed words
to full forms

Full formed
words of SSE
dictionary (Ew)

List of
sentimental
words (Gw)

Merging
List of

sentimental
words (Mw)

1 3

2

4

6

78

The symbols represent the steps/actions taken to develop the dictionary. The steps/actions are enumerated in chronological order

Identifying
Cw Ew

U

5.1

5.2

—

Figure 4.3: Procedural steps in developing a new alternative domain dictionary

the first three steps (Figure 4.1) in developing the domain dictionary of our SentiStrength-SE .
However, here in step-1, we use four datasets instead of commit messages only.

In step-4, we transform the wild-card formed words in SentiStrength-SE’s dictionary to their
full forms. The set of full-formed words is denoted as Ew. In step-5, we derive a set of words Dw

from the set Cw such that Dw contains only those words that are common between Cw and Ew.
Mathematically, Dw = Cw ∩ Ew. We also derive another set Uw, which contains the words that are
in Cw but not in Ew. Mathematically, Uw = Cw - Ew.

All the words in Dw can safely be considered sentimental as those words are also present in
the dictionary of SentiStrength-SE. We need to identify those words in Uw that are neutral in
software engineering domain, but could be sentimental in general. Hence, in step-6, we involve
three human raters (enumerated as A, B, and C) to independently identify those contextually neutral
domain words. These human raters are the same three raters used in the development of the domain
dictionary of SentiStrength-SE.

In Table 4.20, we present sentiment-wise percentage of cases where the human raters disagree
pair-wise. We also measure the degree of inter-rater agreement in terms of Fleiss-� [150] value.
The obtained Fleiss-� value 0.691 signifies substantial agreement among the independent raters.
We consider a word as a neutral domain word when two of the three raters identify the word as
neutral. Thus, 373 words are identified as neutral domain words, which we exclude from the set
Uw resulting in another set of sentimental words Gw. Then, in step-7, by taking a union of the
words in the sets Gw and Dw we form another set of wordsMw, which contains all the sentimental
words. Finally, in step-8, we adjust the words inMw by reverting them to their wild-card forms (if
available) to comply with SentiStrength-SE’s dictionary. This new set of words form our new
domain dictionary (Nw). At this stage, we also make sure the words, which are manually added
in the dictionary of SentiStrength-SE’s (see Section 4.3.1.1), are included in the set of words of

62

the new domain dictionary. This alternative dictionary contains 225 positively and 495 negatively
polarized sentimental entries.

4.4.6.2 Comparison between the New Dictionary and SentiStrength-SE’s Dictionary

We create a variant of SentiStrength-SE by replacing its domain dictionary with the newly cre-
ated alternative domain dictionary. We call this variant SentiStrength-SEN . Then we compare
the performance of SentiStrength-SEN against SentiStrength-SE, which actually implies a
comparison of SentiStrength-SE’s dictionary with the new domain dictionary we have created.

Table 4.20: Inter-rater disagreements in interpretation of sentiments
Disagreements between Human Raters

Sentimental Polarity A, B B, C C, A
Positive 11.32% 12.18% 12.22%
Negative 12.25% 11.19% 10.21%
Neutral 12.15% 10.53% 13.42%

Table 4.21: Comparison of performances of SentiStrength-SEN and SentiStrength-SE
Data Sentiment Met. SentiStrength-SEN SentiStrength-SE

G
ro
up

-2

Positive
℘ 87.82% 88.86%
ℜ 98.81% 98.81%
Ⅎ 92.99% 93.57%

Negative
℘ 53.45% 53.42%
ℜ 97.68% 97.66%
Ⅎ 69.09% 69.06%

Neutral
℘ 98.13% 98.14%
ℜ 82.57% 83.00%
Ⅎ 89.68% 89.94%

G
ro
up

-3

Positive
℘ 39.16% 41.80%
ℜ 82.62% 82.04%
Ⅎ 53.13% 55.39%

Negative
℘ 70.44% 68.61%
ℜ 72.25% 71.00%
Ⅎ 71.33% 69.78%

Neutral
℘ 90.71% 90.64%
ℜ 78.94% 80.05%
Ⅎ 84.42% 85.02%

Overall
average
accuracy

℘ 73.28% 73.57%
ℜ 85.47% 85.43%
Ⅎ 78.91% 79.06%

Here, Note, SentiStrength-SEN uses the newly created domain dictionary
SentiStrength-SE uses its own domain dictionary

We invoke SentiStrength-SEN for detecting sentiments in issue comments in Group-
2 and Group-3 datasets. Then we compute the precision (℘), recall (ℜ), and F-score (Ⅎ) of

63

SentiStrengthW in detection of each sentimental polarity. We present the computed metrics
values obtained by SentiStrength-SEN and SentiStrength-SE side by side in Table 4.4.6.2.
As seen in Table 4.4.6.2, SentiStrength-SEN performs slightly better than SentiStrength-SE

in detection of negative sentiments. On the other hand, by observing precision and F-score values,
we can say that SentiStrength-SE performs little better in detecting positive and neutral com-
ments, although SentiStrength-SEN achieves slightly higher recall values in those positive and
neutral comments. The overall accuracies, as presented at the bottom three rows of Table 4.4.6.2,
indicate that the performances between SentiStrength-SEN and SentiStrength-SE do not
differ substantially. To verify the statistical significance of the observed differences, we perform
anotherMcNemar’s test between the results of SentiStrength-SEN and SentiStrength-SE. For
the statistical test, we formulate our null and alternative hypotheses as follows:
NullHypothesis-6 (H6

0): There is no significant difference between the accuracies of SentiStrength-SEN
and SentiStrength-SE.
Alternative Hypothesis-6 (H6

a): There exist significant differences between the accuracies of
SentiStrength-SEN and SentiStrength-SE.

Table 4.22: Contingency matrix for McNemar’s test between SentiStrength-SEN and
SentiStrength-SE

of comments misclassified
by both a and b 1,033 49 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 83 4,399 # of comments correctly

classified by both a and b
Here, a = SentiStrength-SEN and b = SentiStrength-SE

The contingency matrix for the McNemar’s test is presented in Table 4.4.6.2. As seen in the
contingency matrix, SentiStrength-SEN (a) and SentiStrength-SE (b) exhibit almost equal
accuracies as n10 ≋ n01. The test obtains p = 0.0040 where p > �. Thus, the test fails to reject our
null hypothesis (H6

0). Therefore, we conclude that the performance of the newly created domain
dictionary does not significantly differ from that of SentiStrength-SE’s domain dictionary. We
now formulate the answer to the research question RQ4 as follows:

Ans. to RQ6: There is no statistically significant difference between the performances of the newly
created domain dictionary and the domain dictionary of SentiStrength-SE.

4.4.6.3 Manual Investigation to Determine Reasons

The result of the aforementioned comparison appear surprising to us, as we expected the newly
created alternative dictionary to perform better than that of SentiStrength-SE. Recall that
the newly created dictionary is larger than the domain dictionary of SentiStrength-SE.

64

SentiStrength-SE’s dictionary has 167 positively and 310 negatively polarized sentimental
words while the newly created one includes 225 positively and 495 negatively polarized words.
While large number of entries in a dictionary can be helpful in achieving high recall, they can
also misguide the sentiment analysis for a particular domain resulting in low precision. Hence,
we manually investigate these possibilities in two phases and identify two reasons why the newly
created alternative dictionary failed to outperform that of SentiStrength-SE.
Phase-1 Investigation: We randomly select a set of five issue comments for which SentiStrength-SEN
misclassifies their sentiments but SentiStrength-SE correctly classifies. One such comment is as
follows:

"I disagree."

(Comment ID: 1787887_1)

SentiStrength-SEN incorrectly identifies the above comment negatively emotional since
the word ‘disagree’ recorded as a negatively polarized word in the newly created dictionary.
SentiStrength-SE correctly identifies the comment as neutral as the word is not included in its
dictionary. We identifies similar scenarios for all the five randomly picked issue comments.
Cause-1: Some emotional words present in the new domain dictionary also appear in many neutral
comments of the ground-truth datasets. Which is why SentiStrength-SEN ended up misclassi-
fying those neutral comments as sentimental ones. This is a well-known problem of high coverage
dictionaries [159].
Phase-2 Investigation: We randomly pick 20 inherently emotional words from the new domain
dictionary, which are not present in the dictionary of SentiStrength-SE. Then, we search for those
words in the ground-truth dataset and find five words (among the selected 20 words) (i.e., ‘abhor’,
‘agony’, ‘appalling’, ‘crime’ and ‘delight’) do not appear in any comments in the dataset.
Cause-2: This implies, although the new domain dictionary includes more sentimental words com-
pared to the dictionary of SentiStrength-SE, many of those new sentimental words are unable to
create any contributions in sentiment analysis due to their absence in the ground-truth datasets in use.

4.4.7 Evaluating the Contributions of Heuristics

In addition to the domain dictionary, SentiStrength-SE also includes a set of heuristics
to guide the sentiment detection process towards higher accuracies. The heuristics, particularly
designed for software engineering text, are also among the major contributions of this work. Here,
we carry out a quantitative analysis to determine to what extent these heuristics contribute in the
detection of sentiments in software engineering text. In particular, we address the following research
question:

65

RQ7: Do the heuristics integrated in SentiStrength-SE really contribute to improved sentiment
analysis in software engineering text?

We compare the performances of SentiStrength-SE and SentiStrength* to determine the
contributions of the heuristics. Recall that SentiStrength* refers to the variant of the origi-
nal SentiStrength that is forced to use our initial domain dictionary instead of its original one.
Thus, SentiStrength-SE and SentiStrength* use the same domain dictionary and the only
difference between them is the set of heuristics that are included in SentiStrength-SE. Hence,
the heuristics are liable for any differences between the performances of SentiStrength-SE and
SentiStrength*.

Table 4.23: Contributions of heuristics in SentiStrength-SE
Data Sentiment Met. SentiStrength-SE SentiStrength*

G
ro
up

-2

Positive
℘ 88.86% 87.56%
ℜ 98.81% 98.28%
Ⅎ 93.57% 92.61%

Negative
℘ 53.42% 53.19%
ℜ 97.66% 97.65%
Ⅎ 69.06% 68.87%

Neutral
℘ 98.14% 97.94%
ℜ 83.00% 81.85%
Ⅎ 89.94% 89.18%

G
ro
up

-3

Positive
℘ 41.80% 40.44%
ℜ 82.04% 82.01%
Ⅎ 55.39% 54.16%

Negative
℘ 68.61% 69.10%
ℜ 71.00% 72.65%
Ⅎ 69.78% 70.83%

Neutral
℘ 90.64% 91.22%
ℜ 80.05% 79.54%
Ⅎ 85.02% 84.98%

Overall
average
accuracy

℘ 73.58% 73.24%
ℜ 85.43% 85.33%
Ⅎ 79.06% 78.82%

Here, SentiStrength is forced to use our domain dictionary instead of its own one.

We present the performances of SentiStrength-SE and SentiStrength* in Table 4.4.6.3.
For determining the effects of heuristics included in SentiStrength-SE, let us compare the right-
most two columns in Table 4.4.6.3. We observe that the precision, recall, and F-score achieved
by our SentiStrength-SE are consistently higher than those of SentiStrength* in most cases.
In a few cases for the Group-3 dataset, SentiStrength-SE’s accuracy is nearly equal to those of
SentiStrength*. The overall average accuracies, as presented at the bottom of Table 4.4.6.3, also
indicate the superiority of our SentiStrength-SE over SentiStrength*, which implies that the

66

heuristics incorporated in SentiStrength-SE really contribute to higher accuracy in the detection
of sentiments in software engineering text.

However, as seen in Table 4.4.6.3, although the accuracy of SentiStrength-SE is higher com-
pared to SentiStrength*, they do not differ by a large margin. Thus, it appears that the contribu-
tions of heuristics, in this particular case, are not substantial and unlikely to be statistically significant.
To verify our observations, we perform a McNemar’s test between the results of SentiStrength*
and SentiStrength-SE. For the test, we formulate our null and alternative hypotheses as follows:
NullHypothesis-5 (H7

0): There is no significant difference between the accuracies of SentiStrength-SE
and SentiStrength*.
Alternative Hypothesis-5 (H7

a): There exist significant differences between the accuracies of
SentiStrength-SE and SentiStrength*.

Table 4.24: Contingency matrix for McNemar’s test between SentiStrength-SE and
SentiStrength*

of comments misclassified
by both a and b 993 78 # of comments misclassified

by b but not by a
of comments misclassified
by a but not by b 81 4,433 # of comments correctly

classified by both a and b
Here, a = SentiStrength-SE and b = SentiStrength*

The contingency matrix for the McNemar’s test is presented in Table 4.4.6.3. As seen in the
contingency matrix, SentiStrengthSE (a) and SentiStrength* (b) exhibit almost equal accu-
racies as n10 ≋ n01. The test obtains p = 0.874 where p > �. Thus, the test fails to reject our null
hypothesis (H7

0). Therefore, we conclude that the contribution of the heuristics in the tool is not
significant in this particular case.

Based on our observations from the quantitative analysis and the statistical test, we now formu-
late the answer to the research question RQ5 as follows:

Ans. to RQ7: Although the set of heuristics integrated in SentiStrength-SE contribute towards
improved sentiment analysis in software engineering text, the perceived improvement is not statis-
tically significant for the given datasets.

Recall that, from the exploratory study (Section 4.2) using the Group-1 portion of the “Gold
Standard" dataset, we found that the majority of the misclassifications of sentimental polarities are
due to the limitations (difficulties D1, D3, D6) of the dictionary in use (Table 4.3). Hence, the
majority of misclassifications are to be corrected by using a domain dictionary, leaving a relatively
narrow scope for further contributions from the heuristics, at least for this “Gold Standard" dataset.
Our manual investigation of the datasets used in this study confirms the existence of very few issue
comments within operational scope of the heuristics.

67

4.4.7.1 Further Manual Investigation

Although SentiStrength-SE is found to have performed better in most cases, as seen in Ta-
ble 4.4.6.3, in four cases for the Group-3 dataset SentiStrength-SE’s accuracy ismarginally lower
than SentiStrength*. An immediate qualitative investigation reveals two reasons for this, which
we discuss now.

First, our parameter setting to identify negations of sentimental words falls short in capturing
negations in some cases. For example, in the following issue comment, the negation word “Don’t"
preceding the word ‘Know’ neutralizes the negatively polarized word ‘Hell’ due to the negation
configuration parameter set to five in SentiStrength-SE.

"I don’t know how the hell my diff program decide to add seemingly

random CR chars, but i’ve removed them now" (Comment ID: 306519_2)

A lower negation parameter could work better for this particular issue comment, but might perform
worse for negations in others. Other possible solutions are discussed in Section 4.4.9.

Second, we also found instances of incorrect annotations for negative sentiments for some issue
comments in the Group-3 dataset, which caused the accuracy of SentiStrength-SE appear to go
down. Consider the following two issue comments.

"Inserting timestamps automagically would be bad because it would limit

a whole swath of use cases" (Comment ID: 1462480_2)
"If that would be the case, this would be bad design"

(Comment ID: 748115_2)

In the above two issue comments, the author stated merely the possibilities of negative scenarios
that hadn’t happened yet. These comments do not convey negative sentiments. But the human raters
annotated with negative sentiments possibly due considering the use of negatively polarized word
‘Bad’ in the sentences.

These observations inspire us to conduct a deeper qualitative investigation of the success scenar-
ios and especially the failure cases of SentiStrength-SEmainly to explore opportunities for further
improvements to the tool. Hence, a qualitative evaluation of SentiStrength-SE is presented in the
following section.

4.4.8 Qualitative Evaluation of SentiStrength-SE

Although from the comparative evaluations we found our SentiStrength-SE superior to the all
selected tools, SentiStrength-SE is not a foolproof sentiment analysis tool. Indeed, 100% accu-
racy cannot be a pragmatic expectation. Nevertheless, we carry out another qualitative evaluation
of SentiStrength-SE with two objectives: first, to confirm that the achieved accuracy found in

68

the comparative evaluations did not occur by chance, and second, to identify failure scenarios and
scopes for further improvements.

We first randomly pick 150 issue comments (50 positive, 50 negative, and 50 sentimentally neu-
tral) from the Group-2 and Group-3 of the “Gold Standard" dataset for which SentiStrength-SE
correctly detected the sentimental polarities. From our manual verification over these 150 issue com-
ments, we are convinced that the design decisions, heuristics, and parameter configuration adopted
in SentiStrength-SE have positive impacts on the accurate detection of sentimental polarities.

Next, we randomly choose another 150 issue comments (50 positive, 50 negative, and 50 senti-
mentally neutral) for which SentiStrength-SE failed to correctly detect the sentimental polarities.
Upon manual investigation of those 150 issue comments, we find a number of reasons for the inaccu-
racies, a few of which are within the scope of the design decisions applied to SentiStrength-SE,
and the rest falls beyond, which we discuss in Section 4.4.9. One of the reasons for failure is missing
sentimental terms in our newly created domain dictionary. For example, SentiStrength-SE incor-
rectly identified the following comment as neutral in sentiment by misinterpreting the sentimental
word ‘Stuck’ as a neutral sentimental word, since the word was not included in the dictionary, which
we add to the dictionary of SentiStrength-SE’s release.

"For the first part, I got stuck on two points" (Comment ID: 1610758_3)

Some other cases we have found inconsistencies in human rating of sentiments in issue com-
ments, which are liable for inaccuracy in SentiStrength-SE. For example the following comment
is rated as neutral in sentiment by human raters, although that contains the positive sentimental term
‘Thanks’ along with the exclamatory sign ‘!’.

"And many thanks to you Oliver for applying this so quickly!"

(Comment ID: 577184_1)

Our investigation reveals that 200 issue comments are wrongly interpreted in Group-3 by human
raters that cause low accuracy in SentiStrength-SE for detecting positive sentiment, which is
aligned with our earlier findings of such wrong interpretation of sentiments.

Although the additional preprocessing phase of SentiStrength-SE filters out unwanted content
such as source code, URL, numeric values from the input texts, we found several instances where
such contents escaped the filtering technique and misguided the tool.

In a few cases, we found that our heuristics to identify proper nouns fell short for not taking into
account probable cases. For example, SentiStrength-SE incorrectly computed negative sentiment
in the following issue comment. As seen in the following comment a developer thanked his colleague
name ‘Harsh’.

69

"Thanks Harsh, the patch looks good ... Since this is a new API, we

are not sure if want to change it. Let’s leave it as-is for the moment."

(Comment ID: 899420)

For failing to identify ‘Harsh’ as a proper noun, SentiStrength-SE considered the word sentimen-
tally negative and erroneously detects negative sentiment in the message. Our immediate future plan
includes further extension to our heuristics for locating proper nouns in text.

4.4.9 Threats to Validity

In this section, we discuss the threats to the validity of the empirical evaluation of SentiStrength-SE
and our efforts in mitigating them.

4.4.9.1 Construct Validity and Internal Validity

Threats to construct validity relate to the suitability of the evaluation metrics. We use three metrics:
precision, recall and F-score to evaluate the classification performances of SentiStrength-SE
and other tools. All the three metrics have been commonly used for similar purposes in software
engineering studies [162, 163, 55]. Only quantitative analysis may not portray the whole picture,
which is whywe have performed both quantitative and qualitative evaluation of SentiStrength-SE.

The accuracies in the computations of the metrics are subject to the correctness in the manual
annotation of the issue comments with sentimental polarities. Hence, we have manually checked
the annotations of issue comments in the “Gold Standard” dataset. We identified around 200 issue
comments that are incorrectly labelled with wrong sentimental polarities. Nevertheless, we did not
exclude those misclassified issue comments because they equally affect all the tools without favoring
one over another.

To compare the performance of SentiStrength-SE against other tools (e.g., SentiStrength,
NLTK, and StanfordNLP), we have used their default settings. Different settings of those tools might
provide different results, however we adhered to their default settings due to their uses in earlier
software engineering studies [34, 4, 41, 43, 40, 35, 36, 42, 48, 154, 164].

While optimizing SentiStrength’s default dictionary for software engineering domain, we
assigned three constant values +3, -3 and ±1 to positive, negative and neutral comments, respec-
tively. One may question the reasons for choosing those particular values instead of other values
in the domains. For example, we could have used +2, +4 or +5 instead of +3 and -2,-4 or -5 in-
stead of -3. Recall that those integer values not only indicate polarities of sentiments but also their
intensities/strength [157]. In the computation of precision, recall and F-score, only the sentimental
polarities are considered. Hence any value from +2 to +5 for positively polarized comments and
any value from -2 to -5 for negatively polarized comments could be used in the process of optimiza-

70

tion. We simply picked the values in the median, instead of choosing extreme ones at the domain
boundaries.

We changed the range of valence scores of the words from [+1, +9] to [-5, +5] in the ANEW

dictionary of Warriner et al. [160] to compare its performance against the domain dictionary of
SentiStrength-SE. One might argue that the range conversion might have altered the original
sentimental polarities of some words. We have considered this possibility and carefully designed the
conversion scheme to minimize such possibilities. A random sanity check after the range conversion
indicates absence of any such occurrence.

4.4.9.2 External Validity

The use of only one benchmark dataset (i.e., the “Gold Standard" dataset) can be considered a lim-
itation of the empirical evaluation of our SentiStrength-SE. The outcome of the work could be
more generalizable if more than one benchmark datasets could be used. At the time of first release of
SentiStrength-SE, this “Gold Standard" dataset has been the only publicly available dataset espe-
cially crafted for the software engineering domain [52, 110]. A few newer datasets are available, but
those are either not software engineering domain specific or they are evenmore specific to a narrower
context (e.g., code review, product review). The issue comments in the benchmark dataset are col-
lected from open-source systems and thus one may question whether or not the tools including ours
will perform differently if applied on datasets drawn from industrial/proprietary projects. Produc-
ing a large dataset with human annotations is a tedious and time consuming task. We are working
towards creating a second benchmark dataset for sentiment analysis in software engineering text.
Once completed, we will release the dataset for the community.

Although there are diverse sources of textual content produced at different stages of software
development and maintenance, the benchmark dataset we used contains only JIRA issue comments.
Hence, one may argue that the results of the empirical comparison of tools might substantially vary
if a dataset with a different type of text is used. Recall that the dictionary of our SentiStrength-SE
tool is created based on commit comments. Thus, its superior performances on issue comments give
us confidence that the tool will also perform well on other types of textual content.

4.4.9.3 Reliability

Themethodology of this study including the procedure for data collection and analysis is documented
in this chapter. The “Gold Standard" dataset [52] and all the tools (i.e., SentiStrength-SE [54],
SentiStrength [45], NLTK [46] and Stanford NLP [146]) are available freely available online.
Therefore, it should be possible to replicate the empirical evaluation of our tool.

71

4.5 Limitations of SentiStrength-SE and Future Possibilities

In this section, we discuss the limitations in the design and implementation of SentiStrength-SE
as well as some directions for further improvements to our tool. To develop SentiStrength-SE,
we have addressed the difficulties identified from the exploratory study described in Section 4.2.
Still there are scopes for further improvements, as we also found from the qualitative evaluation
of the tool. For example, we have observed in Section 4.4.8 that missing of sentimental words
can mislead the SentiStrength-SE. We have created an alternative new domain dictionary for
SentiStrength-SE using texts from diverse sources. Surprisingly, this newly created domain dic-
tionary do not offer significant performance improvements. We plan to further extend our domain
dictionary by integrating with different dictionary building approaches [163, 165, 166].

Our adopted approach for domain dictionary creation is unique from other attempted ap-
proaches [163, 165, 166]. We have deliberately chosen this approach for two reasons. First, we
wanted to introduce a new approach, and second, it was not possible to adopt existing approached
due to limitation of resources such as sentiment-annotated texts in software engineering [52].
Through the empirical evaluations, we have shown that our created domain dictionary is effective
for sentiment analysis in software engineering. Moreover, in the process of development of the
dictionary the identification of domain terms by three human raters might cause a subjectivity bias.
However, we have measured the inter-rater agreements, and found reasonable agreements, which
minimizes the threat substantially.

In the creation of our new domain dictionary, we used graduate students as the human raters,
rather than expert software developers from industry. However, all the participants have at least
three years of software development experience, which mitigates this threat. Moreover, it is reported
that only minor differences exist between the performances of graduate students and professional
software developers especially at small tasks involving simple judgements [167].

The use of only three human raters may be argued as a small number of participants. However,
two to three raters have been common practice in successful software engineering studies [162, 163,
55, 168]. Moreover, through the empirical evaluations (both quantitative and qualitative), we have
shown that our created domain dictionary is effective for sentiment analysis in software engineering
text.

Several methods have been proposed and discussed to identify the scope of the negations of po-
larized words in sentiment analysis [169, 170], which can be applied to improve the performance
of our negation handling approach. Many sophisticated approaches to identify the negation’s scope
include machine learning techniques [169, 171], complex rules [172], and identifying negated words
using semantics of phrases [173]. However, many existing sentiment analysis approaches have rel-
atively simple methods to identify scope of negation [125, 174]. Interestingly, performance of a
negation detection method can be improved by domain adaptation [175]. In future, we will evaluate

72

all the mentioned methods by applying in software engineering contexts to identify the best method
to detect scope of negation.

Although our approach for filtering out code snippets may not correctly locate all code portions,
but the filtering indeed minimizes them. Indeed, isolating inline source code from plain text content
is a challenging task, especially when the text can have code written in diverse undeclared program-
ming language. Such a code separation problem can be a separate research topic and limited scope
attempts are made in the past [176]. We also plan to invest efforts along this direction to further
improve SentiStrength-SE.

At this stage, we have not addressed the difficulties D10, D11, and D12, which are included in
our future plan. The detection of irony, sarcasm, and subtle emotions hidden in text is indeed a
challenging research topic in NLP and not only related to software engineering texts. Even human
interpretations of sentiments in text often disagree as such we also found in the “Gold Standard"
dataset. Combining the dictionary-based lexical method with machine learning [177] and other
specialized techniques [178] can lead to potential means to address these difficulties. We also plan
to add to SentiStrength-SE the capability to identify interrogative sentences correctly mitigate
the difficulty D10.

4.6 Related work

To the best of our knowledge, the qualitative study (Section 4.2), is the first study that analyzes public
benchmark dataset to expose the challenges to sentiment analysis in software engineering. And, we
have developed the first sentiment analysis tool, SentiStrength-SE, crafted especially for software
engineering domain, which we expect to produce superior performance in other technical domains
as well.

Aside from our tool, there are only four prominent tools/toolkits namely, SentiStrength [45],
Stanford NLP [146], NLTK [46], and Alchemy [179], which facilitate automatic sentiment analy-
sis in plain texts. The first three of these tools have been used for sentiment analysis in software
engineering domain, while SentiStrength is used most frequently in the studies as presented in
Table 4.6. We categorize those studies for better understanding of the uses of those tools and the con-
tributions of those studies in software engineering domain. Those tools, which are previously used
in software engineering area, but not for sentiment analysis, are excluded from the table. Notably,
none of the studies used any domain specific tool to detect sentiments.

Alchemy [179] is a commercial toolkit that offers limited sentiment analysis as a service through
its published APIs. According to the study of Jongeling et al. [142] the performance of Alchemy
is lower than SentiStrength [45] and NLTK [46]. NLTK and Stanford NLP [146] are general
purpose natural language processing (NLP) library/toolkit, which expect the user to have some NLP
background and to write scripting code for carrying out sentiment analysis in plain text. In contrast,

73

Table 4.25: Uses of (domain-independent) tools for sentiment analysis in software engineering
Tools Type of Work Uses in Software

Engineering Research

SentiStrength [45]
Analyzing sentiments in
software engineering (SE) [34, 43, 37, 38, 36, 50, 180, 181]
Applications of
sentiments in SE [4, 40, 35, 42, 51, 182, 136]
Benchmarking study [48, 142]

NLTK [46] Analyzing sentiments in SE [41, 164]
Benchmarking study [48, 142]

Stanford NLP [146]
Applications of
sentiments in SE [154]
Benchmarking study [48, 142]

SentiStrength is a dedicated tool that applied a lexical approach for automated sentiment analysis
and is ready to operate without needing to write any scripting code (for natural language processing).
Perhaps, these are among the reasons why, in software engineering community, SentiStrength
has gained popularity over the alternatives. The same reasons also made us choose this particular
tool as the basis of our work. Our SentiStrength-SE reuses the lexical approach of the original
SentiStrength and is also ready to be used off the shelf.

All of the aforementioned four tools (i.e., SentiStrength [45], Stanford NLP [146],
NLTK [46], and Alchemy [179]) are developed and trained to operate on non-technical texts
drawn from social interactions, web pages, and they do not perform well enough when operated
in a technical domain such as software engineering. Domain-specific (e.g., software engineering)
technical uses of inherently emotional words seriously mislead the sentiment analyses of those
tools [41, 43, 48, 50] and limit their applicability in software engineering area. We have addressed
this issue by developing the first software engineering domain-specific dictionary included in our
tool SentiStrength-SE. Along this direction Mäntylä et al. [39] developed a dictionary to capture
emotional arousal in the software engineering texts.

Apart from creating domain dictionary, a variety of machine learning (ML) techniques such
as, Naive Bayes classifier (NB), Support Vector Machine (SVM) [125], and Logistic Regression
(LR) [183] have been explored in an attempt to minimize the domain difficulty. However, the perfor-
mances of all these three classifiers are reported lower when operated on domain-specific texts [184].
Nonetheless, recently Murgia et al. [185] applied several ML techniques (e.g., NB, SVM) to iden-
tify emotions love, joy and sadness only in contrast to our tool SentiStrength-SE that can dif-
ferentiate positivity, negativity and neutrality of software engineering texts. 1Again, Panichella et
al. [168] 1used NB classifier to detect sentiments in software users’ reviews. However, the accu-
racy of their classifier was not reported. Those two tools are not publicly available to compare
against our tool SentiStrength-SE. Moreover, we avoided to apply ML technique to implement

74

SentiStrength-SE due to 1the limitations of ML for sentiment analysis that include its difficulty
to integrate into a classifier and learned models often have poor adaptability between different text
genres or domains as they often rely on domain specific features found in their training data [184].

Blaz and Becker [163] proposed three almost equally performing methods, aDictionary Method
(DM), a Template Method (TM) and a Hybrid Method (HM) for sentiment analysis in “Brazilian
Portuguese” texts in IT (Information Technology) job submission tickets. The DM is a pure lexical
approach similar to that of our SentiStrength-SE. Although their techniques might be suitable
for formally structured texts, those may not perform well in dealing with informal texts that are
frequently used in software engineering artifacts such as commit comments. In contrast, from the
empirical evaluation over commit comments, our SentiStrength-SE is found to have high accu-
racy in detecting sentiments in those informal software engineering texts. The proposed methods of
Blaz and Becker [163] are developed and evaluated against text written in “Brazilian Portuguese”
language instead of English. Thus, their approach and reported results are not directly comparable
to ours.

Similar to the qualitative study included in our work, Novielli et al. [50] also conducted a rel-
atively brief study of the challenges against sentiment analysis in “social programmer ecosystem".
They also used SentiStrength for the detection of emotional polarities and reported only domain
difficulty as a key challenge. In their work, they manually studied only 100 questions and their
follow-up comments as well as 100 answers and their follow-up discussions obtained from Stack
Exchange Data Dump [186]. In contrast, based on a deeper analysis over a publicly available bench-
mark dataset, our study exposes 12 difficulties including the domain dependency. In addition, we
address a portion of those difficulties and develop a domain-specific tool for improved sentiment
analysis in software engineering text.

Our SentiStrength-SE is the first software engineering domain specific sentiment analy-
sis tool. Soon after the release of SentiStrength-SE, four domain-specific tools/toolkits (i.e.,
Senti4SD [55], SentiCR [162], EmoTxt [56], and SentiSW [187]) have appeared over the last
few months. Similar to our SentiStrength-SE, Senti4SD is also a software engineering domain
specific sentiment analysis tool. Senti4SD applies machine learning based on lexicon and keyword
based features for detecting sentiments. SentiSW also applies machine learning techniques to detect
sentiments at entity-levels. EmoTxt [56] is an open-source toolkit for detecting six basic emotions
(i.e., love, joy, anger, sadness, fear, and surprise) from technical text. The authors of SentiCR
declared the scope of this tool limited to code review comments only. Again, the applicability
of SentiSW is limited to only JIRA issue comments. The reported scope of EmoTxt is technical
domain, which is wider than software engineering domain. On the contrary, the scopes of SentiCR
and SentiSW are limited to narrower domains of code review comments and JIRA issue comments,
respectively.

75

Recently, two separate studies have been conducted to compare the performances of those do-
main specific sentiment analysis tools. In the first study, Islam and Zibran [188] compared the per-
formances of SentiStrength-SE, Senti4SD and EmoTxt and found no convincing winner among
the tools for sentiment analysis in software engineering. In the later study, Novielli et al. [189]
compared the performances of SentiStrength-SE, Senti4SD and SentiCR and found the unsu-
pervised approach of SentiStrength-SE had provided comparable performance to that of super-
vised techniques (i.e., Senti4SD and SentiCR). SentiSWwas not available at the time of conducting
the two comparative studies. However, developers of SentiSW compared its performance against
SentiStrength-SE and found their tool’s superiority over SentiStrength-SE in detecting sen-
timents expressed in JIRA issue comments. While all those studies compared the performances of
domain specific tools, for the first time, Jongeling et al. [48, 142] compared the performances of do-
main independent tools SentiStrength [45], NLTK [46], Stanford NLP [146] and Alchemy [179]
to measure their applicability in software engineering domain.

We do not claim SentiStrength-SE to be the best tool among all the few tools available for
sentiment analysis in software engineering text. Instead, by developing and evaluating the domain-
specific SentiStrength-SE, we demonstrate that, for sentiment analysis in software engineering
text, a domain-specific technique performs significantly better compared to its domain-independent
counterparts. As mentioned before, our SentiStrength-SE is the first domain-specific tool for
sentiment analysis in software engineering. Other researches might have taken inspiration from
our work [110] in attempting domain-specific solutions resulting in several domain-specific tools
discussed above.

4.7 Summary

We have first presented an in-depth qualitative study to identify the difficulties in automated senti-
ment analysis in software engineering texts. Among the difficulties, the challenges due to domain
dependency are found the most dominant. To address mainly the domain difficulty, we have devel-
oped a domain-specific dictionary especially designed for sentiment analysis in software engineering
text.

We also develop a number of heuristics to address some of the other identified difficulties. Our
new domain dictionary and the heuristics are integrated in SentiStrength-SE, a tool we have de-
veloped for improved sentiment analysis in textual contents in a technical domain, especially in soft-
ware engineering. Our tool reuses the lexical approach of SentiStrength [45], which, in software
engineering, is the most widely adopted sentiment analysis technique. Our SentiStrength-SE is
the first domain-specific sentiment analysis tool especially designed for software engineering text.

Over a large dataset (i.e., Group-2 and Group-3) consisting of 5,600 issue comments, we
carry out quantitative comparisons of our domain-specific SentiStrength-SE with the three

76

most popular domain independent tools/toolkits (i.e., NLTK [46], Stanford NLP [47], and the
original SentiStrength [45]. The empirical comparisons suggest that our domain-specific
SentiStrength-SE is 1significantly superior to its domain independent counterparts in detecting
emotions in software engineering textual contents.

Using both quantitative and qualitative evaluations, we also separately verify the effectiveness of
the design decisions including the domain dictionary and heuristics we have included in our domain-
specific SentiStrength-SE. From the evaluations, we found that our newly created domain dictio-
nary makes statistically significant contributions to improved sentiment analysis in software engi-
neering text. However, the heuristics we developed to minimize the issues beyond the domain diffi-
culties are found not to have substantial impacts on sentiment analysis of the chosen datasets. The
non-substantial impact of the heuristics further validates that the improvements in the accuracies
of SentiStrength-SE are attributed to its being domain-specific. Thus, we demonstrate that, for
sentiment analysis in software engineering text, a domain-specific technique performs substantially
better than domain independent techniques.

77

Chapter 5

Comparison of Sentiment Analysis Tools

In the last chapter (Chapter 4), we identified the difficulties for sentiment analysis in software engi-
neering and describe the development procedure of our sentiment analysis tool SentiStrength-SE
to overcome most of the identified difficulties. Recent attempts have led to the development of a few
domain specific sentiment analysis tools especially designed to deal with software engineering text.
In this chapter, we compare the performances and agreements exist among the software engineering
domain specific sentiment analysis tools in detecting sentiments.

This chapter is organized as follows. In Section 5.1, we describe the motivation and context of
the work. We describe the datasets and domain specific sentiment analysis tools that we use in this
work respectively in Section 5.2 and Section 5.3. Tools’ performance evaluations and findings are
illustrated in Section 5.4. Threats to validity of the work are described in Section 5.5. We discuss
the related work in Section 5.6. Finally, Section 5.7 concludes the chapter.

5.1 Introduction

Sentiment Analysis (SA) in software engineering (SE) text has recently drawn interests in the com-
munity [37, 38]. Earlier attempts used general-purpose (i.e., domain independent) sentiment detec-
tion tools (e.g., SentiStrength [45], NLTK [46] and Stanford NLP [146]) for SA in SE text. Those
general purpose SA tools are found to have very low accuracies when operated on text from a tech-
nical domain such as software engineering [37, 48, 43]. Those SA tools were developed and trained
using data from non-technical social networking media (e.g., twitter posts, forum posts, movie re-
views) and perform poorly for software engineering text largely due to domain specific variations in
meanings of frequently used technical terms [110].

Thus, recent attempts have led to the development of a few domain specific SA tools especially
designed to deal with SE text. Each of these domain specific SA tools were originally evaluated using
a different dataset and compared against the existing domain independent SA tools. The datasets
(e.g., JIRA issue comments, Stack Overflow posts, code review comments) differ in the proportion
and category of technical text they include. The accuracies of these SE domain specific tools have
never been compared using multiple datasets.

Using multiple datasets, we carry out a quantitative comparison of three recently released SE
domain specific SA tools. In our study, we address the following two research questions.

78

RQ1: Can we identify a tool, which shows the highest accuracy across different datasets? — We
investigate which tool achieved higher accuracy in which dataset, and we distinguish a tool which
achieves overall the best accuracy across all the datasets. This will help one in choosing the most
appropriate tool for SA in SE text.
RQ2: To what extent do the different sentiment analysis tools (dis)agree with each other? —Here
we examine to what extent the SA tools (dis)agree on their detection of sentimental polarities (i.e.,
positivity, negativity, and neutrality) in SE text. This agreement analysis will help in identifying the
spots where those tools might need improvements.

5.2 Datasets

In our study, we use three ground-truth datasets drawn from software development ecosystems. A
summary of these three datasets is presented in Table 5.1.

Table 5.1: Summary of the Datasets Used in this Study
Dataset Group # of Comments

Total Pos Neg Neu Non-neg
JIRA Issue Group-2 1,576 748 128 700 1,448
Comments Group-3 4,000 375 672 2,953 3,324
SOP NA 4,423 1,527 1,202 1,694 3,221
CRC NA 2,000 NA 398 NA 1,202

5.2.1 JIRA Issue Comments (JIC) Dataset

This dataset is based on the work of Ortu et al. [52]. The entire dataset is divided in three groups
named as Group-1, Group-2, and Group-3. Group-1 contains 392 issue comments and Group-2
contains 1,600 issue comments. Group-3 contains 4,000 sentences written by developers. Each
individual text (i.e., issue comments and sentences) in the dataset are manually annotated with emo-
tions such as love, joy, surprise, anger, sadness and fear. For manual annotation, each of the 5,992
individual text is interpreted by n distinct human raters [52] and annotated with emotional expres-
sions as found in those comments. For Group-1, n = 4 while for Group-2 and Group-3, n = 3. In
this study, we use the Group-2 and Group-3 portions of the dataset as those were also used in other
studies [110, 52].

5.2.1.1 Emotional Expressions to Sentimental Polarities

We compute sentimental polarities (i.e., positivity, negativity, and neutrality) from the emotional
expressions (i.e., love, joy, surprise, anger, sadness, fear) as follows. Emotional expressions joy
and love denote positive sentiment, while anger, sadness, and fear indicate negative sentiment. We

79

take special measurement for the surprise expressions as in some cases, an expression of surprise
can indicate positive polarity, denoted as surprise+, while in other cases it can express a negative
sentiment, denoted as surprise−. Thus the issue comments in the benchmark dataset, which are
annotated with surprise emotion, need to be further classified based on the sentimental polarities
they convey. Hence, we get each of such comments interpreted by three human raters (computer
science graduate students), who independently assign polarities of the surprise expressions in each
comments.

We consider a surprise expression in a comment negatively polarized (or positively), if two of
the three raters identify negative (or positive) polarity in it. We found 79 issue comments in the
benchmark dataset, which were annotated with the surprise expression. 23 of them express surprise
with positive polarity and the rest 56 convey negative surprise.

Then we split the set  of emotional expressions into two disjoint sets. The first set is + =
{joy, love, surprise+} and the second set is − = {anger, sad, fear, surprise−}. Thus, + contains
only the positive sentimental expressions and − contains only the negative sentimental expressions.
A similar approach is also used in other work [110, 48, 142] to categorize emotional expressions
according to their polarities.

5.2.1.2 Assignment of Sentiments to Text

A piece of text is assigned positive sentiment if maximum number of raters among the n raters
identify positive sentiment in that post. For example, in Group-2, a text  is considered to have a
positive sentiment, if two of the three raters agree on perceiving positive sentiment in  . Similarly,
negativity and neutrality of pieces of text are also determined based on majority agreements. We
find that human raters could not agree on the sentiments of 24 issue comments in Group-2. These
24 comments are excluded from this study.

5.2.2 Stack Overflow Posts (SOP) Dataset

The second ground-truth dataset we use is based on the work of Calefato et al. [128]. This dataset is
composed of 4,423 posts from Stack Overflow. Each if the 4,423 posts is interpreted and annotated
with sentimental polarities (i.e., positive, negative, neutral) by three distinct human raters and a
total 12 different raters were used to annotate the entire dataset. The sentiments expressed in a
particular post are determined based on majority agreements. Thus, in this dataset, 35% of posts
convey positive sentiment and 27% express negative sentiment while 38% of posts are neutral in
sentiments.

80

5.2.3 Code Review Comments (CRC) Dataset

The third dataset used in this work is based on the work of Ahmed et al. [111]. This dataset contains
manually annotated 2,000 code review comments drawn from twenty open-source projects. Three
human raters independently label each of the 2,000 code review comments as positive, negative or
neutral in accordance with the sentimental polarities they perceive in the comment. The decisive
sentiment of a particular comment is determined based on majority agreements. Thus, Ahmed et al.
produced a three-class dataset consisting of comments with positive, negative, or neutral sentiments.
However, in their publicly published dataset, the positive and neutral comments are merged in one
non-negative class. Therefore, in this work, we have to use this two-class dataset where 19.9% com-
ments express negative sentiments and the rest 80.1% comments convey non-negative sentiments.

5.3 Sentiment Analysis Tools under Study

We study the following three SE domain specific SA tools released in last couple of years.
SentiStrength-SE: The tool Sentistrength-SE [110] is the first domain specific tool es-

pecially developed for sentiment analysis in software engineering text. Given piece of text  ,
SentiStrength-SE computes a pair ⟨pc , nc⟩ of integers, where +1 ≤ pc ≤ +5 and −5 ≤ nc ≤ −1.
Here, pc and nc respectively represent the positive and negative sentimental scores for the given
text  . In Sentistrength-SE, a given text  is considered to have positive sentiment if pc > +1.
Similarly, a text is held containing negative sentiment when nc < −1. Besides, a text is considered
sentimentally neutral when the sentimental scores for the text appear to be ⟨1,−1⟩.

Senti4SD: The tool Senti4SD [128] is a machine learning based tool specifically trained to
support sentiment analysis in software engineering related text. By exploiting a suite of both lexicon
and keyword-based features, it can detect positive, negative, and neutral sentiments in text. The
authors of the classifier claim that it reduces the misclassifications of neutral and positive posts.

EmoTxt: The tool EmoTxt [56] is an open-source toolkit that can detect a set of six basic emo-
tions, namely love, joy, anger, sadness, fear, and surprise from technical text. To convert the emo-
tional expressions to sentimental polarities we use the same procedure as applied to the JIC dataset
as described earlier in Section 5.2.1. However, EmoTxt cannot identify the polarities of surprise
expression. To mitigate this issue, from all the datasets, we exclude those comments, which are
identified to convey only surprise expression by EmoTxt (elaborated later in Section 5.4.1).

5.4 Evaluation and Findings

To address the first research question (as mentioned in Section 5.1), we perform a two-stage analysis
of comparative accuracies of the sentiment analysis tools. The second research question is addressed
through an agreement analysis, as described in Section 5.4.2.

81

5.4.1 Comparative Accuracy Analysis

The accuracy of sentiment detection is measured in terms of precision, recall, and F-score sepa-
rately computed for each of the three sentimental polarities (i.e., positivity, negativity and neutrality).
Given a set  of textual contents, precision (p), recall (r), and F-score (Ⅎ) for a particular sentimental
polarity e is calculated as follows:

p =
∣ e ∩  te ∣

∣  te ∣
, r =

∣ e ∩  te ∣
∣ e ∣

, Ⅎ =
2 × p × r
p + r

where e represents the set of texts having sentimental polarity e (according to ground-truth), and
 te denotes the set of texts that tool t detects to have the sentimental polarity e.
Stage-1 Evaluation: We separately operate the three tools (SentiStrength-SE, Senti4SD, and
EmoTxt) on the JIC (JIRA Issue Comments) dataset and the SOP (Stack Overflow Posts) dataset. We
find 302 comments in JIC dataset and 282 posts in the SOP dataset, for which EmoTxt finds surprise
expression only and cannot proceed further to determine polarities of those surprise expression.
These comments and posts are excluded from the respective datasets to maintain a level-playing
field for all the tools.

For each of the three sentimental polarities (i.e., positivity, negativity, and neutrality), we com-
pare the tools’ outcome with the respective ground-truth and separately compute precision, recall,
and F-score for all the tools for both JIC and SOP datasets. Table 5.2 presents the accuracies (in
precision, recall, and F-score) of the of the three tools in their detection of positive, negative and
neutral sentiments. The average overall accuracies are presented at the bottom three rows. The
highest metric values are highlighted in bold.

As seen in Table 5.2, the accuracy of EmoTxt has remains lower than SentiStrength-SE and
Senti4SD for both the datasets. SentiStrength-SE achieves the highest accuracy for the JIC
dataset while Senti4SD achieves the highest accuracy for the SOP dataset. The overall average
accuracies also indicate that both SentiStrength-SE and Senti4SD perform better than EmoTxt

by a considerable margin. Although it is difficult to distinguish a clear winner, SentiStrength-SE
can be held superior to Senti4SD due to its overall higher recall and slightly higher F-score.

It is interesting to observe that Senti4SD and the SOP dataset are from the same authors. Sim-
ilarly, the JIC dataset is the same dataset on which SentiStrength-SE was originally evaluated at
the time of its release. Hence, there is a chance of bias and it is worth evaluating all these tools using
a dataset on which none of the tools are ever been tested. We carry out such an evaluation in stage-2
using the third dataset described earlier in Section 5.2.3.
Stage-2 Evaluation: We separately operate all the three tools on the CRC (Code ReviewComments)
dataset. Again, we find 188 comments, which EmoTxt identified to express surprise emotion only.
Similar to the stage-1 evaluation, we exclude these 188 comments from our analysis. Then for non-

82

Table 5.2: Tools’ Accuracies for JIC Dataset and for SOP Dataset
Dataset Sentiment Metrics SentiStrength-SE Senti4SD EmoTxt

Pos
p 64.73% 54.04% 61.26%
r 94.29% 75.20% 70.12%
Ⅎ 76.76% 62.89% 65.39%

JIRA
Neg

p 70.96% 54.78% 34.34%
Issue r 78.14% 41.56% 61.74%
Comments Ⅎ 70.91% 47.26% 44.13%

Neu
p 91.87% 80.85% 88.92%
r 79.63% 74.49% 65.98%
Ⅎ 85.31% 77.54% 75.75%

Pos
p 82.69% 97.44% 88.57%
r 94.15% 97.44% 94.15%
Ⅎ 88.05% 97.44% 91.27%

Stack
Neg

p 73.45% 93.03% 64.93%
Overflow r 78.17% 95.94% 96.02%
Posts Ⅎ 75.74% 94.46% 77.47%

Neu
p 80.73% 97.29% 94.84%
r 69.10% 94.78% 51.15%
Ⅎ 74.47% 96.02% 66.46%

Overall
average
accuracy

p 77.41% 79.57% 72.14%
r 82.24% 79.90% 73.19%
Ⅎ 79.75% 79.73% 72.66%

negative and negative sentimental texts, we separately compute precision, recall, and F-score for all
the three tools. The computed accuracy measurements are presented in Table 5.3.

Table 5.3: Tools’ Accuracies for Code Review Comments Dataset
Dataset Sentiment SentiStrength-SE Senti4SD EmoTxt

Code Review Comment
Non-neg

83.64% 81.69% 81.45%
92.67% 93.13% 82.42%
87.92% 87.03% 81.93%

Neg
50.23% 55.09% 84.95%
34.69% 28.75% 24.69%
41.04% 37.78% 38.26%

Overall average accuracy
66.94% 68.39% 83.20%
63.68% 60.94% 53.56%
65.26% 64.45% 65.16%

As seen in Table 5.3, all the tools appear to have performed much better in the detection of non-
negative sentiments compared to their accuracies in the detection of negative sentiments. EmoTxt
achieves the highest precision in detecting negative sentiments, Senti4SD has the highest recall
in the detection of non-negative sentiments. On the other hand, SentiStrength-SE achieves the

83

higher precision and F-score for non-negative sentences as well as the highest recall and F-score for
negative sentiments.

The overall average accuracies suggest that EmoTxt has the highest precision but the lowest recall
and the differences from those the other tools are substantial. On the contrary, SentiStrength-SE
achieves the higher recall and F-score but the lowest precision. The overall average precision of
Senti4SD is slightly higher than that of SentiStrength-SE, but Senti4SD’s recall and F-score
are lower by small margin than those of SentiStrength-SE. Thus, similar to the result of stage-1
evaluation, SentiStrength-SE can be considered to have achieved slightly better accuracies than
the other tools, in terms of recall and F-score, although the differences can be perceived negligible.

Based on our observations and analyses of results in both stage-1 and stage-2 evaluations, we
now derive the answer to the first research question (RQ1) as follows.
Ans. to RQ1: Accuracies of the tools vary across datasets and sentiments. None of the tools stand
out as substantially superior to the other tools. However, SentiStrength-SE consistently achieves
the highest recall with competitive precision across sentiments and datasets.

5.4.2 Analysis of Agreements

For addressing the second research question (RQ2), we perform an agreement analysis over the tools
sentiment detection results. We compute P exy denoting the agreement between tool x and tool y for
a particular sentiment e as follows:

P exy =
∣ xe ∩ ye ∣

∣ e ∣
∗ 100

Table 5.4: Agreements between Tool-pairs in the Detection of Sentiments
Dataset Sentiment SSE* vs.

Senti4SD
SSE* vs.
EmoTxt

Senti4SD
vs. EmoTxt

JIRA Pos 77.88% 72.17% 63.51%
Issue Neg 51.32% 72.03% 49.74%
Comments Neu 81.86% 72.29% 70.00%
Stack Pos 94.35% 92.31% 93.63%
Overflow Neg 79.02% 80.71% 93.49%
Posts Neu 82.32% 83.22% 81.26%
Code Review Non-neg 94.70% 86.05% 83.81%
Comments Neg 65.00% 66.56% 66.88%

SSE* = SentiStrength-SE
The computed agreements between each pair of the tools are presented in Table 5.4. It can be

observed that the agreements between the tools vary across different datasets and sentiments. For
example, the tools SentiStrength-SE and Senti4SD show the highest agreement (94.70%) for

84

non-negative sentiments in the CRC (CodeReviewComments) dataset whereas the lowest agreement
(49.74%) is found between EmoTxt and Senti4SD in the detection of negative sentiments in the JIC
(JIRA Issue Comments) dataset.

We observe two patterns in the agreements of the tools presented in Table 5.4. First,
SentiStrength-SE and Senti4SD always achieve the highest agreement for non-negative (i.e.,
positive and neutral) sentiments. Second, for each pair of tools, on every dataset, the lowest
agreement is found in the detection of negative sentiments. The only exception to this holds for
Senti4SD and EmoTxt in the SOP (Stack Overflow Posts) dataset.

Table 5.5: Agreements among Tool-trio in the Detection of Sentiments
Dataset Sentiment Fleiss’ Agreement Reason of

� Strength Interpretation
JIRA Pos 0.108 poor 0.00 ≤ � ≤ 0.19
Issue Neg 0.087 poor 0.00 ≤ � ≤ 0.19
Comments Neu 0.101 poor 0.00 ≤ � ≤ 0.19
Stack Pos 0.498 moderate 0.40 ≤ � ≤ 0.59
Overflow Neg 0.164 poor 0.00 ≤ � ≤ 0.19
Posts Neu 0.731 substantial 0.60 ≤ � ≤ 0.79
Code Review Non-neg 0.462 moderate 0.40 ≤ � ≤ 0.59
Comments Neg 0.265 fair 0.20 ≤ � ≤ 0.39

To further examine the agreements in the tool-trio (i.e., among the three tools), we compute
Fleiss’ kappa [150] (adaptation of Cohen’s kappa for three or more participants), denoted as �, for
each sentiment in all the three datasets. The computed Fleiss’ kappa (�) values and their interpre-
tations are presented in Table 5.5. As seen in the table, there are only one instances of each ‘fair’
and ‘substantial’ agreements, two instances of ‘moderate’ agreements and in all other cases, there
are ‘poor’ agreements among the tool-trio. The tools agree the least in the JIC dataset.

In every dataset, the lowest Fleiss’ kappa (�) values are found for the negative sentiments, again
indicating the least agreements among the tools as is also found in the results of tool-pair agreements
(Table 5.4). This can be related to our observations in both Table 5.2 and Table 5.3, where, for all the
tools, the accuracy of detecting negative sentiments are found consistently lower compared to non-
negative sentiments. Hence, we suspect that all the three tools struggle more or less in accurately
detecting especially the negative sentiments in text.

Based on our analyses and observations, we now derive the answer to the second research ques-
tion (RQ2) as follows:
Ans. to RQ2: Agreements between the tools in detecting sentiments vary largely across different
datasets and sentiments ranging between 49.74% and 94.70%. Much of the disagreements among
the tools are attributed to their disagreements in the detection of negative sentiments in text.

85

5.5 Threats to Validity

It may be argued that the datasets used in this study are not large enough covering all possible cate-
gories technical text relevant to software engineering. However, this study includes all the publicly
available software engineering domain specific sentiment analysis datasets and tools. However, our
study does not include SentiCR [111], which is another recently released sentiment analysis tool.
We deliberately exclude it since the authors of SentiCR declared the scope of this tool limited to code
review comments only, and thus it could be unfair to evaluate its performance on datasets including
JIRA issue comments or Stack Overflow posts.

Blaz and Becker [163] and Ortu et al. [40] developed tools for sentiment analysis in software
engineering related text. The tool and dataset of Blaz and Becker [163] are meant for “Brazilian
Portuguese" language and thus not comparable with the datasets and tools used in this study. The
tools and datasets of Blaz and Becker [163] and Ortu et al. [40] are not publicly available, which is
another reason for excluding them from this study.

5.6 Related Work

We characterize all the SA tool comparison work including ours in four categories: (1) DI-DI: Com-
parison of domain independent (DI) tools using DI datasets, (2) DI-DS: Comparison of DI tools
using SE domain specific (DS) datasets, (3) M-DS: Comparison of mixed (i.e., DI and DS) tools
using DS datasets, and (4) DS-DS: Comparison of DS tools using DS datasets.

(1) DI-DI:Abbasi et al. [190] performed a comparison of domain independent sentiment analysis
(SA) tools by operating them on five different Twitter datasets. Ribeiro et al. [191] conducted a
comparison of 24 unsupervised off-the-shelf sentiment analysis methods. Their evaluationwas based
on labeled datasets including messages posted on social networks, movie and product reviews, as
well as opinions and comments in news articles. In an earlier work Gonçalves [192] compared eight
sentence-level domain independent sentiment analysis methods using a single public DI dataset.

(2) DI-DS: Jongeling et al. [48] compared four domain independent SA tools on software
engineering dataset and expressed the need for a domain specific SA tool for software engineering
text. Islam and Zibran developed SentiStrength-SE [110], which is the first software engi-
neering domain specific SA tool (introduced in Section 5.3). In the evaluation, they compared
SentiStrength-SE against a domain independent tool only. In a later study, Islam and Zibran [57]
compared four general purpose SA dictionaries using the JIC dataset introduced in Section 5.2.1.

Recently, Ahmed et al. [111] evaluated seven domain independent SA techniques (i.e.,
AFINN [118], NLTK [144], SentiStrength [45], TextBlog [193], USent [194], VADER [120]
and Vivekn [195]) using the CRC dataset (Section 5.2.3).

86

(3) M-DS: Calefato et al. [128], the authors of Senti4SD (introduced in Section 5.3), compared
their SE domain specific SA tool with domain specific SentiStrength-SE [110] and domain inde-
pendent SentiStrength and Senti4SD using the CRC dataset (introduced in Section 5.2.3).

(4) DS-DS: Unlike all the aforementioned work, ours is the first study that compares multiple
SE domain specific SA tools using multiple publicly available SE domain specific datasets. Thus,
this work makes a unique contribution to the literature.

5.7 Summary

In this chapter, we have presented the first comparative study of publicly available three software en-
gineering (SE) domain specific sentiment analysis (SA) tools (i.e., SentiStrength-SE, Senti4SD,
and EmoTxt) using three SE domain specific datasets.

Our study reveals that the individual tools exhibit their best performance on the dataset they
were originally tested at the time of their release. The overall accuracies of the tools tend to de-
crease when they are operated on a different dataset. The accuracies of the tools largely vary across
different datasets and sentimental polarities. Thus, none of the tools demonstrates substantially su-
perior accuracies across sentiments and datasets. However, SentiStrength-SE is found to have
consistently exhibited the highest recall and F-score while maintaining competitive precision across
all the datasets and sentiments.

From agreement analysis among the tools, we find that the tools’ agreements largely vary (be-
tween 49.74% and 94.70%) depending on the datasets they are operated on and the sentimental po-
larities they detect. The tools’ agreements remain the lowest in the detection of negative sentiments.
Their accuracy also remain lower in the detection of negative sentiments compared to non-negative
sentiments. Thus, we suspect that all the tools more or less struggle in accurately detecting negative
sentiments in SE text.

We plan to extend this work with new datasets and including an in-depth qualitative analysis to
investigate why and inwhich cases the tools are in disagreements or incorrect in detecting sentiments,
especially in the cases of negative ones.

87

Chapter 6

Detection of Developers’ Emotions

In the Chapter 4 and Chapter 5, we described how we developed the first domain specific sentiment
analysis tool and measured its performance against its domain specific counterparts. The sentiment
analysis tools can detect valence (i.e., sentiment) only, and cannot capture arousal or individual
emotional states, such as excitement, stress, depression, and relaxation. In this chapter, we present
the first emotions analysis tool, DEVA, which is especially designed for software engineering text and
also capable of capturing the aforementioned emotional states through the detection of both arousal
and valence

The rest of the chapter is organized as follows. In Section 6.2, we briefly introduce the model
of emotions used in this work. In Section 6.3, we introduce our tool, DEVA. Our approach for cap-
turing arousal is discussed in Section 6.3.1. The techniques for capturing valence is presented in
Section 6.3.2. A set of heuristics included in DEVA is described in Section 6.3.4. In Section 6.4,
we describe how we empirically evaluate our tool. In Section 6.5, we discuss the limitations of this
work. Related work is discussed in Section 6.6. Finally, Section 6.7 concludes chapter.

6.1 Introduction

The techniques for automatic sentiment analysis in text appear to be highly sensitive to domain
terms. Thus, the sentiment analysis tools (e.g., SentiStrength [45], NLTK [46], and Stanford

NLP [47]), which are designed for general text do not performwell when applied to software engineer-
ing text [35, 36, 37, 48, 50, 41, 51, 43] largely due to the variations in meanings of domain-specific
technical terms [110]. Hence, recent attempts [163, 110, 111, 128] devise automatic sentiment anal-
ysis techniques particularly meant for software engineering text.

All the existing tools are limited in capturing emotions at the necessary depth [50]. Existing
approaches are able to detect valence (i.e., positivity and negativity of emotional polarities) only
and fail to capture arousal or specific emotional states such as excitement, stress, depression, and
relaxation. At work, software developers frequently experience these emotions [31], which can be
attributed to their work progress. For example, a developer typically feels relaxed, if he makes
enough progress in his assigned jobs. Otherwise, the developer feels stressed. Thus, these emotions
need to be identified [121] where the existing approaches fall short [50].

88

To identify aforementioned emotions with high accuracy we develop a tool and name it DEVA
(Detecting Emotions in Valence Arousal Space in Software Engineering Text). The tool includes
a lexical approach with a number of heuristics. In empirical evaluations using the aforementioned
dataset, DEVA demonstrates 82.19% precision, 78.70% recall, and 80.11% F-score. Both the DEVA
tool and the dataset are made freely available online [196].

6.2 Emotional Model

In this work, we use a simple bi-dimensional model [105, 61] of emotions, which is a variant of the
dimensional framework, commonly known as VAD (aka PAD) model [106]. In the bi-dimensional
model, as shown in Figure 7.1, the horizontal dimension presents the emotional polarities (i.e.,
positivity, negativity, and neutrality) known as valence and the vertical dimension indicates the levels
of reactiveness, i.e., high and low arousal.

Positive
Valence

Negative
Valence

High Arousal

Low Arousal

RelaxationDepression

Stress Excitation

Figure 6.1: Simple bi-dimensional model of emotions

The dimensions are bipolar where the valence dimension ranges from negative to positive and
the arousal dimension ranges from low to high. While many emotional states of a person can be
determined by combining valence and arousal, we use a set of four major classes of emotional states
that include excitement, stress, depression, and relaxation. For example, positive valence and high
arousal, in combination, indicate the emotional state excitement. The four emotional states are very
distinct, as each state constitutes emotions, which are quite different compared to the emotions of
other states [105]. Thus, the model is unequivocal to recognize emotions, simple and easy to under-
stand. This particular emotional model is also used in earlier work [61, 107].

6.3 DEVA

DEVA applies a dictionary-based lexical approach particularly designed for operation on software
engineering text. For the capturing both arousal and valence, the tool uses two separate dictionaries

89

(an arousal dictionary and a valence dictionary) that we develop by exploiting a general-purpose
dictionary and two domain dictionaries especially crafted for software engineering text. DEVA also
includes a preprocessing phase and several heuristics. At the preprocessing phase, DEVA identifies
and discards source code contents from a given text input using regular expressions similar to what
proposed by Bettenburg et al. [151]. The code elements are discarded because they typically are
copy-pasted content that do not really carry the writer’s emotions [110].

In the following sections, we first describe DEVA’s dictionary-based approaches for capturing
arousal and valence, and how they are combined to identify different emotional states. Then, we
describe the heuristics, which guide the computation of DEVA towards high accuracy.

6.3.1 Capturing Arousal

For capturing arousal, we construct a new arousal dictionary for DEVA by combining the SEA
(Software Engineering Arousal) [161] dictionary with the ANEW (Affective Norms for English
Words) [160] dictionaries.

The SEA [161] dictionary is specifically developed to detect arousal in text in the software de-
veloper ecosystems. The dictionary contains 428 words. Each of the 428 words are assigned an
arousal score s!a , which is a real number between +1 and +9. In this SEA dictionary, the arousal
level of a word is interpreted as neutral, if s!a = +5. The arousal level of that word is considered
high, if s!a > +5. Otherwise, that word is considered to have low arousal.

The ANEW [160] dictionary is a generic dictionary (i.e., not designed especially for any partic-
ular domain), which contains 13,915 words where each word is annotated with arousal, valence, and
dominance scores, each also ranging between +1 and +9.

6.3.1.1 Combining the SEA and ANEW dictionaries

At first, all the words (along with their arousal scores) in the ANEW dictionary are included in the
new arousal dictionary of DEVA. Then, we add any word to the new dictionary if that word is found
in the SEA dictionary but not found in the ANEW dictionary. For example, the word ‘ASAP’ exists
in the SEA but not in the ANEW, thus this word along with its arousal score is added to our new
arousal dictionary. If a word is found in the both SEA and ANEW dictionaries, then for that word,
the arousal score in the SEA dictionary is assigned to the arousal score in our new arousal dictionary.
For example, the word ‘Anytime’ exists in the both dictionaries having the arousal scores 6.5 and
4.6 respectively in the SEA and ANEW dictionaries. Hence, in our new arousal dictionary, the word
is assigned an arousal score 6.5. Thus, our newly constructed arousal dictionary includes 14, 084
emotional words.

90

Table 6.1: Conversion of arousal scores from [+1,+9] to [-5,+5]
Score in [+1,+9] +1 +2 +3 +4 +5 +6 +7 +8 +9
Score in [-5, +5] -5 -4 -3 -2 +/- 1 +2 +3 +4 +5

6.3.1.2 Adjusting the ranges of arousal scores

To obtain an arousal scale consistent with valence scale (described later), first, the fractional value
of s!a is rounded to its nearest integer ŝ!a . Then, using the conversion scale in Table 6.1, we convert
each integer arousal score ŝ!a in the range [+1, +9] to !a in the integer range [-5, +5]. For example,
if the original arousal score of a word rounded to the closest integer is +2, it is converted to -4,
according to the mappings shown in Table 6.1. For an arousal score !a within the new range of [-5,
+5], the arousal level ! of a word ! is interpreted using Equation 6.1.

! =

⎧

⎪

⎨

⎪

⎩

Higℎ, if !a > +1
Low, if !a < −1
Neutral, otherwise.

(6.1)

This conversion between ranges does not alter the original arousal levels of the words.

6.3.1.3 Computing arousal score for text

DEVA views an input text t as a set of words such as t = {!1, !2, !3, ..., !n} where !1, !2, !3, ..., !n
are distinct words in t. In computation of the arousal score for the entire text t, DEVA retrieves
the arousal scores !1

a ,
!2
a ,

!3
a , ...,

!n
a of all the words in t from the arousal dictionary we have

constructed. At this particular stage of computation, a word in t is disregarded if it is not found in
the arousal dictionary. Then, for t, DEVA computes a pair ⟨ℎt,lt⟩ where,

ℎt = max{!1
a ,

!2
a ,

!3
a , ...,

!n
a },

lt = min{!1
a ,

!2
a ,

!3
a , ...,

!n
a }.

Finally, DEVA determines the overall arousal score t for the entire text t using Equation 6.2.

t =

{

ℎt, if |ℎt| ≥ |lt|

lt, otherwise. (6.2)

6.3.2 Capturing Valence

To capture valence in text, DEVA exploits the only available domain-specific valence dictionary
named SentiStrength-SE[110], which is especially crafted for software engineering text. This
dictionary contains 167 positively and 293 negatively polarized words. Each word ! is assigned

91

a valence score !v where −5 ≤ !v ≤ +5. Based on the score !v , the polarity (i.e., positivity,
negativity, and neutrality) of valence ! of a word is interpreted using Equation 6.3.

! =

⎧

⎪

⎨

⎪

⎩

Positive, if !v > +1
Negative, if !v < −1
Neutral, otherwise.

(6.3)

6.3.2.1 Computing valence score for text

The computation of valence scores for a text is similar to the computation of arousal score, except
that the valence dictionary is used in place of the arousal dictionary. Thus, for a given text t, DEVA
computes a pair ⟨�t, �t⟩ of integers, where

�t = max{!1
v ,

!2
v ,

!3
v , ...,

!n
v },

�t = min{!1
v ,

!2
v ,

!3
v , ...,

!n
v }.

Here, �t and �t respectively represent the positive and negative valence scores for the text t. Finally,
the overall valence score t for the text t is computed using Equation 6.4.

t =

{

�t, if |�t| ≥ |�t|
�t, otherwise. (6.4)

6.3.3 Emotional States from Valence and Arousal

Upon computing the arousal score t and valence score t for a given text t, DEVA then maps the
emotional scores to individual emotional states based on the bi-dimensional emotional model de-
scribed in Section 6.2. In particular, the emotional state t (of the author) expressed in the text t is
determined using the mapping specified in Equation 6.5.

t =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Excitement, if t ≥ +2 andt ≥ +2
Stress, if t ≤ −2 andt ≥ +2
Depression, if t ≤ −2 andt ≤ −2
Relaxation, if t ≥ +2 andt ≤ −2
Neutral, if t = ±1.

(6.5)

In addition to the above mentioned emotional states, a text may express only valence and no
arousal, or vice versa. DEVA is also able to detect those scenarios in the text.

6.3.4 Heuristics in DEVA

While the underlying dictionaries play the major role in the lexical approach of DEVA, the tool also
includes a number of heuristics to increase accuracy, as such was also hinted in earlier work [120,

92

110]. DEVA includes all the heuristics implemented in SentiStrength-SE [110], which is a recently
released tool for the detection of only valence in software engineering text. For capturing arousal
with high accuracy, DEVA also includes seven heuristics, which we have devised based on existing
studies in psychology and software engineering [39, 197, 198] as well as our experience in the field.
These seven heuristics for sensing arousal are discussed below with relevant examples excerpted
from a dataset [52] composed of JIRA issue comments (described later in Section 6.4.1).
H1 ∶ The exclamation mark (!) in a text implies high arousal. The exclamation mark (!) in a text
is commonly used to indicate high arousal of the text writer [199]. For example, in the following
comment the commenter expresses excitement as the comment contains the word ‘happy’, which
indicates positive valence. The three exclamation signs at the end express high arousal.

"Very happy to see it is useful and used !!!." (Comment ID: 1927)

Thus, by combining positive valence (detected using the valence dictionary) and high arousal (de-
tected using this heuristic H1), DEVA correctly identifies (using Equation 6.5) the emotional state
excitement expressed in the above comment. Without the heuristicH1 the text would be incorrectly
identified to have positive valence only.
H2 ∶ Words with all capital letters indicate high arousal. Words written with all capital letters
often indicate high arousal state of the writer [199]. In the following comment, the commenter
starts the comment with the word ‘sorry’ expressing negative valence. All capital letters in the word
indicates high arousal state of the commenter.

"SORRY Oliver, this is really my fault ... something like this way

will not happen anymore."

(Comment ID: 1802095)

Hence, DEVA detects negative valence and high arousal in the comment and identifies that the com-
menter is under stress.

However, in cases, such that API names and code elements are written in all capital letters but
they do not express any emotional state of the writer. To distinguish such a scenario, DEVA checks
the spellings of those words written in all capital letters against an English dictionary using the
Jazzy [152] tool. A word written in all capital letters, is considered a name of an API or code
element, if the word is misspelled. Thus, in the above comment, the word ‘SOLR’ will be identified
as a name and DEVA will not interpret it to have expressed any arousal level.
H3 ∶ Emoticons express emotional states. Emotional icons, aka, emoticons are often used to ex-
press different emotions in informal text including software engineering text [198, 105]. For exam-
ple, in the following comment the writer uses the emoticon ‘:(’ to express depression.

"Oops, I did not run the run-install :("

(Comment ID: 521081)
93

Table 6.2: Emoticons expressing different emotions
Emotions Code of Emoticons
Excitement :*, :?>, :x, :D, :)), 0:), @};- , =P~, :), :">
Stress :((, X-(, :O, =;, :-/ , (:|, >:P
Depression :(, :-$, :-&, 8-), :-<, (:|, :-S, I-), :|
Relaxation B-), :>, :P, ;;), ;), =D>, ;)), :-?, [-o<, /:)

DEVA is capable of identifying and interpreting emotional states expressed in the emoticons used
in text. In interpreting the emoticons, DEVA exploits a list of emoticons mapped to the four categories
of emotional states (i.e., excitement, stress, depression/sadness, and relaxation). The mapping, as
presented in Table 6.2, was originally proposed by Yang et al. [197].
H4 ∶ Interjections can indicate emotional states. The interjections are special parts of speech
(POS), which are meant for expressing emotional states [200]. For example, even if the above com-
ment (ID: 521081) did not include the emoticon ‘:(’, it would still express depression through the
interjection ‘oops’, which DEVA would capture correctly using a list of interjections mapped to their
meanings [201] as presented in Table 6.3.

Table 6.3: Interjections expressing different emotions
Emotions Interjections

Excitement ‘Gee’, ‘Hurray’, ‘Ooh’, ‘Oooh’, ‘Wee’,
‘Wow’, ‘Yah’, ‘Yeah’, ‘Yeeeeaah’, ‘Yee-
haw’

Stress
‘Aah!’, ‘Aaah’, ‘Aaaahh’, ‘Argh’, ‘Augh’,
‘Bah’, ‘Boo’, ‘Boo!’, ‘Booh’, ‘Eek’,
‘Eep’, ‘Grr’, ‘Yikes’

Depression
‘Duh’, ‘Doh’, ‘Eww’, ‘Gah’, ‘Humph’,
‘Harumph’, ‘Oops’, ‘Oww’, ‘Ouch’,
‘Sheesh’, ‘Jeez’, ‘Yick’

Relaxation ’Ahh’, ‘Phew’

The list of interjections in Table 6.3, includes only those interjections, whose meanings are un-
ambiguous and relevant to the emotional sates considered in this work. For example, the interjection
‘Yahoo’ is excluded since it sometimes expresses the name of a company.
H5 ∶ Temporal terms indicate high arousal. In psychology and management, it is generally
accepted that because of time pressure a worker shows increased alertness or readiness i.e., high
arousal [39]. This also applies to the software engineering field [161, 202, 203]. Thus, high arousal
is expressed through temporal terms (e.g., asap, soon) in text. For example, in the following com-
ment the commenter expresses high arousal by using the temporal term ‘asap’.

"Sorry, I will fix these error asap."

(Comment ID: 1600615)
94

To capture such arousal states expressed through temporal terms, DEVA maintains a list of 12
temporal terms (Table 6.4) commonly used for referring to timelines, deadlines, or such.

Table 6.4: Temporal terms included in the DEVA dictionary
‘Soon’, ‘Sooner’, ‘ASAP’, ‘EOD’, ‘EOB’,
‘Today’, ‘Tomorrow’, ‘Tonight’, “No later",
“At earliest", “Tight schedule"

H6 ∶ Task completion leads to low arousal. Typically, completion of a task makes one relaxed and
at the state of low arousal. For example, the following comment indicating completion of a task also
expresses the relaxation of the commenter.

"The two approaches seem complimentary to me. I’m happy to see this

committed. Does anyone object?" (Comment ID: 1667040)

Theword ‘happy’ in the above comment indicate positive valence. But, the arousal state could be
missed out if the word ‘committed’ is not considered to have expressed low arousal. DEVA takes into
account both the words ‘happy’ and ‘committed’ and corrected identifies both positive valence and
low arousal jointly mapped to relaxation. For capturing the task completion scenarios in software
engineering, DEVA uses a collection of domain-specific words and phrases listed in Table 6.5.

Table 6.5: Task completion indication terms in DEVA
‘Fixed’, ‘Resolved’, ‘Solved’, ‘Done’, “Patch
looks good", “Working fine", “Working
good", “Working properly", “Pushed in
branch", “Pushed in trunk", ‘Committed’.

H7 ∶ Negations reverse arousal state. Generally, a negation (e.g., no, not) is meant for reversing
or weakening the meaning of the word it qualifies.

DEVA weakens the arousal level associated with a word when the word is found negated in text.
Thus, high arousal level associated with a negated word is weakened to low arousal and the low
arousal of a word is neutralized. For example, in the comment below the high arousal word ‘worry’
(it is also a negative valence word) is negated by ‘not’ and indicates low arousal.

"Lets not worry about this now" (Comment ID: 53698)

Again, in the following comment, the word ‘good’ is associated with a low arousal level in DEVA’s
arousal dictionary. Identifying the negation of the word with ‘not’, DEVA neutralizes the low arousal.

"Agreed, its not good. Improved in 1.1."

(Comment ID: 2263164)

95

6.4 Evaluation

The accuracy of emotion detection of DEVA is measured in terms of precision (℘), recall (ℜ), and
F-score (Ⅎ) separately computed for each of the target emotional states as described in Section 6.2
and formalized in Equation 6.5. Given a set  of texts, precision ℘, recall ℜ, and F-score (Ⅎ) for a
particular emotional state e is calculated as follows:

℘ =
∣ e ∩ ′

e ∣
∣ ′

e ∣
, ℜ =

∣ e ∩ ′
e ∣

∣ e ∣
, Ⅎ =

2 ×℘ ×ℜ
℘ +ℜ

,

where e ∈ {excitement, stress, depression, relaxation, neutral}, e represents the set of texts ex-
pressing the emotional state e, and ′

e denotes the set of texts for which DEVA correctly captures the
emotional state e.

Recall that DEVA is the first tool capable of automatic detection of the aforementioned emotional
states in software engineering text, and no dataset is available for empirical evaluation of our tool.
Hence, we first create a ground-truth dataset and compute the aforementioned metrics against that.
Then we compare DEVA with a baseline approach we also implement. Finally, we compare our tool
with a similar (but not identical) tool, TensiStrength [122].

6.4.1 Creation of Ground-Truth Dataset

The considered dataset [52] consists of two million JIRA issue comments over more than 1,000
projects. JIRA1 is a commercial tool widely used by software developers for describing, tracking,
and managing user-stories, bug-reports, feature requests, and other development issues. This dataset
has also been used in many studies [110, 39, 185, 63, 40] on the social and emotional aspects of
software engineering.

6.4.1.1 Construction of a manageable subset

We want to create a dataset by manually annotating the issue comments with their expressed emo-
tional states. Manual annotation of two million issue comments could be a mammoth task. Hence,
to minimize efforts, we create a subset of 2,000 issue comments for manual annotation using some
criteria as described below.

The majority of issue comments in the above mentioned dataset are emotionally neutral [52].
Thus, a random selection is likely to include more neutral comments than those with other emo-
tions. To avoid such a possibility, we first use a keyword-based searching method to collect from the
original dataset a subset k of 50 thousand comments which are likely to contain valence and arousal.
We use 68 unigram keywords (listed elsewhere [105]) and their 136 synonyms detected usingWord-

1https://www.atlassian.com/software/jira

96

Table 6.6: Inter-rater disagreements in categories of emotions
Inter-rater Disagreements # of Issue

Emotions A, B B, C C, A Comments
Excitement 06.57% 07.79% 07.54% 411
Stress 06.75% 17.46% 14.68% 252
Depression 06.92% 11.07% 07.61% 289
Relaxation 05.72% 09.69% 05.72% 227
Neutral 07.30% 05.19% 05.68% 616

Total number of issue comments: 1,795

Net [204]. The synonyms of a keyword include every synonym of all variations of the keyword with
respect to POS. Such a keyword-based searching method is also used in another study [105] for a
similar purpose.

Again, from the original dataset, we randomly select another subset r of 100 thousand issue
comments. Then we create a set u such that u = k ∪ r. Then from u, we filter out those
comments, which have more than 100 letters resulting in another set û consisting of 110 thousand
comments. From the set û, we randomly select 2,000 comments for manual annotation by human
raters.

6.4.1.2 Manual annotation by human raters

We employ three human raters (enumerated as A, B, C) for manually annotating the 2,000 issue com-
ments with the emotions (i.e., excitement, stress, depression, relaxation, or neutral) they perceive in
them. Each of these three human raters are graduate students in computer science having one to five
years experience in software development in collaborative environments. Each of the human raters
separately annotate each of the 2,000 issue comments.

We consider a comment conveying the emotional state e, if two of the three raters identify the
same emotion in it. Total 205 issue comments are discarded since the human raters do not agree on
the emotions they perceive in those comments. Thus, our ground-truth dataset ends up containing
1,795 issue comments. The number of issue comments expressing each of the emotional states are
presented in the rightmost column of Table 6.6. This table also presents the emotion-wise percentage
of cases where raters disagree. We also measure the degree of inter-raters agreement in terms of
Fleiss-� [150] value. The obtained Fleiss-� value 0.728 signifies substantial agreement among the
independent raters.

6.4.2 Measurement of Accuracy

We invoke DEVA to detect the emotional states in each of the 1,795 issue comments in our human-
annotated ground-truth dataset. Then, for each of the issue comments, we compare DEVA’s detected

97

emotion with the human annotated emotion (i.e., ground-truth). We separately measure precision
(℘), recall (ℜ), and F-score (Ⅎ) for DEVA’s detection of each of the emotional states, which are
presented in the third column (from the left) of Table 6.7. As presented at the bottom three rows
in the same column of the table, across all the emotional states, on average, DEVA achieves 82.19%
precision, 78.70% recall, and 80.11% F-score.

Table 6.7: Comparison beween DEVA and Baseline
Emotions Metrics DEVA Baseline

Excitement
℘ 87.58 77.16
ℜ 88.86 23.72
Ⅎ 88.22 36.29

Stress
℘ 72.29 48.48
ℜ 66.53 12.74
Ⅎ 69.29 20.18

Depression
℘ 78.01 33.77
ℜ 76.12 61.59
Ⅎ 77.05 43.62

Relaxation
℘ 85.63 19.63
ℜ 65.63 66.76
Ⅎ 74.31 30.33

Neutral
℘ 87.44 72.45
ℜ 96.37 31.63
Ⅎ 91.69 44.03

Average
℘ 82.19 50.30
ℜ 78.70 39.27
Ⅎ 80.11 34.87

6.4.3 Comparison with a Baseline

DEVA is the first tool especially designed for software engineering text to detect the emotional states
in the bi-directional emotion model encompassing both valence and arousal. There exists no such
other tool for direct comparison with DEVA. Hence, we implement a baseline approach based on the
work of Mäntylä et al. [39] who used the ANEW dictionary to only study valence and arousal in
software engineering text.

The baseline tool that we implement also exploits the ANEW dictionary. Thus, the baseline tool
differs from DEVA in two ways. First, the baseline tool uses the regular ANEW dictionary while DEVA
exploits a valence dictionary and an arousal dictionary especially designed for software engineering
text. Second, DEVA applies a number of heuristics which are not included in the baseline tool. We
want to verify if the crafted dictionaries and heuristics actually contribute to higher accuracy in the
detection of emotional states.

98

Hypothesis: Upon operating DEVA and the baseline tool on the same software engineering
dataset, DEVA must outperform the baseline, if the domain-specific dictionaries and heuristics in-
cluded in it actually contribute to higher accuracies in the detection of emotional states in software
engineering text.

We invoke the baseline tool to detect the emotional states in each of the issue comments in
our ground-truth dataset. Then, we compute the precision (℘), recall (ℜ), and F-score (Ⅎ) for its
detection of each emotional states (i.e., excitement, stress, depression, relaxation, and neutral) as
shown in the rightmost column of Table 6.7. The overall average precision, recall, and F-score
across all the emotional states are presented in the bottom three rows of the same column.

As we compare the accuracies of DEVA and the baseline approach in Table 6.7, our DEVA is found
to have outperformed the baseline in all cases by a large margin except for the recall of relaxation
where DEVA falls short by only 01.13%. In all cases, DEVA maintains a substantially higher F-score
compared to the baseline. In other words, DEVA maintains a balance between precision and recall
for each emotional state resulting in higher F-score for all cases. Overall, on average, across all the
emotions, DEVA clearly outperforms the baseline.

Thus, the results of comparison imply that our hypothesis holds true, which means the domain-
specific dictionaries and heuristics included in DEVA actually contribute to its superior performance.

6.4.4 Comparison with TensiStrength

Recently, TensiStrength [122] is released, which we find somewhat similar to our DEVA be-
cause both the tools are capable of detecting stress and relaxation in text. However, DEVA and
TensiStrength are more different than they are similar. First, unlike DEVA, the TensiStrength
tool is not especially designed for software engineering text. Second, TensiStrength cannot de-
tect excitement and depression, which DEVA detects. Nevertheless, we compare TensiStrength’s
accuracies against those of DEVA in the detection of stress and relaxation only since these emotional
states form a subset of the emotional states DEVA detects.

For a given text t, TensiStrength computes a pair ⟨�t, &t⟩ of integers, where +1 ≤ �t ≤ +5
and −5 ≤ &t ≤ −1. Here, �t and &t respectively represent the relaxation and stress scores for the
given text t. A given text t is considered expressing relaxation if �t > +1. Similarly, a text is held
conveying stress when &t < −1. Besides, a text is considered neutral when the scores for the text
appear to be ⟨1,−1⟩.

We execute TensiStrength on the ground-truth dataset. Then, we separately measure the pre-
cision (℘), recall (ℜ), and F-score (Ⅎ) for TensiStrength’s detection of each of the three target
emotional states (i.e., relaxation, stress, and neutral). Table 6.8 shows the precision, recall, and F-
score of both the tools DEVA and TensiStrength in the detection of stress, relaxation and neutral

99

Table 6.8: Comparison between DEVA and TensiStrength
Emotions Metrics DEVA TensiStrength

Stress
℘ 72.29 35.70
ℜ 66.53 92.03
Ⅎ 69.29 51.44

Relaxation
℘ 85.63 20.58
ℜ 65.63 62.11
Ⅎ 74.31 30.92

Neutral
℘ 87.44 82.31
ℜ 96.37 79.73
Ⅎ 91.69 81.00

Average
℘ 81.79 46.20
ℜ 76.18 77.96
Ⅎ 78.43 54.45

comments. The overall average precision, recall, and F-score across the target emotional states are
presented in the bottom three rows of the table.

As seen in Table 6.8, DEVA consistently achieves higher precision and F-score in the detection
of all the emotional states. The recall of DEVA is also higher in all cases except for recall of stress,
which affects the comparative overall recall of the tools. Still, DEVAmaintains higher overall average
F-score.

TensiStrength cannot differentiate between depression and stress. It cannot distinguish be-
tween excitement and relaxation either. These shortcomings are among the reasons for the tool’s
lower precision in the detection of stress and relaxation. For example, in the following comment,
the commenter conveys excitement, but due to presence of the positive emotional word ‘good’,
TensiStrength incorrectly determines the comment to have expressed relaxation.

"Good catch ! Will fix it asap."

(Comment ID: 1348887)

6.5 Threats and Limitations

From the empirical evaluations, DEVA is found superior to both the baseline approach and
TensiStrength. Still, its accuracy is not 100% due to its shortcomings. Although DEVA cap-
tures negations very well, it still falls short in handling complex structures of negations. In the
detection of subtle expressions of emotions in text, even the human raters are often in disagreements,
and DEVA also falls short in capturing them. The tool cannot distinguish irony and sarcasm in text,
and fails to correctly identify emotions in such text. Capturing subtle emotional expressions, irony,
and sarcasm in text is already recognized as a challenging problem in the area of Natural Language
Processing (NLP).

100

The heuristics and domain-specific dictionaries included in DEVA contribute in correct identifi-
cation of emotional states as verified in Section 7.4.4. However, in some cases, the heuristics may
mislead the tool, although such cases are relatively rare compared to the common situations. The
lists of task completion terms, temporal terms, interjections, and emoticons, included in DEVA, might
not be complete to cover all possible scenarios. Similarly, the valence and arousal dictionaries in
DEVA might also miss relevant emotional terms. One might question, instead of using the lexical
approach for building DEVA’s domain-specific dictionaries, if we could adopt any better approach,
which could possiblyminimize these limitations. However, a recent study [57] reports that, “lexicon-
based approaches for dictionary creation work better for sentiment analysis in software engineering
text."

One might argue that in construction of DEVA’s arousal dictionary, the range conversion of
arousal scores from [+1, +9] to [-5, +5] might have altered the original arousal levels of some words.
We have considered this possibility and carefully designed the conversion scheme to minimize such
possibilities. A random sanity check after the range conversion indicates absence of any such oc-
currence. The regular expressions used in the preprocessing phase of DEVA for filtering out source
code elements in text might not be able to discard all code elements. However, studies show that
light-weight regular expressions perform better than other heavy-weight approaches (e.g., machine
learning, island grammar) for this purpose [205].

Our ground-truth dataset manually annotated by three human raters are subject to human bias,
experience, and understanding of the field. However, the human raters being computer science
graduate students and having software development experience in collaborative environments limit
this threat.

6.6 Related work

A comprehensive list of the tools and techniques developed and used to detect emotions can be found
elsewhere [206, 121, 207]. To maintain relevance, we limit our discussion to only those tools and
techniques that are attempted for software engineering text.

Earlier research involving sentiment analysis in software engineering text used three tools/toolk-
its, SentiStrength [45], Stanford NLP [146], and NLTK [46], while SentiStrength is used the
most frequently [110]. All of the aforementioned three tools are developed and trained to operate on
non-technical text and they do not perform well enough when operated in a technical domain such
as software engineering. Domain-specific (e.g., software engineering) technical uses of inherently
emotional words seriously mislead the sentiment analyses of those tools [48, 50, 41, 43] and limit
their applicability in software engineering area.

Blaz and Becker [163] proposed three almost equally performing lexical methods, a Dictionary
Method (DM), a Template Method (TM), and a Hybrid Method (HM) for sentiment analysis in

101

“Brazilian Portuguese” text in IT (Information Technology) job submission tickets. Although their
techniques might be suitable for formally structured text, those may not perform well in dealing
with informal text frequently used in software engineering artifacts such as commit comments [110].
SentiStrength-SE [110], Senti4SD [128] and SentiCR [111] are three recent tools especially de-
signed to deal with software engineering text. However, all the aforementioned tools and techniques
are meant for detecting valence only and cannot capture arousal or other emotional states at a deeper
level.

To detect emotions in more fine-grained levels, Murgia et al. [185] constructed a machine learn-
ing classifier specifically trained to identify six emotions joy, love, surprise, anger, sad, and fear
in issue comments. Similar to their approach, Calefato et al. [56] also developed a toolkit to de-
tect those six emotions. However, neither of these techniques are capable of detecting the emotional
states excitement, stress, depression, and relaxation as captured in the well-established bi-directional
emotional model encompassing both valence and arousal dimensions.

TensiStrength [122] is a recently released tool, which we have compared with our DEVA.
As mentioned before, TensiStrength can detect stress and relaxation from text, but cannot cap-
ture excitement or depression, while DEVA is capable of detecting all of them. Unlike our DEVA,
TensiStrength is not especially designed for any particular domain, and thus performs poorly for
software engineering text as such is also found in our comparison with DEVA. Mäntylä et al. [39] stud-
ied both valence and arousal in software engineering text. For detection valence and arousal they
also used a lexical approach, which is not especially designed for software engineering text. Their
approach relies on the ANEW (Affective Norms for English Words) dictionary only, whereas DEVA
uses two separate valence and arousal dictionaries especially crafted for software engineering text.
Although their approach was never realized in a reusable tool, it inspired us in the implementation
of the baseline tool that we have compared with DEVA.

6.7 Summary

In this chapter, we have presented DEVA, a tool for automated sentiment analysis in text. DEVA is
unique from existing tools in two aspects. First, DEVA is especially crafted for software engineering
text. Second, DEVA is capable of detecting both valence and arousal in text and mapping them for
capturing individual emotional states (e.g., excitement, stress, depression, relaxation and neutrality)
conforming to a well-established bi-directional emotional model. None of the existing sentiment
analysis tools have both the aforementioned capabilities/properties. DEVA applies a lexical approach
with an arousal dictionary and a valence dictionary, both crafted for software engineering text. In
addition, DEVA includes a set of heuristics, which help the tool to maintain high accuracy.

For empirical evaluation of DEVA, we have constructed a ground-truth dataset consisting of 1,795
JIRA issue comments, each of which are manually annotated by three human raters. This dataset is

102

also a significant contribution to the community. From a quantitative evaluation using this dataset,
DEVA is found to have achieved 82.19% precision and 78.70% recall. We have also implemented a
baseline approach and compared against DEVA. A recently released similar (but not identical) tool
TensiStrength is also compared with our DEVA. From the comparisons, DEVA is found substantially
superior to both the baseline and TensiStrength.

The current release of DEVA and our ground-truth dataset are freely available [196] for public use.
We are aware of the existing limitations of our tool, which we have also discussed in this chapter.
Addressing all these limitations is within our future plan. In the future releases of DEVA, we will
keep enriching the underlying dictionaries and enhancing the heuristics for further improving the
tool’s accuracy. Using DEVA and its future releases, we will conduct large scale studies of emotional
variations and their impacts in software engineering. Moreover, we have plan to extend DEVA for
aspect-oriented [208, 209] emotion analysis in software engineering text.

103

Chapter 7

Machine Learning Based Detection of
Developers’ Emotions

Our tools SentiStrength-SE and DEVA (described in Chapter 4 and Chapter 6, respectively) are
developed by combining domain specific rules and dictionaries. However, a machine learning tech-
nique can overcome the default limitations of a tool (e.g., DEVA) developed using such rules and
dictionaries. In this chapter, We describe the development procedure of MarValous, the first Ma-
chine Learning based tool for improved detection of excitement, stress, depression, and relaxation
emotional states in software engineering text.

The remainder of the chapter is organized as follows. In Section 7.1, we introduce our motivation
and context of the work. In Section 7.2, we briefly introduce the two-dimensional emotional model
used in this work. In Section 7.3, we introduce our tool, MarValous and describe our machine
learning approach for the detection of individual emotional states. In Section 7.4, we describe how
we empirically evaluate our tool. In Section 7.5, we discuss the limitations and threats to the validity
of this work. Section 7.6 includes a discussion of related work. Finally, Section 7.7 concludes the
chapter.

7.1 Introduction

Recently, a few SE domain-specific tools [163, 110, 111, 128] are developed for detecting sentimental
polarities (e.g., positivity, negativity) only. Those tools are limited in capturing emotional states at
the necessary levels such as in capturing excitation, stress, depression, and relaxation while it is
important to capture these emotional states [129, 50]. Islam and Zibran recently addressed this
limitation and developed DEVA [129], which, till date, is the only tool available for detecting those
four emotional states in SE texts. However, DEVA is lexicon-based and such a technique is limited by
the quality and sizes of the underlying dictionaries in use [187, 210]. Arguably, a dictionary-based
approach can fail to capture the organization of a text that contributes information relevant to the
emotion of the text writer [211].

In this chapter, we present MarValous (Machine Learning Based Emotion Detector inValence-
Arousal Space), a tool that we have developed for automatic detection of individual emotional states
expressed in SE text. In particular, this work makes the following three contributions:

104

Our MarValous tool exploits supervisedML techniques. It includes nine text preprocessing steps
and seven feature extraction modules. In empirical evaluations using the aforementioned unified
dataset, MarValous demonstrates 83.37% precision, 79.33% recall, and 80.90% F-score. Both the
MarValous tool and the dataset are made publicly available [196].

7.2 Emotional Model

We use a two-dimensional model [105, 61] of emotions to classify texts in software engineering.
Figure 7.1 presents the most widely used emotion classification model in the two-dimensional ap-
proach [212] proposed by Russell and Mehrabian [106]. As shown in Figure 7.1, each dimension is
bipolar where the valence dimension ranges from negative valence (i.e., pleasant) to positive valence
(i.e., unpleasant) and the arousal dimension ranges from low to high. Total 28 emotional states of
a person can be determined by combining different levels of valence and arousal in each of the four
quadrants marked as Q1, Q2, Q3, and Q4 in Figure 7.1.

Positive
Valence

Negative
Valence

High Arousal

Low Arousal

Contenet
Gloomy

Angry

Delighted

Happy

Excited
Astonished

Aroused

Annoyed

Fraustrated
Distressed

Afraid Tensed
Alarmed

Sleepy

Relaxed

Atease
Satisfied

Serene
Glad

Pleased

Calm

Bored
Depressed

Droopy

Sad
Miserable

Tired

Q1Q2

Q3 Q4

Figure 7.1: Two-dimensional emotion classification model.
0

Several studies [129, 105, 213] use simplified versions of the aforementioned two-dimensional
model of Russel and Mehrabian [106], where each quadrant is represented by a unique emotional
state. For example, the quadrants Q1, Q2, Q3 and Q4 are represented by emotions excitation, stress,
depression, and relaxation respectively, in the work of Islam and Zibran [129]. The four classes of
emotions are very distinct, as each state constitutes emotions, which are quite different compared to

105

the emotions of other states. Moreover, the model is simple and easy to perceive. Therefore, the
simplified model of Islam and Zibran [129] is also adopted in our work.

7.3 Marvalous

We develop MarValous in Python and use scikit-learn [214] for supervised learning algorithms. For
improved classification performances, MarValous consists of two major modules: (i) data prepro-
cessing and (ii) feature selection, which are described in the following subsections.

7.3.1 Preprocessing

In the preprocessing phase, we sanitize the input text to get rid of probable noises, which otherwise
could mislead classification.

URL and code snippet removal: Natural language texts (e.g., commit and issue comments)
generated during software development may often include noisy texts such as URL references and
code snippets, which do not convey any emotion of writers of those texts. However, those URLs and
code snippets may contain emotional words that can easily mislead emotion detection approaches/-
tools [109]. Moreover, keeping those noises in texts will increase the size of features’ vector for aML
classifier. We use a simple regular expression technique to identify and remove all URLs and code
snippets from our dataset. Such simple regular expression technique is found to be effective [151]
and also used for similar purpose in other studies [109, 111] too.

Removal of numeric expressions: Similar to URLs and code snippets, any numbers in texts do
not indicate any emotion of the writers and increase size of features’ vecrtor. Hence using a regular
expression, we identify and remove all numbers from our dataset.

Slang removal: Due to informal nature of communications among developers, they frequently
use slangs in their writings. For example, in the comment, “Thanx a lot! Could you tell

me, how can I download ... OM 2.2? :," the writer uses the slang ‘Thanx’ instead of the
English word ‘Thanks’. We replace such slangs in texts with formal English words to reduce features’
vector size.

Stop word removal: Removing stop-words (such as articles, prepositions, and conjunctions) to
reduce number of features is a common practice in ML based techniques. While predicting emotions
in texts, such removal of stop-words is highly expected as those stop-words do not play any significant
roles to express emotions.

Although popular natural language processing tools (e.g., Stanford CoreNLP [146] and
NLTK [46]) provide lists of stop-words, we use a customized stop-word list presented in Table 7.1.
As the popular tools’ provided stop-words list includes personal pronouns (e.g., ‘he’, ‘she’, and
‘my’), temporal terms (e.g., now), booster words (e.g., very) and few others terms that are used for
negations (e.g., ‘no’, ‘not’) and asking questions (e.g., ‘why’, ‘what’), which play important roles

106

Table 7.1: A customized stop-words list
‘it,’ ‘itself,’ ‘this,’ ‘that,’ ‘these,’ ‘those,’ ‘is,’
‘are,’ ‘was,’ ‘were,’ ‘be,’ ‘been,’ ‘being,’
‘have,’ ‘has,’ ‘had,’ ‘having,’ ‘do,’ ‘does,’
‘did,’ ‘doing,’ ‘a,’ ‘an,’ ‘the,’ ‘and,’ ‘if,’ ‘or,’
‘as,’ ‘until,’ ‘while,’ ‘of,’ ‘at,’ ‘by,’ ‘for,’
‘between,’ ‘into,’ ‘through,’ ‘during,’ ‘to,’
‘from,’ ‘in,’ ‘out,’ ‘on,’ ‘off,’ ‘then,’ ‘once,’
‘here,’ ‘there,’ ‘all,’ ‘any,’ ‘both,’ ‘each,’
‘few,’ ‘more,’ ‘other,’ ‘some,’ ‘such,’ ‘than,’
‘too,’ ‘s,’ ‘t,’ ‘can,’ ‘will,’ ‘don,’ ‘should’

in expressing emotions [110, 129, 215]. Thus, those types of terms are removed from stop-words
collection to prepare our customized list.

Name replacement: Developers typically mention their colleagues’ names in texts immediately
after salutation words such as ‘Dear’, ‘Hi’, ‘Hello’, ‘Hellow’ or after the character ‘@’ [110], which
do not convey any emotion rather increase size of features’ vector. Hence, all words that start af-
ter the words ‘Dear’, ‘Hi’, ‘Hello’, ‘Hellow’ and the symbol ‘@’ are replaced by the single word
‘UserName’.

Software-specific named entity replacement. Similar to colleagues’ names, software-specific
named entities do not express any emotion in texts and increase size of features vector. Hence,
we identify the named entities and replace those using the keyword ‘NamedEntity’. To identify
those named entities, we use the gazetteer [216] prepared for software engineering domain. The
gazetteer includes total 400,147 entries divided into five categories, which are presented in Table 7.2.
However, all the entries in the API category are detected and removed by the logic of detection of
code snippet.

Table 7.2: Categories of Software-specific Name Entities
Named-Entity Category # of Entries
Programming language (e.g., Java, C) 419
Platform (e.g., x86, AMD64) 175
API (e.g., Java ArrayList, toString()) 396,968
Tool-library-framework (e.g., JProfiler, Firebug) 2,196
Software standard (e.g., HTTP, FTP) 389

Dealing with negations: Generally, a negation word (e.g., ‘no’, ‘never’) is used for reversing
or weakening the meaning of the word it qualifies [110]. Since ML based classifiers operate on
unigrams and bi-grams representations of sentences, those classifiers often fail to identify negated
opinions [111]. To overcome that problem, an earlier ML based sentiment analysis tools [125]

107

adopted a simple approach by prepending ‘not’ with the succeeding words that are found after a
negation word.

However, negations only affect verbs, adjectives, and adverbs but do not alter nouns, determin-
ers, articles, and particles [111]. Thus, we modify verbs, adjectives, and adverbs (instead of all the
words) by prepending ‘not_’, which are found within the scope of a negation word in a sentence. To
determine scope of negations, we use chunking or shallow parsing [111] to divide a text into syntac-
tically correlated parts of words. The work of Ahmed et al. [111] also follows the same procedure.

Word tokenizing and stemming: Among available popular tokenizer tools e.g., NLTK,
Stanford CoreNLP, SyntaxNet [217] and spaCy [218], we use NLTK as it shows the best per-
formance [219] in software engineering domain to tokenize words in texts. After tokenization, we
apply word stemming [220] to convert each word to its root. We apply Snowball Stemmer [220] as
it is used in another software engineering study [111].

Expansion of contractions: Contractions are shortened forms of a group of words, which are
commonly used in informal written communications. When a contraction is written in English, the
omitted letters are replaced by an apostrophe. Some frequently used contractions and their expanded
forms include: aren’t → are not, and I’m → I am and won’t → will not. Writing the same thing in
two different ways (i.e., using or not using contraction) increases size of features vector.

Thus, such expansion of contractions reduces the number of unique lexicons (i.e., feature vec-
tors), which, in turns, helps to improve ML based classifiers’ performances. We expand total 124
frequently used contractions [111] if they are found in texts.

7.3.2 Feature Selection

For machine learning, we identify a set of features in text, which we describe below along with the
rationale why they can be useful in emotion classification.

n-gram: An n-gram is a contiguous sequence of n items from a given piece of text. The items
can be phonemes, syllables, letters, words or base pairs and n can be any natural number. In our
work, an item refers to a word in a given text and n ranges from one to two i.e., we use unigram
(where n = 1) and bigram (where n = 2) as features.

For example, if a given text consists of the words w1 w2 w3, then unigram feature will contain
each of the words i.e., w1, w2 and w3 and bigram feature will contain pair of words i.e., w1 w2 and
w2 w3. We compute TF-IDF (Term Frequency - Inverse Document Frequency) [221] for each of
the unigram and bigram features. The n-gram method is language independent and works well in
the case of noisy-texts [222]. Thus, it suits very well due to informal and noisy natures of software
engineering texts.

Emoticons: In informal written communications emoticons are frequently used to express dif-
ferent emotions of writers. Hence, emoticons have been commonly used to classify emotions in

108

several studies [129, 111, 105, 128]. We use total 38 emoticons in this work and categorize those
in the four quadrants according to their emotions as presented in Table 7.3 (see the first and third
columns). This categorization of emoticons is used in other studies [129, 198] too. We use a binary
feature (e.g., hasEmoticon) that keeps record of existence of emoticons in a given text.

Moreover, to reduce features’ vector size, we replace 38 emoticons in texts with four keywords
according to their emotions. For example, if we find an emoticon, which expresses emotion ex-
citation, then that emoticon is replaced with the keyword ‘Excited’. All such four keywords are
mentioned in the second column of Table 7.3 with respect to their emotions.

Table 7.3: Emoticons and interjections expressing different emotions
Emotion Keyword Emoticon Interjection
Excitation Excited :*, :?>, :x, :D, :)), 0:), @};- , =P∼, :),

:">
‘Gee’, ‘Hurray’, ‘Ooh’, ‘Oooh’, ‘Wee’,
‘Wow’, ‘Yah’, ‘Yeah’, ‘Yeehaw’

Stress Stressed :((, X-(, :O, =;, :-/ , (:|, >:P ‘Aah!’, ‘Aaah’, ‘Argh’, ‘Augh’, ‘Bah’,
‘Boo’, ‘Boo!’, ‘Booh’, ‘Eek’, ‘Eep’,
‘Grr’, ‘Yikes’

Depression Depressed :(, :-$, :-&, 8-), :-<, (:|, :-S, I-), :| ‘Duh’, ‘Doh’, ‘Eww’, ‘Gah’, ‘Humph’,
‘Harumph’, ‘Oops’, ‘Oww’, ‘Ouch’,
‘Sheesh’, ‘Jeez’, ‘Yick’

Relaxation Relaxed B-), :>, :P, ;;), ;), =D, ;)), :-?, [-o<, /:) ‘Ahh’, ‘Phew’

Interjections: The interjections are special parts of speech (POS), which are also frequently
used to express emotional states [129]. As presented in the fourth column of Table 7.3, we use to-
tal 37 interjections that are categorized into four emotions according to their meanings in an earlier
work [129]. Similar to emoticons, we use another binary feature (e.g., hasInterjection) that identifies
presence of interjections in a given text. Again, to reduce features’ vector size, we replace the in-
terjections with four keywords presented in the second column of Table 7.3 (similar to replacement
process of emoticons) according to their emotions.

Exclamation marks: Writers often use exclamation mark when they want to express their
intense feelings [105, 128]. For example, the comment, “I will fix it immediately!," ex-
presses a high level of stress of the writer. On the other hand, the comment, “Yonik, Thanks and

Congratulations!," indicates a high level of excitation. In both cases, the writers of the comments
use exclamation marks to put more emphasize on their feelings. Thus, we use a binary feature (e.g.,
hasExclamation) that captures presence of exclamation marks in texts.

Uppercase words: To put higher emphasize on emotional expressions, writers sometimes write
few words using all uppercase/capital letters [129, 128] (e.g., GOOD, AWESOME, and BAD). For
example, in the comment, “SORRY Oliver, this is really my fault," the writer expresses a
higher level of sadness by writing the word ‘Sorry’ using all capital letters. We identify if any word
written in all capital letters in a piece of text and record that information to use as a binary feature
(e.g., hasAllCapitalLettersWord). In many cases, API names and code elements are written in all
capital letters, which are discarded at preprocessing phase (see subsection 7.3.1).

109

Elongated words: Similar to uppercase word, writers use elongated words (e.g., Goood, Hur-
raaaay) to express intense emotions in informal written communications [128]. We identify existing
of such elongated words in texts and record that information to use as a binary feature (e.g., hasE-
longatedWord). Similar to contractions, elongated words also adversely contribute to increase the
size of features vector. For example, the elongated word ‘Goood’ will be considered as a unique
word/feature, although it is a deviated form of the English word ‘Good’. To reduce size of features
vector, we correct the spellings of such identified elongated words found in texts.

Use of +1 and −1 in sentences: It is a common practice of developers to put +1 and −1 in
comments while discussing technical issues among them in Stack Overflow and JIRA. When a de-
veloper likes or agrees on any issue with his colleague(s), then he puts +1while commenting on that
issue [223]. For example, in the comment “+1, the new patch looks good," the writer uses
+1 (at the beginning) to express his positive disposition to a patch generated by his colleague. Thus,
+1 in a comment indicates positive emotion, while −1 indicates the opposite. We identify presence
of +1 and −1 in a text and create two binary features: i) hasPlusOne and ii) hasMinusOne.

7.3.3 Algorithm Selection

There are many supervisedML algorithms available [214] for classification problems. Among those,
we select Scikit-learn’s [214] implementations of following nineML algorithms as those are popular
and frequently used in sentiment/emotion classification.

(a) Adaptive Boosting (AB) [105], (b) Decision Tree (DT) [105, 123], (c) Gradient Boosting
Tree (GBT) [124], (d) K-nearest Neighbors (KNN) [105], (e) Naive Bayes (NB) [105, 125], (f)
Random Forest (RF) [126], (g)Multilayer Perceptron (MLP) [127], (h) Support VectorMachine with
Stochastic Gradient Descent (SGD) [123], and (i) Linear Support VectorMachine (SVM) [105, 128].

7.4 Evaluation

We use precision (℘), recall (ℜ), and F-score (Ⅎ) to measure the accuracy of emotion detection of
MarValous for each of the five emotional states (as described in Section 7.2). Given a set  of texts,
precision (℘), recall (ℜ), and F-score (Ⅎ) for a particular emotional state e is calculated as follows:

℘ =
∣ e ∩  ′

e ∣
∣  ′

e ∣
, ℜ =

∣ e ∩  ′
e ∣

∣ e ∣
, Ⅎ =

2 ×℘ ×ℜ
℘ +ℜ

,

where e ∈ {excitation, stress, depression, relaxation, neutral}, e represents the set of texts ex-
pressing the emotional state e, and  ′

e denotes the set of texts for which MarValous identifies the
emotional state e.

110

7.4.1 Dataset

There is only one publicly available dataset where software engineering texts are manually anno-
tated by Islam and Zibran [129] with four emotions excitation, stress, depression, and relaxation.
Emotion-wise number of comments in that dataset are mentioned in the second column of Table 7.4.

Table 7.4: Number of comments in categories of emotions
Emotion # of comments annotated by Total

of
Comments

Islam and
Zibran [129]

Novielli
et al. [130]

Excitation 411 1,709 2,120
Stress 252 988 1,240
Depression 289 230 519
Relaxation 227 0 227
Neutral 616 400 1,016
Overall total number of comments: 5,122

The number of comments are not adequate to train and test a ML classifier [215]. Hence, we
increase the number of comments by leveraging the dataset created by Novielli et al. [130]. They
release a dataset of 4,800 questions, answers, and comments collected from Stack Overflow, which
are manually annotated using six basic emotions, namely love, joy, anger, sadness, fear, and sur-
prise. According to emotion classification model in the two-dimensional approach [212] (as seen in
Figure 7.1) the emotions love and joy fall in the first quadrant, emotions anger and fear fall in the
second quadrant and emotion sadness falls in the third quadrant. Hence, we select those comments
that are annotated with the emotions love, joy, anger, fear and sadness and assigned those comments
the representative emotions of their respective quadrants in which they belong.

In some cases, an expression of surprise can be positive, while in other cases it can convey a
negative sentiment/valence [110]. As the polarities along the valence dimension are not defined for
the surprised comments in the dataset of Novielli et al., we exclude those surprised comments to
minimize ambiguity. Finally, we randomly pick 400 neutral comments of the dataset. For each of
the emotions, we mention the number of comments collected from the dataset of Novielli et al. in
the third column of Table 7.4. The combined dataset consists of 5,122 comments.

7.4.2 Evaluation of ML Algorithms

Here we seek to identify which ML algorithm shows the best performance on the dataset. We use
10-fold cross-validations to validate each of the algorithms, where the dataset is randomly divided
into 10 groups and each of the ten groups is used as test dataset once, while the remaining nine
groups are used to train the classifier.

111

Table 7.5: Comparison of ML algorithms in classification of emotional states
Emotion Metrics AB DT GBT KNN NB RF MLP SGD SVM

Excit.
℘ 80.91% 86.82% 90.12% 82.31% 50.92% 80.67% 89.62% 85.88% 89.65%
ℜ 88.47% 86.98% 93.13% 89.36% 98.72% 90.64% 92.34% 93.60% 93.77%
Ⅎ 84.48% 86.88% 91.59% 85.68% 67.13% 85.31% 90.96% 89.28% 91.65%

Stress
℘ 55.08% 63.70% 79.67% 75.63% 85.94% 70.42% 74.61% 78.50% 75.81%
ℜ 44.79% 54.63% 71.26% 40.33% 22.31% 49.19% 75.55% 69.80% 76.99%
Ⅎ 48.81% 58.64% 75.10% 52.39% 35.26% 57.83% 74.96% 73.44% 76.32%

Sad
℘ 61.97% 56.01% 83.97% 59.26% 20.00% 63.74% 70.83% 74.56% 78.27%
ℜ 25.26% 51.25% 63.66% 56.52% 00.37% 42.91% 62.25% 62.32% 60.73%
Ⅎ 34.88% 53.17% 72.20% 57.36% 00.72% 51.13% 66.02% 67.27% 68.14%

Relax.
℘ 54.20% 64.38% 84.77% 67.41% 00.00% 80.07% 82.22% 80.35% 86.77%
ℜ 52.07% 59.17% 71.37% 62.72% 00.00% 51.65% 75.62% 76.38% 77.15%
Ⅎ 52.46% 61.22% 77.04% 64.48% 00.00% 62.21% 78.51% 77.29% 81.29%

Neutral
℘ 58.37% 68.86% 76.83% 59.56% 75.51% 67.54% 86.18% 86.33% 86.35%
ℜ 77.45% 84.06% 88.94% 84.96% 50.21% 91.61% 82.09% 84.38% 87.99%
Ⅎ 65.42% 75.65% 84.45% 69.91% 59.96% 77.68% 84.00% 85.33% 87.09%

Overall
average
accuracy

℘ 62.10% 67.95% 83.07% 68.83% 46.47% 72.49% 80.69% 81.12% 83.37%
ℜ 57.61% 67.22% 77.67% 66.78% 34.32% 65.20% 77.57% 77.29% 79.33%
Ⅎ 57.21% 67.11% 80.08% 65.96% 32.61% 66.83% 78.89% 78.52% 80.90%

Table 7.6: Comparison of features in MarValous
Emotion Metrics All � � + � � +
 � + �feat.

Excitation
℘ 89.65% 88.03% 87.81% 88.42% 88.17%
ℜ 93.77% 94.81% 94.77% 94.51% 94.34%
Ⅎ 91.65% 91.27% 91.14% 91.35% 91.14%

Stress
℘ 75.81% 72.36% 72.30% 72.70% 72.47%
ℜ 76.99% 74.85% 75.13% 76.17% 74.89%
Ⅎ 76.32% 73.41% 73.62% 74.31% 73.52%

Sad
℘ 78.27% 69.08% 69.71% 70.53% 70.21%
ℜ 60.73% 56.23% 55.20% 55.72% 56.11%
Ⅎ 68.14% 61.85% 61.32% 62.14% 61.94%

Relaxation
℘ 86.77% 88.10% 88.18% 88.05% 88.96%
ℜ 77.15% 73.79% 76.26% 76.66% 75.65%
Ⅎ 81.29% 79.91% 81.46% 81.56% 81.57%

Neutral
℘ 86.35% 89.58% 89.29% 88.97% 88.53%
ℜ 87.99% 82.37% 82.17% 83.15% 83.88%
Ⅎ 87.09% 85.76% 85.52% 85.88% 86.11%

Overall
average
accuracy

℘ 83.37% 81.43% 81.46% 81.73% 81.67%
ℜ 79.33% 76.41% 76.70% 77.24% 76.97%
Ⅎ 80.90% 78.44% 78.61% 79.05% 78.86%

Here, feature � ={unigram and bigram}, � ={emoticons and exclamatory
mark},
={all capital letters, elongated word and interjection}

112

For each of the ML algorithms, we run MarValous on the dataset and compute averages of
precisions, recalls, and f-measures for 10-fold cross-validations for each of the emotional states. The
computed metrics’ values are presented in Table 7.5. For each ML algorithm, the overall average
precision, recall, and F-score across all the emotional states are presented in the last three rows. The
highest obtained value of a metric in each row is boldfaced for better interpretation of the results.

In Table 7.5, we see SVM obtains the highest F-score values for each of the emotional states
except depression. For emotions depression and relax, GBT and SVM obtain the best performances
respectively, for all the metrics. For emotions excitation and stress, GBT shows the best results for
metric precision, while NB and SVM obtain the highest recall values for the particular emotions
respectively. Although NB performs relatively better in detecting emotions excitation, stress and
neutral, which have higher number of comments, it performs very low in detecting relaxation and
depression that have lower number comments. On the other hand, for neutral comments, RF obtains
the highest recall value, whereas, SVM obtains the highest precision value followed by SGD.

Notably, SGD and MLP algorithms show promising results, although their obtained overall av-
erage accuracies’ values are lower than the metrics’ values obtained by SVM and GBT algorithms.
SVM performs the best in terms of overall average precision, recall and F-score (see last three rows
of last column in Table 7.5) that indicates the algorithm shows steady performances across all the
emotional states. Hence, among the nine ML algorithms, we select this ML algorithm as default for
our MarValous tool and conduct our subsequent analyses.

7.4.3 Evaluation of Features in MarValous

The selection and quality of the features representing each class affect the accuracy and efficiency
of classification of ML algorithms [224]. Identifying and removing irrelevant and unnecessary fea-
tures increase learning accuracy and improve comprehensibility of results. Toward that we measure
importance of the seven features of MarValous in classifying four emotional states of the comments
in our dataset.

First, based on the similarities of the features we divide those features into four disjoint sets: i)
� ={unigram and bigram}, ii) � ={emoticons and exclamatory mark}, iii)
={all capital letters,
elongated word and interjection} and iv) �={plus one and minus one}. Then, for various combina-
tions of those features’ sets, we run MarValous on our dataset. The combinations of those features
and computed results for each of the combinations are presented in Table 7.6.

As seen in Table 7.6, in all the cases, precision, recall and F-score values are always higher when
MarValous is operated with all features except in four cases. Those four exception cases include:
i) the highest recall value obtained using only n-gram feature for comments belong to excitation
emotion, ii) the best precision and F-score values obtained using the combination of � and � features
for emotion relaxation, and iii) the highest precision value obtained using the combination of � and

113

� features for neutral comments. However, those exception cases cannot prevent the combination of
all features to obtain the highest overall average accuracies (see last three rows of third column in
Table 7.6).

By observing the differences of metrics’ value presented in the third and fourth columns of
Table 7.6, we see n-gram (�) features i.e., unigram and bigram contribute the most significant part
of the accuracies of our tool MarValous. Although other features’ contributions are not significant,
those features play their roles in increasing overall accuracies of our tool MarValous. As SVM
algorithm with all the seven features has showed the best performance, we have released MarValous
by setting SVM as its default algorithm while enabling all those features in it.

7.4.4 Comparison with DEVA

We compare our tool’s accuracies with those of DEVA [129]. Until the public release of our
MarValous, DEVA is the only available SE domain specific tool for the detection of the four emo-
tional states that our tool also detects. While DEVA uses a lexicon based approach, our MarValous
relies on ML techniques.

To ensure a fair comparison between the tools, we randomly divide the dataset into two subsets:
i) training set contains 70% (i.e., 3,586) comments of the dataset and ii) test set contains remaining
30% (i.e., 1,536) comments. The training set is used to train our ML based tool MarValous and the
test set is used to compute and compare performances of DEVA and MarValous.

We separately operate DEVA and MarValous to detect the emotional states in each of the com-
ments in the test set. Then, we compute the precision (℘), recall (ℜ), and F-score (Ⅎ) for their
detections of each emotional states (i.e., excitation, stress, depression, relaxation, and neutral) as
presented in Table 7.7. The overall average precision, recall, and F-score across all the emotional
states are presented in the bottom three rows.

We see in Table 7.7 that MarValous outperforms the baseline tool DEVA in all cases by a large
margin except for the recall values of stressed and neutral comments and precision value of com-
ments belong to excitation emotion. MarValous maintains a proper balance between precision and
recall for each emotional state resulting in higher F-score in each emotional state. Overall, on aver-
age, across all the emotions, MarValous clearly outperforms the baseline, as it has achieved 19.04%
higher precision and 08.19% higher recall values compared to DEVA.

Statistical significance. We apply a non-parametric McNemar’s test [153, 110] at significance
level � = 0.05 to verify the statistical significance in the difference of the results obtained by the
two tools, DEVA and MarValous. As the non-parametric test does not require normal distribution of
data, this test suits well for our purpose.

We perform aMcNemar’s test on a 2×2 contingency matrix (Table 7.8) derived from the results
obtained from the two tools. A number/frequency in a cell is denoted as nxy, where x and y denote

114

Table 7.7: Comparison between DEVA and MarValous
Emotions Metrics DEVA MarValous

Excitation
℘ 91.26% 86.86%
ℜ 78.07% 93.36%
Ⅎ 84.15% 89.99%

Stress
℘ 43.25% 79.82%
ℜ 70.32% 56.13%
Ⅎ 53.56% 65.91%

Depression
℘ 36.92% 90.00%
ℜ 55.81% 73.26%
Ⅎ 44.44% 80.77%

Relaxation
℘ 75.10% 75.31%
ℜ 48.35% 76.08%
Ⅎ 58.82% 75.70%

Neutral
℘ 74.41% 84.18%
ℜ 93.38% 88.08%
Ⅎ 82.82% 86.08%

Overall
average
accuracy

℘ 64.19% 83.23%
ℜ 69.19% 77.38%
Ⅎ 64.76% 79.69%

Table 7.8: Contingency matrix of McNemar’s test
of comments
misclassified
by both a and b

n00 = 146 n01 = 113
of comments
misclassified by
b but not by a

of comments
misclassified by
a but not by b

n10 = 293 n11 = 984
of comments
correctly classified
by both a and b

Here, a = DEVA and b = MarValous

115

row and column numbers respectively of a cell in the contingency table. According to the table,
MarValous (b) performs better than DEVA (a) as n10 > n01. The difference of performances is
found to be statistically significant with p-value= 2.69×10−11 where p < �. We, therefore, conclude
that the observed superior performance of our MarValous over DEVA is statistically significant.

7.5 Limitations and Threats to Validity

To have a large dataset, we combine two datasets of Islam and Zibran [129] and Novielli et al. [130],
which are created by following two-dimensional and discrete emotional models respectively. While
those two emotional models different from each other, we map categories of emotions from discrete
emotional model to the two-dimensional model (see Section 7.4.1), which can be questioned. To
validate our mapping process, we randomly pick 20 comments from each category of emotions and
manually verify the correctness of mappings.

Although we combine two datasets to increase the size of the used dataset, the number of com-
ments is still low (total 5,122) for training a ML-based classifier. Thus, the generalizability of
MarValous can be questioned. However, higher performances of MarValous on combined dataset,
which consists of comments collected from two different data sources (JIRA issue comments and
Stack Overflow comments), give us confidence that it will perform good enough on different types of
software engineering textual artifacts too. Moreover, the newly combined dataset is not perfectly bal-
anced as the emotion relaxation consists of only 04.43% of all comments. However, such imbalance
in the dataset could not adversely affect the performance of MarValous.

While there are many ML algorithms available, we have chosen the nine selected algorithms
based on their popularity in the community. Moreover, in the selection of those algorithms, we
ensure that the selection encompasses varieties of ML algorithms, e.g., Generalized Linear Models
(GLM), Support Vector Machine (SVM), Stochastic Gradient Descent (SGD), Nearest Neighbors
(NN), ensemble methods and others. There are still scopes to examine performances of other ML
algorithms.

Overfitting can be a common threat to any ML based tool. To make sure there is no such over-
fitting of MarValous accuracies, we use ten-fold cross validations to measure accuracies of the tool.
Moreover, we verify the superior performance of MarValous over DEVA using the 30% of the com-
ments, which were never used at the training phase. Such precautions should have limited the threats
of overfitting.

The lists of emoticons, interjections and slangs might not have included all available such items.
Missing of items from those lists might have restricted the performance of MarValous. Keyword
based detection of APIs’ names in texts might not be 100% accurate either. However, these limita-
tions also apply to lexicon-based approaches (such as DEVA). We plan to minimize these limitations
in our future work.

116

7.6 Related work

Earlier research related to sentiment analysis in software engineering text mostly used three tools,
SentiStrength [215], Stanford NLP [146], and NLTK [46]. SentiStrength is the most fre-
quently [110] used tool among those three tools. All of the aforementioned three tools were devel-
oped and trained to operate on general purpose texts (e.g., movie and hotel reviews) and they did not
perform well enough when operated in a particular domain such as software engineering [109, 128].
Sentiment analyses using these tools are misleading mainly due to the variations in meanings of
domain-specific technical terms [110] and high amount of noises (e.g., code snippets, URL and API
names) [110, 111, 128].

Blaz and Becker [163] proposed three lexical basedmethods that consists of a dictionary method,
a template method, and a hybrid method for sentiment analysis in job submission tickets related to
Information Technology (IT). Those three techniques were tested on formally written texts generated
in closed official environment and may not perform well in dealing with informal and noisy texts
frequently used in software engineering artifacts such as commit and code review comments [110].
SentiStrength-SE [110], Senti4SD [128] and SentiCR [111] are three recent sentiment analysis
tools especially designed by targeting software engineering text. However, all the aforementioned
tools can detect valence (aka sentiment) only and cannot other emotional states in more fine-grained
levels.

To detect emotions at deeper levels, Murgia et al. [185] constructed a Machine Learning (ML)
classifier to identify six emotions joy, love, surprise, anger, sad, and fear in issue comments related
to software development. In another work, Calefato et al. [56] also developed a ML based toolkit
namedEmoTxt to detect those six emotions from technical posts in Stack Overflow. However, neither
of these techniques are capable of detecting the emotional states in the well-established bi-directional
emotional model that includes both valence and arousal dimensions [129].

To address the above mentioned issue, Islam and Zibran [129] developed a dictionary and rule-
based tool DEVA to identify four emotional states excitation, stress, depression/sadness, and relax-
ation in the bi-directional emotional model. Our work is inspired by DEVA. The lexical approach of
DEVA is based on limited-size dictionaries and a set of predefined rules. Thus, the performance of
DEVA is inherently limited by the quality and size of the dictionaries [187]. Moreover, DEVA will fail
to correctly classify emotions when encountered certain textual structures and content, which are not
covered by the rules and dictionaries. To overcome such limitations, in MarValous, we have used
ML techniques and we have also demonstrated that our ML approach performs substantially better
than the lexical approach of DEVA.

TensiStrength [122] is a tool released before DEVA, and it that can detect stress and relaxation
in texts, but cannot capture excitation or depression. Unlike MarValous and DEVA, TensiStrength
is not particularly designed for any specific domain, and thus produce inferior performance compared

117

to DEVA in dealing with software engineering texts [129]. Our MarValous substantially outperforms
DEVA as found from the quantitative comparison in this work.

7.7 Summary

In this chapter, we have presented MarValous, which is the first Machine Learning (ML) based tool
especially designed for software engineering text to detect individual emotional states excitation,
stress, depression, relaxation and neutrality. By using nine preprocessing steps and seven features,
we have developed the tool MarValous that consists of nine popular and effective supervised ML
algorithms for emotion/sentiment analysis.

For evaluating the ML algorithms in MarValous, we have combined two existing manually an-
notated datasets that consists of 5,122 comments collected form JIRA and Stack overflow. From a
quantitative evaluation using this dataset, the Linear Support Vector Machine (SVM) algorithm is
found to exhibit the best performance (overall average precision 83.37% and recall 79.33%) followed
by GBT. The algorithms SGD and MLPC have also showed promising results.

Next, to find an optimal features’ set, we have evaluated various combinations of the seven fea-
tures of MarValous using the highest performed SVM algorithm. We have found that the set of all
the seven features have achieved the best overall average accuracies compared to the selected subsets
of those features. As SVM algorithmwith all the seven features has showed the best performance, we
have released MarValous by setting SVM as its default algorithm while enabling all those features
in it.

We have also compared the performance of MarValous (with default settings) against the state-
of-the-art tool DEVA. From the quantitative comparisons, MarValous is found to achieve 19.04%
higher precision and 08.19% higher recall compared to DEVA. A statistical test has confirmed the
significant superiority of MarValous over DEVA. The current release of MarValous and combined
benchmark dataset are freely available [196] for public use.

Creating a larger dataset of comments annotated with four emotional states remains within our
immediate future work. We will put efforts in minimizing the limitations of MarValous to improve
its performance. We will also conduct empirical studies of emotions and their probable impacts in
software engineering using our MarValous.

118

Chapter 8

Understanding and Exploiting
Developers’ Sentimental Variations

In the last three chapters (Chapter 4, Chapter 6, and Chapter 7), we described the software engineer-
ing domain specific tools that we have developed for sentiment and emotion analysis to address the
sub-problem I. Now, we aim to address sub-problem II (i.e., understanding developers’ sentiments
in software engineering). In this chapter, we present our fist study to address sub-problem II by
conducting a quantitative empirical study of the emotional variations in different types of develop-
ment activities (e.g., bug-fixing tasks) and development periods (i.e., days and times), in addition to
in-depth investigation of emotions’ impacts on software artifacts (i.e., commit messages) and explo-
ration of scopes for exploiting emotional variations in software engineering activities.

The chapter is organized as follows. In Section 8.1, we introduce the motivation of the work.
The methodology of the work is described in Section 8.2. Results of data analysis are illustrated in
Section 9.3. Threats to validity of the work are discussed in Section 8.4. Related work is described
in Section 8.5. Finally, we conclude the chapter in Section 8.6.

8.1 Introduction

Emotions are inseparable part of human nature, which influence people’s activities and interac-
tions, and thus emotions affect task quality, productivity, creativity, group rapport and job satis-
faction [26, 27, 28]. Software development, being highly dependent on human efforts and inter-
actions, is more susceptible to emotions of the practitioners. Hence, a good understanding of the
developers’ emotions and their influencing factors can be exploited for effective collaborations, task
assignments [29], and in devising measures to boost up job satisfaction, which, in turn, can result in
increased productivity and projects’ success [30].

Several studies have been performed in the past for understanding the role of human aspects
on software development and engineering. Some of those earlier studies address when and why
employees get affected by emotions [26, 34, 4, 41, 43], whereas some other work address how [60,
61, 62, 63, 31] the emotions impact the employees’ performance at work. Despite those earlier
attempts, software engineering practices still lack theories and methodologies for addressing human

119

factors such as, emotions, moods and feelings [3, 4]. Hence, the community calls for research on the
role of emotions in software engineering [61, 28, 64].

Some software companies try to capture the developers’ emotional attachments to their jobs
by means of traditional approaches such as interviews and surveys [31]. Capturing emotions with
the traditional approaches is more challenging for projects relying on geographically distributed
team settings and voluntary contributions (e.g., open-source projects) [33, 34]. Thus, to supple-
ment or complement those traditional sources, software artifacts such as the developers’ commit
comments/messages have been identified for the extraction of important information including de-
velopers’ emotional states [34, 4, 41].

In this work, we study the polarity (i.e., positivity, negativity, and neutrality) of emotions ex-
pressed in commit messages as posted by developers contributing to open-source projects. In par-
ticular, we address the following four research questions.
RQ1: Do developers express different levels (e.g., high, low) and polarity (i.e., positivity, negativity,
and neutrality) of emotions when they commit different types (e.g., bug-fixing, new feature imple-
mentation, refactoring, and dealing with energy related concerns) of development tasks?
— If we can distinguish development tasks at which the developers express high negative emotions,
low positive emotions, or an overall low emotional involvements, stipulating measures can be intro-
duced to emotionally influence the emotions of the developers working on those particular types of
development tasks resulting in higher success rate.
RQ2: Can we distinguish a group of developers who express more emotions (positive or negative)
in committing a particular type (e.g., bug-fixing) of tasks?
— Programmers who develop in them positive emotions while carrying out a given development
task can be more efficient and quicker in completing the task [63] resulting in reduced software cost.
Thus, distinguishing a group of practitioners having positive emotional attachment to a particular
task can be useful in effective task assignments.
RQ3: Do the developers’ polarity (i.e., positivity, negativity, and neutrality) of emotions vary in
different days of a week and in different times of a day?
— If we can identify any particular days and times when developers express significant negative
emotions, then managers can take motivating steps to boost up the developers positive feelings on
those days and times. Guzman et al. [34] reported that commit comments posted onMondays tend to
have more negative emotions. We also want to verify their claim using a substantially larger data-set.
RQ4: Do the developers’ emotions have any impact on the lengths of commit comments they write?
— Commit messages are pragmatic means of communication among the developers contributing
to the same project. Ideally, commit comments contain important information about the underlying
development tasks, and the length of developers’ work description is an indication of the descrip-
tion quality [225]. If any relationship can be found between the developers’ emotional state and

120

System-1

System-2 Dump of
CM

Boa API

Extraction of
Commit

Messages (CM)

System-50

SentiStrength

Compute
Emotional Scores

of CM

CM with
Emotional

Scores

SQLITE

Store CM in
Database

CM in SQLITE
Database Analysis

Boa
Repository

Select Subject
Systems

Boa API

CM in SQLITE
Database
Findings

Figure 8.1: Procedural Steps of Our Empirical Study

the lengths of commit comments, then project managers can take steps to stimulate the developers
emotional states to get high quality commit comments containing enough contextual information.

8.2 Methodology

To address the aforementioned research questions, we extract emotions from the developers’
commit messages using SentiStrength [45], which is a state-of-the-art sentiment analysis tool.
SentiStrength was previously used for similar purposes [42, 4, 43] and was reported to be good
candidate for analyzing emotions in commit comments [34]. In the following subsections, we first
briefly introduce sentiment analysis with SentiStrength (Section 9.2.2) and then, we describe
the metrics (Section 8.2.2), tuning of SentiStrength (Section 8.2.3) for software engineering
context, and data collection approaches (Section 8.2.4) used in our study. The procedural steps of
our empirical study are summarized in Figure 14.1.

8.2.1 Sentiment Analysis

Sentiment analysis using SentiStrength on a given piece of text (e.g., a commit message) c com-
putes a pair ⟨�c , �c⟩ of integers, where+1 ≤ �c ≤ +5 and−5 ≤ �c ≤ −1. Here, �c and �c respectively
represent the positive and negative emotional scores for the given text c.

A given text c is considered to have positive emotions if �c > +1. Similarly, a text is held
containing negative emotions when �c < −1. Note that, a given text can exhibit both positive and
negative emotions at the same time, and a text is considered emotionally neutral when the emotional
scores for the text appear to be ⟨1,−1⟩. Further details about the sentiment analysis algorithm of
SentiStrength and the interpretation of its outputs can be found elsewhere [45].

8.2.2 Metrics

To carry out our analyses for deriving the answers to the research questions, we formulate the fol-
lowing metrics. Given a set  of commit messages, we can obtain two subsets + and − defined
as follows:
+ = {c |c ∈ , �c > +1} and − = {c |c ∈ , �c < −1}.

121

Mean Positive Emotional Score for a set  of commit messages, denoted as (), is defined as:

() =
∑

c∈+ �c
|+|

(8.1)

Mean Negative Emotional Score for a set  of commit comments, denoted as (), is defined as
follows:

 () =
∑

c∈− |�c|

|−|
(8.2)

Cumulative Emotional Score for a particular commit message c, denoted as  (c), is defined as
follows,

 (c) = �′c + �
′
c (8.3)

where,

�′c =

{

�c , if �c > +1.
0, otherwise. �′c =

{

|�c|, if �c < −1.
0, otherwise.

8.2.3 Tuning of SentiStrength

The sentiment analysis tool SentiStrength was reported to have 60.7% precision for positive texts
and 64.3% for negative texts [45]. To the best of our knowledge, all such sentiment analysis tools
including SentiStrength are highly dependent on the polarities of individual words in a given text
in computation of its emotional scores. SentiStrength was originally trained on documents on
the social web. In a technical field such as software engineering, commit messages include many
keywords which have polarities in terms of dictionary meanings, but do not really express any emo-
tions in their technical context. For example, ‘Super’, ‘Support’, ‘Value’ and ‘Resolve’ are English
words with known positive emotions, while ‘Dead’, ‘Block’, ‘Default’, and ‘Garbage’ are known to
have negative emotions, but neither of these words really bear any emotions in software development
artifacts. Those are simply some domain specific technical terms with especial contextual meanings.

To save SentiStrength’s computation of emotional scores from being mislead by such tech-
nical terms, we tune the tool for application in our software engineering context. Based on our
manual investigation, experience, and literature review [41, 43], we identify a total of 49 terms,
which can be misinterpreted by SentiStrength. These misleading terms are: ‘Arbitrary’, ‘Block’,
‘Bug’, ‘Conflict’, ‘Constraint’, ‘Corrupt’, ‘Critical’, ‘Dynamic’, ‘Dead’, ‘Death’, ‘Default’, ‘De-
fect’, ‘Defensive’, ‘Disabled’, ‘Eliminate’, ‘Error’, ‘Exceptions’, ‘Execute’, ‘Failure’, ‘Fatal’, ‘Fault’,
‘Force’, ‘Garbage’, ‘Greater’, ‘Inconsistency’, ‘Interrupt’, ‘Kill’, ‘Like’, ‘Obsolete’, ‘Pretty’, ‘Re-
dundant’, ‘Refresh’, ‘Regress’, ‘Resolve’, ‘Restrict’, ‘Revert’, ‘Safe’, ‘Security’, ‘Static’, ‘Super’,
‘Support’, ‘Success’, ‘Temporary’, ‘Undo’, ‘Value’, ‘Violation’, ‘Void’, ‘Vulnerable’ and ‘Wrong’.

122

SentiStrength provides the flexibility to modify its existing lexicons’ emotional interpretation to
customize it for a target context (i.e., software engineering, in this work). For our purpose, we neu-
tralize SentiStrength’s interpretation of the aforementioned technical jargons, as such was also
suggested in earlier studies in the area [41, 43].

Table 8.1: Examples of commit comments and computation of their emotional scores
Boa Commit/Revision ID: Commit Comment (c) Emo. Score

Proj. ID �c �c  (c)
12562083 7519717434bb0ae5fad5329885bd184e7b502d27:

Fixes #1721 Committing work by Arnfried (EXCELLENT!)
5 -1 5

689344 2605951f8b73a963beb01b3806b3ad43ce638848: Don’t save mute setting.
Extremely annoying to start with lack of audio and have no idea what causes
it

1 -5 5

11814891 01845191185d0a14960f1542ac77f512f8749514: a bit more detailed test;
hope this avoids some reflection searches in FF emulation and makes the
monster faster in special situations

3 -2 5

689344 00058618c9c3f1f9fc4d9310012a0d1881c0c940:
(RMenu) RMenu refactor - have function pointers for menu struct

1 -1 0

Having SentiStrength tuned according to the procedure described above, we manually verify
the impact of the tuning using a random sample of 200 commit messages extracted from Boa [131],
and we found a 26% increase of precision (checked by comparing SentiStrength’s computation of
emotional polarities with subjective human interpretation over each of the 200 commit messages).
Thus, for our work, we use this improved instance of SentiStrength tuned for use in software
engineering context.

8.2.4 Data Collection

We study commit messages for open-source projects obtained through Boa [131]. Boa is a recently
introduced infrastructure with a domain specific language and public APIs to facilitate mining soft-
ware repositories. We use the largest (as of February 2016) data-set from Boa, which is catego-
rized as “full (100%)" and consists of more than 7.8 million projects collected from GitHub before
September 2015.

From this large data-set, we select the top 50 projects having the highest number of commits.
We study all the commit messages in these projects, which constitute 490,659 commit comments.
Associated information such as, committers, commit timestamps, types of underlying work, revi-
sions and project IDs are kept in a local relational database for convenient access and query. For
each of the commit messages, we compute the emotional scores using the tuned SentiStrength

tool. Table 8.1 shows some examples of emotional and neutral commit comments in our dataset and
computation of their emotional scores.

123

8.3 Analysis and Findings

The research questions RQ1, RQ2, RQ3 and RQ4 are respectively addressed in Section 8.3.1, Sec-
tion 8.3.2, Section 8.3.3, and in Section 8.3.4.

8.3.1 Emotional Variations in Different Task Types

We investigate whether developers’ emotions vary based on their involvements in four different types
of software development tasks: (a) bug-fixing tasks, (b) new feature implementation, (c) refactoring,
and (d) energy-aware development. We consider that the first three types of tasks mentioned above
are self-explanatory. The fourth one (i.e., energy-aware development) deals with software issues
with consumption of energy, measured in terms of usage of resources such as processing power
and memory. Energy-aware development is a recent important topic in the area of green computing
research. Categorization of development tasks in this manner are also found in earlier studies [226,
36, 227] in software engineering research.

Task-based Characterization of Commits: To distinguish commits dealing with bug-fixing
tasks, we rely on Boa’s public APIs, which readily indicate whether a commit message is associated
with bug-fixing task, or not.

To identify energy-aware commit messages, we select a list of keywords and search those key-
words in commit messages. A commit message will be considered as energy-aware commit, if the
commit message contains any of the selected keywords. The identified keywords are: *energy con-
sum*, *energy efficien*, *energy sav*, *save energy*, *power consum*, *power ecien*, *power
sa*, *save power*, *energy drain*, *energy leak*, *tail energy*, *power efficien*, *high CPU*,
power aware, *drain*, *no sleep*, *battery life* and *battery consum*. The character ‘*’ in
each keyword works as a wildcard, i.e., a query will select those commits messages, which contain
at least one of these keywords, regardless of the beginning or the end of the commit message. Note
that, these keywords were also used in earlier studies [36, 228, 229, 227] for similar purposes.

To recognize commit messages dealing with new feature implementation and refactoring tasks,
we select those keywords, which were used by Ayalew and Mguniin [226] in their work. Keywords
add and *new feature* are used to categorize commit messages, which are related to new feature
development. And *refactor* and *code clean* keywords are used to distinguish those commit
messages, which are posted by developers during code refactoring tasks. Note that, a developer may
perform refactoring while fixing a bug. Thus, a commit message can be characterized relevant to
more than one categories of tasks.
Investigation: The numbers of commit messages found relevant to each of the four categories of de-
velopment tasks are presented in the second column from left in Table 8.2. The boxplot in Figure 9.2
presents the distribution of mean positive, negative, and cumulative emotional scores in each type

124

Table 8.2: Commits of different task categories andMWW tests between positive and negative emo-
tions in them

Task Categories # of Commits P -value Significant?
Bug-Fixing 117,249 0.03288 Yes (P < �)
New Feature 89,019 0.00256 Yes (P < �)
Refactoring 5,431 0.04006 Yes (P < �)
Energy-Aware 182 0.39743 No (P > �)

Commit Categories

Em
ot

io
na

l S
co

re
s

Commit Categories

Figure 8.2: Distribution of mean positive, negative, and cumulative emotional scores in commits
messages dealing with different types of tasks

of task for each of the 50 projects. An ‘x’ mark in a box in the boxplot indicates the mean emotional
scores over all the projects.

As observed in Figure 9.2, emotional scores (positive, negative and cumulative) for energy-aware
commit messages are much higher than those in commit messages for three other tasks, and there
is not much variations in the emotional scores among these three tasks. To verify the statistical
significance of these observations, we conduct Mann-Whitney-Wilcoxon (MWW) tests [132] (with
� = 0.05) between the distributions of mean cumulative emotional scores in commit messages
for each possible pair of development tasks. The results of the MWW tests are presented in Table
8.3. The P -values reported by the tests, as compared with �, suggest statistical significance of our
observations.

Table 8.3: MWW tests between cumulative emotional scores of commit messages dealing with dif-
ferent types of tasks

Task Bug- Refactoring New Energy-
Categories Fixing Feature Aware
Bug-Fixing - 0.75656 0.89656 0
Refactoring 0.75656 - 0.71884 0
New Feature 0.89656 0.71884 - 0
Energy-Aware 0 0 0 -

Again, looking at Figure 9.2, we see that the commit messages, which are posted during the
new features implementation tasks, show more negative emotions than positive ones. Opposite ob-

125

servations are evident for commit messages for three other types of tasks. To verify the statistical
significance of our observations in the variations of polarity (positivity and negativity) of emotions,
for each of the four types of development tasks, we separately conduct MWW tests between the
mean positive and negative emotional scores of commit messages. The results of theMWW tests are
presented in the right-most two columns in Table 8.2. The P -values of tests, as compared with �,
suggest statistical significance of our observations for bug-fixing, new feature implementation and
refactoring tasks, but not for the energy-aware development tasks.

Based on our observations and statistical tests, we derive the answer to the research question
RQ1 as follows:
Ans. to RQ1: Developers express significantly high positive and negative emotions almost equally
in committing energy-aware tasks. For bug-fixing and refactoring tasks, positive emotions are sig-
nificantly higher than negative emotions. And surprisingly, for new feature implementation tasks,
negative emotions are significantly higher than positive polarity.

8.3.2 Emotional Variations in Bug-Fixing Tasks

It is natural that different developers have different expertise, comfort-zones, and interests with re-
spect to types of tasks. The research question RQ2 addresses the possibility of distinguishing a
set of developers who particularly express positive emotions at the particular type of task at hand.
In addressing the research question RQ2, we choose the bug-fixing tasks as a representative to any
particular type of tasks and continue as such.

Across all the projects, we distinguish 20 developers, who are the authors of the bug-fixing
commit messages having the highest positive mean emotional scores. Letp denote the set of these
20 developers. Similarly, we form another set n consisting of 20 developers, who are the authors
of bug-fixing commit comments having the highest negative mean emotional scores. By the union
of these two sets, we obtain a set  of 30 developers who are authors of bug-fixing commits with
the highest mean positive or negative emotional scores. Mathematically,  = p ∪n.

These 30 developers are the authors of 112,462 commits messages among which 32,088 are
bug-fixing commits. For each of these 30 developers, we compute a ratio(d) as follows:

(d) =
(d)
 (d)

, wℎere, d ∈  (8.4)

Here, d denotes the set of bug-fixing commit comments posted by developer d. Notice that, for a
particular developer d, the ratio (d) close to 1.0 indicates that the positive and negative emotions
are almost equal for the developer d. If (d) is much higher than 1.0, the developer d shows more
positive emotions at bug-fixing tasks compared to negative emotions. The opposite holds when(d)

126

is much lower than 1.0. However, a threshold scheme seems necessary to determine when the value
of (d) can be considered significantly close to or distant from 1.0.

Figure 8.3: Hierarchical agglomerative clustering of 30 developers enumerated as 1, 2, 3,… , 30

Clustering Analysis: Instead of setting an arbitrary threshold, we apply unsupervised Hierarchical
Agglomerative Clustering for partitioning the values of (d). The dendrogram produced from this
clustering is presented in Figure 8.3. In the dendrogram, we identify three major clusters/groups,
two marked (by us) with dotted rectangles and the third left unmarked in the middle. This middle
cluster, denoted as Gb, represents the set of those developers, who equally express positive and
negative emotions during bug-fixing. We have, 0.992 ≤ (d) ≤ 1.0,∀d ∈ Gb.

The set of developers who are included in the right-most cluster exhibit more positive emotions
compared to negative emotions during bug-fixing. Let Gp denote the cluster of these developers.
Here, 1.005 ≤ (d) ≤ 1.178,∀d ∈ Gp. The set of developers who render more negative emo-
tions towards bug-fixing belong to left-most cluster, denoted as Gn. We have, 0.919 ≤ (d) ≤
0.982,∀d ∈ Gn.

Table 8.4: MWW tests over(d) scores of commit messages written by developers in each cluster
Cluster Gp Gn Gb
P -values 0.00798 0.0268 0.26109
Significant? Yes (P < �) Yes (P < �) No (P > �)

Statistical Significance: For each of the three clusters, we separately conduct MWW tests between
the mean positive and negative emotional scores of the commit messages to verify the statistical
significances of their differences. The results of the separate MWW tests (with � = 0.05) over each
of the clusters are presented in Table 8.4. The P -values in Table 8.4 indicate statistical significance
in the differences in positive and negative emotions for clusters Gp and Gn. As expected, no such
significant difference found for the cluster Gb as in this cluster, positive and negative emotions are
expressed equally. Thus, our clustering of the developers appears to be accurate with statistical
significance. Hence, we answer the research question RQ2 as follows:
Ans. to RQ2: We have been able to distinguish sets of developers who show either high positive
or high negative emotions in bug-fixing commit messages while some other developers are found to
express both positive and negative emotions almost equally. The same approach can be applied to
distinguish such groups of developers for other types of development tasks.

127

8.3.3 Emotional Variations in Days and Times

For each of the projects, we group all the commit messages into seven disjoint sets in accordance
with the days of the week those are committed.

Em
oti

on
al

Sc
or

es

Mon Tue Wed Thu Fri Sat SunDays

Cumulative

Negative
Positive

Figure 8.4: Distribution of mean positive, negative, and cumulative emotional scores in commit
comments posted in different days of week

Table 8.5: MWW tests over cumulative emotional scores of commit messages written in different
days of week Day Sat Sun Mon Tue Wed Thu Fri

Sat - 0.44 0.23 0.11 0.33 0.41 0.35
Sun 0.44 - 0.71 0.42 0.77 0.98 0.84
Mon 0.23 0.71 - 0.68 0.79 0.71 0.84
Tue 0.11 0.42 0.68 - 0.55 0.41 0.49
Wed 0.33 0.77 0.79 0.55 - 0.83 0.96
Thu 0.41 0.98 0.71 0.41 0.83 - 0.86
Fri 0.35 0.84 0.84 0.49 0.96 0.86 -

Figure 8.4 plots the average (over each project) positive, negative, and cumulative emotional
scores in commit messages posted in different days in a week. Among all the seven days of a week,
negative emotions appear to be slightly higher in commit messages posted during the weekends
(i.e., Saturday and Sunday) than those posted in weekdays (i.e., Monday through Friday). Not much
differences are visible in the emotional scores for commit messages posted in the five weekdays.
MWW tests (with � = 0.05) between the distributions of emotional scores in each possible pair
of the days of a week suggest no statistical significance in the differences of emotions. P -values
of the MWW tests are presented in Table 8.5. As can be seen in Table 8.5, for all values of P ’s,
� < 0.11 ≤ P .

To study the relationship between developers emotions and times of a day when commit com-
ments are posted, we divide the 24 hours of a day in three periods (a) 00 to 08 hours as before working
hours, (b) 09 to 17 hours as regular working hours and (c) 18 to 23 hours as after working hours.
Then for each project, we again organize the commit messages into three disjoint sets based on their
timestamps of posting.

128

Em
ot

io
na

l S
co

re
s

00-08
Before Work Hours Hours

Cumulative
Negative
Positive

18-23
After Work Hours

09-17
Working Hours

Figure 8.5: Distribution of mean positive, negative, and cumulative emotional scores in commit
comments posted in different periods of day

Figure 8.5 presents the mean (over each project) positive and negative emotional scores (com-
puted using Equation 8.1 and Equation 8.2) in commit messages posted in these three periods. Again,
in Figure 8.5, we do not see much variations in the emotional scores of commit messages posted at
different periods. MWW tests (with � = 0.05) between the distributions of mean positive and nega-
tive emotional scores in each possible pair of the periods indicate no statistical significance in their
differences. P -values of theMWW tests are presented in Table 8.6. Hence, we derive the answer to
the research question RQ3 as follows:
Ans. to RQ3: There is no significant variations in the developers’ emotions in different times and
days of a week.

Table 8.6: MWW tests over cumulative emotional scores of commit messages written in different
times of a day Hours in a Day 00-08 09-17 18-23

00-08 - 0.59612 0.84148
09-17 0.59612 - 0.85716
18-23 0.84148 0.85716 -

8.3.4 Emotional Impacts on Commit Lengths

To investigate the existence of any relationship between emotions and lengths of commit messages,
across all the 50 projects, we distinguish 141,033 commit comments, which are one to 50 words
in length having cumulative emotional scores (computed using Equation 8.3) higher than one. For
each project, we organize these emotional commit messages into four disjoint groups based on their

129

lengths as shown in Figure 8.3.4, which plots the mean (over each project) cumulative emotional
scores of commit messages in the four groups. As seen in the figure, the emotional scores are strictly
higher for the groups with lengthier commit messages.

C
um

ul
at

iv
e

Em
ot

io
na

l S
co

re
s

Words Words Words Words
Groups Words Words Words

Figure 8.6: Distribution of mean cumulative emotional scores of commit comments in groups of
different lengths

Table 8.7: Number of commit messages with different lengths (in words) and cumulative emotional
scores Commit # of Commits Comments with  (c) =

Length 02 03 04 05 06 07 08

Gr
ou

ps 01-10 46,486 2,734 2,558 245 28 12 3
11-20 42,144 3,967 4,627 876 145 16 1
21-40 22,732 2,633 5,008 1,155 203 31 2
41-50 3,255 409 1,275 399 84 5 0

Table 8.7 presents the frequencies of commit messages in the four groups and having different
cumulative emotional scores. A Chi-squared [132] test (P = 2.2 × 10−16, � = 0.05) also strongly
indicates statistical significance of the relationship between emotional scores and commit lengths.
Next, we verify the significance of the direction of relationship (i.e., if one increases or decreases
with the increase of another).

Fitting of aGeneralized LinearModel [132] on the emotional score and length of every emotional
commit message confirms (with � = +0.01134, P = 2 × 10−16, � = 0.001) the positive correlation
between emotional scores and commit lengths. Based on the analyses, we now derive the answer to
the research question RQ4 as follows:
Ans. to RQ4: Developers’ emotions have statistically significant impacts on the lengths of commit
messages they write. Developers post longer commit comments when they are emotionally active.

130

8.4 Threats to Validity

In this section, we discuss the limitations of our work, the threats to the validity of our findings, and
our attempts to minimize those threats.
Internal Validity: The internal validity of our work depends on the accuracy of the tool’s compu-
tation of emotional scores. SentiStrength was reported to be effective in sentiment analysis [45]
and suitable for extraction of emotions from commit comments [34]. SentiStrength has relatively
high accuracy compared to other tools of its kind and thus SentiStrength was used for sentiment
analysis in earlier work in software engineering research [36, 42, 34, 4, 43]. Moreover, for use in our
work, we increased it accuracy in emotion extraction by 26% through tuning the tool for application
in software engineering context (Section 8.2.3).

Nevertheless, the tuned tool is not 100% accurate in determining emotional polarities of commit
messages, and it was not possible to perform manual sanity check by going through each of the
490,659 commit messages included in our work. We are aware of this threat, although we minimized
it by contextual customization of SentiStrength.
Construct Validity: The choice of the 30 developers in examining the relationships between emo-
tions and bug-fixing tasks (Section 8.3.2) can be questioned. Note that, these 30 developers are the
authors of more than 112 thousand commit messages (22.85%), which is a large sample of data for
dependable analysis. The objective was to check if it was possible to distinguish a group of develop-
ers who are emotionally more active towards a particular type of task. If we chose a fair number of
developers other than our choice of 30, we would still be able to distinguish a set of target developers.
In that case, the size of the set of developers might be different from what we found using the 30
developers, but this does not invalidate the findings of the work.

One may also question the validity of our categorization of the developers’ commits in different
days and periods (Section 8.3.3), considering the possibility that the projects and developers may
be physically located at different geographic locations and time-zones. However, as we found, most
(86%) of the commits are posted in regular weekdays. Moreover, the majority (58%) of the commit
messages are written in regular working hours while 31% and 11% are found to have been posted
respectively in before and after regular working hours. The proportions of commits at different days
and periods suggest correctness of the categorization.

In the analysis of the emotional impacts on the lengths of commit messages (Section 8.3.4),
we excluded commit messages longer than 50 words, because we observed that commit messages of
larger lengths include copy-pasted content such as, SQL statements and code snippets. Such contents
are not directly created or typed by the committer and thus are unlikely to reflect his or her emotions.

For the statistical tests of significance in the variations of different distributions, we used the
Mann-Whitney-Wilcoxon (MWW) test [132]. The MWW test is a non-parametric test, which do not

131

require the data to have normal distribution. Since the data in our work do not conform to normal
distribution, this particular test suits well for our purpose. Moreover, the significance level � set to
0.05, which is a widely adopted value for this parameter that enables 95% confidence in the results
of the MWW tests.
External Validity: The findings of this work are based on our study on more than 490 thousand
commit messages across 50 open-source projects. This large data-set yields high confidence on the
generalizability of the results.
Reliability: The methodology of data collection, analysis, and results are well documented in this
chapter. The sentiment analysis tool, SentiStrength [45] is freely available online and projects
studied in this work are also freely accessible through Boa [131]. Hence, it should be possible to
replicate this study.

8.5 Related Work

To explore the impacts of emotions on the debugging performance of software developers, Khan et
al. [61] used high-arousal-invoking and low-arousal-invoking movie clips to trigger different levels
of emotions in developers before having them perform some debugging tasks. However, they did
not employ any measurement to extract and quantify the developers emotional states, and relied on
the assumption that watching those movie clips would induce different levels of emotions in the de-
velopers. Lesiuk [62] recruited 56 software engineers to understand impact of emotions on software
design performance. In her work, music was played to arouse developers’ positive emotions. The
participants self-assessed their emotional states and design performance. Similarly, self-assessment
of emotional states were also used in the studies of Wrobel [31] and Graziotin et al. [60].

While the human participants themselves can be expected to accurately report their emotional
states, such self-assessment based approaches suffer from the possibility that the participants might
be uncomfortable in disclosing their negative emotional states. Biometric measurements such as
multi-sensor inputs [32], audio and video processing [230] do not suffer from such difficulties but
they can be logistically expensive and difficult for regular use at workplace without disrupting the
natural workflow of the practitioners. Both the self-assessment-based and biometric approaches for
identification of emotions are difficult (if not impossible) to apply for geographically distributed
teams and for extraction of emotions from software artifacts of already completed parts of projects.

Note that, unlike our work, all of the research mentioned above, focused on understanding the
overall emotional impacts over human performance and indicated positive correlation between them.
In contrast, ours include a deeper analysis exploring the impacts and scopes for exploitation of emo-
tions extracted from textual software artifacts such as commit messages. Several other studies also
identify developers’ emotions from textual software artifacts. In such a study, Murgia et al. [63]
reported that issue reports, which express positive emotions take less time to be resolved. They used

132

human raters to identify emotions in issue reports, and thus their work is subject to human errors.
Unlike theirs, using an automatic tool SentiStrength, we identify emotions in a significantly larger
number of commit messages. The automatic tool, SentiStrength was also used in the studies of
Guzman and Bruegge [4], Tourani et al. [43], Garcia et al. [42], Guzman et al. [34], and in the work
of Chowdhury and Hindle [36]. But none of these work tuned the tool before application in software
engineering context, as we did in our work.

Guzman and Bruegge [4] identified emotions in collaboration artifacts to relate them with dif-
ferent development topics. In a separate study, using SentiStrength, Guzman et al. [34] extracted
emotions expressed in 60,425 commit messages and reported that commit comments written on
Mondays tend to have more negative emotions compared to Sunday, Tuesday, andWednesday. How-
ever, from the investigation of the same phenomenon using a substantially larger dataset of 490,659
commit messages, our study does not identify any statistically significant variations of emotions in
commit comments posted in different days of a week.

Using a Natural Language Toolkit (NLTK), Pletea et al. [41] mined developers’ emotions from
60,658 commits and 54,892 pull requests for GitHub projects. They analyzed emotional variations
in discussions on different topics and reported to have found higher negative emotions in security-
related discussions in comparisonwith other topics. While their objective, approach as well as source
of emotional content and method of emotion extraction were different from our work, ours includes
a deeper and larger analysis based on a larger number of commit messages and diverse aspects of
emotional implications.

Using SentiStrength, Tourani et al. [43] extracted emotions from emails of both developers
and system users. They observed the differences of emotional expressions between developers and
users of a system. Using the same tool, Garcia et al. [42] extracted developers’ emotions from their
email contents to analyze any relationships between developers’ emotions and their activities in an
open source software projects. Although the studies of Tourani et al. [43] and Garcia et al. [42] also
used the same sentiment analysis tool we used, the source of their emotional content are different
and the objectives of those work are also orthogonal to ours.

8.6 Summary

In this chapter, we have presented a quantitative empirical study on the characteristics and impacts
of emotions extracted from developers’ commit messages. We have studied more than 490 thou-
sand commit comments over 50 open-source projects. Although the majority (65%) of the commit
messages are found to be neutral in emotion, surprisingly, positive emotions are found in relatively
much smaller portion (13%) of the commit comments than the commits (22%) containing negative
emotions.

133

In our study, we found that the polarities of the developers’ emotions significantly vary depending
on the type of tasks they are engaged in. The developers express equally high positive and negative
emotions in committing in energy-aware tasks compared to other tasks. With respect to the polarities
of commit messages, positive emotions are found to be significantly higher than negative emotions
in commits for bug-fixing and refactoring tasks. Surprisingly, the opposite scenario is found for new
feature implementation tasks.

We also found significant positive correlation between the lengths of commit messages and the
emotions expressed in them. When the developers remain emotionally active, they tend to write
longer commit comments. However, we did not find any significant variations in the developers’
emotions in commit messages posted in different times and days of a week.

Based on emotional contents in commit messages, we have also been able to distinguish a group
of developers who express more positive emotions at bug-fixing commit messages, another group
with the opposite trait, and a third group of developers who equally render both positive and negative
emotions at bug-fixing activities. Same approach can be applied for other types of tasks to distinguish
potential developers for improved tasks assignment.

The findings from this work are validated in the light of statistical significance. Although more
experiments can be conducted to verify or confirm the findings, the results from this study signif-
icantly advance our understanding of the impacts of emotions in software development activities
and artifacts, and we exemplify how emotional awareness can be exploited in improving software
engineering activities.

For automatic computation of emotional polarities in commit messages, we have used a state-
of-the-art tool, SentiStrength, while alternatives exist. Moreover, before applying the tool, we
tuned it for our work in the context of software engineering. In future, we plan to replicate this study
using other tools and subjects to further validate the findings of this study. We also have plan to
conduct more studies on the impacts of emotions extracted from diverse artifacts including program
comments, development forums and email groups.

134

Chapter 9

Sentiment Analysis in Commit Messages
of Buggy Code

In the last chapter (Chapter 8), we have presented a quantitative empirical study on the characteristics
and impacts of emotions of developers. In this chapter, we present a study of emotional variations in
bug-introducing and bug-fixing commit messages that helps in understanding of the extent to which
emotions affect tasks resulting in software bugs.

Rest of the chapter is organized as follows. In Section 9.1, we introduce the motivation of the
work. The methodology of the work is described in Section 9.2. Data analysis and findings are
illustrated in Section 9.3. Threats to validity of the work are discussed in Section 9.4. Related work
is described in Section 9.5. Finally, we conclude the chapter in Section 9.6.

9.1 Introduction

Software developers, being humans, are affected by their emotions, which influence their activities
and interactions. Thus, emotions affect task quality, productivity, creativity, group rapport and job
satisfaction [26, 28]. Several studies have been performed in the past for understanding roles of
emotions on software development activities. Some of those earlier studies address when and why
employees get affected by emotions [26, 34, 4, 41, 43].

Some other studies determine correlations between various job performance factors (e.g., pro-
ductivity, quality and efficiency) and emotions that developers experience during development ac-
tivities [60, 37, 38, 61, 62, 63, 31]. In addition, a few studies have successfully used emotion as a
factor in prioritizing applications’ features to develop [133] and in predicting qualities of develop-
ers’ interactions (e.g., asking questions and answering) in technical forums [134, 135, 136] and bug
severity [231].

Considering above studies, it deems emotions can be an influential factor to be used in com-
plex machine learning and deep learning systems to predict bugs (i.e., buggy commits) in software.
However, before using emotions to predict bugs, we need to empirically evaluate of such possibility
in the context. Towards this goal, in this work, we study the polarity (i.e., positivity, negativity,
and neutrality) of emotions expressed in two types of commit messages, (i) bug-introducing and (ii)

135

Table 9.1: Subject Systems
Systems Lang. Domain BIC* BFC+

Netty Java Network 8,745 8,739
Presto Java SQL 2,963 2,963
Facebook-
android-SDK Java Social

Network 740 740
*BIC=Bug-introducing commits, +BFC=Bug-fixing commits

bug-fixing, which are posted by developers contributing to open-source projects. In particular, we
address the following two research questions.
RQ1: Do developers express different levels (e.g., high, low) and polarity (i.e., positivity, negativity,
and neutrality) of emotions in bug-introducing and bug-fixing commits?
— If we can identify developers express higher level emotions (either positive or negative) during
commits, which cause bugs in software compared to other commits (e.g., bug-fixing commits) then
expressed emotional levels can be used as a feature to predict bugs in commits. In addition, here
we also want to verify the finding of Islam and Zibran [38] where they claim positive emotions are
significantly higher in bug-fixing commits compared to negative emotions.
RQ2: Do the developers’ polarity (i.e., positivity, negativity, and neutrality) of emotions vary in
different times of a day in bug-introducing and bug-fixing commits?
— Here we conduct a deeper analysis by grouping bug-introducing and bug-fixing commits accord-
ing to their commit timestamps. If we can identify any particular times in a day when developers
express significant negative emotions, then managers can take required steps to uplift the developers
positive feelings at those times.

9.2 Methodology
The procedural steps of our empirical study are summarized in Figure 14.1. To address the afore-
mentioned research questions, we extract bug-introducing and bug-fixing commit messages from
three selected projects. Then, we compute emotional scores of commit messages using the tool
SentiStrength-SE [110, 109], which is the first domain specific sentiment analysis tool for soft-
ware engineering texts. Finally, to answer the research questions we conduct statistical analyses. In
the following we briefly describe the procedures of data collection, computation of emotional scores
and how we conduct data analysis.

9.2.1 Data Collection
We collect three open-source projects from GitHub listed in Table 14.1 along with other information
related to those projects. Those three projects are also used in other studies [232, 233]. The bug-

136

System-1

System-2 Commit
Messages

Python
Script

Extracting
Commit

Message

System-3

SentiStrength
-SE

Commit
Messages with

Emotional Scores

Computation
of Emotional

Scores

SQLITE

Uploading
Commit

Messages in
Database

Commit Messages
in Database Analysis Findings

Figure 9.1: Procedural steps of our empirical study

introducing and bug-fixing commit messages of those projects are identified in an earlier study [232]
that we reuse in this study.

We study all those two types of commit messages in these projects, which constitute 24,890
commit comments. Associated information such as, committers, commit timestamps, revisions and
project names are kept in a local relational database for convenient access and query.

9.2.2 Sentiment Analysis
For each of the commit messages, we compute the emotional scores. To do that we use the tool
SentiStrength-SE [110]. Sentiment analysis using SentiStrength-SE on a given piece of text
(e.g., a commit message) c computes a pair ⟨�c , �c⟩ of integers, where +1 ≤ �c ≤ +5 and −5 ≤ �c ≤
−1. Here, �c and �c respectively represent the positive and negative emotional scores for the given
text c.

A given text c is considered to have positive emotions if �c > +1. Similarly, a text is held
containing negative emotions when �c < −1. Note that, a given text can exhibit both positive and
negative emotions at the same time, and a text is considered emotionally neutral when the emotional
scores for the text appear to be ⟨1,−1⟩. Further details about the sentiment analysis algorithm of
SentiStrength-SE and the interpretation of its outputs can be found elsewhere [110].

9.2.3 Statistical Measurements
To verify the statistical significance of emotional variances in bug-introducing and bug-fixing com-
mit messages, we apply the statisticalMann-Whitney-Wilcoxon (MWW) test [234] at the significance
level � = 0.05. The non-parametricMWW test does not require normal distribution of data, and thus
it suits well for our purpose. To measure the effect size, we compute the non-parametric effect size
Cliff’s delta d [234]. We consider significant difference exists between distributions of emotional
scores in bug-introducing and bug-fixing commits if p-value of aMWW test is found to be less than
� and Cliff’s delta d value is not negligible (i.e., |d| > 0.15).

9.3 Analysis and Findings
The research questions RQ1 and RQ2 are respectively addressed in Section 9.3.1 and Section 9.3.2.

137

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 Bug−introducing Bug−fixing
Label

(V
al

ue
)

Emotions
Negative
Positive

E
m

ot
io

na
l s

co
re

s

Figure 9.2: Distributions of positive and negative emotional scores in commits messages dealing
with bug-introducing and bug-fixing tasks

9.3.1 Overall Emotional Variations
Emotional variations in commit types: The boxplot in Figure 9.2 presents the distributions of pos-
itive and negative emotional scores in bug-introducing and bug-fixing commit messages collected
from the three projects. An ‘x’ mark in a box in the box-plot indicates the mean emotional scores
over all the commits. As observed in Figure 9.2, for both bug-introducing and bug-fixing commit
messages, emotional scores follow two similar patterns: (i) emotional scores of 75% commit mes-
sages remain within one to two in positively and negatively polarized commit messages and (ii) mean
and median emotional scores in positively polarized messages are higher as opposed to mean and
median emotional scores in negatively polarized messages.

We conduct a MWW test to verify statistical significance of difference between positive and
negative emotional scores in bug-introducing commitmessages. The test obtains p-value 2.57×10−11
where p < � and Cliff’s delta d value -0.3032 where |d| > 0.15. Thus, those values indicate that
the difference between positive and negative emotional scores in bug-fixing commit messages is
significant.

Similarly, we conduct anotherMWW test between positive and negative emotional scores in bug-
fixing commit messages to verify statistical significance of their difference. The test obtains p-value
2.2 × 10−16 where p < � and Cliff’s delta d value -0.2246. Again, the obtained values indicate
that the difference between positive and negative emotional scores in bug-fixing commit messages
is significant.

Variation of a particular emotion across commit types: Next, we focus on emotion-wise dif-
ferences between emotional scores in bug-introducing and bug-fixing commit messages. In other
words, we want to verify statistical significances of difference between positive emotional scores
found in bug-introducing and bug-fixing commit messages and difference between negative emo-
tional scores found in bug-introducing and bug-fixing commit messages. From Figure 9.2, we see
that the difference in mean positive emotional scores between bug-introducing and bug-fixing com-

138

mit messages does not differ that much. Similar pattern can also be seen for difference in mean
negative emotional scores between bug-introducing and bug-fixing commit messages.

To verify the statistical significance of our observations, we sequentially conduct two MWW
tests. The firstMWW test is conducted between positive emotional scores found in bug-introducing
and bug-fixing commit messages. The test obtains p-value 0.076 where p > � indicates that the
difference between positive emotional scores in bug-introducing and bug-fixing commit messages
is not significant.

Similarly, we conduct another MWW test between negative emotional scores found in bug-
introducing and bug-fixing commit messages, which obtains p-value 0.9561 where p > �. Thus,
the later also test indicates no significant difference between negative emotional scores in bug-
introducing and bug-fixing commit messages.

Based on our observations and statistical tests, we derive the answer to the research question
RQ1 as follows:
Ans. to RQ1: Both bug-introducing and bug-fixing commit messages have significantly higher
positive emotional scores compared to negative emotional scores. However, neither positive nor
negative emotional scores differ much between bug-introducing and bug-fixing commit messages.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

After Work Hours Before Work Hours Work Hours
Label

(V
al

ue
)

Emotions
Negative
Positive

1.0

1.5

2.0

2.5

3.0

3.5

4.0

After Work Hours Before Work Hours Work Hours
Label

(V
al

ue
)

Emotions
Negative
Positive

Em
ot

io
na

l s
co

re
s

(a) Bug-introducing

Em
ot

io
na

l s
co

re
s

(b) Bug-fixingFigure 9.3: Distributions of positive and negative emotional scores in (a) bug-introducing and (b)
bug-fixing commits messages

139

9.3.2 Hour-wise Emotional Variations
To study the relationship between developers emotions and times of a day when commit comments
are posted, we divide the 24 hours of a day in three periods (a) 00 to 08 hours as before working hours,
(b) 09 to 17 hours as regular working hours and (c) 18 to 23 hours as after working hours. Then, for
each project, we organize the commit messages into three disjoint sets based on their timestamps of
posting.

Variations of emotions in different commit types with respect to work hours: Figure 9.3(a)
and 9.3(b) present the distributions of positive and negative emotional scores in bug-introducing and
bug-fixing commit messages respectively posted in these three periods. We see from these figures
that average positive emotional scores are always higher as opposed to average negative emotional
scores except in after work hours for bug-fixing commit messages. Again, for both sentiments the
median values in after work hours are equal only for bug-fixing commit messages, whereas for rest
of the cases, the median values are always higher for positive sentiments. Another noticeable pattern
can be observed for positive emotional scores in work hours for bug-introducing commit messages
where the emotional scores are highly centered to value two.

Table 9.2: Results ofMWW tests between positive and negative emotional scores of different commit
types posted in different times of a day

Commit Types AWH BWH WH

Bug-introducing 0.0007,
-0.2812

1.1e-10,
0.6943

2.2e-16,
-0.1708

Bug-fixing 0.4430,
-0.3882

6.8e-07,
0.6805

3.3e-08,
-0.2941

Here, AWH=After Work Hours,
BWH=Before Work Hours, WH=Work Hours

To verify the statistical significance of our observations, we conduct a series of MWW tests
between positive and negative emotional scores in bug-introducing and bug-fixing commit messages
respectively. The obtained p-values and their corresponding d values are presented (as a pair of p-
value, d) in Table 9.2 where significant differences are marked bold. We see the differences are
statistically significant in all cases except in after work hours for bug-fixing commit messages.

Variation of a particular emotion with respect to work hours: Next, we focus on emotion-
wise difference between emotional scores of bug-introducing and bug-fixing commit messages
posted in the three working periods. Figure 9.4(a) and 9.4(b) present the distributions of positive
and negative emotional scores respectively in bug-introducing and bug-fixing commit messages
in the three working periods. In those working periods, the averages of positive emotional scores
are always higher in bug-fixing commit messages (see Figure 9.4(a)) whereas, interestingly, the
averages of negative emotional scores are always higher in bug-introducing commit messages (see
Figure 9.4(b)).

140

1.0

1.5

2.0

2.5

3.0

3.5

4.0

After Work Hours Before Work Hours Work Hours
Label

(V
al

ue
)

Commit Types
Bug−fixing
Bug−introducing

1.0

1.5

2.0

2.5

3.0

3.5

4.0

After Work Hours Before Work Hours Work Hours
Label

(V
al

ue
)

Commit Types
Bug−fixing
Bug−introducing

Em
ot

io
na

l s
co

re
s

(a) Positive Emotion
Em

ot
io

na
l s

co
re

s

(b) Negative EmotionFigure 9.4: Distributions of (a) positive emotional scores and (b) negative emotional scores, in bug-
introducing and bug-fixing commit messages

Table 9.3: Results ofMWW tests of emotional scores between bug-introducing and bug-fixing com-
mit messages posted in different times of a day

Emotion Types AWH BWH WH

Positive 0.0866,
0.6640

0.2433,
-0.2377

0.0089,
-0.1708

Negative 0.9084,
-0.4921

0.6677,
0.4075

0.9616,
-0.6733

To verify the statistical significance of our observations, we again conduct a series ofMWW tests
between positive emotional scores in bug-introducing and bug-fixing commit messages and between
negative emotional scores in bug-introducing and bug-fixing commit messages. The obtained p-
values and their corresponding d values are presented in Table 9.3 where significant differences are
marked bold. We see the only significant difference is between positive emotional scores in bug-
introducing and bug-fixing commit messages posted during working hours.

Based on our observations and statistical tests, we now answer the research question RQ2 as
follows:

141

Ans. to RQ2: Both bug-introducing and bug-fixing commit messages have significantly higher pos-
itive emotional scores compared to negative emotional scores in commits made in the three working
hours, except for the after work hours of bug-fixing commit messages. During working hours, posi-
tive emotional scores in bug-introducing commits are significantly higher compared to the positive
emotional scores in bug-fixing commits.

9.4 Threats to Validity
Construct Validity: One may question the validity of our categorization of the developers’ commits
in different periods (Section 9.3.2), considering the possibility that the projects and developers may
be physically located at different geographic locations and time-zones. However, we used the time
zone information associated with the commit messages to convert all the timestamps to correspond-
ing local times.

For the statistical tests of significance, we used the Mann-Whitney-Wilcoxon (MWW) test [132]
and to compute effect size we used Cliff’s delta [234]. The non-parametric MWW test along with
non-parametric effect size Cliff’s delta do not require the data to have normal distribution. Since the
data in our work do not conform to normal distribution, this particular test suits well for our purpose.
Moreover, the significance level � set to 0.05, which is a widely adopted value for this parameter
that enables 95% confidence in the results of the MWW tests.
Internal Validity: The internal validity of our work depends on the accuracy of the tool’s com-
putation of emotional scores. SentiStrength-SE was reported to be effective in sentiment analy-
sis [188] and suitable for extraction of emotions from commit comments. Nevertheless, the tool is
not 100% accurate in determining emotional polarities of commit messages. We are aware of this
threat and manually checked 50 comments and found their emotions were correctly identified by
SentiStrength-SE.

One may question the accuracy of the approach to determine bug-introducing and bug-fixing
commits. However, a manual checking found 96% accuracy of the approach in distinguishing bug-
introducing and bug-fixing commits in the projects [232].
External Validity: The findings of this work are based on our study on more than 24,000 commit
messages across three open-source projects. Generalizability of the results can be questioned due to
small sized dataset.
Reliability: The methodology of this study including the procedure for data collection and analysis
is well-documented in this chapter. The subject systems being open-source, are freely accessible
while the tool SentiStrength-SE is also available online. Moreover, all the bug-introducing and
bug-fixing commits are also available. Therefore, it should be possible to replicate the study.

142

9.5 Related Work
There are several studies exist in literature that compare emotional variations found in various tex-
tual artifacts related to software engineering. In such a study, Islam and Zibran [38] presented a
quantitative empirical study of the emotional variations in different types of development activities
and development periods, in addition to in-depth investigation of emotions’ impacts on software arti-
facts. They found significantly higher positive emotion in bug-fixing commits compared to negative
emotion, which is similar to our finding. From commit messages, Guzman et al. [34], Chowdhury
and Hindle [36] and Sinha et al. [53] also identified emotions and group those in various dimen-
sions. However, none of the above studies computed emotional scores in bug-introducing commits
and compared against emotional scores in bug-fixing commit, that we have performed in our work.

Tourani et al. [43] extracted emotions from emails of both developers and system users. They
observed the differences of emotional expressions between developers and users of a system. Garcia
et al. [42] extracted developers’ emotions from their email contents to analyze any relationships
between developers’ emotions and their activities in an open source software project. The studies of
Tourani et al. [43] and Garcia et al. [42] differ with our work mainly in two ways (i) the source of
their emotional content is different than ours and (ii) the objectives of those work are also orthogonal
to ours.

Pletea et al. [41] mined developers’ emotions commits and pull requests in GitHub projects.
They analyzed emotional variations in discussions on different topics and reported to have found
higher negative emotions in security-related discussions in comparison with other topics. While
their objective, approach as well as source of emotional content and method of emotion extraction
were different from our work, ours includes a deeper analysis based on emotional variations in bug-
introducing and bug-fixing commit messages.

All the above mentioned studies used domain independent tools (e.g., SentiStrength and NLTK)
to compute emotional scores in software engineering textual artifacts, however, for the first time, we
have used a domain specific tool SentiStrength-SE for this study, which is one of the unique attributes
of this work.

9.6 Summary

In this chapter, we have presented a quantitative empirical study on the emotional variations between
bug-introducing and bug-fixing commit messages. We have studied more than 24,000 commit mes-
sages over three open-source projects.

In our study, we find that both bug-introducing and bug-fixing commit messages have overall
statistically significantly higher positive emotional scores compared to negative emotional scores.
We also observe similar findings while analyzing emotional scores in bug-introducing and bug-

143

fixing commit messages with respect to three working periods. An exception is found in the later
case where no significant difference found between positive and negative emotional score in bug-
fixing commit messages posted during after work hours.

While comparing with respect to a particular sentiment (i.e., for positive or negative sentiment),
we find no significant difference between overall emotional scores in bug-introducing and bug-fixing
commit messages. The earlier finding also holds true while analyzing emotional scores in bug-
introducing and bug-fixing commit messages with respect to three working periods with an excep-
tion where positive emotional scores are significantly higher in bug-fixing commits posted during
working hours.

The findings from this work are validated in the light of statistical significance. Although more
experiments can be conducted in large scale to verify or confirm the findings, the results from this
study significantly advance our understanding of the impacts of emotions in software development
activities.

144

Chapter 10

Roles of Affects in Software Engineering

In the previous chapter (Chapter 9), we have investigated the variation of sentiments in bug-fixing and
bug-introducing commit messages to identify the potential role of sentimental variation in predict-
ing software bugs. In this Chapter, we identify further roles of sentiments and emotions in software
engineering activities. In Section 10.1, we identify the roles of sentiment in software design and
quality. We present the roles and applications of human affects in software requirement and main-
tenance analysis in Section 10.2. Section 10.3 describes how developers’ affects can be correlated
with their performances. In Section 10.4, we identify how human affects can be utilized for effective
communications in developers’ social forums. Finally, the Section 10.5 summarizes the chapter.

10.1 Sentiments Analysis in Software Design and Quality

Lesiuk [62] recruited 56 software engineers to understand the effects of music listening on software
design performance. Data was collected over a five-week period. The participants self-assessed
affects and design performance. The results indicated that positive affects and self-assessed per-
formance were lowest with no music, while time-on-task was longest when music was removed.
Narrative responses revealed the value of music listening for positive mood change and enhanced
perception on design while working.

Miller et al. [235] stated that a user’s acceptance of products not only could be understood by their
cognition but also by sentiment, while sentiment showed a deeper level of appealing. They proposed
a flexible software modeling notation, called people-oriented software engineering (POSE) model,
by adding sentimental goals to that for high-quality software design. They evaluated their models,
using a case study and a user study, and found the importance of stakeholders’ and users’ sentiments
towards software design as one influential dimension that could improve quality of the design.

Tourani and Adams [51] investigated the impact of various factors, including sentiments, on soft-
ware quality (in terms of defect-prone commits). Sentiments of issue comments or review comments
were computed, as well as a variety of other factors defined in their study. Using the factors as input
variables, they built logistic regression models to study the impact of the characteristics (including
sentiments) of issue and review discussions on the quality of a patch. However, they used a general
purpose tool that had low accuracy in detecting sentiments.

145

10.2 Affective Analysis in Requirement Analysis and Software Main-
tenance

Maintenance requests (e.g., reporting of a bug, requests for feature, refactoring, and creation of
test cases) that are submitted as issues in an issue tracking system (e.g., JIRA1) for a software sys-
tem [236]. An issue gets closed when it is solved. However, a closed issue can be reopened when
the patch or solution of the issue is deemed inappropriate, which, in turn, increases the amount of
software maintenance tasks. Cheruvelil and Silva [237] studied a study to identify a correlation be-
tween sentiment and issue reopening. They collected 3,000 issue of eight projects from JIRA issue
repository system. They used the tool SentiStrength-SE [109, 110] to detect sentiments of the
issues comments. By conducting statistical analyses, they found evidence that negative sentiment in
issue comments was correlated with issue reopening.

A common software maintenance task is to assign priority levels to bug reports submitted in an
issue tracking systems. Some bugs are important and need to be fixed right away, whereas others are
minor, and their fixes can be postponed until resources are available. However, manual prioritization
is time consuming and cumbersome where automatic approaches can be an alternative to make the
software maintenance job easy. Umer at al. [238] developed an emotion-based automatic approach
to predict the priority for a bug report. They collected 80,000 bug reports of four projects of Eclipse
fromBugzilla2. For each report, they computed (i) emotion-value using SentiWordNet [159] dictio-
nary, and (ii) term frequency of feature words. Those computed emotion-values and terms’ frequen-
cies are used as features in Support VectorMachine [214] to develop the predictor. After training and
testing of the emotion-based predictor, it was found that it outperformed a state-of-the-art technique
in predicting priorities of bug reports.

Umer et al. [239] proposed a sentiment based approach to predict how likely enhancement reports
would be approved or rejected so that developers could first handle likely-to-be-approved requests.
First, they preprocessed enhancement reports using natural language preprocessing techniques. Sec-
ond, they identified the words having positive and negative sentiments in the summary attribute of
the enhancements reports and calculated the sentiment of each enhancement report. Finally, with
the history data of real software application, they trained a machine learning based classifier to pre-
dict whether a given enhancement report would be approved. The proposed approach was evaluated
with the history data from real software applications. The cross-application validation suggested
that the proposed approach outperformed the state-of-the-art. The evaluation results suggested that
the proposed approach increased the accuracy from 70.94% to 77.90% and improved the F-measure
significantly from 48.50% to 74.53%.

1https://www.atlassian.com/software/jira
2https://https://www.bugzilla.org

146

https://www.atlassian.com/software/jira
https://https://www.bugzilla.org

Yang et al. [137] successfully predicted severities of bug reports using sentiments expressed
in those reports. To predict bug severity, they developed EWD-Multinomial algorithm, which is a
variant of Naive Bayes Multinomial (NBM) [125] classifier. In a separate study, Yang et al. [240]
also developed a emotion-based novel approach to predict severity of reported bugs. They computed
the probability distributions of emotional words in bug reports and used that distributions to train
an NBM classifier to predict severities of the bug reports. 10-fold cross-validation was used to train
and test the classifier using 23,929 bug reports collected from five open-source projects. Test results
showed that their emotion-based approach outperformed other state-of-the-art techniques.

Colomo-Palacios et al. [107] showed how emotions can indicate acceptance of requirements.
They explicitly ask stakeholders about their feelings regarding particular requirements. Their re-
sponses are recorded in a grid which represents in the X axis the arousal caused by the requirement
and in the Y axis the pleasure. Comparing the responses with the evolution of the requirements
throughout the requirement engineering process iterations, they conclude that high levels of plea-
sure and low levels of arousal seem to indicate accepted requirements.

Colomo-Palacios et al. [28] aimed to integrate the developers’ and the system users’ emotions
into the process of requirements engineering. They conducted a study on two software projects and
11 individuals. In total, 65 user requirements were produced between the two projects, which lasted
sixmonths and sevenmonths, respectively. Each requirement faced tens of revision. Each participant
rated the affects associated to each requirement version. The results showed that the affects related
to pleasantness associated to the final requirements are higher than for non-final requirements, while
the affects related to mental activation (arousal) for the final requirements are lower than for non-final
requirements.

Miller at al. [235] argued that users’ emotional goals/needs should be considered as requirements
to develop a system that could ensure users’ satisfaction. They designed and implemented a new
prototype of a wellbeing-check emergency system for older peoples that considered emotional goals
of it’s users. To evaluate the user satisfactions in using the emergency system, they placed it into
the homes of nine older people over a period of approximately two weeks each. Interviews were
conducted both before and after the deployment period to evaluate users’ satisfaction. The data
gathered by interviews demonstrated that considering users’ emotions in a system led to improved
users’ satisfaction.

Williams and Mahmoud [241] performed a systematic in-depth analysis in the domain of anony-
mous social networking apps (e.g., Whisper3 and Firechat4) and proposed a model to depict the
interrelationships between apps users’ sentimentally polarized (i.e., positive and negative) concerns
and the core features of the apps in the domain. They argued such a model (that included senti-

3http://whisper.sh/
4https://www.opengarden.com/firechat.html

147

http://whisper.sh/
https://www.opengarden.com/firechat.html

ment analysis) could be utilized to identify urgent users’ concerns and help app developers to devise
sustainable release engineering strategies.

Carreno andWinbladh [242] adapted theAspect and Sentiment UnificationModel (ASUM) [243]
that incorporated both topic modeling and sentiment analysis techniques to identify requirement
change requests mentioned in user comments on mobile applications. They applied the ASUM
model on three different sets of user comments on mobile applications and examined the effective-
ness of the model in identifying requirement change requests. The experimental results showed that
the model clearly generated a good representation of topics that could be relevant with regard to
requirements changes.

Guzman and Maalej [182] also combined sentiment analysis and topic modeling to develop an
automated approach to systematically analyze user opinions on various applications’ features. They
used natural language processing techniques to identify fine-grained app features in the reviews.
Then, they used the tool SentiStrength [45] to compute users’ sentiments from users reviews about
the identified features. Finally, they used topic modeling techniques to group fine-grained features
into more meaningful high-level features. They evaluated their approach with seven apps from the
Apple App Store and Google Play Store and compared its results with a manually, peer-conducted
analysis of the reviews. Their approach could help app developers to systematically analyze user
opinions about single features and filter irrelevant reviews.

One of the major risks associated with software development is related to the phenomenon of
over-requirement. The over-requirement phenomenon is manifested when a product or a service is
specified beyond the actual needs (i.e., nice-to-have a product or a service but not necessary) of
the customer or the market. Shmueli et al. [244] conducted a study to show that over-requirement
was due partially to the emotional involvement of the developers with the features they specified.
This emotional involvement seemed to be associated with three effects that had been demonstrated
by behavioral economists: (i) Endowment effect, i.e., the tendency of people to overvalue their
possessions [245], (ii) IKEA effect, i.e., the tendency of people to overvalue their self-constructed
products [246], (iii) I-designed-it-myself effect, i.e., the tendency of people to overvalue their self-
designed products [247]. To explore these behavioral effects and the interactions among them in the
context of software development, they conducted an experiment in which over 200 participants were
asked to specify a nice-to-have software (but unnecessary) feature. Their results confirmed the ex-
istence of these behavioral effects in software development and their influence on over-requirement.

Fu et al. [248] proposes WisCom, a system that could analyze tens of millions user ratings at three
different levels (i.e., micro, meso and macro) by leveraging sentiment analysis expressed in apps’
comments. In the micro level analysis, they performed word-level analysis of review comments
to understand the impact of each word on users’ actual sentiments. This analysis helped them to
identify the vocabulary users used to praise or criticize apps. By applying a regularized regression
model, they developed a predictor to predict the rating score based on the comments users posted.

148

The predictor helped them to detect inconsistent ratings that did not match the actual texts of the
comments. They found this type of inconsistency in roughly 0.9% of the user reviews they collected.
In meso level analysis, they aggregated comments of individual apps and used text analysis (e.g.,
topic modeling [249]) to further study why users disliked apps. They further extend their analysis to
the scope of whole marketplace in the macro level analysis. They aimed at understanding the general
user preferences and concerns over different types of apps and providing guidelines to developers or
even market operators.

To identify evolutionary requirements for software systems, Jiang et al. [250] proposed a sys-
tematic approach based on users’ sentimental opinions expressed in online reviews. At first, they
automatically extracted positive and negative opinions expressed in the reviews about common soft-
ware features. Then, they grouped similar opinion expressions about software features. Next, they
produced the structured feedback classified by software features, including several corresponding
sentences. Afterwards, they measured users’ satisfaction scores about a software feature based on
the number and intensity of positive and negative opinions of the feature. Finally, based on the
measured satisfaction scores of features, they manually generated the document of evolutionary re-
quirements for each software feature. To evaluate the usefulness of the evolutionary requirements
document generated by their approach, they conducted a human subjective study with 50 develop-
ers. The study found that the generated document could help developers understand why and what
to evolve for future software releases.

Zhao and Zhao [251] proposed a framework that leveraged sentiment analysis to analyze users’
reviews to automatically predict requirement evolution of products’ features. The proposed a frame-
work combined a supervised deep learning neural network [] with an unsupervised hierarchical
topic model to analyze user reviews automatically for product feature requirements evolution predic-
tion. The approach could discover hierarchical product feature requirements from the hierarchical
topic model and identify their sentiment by the Long Short-term Memory [252] with word embed-
ding [253], which not only models hierarchical product requirement features from general to specific,
but also identifies sentiment orientation to better correspond to the different hierarchies of product
features. The evaluation and experimental results show that the proposed approach was effective and
feasible.

Zhou et al. [254] devised a technique to augment a software product line planning [255] tech-
nique by leveraging sentiment analysis of user-generated online product reviews. The technique
consisted of three steps: (i) hybrid sentiment classification of product reviews with lexicons and a
machine learning technique, named rough set, (ii) features’ extraction from product reviews using as-
sociation rule mining and user-defined features, and mapping features and sentiments to determine
customers’ preferences, and (iii) supporting a software product line planning technique using the
customers’ preferences. They demonstrated the feasibility and potential of the proposed technique
via an application case.

149

Panichella et al. [168] developed a technique that used textual analysis (TA), natural language
parsing (NLP), and sentiment analysis (SA) to detect and classify app users’ intensions (e.g., feature
request, problem/bug discovery) expressed in users’ review comments. They applied TA to prepro-
cess texts and compute word frequency of each word in processed texts. They applied NLP technique
to manually inspect 500 reviews to identify 246 recurrent linguistic patterns5. For each identified
linguistic pattern they formalized and implemented an NLP heuristic to automatically recognize it
from review comments. To detect sentiment of each review comment, they trained Naive Bayes
classifier using word frequency as a feature. They used words’ frequencies, linguistic patterns, and
sentiments as features in different machine learning techniques, namely, the standard probabilistic
Naive Bayes classifier, Logistic Regression, Support Vector Machines, J48, and the alternating de-
cision tree to implement classifiers to detect app users’ intentions. To evaluate the classifiers, they
created a ground truth dataset of 1,421 sentences that were labeled according to their intentions by
two raters. Then, they ran the machine learning classifiers using different combinations of the fea-
tures on the ground truth dataset and measured the performances of the classifiers using precision,
recall, and F-measure. The results show that the combination of all features achieved the best re-
sults with the J48 algorithm, among all possible feature inputs and classifiers with 75% precision
and 74% recall. Later, Panichella et al. [256] developed and published a tool named ARdoc using
the described technique [168]. However, they used Stanford CoreNLP [146] instead of Naive Bayes
classifier to determine sentiments of reviews to develop ARdoc.

Sorbo et al. [257, 258] developed a tool named SURF by using the tool ARdoc. SURF could auto-
matically (i) extract the topics (e.g., security, pricing, and content) expressed in reviews, (ii) classify
the intention (by employing ARdoc) of the writers, to suggest the specific kinds of maintenance
tasks developers have to accomplish, and (iii) group together sentences covering the same topic.
They conducted an empirical study involving 12 developers/engineers from different companies in
Switzerland, Italy and the Netherlands and 11 developers/engineers from the development team of
SonyMobile in Japan, to investigate the practical usefulness of summaries generated by SURF in the
developers’ “working context". The empirical study found that SURF was able to summarize thou-
sands of app reviews in form of an interactive, structured and condensed agenda of recommended
software changes.

Palomba et al. [259] introduced a novel approach that analyzes the structure, semantics, and
sentiments of sentences contained in user reviews to extract useful (user) feedback from mainte-
nance perspectives and recommend to developers changes to software artifacts. It relied on natural
language processing and clustering algorithms to group user reviews around similar user needs and
suggestions for change. Then, it involved textual based heuristics to determine the code artifacts
that needed to be maintained according to the recommended software changes. The quantitative
and qualitative studies carried out on 44683 user reviews of 10 open source mobile apps and their

5http://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf

150

http://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf

original developers showed a high accuracy of the approach in (i) clustering similar user change re-
quests and (ii) identifying the code components impacted by the suggested changes. Moreover, the
obtained results show that the approach was more accurate than a baseline approach for linking user
feedback clusters to the source code in terms of both precision (+47%) and recall (+38%).

Gu and Kim [260] proposed a Software User Review Miner (SUR-Miner), a framework that
could summarize users’ sentiments and opinions toward corresponding software aspects. Instead
of treating reviews as bag-of-words, SUR-Miner made full use of the monotonous structure and
semantics of software user reviews, and directly parsed aspect- opinion pairs from review sentences
based on pre-defined sentence patterns. It then analyzed sentiments for each review sentence and
associate sentiments with aspect-opinion pairs in the same sentence. Finally, it summarized software
aspects by clustering aspect-opinion pairs with the same aspects. They empirically evaluated the
performance of SUR-Miner on recent user reviews of 17 Android apps such as Swiftkey, Camera360,
WeChat and Templerun2. Results showed that the SUR-Miner produces reliable summaries, with
average F1-scores of 75%, 85%, and 80% for review classification, aspect-opinion extraction and
sentiment analysis, respectively. The final aspects from SUR-Miner are significantly more accurate
and clearer than state-of-the-art techniques, with an F1-score of 81%.

Maalej and Nabil [261] applied several machine learning algorithms (e.g., Naive Bayes, Deci-
sion Tree, and MaxEnt) to classify app reviews into four types: bug reports, feature requests, user
experiences, and ratings (that included great, good, nice, very, cool, love, hate, bad, worst). In this
work, first, they collected real reviews from app stores and extracted their metadata (e.g., the star
rating and text length). Second, they created a ground truth dataset by selecting a representative
4,400 samples of the collected reviews and labeled them according to their review types by man-
ually analyzed their content. Third, they implemented different classifiers using review metadata
(e.g., star rating, length, and tense of a comment), bag-of-words of preprocessed comments, and
sentiment scores (computed using SentiStrength) as the features of the machine learning algo-
rithms. Fourth, they split the ground truth dataset at a ratio of 70:30 where 70% of the ground truth
dataset were used to train the classifiers, and 30% for testing. Fifth, they used the training set to train
the classifiers and test set to test the accuracies of the classifiers. Finally, they ran a series of exper-
iments using the classifiers on the test set to evaluate the performances of the classifiers in terms of
precision, recall, F-measure. The experimental results showed that when metadata was combined
with text processing and sentiment analysis, the classification precision was increased.

Williams and Mahmoud [262] used textual analysis and sentiment detection technique to accu-
rately capture and categorize the various types of actionable software maintenance requests (e.g.,
bug reports and user requirements) existed in Twitter messages. First, they collected 4,000 unique
Twitter messages related to 10 software systems and manually classified them according to their
maintenance requests. Second, they applied textual analysis to preprocess texts that included stem-
ming and stop-word removal to reduce the number of features (i.e., words). Third, they computed

151

sentiment scores of messages using SentiStrength. Fourth, the existing words, i.e., bag-of-words
in messages (remained after preprocessing) and computed sentiment scores of those messages were
used as features in two text classification machine learning classifiers, namely Naive Bayes and Sup-
port Vector Machines. They used 10-fold cross validation to train and test the classifiers. The test
results showed that both Naive Bayes and Support Vector Machines were able to achieve competitive
results to capture and categorize the various types of actionable software maintenance requests.

Guzman et al. [263] conducted an experiment to investigates the performance of individual ma-
chine learning algorithms, namely Naive Bayes, Support Vector Machine, Logistic Regression and
Neural Networks and their ensembles for automatically classifying the app reviews in different cat-
egories (e.g., bug report, praise, and complaint). They converted review texts into a vector space
model and used TF-IDF as a weighting scheme and used additional features, such as review rating,
number of words in the review, ratio of positive sentiment words, and ratio of negative sentiment
words. They evaluated the performance of the machine learning techniques on 4550 reviews that
were systematically labeled using content analysis methods. Overall, the ensembles had a better
performance than the individual classifiers, with an average precision of 74% and 59% recall.

Guzman at al. [264] presented ALERTme, an approach to automatically classify, group and rank
tweets about software applications. They applied machine learning techniques for automatically
classifying tweets requesting improvements, topic modeling for grouping semantically related tweets
and a weighted function for ranking tweets according to specific attributes, such as content category,
sentiment (detected by SentiStrength) and number of retweets. They ran ALERTme on 68,108
collected tweets from three software applications and compared its results against software practi-
tioners’ judgements. The experimental results showed that ALERTme was an effective approach for
filtering, summarizing and ranking tweets about software applications. ALERTme enabled the ex-
ploitation of Twitter as a feedback channel for information relevant to software evolution, including
end-user requirements.

In another study, Jha and Mahmoud [265] again used textual analysis and sentiment detection
technique to classify non-functional requirements (NFR), namely dependability, performance, sup-
portability, and usability expressed in the review comments of iOS mobile applications. First, they
collected 6,000 reviews and manually annotated those reviews according to the expressed NFRs by
human raters. Second, they preprocessed texts to perform word stemming and removing stop-words
to reduce the number of features (i.e., words). Third, they computed sentiment scores ofmessages us-
ing the the dictionary VADER - Valence Aware Dictionary and sEntiment Reasoner [120]. They also
identified the domains (e.g., music, game, and education) of the apps. Fourth, the existing words,
i.e., bag-of-words in messages (remained after preprocessing), and computed sentiment scores of
those messages, and domains of the apps were used as features in two text classification machine
learning classifiers, namely Naive Bayes and Support Vector Machines. Fifth, they split the ground
truth dataset at a ratio of 70:30 where 70% of the ground truth dataset were used to train the clas-

152

sifiers, and 30% for testing. Finally, they used the training set to train the classifiers and test set
to test the accuracies of the classifiers. The test results showed that classification features, such as
the sentiment score of the review led to slight improvement to the accuracies of the classifiers in
classifying the NFRs.

Nayebi et al. [266] applied three machine learning algorithms to predict marketability and suc-
cess of a new release of an app (in source code repository, e.g., GitHub6). The term “Marketability"
referred to the question if a new release should be marketed or not. The success of a marketed app
was measured using sentiment analysis of users’ reviews of the app. They gathered a pool of 11,514
releases over 917 apps. Among them, 7,435 releases were published and 4,079 releases were not
published. Among the 7,435 marketed releases, they identified 3,734 releases as successful and
3,701 releases as unsuccessful. Then, they extracted 12 release attributes (e.g., number of changed
files and number of open issues) and three app attributes (e.g., sentiment) from each app. The ex-
tracted attributes were used as features in Decision Tree, Support Vector Machine, and Random
Forest machine learning prediction models. They evaluated the accuracy of the prediction models
by using both 10-fold and Leave-One-Out cross-validation (LOOCV). The performances of the three
prediction models were about the same while Random Forest had a slightly better F1 scores. Be-
sides, app attributes in conjunction with release attributes contributed in better recall with precision
being about the same.

Uddin and Khomh [267, 208] built a suite of techniques to automatically mine and categorize
opinions about APIs from forum posts. First, they detected opinionated sentences in the forum posts.
In the study, s sentence was opinionated if it consisted of positive or negative sentiment. They de-
veloped a technique named OpinerDSOSenti to detect sentiment in the sentences. Second, they
associated the opinionated sentences to API mentions. Third, they detected API aspects (e.g., per-
formance, usability) in the sentences. They developed and deployed a tool called Opiner, supporting
the above techniques. Opiner is available online as a search engine, where developers can search for
APIs by their names to see all the aggregated opinions about the APIs that are automatically mined
and summarized from developer forums.

Lin et al. [268] proposed an approach named POME that leveraged natural language parsing and
pattern-matching to classify Stack Overflow sentences referring to APIs according to seven aspects
(e.g., performance, usability), and to determine their polarity (positive vs negative). By combin-
ing aspects and sentiments in sentences, the approach identified opinions related to APIs. Total
157 patterns were inferred by manually analyzing 4,346 sentences collected from Stack Overflow
linked to a total of 30 APIs. They evaluated POME by (i) comparing the pattern-matching approach
with machine learners leveraging the patterns themselves as well as n-grams extracted from Stack
Overflow posts; (ii) assessing the ability of POME to detect the polarity of sentences, as compared
to sentiment-analysis tools. (iii) comparing POME with the state-of-the-art Stack Overflow opinion

6https://github.com

153

https://github.com

mining approach, Opiner, through a study involving 24 human evaluators. The evaluation showed
that POME exhibited a higher precision than a state-of-the-art technique (Opiner), in terms of both
opinion aspect identification and polarity assessment.

10.3 Correlational Analysis between Developers’ Affects and Their
Performances

Ortu et al. [40] conducted a study to identify a correlation between developers’ affectiveness (e.g.,
sentiment and politeness) and time needed by developers to fix issues (e.g., bug) reported in an
Issue Tracking System (ITS). First, they collected 560K issue comments posted between 2002 to
December 2013 in the ITS Jira 7. Then, they extracted eight control metrics (e.g., issue priority,
issue type) and 12 affective metrics (e.g., average sentiment of an issue, sentiment in the title of
a sentiment). Next, they used a hierarchical modeling approach where one metric at a time was
added to build a Logistic Regression model. The model was compared using an ANOVA test8 to the
previous model (without that metric) to check whether the addition of the metric led to a statistically
significant improvement (i.e., p-value < 0.01 for the metric) of the model. They found six control
metrics and nine affective metrics were significant. Those significant metrics were used to build the
final Logistic Regression model. The evaluation results showed that the Logistic Regression model
achieved a precision of 67% and recall of 67.1% against respectively 31.9% and 56% for the ZeroR
model. They also built two variants of the Logistic Regression model by including and excluding the
affective metrics and testes their performances in predicting issues’ fixing times. The test results also
confirmed that addition of the affective metrics to the model increased precision and recall values.

While the above study explored the correlation between issue fix time and affective metrics
(e.g., emotions and sentiment), Mäntylä et al. [39] investigated the role of Valence, Arousal, and
Dominance (VAD) metrics to correlate with issue fix time. They used the issue reports collected
by Ortu et al. [40] to conduct the investigation. For each report, they extracted title, description
and comments, then calculated the VAD metrics using the a lexica [160] contained 13,915 English
words with VAD scores for Valence, Arousal and Dominance. Thet also computed the control and
affective metrics used by Ortu et al. [40]. Then, they built a logistic regression model to investigate
which variables were associated the most with issue resolution time. They used logistic regression
to build the model hierarchically to predict output variable (i.e., issue fix time) into a binary variable:
“Short" (fix time lower than median fix time) and “Long" (fix time larger than or equal to median
fix time). First, they built a model using the control metrics used by Ortu et al. [40], then a second
model was built using both the control and affective metrics of Ortu et al. [40]. Finally, a model
with all control, affective, and VAD metrics was built. To evaluate precision and recall, they used

7https://www.atlassian.com/software/jira
8https://en.wikipedia.org/wiki/Analysis_of_variance

154

https://www.atlassian.com/software/jira
https://en.wikipedia.org/wiki/Analysis_of_variance

10-fold cross-validation. The evaluation results showed that F-score of the final model significantly
increased (from 71.7% to 75%) after adding VAD metrics with control and affective metrics. They
also found that across VAD metrics, valence of all comments and the valence of the issue title had
the largest impact on issue fix time.

Graziotin et al. [60] conducted an investigation on the correlation of affective states of software
developers and their self-assessed productivity. They observed eight developers working on their
individual projects. Their affective states (i.e., valence, arousal, and dominance) and their self-
assessed productivity were measured on intervals of ten minutes using Self- Assessment Manikin
(SAM) [269]. A linear mixed-effects model [60] was used to estimate the value of the correlation
of the affective states of valence, arousal, and dominance, and the productivity of developers. The
model’s values revealed that there were positive correlations between two affective states dimensions
(valence, dominance) and the self-assessed productivity of software developers.

Graziotin et al. [270] echoed the call for research on alternative factors influencing the perfor-
mance of software developers. They conducted a study with 42 computer science students to in-
vestigate the relationship between the affects and creative and analytical performance of software
developers. The participants performed two tasks coming from psychology research. The first task
was related to creative performance, the other was related to analytic performance and resembled
algorithm design and execution. The participants? pre- existing affects were measured before each
task. The analysis of the data showed empirical support for the claim that happy developers are
indeed better problem solvers in terms of their analytical abilities. The study raised the need for
studying the human factors of software engineering by employing a multidisciplinary viewpoint.

To explore the impacts of sentiments on the debugging performance of software developers,
Khan et al. [61] used high-arousal-invoking and low-arousal-invoking movie clips to trigger differ-
ent levels of sentiments in developers before having them perform some debugging tasks. In the
experiment, 72 programmers watched selected short movie clips that provoked positive and nega-
tive moods. Afterward, they completed a debugging test. Results showed the video clips that swung
programmers sentiments/moods had a significant effect on programmers’ debugging performances.
However, they did not employ any measurement to extract and quantify the developer’s sentimental
states and relied on the assumption that watching those movie clips would induce different levels of
sentiments in the developers.

Garcia et al. [42] analyzed the relation between the emotions and the activity of contributors in
the Open Source Software project Gentoo. They built datasets from the project’s bug tracking plat-
form Bugzilla, to quantify the activity of contributors, and its mail archives, to quantify the emotions
of contributors by means of sentiment analysis. The Gentoo project is known for a period of central-
ization within its bug triaging community. This was followed by considerable changes in community
organization and performance after the sudden retirement of the central contributor. They analyzed
how this event correlated with the negative emotions, both in bilateral email discussions with the

155

central contributor, and at the level of the whole community of contributors. They then extended the
study to consider the activity patterns on Gentoo contributors in general. The found that contributors
were more likely to become inactive when they express strong positive or negative emotions in the
bug tracker, or when they deviated from the expected value of emotions in the mailing list. They
used these insights to develop a Bayesian classifier that detected the risk of contributors leaving
the project. Their analysis opened new perspectives for measuring online contributor motivation by
means of sentiment analysis and for real-time predictions of contributor turnover in Open Source
Software projects.

Wrobel [31] also found correlations between developers’ sentiments and their productivities. He
pointed out that sentimental state frustrated was the riskiest emotional state in terms of developers’
productivity. Graziotin et al. [60] conducted a study on how sentiments (including dominance, va-
lence, arousal dimensions) impacted the productivity of developers. They selected eight participants
(four students and four professional developers) and used questionnaires for measuring the affects
of participants and their productivities. Their experimental results showed that the happiness of a
developer (i.e., positive sentiment) was positively correlated with self-assessed productivity. In both
studies, the sentimental states of the participants were identified manually by questionnaires and/or
interviews.

Results, obtained from a four years project conducted by Ortu et al. [271], showed that positive
sentiments and good manners positively impacted both productivity and wellness of developers.

10.4 Sentiment Analysis in Software Social Forums

Calefato et al. [134] argued that the emotional style (with other factors, e.g., presentation quality,
user’s reputation) could increase the chance of getting their answer accepted in StackOverflow (SO) 9
posts. They started an investigation along that direction by collecting a dataset contained 348,618
answers from a SO data dump that was updated on September 2014. They computed five factors:
acceptance vote, presentation quality, sentiment, temporal, and social metrics of each answer. They
used SentiStrength-SE to compute sentiment of the answers of SO posts. They used acceptance
vote as the dependent variable and the remaining four factors as independent variables in a logistic
regression classifier. They split the dataset at a ratio of 70:30 where 70% of the dataset were used
to train the classifier, and 30% for testing. They assessed the classifier’s quality in term of Receiver
Operating characteristic Area Under Curve and performed the experiment in an ablation test setting
by removing one of the factors at a time, while retaining the others. They found evidence that factors
related to information presentation, time, and sentiment had an impact on the success of answers got
accepted.

9https://stackoverflow.com

156

https://stackoverflow.com

SO has become a popular place for discussing different types of API issues, such as incomplete
or erroneous documentation, poor performance, and backward incompatibility. Ahasanuzzaman et
al. [272] proposed a supervised learning approach using Conditional Random Fields (CRFs) [273]
to classify sentences in SO posts either as issue or non-issue. They considered a SO post was related
to an issue if that contained a link of a particular issue tracker address in the post’s issue description.
They collected 2,500 SO posts that contained links of issue trackers and conducted a manual study to
ensure that all these posts were related to various issues. They used bag-of-words, parts-of-speech,
sentiment, and positions of API issue-related sentences in posts as features to train a CRFs based
classifier. SentiWordNet 3.0 [158] was used to detect sentiments of posts. Although, they did not
report the accuracy of the classifier, the developed CRFs classifier was successfully used in another
classifier to categorize issues in different types.

Rahman et al. [154] proposed a mining technique that mined insightful comments from Stack
Overflow for a given code segment, where the comments reveal identified issues, deficiencies and
scopes for further improvement in the code. Their approach mined the comments by analyzing five
aspects of comments– popularity, relevance, comment rank, word count and sentiment expressed
in the text. Experiments with 292 Stack Overflow code segments and 5,039 discussion comments
showed that their approach could extract the insightful comments with a promising recall of 85.42%
and a MRR of 0.44 on average. A user study with professional developers and 85 code segments
also showed that about 80% of the recommended comments were found accurate, precise, concise
and useful by the participants.

Jiarpakdee et al. [136] investigated the impact of affective features (e.g., sentiment and polite-
ness) on quality of a question asked/posted in SO. In the study, a question was considered to have
high-quality if that question got an accepted answer. To conduct their investigation, first, they col-
lected 38,231 questions from the SO dataset provided for MSR 2015 Challenge10. Second, from
the questions, they extracted 31 features categorized into three classes: text-based (e.g., number of
sentences in questions), community-based (e.g., reputation of asker), and affective. Third, they im-
plementedmodels by using different combinations of the features in a random forest algorithm [274].
To train and test the models, they applied 10-fold cross validation by repeating that 100 times. Fi-
nally, after testing, they applied Scott-Knott test [275] to reveal what features were influential in their
models. The test results showed that community-based and affective features play an important role
in the question quality identification.

Mondal et al [276] proposed a sentiment metric based machine learning model for identifying
low-quality and high-quality questions in asked SO. They defined a question’s quality based on up-
vote and down-vote of the question. They considered that a question was of low quality if that
got down-votes by in SO and vice versa. They collected 38,920 SO questions submitted between
January, 2014 and January, 2015 and identified qualities of those questions. For question quality

10http://2015.msrconf.org/challenge.php

157

http://2015.msrconf.org/challenge.php

prediction, they computed four features, i.e., (i) TF-IDF [277] of key/indicator terms in the question
texts, (ii) negative sentence count, (iii) positive sentence count and (iv) neutral sentence count from a
question. Sentiments of sentences were detected by Sentiment140API 11. These features were used
in Multilayer Perceptron [278] and Support Vector Machine [279] algorithms to build the classifier
models to classify/predict qualities of questions. They used 10-fold cross-validation for training and
testing the performance of the developed models. For evaluation, they used precision and recall
metrics. Evaluation results suggested about 70% precision and about 74% recall for their model that
clearly revealed the impact of human emotions upon the quality of questions.

Using sentiment analysis of SO posts, researchers not only tried to identify quality of a question
but also quality of source code. Serva et al. [280] developed an automatic sentiment analysis-based
technique for mining poorly written code examples from developer question and answer forums
along with a technique to automatically.

10.5 Summary

In this chapter, we have identified the roles and applications of affective analysis in various software
engineering activities. We have found that affective analysis has been widely used in different soft-
ware engineering activities that include software requirement and maintenance analysis, software
design and quality, improving developers’ performance, various correlational analysis to identify
potential use of human affects, and devising effective communication mechanisms in developers’
social forums.

11http://help.sentiment140.com

158

http://help.sentiment140.com

Chapter 11

Code Smells in Categories of Clones and
Non-Cloned Code

From Chapter 4 to Chapter 9, we presented our studies to address the sub-problem I (i.e., detecting
developers’ sentiments/emotions) and sub-problem II (i.e., understanding developers’ sentiments).
The studies that we conducted to address subproblem-III (i.e., understanding impacts of developers
copy-paste actions) are presented in Chapter 11, Chapter 12, and Chapter 13. In Chapter 11, we
describe a comparative study on different types of clones (i.e., copy-pasted code) and non-cloned
code on the basis of their code-smells, which may lead to software defects and other issues in future.

The rest of the chapter is organized as follows. In Section 11.1, we introduce our motivation and
context of the work. We define the terminology and metrics used in this study in Section 11.2. In
Section 11.3, we provide the details of the experimental setup and procedure of our empirical study.
Section 11.4 presents our analysis and the findings of this study. In Section 11.5, we discuss the
possible threats to the validity of our study. Section 11.6 includes related work, and Section 11.7
concludes the chapter.

11.1 Introduction

Source code reuse by copy-paste is a common practice that software developers adopt to increase
productivity. Such a reuse mechanism typically results in duplicate or very similar code fragments
commonly known as code clones. Aside from such deliberate cloning, unintentional clones are also
created for various reasons under diverse circumstances [66, 67]. Software systems typically have
9%-17% [68] cloned code, and the proportion is sometimes found to be even 50% [69] or higher [70].

Despite the few benefits [71] of cloning, code clones are detrimental in most cases [72, 71, 73].
Code clone is a notorious code smell (i.e., a symptom indicating source of future problems) [74], that
cause serious problems such as reduced code quality, code inflation, program faults, security vulner-
abilities, and bugs propagation [72, 75]. Clones are thus a major contributor to the high maintenance
cost for software systems, and as much as 80% of software costs are spent on maintenance [76].
Therefore, it is necessary to keep the number of clones at the minimum and to remove them from
source code by refactoring. However, not all the clones in a software system are harmful [71], nei-
ther it is feasible to remove all the clones in source code by refactoring [77, 75]. Therefore, we must

159

distinguish the context and characteristics of clones, which make them malign as opposed to the
benign clones.

Towards this goal, several studies have been performed in the past to examine or exploit compar-
ative stability of clones as opposed to non-cloned code [78, 79, 80, 81, 82], relationships of clones
with bug-fixing changes [83, 84, 85, 72, 86, 87, 25, 88, 89], and the impacts of clones on program’s
changeability [90, 73, 91]. Note that, code smells are symptoms of poor coding patterns and are
probable sources of future serious problems. While code clone itself is a notorious code smell [74]
other fine grained code smells, defects and vulnerabilities often hide inside cloned code. Thus,
such “smelly code clones" can be regarded as bug-prone clones, which are likely to cause serious
defects, and the reuse by copy-pasting of such a bug-prone piece of code causes multiplication of
bug-proneness elsewhere in the software system.

Earlier attempts [85, 86, 87, 89] to determine bug-proneness of code clones relied on long-term
history of bug fixing changes preserved in version control system. While such studies make impor-
tant contributions, their approaches do not fit well for proactive clone management, especially at the
early stages of software development process where significantly long history of bug-fixing changes
are not available. Therefore, to determine bug-proneness of code clones, we choose to apply static
source code analysis techniques that do not require any bug-fixing history.

This chapter presents an empirical study on the relationships of program vulnerabilities with
code clones. Here ‘vulnerability’ refers to problems in the source code identified based on bad
coding patterns [74], which lead to bugs, security holes, performance issues, design flaws, and other
difficulties. A list of such vulnerabilities are presented in Table 11.1. A particular piece of code
is considered vulnerable if it contains code smells or bad coding patterns, and the severity of the
vulnerability is dictated by the severity of existing code smells. In this work, we address the following
three research questions.
RQ1: Are code clones more vulnerable than non-cloned code or vice versa? — Rahman et al. [25]
reported that the great majority of software defects are not significantly associated with clones, while
Juergens et al. [72] claimed otherwise.
RQ2: Are clones of a certain category relatively more vulnerable than others? — If a certain type
of clones are found to be more vulnerable, those clones can be high-priority candidates for removal
or careful maintenance.
RQ3: Is there a particular set of vulnerabilities that appear more frequently in cloned code as op-
posed to non-cloned code? — If such a set of vulnerabilities can be identified, the findings will help
software developers staying cautious of such vulnerabilities while cloning source code. In addition,
those particular set of vulnerabilities can be avoided or removed by the use of clone refactoring.

To answer the aforementioned research questions, we conduct a quantitative empirical study over
97 open-source software systems drawn from diverse application domains. Using a wide range of
metrics and characterization criteria, we carry out an in-depth analysis on the source code of the

160

systems with respect to different categories of code clones, non-cloned code, and a diverse set of
vulnerabilities.

11.2 Terminology and Metrics

In this section, we describe and define the terminologies and metrics used in our work.

11.2.1 Characterizing Terminologies

Our study includes clones at the granularity of syntactic blocks at different levels of similarities.
Type-1 Clones: Identical pieces of source code with or without variations in whitespaces (i.e., lay-
out) and comments are called Type-1 clones [67].
Type-2Clones: Type-2 clones are syntactically identical code fragments with variations in the names
of identifiers, literals, types, layout and comments [67].
Type-3 Clones: Code fragments, which exhibit similarities as of Type-2 clones and also allow fur-
ther differences such as additions, deletions or modifications of statements are known as Type-3
clones [67].

Notice that by the definitions above, Type-2 clones include Type-1 while Type-3 clones include
both Type-1 and Type-2. Let, T1, T2, and T3 respectively denote the sets of Type-1, Type-2, and Type-
3 clones in a software system. Mathematically, T1 ⊆ T2 ⊆ T3. Thus, we further define two subsets
of Type-2 and Type-3 clones as follows.
Pure Type-2 Clones: A set of pure Type-2 clones include only those Type-2 clones that do not
exhibit Type-1 similarity. Mathematically, T p2 = T2 − T1, where T p2 denotes the set of pure Type-2
clones.
Pure Type-3 Clones: A set of pure Type-3 clones include only those Type-3 clones, which do not
exhibit similarities at the levels of Type-1 or Type-2 clones. Mathematically, T p3 = T3 − T2, where
T p3 denotes the set of pure Type-3 clones.

11.2.2 Metrics

The most important metrics used in this study are defined in terms of density of vulnerabilities with
respect to (w.r.t.) syntactic blocks of code (BOC) as well as w.r.t. lines of code (LOC). Note that
only source lines of code are taken into consideration excluding comments and blank lines.
Density of vulnerabilities w.r.t. BOC in category x clones, denoted as)�x , is defined as the ratio
of the number of vulnerabilities found in clones of category x and the number of clones of category
x where, category x ∈ {T1, T2, T3, T

p
2 , T

p
3 }. Mathematically,

)�x =
�x
�x

(11.1)

161

Table 11.1: Abridged Description of Major Vulnerabilities Found in the Subject Systems
Vulnerability Description
LawOfDemeter (LD) Program unit needing too much knowledge about other units.
LocalVariableCouldBeFinal (LVF) Local variable assigned only once but not declared final.
ShortVariable (SV) A field, local, or parameter with a too short name.
OnlyOneReturn (OOR) Method with more than one exit points.
IfStmtsMustUseBraces (ISB) ‘if’ statements without accompanying curly braces.
AssertionsShouldIncludeMessage (AIM) Assertions including no error message.
UselessParentheses (UP) Useless parentheses in code.
IfElseStmtsMustUseBraces (IEB) ‘if-else’ statements without accompanying curly braces.
AvoidInstantiatingObjectsInLoops (AOL) Instantiation of new objects inside loop.
NullAssignment (NA) Assignment of a “null" to a variable (outside of its declaration).
ConfusingTernary (CT) Use of negation within an ‘if’ expression in ‘if-else’ statement.
AvoidLiteralsInIfCondition (ALC) Use of hard coded literals in conditional statements.
MethodShouldUseAnnotation (UA) Missing annotations for methods.
DataflowAnomaly(DA) Local definitions and references to variables on different paths.
ModifiedCyclomaticComplexity (MCC) A variant of Cyclomatic complexity, which treats switch state-

ments as a single decision point.
TooManyMethods (TMM) A class with too many methods.
NPathComplexity (NPC) Too high number of acyclic execution paths through a method.
AvoidCatchingGenericException (ACE) Use of higher level exception in catching low level error condi-

tions.
CommentRequired (CR) Missing required comment for specific language elements.
MethodArgumentCouldBeFinal (MAF) Non-final method argument that is never assigned to.
CommentSize (CS) Dimensions of non-header comments exceeding specified lim-

its.
BeanMembersShouldSerialize (BMS) Class’s member variables not marked as transient, static, or

missing accessor methods.
VariableNamingConventions (VNC) Named of final variables not fully capitalized or use of under-

scores in names of non-final variables.
LongVariable (LV) Too long name for a field, method or local variable.
FieldDeclarationsShouldBeAtStartOfClass (FDC) Class’s member fields not declared at the top of the class.
DefaultPackage (DP) Use of default package private accessibility instead of explicit

scoping.
UnusedModifier (UM) Use modifiers in such a place of code which will be ignored by

compiler.
RedundantFieldInitializer (RFI) Unnecessary explicit initialization of class’s member fields.
ImmutableField (IMF) Class’s private fields whose values never change once they are

initialized but not made final.

162

where �x denotes the number of vulnerabilities found in clones of category x and �x denotes the total
number of clones of category x.
Density of vulnerabilities w.r.t. BOC in all clones, denoted as)�c , is defined as the ratio of the
number of vulnerabilities found in all clones and total the number of all the clones. Mathematically,

)�c =
�c
�c

(11.2)

where �c denotes the number of vulnerabilities found in all clones and �c denotes the total number
of all categories of clones.
Density of vulnerabilities w.r.t. BOC in non-cloned code, denoted as)�c̄ , is defined as the ratio
of the number of vulnerabilities found in non-cloned code and the number of non-cloned blocks of
code. Mathematically,

)�c̄ =
�c̄
�c̄

(11.3)

where �c̄ denotes the number of vulnerabilities found in non-cloned code and �c̄ denotes the total
number of non-cloned blocks of code.
Density of vulnerabilities w.r.t. LOC in category x clones, denoted as)lx , is defined as the ratio of
the number of vulnerabilities found in clones of category x and the number of LOC in all the clones
of category x where, category x ∈ {T1, T2, T3, T

p
2 , T

p
3 }. Mathematically,

)lx =
�x
lx

(11.4)

where �x denotes the number of vulnerabilities found in clones of category x and lx denotes the
total number of LOC in clones of category x.
Density of vulnerabilities w.r.t. LOC in all clones, denoted as)lc , is defined as the ratio of the
number of vulnerabilities found in all clones and the number of LOC in all the clones. Mathemati-
cally,

)lc =
�c
lc

(11.5)

where �c denotes the number of vulnerabilities found in all clones and lc denotes the total number
of LOC in all clones.
Density of vulnerabilities w.r.t. LOC in non-cloned code, denoted as)lc̄ , is defined as the ratio of
the number of vulnerabilities found in non-cloned code and the number of LOC in all non-cloned
blocks of code. Mathematically,

)lc̄ =
�c̄
lc̄

(11.6)

163

System-1

System-2

System-n

Code
Blocks

PMD

Code Block
Extraction

Vulnerability
Detection

Clone
Detection

NiCad

Vulnerabilities in Each of the Systems

Non-cloned Blocks in Each System

Cloned Blocks in Each System

Type-1 Type-2 Type-3

Pure Type-2 Pure Type-3

Analysis FindingsSystem-3

Figure 11.1: Procedural Steps of the Empirical Study

where �c̄ denotes the number of vulnerabilities found in non-cloned code and lc̄ denotes the total
number of LOC in non-cloned blocks of code.
Density of a particular vulnerability v in cloned code, denoted as dc(v), is calculated by dividing
the number of instances of v found in cloned code by the total number of LOC in cloned code.
Mathematically,

dc(v) =
vc
lc

(11.7)

where vc denotes the number of instances of vulnerability v found in cloned code and lc denotes the
total number of LOC across all clones.
Density of a particular vulnerability v in non-cloned code, denoted as dc̄(v), is calculated by
dividing the number of instances of v found in non-cloned code by the total number of LOC in
non-cloned blocks of code. Mathematically,

dc̄(v) =
vc̄
lc̄

(11.8)

where vc̄ denotes the number of instances of vulnerability v found in non-cloned code and lc̄ denotes
the total number of LOC in all non-cloned blocks of code.

11.3 Study Setup

The procedural steps of our empirical study are summarized in Figure 13.1.

11.3.1 Subject Systems

Our study investigates the source code of 97 software systems of the Qualitas Corpus [281], which
is a large curated collection of open source systems of diverse application domains and written in
Java.

164

11.3.2 Clone Detection

Using the NiCad [138] clone detector (version 3.5), we separately detect code clones (with at least
five LOC) in each of the subject systems. The parameters settings of NiCad used in our study are
mentioned in Table 12.3. With these settings, NiCad detects Type-1, Type-2, and Type-3 clones.
Further details on NiCad’s tuning parameters and their influences on clone detection can be found
elsewhere [138]. Then, we compute the pure Type-2 and pure Type-3 clones in accordance with their
specifications outlined in Section 11.2.

Table 11.2: NiCad Settings For Code Clone Detection
Clone Types NiCad Parameter Value

Type-1 Dissimilarity Threshold 0%
Identifier Renaming No Rename

Type-2 Dissimilarity Threshold 0%
Identifier Renaming Blind Rename

Type-3 Dissimilarity Threshold 30%
Identifier Renaming No Rename

11.3.3 Vulnerability Detection

For the detection of vulnerabilities in source code, we use PMD (version 5.3.2) [12], which applies a
static rule-based approach for source code analysis and identification of potential vulnerabilities in a
software system. For vulnerability detection, we execute PMD from command line interface, and feed
to it a set of rules, which is the default rule-set packaged with the Eclipse plugin variant of the tool.
All others parameters of PMD are set to the defaults. Using PMD, we separately detect vulnerabilities
in each of the subject systems in our study.

11.4 Analysis and Findings

Upon detection of the clones and vulnerabilities, for each of the subject systems, we identify the
co-locations of code clones and vulnerabilities, distinguish the vulnerabilities located in non-cloned
portion of code, and compute all the metrics described in Section 11.2. To verify the statistical
significance of the results derived from our quantitative analysis, we also apply the statisticalMann-
Whitney-Wilcoxon (MWW) test [234] with � = 0.05. The non-parametricMWW test does not require
normal distribution of data, and thus it suits well for our purpose.

165

Figure 11.2: Distribution of Vulnerabilities in Cloned and Non-cloned Code

Figure 11.3: Distribution of LOC in Cloned and Non-cloned Code

Figure 11.4: Densities of Vulnerabilities w.r.t. BOC

166

Figure 11.5: Density of Vulnerabilities w.r.t. LOC

11.4.1 Comparative Vulnerability of Cloned vs. Non-Cloned Code

Figure 12.2 presents how the total number of vulnerabilities are distributed in non-cloned code and
different types of clones over all the systems. As seen in Figure 12.2, 77% of all vulnerabilities are
found in non-cloned source code, whereas the clones contain only 23% of vulnerabilities.

The box-plot in Figure 12.3 presents the densities of vulnerabilities w.r.t. BOC (computed using
Equation 12.1, Equation 12.2, and Equation 11.3) found in non-cloned code and in different types of
clones over all the subject systems. The ‘x’ marks in the boxes indicate the mean densities over all
the systems. As seen in Figure 12.3, the density of vulnerabilities (w.r.t. BOC) in non-cloned blocks
is much higher than that in clones.

Indeed, a larger portion of source code is likely to contain more vulnerabilities than a smaller
portion of source code, which might be a reason why non-cloned code seems to have more vul-
nerabilities as observed in Figure 12.2 and Figure 12.3. To verify this possibility, we compute the
distribution of LOC in non-cloned code and different types of clones over all the systems as pre-
sented in Figure 12.4. Notice that the distribution of vulnerabilities (Figure 12.2) is very similar to
the distribution of LOC (Figure 12.4) in non-cloned code and different types of clones. The average
LOC in cloned and non-cloned blocks over all the systems are found to be 8.43 and 19.03 respec-
tively. In the subject systems used in our study, 74% of the source code are clone-free over all the
systems as portrayed in Figure 12.4. Thus, the possibility of influence of code size (in terms of LOC)
on the number or density of vulnerabilities w.r.t. BOC is found to be true.

We, therefore, perform a deeper investigation using the densities of vulnerabilities w.r.t. LOC.
The box-plot in Figure 12.5 presents the densities of vulnerabilities w.r.t. LOC (computed using
Equation 12.3, Equation 12.4, and Equation 11.6) found in non-cloned code and in different types
of clones over all the subject systems. Figure 12.5 shows that the densities of vulnerabilities (w.r.t.
LOC) in cloned and non-cloned code are almost equal (with a mean difference of 0.02 only). Thus,
it appears that there is no significant difference in the density of vulnerabilities w.r.t. LOC in cloned

167

versus non-cloned code. A MWW test (P = 0.28, P > �) over distribution of densities of vulnera-
bilities (w.r.t. LOC) across all the subject systems also confirms this finding. Therefore, we derive
the answer to the RQ1 as follows:
Ans. to RQ1: Cloned code are NOT more vulnerable than non-cloned code. Rather, higher number
of vulnerabilities can be found in non-cloned code due to their larger sizes (in terms of LOC) as
compared to cloned code.

11.4.2 Comparative Vulnerability of Different Types of Clones

The distribution of vulnerabilities portrayed in Figure 12.2 shows that the pure Type-2 clones are
found to have the minimum vulnerabilities whereas the number of vulnerabilities found in Type-1
clones is slightly higher than that in pure Type-2 clones. The vulnerabilities found in cloned portion
of source code are found to be dominated by those found in pure Type-3 clones. However, the
majority of cloned LOC are also in pure Type-3 clones as can be seen in Figure 12.4, which might
be a reason why a higher number of vulnerabilities are found in clones of this particular category.

The box-plot in Figure 12.3 indicates that density of vulnerabilities w.r.t. BOC is higher in
Type-1 clones as compared to pure Type-2 and pure Type-3. MWW tests between the distributions
of vulnerabilities (w.r.t. BOC) in each two of the three categories of clones also suggest statistical
significance in the differences except for the case of vulnerabilities in pure Type-2 and pure Type-3
clones. The results of the MWW tests are presented in Table 11.3.

Table 11.3: MWW tests over densities of vulnerabilities w.r.t. BOC in different categories of clones
Clone Types Type-1 Pure Type-2 Pure Type-3

Type-1 - P = 0.0 P = 0.0
Pure Type-2 P = 0.0 - P = 0.7641
Pure Type-3 P = 0.0 P = 0.7641 -

In Figure 12.5, the differences in the densities of vulnerabilities w.r.t. LOC in the three categories
of clones are relatively higher, and the density is the highest in Type-1 clones while lowest in pure
Type-3. MWW tests between the distributions of vulnerabilities (w.r.t. LOC) in each pair of the three
categories of clones also suggest statistical significance in the differences. The results of the MWW
tests are presented in Table 11.4.

Table 11.4: MWW tests over densities of vulnerabilities w.r.t. LOC in different categories of clones
Clone Types Type-1 Pure Type-2 Pure Type-3

Type-1 - P = 0.0173 P = 0.0
Pure Type-2 P = 0.0173 - P = 0.0
Pure Type-3 P = 0.0 P = 0.0 -

Based on the findings, we now answer the RQ2 as follows:
168

Ans. to RQ2: Although the clones larger in size (w.r.t LOC) are more vulnerable than smaller
clones, in general, Type-1 clones are the most vulnerable while pure Type-3 clones are the least
vulnerable and pure Type-2 clones fit in between.

11.4.3 Relatively Frequent Vulnerabilities

To address the third research question (i.e., RQ3), we compute the densities of each individual vulner-
ability separately in cloned and non-cloned code (over all the subject systems) using Equation 11.7
and Equation 11.8 respectively. Then we distinguish 20 vulnerabilities, which have the highest den-
sities in cloned code over all the subject systems. Let c denote the set of these 20 vulnerabilities.
Similarly, we form another set c̄ consisting of 20 vulnerabilities having the highest densities in
non-cloned code. By the union of these two sets we obtain a set of 29 vulnerabilities that have the
highest densities across both cloned and non-cloned code. Mathematically,  = c ∪c̄ .

Short descriptions of these 29 vulnerabilities are given in Table 11.1; further elaborations can
be found in [12]. The densities of each of these 29 vulnerabilities in cloned and non-cloned code are
presented in Table 11.5. Note that, these 29 vulnerabilities represent 85% of total vulnerabilities in
cloned code and 89% of the vulnerabilities found in non-cloned code over all the subject systems.
Next, we want to partition these vulnerabilities into three clusters: one with vulnerabilities domi-
nating in cloned code, another with those dominating in non-cloned code and a third cluster with
vulnerabilities, which almost equally appear in both cloned and non-cloned code.
Cluster Analysis: For the purpose of aforementioned partitioning, we conduct a clustering analysis
on the densities of these vulnerabilities in cloned and non-cloned code. For each v of these 29
vulnerabilities, we compute a ratio(v) as follows:

(v) =
dc(v)
dc̄(v)

, wℎere, v ∈  (11.9)

The ratios computed for each of the 29 vulnerabilities are presented in the second column from the
right in Table 11.5. Notice that, for a particular vulnerability v, the ratio(v) close to 1.0 indicates
that the vulnerability v almost equally appears in both cloned and non-cloned code. If(v) is much
higher than 1.0, the appearance of vulnerability v can be characterized to have dominated in cloned
code. Similarly, (v) being much lower than 1.0 implies that the vulnerability v appears more in
non-cloned code. However, a threshold scheme seems required to determine when the value of(v)
can be considered significantly close to or distant from 1.0.

Instead of setting an arbitrary threshold by ourselves, we apply unsupervised Hierarchical Ag-
glomerative Clustering [282] for partitioning the values of (v). The dendrogram produced from
this statistical clustering is presented in Figure 11.6. In the dendrogram, three major clusters are
evident, two marked with dotted rectangles and the third left unmarked in the middle. The values of
(v) for the vulnerabilities in the middle cluster range between 0.97 and 1.92. This middle cluster

169

Table 11.5: Vulnerabilities Dominating in Cloned and Non-cloned Code
Vulner- Density Ratio High
-ability Clone Non-clone (v) = dc (v)

dc̄(v)
Frequency

(v) dc(v) dc̄(v) Area
LD 0.1489 0.10547 1.4118
LVF 0.08561 0.05885 1.4547
SV 0.02258 0.02149 1.0507
OOR 0.03129 0.01625 1.9255
ISB 0.02124 0.01605 1.3234 Both
AIM 0.00968 0.00707 1.3692 clone
UP 0.00822 0.00602 1.3654 and
IEB 0.00472 0.00485 0.9732 non-clone
AOL 0.00428 0.00301 1.4219 code
NA 0.00423 0.00258 1.6395
CT 0.00417 0.00239 1.7448
ALC 0.00406 0.00274 1.4818
UA 0.00389 0.00218 1.7844
DA 0.0563 0.02362 2.3836
MCC 0.01026 0.0013 7.8923 Clone
TMM 0.00421 0.0002 21.0500 code
NPC 0.00398 0.00087 4.5747 only
ACE 0.00389 0.00127 3.0630
CR 0.03638 0.08105 0.4489
MAF 0.04668 0.08102 0.5762
CS 0.00227 0.04542 0.0500
BMS 0.00006 0.02532 0.0024
VNC 0.00277 0.01866 0.1484 Non-clone
LV 0.00309 0.01727 0.1789 code
FDC 0.00002 0.00872 0.0023 only
DP 0.0033 0.00831 0.3971
UM 0.00002 0.00517 0.0039
RFI 0.00004 0.00467 0.0086
IMF 0.00001 0.00444 0.0023

Figure 11.6: Hierarchical Agglomerative Clustering of Vulnerabilities

170

includes a set of those vulnerabilities, which equally appear in both cloned and non-cloned codes.
Let Gb denote this cluster.

For all of the five vulnerabilities (i.e., MCC, NPC, DA, ACE, and TMM) in the right-most cluster
(v) ≥ 2.38, which indicates that these vulnerabilities appear more frequently in cloned code
compared to their presence in non-cloned clone. Let Gc denote the cluster of these vulnerabilities.
The left most cluster, denoted as, Gc̄ , includes the vulnerabilities with (v) < 0.97, and they are
frequently found in non-cloned code. The right-most column in Table 11.5 labels the vulnerabilities
in accordance with how they are clustered here.
Statistical Significance: For each of the three clusters of vulnerabilities, we separately conduct
MWW tests between the densities of those vulnerabilities in cloned and non-cloned code to determine
the statistical significance of the difference in their existence in those two categories (i.e., cloned and
non-cloned) of code. The results of the separate MWW tests over each of the clusters are presented
in Table 11.6.

Table 11.6: MWW tests between density-distributions in cloned and non-cloned code for vulnera-
bilities of each cluster

Cluster Gc Gc̄ Gb
P -values 0.0474 0.0024 0.3575

The P -values in Table 11.6 indicate statistical significance in the differences of density-
distribution in cloned and non-cloned code for vulnerabilities in cluster Gc and Gc̄ , but not for
those in cluster Gb. Thus, our clustering of the vulnerabilities is confirmed accurate with statistical
significance. Now, we answer the research question RQ3 as follows:
Ans. to RQ3: There are distinct sets of vulnerabilities (as characterized in Table 11.5), which
frequently appear in cloned code or non-cloned code, while many other vulnerabilities are found to
be equally present in both cloned and non-cloned code.

11.5 Threats to Validity

In this section, we discuss possible threats to the validity of our study and how we have mitigated
their effects.
Construct Validity: In the detection of vulnerabilities with PMD, we used its default settings and
relied on the set of rules, which came with the Eclipse plug-in variant of the tool. Those set of rules
might not have covered all possible vulnerabilities, and we considered each vulnerability equally
important. In the selection of the two dominant sets of vulnerabilities (Section 11.4.3), we picked top
20 vulnerabilities for each set having the highest densities in cloned and non-cloned code. Although
those chosen vulnerabilities cover more than 80% of all distinct vulnerabilities and more than 85%

171

instances of vulnerabilities found in all the systems, this choice may still be considered as a threat to
validity of this work.
Internal Validity: The clone detector, NiCad, used in our study, is reported to be very accurate
in clone detection [138], and we have carefully set NiCad’s parameters. The tool, PMD, used in
our work for vulnerability detection, is also known effective and widely used in both industry and
research community. However, 15 out of 112 systems in the Qualitus Corpus [281] were failed to
be processed by either NiCad or PMD. Those 15 systems are excluded from our study. Moreover, we
manually verified the correctness of computations for all the metrics used in our work. Thus, we
develop high confidence in the internal validity of this study.
External Validity: Although our study includes a large number of subject systems, all the systems
are open-source and written in Java. Thus the findings from this work may not be generalizable for
industrial systems and source code written in languages other than Java.
Reliability: The methodology of this study including the procedure for data collection and analysis
is documented in this chapter. The subject systems being open-source, are freely accessible while
the tools NiCad and PMD are also available online. Therefore, it should be possible to replicate the
study.

11.6 Related Work

It is often believed that inconsistent changes to clones cause program faults and frequent changes
may lead to significant instances of inconsistent changes [83, 72]. Thus, to develop an understanding
on the fault-proneness of code clones, studies have been conducted to examine the stability (in terms
of frequency and sizes of changes) and inconsistent changes in evolving code clones.

Juergens et al. [72] reported that inconsistent changes to clones are very frequent and a signifi-
cant number of faults are induced by such inconsistent changes. Barbour et al. [83] suggested that
late propagations due to inconsistent changes are prone to introduce software defects. While Lozano
and Wermelinger [73] suggested that having a clone may increase the maintenance effort for chang-
ing a method, Hotta et al. [79] reported code clones not to have any negative impact on software
changeability. Lozano et al. [91] reported that a vast majority of methods experience larger and fre-
quent changes when they contain cloned code. Mondal et al. [82] also reported code clones to be
less stable. However, opposite results are found from the other studies [283, 90, 78, 80].

Attempts are also made to explore fault-proneness of clones by relating them with bug-fixing
changes obtained from commit history. Such a study was conducted by Jingyue et al. [87], who
reported that only 4% of the bugs were found in duplicated code. In a similar study, Rahman et
al. [25] also observed that majority of bugs were not significantly associated with clones. These
findings contradict with those of Juergens et al. [72] and Barbour et al. [83].

172

The contradictory results from the earlier studies imply the necessity of further comparative
investigations from a different dimension, which is exactly what we have done in this study. We
have carried out a comparative investigation of vulnerabilities in clones and non-coned code, which
was missing in the literature. In addition, the comparative analysis of vulnerabilities in Type-1, pure
Type-2, and pure Type-3 clones is another unique aspect of our work.

11.7 Summary

In this chapter, we have presented a quantitative empirical study on the vulnerabilities (in terms
of bad coding patterns) in different types of code clones and non-cloned code in 97 open-source
software systems written in Java. To the best of our knowledge, no other work in the past conducted a
comparative study of such vulnerabilities in cloned and non-cloned as done in our work. In our study,
we have found no significant differences between the densities of vulnerabilities in code clones and
clone-free source code. Surprisingly, among the three categories (i.e., Type-1, pure Type-2, and pure
Type-3) of clones studied in our work, Type-1 clones are found to be the most vulnerable whereas
pure Type-3 are the least. In addition, our study identifies a set of five vulnerabilities that appear
more frequently in cloned code compared to non-cloned code. Another set of 11 vulnerabilities are
also distinguished, which are more frequently found in non-cloned code as opposed to cloned code.
The results are validated in the light of statistical significance.

The findings from this study significantly advance our understanding of the characteristics, im-
pacts, and implications of code clones in software systems. These findings can help in identifying
problematic clones, which demand extra care and those vulnerabilities about which the developers
need to be particularly cautious about while reusing code by cloning. For example, since Type-1
clones are found to be the most vulnerable, and that refactoring of Type-1 clones can be expected to
be easier (due to absence of much differences among them) than refactoring other types of clones, we
argue that this particular type of clones should be removed from source code by frequent refactoring.

173

Chapter 12

Security Vulnerabilities in Clones and
Non-Cloned Code

In the last chapter (Chapter 11), we presented a comparative study on different types of clones (i.e.,
copy-pasted code) and non-cloned code on the basis of their code-smells. Although earlier studies
examined the bug-proneness, stability, and changeability of clones against non-cloned code, the
security aspects remained ignored. In this chapter, we present a study to explore and understand the
security vulnerabilities and their severity in different types of clones compared to non-clone code.

The rest of the chapter is organized as follows. In Section 12.1, we introduce the motivation and
context of the work. Section 12.2 introduces the terms and metrics used in this study. Section 12.3
describes the procedure of our study. Analyses and findings are presented in Section 12.4. Sec-
tion 12.5 presents the possible threats to the validity of this work. In Section 12.6, we discuss the
existing work relevant to ours. Finally, Section 12.7 concludes the chapter with directions for future
work.

12.1 Introduction

Software security has become one of the most pressing concerns recently. Software developers are
expected to write secure source code and minimize security vulnerabilities in the systems under
development. However, the developers’ copy-paste practice for code reuse often cause the multipli-
cation and propagation of program faults and security vulnerabilities [95, 72, 75]. Thus, there is a
possibility that such vulnerabilities can exist in cloned code at a higher rate.

Code clone (i.e., similar or duplicated code) is already identified as a notorious code smell (i.e., a
symptom indicating source of future problems) [74] that cause other problems such as reduced code
quality, code inflation, and change difficulties [72, 73, 284, 75]. Nevertheless, software systems
typically have 9%-17% [68] cloned code, and the proportion is sometimes found to be even 50% [69]
or higher [70].

Clones are arguably amajor contributor to the highmaintenance cost for software systems, and as
much as 80% of software costs are spent onmaintenance [76]. Thus, to understand the characteristics
and contexts of the detrimental impacts of clones, earlier studies examined the comparative stability
of clones as opposed to non-cloned code [78, 79, 80, 81, 82], relationships of clones with bug-fixing

174

changes [83, 84, 85, 72, 86, 87, 25, 88, 89], the impacts of clones on program’s changeability [90,
73, 91] and comparative fault-proneness of cloned and non-cloned code [95, 285].

However, the security aspects of code clones have never been studied before, although the reuse
of vulnerable components and source code (i.e., code clones) multiply security vulnerabilities [92,
93, 94]. This chapter presents, a large empirical study on the security vulnerabilities in code clones
and presents a comparative analysis of these vulnerabilities in different types of clones as opposed
to non-cloned code. In particular, we address the following five research questions.
RQ1: Do code clones contain higher number of security vulnerabilities than non-cloned code or
vice versa?
—The answer to this question will add to our understanding of the negative impacts of clones, which
will be useful in cost-benefit analysis [286] for improved clone management.
RQ2: Do clones of a certain category contain more security vulnerabilities than others?
—If a certain type of clones are found to have higher number of security vulnerabilities, those clones
will be high-priority candidates for removal or careful maintenance.
RQ3: Do code clones contain more severe (i.e. riskier) vulnerabilities compared to non-cloned code
or vice versa?
— All the security vulnerabilities are not equally risky in terms of security threat. The result of
this research question will advance our understanding of clones’ impacts and will be useful in cost-
effective clone management [286].
RQ4: Do clones of a certain category contain relatively severe (i.e., riskier) security vulnerabilities
than others?
— If a certain type of clones are found to have riskier security vulnerabilities, those clones will
demand especial attention and high-priority in clone-removal process.
RQ5: Can we distinguish some security vulnerabilities that appear more frequently in cloned code
as opposed to non-cloned code?
—Ifwe can distinguish a set of vulnerabilities that appear more frequently in code clones, the finding
will help software developers to stay cautious of such vulnerabilities while cloning source code. In
addition, that particular set of vulnerabilities can be minimized by clone refactoring.

To answer the aforementioned research questions, we conduct a large-scale empirical study over
8.7 million lines of source code in 34 open-source software systems written in C. Using a wide
range of metrics and characterization criteria, we carry out in-depth quantitative analyses on the
source code of the systems with respect to different categories of code clones, non-cloned code, and
a set of security vulnerabilities. In this regard, this work makes the following two contributions:

• We present a large-scale comparative study of the security vulnerabilities in code clones and
non-cloned code. To the best of our knowledge, no such study of the security vulnerabilities
in code clones exists in the literature.

175

• We also perform a comparative analysis of security vulnerabilities in different types of clones
(e.g., Type-1, Type-2, and Type-3), which informs the relative security implications of clones
at different similarity levels.

12.2 Terminology and Metrics

In this section, we describe and define the terminologies and metrics that are used in our work. Some
of the metrics are adapted from the literature [95, 67].

12.2.1 Security Vulnerabilities

A software security vulnerability is defined as a weakness in a software system that can lead to a
compromise in integrity, availability or confidentiality of that software system. For example, buffer
overflow and dangling pointers are two well known security vulnerabilities. The cyber security com-
munity maintains a community-developed list of common software security vulnerabilities where
each category of vulnerability is enumerated with a CWE (Common Weakness Enumeration) num-
ber [108]. For example, CWE-120 refers to those vulnerabilities that fall into the CWE category of
classic buffer overflow. More examples of security vulnerabilities along with their CWE enumera-
tions are presented in Table 12.1.

12.2.2 Metrics

The requiredmetrics are defined in terms of density of vulnerabilities with respect to (w.r.t.) syntactic
blocks of code (BOC) as well as w.r.t. lines of code (LOC). Only source lines of code are taken into
consideration excluding comments and blank lines.

Let,  denote the set of all cloned code blocks and ̄ denote the set of all non-cloned code blocks.
Also let,  denote the set of vulnerabilities found in  and  denote the set of vulnerabilities

located in ̄. A cloned code block in  can be of category  clone where  ∈ {T1, T2, T3, T
p
2 , T

p
3 }.

Thus,  can be split into multiple sets with denoting the set of vulnerabilities identified in clones
of category  .
Density of vulnerabilities w.r.t. BOC in category  clones, denoted as)� , is defined as the ratio
of the number of vulnerabilities found in clones of category  to the number of cloned blocks in
category  clones. Mathematically,

)� =
| |

�
(12.1)

where | | denotes the number of vulnerabilities found in the blocks of category  clones and �
denotes the total number of block clones of category  . And,  ∈ {T1, T2, T3, T

p
2 , T

p
3 }.

176

Table 12.1: Security vulnerabilities frequently identified in the systems
Security Vulnerability Description

Buffer Overflow An application attempts to write data past the end of a buffer
(CWE-120).

Uncontrolled Format
String

Submitted data of an input string is evaluated as a command by
the application (CWE-134).

Integer Overflow The result of an arithmetic operation exceeds the maximum size
of the integer type used to store it (CWE-190).

Null Pointer
Dereference Dereference a pointer that is null (CWE-476).
Memory Leak Not release allocated memory (CWE-401).
Null Termination
Errors A string is incorrectly terminated (CWE-170).

Concurrency Errors Concurrent execution using shared resource with improper
synchronization (CWE-362).

Double Free The program calls free() twice on the same memory address
(CWE-415).

Access Freed Memory Access memory after it has been freed (CWE-416).

Insecure Randomness
The software may use insufficiently random numbers or values in
a security context that depends on unpredictable numbers
(CWE-330).

OS Command Injection Improper neutralization of special elements used in an operating
systems command (CWE-78).

Insecure Temporary
File

Creating and using insecure temporary files can leave application
and system data vulnerable to attack (CWE-377).

Reliance on Untrusted
Inputs

The input can be modified by an untrusted actor in a way that
bypasses the protection mechanism (CWE-807).

Poor Code Quality Indication that the product has not been carefully developed or
maintained (CWE-398).

Dead Code Code that can never be executed (CWE-561).
Use of Obsolete
Functions

The code uses deprecated or obsolete functions, which suggests
that the code has not been actively reviewed or maintained
(CWE-477).

Risky Cryptography Stealing the information protected, under normal conditions, by
the SSL/TLS encryption (CWE-327).

Unused Variable The variable’s value is assigned but never used (CWE-563).

177

Density of vulnerabilities w.r.t. BOC in type  code, denoted as)� , is defined as the ratio of
the number of vulnerabilities found in type  code to total number of blocks in type  code, where
 ∈ {, ̄}. Mathematically,

)� =
| |

�
(12.2)

where  ∈ { ,̄} and � denotes the total number of blocks in type  code.
Density of vulnerabilities per 1,000 LOC (KLOC) in category clones, denoted as)l , is defined
as follows:

)l =
| |

l
∗ 1000 (12.3)

where l denotes the total number of LOC in clones of category  .
Density of vulnerabilities per KLOC in type  code, denoted as)l , is defined as follows:

)l =
| |

l
∗ 1000 (12.4)

where l denotes the total number of LOC in type  code.
Risk severity score per KLOC in category  clones, denoted as , is defined as the ratio of sum
of severity scores of the vulnerabilities found in clones of category  to the number of KLOC in the
clones of category  . Mathematically,

 =

∑

�∈
s(�)

l
∗ 1000 (12.5)

where s(�) denotes the severity score of vulnerability �.
Risk severity score per KLOC in type  code, denoted as  , is defined as the ratio of sum of
severity scores of the vulnerabilities found in type  code to the number of KLOC in that type of
code. Mathematically,

 =

∑

�∈
s(�)

l
∗ 1000 (12.6)

Density of a particular group of vulnerabilities  per KLOC in type  code, denoted as) , is
calculated by dividing the number of vulnerabilities found in CWE category  in type  code by the
total number of KLOC in that type of code. Mathematically,

) =
| |
l

∗ 1000 (12.7)

where | | denotes the number of vulnerabilities belong to a CWE category  found in type  code.

178

12.3 Study Setup

The procedural steps of our empirical study are summarized in Figure 13.1.

Computed
Metrics for
FDV

System-1

System-2

Flawfinder

Vulnerability
Detection

Clone
Detection

NiCad
All Code Blocks in Each

System

 Cloned Code Blocks
Type-1 Type-2

Type-3

Computation
of Metrics for

FDV

Findings

System-34

Flawfinder Detected
Vulnerabilities (FDV)

Cppcheck Detected
Vulnerabilities (CDV)

Analysis

System-n

Vulnerability
Detection

Extraction of
Non-cloned
Code Blocks

Non-cloned Code Blocks

Extraction of
Pure Clones

 Cloned Code Blocks
Type-1 Pure Type-2

Pure Type-3

Computation
of Metrics for

CDV
Analysis

Computed
Metrics for
CDV

Cppcheck

Figure 12.1: Procedural Steps of the Empirical Study

12.3.1 Subject Systems

Our study investigates the source code of 34 open-source software systems written in C. Although
some of the systems contain files written in other languages such as C++, Perl and other script-
ing languages, we only consider those files, which have extension ‘.c’ or ‘.h’ to exclude source
code written in languages other than C. Projects of various sizes are deliberately chosen from dif-
ferent application domains including networking, communication, security, and text editing. Most
of these subject systems are well-reputed in their respective development ecosystems (e.g., GitHub
and SourceForge) and used in earlier research studies [287, 288, 289, 290, 291].

The names and sizes of the subject systems in LOC in clones and non-clone code are presented in
Table 12.2. In computation of sizes, only the source code written in C are considered. The average
size of the subject systems is 256 thousand LOC where the largest project consists of 3.4 million
LOC and the smallest one contains 16 thousand LOC.

12.3.2 Code Clone Detection

Using the NiCad [138] clone detector (version 3.5), we separately detect code clones in each of the
subject systems at the granularity of syntactic code blocks. The parameters settings of NiCad used in
our study are mentioned in Table 12.3. With these settings, NiCad detects Type-1, Type-2, and Type-
3 clones. Further details on NiCad’s tuning parameters and their influences on clone detection can
be found elsewhere [138]. Then, we compute the pure Type-2 and pure Type-3 clones in accordance
with their definitions outlined in Section 12.2.

179

Table 12.2: Subject systems and their LOC in cloned and non-cloned code
Subject System # of LOC written in C only

Non-clone Clone Total
Asn1c 40,487 5,488 45,975
Atlas 369,944 116,586 486,530
Clamav 337,019 40,371 377,390
Claws 239,784 32,868 272,652
Conky 27,759 14,494 42,253
Courier 107,223 13,105 120,328
Emacs 314,521 17,092 331,613
Ettercap 36,268 5,182 41,450
Ffdshow 832,342 46,367 878,709
Freediag 15,225 1,380 16,605
Freedroid 60,828 3,957 64,785
Gedit 42,112 4,331 46,443
Glimmer 29,536 4,923 34,459
Gnuplot 86,851 6,712 93,563
Gretl 302,777 36,499 339,276
Grisbi 99,205 18,479 117,684
Ipsec-tools 60,728 10,222 70,950
Modsecurity 26,332 7,232 33,564
Nedit 85,001 9,506 94,507
Net-snmp 231,422 42,725 274,147
Ocf-linux 45,761 8,743 54,504
Opendkim 47,298 18,480 65,778
Opensc 119,646 11,823 131,469
Putty 78,918 11,322 90,240
Razorback 36,403 8,823 45,226
Sdcc 3,477,010 4,122 3,481,132
Tboot 21,942 6,115 28,057
Tcl8 326,217 37,693 363,910
Tcpreplay 43,191 4,740 47,931
Trousers 56,673 17,599 74,272
Vi 21,924 734 22,658
Vim 314,480 5,752 320,232
XSupplicant 78,441 24,028 102,469
Zabbix 107,475 18,156 125,631

Table 12.3: NiCad Settings For Code Clone Detection
Chosen Parameters Target Clone Types
for NiCad Type-1 Type-2 Type-3
Dissimilarity Threshold 0.0 0.0 0.3
Identifier Renaming no rename blind rename no rename
Granularity block block block
Minimum Clone Size 5 LOC 5 LOC 5 LOC

180

12.3.3 Security Vulnerability Detection

For the detection of vulnerabilities in source code, we use two open-source static analysis tools
Flawfinder (version 1.3) [9] and Cppcheck (version 1.76.1) [13]. Their ability to detect different
sets of vulnerabilities make them appropriate for our analysis. For example, Flawfinder is capable
of detecting vulnerabilities such as Uncontrolled Format String, Integer Overflow and Use of Risky
Cryptographic Algorithm, which Cppcheck fails to detect [292]. On the other hand, Cppcheck is
able to detect vulnerabilities such as Memory Leak, Dead Code and Null Pointer Dereference that
Flawfinder cannot detect [292].

We now briefly describe how these tools work for the detection of security vulnerabilities and
the ways these tools are used in our study. We also present justifications for choosing these tools for
our study.

12.3.3.1 Flawfinder

The tool contains a database of common functions known to be vulnerable. It operates by performing
lexical tokenization of the C/C++ code and comparing the tokens with those in the database. Once
the comparison is performed, it reports a list of possible vulnerabilities along with a source code line
number and a numeric risk-level (i.e., severity score) associated each of the detected vulnerabilities.
The severity scores vary from one (indicating little security risk) to five (indicating high risk).

Although many other open-source static analysis tools such as, RATS [293], SPLINT [14] and
ITS4 [294] exist to identify potential security issues, we choose Flawfinder for a number of rea-
sons. This tool is reported to have the highest vulnerabilities detection rate (i.e., highest recall)
among all the existing security vulnerability detectors [292, 295, 296, 297]. Moreover, a compari-
son of vulnerability detection tools [295] also recommend choosing Flawfinder to detect security
vulnerabilities. Flawfinder is also widely used in many earlier studies [297, 298, 296].

To detect vulnerabilities with Flawfinder, we execute the tool from command line interface
and separately detect vulnerabilities in each of the subject systems in our study. We refer to the
vulnerabilities detected using Flawfinder as  (Flawfinder Detected Vulnerabilities).

12.3.3.1.1 Limiting false positives in Flawfinder Although Flawfinder has the highest de-
tection rate, at times, it is blamed for reporting many false positives [296]. To reduce the false
positives, we alter the default configuration of Flawfinder. We run the tool with ‘-F’ configuration
parameter that reduces 62% of the false positives as reported in a controlled experiment [299]. To
further reduce the effect of false positives, we discard any detected vulnerabilities associated with
risk-levels less than two.

181

Table 12.4: Reduction of false positives in vulnerability detection using the customized configuration
of Flawfinder

Test Suite
ID

of False Positives Reported Reduction of
False PositivesDefault Config. Customized Config.

57 08 01 87.50%
58 10 04 60.00%

12.3.3.1.2 Effectiveness of customized configuration To determine the effectiveness of the cus-
tomized configuration stated above, we collect two C/C++ test suites, test-suite-57 and test-suite-58
from Software Assurance Reference Dataset (SARD) [300]. These test suites include 41 and 39
pieces of code respectively. While all pieces of code in test-suite-57 are known to be vulnerable,
none of the pieces of code in test-suite-58 are vulnerable.

We run Flawfinder on the two test suites separately using both default and customized con-
figurations. By comparing the reported vulnerabilities with the known vulnerabilities in the test
suites, we compute false positives w.r.t. both test suites for each of the configurations and present
the result in Table 12.4. Notice that with the customized configuration, false positives are reduced
by 87.5% and 60% for test-suite-57 and test-suite-58 respectively. We also observe 30% reduction in
the detection of vulnerabilities mostly due to the elimination of false positives using the customized
configuration for test-suite-57. Thus, at the cost of a minor sacrifice in recall, the customized con-
figuration is able to reduce significant number of false positives.

12.3.3.2 Cppcheck

Cppcheck supports a wide variety of static checks that are rigorous, rather than heuristic in nature
[13]. Cppcheck is developed aims to report zero false positives [13], which makes it unique from
other static security analysis tools. Unlike Flawfinder, Cppcheck does not assign numeric risk-
levels to vulnerabilities. Instead, Cppcheck classifies vulnerabilities into six severity categories
namely, Error, Warning, Style, Performance, Portability, and Information. We operate Cppcheck
from command line using its default configuration separately on each of the subject systems. The
output of the tool is generated in XML.We refer to the security vulnerabilities detected by Cppcheck
as  (Cppcheck Detected Vulnerabilities).

Brief description along with CWE numbers of the major vulnerabilities detected in the subject
systems using Flawfinder and Cppcheck are presented in Table 12.1. Those reported as vulnera-
bilities but do not have an associated CWE number are excluded from our analysis to further limit
effects of possible false positives.

182

Table 12.5: Detected security vulnerabilities and their severity in cloned and non-cloned code
Subject # of  # of  Severity score
System      
Asn1c 119 10 183 18 309 70

He
re,



=
no

n-c
lon

ed
cod

ea
nd


=
clo

ned
cod

e

Atlas 1,258 1,607 2,307 3,240 4,429 4,246
Clamav 1,151 166 6,379 1,901 2,689 345
Claws 429 35 1,496 138 1,148 108
Conky 310 69 10 41 850 200
Courier 2,569 270 1,152 67 7,479 900
Emacs 1,071 99 666 108 2,990 281
Ettercap 419 78 235 23 982 177
Ffdshow 1,306 158 10,042 424 1,457 330
Freediag 416 54 104 11 1,521 202
Freedroid 429 26 180 0 1,181 88
Gedit 21 9 276 7 51 18
Glimmer 151 19 326 214 450 64
Gnuplot 717 67 1,322 87 2,172 208
Gretl 2,850 359 2,992 249 8,847 1,116
Grisbi 54 40 293 27 177 82
Ipsec-tools 447 100 790 134 960 210
Modsecurity 163 22 193 40 308 44
Nedit 592 62 624 56 1,884 216
Net-snmp 1,715 352 2,002 177 4,071 763
Ocf-linux 153 17 379 61 245 134
Opendkim 201 40 296 98 383 146
Opensc 1,150 141 735 30 2,347 404
Putty 523 108 593 59 1,217 392
Razorback 104 31 359 39 261 94
Sdcc 26 9 291 38 182 32
Tboot 105 59 80 225 234 140
Tcl8 1,111 218 3,592 463 2,552 628
Tcpreplay 421 87 232 10 1,252 228
Trousers 263 110 460 34 560 224
Vi 144 4 403 16 417 52
Vim 805 22 2,336 43 2,264 70
XSupplicant 838 246 2,593 505 1,822 548
Zabbix 512 82 566 24 992 278

183

No
n-

clo
ne

, 8
3%

Al
l c

lon
es

, 1
7%

13
%

Pu
re

Ty

pe
-2

,

Pure Type-3, 52%

Type-1, 35%

(a) (b)

Figure 12.2: Distribution of  (a) in Cloned and Non-cloned Code and (b) in Different Types of
Clones

12.4 Analysis and Findings

After detecting clones and vulnerabilities in the software systems, we determine locations of the
detected vulnerabilities in different types of code (i.e., cloned and non-cloned code). A vulnerability
is said to be located in cloned code if the reported source code line number of that vulnerability
included in a cloned block, otherwise, the vulnerability is located in non-cloned block. For each
of the subject systems, we identify the co-locations of code clones and vulnerabilities, distinguish
the vulnerabilities located in non-cloned portion of code, and compute all the metrics described in
Section 12.2. The number of  ,  in the clones and non-cloned code in each of the subject
systems, and the cumulative vulnerability severity scores (obtained from Flawfinder) are presented
in Table 12.5.

We separately analyze the security vulnerabilities detected using both Flawfinder and
Cppcheck to derive answers to the research questions RQ1, RQ2, and RQ5. Since Cppcheck does
not provide the numeric severity score to indicate risk-level of a security vulnerability, the research
questions RQ3 and RQ4 are addressed using  only.

Statisitical measurements. To verify the statistical significance of the results derived from our
analyses, we apply the statistical Mann-Whitney-Wilcoxon (MWW) test [234] and Kruskal-Wallis
test [234] at the significance level � = 0.05. We perform Kruskalmc [234] test for post-hoc analysis
at the same significance level. As the non-parametricMWW, Kruskal-Wallis and Kruskalmc tests do
not require normal distribution of data, those tests suit well for our purpose. To measure the effect
size, we compute the non-parametric effect size Cliff’s delta [234].

12.4.1 Vulnerabilities in Clones vs. Non-Cloned Code

Analysis Using : Figures 12.2(a) and 12.2(b) present the distributions of vulnerabilities de-
tected using Flawfinder in non-cloned code and in different types of clones respectively over all
the systems. As seen in Figure 12.2(a), 83% of all the vulnerabilities are found in non-cloned source
code, whereas the clones contain only 17% of vulnerabilities.

184

De
ns

itie
s o

f V
uln

er
ab

ilit
ies

Non-clone All clones Type-1 Pure Type-2 Pure Type-3

Figure 12.3: Densities of  w.r.t. BOC
No

n-
clo

ne
, 93

%

7%

Al
l c

lo
ne

s,

23
%

Pu
re

Ty

pe
-2

,

Pure Type-3, 48%

Type-1, 29%

(a) (b)

Figure 12.4: Distribution of LOC (a) in Cloned and Non-cloned Code and (b) in Different Types of
Clones

The box-plot in Figure 12.3 presents the densities of vulnerabilities (i.e. ) w.r.t. BOC
(computed using Equation 12.1 and Equation 12.2) found in non-cloned code and in different types
of clones over all the subject systems. The ‘x’ marks in the boxes indicate the mean densities over
all the systems. As seen in Figure 12.3, the density of vulnerabilities (w.r.t. BOC) in non-cloned
blocks is much higher than that in code clones.

It is highly probable that a larger portion of source code contains more vulnerabilities than a
smaller portion of source code, which might be a reason why non-cloned code seems to have more
vulnerabilities as observed in Figure 12.2(a) and Figure 12.3. To verify this possibility, we compute
the distribution of LOC in non-cloned code and different types of clones over all the systems as
presented in Figures 12.4(a) and 12.4(b) respectively. In Figure 12.4(a), we find that the number
of LOC in non-cloned code is significantly higher compared to cloned code. We also compute the
lengths of non-cloned and cloned code blocks in terms of average LOC over all the systems that are
found to be 48.69 and 12.97 respectively. Thus, the possibility of influence of code size (in terms of
LOC) on the number and density of vulnerabilities w.r.t. BOC is found to be true.

We, therefore, continue our investigations at a deeper level using the densities of vulnerabilities
w.r.t. LOC. The box-plot in Figure 12.5 presents the densities of vulnerabilities w.r.t. LOC (com-
puted using Equation 12.3 and Equation 12.4) found in non-cloned code and in different types of
clones over all the subject systems. Figure 12.5 shows that both the median and average of densities
of vulnerabilities (w.r.t. LOC) in cloned code (all clones) are higher compared to non-cloned code.

185

De
ns

itie
s o

f V
uln

er
ab

ilit
ies

Non-clone All clones Type-1 Pure Type-2 Pure Type-3

Figure 12.5: Densities of  w.r.t. LOC
No

n-
clo

ne
, 8

4%

Al
l c

lon
es

, 1
6%

13% Type-1, 27%

(a) (b)

Pure

Type-2,

Pure Type-3, 60%

Figure 12.6: Distribution of  (a) in Cloned and Non-cloned Code and (b) in Different Types of
Clones

We conduct aMWW test to measure the statistical significance of differences in the densities of vul-
nerabilities (w.r.t. LOC) in cloned and non-cloned code. The p-value (p = 0.20, p > �) obtained
from theMWW test implies that observed differences in the densities of vulnerabilities (w.r.t. LOC)
in cloned and non-cloned code across all the subject systems are not statistically significant.

Analysis Using : Figures 12.6(a) and 12.6(b) present the distributions of  in non-
cloned code and in different types of clones respectively over all the systems. Interestingly, the
pattern of the distributions of vulnerabilities is similar to the pattern observed in Figures 12.2(a) and
12.2(b) drawn for  .

Similar to Figure 12.5, Figure 12.7 presents the densities of vulnerabilities (i.e., ) w.r.t.
LOC (computed using Equation 3 and Equation 4) found in non-cloned code and in different types of
clones over all the subject systems. As seen in Figure 12.7, the average of densities of vulnerabilities
is higher in cloned code (all clones) compared to non-cloned code, although the median of densities
of vulnerabilities is slightly higher in non-cloned code as opposed to code clones. Again, we conduct
a MWW test to measure the statistical significance of differences in the densities of vulnerabilities
(w.r.t. LOC) in cloned and non-cloned code. The p-value (p = 0.42, p > �) obtained from the
statistical test implies that differences in the densities of vulnerabilities (w.r.t. LOC) in cloned and
non-cloned code across all the subject systems do not differ significantly. This result agrees with
that obtained for  . Therefore, we derive the answer to the RQ1 as follows:

186

De
ns

itie
s o

f V
uln

er
ab

ilit
ies

Non-clone All clones Type-1 Pure Type-2 Pure Type-3

Figure 12.7: Densities of  w.r.t. LOC

Ans. to RQ1: Densities of vulnerabilities in cloned code are NOT significantly higher than non-
cloned code.

12.4.2 Densities of Vulnerabilities in Different Types of Clones

Analysis Using : The distribution of  portrayed in Figure 12.2(b) shows that the pure
Type-2 clones are found to have the minimum vulnerabilities whereas the number of vulnerabilities
found in Type-1 clones is higher than that in pure Type-2 clones. The vulnerabilities found in cloned
portion of source code are found to be dominated by those found in pure Type-3 clones. However,
the majority of cloned LOC are also in pure Type-3 clones as can be observed in Figure 12.4(b),
which might be a reason why a higher number of vulnerabilities are found in code clones of this
particular category.

As seen in Figure 12.5, the densities of vulnerabilities w.r.t. LOC in different categories of
code clones follow the same pattern of densities of vulnerabilities w.r.t. BOC where pure Type-3
clones show the highest average density of vulnerabilities followed by Type-1 clones, and pure Type-2
clones show the lowest average density. Although noticeable differences are observed in the averages
of densities of vulnerabilities, we do not see much differences in the medians. To determine the
statistical significance of our observations, we conduct a Kruskal-Wallis test between the densities
of  (w.r.t. LOC) of the three categories of clones. The p-value (p = 0.5901, p > �) obtained
from the Kruskal-Wallis test suggests no significant differences in the distributions of densities of
vulnerabilities.

Analysis Using : As observed in Figure 12.2(b) and Figure 12.6(b), the patterns of distri-
butions of both  and  in different types of clones are very similar. However, a comparison
of Figure 12.5 and Figure 12.7 makes some differences visible. In contrast with  (Figure 12.5),
the average and median densities of  (Figure 12.7) in Type-1 and pure Type-2 code clones are
almost equal while both the average and median are noticeably higher in pure Type-3 clones. We
also see that the average densities of both  and  are the highest in pure Type-3 clones.

Again, to determine the significance of differences of densities of  in different types of
clones, we conduct a Kruskal-Wallis test between the densities of  (w.r.t. LOC) of the three

187

11%

No
n-

clo
ne

, 8
1%

Al
l c

lon
es

, 1
9%

Pure Type-2,

Pure Type-3, 63%

Type-1, 26%

(a) (b)

Figure 12.8: Cumulative Severity Scores of  (a) in Cloned and Non-cloned Code and (b) in
Different Types of Clones

categories of clones. The p-value (p = 0.008086, p < �) obtained from the Kruskal-Wallis test
suggests significant differences in the distributions of densities of vulnerabilities. To determine the
significance of the pairwise difference, we conduct a Kruskalmc post-hoc analysis. The test suggests
statistical significance differences in the distributions of  in pure Type-3 clones against Type-1
and pure Type-2 clones. The computed Cliff’s delta d values 0.373 and 0.404 between pure Type-3
and Type-1 and between pure Type-3 and pure Type-2 respectively, indicate medium effect sizes.
Based on our analyses of both  and  , we now answer the RQ2 as follows:
Ans. to RQ2: Pure Type-3 clones are the most insecure category of clones, while Type-1 and pure
Type-2 clones are almost equal in terms of security vulnerability.

12.4.3 Severity of Security Risks in Cloned and Non-Cloned Code

Figures 12.8(a) and 12.8(b) present the distributions of cumulative severity scores of  in non-
cloned code and in different types of clones respectively over all the systems. As seen in Fig-
ure 12.8(a), as much as 81% of total severity scores of  is associated with non-cloned code,
which can be expected as non-cloned code contributes 93% of the entire source code (Figure 12.4(a)).

The box-plot in Figure 12.9 presents the risk severity scores per LOC (computed using Equa-
tion 12.5 and Equation 12.6) for non-cloned code and different types of clones for each of the subject
systems. Figure 12.9 shows that both the median and average of the risk severity scores over all the
systems in cloned code (all clones) are higher compared to non-cloned code. We conduct aMWW test
to measure the statistical significance of these observed differences. The p-value (p = 0.0494, p < �)
obtained from the test indicates statistical significance of the differences. The computed Cliff’s delta
d value 0.381 suggests the effect size is medium. Therefore, we derive the answer to the RQ3 as
follows:
Ans. to RQ3: The security vulnerabilities in cloned code are significantly riskier than those in
non-cloned code.

188

Av
era

ge
 S

ev
eri

ty
Sc

ore
s o

f V
uln

era
bil

itie
s

Non-clone All clones Type-1 Pure Type-2 Pure Type-3

Figure 12.9: Risk Severity Scores per KLOC in Cloned and Non-cloned Code

12.4.4 Severity of Security Risks in Different Types of Clones

The distribution of cumulative severity scores of  in different types of code clones depicted
in Figure 12.8(b) shows that vulnerabilities in pure Type-2 clones have posed the lowest cumulative
severity score whereas pure Type-3 clones show the highest severity score and Type-1 clones fit in
between. Again, Figure 12.9 shows that the average severity scores of vulnerabilities in pure Type-
3 and Type-1 clones are almost equal while pure Type-2 clones have slightly lower severity score
compared to the former two. Moreover, we do not see much differences in the medians.

To determine the statistical significance of our observations, we conduct a Kruskal-Wallis test
between average severity scores of vulnerabilities (w.r.t. LOC) of the three categories of clones. The
p-value (p = 0.5901, p > �) obtained from theKruskal-Wallis test suggests no significant differences
in the distributions of severities of vulnerabilities. Based on the findings, we now answer the RQ4
as follows:
Ans. to RQ4: There is no significant difference in the severity of security vulnerabilities found in
different types of code clones.

12.4.5 Frequently Encountered Categories of Vulnerabilities

Analysis Using : For each CWE category of  identified in the subject systems, we com-
pute the densities of those separately for cloned code and non-cloned code in each of the subject
systems (using Equation 12.7). Then we distinguish five CWE categories, which have the highest
vulnerability densities in cloned code over all the subject systems. Letc denote the set of these five
CWE categories. Similarly, we form another set c̄ consisting of five CWE categories of vulnera-
bilities having the highest densities in non-cloned code. By the union of these two sets, we obtain a
set of top six CWE categories of vulnerabilities that have the highest densities across both cloned
and non-cloned code. Mathematically,  = c ∪c̄ .

Figure 12.10 presents the distributions of densities of these top six CWE categories of vulnera-
bilities in cloned and non-cloned code in each of the subject systems. As we see in Figure 12.10, the
average densities of the CWE-807 category of vulnerabilities is higher in non-cloned code compared

189

Table 12.6: MWW tests over densities of top six CWE categories of  per KLOC in cloned and
non-cloned code

Categories of  P -Value Significant? Cliff’s delta d
CWE-78 0.0233 Yes (p < �) 0.384 (medium)
CWE-120 0.3264 No (p > �) not applicable
CWE-134 0.2809 No (p > �) not applicable
CWE-190 0.4681 No (p > �) not applicable
CWE-362 0.4051 No (p > �) not applicable
CWE-807 0.0012 Yes (p < �) 0.379 (medium)

All Clones Non-clone
CWE-78

De
ns

itie
s o

f V
uln

er
ab

ilit
ies

All Clones Non-clone
CWE-120

All Clones Non-clone
CWE-134

All Clones Non-clone
CWE-190

De
ns

itie
s o

f V
uln

er
ab

ilit
ies

CWE-362
All Clones Non-clone All Clones Non-clone

CWE-807

Figure 12.10: Densities of top six CWE categories of  per KLOC

to clones. The opposite is observed for the rest five CWE categories. For each of these six CWE
categories, we separately conduct theMWW tests to determine the statistical significance of the dif-
ferences in densities of vulnerabilities in cloned and non-cloned code. The resulted p-values of the
tests presented in Table 12.6 indicate that for CWE-78 and CWE-807 the differences are statistically
significant and otherwise for the rest four CWE categories. Then, we compute the Cliff’s delta d
values for the CWE-78 and CWE-807 categories and find medium effect sizes for both. Thus, we
can distinguish the CWE-78 category vulnerabilities as a category of vulnerabilities, which appear
in cloned code more frequently than in non-cloned clone. We can also distinguish the CWE-807
category vulnerabilities having the opposite characteristics.

Analysis Using : Using similar procedure followed for  , we obtain the set  of five
CWE categories of vulnerabilities from  . Figure 12.11 presents the distribution of densities of

190

All Clones Non-clone
CWE-398

De
ns

itie
s o

f V
uln

er
ab

ilit
ies

All Clones Non-clone
CWE-476

All Clones Non-clone
CWE-561

All Clones Non-clone
CWE-563

De
ns

itie
s o

f V
uln

er
ab

ilit
ies

CWE-686
Non-cloneAll Clones

Figure 12.11: Densities of top five CWE categories of  per KLOC

Table 12.7: MWW tests over densities of top five CWE categories of  per KLOC in cloned and
non-cloned code

Categories of  P -Value Significant? Cliff’s delta d
CWE-398 0.2980 No (p > �) not applicable
CWE-476 0.0630 No (p > �) not applicable
CWE-561 0.0321 Yes (p < �) 0.692 (large)
CWE-563 0.1538 No (p > �) not applicable
CWE-686 0.0012 Yes (p < �) 0.372 (medium)

those five CWE categories of vulnerabilities over all the subject systems in cloned and none-cloned
code. Again, for each of five CWE categories of vulnerabilities, we separately conduct MWW tests
to determine the significance of differences in densities of  in clones and non-cloned code and
also compute Cliff’s delta d values for those distributions where p < �.

The resulted p-values and computed effect sizes of those tests are presented in Table 12.7. Com-
bining our observation in Figure 12.11, the p-values and the effect sizes in Table 12.7, we can infer
that the densities of vulnerabilities of CWE-561 and CWE-686 categories are significantly higher
with medium to large effect sizes in non-cloned code compared to cloned code. Thus, we have been
able to distinguish two CWE categories of vulnerabilities whose appearances are dominant in non-
cloned code. Based on our analysis of both  and  , we derive the answer to the RQ5 as
follows:

191

Ans. to RQ5: It is possible to distinguish particular CWE categories of vulnerabilities, which
frequently appear in cloned code (or non-cloned code).

12.5 Threats to Validity

Construct Validity: Although we have used two well-known tools for security vulnerability de-
tection, we discarded from our study those reported vulnerabilities that the tools failed to associate
with a CWE enumeration. We deliberately excluded those because a so-called vulnerability without
an associated CWE number can actually be a stylistic issue that the tools erroneously report as a
security vulnerability. In the selection of the two dominant sets of CWE categories of vulnerabili-
ties (Section 12.4.5), we picked top five CWE categories of vulnerabilities for each set having the
highest densities in cloned and non-cloned code. Although those chosen vulnerabilities cover more
than 85% instances of vulnerabilities found in all the systems, this choice may still be considered as
a threat to validity of this work. The computation of averages of the ordinal values of severity scores
in the analyses for RQ3 and RQ4 can be questioned, although it serves our purpose of analyzing
comparative severities of groups of vulnerabilities.
Internal Validity: While detecting vulnerabilities, false positives and false negatives could be two
major threats to validity of this study. Hence, for vulnerability detection, we have used two different
tools, Flawfinder [9] and Cppcheck [13]. Flawfinder is known to have high recall [292, 295,
297, 296], and Cppcheck is reputed for its high precision with zero false positives [13]. Moreover,
while using Flawfinder, we used a customized configuration, which significantly minimize the
false positives [299], as also demonstrated in Section 12.3.3 of this chapter. In addition, some types
of vulnerabilities (e.g., Null Pointer Dereference) may span over multiple statements, which may
partly overlap with both cloned and non-cloned code. Such a phenomenon couldn’t be captured in
the study as the vulnerability detection tools report only a line number in source file indicating the
location of a particular vulnerability detected.

The clone detector, NiCad [138], used in our study, is reported to be very accurate in clone
detection [138], and we have carefully set NiCad’s parameters for the detection of Type-1, Type-
2, and Type-3 clones. Moreover, we have taken care to avoid double-counting of nested blocks
and vulnerabilities identified in them. In addition, we have manually verified the correctness of
computations for all the metrics used in our work. Thus, we develop high confidence in the internal
validity of this study.
External Validity: Although our study includes a large number of subject systems, all the systems
are open-source and written in C. Thus the findings from this work may not be generalizable for
industrial systems and source code written in languages other than C.
Reliability: The methodology of this study including the procedure for data collection and analysis
is documented in this chapter. The subject systems being open-source, are freely accessible while the

192

tools Flawfinder, Cppcheck and NiCad are also available online. Therefore, it should be possible
to replicate the study.

12.6 Related Work

As mentioned before, no other work in the literature include a comparative study of security vulner-
abilities in code clones and non-cloned source code. Hence, the studies which examined the char-
acteristics and impacts of code clones are considered relevant to our work. Some studies included
a comparative analysis of certain characteristics in clones against non-cloned code, as discussed
below.

Lozano and Wermelinger [73] analyzed revisions of only four open-source projects and sug-
gested that having a clone may increase the maintenance effort for changing a method. Hotta et
al. [79] studied the changeability of cloned and non-cloned code in revisions of 15 open-source soft-
ware systems. They reported code clones not to have any negative impact on software changeability,
which contradicts the claim of Lozano and Wermelinger [73].

Towards understanding the stability of code clones, Lozano et al. [91] studied changes clones
across revisions of only one software system and reported that a vast majority of methods experience
larger and frequent changes when they contain cloned code. Based on a study on the revisions
of 12 software systems, Mondal et al. [82] also reported code clones to be less stable. However,
opposite results are reported from the other studies [283, 78, 90, 80]. In another study, Sajnani
et al. [285] attempted to identify the relationships of code clones with statically identified bugs in
systems written in Java. They found considerably lower number of bugs in code clones compared to
non-cloned code.

Recently, Islam and Zibran [95] compared a large comparative study of the code ‘vulnerabilities’
in cloned and non-cloned code. In their work, ‘vulnerability’ was defined as the “problems in the
source code identified based on bad coding patterns i.e, code smells". Our study is inspired from
their work and significantly differs from theirs. First, in contrast with their study of code smells, we
have studied the real security flaws widely known as security vulnerabilities. Second, they studied
software systems written in Java, while we have studied systems written in C. Third, they used
PMD [12] to detect code smells, whereas we have used two separate tools Flawfinder and Cppcheck
to detect security vulnerabilities in source code. In addition, we have analyzed the severities of
security vulnerabilities, while such severity of code smells was not studied in the aforementioned
work of Islam and Zibran.

Attempts are also made to explore fault-proneness of clones by relating them with bug-fixing
changes obtained from commit history. Such a study was conducted by Jingyue et al. [87], who
reported that only 4% of the bugs were found in duplicated code. In a similar study, Rahman et

193

al. [25] also observed that majority of bugs were not significantly associated with clones. Another
study [301] along the same line reported that 55% of bugs in cloned code can be replicated bugs.

As discussed before, the contradictory results are often reported from comparative studies be-
tween clones and non-cloned code. This implies the necessity of further comparative investigations
from a different dimension, which is exactly what we have done in this study. We have carried out a
comparative investigation of security vulnerabilities in clones and non-coned code, which was miss-
ing in the literature. In addition, the comparative analysis of vulnerabilities in Type-1, pure Type-2,
and pure Type-3 clones is another important aspect of our work.

12.7 Summary

In this chapter, we have presented a large quantitative empirical study of the security vulnerabilities
in clones and non-cloned code clones in 34 open-source software systems (8.7 million LOC) written
in C. To the best of our knowledge, no such studies exists in the literature that performed a compara-
tive analysis of security vulnerabilities in cloned and non-cloned code. For the detection of security
vulnerabilities in source code, we have used two different tools (Flawfinder and Cppcheck), one
of which is known to have high recall while the other is reputed for its high precision. For clone
detection, we used a state-of-the-art clone detector, NiCad, which is also reported to have high ac-
curacy.

Our study reveals that the security vulnerabilities found in code clones have higher severity of
security risks compared to those in non-cloned code. However, the proportion (i.e., density) of
vulnerabilities in clones and non-cloned code does not have any significant difference. Among the
three categories (i.e., Type-1, pure Type-2, and pure Type-3) of code clones studied in our work, pure
Type-3 clones are found to be the most insecure whereas Type-1 and pure Type-2 clones are nearly
equal in terms of the vulnerabilities found in them. The results are validated in the light of statistical
significance.

The findings from this study advance our understanding of the characteristics, impacts, and im-
plications of code clones in software systems. These findings will help in identifying problematic
clones, which demand extra care and those vulnerabilities about which the developers need to be
particularly cautious about while reusing code by cloning.

In future, we plan to conduct qualitative analyses to advance our understanding of such results.
Moreover, we plan to perform similar analyses using software systems written in languages other
than C to verify to what extent the findings from this study also applies to a broader range of source
code written in diverse programming languages.

194

Chapter 13

Characteristics of Buggy Code Clones

In the last chapter (Chapter 12), we presented a study to explore and understand the security vulner-
abilities and their severity in different types of clones compared to non-clone code. We know that
code clone is an immensely studied code smell. However, not all the clones in a software system are
equally harmful. This chapter presents a comparative study to distinguish the characteristics (from
a code quality perspective) of buggy and non-buggy clones.

The rest of this chapter is organized as follows. In Section 13.1, we introduce the motivation
of the work. In Section 13.2, we describe the setup and procedure of our empirical study. Sec-
tion 13.3 presents our analysis and the findings derived from this study. In Section 13.4, we discuss
the possible threats to the validity of our study. Section 13.5 includes related work, and Section 13.6
concludes the chapter.

13.1 Introduction

In the past, several studies examined the comparative stability of clones as opposed to non-cloned
code [283, 78, 79, 80, 81, 82, 302], comparative vulnerabilities in cloned and non-cloned code [95,
96], relationships of clones with bug-fixing changes [83, 84, 85, 72, 86, 87, 25, 88, 89], change-
proneness of clones [303], and the impacts of clones on program’s changeability [90, 73, 91]. There
have also been studies on clone removal in program history [289, 290, 291]. Existing literature sug-
gest that, (i) clones are problematic in many cases, (ii) not all clones are equally harmful [71], and
(iii) it is not practically feasible to remove all clones from a system through aggressive refactor-
ing [286, 304, 75]. Therefore, for cost-effective clone management, we must distinguish the charac-
teristics of clones, which make them problematic (e.g., buggy).

Not much work is done along this direction. Majority of earlier work made comparisons be-
tween clones and non-cloned code with respect to certain criteria (e.g., stability, vulnerability, bug-
proneness). Only a few earlier studies suggested merely a handful of characteristics that might make
certain clones detrimental. Such characteristics include late-propagation of clones [283, 83] and
stability/change-proneness of clones [302, 303].

In this chapter, using 29 code quality metrics, we study the characteristics of buggy and non-
buggy clones aiming to identify certain quality metrics, which can indicate potential bug-proneness
of clones. In particular, we address the following four research questions.

195

Obtain nth
(Bug-Fixing)

Revision

Locate bug-
fixing changes

Detect Type-3
Clones

Obtain (n-1)th
(Buggy)
Revision

Distinguish
Changed (Buggy)
Clones in (n-1)th

Revision

Compute
Quality Metrics

Combine

RevisionSystem Method Is Cloned Is Buggy Metric1 Metric2 ……
R1P1 M1 Yes Yes 2 4 ……
R1P1 M2 Yes No 3 5 ……
….…. …. …. …. …. …. ……

JGit

JGit
JGit

NiCad
SourceMeter

Bug-Fixing
Commits for the

System P1

Git Repository of
a System P1

(n-1)th
Revision

Type-3 Method
Clones in (n-1)th
 (buggy) Revision

Changed (Buggy)
Lines of Code in
(n-1)th Revision

29 Quality Metrics
Computed for
Method clones

Buggy
Method Clones

Non-buggy
Method Clones

FindingsStatistical
Analyses

nth Revision

Bug-Fixing
commit c

Repetition of the same computational steps for each bug-fixing commit in each of the subject systems

Figure 13.1: Procedural Steps of the Empirical Study

RQ1: Are buggy cloned methods more complex than non-buggy cloned methods or vice versa?
—Failure-prone software entities are statistically correlated with code complexity measures [305].
However, there is no single set of complexity metrics that can indicate defect [305]. Here, we in-
vestigate 15 complexity metrics to statistically measure their dominance in buggy and non-buggy
cloned code.
RQ2: Are buggy cloned methods larger than non-buggy cloned methods or vice-versa? — Earlier
studies [306, 68] found cloned methods to be smaller than the non-cloned methods. However, it is
unknown whether there is any substantial size difference between buggy and non-buggy clones. Us-
ing seven metrics, we investigate the size difference between buggy and non-buggy cloned methods.
RQ3: Are buggy cloned methods more documented than non-buggy cloned methods or vice-versa?
— Its is suggested that when cloning a piece of code the variations should be well documented in
order to facilitate bug fix propagation [71]. As such, undocumented or poorly documented clones
can have high possibility of causing bugs. Hence, we investigate this possibility by analyzing five
source code documentation metrics.
RQ4: Are buggy cloned methods more coupled than non-buggy cloned methods? — Low coupling
and high cohesion are two prominent software design qualities expected to keep a software system’s
inherent complexity manageable. In other words, highly coupled code is harder to manage and
could be bug-prone. Thus, we investigate whether coupling metrics’ values are significantly higher
in buggy cloned code compared to non-buggy cloned code.

13.2 Study Setup

The procedural steps of our empirical study are summarized in Figure 13.1, and described in the
following subsections.

196

13.2.1 Subject Systems

We study 2,077 revisions of three open-source software systems written in Java. These subject
systems, as listed in Table 14.1, are available at the GitHub repository. In Table 14.1, we present the
total number of revisions and number of bug-fixing revisions of each subject system along with the
number of source lines of code (LOC) in the last revision. We choose these three subject systems as
these systems have variations in application domains, sizes, number of revisions, and are also used
in another study [232].

Table 13.1: Subject Systems
Subject Application LOC Total # of # of Bug-
System Domain (last rev.) Revisions Fixing Rev.
Netty Network 1,078,493 8,534 1,103
Presto SQL 2,869,799 11,909 841
Facebook-
android-SDK

Social
Networking 172,695 671 133

Total over all the systems 4,120,987 21,114 2,077

13.2.2 Clone Detection

Code clones at different levels of syntactic similarities appear in source code. Identical pieces of
source code with or without variations in whitespaces (i.e., layout) and comments are called Type-1
clones [286]. Type-2 clones are syntactically identical code fragments with variations in the names
of identifiers, literals, types, layout and comments [286]. Code fragments, which exhibit similarities
as of Type-2 clones and also allow further differences such as additions, deletions or modifications
of statements are known as Type-3 clones [286].

By definition, Type-3 clones include both Type-1 and Type-2. In this work, we study Type-3
clones at the granularity of method bodies. We use the NiCad [138] clone detector (version 3.5), to
detect method/function clones having at least five LOC. In detection clones, ‘blind renaming’ option
of NiCad is kept enabled and UPIT (i.e., dissimilarity threshold) is set to 0.3. Further details on
NiCad’s tuning parameters and their influences on clone detection can be found elsewhere [138].

13.2.3 Distinguishing Buggy Clones

Consider a bug-fixing commit c resulting in the nth revision of a system. If a particular method m
is modified in the bug-fixing commit c, then it implies that the modification is necessary to fix the
bug. Thus, the methodm in the (n−1)th revision is considered a buggy method. In this work, we use
the bug-fixing commits identified by Ray et al. [232]. These bug-fixing commits are distinguished
through matching keywords (e.g., bug, defect, issue) in the commit messages and are reported to be
96% accurate [232].

197

For a project  , we determine the buggy cloned methods by performing the following steps: (i)
we collect all the bug-fixing commits for  from the dataset of Ray et al. [232]. (ii) For each bug-
fixing commit c, using JGit [307], we obtain the nth revision of  , which is the result of the commit
c. (iii) Then, we obtain the (n − 1)th revision of  . (iv) The changes between the nth and (n − 1)th

revisions of  are captured using JGit along with changed lines’ numbers in the java source files.
(v) Using NiCad [138], we detect Type-3 method clones in the (n − 1)th revisions of  and record
their locations and boundaries (start and end line numbers in source files). (vi) Whether a commit
c affected a cloned method is determined by checking if any of changed lines’ number identified in
the step-iv falls within the boundary of the clone. (vii) Clones that are affected by the bug-fixing
commits are identified as buggy clones while the rest other clones are considered non-buggy.

Several other studies [301, 308, 303, 25] also adopted similar approaches for distinguishing
buggy source code.

13.2.4 Computation of Source Code Quality Metrics

We use total 29 source code quality metrics grouped into four categories- (i) complexity metrics,
which measure the complexity of source code elements; (ii) size metrics, which measure the basic
properties of the analyzed system in terms of different cardinalities (e.g., number of code lines). (iii)
documentation metrics, which measure the amount of comments and documentation of source code
elements in the system; and (iv) coupling metrics, which measure the interdependencies of source
code elements. All the metrics are listed and briefly described in Table 13.2. Detail descriptions of
those metrics can be found in the user manual of SourceMeter [139], which is a proprietary static
source code analyzer tool we use in this work. We opt out of describing the metrics in details due to
space limitations.

Using a free version of SourceMeter [139] (version 8.2.0-x64-linux), we compute all the met-
rics in Table 13.2 for each of the buggy and non-buggy clones. The tool’s configuration parameters
are kept at their defaults.

13.3 Analysis and Findings

We carry out our analyses in the light of each of the 29 quality metrics separately averaged for buggy
and non-buggy clones. For testing statistical significance we applyMann-Whitney-Wilcoxon (MWW)
test [234] with � = 0.05. To measure effect size, we compute Cliff’s delta d [234].

Both of these non-parametric statistical tests do not require normal distribution of data, and thus
suit well for our purpose. We consider significant difference exists between distributions if p-value
of aMWW test is found to be less than � and Cliff’s delta d value is not negligible (i.e., |d| > 0.15).
In drawing the box-plots for our analyses, we normalize the metrics values using the widely used
Min-Max [309] method.

198

Table 13.2: Source Code Quality Metrics Used in this Study
Category Metric Description

↓ HCPL Hal. Calculated Program Length
↓ HDIF Hal. Difficulty
↓ HEFF Hal. Effort
↓ HNDB Hal. Number of Delivered Bugs
↓ HPL Hal. Program Length
↓ HPV Hal. Program Vocabulary
↓ HTRP Hal. Time Required to Program

Complexity ↓ HVOL Hal. Volume
metrics ↑ MIMS Maintainability Index (MS)

↑ MI Maintainability Index (OV)
↑ MISEI Maintainability Index (SEIV)
↑ MISM Maintainability Index (SV)
↓ McCC McCabe’s Cyclomatic Complexity
↓ NL Nesting Level
↓ NLE Nesting Level Else-If
↓ LOC Lines of Code
↓ LLOC Logical Lines of Code

Size ↓ NUMPAR Number of Parameter
metrics ↓ NOS Number of Statements

↓ TLOC Total Lines of Code
↓ TLLOC Total Logical Lines of Code
↓ TNOS Total Number of Statements
↑ CD Comment Density

Documen- ↑ CLOC Comment Lines of Code
tation ↑ DLOC Documentation Lines of Code
metrics ↑ TCD Total Comment Density

↑ TCLOC Total Comment Lines of Code
Coupling ↓ NII Number of Incoming Invocations
metrics ↓ NOI Number of Outgoing Invocations
Hal.=Halstead; MS= Microsoft version; OV=Original version
SEIV=SEI version; SV=SourceMeter version.
↑ by a metric indicates the higher the better for that metric
↓ by a metric indicates the lower the better for that metric.

199

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

HCPL HDIF HEFF HNDB HPL HPV HTRP HVOL McCC MI MIMS MISEI MISM NL NLE
Label

(V
al
ue
)

Method
Buggy
Non−buggy

Source Code Metrics

A
ve

ra
ge

 V
al

ue
s

of
 M

et
ric

s
(M

in
-M

ax
 N

or
m

al
iz

ed
)

Figure 13.2: Distribution of Complexity Metrics’ Values in Buggy and Non-buggy Cloned Code

13.3.1 Complexity of Buggy and Non-buggy Clones

In the box plot of Figure 13.2, we present the distribution of the average complexity metrics’ values
for buggy (grey boxes) and non-buggy (white boxes) clones for each studied revision of the subject
systems. The ‘x’ marks in the box plots indicate the means over all the revisions across the subject
systems.

As seen in Figure 13.2, for buggy clones, there are more variations in values of all the complex-
ity metrics compared to those for non-buggy clones. Most importantly, considering the averages
(marked with ‘x’), all the 15 complexity metrics’ values are worse for buggy clones. Buggy clones
exhibit lower values for the four maintenance index related complexity metrics (i.e., MI, MIMS,
MISEI, and MISM). For these four metrics higher values are desirable as indicated in Table 13.2.
For the rest 11 complexity metrics, buggy clones are found to have higher values while lower values
are desirable for these 11 metrics. These observations indicate that buggy clones are more complex
and less maintainable compared to non-buggy clones.

To determine whether our observations are statistically significant, for each of the 15 complexity
metrics, we separately conduct a one-sided pair-wise MWW test between the metric’s values com-
puted for buggy and non-buggy clones. The p-values obtained from these tests are presented in
Table 13.3. The measurements of effect sizes (i.e., Cliff’s delta d) corresponding to the MWW tests
are also included in Table 13.3.

As seen in Table 13.3, the p-values obtained from MWW tests are less than � for all the com-
plexity metrics except for three (HEFF, HTRP, and McCC). However, for two (HNDB and HVOL)
of these 12 complexity metrics, the effect sizes computed in Cliff’s delta d are found to be negli-
gible. For rest of the 10 complexity metrics, the MWW tests indicate statistical significance in the

200

Table 13.3: MWW Tests over the Distribution of Complexity Metrics for Buggy and Non-buggy
Clones

Source
Code Metrics P -value Cliff’s delta d Significant?

HCPL 7.011 × 10−12 0.2297 (small) Yes
HDIF 2.23 × 10−11 0.2239 (small) Yes
HEFF 0.2787 Not applicable No
HNDB 6.017 × 10−05 0.1307 (negligible) No
HPL 1.23 × 10−06 0.1601 (small) Yes
HPV 9.75 × 10−14 0.2499 (small) Yes
HTRP 0.5575 Not applicable No
HVOL 2.75 × 10−05 0.1371 (negligible) No
MI 2.20 × 10−16 −0.2882 (small) Yes
MIMS 2.20 × 10−16 −0.2882 (small) Yes
MISEI 1.48 × 10−14 −0.2614 (small) Yes
MISM 1.48 × 10−14 −0.2614 (small) Yes
McCC 0.1872 Not applicable No
NL 4.17 × 10−07 0.1675 (small) Yes
NLE 1.65 × 10−10 0.2136 (small) Yes

differences of the metrics’ values for buggy and non-buggy clones while the Cliff’s delta d values
also suggest that the effect sizes are not negligible.

Hence, from our observations and statistical tests, we now derive the answer to RQ1 as follows:
Ans. to RQ1: Buggy clones have significantly higher complexity and lower maintainability com-
pared to non-buggy code clones.

13.3.2 Size Difference of Buggy and Non-buggy Clones

In Figure 13.3, we plot the distribution of the seven size metrics’ values computed for buggy and
non-buggy clones. Similar to the case of complexity metrics (discussed in Section 13.3.1), we see
that the variations in all the size metrics is higher in buggy clones than in non-buggy ones.

Table 13.4: MWW Tests over Average Values of SizeMetrics in Buggy and Non-buggy Cloned Code
Source
Code Metrics P -Value Cliff’s delta d Significant?

LLOC 1.34 × 10−10 0.2147 (small) Yes
LOC 1.47 × 10−11 0.2260 (small) Yes
NOS 5.48 × 10−06 0.1500 (small) Yes
NUMPAR 3.44 × 10−06 −0.1529 (small) Yes
TLLOC 8.88 × 10−11 0.2169 (small) Yes
TLOC 1.12 × 10−11 0.2275 (small) Yes
TNOS 1.94 × 10−06 0.1570 (small) Yes

201

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

LLOC LOC NOS NUMPAR TLLOC TLOC TNOS
Label

(V
al
ue
)

Method
Buggy

Non−buggy

Source Code Metrics

Av
er

ag
e

Va
lu

es
 o

f M
et

ric
s

(M
in

-M
ax

 N
or

m
al

iz
ed

)

Figure 13.3: Size Metrics’ Values in Buggy and Non-buggy Clones

Average values of all the size metrics are higher (i.e., worse) for buggy method clones except
for NUMPAR (i.e., number of parameters). Surprisingly, the average value of this particular metric
appear to be slightly higher for non-buggy clones. Again, to verify the significance of our observa-
tions and effect size, we conduct one-sided pair-wise MWW test and Cliff’s delta d for each of the
seven size metrics between their values computed for buggy and non-buggy clones. The results of
the tests are presented in Table 13.4. The results in Table 13.4 suggest statistical significance (with
non-negligible effect size) in the differences of all the seven size metrics’ values computed for buggy
and non-buggy clones. Based on the findings, we now answer the RQ2 as follows:
Ans. to RQ2: Compared to non-buggy clones, the buggy method clones have significantly higher
code size measured in terms of the number of lines and statements. Surprisingly, non-buggy cloned
methods are found to have higher number of parameters.

13.3.3 Documentation in Buggy and Non-buggy Clones

Figure 13.4 depicts the distribution of average values of the five documentation metrics for buggy
and non-buggy clones. As seen in the figure, the medians of all the documentation metrics’ values
are consistently higher (better) for non-buggy clones. On the contrary, for non-buggy clones, the
mean values are lower (worse) for all the metrics except for DLOC (Documentation Lines of Code).

Table 13.5: MWW Tests over Average Values of Documentation Metrics in Buggy and Non-buggy
Cloned Code

Source
Code Metrics P -Value Cliff’s delta d Significant?

CD 2.20 × 10−16 −0.2809 (small) Yes
CLOC 3.68 × 10−16 −0.277 (small) Yes
DLOC 2.20 × 10−16 −0.7243 (large) Yes
TCD 9.58 × 10−16 −0.2730 (small) Yes
TCLOC 3.12 × 10−15 −0.2680 (small) Yes

202

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD CLOC DLOC TCD TCLOC
Label

(V
al
ue
)

Method
Buggy

Non−buggy

Source Code Metrics
Av

er
ag

e
Va

lu
es

 o
f M

et
ric

s
(M

in
-M

ax
 N

or
m

al
ize

d)

Figure 13.4: Documentation Metrics’ Values in Buggy and Non-buggy Clones

Now, for the distributions of each of the five documentationmetrics computed for buggy and non-
buggy clones, we separately conduct a one-sided pair-wise MWW test and also measure effect size
using Cliff’s delta d to test our hypothesis that buggy clones have inferior documentation (i.e., lower
documentation metrics value) than the non-buggy clones. The obtained p-values and Cliff’s delta d
values are presented in Table 13.5. As we see in Table 13.5, for all the five documentation metrics,
the p-values indicate statistical significance and Cliff’s delta d values suggest non-negligible effect
sizes. Thus the statistical tests fail to reject our hypotheses for each of the documentation metrics.
We, therefore, answer the research question RQ3 as follows:
Ans. to RQ3: The quality of documentation in buggy clones is significantly inferior to that in non-
buggy clones.

13.3.4 Coupling in Buggy and Non-buggy Clones

In Figure 13.5, we plot the distribution of average values of the two coupling metrics for buggy and
non-buggy clones. As we see in Figure 13.5, for both the coupling metrics, the variations in buggy
clones are higher compared to non-buggy clones. Again, for both the metrics, averages are higher for
buggy clones, and the difference is more substantial for the NOI (Number of Outgoing Invocations)
metric. The median for NOI is higher for buggy clones while for the NII (Number of Incoming
Invocations) metric the medians are nearly equal for both buggy and non-buggy clones.

Table 13.6: MWW Tests over Average Values ofCouplingMetrics in Buggy and Non-buggyMethod
Clones

Source
Code Metrics P -Value Cliff’s delta d Significant?

NII 0.006414 −0.0926 (negligible) No
NOI 2.20 × 10−16 0.2972 (small) Yes

203

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

NII NOI
Label

(V
al
ue
)

Method
Buggy

Non−buggy

Source Code Metrics

Av
er

ag
e

Va
lu

es
 o

f M
et

ric
s

(M
in

-M
ax

 N
or

m
al

ize
d)

Figure 13.5: Coupling Metrics’ Values in Buggy and Non-buggy Clones

Similar to previous analyses, we conduct one-sided pair-wise MWW test and compute Cliff’s
delta d separately for each of the coupling metrics to test the hypothesis that buggy clones are highly
coupled (i.e., have higher coupling metrics’ values) than the non-buggy clones. The results of the
tests are presented in Table 13.6. As seen in the table, the p-values of MWW tests for both the
metrics indicate statistical significance with p < �. However, the Cliff’s delta d values indicate
non-negligible effect size for NOI, but negligible effect size for the NII metric.

In combination of the two metrics, we can say that buggy method clones are comparatively
more coupled than non-buggy clones. Hence, we derive the answer to the research question RQ4 as
follows:
Ans. to RQ4: Buggy method clones have significantly higher number of outgoing dependencies
(i.e., outgoing invocations) compared to non-buggy method clones. However, there is no significant
differences in the incoming dependencies (i.e., incoming invocations) of buggy and non-buggy cloned
methods. Overall, buggy clones are more coupled than non-buggy clones.

13.4 Threats to Validity

Construct Validity: We use the bug-fixing commits that are identified by Ray et al. [232]. These
bug-fixing commits are distinguished based on matching of keywords (e.g., bug-fix, bug, issue, bug
id) in the commit messages. There is a possibility that some portions of the bug-fixing commits could
be regular commits (e.g., relevant to new feature implementations and improvements) and might not
be genuinely relevant to bug-fix. However, this dataset of bug-fixing commits is reported to be 96%
accurate [232]. In the identification of bug-fixing changes affected by a bug-fixing commit, there
is a possibility that not all the affected lines of code are indeed responsible for the bug fixed in the
bug-fixing commit. However, for this purpose, this is an acceptable approach also widely adopted
in other studies [301, 308, 303, 25].

204

When a cloned method m is affected by bug-fixing changes in revision n, the method m is con-
sidered buggy at revisions n − 1. For rest of the revisions the method m is considered non-buggy.
The content of the method m can safely considered non-buggy in any later revision � with � > n
since the bug is fixed in revision n. However, prior to the bug-fixing revision n, the method m may
or may not be buggy, but in our work, we considered it non-buggy. This assumption can be argued
as a threat to the construct validity of this work.
Internal Validity: In the detection of clones, we have used the NiCad clone detector, which is
reported to be highly accurate [138, 310] and is widely used in many studies [301, 302, 68, 75].
The library JGit used in our work for locating changes between two revisions is also reliably used
for similar purposes in other studies [311, 312]. Moreover, we manually verified the correctness of
the computations probing with random samples. Thus, we develop high confidence in the internal
validity of this study.
External Validity: Although our study includes a large number of revisions of three subject systems,
all the systems are open-source and written in Java. Thus the findings from this work may not be
generalizable for industrial systems and source code written in languages other than Java.
Reliability: The methodology of this study including the procedure for data collection and analysis
is documented in this chapter. The subject systems being open-source, are freely accessible while the
tool NiCad and library JGit are available online. All the bug-fixing commits are also available [232].
Therefore, it should be possible to replicate this study.

13.5 Related Work

Several attempts are made to explore fault-proneness of clones by relating them with bug-fixing
changes obtained from commit history. Very recently, Mondal et al. [303] claimed that code clones,
which were recently changed or created had high possibilities of containing bugs. Again, Rahman
and Roy [302] found that stability and bug-proneness of code clones are related. The studies of
Mondal et al. and Rahman and Roy only focused on recency of code changes and stability of cloned
code respectively. On the other hand, our work, for the first time has investigated a comprehensive
set of source code metrics to identify their relationships with bug-proneness of cloned code.

Selim et al. [88] investigated bug-proneness of code clones by combining source code and clone
related metrics. However, they used only four source code metrics (e.g., Lines of Code, number of
tokens, Nesting levels and Cyclomatic Complexity). Moreover, their investigation was based only
on Type-1 and Type-2 method clones, thus missed out Type-3 clones. In contrast to their work, we
have used Type-3 clones for this study that also includes Type-1 and Type-2 clones. Moreover, we
have used 29 source code metrics to conduct the analyses in this study.

Wang et al. [313] related eight source code metrics with harmfulness of cloned code. They
defined harmfulness of a piece of clone code based onmaintenance cost. The higher the maintenance

205

cost, the higher the clone code is harmful. In contrast, we have studied real buggy clones identified
thorough bug-fixing changes and examined them using 29 software metrics.

Juergens et al. [72] studied inconsistent clones to relate with bugs. They used manual investi-
gation to identify bugs in inconsistent clones, and concluded that unintentionally made inconsistent
clones are more likely to contain defects. They hadn’t conducted any statistical tests of significance
of their finding. In contrast to their approach, we have mined source code repositories to identify
bugs and conducted statistical tests of significance for all of our findings.

Rahman et al. [25] compared bug-proneness of clone and non-clone code and found non-clone
code to be more bug-prone than clone code. However, their investigation was based on monthly
snapshots of their subject systems, and thus, they had the possibility of missing buggy commits.
In our study, we consider all the bug-fix revisions for each of the subject systems, thus, we have
included all bug-fix commits.

Barbour et al. [83] suggested that late propagations due to inconsistent changes are prone to
introduce software defects. While Lozano and Wermelinger [73] suggested that having a clone may
increase the maintenance effort for changing a method, Hotta et al. [79] reported code clones not to
have any negative impact on software changeability. Lozano et al. [91] reported that a vast majority
ofmethods experience larger and frequent changeswhen they contain cloned code. Mondal et al. [82]
also reported code clones to be less stable. However, opposite results are found from several other
studies [283, 90, 78, 80].

Recently, Islam et al. [96] conducted a comparative study of security vulnerabilities in cloned
and non-cloned code. Earlier Islam and Zibran [95] and Sajnani et al. [285] conducted two com-
parative studies of code smells in cloned and non-cloned code. However, they defined code smells
as vulnerability and bug patterns in their respective studies. By targeting code stability and disper-
sion of code changes Mondal et al. also performed comparative studies in cloned and non-cloned
code [314, 315].

Along the comparative studies, Saini et al. [306] conducted a study to compare source code qual-
ity metrics for cloned and non-cloned code. The study used 27 software quality metrics, categorized
in three groups e.g., complexity, modularity, and documentation (code-comments). They did not
find any statistically significant difference between the quality of cloned and non cloned methods
for most of the metrics. However, we have compared the significance of differences of 29 software
quality metrics’ (categorized in four groups) values in buggy and non-buggy cloned methods instead
of comparing them in cloned and non-cloned code.

In another study, Islam et al. [308] found the percentage of changed files due to bug-fix commits
is significantly higher in clone code compared with non-clone code. They also found the possibility
of severe bugs occurring is higher in clone code than in non-clone code. While all these above
studies provide valuable insights about the characteristics of code clones, the clone literature lacked
the comparative study of buggy and non-buggy cloned code characteristics in terms of source code

206

quality metrics. This study has filled that gap in some extent and identify which source code quality
metrics have contributed to buggy cloned code.

13.6 Summary

In this chapter, we have presented a comparative study of buggy and non-buggy Type-3 method
clones in terms of 29 code quality metrics grouped into complexity metrics, size metrics, documen-
tation metrics, and coupling metrics. Our quantitative study is based on 2,077 bug-fixing revisions
of three open-source software systems written in Java.

In our study, we have found that buggy clones have higher complexity and lower maintainability
compared to non-buggy cloned methods. Moreover, buggy clones are found to be larger in size
measured in terms of the number statements and lines of code. Surprisingly, we have found that the
non-buggy method clones have higher number of parameters while too many parameters in functions
are generally considered problematic and recognized as a code smell [74].

As expected, compared to non-buggy clones, documentation quality of buggy clones are found
inferior. Overall, buggy clones are found to be more coupled than non-buggy clones. However,
it is interesting to have found that the buggy cloned methods have significantly higher outgoing
dependencies (i.e., outgoing invocations) compared to non-buggy clones. In case of incoming de-
pendencies, no significant difference is found between buggy and non-buggy clones.

The results are validated with statistical tests of significance. However, there is a need for quali-
tative analyses to draw further insights into the reasons of our findings, especially for case of higher
method parameters in non-buggy method clones and the for the case of higher outgoing dependen-
cies in buggy clones. We plan to extend this work with qualitative analyses along with higher number
of subject systems and their revisions.

The findings from this study advance our understanding of the characteristics and impacts of
buggy clones on code quality. It appears that some of the code quality metrics can be good indi-
cators for potentially buggy clones, and thus can be applied for identifying problematic clones for
removal by refactoring or other especial treatments. For doing such, we need to derive a threshold-
ing mechanism, which would indicate at what values of the quality metrics certain clones would be
reported as potentially harmful. These remain within our plans for expanding this work.

207

Chapter 14

Exposing Bug-fix Patterns

From Chapter 4 to Chapter 13, we presented our studies to address the sub-problem I (i.e., detecting
developers’ sentiments/emotions), sub-problem II (i.e., understanding developers’ sentiments),and
sub-problem III (understanding impacts of developers copy-paste action). In this chapter, we conduct
an in-depth quantitative and qualitative analysis over buggy revisions of software systems to identify
the patterns of bug-fixings to address the sub-problem IV (i.e., understanding fixing patterns of
developers mistakes that cause software bugs).

The remainder of this chapter is organized as follows. In Section 14.1, we introduce the mo-
tivation of the work. In Section 14.2, we describe the methodology of this study including short
descriptions of the dataset and tools used. In Section 14.3, we identify dominant bug-fixing edit pat-
terns. In Section 14.4, we derive the nesting patterns by distinguishing those nested code structures
that host frequent bug-fix edits. In Section 14.5, we describe possible limitations and the threats to
the validity of this work. Related work is discussed in Section 14.6. Finally, Section 14.7 concludes
the chapter.

14.1 Introduction

Bug-fixing efforts consume a vast amount of total expenses in software maintenance [98] while
nearly 80% of software cost is spent in maintenance [76]. Typical bug-fixing efforts mainly involve
two types of tasks: (a) localization of bugs in source code, and (b) bug-fixing edits to source code. A
deep understanding of the common bug-fixing patterns can immensely help in minimizing efforts in
both of these tasks and also contribute to devising techniques for automated program repair (APR).
A good understanding of the bug patterns can also help a developer to proactively avoid writing code
that leads to program faults.

Bug-fixing efforts require a good understanding of the source code, intended edits, and their
potential impacts. Studies [316, 317] find that code changes are repetitive in nature within and across
code bases. Hence, mining code changes has become an effective way for program comprehension
and deriving patterns of diverse categories including bug-fix patterns.

Early efforts in discovering bug-fix patterns highly depended on manual efforts [316, 318] in
the analysis of textual differences among different program entities. However, manual effort is criti-
cized for being error-prone, tedious, incomplete, and imprecise [319, 320, 321]. Recent efforts made

208

Obtain nth
(bug-Fixing)

revision

Identify AST
differences

Obtain (n-1)th
(buggy)
revision

JGit

JGit
GumtreeSpoon

Bug-Fixing
Commits for the

System P1

Git Repository of
a System P1

(n-1)th
Revision

AST changes
between versions

nth Revision

Bug-fixing
commit c

Repetition of the same computational steps for each bug-fixing commit in each of the five subject systems

Identify AST
differences

 GumTree

AST changes
between versions

Identify bug-
fixing edit
patterns

Bug-fixing edit
patterns

*Identify nested
code structures

Nesting patterns
of bug-fixing edits

*This step is further elaborated in Figure 10

2

1 3

4

5

6

The symbol represents an action that is assigned a number based on its sequence of execution

Figure 14.1: Procedural steps to identify edit patterns and nesting patterns of bug-fixing changes
use of Abstract Syntax Tree (AST) based code differencing tools (e.g., ChangeDistiller [322],
Diff/TS [323] and GumTree [319]) for automatic discovery of code-changes and differencing pro-
gram entities. Previous work on discovering bug-fix patterns remained focused on bug-fixing edit
patterns, which include bug-fixing changes to source code at a very fine-grained level without captur-
ing those changes’ surrounding code contexts such as nested code structures. The nested code struc-
ture, which is a hierarchy of AST nodes, indicates the location of a bug-fix change in an AST nodes’
hierarchy. Nested code structures provide an important code context/aspect of bug-fix changes but
remained absent in the studies [319, 324, 321, 325, 326, 318, 327, 328] that identified bug-fixing
edit patterns.

In this work, we capture both bug-fixing edit patterns and nesting patterns (i.e., frequent nested
code structures) of bug-fixing edits through an in-depth (quantitative and qualitative) analysis of
4,653 buggy revisions of five software systems drawn from diverse application domains. We orga-
nize this chapter around two research questions as follows:
RQ1: What are the common patterns of bug-fixing edits? – Here, we explore bug-fixing edit-
ings/changes made in source code and identify the bug-fixing edit patterns. We will verify what
portion of the identified bug-fixing edit patterns are new, and how many of them were previously
reported in earlier studies [326, 318, 327].
RQ2: What are the prominent nested code structures that frequently host bug-fixing edits? – Here we
investigate the frequent nested code structures (i.e., nesting patterns) where the bug-fixing edits are
located. These nesting patterns will complement the edit patterns in our understanding of bug-fixing
patterns with information about the locations and contexts of individual edits within surrounded
nested code structures. Moreover, such AST based nested code structure contexts provide a potential
scope to use those along with other code contexts such as textual similarity of code [329] to develop
an effective technique to automatically locate program faults and repair those.

209

Contributions: Towards a deeper understanding of bug-fix patterns, this work makes two major
contributions:

• We identify a total of 38 bug-fix patterns organized in 14 categories. This is the highest number
of bug-fix patterns identified in a single study. Four of these patterns are completely new, and
34 of them confirm those reported in earlier studies.

• We study locations of bug-fix changes in nested code structures and identify 37 nesting patterns
that hold the majority of the bug-fix edits. These nesting patterns are new (i.e., never targeted
before), and add a new dimension in our understanding of bug-fix patterns.

14.2 Methodology

The procedural steps of our empirical study are summarized in Figure 14.1. For each subject sys-
tem, we collect the bug-fixing revisions. Then, for each bug-fixing revision, using AST based code
differencing tools, we detect differences between the bug-fixing revision and its immediate previous
revision. Collections of such AST differences are then analyzed to detect bug-fixing edit patterns
and dominant nested code structures of code changes to fix bugs. In the following, we describe the
subject systems and elaborate procedural steps with necessary discussions.

14.2.1 Subject Systems

We study 4,653 revisions of five open-source software systems written in Java. These subject sys-
tems, as listed in Table 14.1, are available at GitHub. In Table 14.1, we present the total number of
revisions and the number of source lines of code (KLOC) in the last revision. We choose these five
subject systems as these systems have variations in application domains, sizes, number of revisions,
and are also used in other studies [97, 232].

Moreover, we consciously choose the five subject systems that can be classified in two sets: (i)
the first three subject systems, which were never been used earlier to detect bug-fixing edit patterns,
belongs to the first set and (ii) the second set consists of the remaining two subject systems, which
were earlier used in other studies [329]. Such a combination of choosing subject systems provides
the opportunity not only to verify whether earlier detected bug-fixing edit patterns exist in our study,
but also to identify new bug-fixing edit patterns if they exist.

14.2.2 Collecting Bug-fixing Commits

For the first three systems, we collect the bug-fixing commits identified by Ray et al. [232]. These
bug-fixing commits are distinguished through matching keywords (e.g., bug, defect, issue) in the
commit messages and are reported to be 96% accurate [232]. To identify the bug-fixing commits in

210

Table 14.1: Subject Systems
Subject Application KLOC Total # of # of Bug-
System Domain (last rev.) Revisions Fixing Rev.
Netty Network 1,078 8,534 1,103
Presto SQL 2,869 11,909 841
Facebook-
android-SDK

Social
Networking 172 671 133

Accumulo
Distributed
Key-value
store

458 9,734 1,941

Common-
maths Math library 187 6,971 635
Total over all the systems 4,764 37,819 4,653

the remaining last two systems, we use the same keywords used by Ray et al. [232]. The number of
bug-fixing revisions for each system is listed in the last column of Table 14.1.

14.2.3 Generating Abstract Syntax Tree of Bug-fixing Changes

Consider a bug-fixing commit resulting in the nth revision of a system/project1. If a particular line
of code  is modified in the bug-fixing commit , then it implies that the modification is necessary
to fix the bug. Thus, the line of code  in the (n − 1)th revision is considered a buggy line. In other
words, we consider the changes between the nth and (n − 1)th revisions of 1 are buggy. Several
other studies [301, 308, 303, 25] also adopted the similar approach for distinguishing buggy source
code.

At this level, as shown in Figure 14.1, we obtain the nth and (n−1)th revisions using JGit [307].
Then, we capture bug-fixing changes at the AST [319] level between those two revisions using
GumtreeSpoon and Gumtree separately (see action 03 and 04 in Figure 14.1). Captured AST differ-
ences using GumtreeSpoon and Gumtree are further processed to determine bug-fixing edit patterns
and nesting patterns, respectively (see action 05 and 06 in Figure 14.1).

Before describing how we identify bug-fixing edit patterns (in Section 14.3) and nesting pat-
terns (in Section 14.4), in the following, we discuss and compare the outputs of GumTree and
GumtreeSpoon to develop background/context that helps in understanding the rest of the content
of the chapter.

Understanding of GumTree’s output. For each action/change in a node, GumTree generates
four major attributes: (i) action name (e.g., ins, del, upd or, mov) (ii) label- that indicates text/name
of the changed node (iii) type of the changed node (e.g., changed node can be a simple variable
name or an expression) and (iv) nested code structure (NCS)- the tree/hierarchy of parent nodes

211

1 public class Calculator
2 {
3 public int getSumofEvenNumbers(Int [] numbers)
4 {
5 int sum=0;
6
7 for(int i=0;i<numbers.length;i++)
8 {
9 if(numbers[i]%3==0)
10 {
11 sum=sum+numbers[i];
12 }
13 }
14
15 return sum;
16 }
17}

1 public class Calculator
2 {
3 public int getSumofEvenNumbers(Int [] numbers)
4 {
5 int sum=0;
6
7 for(int i=0;i<numbers.length;i++)
8 {
9 if(numbers[i]%2==0) //bug-fix change
10 {
11 sum=sum+numbers[i];
12 }
13 }
14
15 return sum;
16 }
17}

(a)

Buggy code Bug-fixed code

(Update, NumberLiteral, 3 , Infix_expression→
Infix_expression→If_statement→Block→For_statement→Block
→Mehod_declaration→Type_declaration→Compilation_unit)

(Update, Literal, rightOperand, 3 to 2,
CtBinaryOperatorImpl→ CtBinaryOperatorImpl→CtIfImpl
→CtBlockImpl→CtForImpl→CtBlockImpl→CtMethodImpl
→ CtClassImpl→CtModelImpl$CtRootPackage)

(b) (c)

Figure 14.2: (a) Changing a literal in an if statement to fix a bug and the presentations of the
bug-fixing change using (b) GumTree and (c) GumtreeSpoon

public class Math{
 public void sum(int a, int b){
 int c = a+b;
 }
}

public class Math{
 public void sum(int a, int b){
 if(a!=b){
 int c = a+b;
 }
 }
}

(Insert, If, Statement, if (a != b) { ; },
CtBlockImpl→CtMethodImpl→CtClassImpl→CtModelImpl$CtR
ootPackage)

(a)

(b)
Figure 14.3: (a) Adding an if statement as a precondition to fix a bug and (b) corresponding repre-
sentation of the bug-fixing change using GumtreeSpoon
of the changed node, which indicates the location of the changed node in an AST. We use these four
attributes: (action name, node type, label, NCS) to represent a changed AST node.

Let’s assume, there is a bug in a piece of code presented at the left side of the arrow sign in
Figure 14.2(a). The bug resides in line number nine where a developer uses literal ‘3’ instead of
literal ‘2’. The buggy code is fixed in the bug-fix revision, which is presented at the right side
of the arrow sign in Figure 14.2(a). If those two revisions are given to GumTree, it will generate
differences between the provided revisions, which can be presented using a tuple of four attributes
as shown in Figure 14.2(b).

From Figure 14.2(b), it is easily understood that a NumberLiteral is updated to fix the bug.
From the NCS (the last attribute) of the updated node, we see the NumberLiteral is a part of two
infix_expressions (i.e., == and %), which reside in an if statement. Again, the if statement

212

resides in a block under a for statement. The for statement is a part of a block inside a method.
The method resides inside a type declaration (i.e., a class) and compilation unit is always the root
of an NCS. Here, it is noticeable that an NCS represents a sequence, where the root and all internal
nodes have only one child except the leaf node, which has no child.

Understanding of GumtreeSpoon’s output. While the outputs of GumtreeSpoon are almost
similar to the outputs of GumTree, there are some fundamental differences exist between their out-
puts. First, GumtreeSpoon provides a changed node’s role in its immediate parent or node (i.e., role
in parent), which helps in understanding code changes’ patterns. For example, GumtreeSpoon indi-
cates that the changed literal’s role in its parent is rightOperand. How the attribute role in parent
helps in determining bug-fixing edit patterns is elaborately described in Algorithm 1 presented latter
in this chapter.

Second, GumtreeSpoon provides modified source code as opposed to the label provided by
GumTree. We find modified source code is more helpful to understand bug-fixing edit patterns (see
Section 14.3.2) instead of a label. Thus, we use a tuple of five attributes such as (action name, node
type, role in parent, modified source code, nested code structure) to represent a code change using
GumtreeSpoon’s output as shown in Figure 14.2(c). It is noticeable in Figure 14.2(b) and 14.2(c)
that naming conventions of the nodes are different between GumTree and GumtreeSpoon.

Finally, while GumTree provides fine-grained level differences, GumtreeSpoon generates
summary/concise level outputs of code changes that help in understanding bug-fixing edit pat-
terns conveniently. For example, the code changes shown in Figure 14.3(a), is represented using
GumtreeSpoon’s output in Figure 14.3(b). From Figure 14.3(b), we see that only node if is inserted,
thus GumtreeSpoon ignores other fine-grained level changes such as additions of conditional
operator and variables (e.g., a and b). In contrast to that, GumTree’s outputs indicate that five
nodes are inserted: insert block, insert ifStatement, insert infixExpression (i.e., ==), and insert
simpleNames (i.e., variables a and b). While these detailed, in-depth, and verbose outputs provided
by GumTree are suitable to analyze nesting patterns in deeper levels to answer RQ2, the concised
outputs of GumTreeSpoon are required for analyzing bug-fixing edit patterns to answer RQ1.

14.3 Bug-fixing Edit Patterns

Once we have the GumtreeSpoon’s outputs for the bug-fixing changes, we aim to identify the bug-
fixing edit patterns defined by Pan et al. [318]. Pan et al. have defined a set of 27 bug-fixing edit
patterns divided in nine categories: If-related (IF), Method Calls (MC), Sequence (SQ), Loop (LP),
Assignment (AS), Switch (SW), Try (TY), Method Declaration (MD) and Class Field (CF). Their
study has identified the highest number of bug-fixing edit patterns in a single study. Moreover,
according to the number of citations, this is one of the most important papers on bug-fix edit patterns,
thus it becomes a benchmark for the studies related to bug-fixing edit patterns’ detection. In the rest

213

public class Math{
 public void sum(float a, int b){
 float c = a+b;
 }
}

public class Math{
 public void sum(int a, int b){
 float c = a+b;
 }
}

(Update, TypeReference, float to int, type,
CtParameterImpl→CtMethodImpl→CtClassImpl→CtModelImpl$CtRootP
ackage)

(b)

(a)

Figure 14.4: (a) Updating parameter type (float to int) of a method to fix a bug and (b) corre-
sponding representation of the bug-fixing change using GumtreeSpoon

of this chapter, we use the term PanPattern to refer to a pattern identified by Pan et al. [318]. We
also verify whether GumtreeSpoon is able to identify any new bug-fixing edit patterns as opposed
to the PanPatterns in our dataset.

14.3.1 Making Sense of GumtreeSpoon’s Outputs

Here we manipulate the GumtreeSpoon’s outputs using Algorithm 1 to make those more obvious for
our analysis. Based on a preliminary investigation, we find that a code change belongs to or impacts
the node that is an immediate previous node of the first occurrence of a block node in an NCS. For
example, from the bug-fixing change presented in Figure 14.2(a), it is not obvious that the change
occurs in an if statement until we see the immediate previous node of the first block node (which
is indeed an if node) in the NCS given in Figure 14.2(c) generated by GumtreeSpoon.

When an NCS contains at least one block node, we determine the pattern of a bug-fixing change
using the procedure described in Algorithm 1, Lines 2–8. An NCS starts with a block node if an
insertion or deletion or update is performed on a node, which is not contained in or associated or
linked with any other node within its block. As shown in Figure 14.3(b), a node If is inserted and
the NCS starts with a block node. The pattern for this type of bug-fix changes is determined using
the action (i.e., ins/del/upd) performed on a node to change code, and the name of the changed node
as shown in Algorithm 1, Lines 3–4.

Another category of bug-fix changes contains those type of patterns where the implementation of
a node is updated by performing an action on any other nodes, which are contained in or associated
or linked with the implementing node within its block. As shown in Figure 14.2(a), a literal

node, which is contained in an implementing if node, is updated where both the nodes (i.e., if
and literal) reside in the same block. In this case, the bug-fixing edit pattern is determined using
action, changed node name, and the immediate previous node’s name of the first occurrence of a
block node in an NCS (see Algorithm 1, Lines 6–7).

214

The third category of bug-fix edit patterns does not have any block node in the NCSes for
changes in the definitions of class or interface members such as addition/removal of class fields or
methods or changes in the types of parameters of methods. As shown in Figure 14.4(a), a developer
updates type of a parameter from float to int to fix a bug. Figure 14.4(b) represents the change
using the output of GumtreeSpoon where the NCS does not have any block node. For this case,
we identify a bug-fixing edit pattern by incorporating a changed node’s role in parent attribute, and
consider the first node in the NCS as the location of the change.

If a class member (e.g., method, variable) or a parameter of a method is changed, we use ac-
tion, node name, and the first node in the NCS to determine the pattern of the bug-fix change (see
Algorithm 1, Lines 10–14). If the type a class variable or method’s parameter is changed, then we
determine the location of the change (e.g., type of a class variable or method’s parameter) (see Al-
gorithm 1, Line 16), and use that along with action and node name to determine the bug-fix pattern
(see Algorithm 1, Line 17).

For the bug-fixing changes presented in Figure 14.2(a), Figure 14.3(a), and Figure 14.4(a), Algo-
rithm 1 will output the patterns update literal of CtIfImpl, insert if, and update type of a parameter
of a method, respectively. The set of patterns that we identify using Algorithm 1 are termed as
GSPatterns in the rest of this chapter.
Algorithm 1 Detection of GSPatterns
Input: T : a tuple of five attributes generated by GumtreeSpoon for a code change

1 String pattern;
2 if T.NCS.contains(“Block") then
3 if T.NCS.startsWith(“Block") then
4 pattern←T.action+“ "+ T.nodeName;
5 else
6 String IPN←getPreviousNodeOfFirstBlock(T.NCS) pattern←T.action +“ " + T.nodeName + “ of "+ IPN
7 end
8 else
9 String FNN←getFirstNodeInNCS(T.NCS) if T.roleInParent.equals(“typeMember”) then

10 pattern←T.action +“ "+ T.nodeName+“ in " + FNN
11 else if T.roleInParent.equals(“parameter") then
12 pattern←T.action +“ "+ T.nodeName+“ in " + FNN
13 else if T.roleInParent.equals(“type”) then
14 String CFL←getChangeLocation(T.NCS);
15 pattern←T.action +“ "+ T.nodeName +“ in " + CFL;
16 end
17 return pattern;

14.3.2 Mapping GSPatterns to PanPatterns

In most of the cases, a GSPattern can be mapped directly to its corresponding PanPattern. For
example, the GSPattern update literal of CtIfImp indicates its corresponding PanPattern change of
if condition expression (IF-CC) [318].

However, we have to leverage the attribute modified source code to identify PanPatterns from
their corresponding GSPatterns in two cases that include: (i) addition of a precondition (i.e., if

215

Table 14.2: Distributions of PanPatterns identified in our dataset using GumtreeSpoon
Category (Cat) Pattern (Pat) # of Pat % of Pat Total per

Cat
% per
Cat

Method Change of method declaration (MD-CHG) 4,116 17.54%
7,687 33.00%Declaration Addition of a method declaration (MD-ADD) 1,916 8.17%

(MD) Removal of a method declaration (MD-RMV) 1,655 7.05%

If-related (IF)

Addition of post-condition check (IF-APTC) 1,975 8.42%

4,877 20.78%
Removal of an if predicate (IF-RMV) 1,588 6.77%
Change of if condition expression (IF-CC) 761 3.24%
Addition of precondition check (IF-APC) 309 1.32%
Addition of precondition check with jump (IF-APCJ) 37 0.16%
Removal of an else branch (IF-RBR) 71 0.30%
Addition of an else branch (IF-ABR) 136 0.58%

Method Call (MC)
Method call with different number of parameters or
different types of parameters (MC-DNP)

2,402 10.24%
4,639 20.00%

Change of method call to a class instance (MC-DM) 1,582 6.74%
Method call with different actual parameter values
(MC-DAP)

655 2.79%

Class Field (CF)
Addition of a class field (CF-ADD) 1,355 5.77%

3,735 16.00%Change of class field declaration (CF-CHG) 1,719 7.33%
Removal of a class field (CF-RMV) 661 2.82%

Assignment (AS) Change of assignment block expression (AS-CE) 1,401 0.97% 1,401 5.97%
Loop (LP) Change of loop predicate (LP-CC) 549 2.34% 549 2.34%
Try (TY) Addition/removal of try statement (TY-ARTC) 491 2.09% 526 2.24%Addition/removal of a catch block (TY-ARCB) 35 0.15%
Switch (SW) Addition/removal of switch block branch (SW-

ARSB)
50 0.21% 50 0.21%

Overall total 23,464 100%

node) check with/without jump statement (e.g., return, and break) and (ii) changes in a method
call. An inserted if statement acts as a precondition if it wraps up existing code, otherwise, that will
be considered as a new insertion of an if node. For any inserted if node if we find modified source
code contains any lone semicolon (;) in a line, then the inserted if statement/node is considered as
a precondition. For example, the modified source code, presented in Figure 14.3(b), contains a lone
semicolon in the bug-fixing change presented in Figure 14.3(a). The number of such lone semicolons
indicates the number of lines wrapped up by a precondition. In addition to semicolon, we also check
whether modified source code contains any jump statement such as return, continue, or break to
identify if any precondition is added with a jump that corresponds to another PanPattern addition of
a precondition check with a jump (IF-APCJ). We use the same logic to identify if a piece of code is
wrapped up by statements such as try-catch, loop, or switch-case. We hypothesize an inserted
if is added as postcondition if that is not a precondition.

In the second case, we parse modified source code to extract the method call statements in a
buggy revision and its non-buggy revision. Then, for each method call, we extract the method name,
arguments, and class name of amethod call if available. Then, we compare that extracted information
between the buggy and non-buggy method call statements to identify the location where a change
occurs to map the change to its corresponding PanPattern. Multiple changes may occur in a method
call (e.g., the return type can be changed and an argument can be inserted) to fix a buggy method
call. In such cases, we record all types of changes and use those to identify bug-fixing edit patterns.

216

Table 14.3: Distributions of New Edit Patterns Identified in our Dataset using GumtreeSpoon
Category (Cat) Pattern (Pat) # of Pat % of Pat Total per

Cat
% per
Cat

Local Variable Update implementation of local variable (LV-
IMPL)

4,043 15.41% 7,709 29.38%
(LV) Addition or deletion of local variable (LV-AD) 3,666 13.97%

Method Call (MC)
Class/target change of method call (MC-TC) 2,881 10.98%
Addition of new method call (MC-A) 2,754 10.50% 7,531 28.70%
Deletion of new method call (MC-D) 1,896 7.23%

Return (RT) Update implementation of return statement (RT-
IMPL)

3,361 12.81% 4,200 16.01%
Addition or deletion of return statement (RT-AD) 839 3.20%

Assignment (AS) Addition or deletion of assignment block state-
ment (AS-AD)

3,390 12.92% 3,390 12.92%

Constructor (CT) *Addition or deletion of constructor (CT-AD) 578 2.20% 1,013 3.86%*Parameter update in constructor (CT-Param) 435 1.66%
Throw (TW) Update of implementation of throw statement (TW-

IMPL)
651 2.42% 861 3.28%

Addition or deletion of throw statement (TW-AD) 210 0.80%
Class or Interface
(CI)

Addition or deletion of class or interface (CI-AD) 480 1.83% 480 1.83%
Wrap/Unwrap Code
(WU-Code)

Wrap/unwrap code with/from high-level Node (WU-
Code)

410 1.54% 410 1.54%

Loop (LP) Addition and/or deletion of loop statement (LP-AD) 405 1.54% 405 1.54%
Catch (CA) *Addition or deletion of catch variable (CA-AD) 130 0.50% 130 0.50%
Enum (EN) *Addition or deletion of enum statement (EN-AD) 112 0.43% 112 0.43%
*Completely new bug-fixing edit patterns identified in this study Overall total 26,241 100%

14.3.3 Dominant Bug-fixing Edit Patterns

14.3.3.1 Detected PanPatterns

By processing GumtreeSpoon’s outputs we are able to detect 21 types of PanPatterns distributed in
seven categories presented in Table 14.2. The abbreviations/initials of the categories and patterns’
names are given in the same table. The MD category contains the highest number of bug-fixing
changes (33.00%), followed by the IF (20.78%), MC (20.00%), and CF (16.00%) categories. Notice-
able, the first four categories consist of almost 90% of bug-fixing changes. Category SW experiences
the lowest number of bug-fixing changes (0.21%) preceded by LP and TY categories that consist of
only 2.34% and 2.24% of the total number of PanPatterns, respectively.

The pattern MD-CHG experiences the highest number of bug-fixing changes (17.54%) followed
by the patterns MC-DNP (10.24%) and IF-APTC (8.42%). Interestingly, those three patterns are
from three distinct categories. MD-ADD, CF-CHG, and MD-RMV are the next three patterns that
experience the highest number of bug-fixing changes (range from 7.05% to 8.17%) after those for-
merly mentioned three patterns. The patternsMC-DM and IF-RMV experience almost equal amount
of bug-fixing changes (≈06.70%). Surprisingly, the patterns IF-APCJ, IF-RBR and IF-ABR from
IF-related category together contribute only 1.04% of the total PanPatterns. Except the patterns SW-
ARSB and TY-ARCB (that contribute only 0.21% and 0.15% of the total number of PanPatterns,
respectively), the proportions of the remaining PanPatterns range from 1.32% to 5.77%.

217

public class Math{
 …
 …
 }

public class Math{
…
public Math() { … }
…
}

Figure 14.5: Insertion of a constructor to fix a bug

int index=checkIndex();
if(index<=0){
 throw new NullPointerException();
}

int index=checkIndex();
if(index<=0){
 return null;
}

Figure 14.6: Deletion of a throw statement to fix a bug

14.3.3.2 New bug-fixing edit patterns

Using GumtreeSpoonwe identify 17 types of new bug-fixing edit patterns in 11 categories presented
in Table 14.3. Here, we indicate those bug-fixing edit patterns as new, which are not defined in
PanPatterns. Although some of those 17 bug-fixing edit patterns are already identified in different
studies [325, 326, 327], we identify completely four new bug-fixing edit patterns as indicated in
Table 14.3. In the following, we briefly define the new patterns, which are relatively complex, while
some of those patterns can be easily understood from their names such as addition or deletion of a
method call (MC-AD) or a class/interface (CI-AD).

Addition or deletion of node N1 (N1-AD). This type of pattern consists of addition or dele-
tion of a node N1 where N1 ∈ {constructor, throw, loop, enum, return, local variable,
assignment}. For example, in Figure 14.5, we see a constructor is inserted in a class to fix a
bug. Again, in Figure 14.6, a throw statement is deleted to fix another bug.

For each of the seven nodes we define seven patterns such as (i) addition or deletion of
constructor (CT-AD), (ii) addition or deletion of throw (TW-AD), (iii) addition or deletion of
loop (LP-AD), (iv) addition or deletion of enum (EN-AD), (v) addition or deletion of return

(RT-AD), (vi) addition or deletion of local variable (LV-AD) and (vii) addition or deletion of
assignment (AS-AD).

Update implementation of nodeN2 (N2-IMPL). In this type of pattern, an implementation of
a nodeN2 is updated by performing actions on other nodes associated with the implementing node.
For example, in Figure 14.7, we see the implementation of a node throw is changed by updating
an associated node NullPointerException() to IndexOutOfBoundsException() to fix a bug.
Here N2 ∈ {throw, return, local variable}. Again, for each of the three nodes, we define

int index=checkIndex();
if(index<=0){
 throw new NullPointerException();
}

int index=checkIndex();
if(index<=0){
 throw new IndexOutOfBoundsException();
}

Figure 14.7: Updating implementation of a throw statement to fix a bug
218

int x=10, y=15;
int sum=Calculator.getSum(x,y)

int x=10, y=15;
int sum=MathCalculator.getSum(x,y)

Figure 14.8: Changing class/target of a method call to fix a bug

 …
if(tokenInFilePath[i].contains("Revisions"))
 {
 projectName=tokenInFilePath[i+1];

 return obj.method(p1, p2);
 }

 …

…
for(int i=0;i<tokenInFilePath.length;i++)
 {

if(tokenInFilePath[i].contains("Revisions"))
 {
 projectName=tokenInFilePath[i+1];

 return obj.method(p1, p2);
 }

 }
…

Figure 14.9: Wrapping up existing code using a for loop to fix a bug
three patterns such as (i) update implementation of throw (TW-IMPL), (ii) update implementation
of return (RT-IMPL) and (iii) update implementation of a local variable (LV-IMPL).

Class/target change of method call (MC-TC). This pattern contains those types of bug-fixing
changes where the class or target of a method call is changed to fix a bug. As shown in Figure 14.8
where the class of the method getSum is changed to fix a bug.

Parameter update in Constructor (CT-Param). Similar to pattern MD-CHG, parameters of a
constructor can be changed and such changes belong to this pattern.

Wrap/unwrap code with/from high-level Node (WU-Code). This pattern of code changes
consists of wrapping or unwrapping existing code with/from high-level nodes. The set of high-level
nodes ℎ includes {if, for, foreach, while, do-while, synchronized, try-catch} that can
contain other types of nodes. As shown in Figure 14.9 a piece of existing code is wrapped up inside
a for loop to fix a bug.

14.3.3.3 Comparative frequencies of the new patterns

As shown in Table 14.3, the category LV consists of the highest number of bug-fixing changes
(29.38%) followed by the categories MC (28.70%), RT (16.01%), and AS (12.92%). Again, these
four categories consist of almost 90% of newly identified bug-fixing changes.

The pattern LV-IMPL experiences the highest number of bug-fixing changes (15.41%) followed
by the pattern LV-AD (13.97%). The patterns AS-AD and RT-IMPL experience almost equal amount
of bug-fixing changes (≈13%). Next three patterns MC-TC, MC-A, and MC-D are from MC cate-
gories experience 10.98%, 10.50%, and 7.23% bug-fixing changes, respectively. Those seven pat-
terns together contribute almost 84% of bug-fixing changes. The patterns EN-AD, CA-AD, and
TW-AD represent the three lowest bug-fixing changes (below 1.00%). The amounts of the rest of
the patterns range from 1.50% to 3.20%.

219

*AST
Changes
between
Versions

*This artifact is generated in the procedural steps described in Figure 1

Identify
Nesting
Patterns

MG_FSM

Nesting
Patterns

Detect
Clusters of

Nesting
Patterns

Clusters of
Nesting
Patterns

Analysis
by Experts

Meaningful
Clusters of

Nesting patterns

Figure 14.10: Steps to identify nesting patterns that host bug-fixing edits
14.4 Dominant Nesting Patterns

In Figure 14.10, we depict the steps required to detect nesting patterns by capturing the NCSes that
frequently host the bug-fixing edits. The steps are briefly described in the following subsections.

14.4.1 Sequential Pattern Mining of Nested Code Structures

In Section 14.2.3, we see that an NCS or parents’ tree structure hosting a bug-fixing edit can be pre-
sented as a sequence of parents nodes. Thus, to identify nesting patterns (i.e., dominant NCSes), we
use a sequential pattern mining technique. Sequential pattern mining identifies a set of subsequences
or patterns that occur in some percentage or, with minimum support of the input sequences. Any
patterns that are found to have support value above or equal to the value of minimum support are said
to be dominant patterns. Here, using a sequential pattern mining algorithm, we identify the nesting
patterns that are dominant.

However, since a frequent long sequence contains a combinatorial number of frequent subse-
quences, such mining will generate an exhaustive set of patterns, which will be highly expensive in
terms of time and space. To reduce the number of smaller sub-patterns that are found by the se-
quential pattern mining algorithm, we require that a mining algorithm produces closed or maximal
patterns [330, 331], where sub-patterns that are contained within longer patterns are ignored. As
we aim to identify nesting patterns of bug-fixing changes, we find the maximal pattern mining is
preferable in our case.

While there are few commonly used sequential pattern mining algorithms available [332], we use
recently proposed MG-FSM algorithm [333] that meets our requirement to specify constraints such as
pattern type (e.g., closed or maximal) and gap constraint between two successive nodes. Moreover,
the algorithm is capable in parallel running using map-reduce (Hadoop) functionality. We run the
tool by allowing no gap between two successive nodes to determine maximal patterns that have at
least 1,000 occurrences. The tool delivers total of 534 sequences that are dominant. We exclude
those patterns that do not have at least one block node to make sure containment of a node inside
another node. Finally, we have 385 nesting patterns that we use for clustering as follows.

220

14.4.2 Clustering of Nesting Patterns

At this step, we cluster similar types of nesting patterns in groups. Such clustering provides a conve-
nient way to examine the identified nesting patterns where developers commonly perform bug-fixing
changes.

14.4.2.1 Selection of clustering algorithm

To cluster nesting patterns, we use k-medoids [334] algorithm that is a variant of k-means [335]
algorithm. While both the k-means and k-medoids algorithms break a dataset up into groups, the
latter algorithm uses existing points in the dataset as cluster centroids. Moreover, k-medoids is
known for more robustness against noises and outliers compared to k-means [334]. In addition,
in our dataset k-means cannot be used directly because numerical operations, such as addition and
division, cannot be performed on two patterns, which consist of strings [333].

14.4.2.2 Determining optimal number of clusters

To determine the optimal number of clusters (i.e., k in k-medoids), we choose to use gap statis-
tic [336] method over other available options such as elbow and silhouettemethods. The reason why
we choose this method as it can be applied to any clustering method (i.e., k-medoids, k-means clus-
tering, and hierarchical clustering). Using the gap statistic, we find the number of optimal clusters
is 10 for our data.

14.4.2.3 Defining a distance function for k-medoids

We use the Longest Common Subsequence (LCS) based string metric to measure the distance be-
tween a pair of mined nesting patterns. We define the distance function for any two mined nesting
patterns S1 and S2 as follows.

DLCS(S1, S2) = 1 −
∣ LCS(S1, S2) ∣
max(∣ S1 ∣, ∣ S2 ∣)

Here, S1 and S2 are two finite sequences of nodes, ∣ LCS(S1, S2) ∣ is the length of the longest
common subsequence(s) of S1 and S2 and max(∣ S1 ∣, ∣ S2 ∣) is the length of the longest sequence
of S1 and S2.

We measure LCS metric by using the Python package python-string-similarity [337] that
implements the saidmetric. Then, to cluster nesting patterns, we run the open source implementation
of k-medoids algorithm provided in Python clustering package Pycluster 1.49 [338].

At this point, we have 10 clusters of nesting patterns. As the mechanism to generate cluster
is based on the names of the AST nodes (i.e., text based clustering), the clusters are required to

221

be interpreted/characterized by human experts to gain meaningful insights of the structures of the
nesting patterns in the clusters.

14.4.3 Characterization of the Clusters by Experts

The first two authors are presented with a listing of all the patterns in each cluster, and asked to
characterize those patterns in terms of their nodes’ hierarchies. By observing nodes’ hierarchies
of the patterns, they create two sets of nodes: (i) a set of low level nodes l, where l� {return,
expression, throw, variable declaration, assignment} and (ii) another set of high level
nodes ℎ defined in Section 14.3.3.2.

Each author aims to identify if a low label node’s block from l is contained in a high-level
node block from ℎ. Such an identification is represented as a pattern/cluster l block→ℎ block. For
example, if a block of return is located inside an if block, then the authors label that hierarchy
as return block→if block. If a higher-level node block ℎ1 is contained in another high-level node
block ℎ2, then that pattern is categorized as ‘Compound’ and represented as ℎ1 block→ℎ2 block. In a
similar fashion, deeper-levels’ containments/hierarchies can also be presented (see the third column
of the last row in Table 14.4).

Cohen’s kappa coefficient � [339] is used to measure agreement between two authors in charatc-
terizing patterns. � value 0.79 indicates high-level agreement on the characterization of the patterns
of the clusters. For each disagreement, authors discuss between them, and if necessary, they ver-
ify raw data to come to an agreement. Such discussions result in an unconventional pattern that
has chained method invocations (e.g., m1().m2().m3()) in a single block (see the fourth category
in Table 14.4). Finally, total of 37 meaningful clusters is identified in six categories: (i) IF-related
(IF), (ii) Try-Catch (TY-CA) (iii) Loop (LP) (iv) Chained Method Invocation (CMI) (v) Synchro-
nize (SYN) and (vi) Compound (COM) as presented in Table 14.4. As per the definition of the
category COM, the category SYN falls in the COM category, although the authors decide to cre-
ate a separate category for it. As all the patterns are ended with Method_declaration→Type_-

declaration→Compilation_unit, we truncate that for better presentation.

14.4.4 Mining Results

There are nine types of nesting patterns or clusters belong to the IF category that represents the
largest amount (40.72%) of the total number of patterns followed by the COM category that consists
of 15 types of patterns contribute to 31.82% of the total number of patterns. The categories TY-CA
and LP contribute 9.89% and 8.02% of total patterns, respectively, followed by the CMI category
that consists of 5.93% of total patterns. The number of patterns belongs to the SYN category is the
lowest (3.60%).

222

Table 14.4: Dominant Nesting Patterns That Host Bug-Fixing Edits
Category (Cat) Cluster/Nesting

Pattern (Pat) ID Mined Nesting Patterns # of Pat % of Pat Total per
Cat

% per
Cat

IF-related (IF)

01 if block→if block 27,306 10.93%

101,691 40.72%

02 Method invocation block→if block 19,430 7.78%
03 expression block→if block 16,838 6.74%
04 assignment block→if block 10,250 4.10%
05 variable declaration block→if

block
9,996 4.00%

06 throw block→if block 9,274 3.71%
07 return block→if block 4,923 1.97%
08 Method invocation block as expression

→if block
3,771 1.51%

09 Nested If (with/without else) 2,634 1.05%
10 block→try block 12,321 4.93%

24,709 9.89%
11 variable declaration block→catch

block
5,858 2.34%

Try-Catch 12 Method invocation block→try block 3,197 1.28%
(TY-CA) 13 throw block→try-catch block 1,248 0.49%

14 expression block →try block 1,048 0.41%
15 try block→try block 1,037 0.41%

Loop (LP)
16 variable declaration block→loop

block
10,202 4.08%

20,029 8.02%17 Method invocation block→loop block 6,001 2.40%
18 expression block→loop block 2,316 0.92%
19 assignment block→loop block 1,510 0.60%

Chained Method
Invocations
(CMI)

20 Chained method invocations 14,828 5.93% 14,828 5.93%

Synchronize (SYN) 21 if block→synchronized block 4,888 1.95% 8,986 3.60%22 loop block→synchronized block 4,098 1.64%

Compound (COM)

23 if block→loop block 27,583 11.04%

79,484 31.82%

24 if block→try block 13,328 5.33%
25 loop block→if block 6,457 2.58%
26 loop block→try block 4,818 1.92%
27 try block→if block 3,725 1.49%
28 expression block→loop block→if

block
3,687 1.47%

29 loop block→loop block 3,386 1.35%
30 try block→loop block 2,205 0.88%
31 if block→loop block→if block 2,141 0.85%
32 switch block→if block 1,413 0.56%
33 if block→loop block→try block 1,189 0.47%
34 if block→switch block 1,161 0.46%
35 switch block→loop block 1,145 0.45%
36 variable declaration block→if

block→loop block
1,118 0.44%

37 expression block→loop block→try
block

1,026 0.41%
Overall
Total 249,727 100%

223

By inspecting individual clusters, we find some interesting patterns that can not be identified
without considering hierarchies of NCSes. The 23rd cluster (i.e., if block→loop block) is the most
bug prone pattern as it experiences the highest number (27,583) bug-fix changes followed by the
first cluster if block→if block, which is slightly lower than the former cluster. Noticeable, the
number of bug-fix changes in a pattern l block→if block is always higher than a pattern l block→ℎ′
block, where ℎ′ = ℎ−if. For example, the number of occurrences of the pattern expression

block→if block is higher than the number of occurrences of the pattern expression block→loop

block. Recalling that l represents the set of low level nodes.
It is very interesting that throw blocks inside if blocks are more bug-prone than throw blocks

inside try-catch blocks. Although in Table 14.2 we see the number of changes in the category
Try (TY) is very low, the opposite result is observed in Table 14.4, where category related to Try
(TY-CA) experiences the second highest bug-fix changes among the categories of simple high-level
nodes. It means that pieces of code inside try-catch frequently experience bug-fix changes. A
similar observation is also applicable to the SYN category.

Surprisingly, only five clusters among 37 clusters contain three-levels containment (see clus-
ters 28, 31, 33, 36, and 37), which consist of only 3.64% of all patterns. The pattern expression

block→loop block→if block consists of almost 50% of all those three-levels patterns. No pattern
is found that contains more than three-levels containment.

14.5 Threats to Validity

Construct Validity. For the first three projects, we use the bug-fixing commits that are identified
by Ray et al. [232]. To collect those buggy commits, they used a technique similar to the approach
of Mockus and Votta [340]. A similar approach is also used for detecting bug-fixing commits of the
last two projects. There is a possibility that some portions of the bug-fixing commits may be general
commits (e.g., new feature, and improvement), thus, our data may contain some false positives.
Having said that, Ray et al. found 96% accuracy of their approach to collect those bug-fixing commits
that minimized the threat substantially.

To detect bug-fixing edit patterns, we have considered only nodes found before the occurrence of
the first block node (if available) in aNCS. Someonemay be skeptical in capabilities of detecting bug-
fixing edit patterns using such an approach. However, our approach is found successful in detecting
not only existing bug-fixing edit patterns but also new bug-fixing edit patterns from code bases. To
detect nesting patterns, we have identified maximal patterns instead of closed patterns of nested code
structures. Closed sequential pattern mining algorithms remove all patterns that exist within other
identified patterns and occur at the same support level, while maximal pattern mining removes sub-
patterns regardless of the support level. For our problem, themaximal patternmining is preferable, as
we have aimed to identify deeper nested code structures instead of sub-structures (i.e., sub-patterns).

224

To detect maximal patterns, we have allowed no gap between two nodes and only considered
those as patterns, which have at least 1,000 occurrences. To detect exact nested code structures,
it is obvious that setting “no gap between two nodes" is the best choice. Although the setting of
1,000 as the threshold can be criticized, we have found the setting was capable of retaining over 70%
bug-fixing transactions, while minimized human efforts in detecting meaningful clusters.

In detecting patterns, we have excluded any mov actions on nodes found in ASTs for bug-fixing
changes. Typically, an insertion or a deletion of a node caused moving of other nodes in an AST
where moved nodes remain unchanged. Thus, such unchanged nodes (i.e., mov actions) can be
ignored, although it is still a threat in detecting patterns related to mov action.

Internal Validity. The correctness of our analysis depends on both GumTree and GumtreeSpoon
tools, which are used to answer RQ2 and RQ1, respectively. The former tool outperforms the state-
of-the-art tool ChangeDistiller by maximizing the number of AST node mappings, minimizing
the edit script size, and detecting better move actions [319]. Moreover, ChangeDistiller works at
the statement level, preventing the detection of certain fine-grain patterns.

Similar to GumtreeSpoon, there is another tool ClDiff [320] also available. Between ClDiff

and GumtreeSpoon, we selected the latter tool for addressing RQ1, because, from a sample test run,
we revealed that ClDiff failed in distinguishing changes to method parameters at its concise level
outputs. But, for this work on bug-fixing edit patterns, this capability is very important for capturing
subtle changes in a code made for bug-fixing [318].

The library JGit [307] is used in our work to extract a buggy and its previous revisions. The
library is applied for a similar purpose in other studies [311, 312], which has brought confidence in
us to use that.

External Validity. Although our study includes a large number of revisions of five subject
systems, all the systems are open-source and written in Java. Thus, the findings from this work may
not be generalizable for industrial systems and source code written in languages other than Java.

Reliability. The methodology of this study including the procedures for data collection and
analysis are documented in this chapter. The subject systems being open-source, are freely acces-
sible while the tools GumTree, GumtreeSpoon, MG-FSM, and library JGit are also available online.
Therefore, it should be possible to replicate the study.

14.6 Related Work

14.6.1 Identifying bug-fixing edit patterns

Pan et al. [318] manually identified a set of 27 bug-fixing edit patterns (i.e., PanPatterns) by exploit-
ing textual differences between buggy and non-buggy programs. A similar approachwas also applied
by Yue et al. [328] to identify 11 bug-fixing edit patterns, however, they used clustering technique

225

to minimize manual efforts. Both studies are subject to few limitations: (i) obviously identifying
all possible bug-fixing edit patterns using manual effort is a daunting task, which arises possibility
of failure in discovering all types of bug-fixing edit patterns, and (ii) they used textual differences
between buggy and non-buggy programs to identify bug-fixing edit patterns, which is reported to be
limited in detecting bug-fixing edit patterns [319].

Despite few limitations, the study of Pan et al. is the most influential work (in terms of citation
numbers) in the related area and till now they have identified the highest number of bug-fixing edit
patterns in code bases. That is why we started our work by targeting this study to identify bug-fixing
edit patterns (while at the same timewe kept an eye on any new or unseen patterns). Instead of textual
difference, we have used a state-of-the-art AST based code differencing tool GumtreeSpoon and
developed a fully automated approach to detect bug-fixing edit patterns. Moreover, we have detected
37 bug-fixing edit patterns, which is the highest among all the studies [324, 326, 325, 318, 327]
carried out to identify bug-fixing edit patterns till date. In addition, we have identified four new
patterns in Constructor, Catch and Enum categories (see Table 14.3).

Kim et al. [324] also employed manual efforts to identify a set of 10 dominant bug-fixing edit
patterns (known as PAR templates). However, to collect bug-fixing patches they used Kenyon frame-
work [341] and clustered those patches using groums [342] to minimize human efforts. Again,
Sobreira et al. [327] manually analyzed only 395 patches collected from Defects4J [343] project
and identified 25 bug-fixing edit patterns. Although the latter study identified the second highest
number bug-fixing edit patterns after PanPatterns and identified few new patterns too, the work was
conducted on a very small dataset. Thus, additional studies are required to verify their newly identi-
fied bug-fixing edit patterns related to return, throw and wrap/unwarp-code using larger datasets
and our work can be considered such a work that verifies those new patterns are dominant in bug-
fixing changes. Moreover, they identified 33 instances of a pattern where throw blocks reside in if
blocks. The sixth cluster in Table 14.4 confirms such finding of their study. In addition, in a very
recent study, Tufano et al. [344] manually identified new patterns of only five instances related to
synchronized blocks’ additions and deletions. The question is “can we consider those as patterns
with only five instances?". Our study can answer this question as ‘yes’ by observing the 21st and
22nd clusters in the SYN category presented in Table 14.4.

To overcome the problems of manual approaches, automatic techniques are developed to iden-
tify bug-fixing edit patterns. Martinez and Monperrus [326] identified 20 bug-fixing edit patterns
using the AST based code differencing tool ChangeDistiller [322]. In our study, we have used
the tool GumtreeSpoon [345] developed based on GumTree [319], which is more accurate than
ChangeDistiller.

Soto et al. [346] conducted a study of bug-fixing commits in Java projects. Campos et al. [98]
characterized the prevalence of the five most common bug-fixing edit patterns related to IF category.
However, the studies of Soto et al. and Campos et al. limited the searching of bug-fixing edit

226

patterns within PAR templates and patterns identified by Pan et al., respectively. In our case, we
have remained open to identify any bug-fixing edit patterns exist in code bases. Osman et al. [312]
applied a semi-automated approach to identify five bug-fixing edit patterns. In contrast to their
approach, we have used a fully automated technique to identify 37 bug-fixing edit patterns.

Hanam et al. [347] developed the BugAID technique for discovering bug-fixing edit patterns
in JavaScript. Sudhakrishnan [348] identified 25 bug-fixing edit patterns in Verilog (a hardware
description language). Long and Rinard [349] learned a probabilistic model of correct patch from
bug-fixing changes of C code. In contrast to their studies, we have studied five Java projects. While
all the previously mentioned studies identified bug-fixing edit patterns, none of the studies conducted
any nested code structures analysis to detect nesting patterns, which is a novel contribution of our
study.

Few other studies [10, 350, 351] identified fixing patterns of violations of static good coding
principles identified by tools such as PMD [12], FindBugs [352] and Splint [14]. However, in our
study, we have studied real bug-fixing changes instead of coding principles’ violations.

14.6.2 Identifying code-change patterns

Fluri et al. [353] identified code-change patterns in three Java applications using ChangeDistiller.
Again, Martinez et al. [325] used ChangeDistiller to identify 18 code-change patterns. Molderez
et al. [354] developed an automated system to mine code-change histories to detect unknown repet-
itive code-changes. Kim et al. [355, 356] discovered logical and structural changes at or above
the method level. Breu and Zimmermann [357] extracted method call change patterns. Negara et
al. [358] developed the tool CodingTracker and discovered previously unknown 10 code-change
patterns. Kim et al. [316] developed the tool LSdiff that can group code-changes from systematic
change patterns. While all these studies analyzed code-change patterns, we have studied bug-fixing
changes by mining software repositories.

14.7 Summary

In this chapter, we have reported 38 bug-fixing edit patterns organized in 14 categories. This is the
highest number of bug-fixing edit patterns identified in a single study. Using sequential pattern min-
ing and clustering techniques, we have also exposed 37 new bug-fixing nesting patterns, which cap-
ture the locations of the bug-fixing edits within the nested code structure surrounding them. These
new set of nesting patterns is a novel contribution that adds a new dimension to our understanding
of bug-fixing patterns. The findings are derived from in-depth quantitative and qualitative analysis
of 4,653 buggy revisions of five software systems written in Java.

Four of the identified bug-fixing edit patterns are completely new. They are related to
constructor, catch and enum code constructs. The rest 34 of the identified bug-fixing edit

227

patterns confirm those reported in earlier studies. Among the 14 identified categories of bug-fixing
edit patterns, Method Call (MC), Method Declaration (MD), Local Variable (LV), If-related (IF),
Assignment (AS) and Return (RT) are the six most dominant categories that frequently host bug-
fixing edits. Four least dominant categories are Try (TY), Switch (SW), Catch (CA), and Enum (EN).
These findings are in accordance with the observations reported in other studies [318, 327, 326].

The new set of 37 nesting patterns is divided in six categories and organized in descending
order of their frequencies as follows: If-related (IF), Compound (COM), Loop (LP), Try-catch (TY-
CA), Synchronize (SYN), and Chain Method Invocation (CMI). Our analysis of the nesting patterns
reveals additional insights into bug-fix patterns. We have found that any nodes/blocks associated
with if blocks are the most bug-prone. The nesting pattern “if block inside loop block” experience
the highest number bug-fixing edits, followed by the “if block inside another if block” nesting
pattern. Moreover, for the first time in this study, we have discovered that nesting patterns in CMI
category experience a significant number of bug-fixing edits. Our analysis of the nesting patterns
also indicates nodes/blocks inside try-catch and synchronized are bug-prone.

The findings from this work deepen our understanding of bug-fix patterns. Both the bug-fixing
edit patterns and nesting patterns can also be useful in devising techniques for automated program
repair. For example, existing patch generation algorithms can incorporate patterns of bug-fix edits
and their locations in nested code structures to maximize the probability of success. Our future work
will explore these possibilities.

228

Chapter 15

Conclusion

Now-a-days, software systems are integral parts of most of the technologies that people use. Since
the increasing of uses of software systems, many instances of software failures have been causing
tremendous losses in lives and dollars. Software systems mainly fail due to software bugs (i.e.,
faults and security issues). The fight against software bugs exists since software existed. Although
many tools and techniques are devised and applied to identify, prevent, and minimizing software
bugs, a numerous numbers of software bugs remain undetected and shipped with software systems.
Thus, further studies are required to gain more insights into the causes of software bugs, devise new
techniques, and strengthen existing ones.

In this thesis, we take on a holistic approach to mine and analyze human affects expressed in
natural language texts (e.g., commit comments), and bug patterns (e.g., security vulnerabilities, code
smells, and bug-fixing patterns) identified in source code to gain actionable insights that can be
leveraged in minimizing bugs and improving quality and security of software systems.

The remaining of the chapter is organized as follows. In Section 15.1, we present a brief sum-
mary of the entire thesis. Section 15.2 points to the major contributions of this thesis. Section 15.3
discusses the limitations of this thesis. Finally, Section 15.4 concludes the chapter with future re-
search directions.

15.1 Summary

In this thesis, we have mined and analyzed human affects (i.e., sentiments and emotions) and bug
patterns (i.e., software bugs, code smells, and security vulnerabilities) from natural language textual
artifacts and source code, respectively of software systems to gain actionable insights that can help in
minimizing software bugs and improving software quality. To mine human developers’ sentiments
and emotions, we have developed three improved tools SentiStrength-SE, DEVA, and MarValous.
Those tools are the first of their types that are capable of detecting sentiments and emotions at differ-
ent levels in software engineering texts. While SentiStrength-SE is capable of detecting positivity
and negativity of sentiments, DEVA and MarValous can detect four distinct emotional states, such
as excitement, stress, depression, and relaxation. MarValous is developed using machine learning
and natural language processing techniques that has achieved higher accuracy compared to DEVA

that is developed using domain dictionaries and sets of heuristics. To evaluate DEVA, we have pro-

229

duced a benchmark dataset consisting of 1,795 JIRA issue comments manually annotated with the
four emotional states identified in those comments. We have also compared the performance of
SentiStrenghth-SE against its domain-specific counterparts and found that SentiStrenghth-SE
has shown consistently higher recall value compare to other tools [188, 359].

Using a state-of-the-art tool, we have studied the developers’ sentimental variations with respect
to the underlying development tasks (e.g., bug-fixing, new feature implementation), development
periods (i.e., days and times), teams’ and projects’ sizes. We expose opportunities to exploit de-
velopers’ sentiments for higher productivity and improved software quality. In a separate study, the
developers’ emotional variations in the buggy and non-buggy commits are captured to derive in-
sights into the role of sentimental variations of commits when they introduce new defects in source
code. We have also conducted a survey to identify more roles and applications of sentiments and
emotions in various software engineering activities.

While developers’ sentiments can be leveraged in minimizing software bugs, their malpractices
can lead to software bugs and degrade code quality. We have also mined and analyzed one of the
dominant malpractices, i.e, copy-paste practice of developers to identify its detrimental impacts in
software development. Recall that developers’ such practices of copy-paste actions result in code
clones. To gain insights into detrimental implications of code cloning, we have used static source
code analysis techniques to mine code smells and security vulnerabilities in cloned and non-clone
code. Our studies have revealed that the security vulnerabilities found in code clones have higher
severity of security risks compared to those in non-cloned code. However, the proportion (i.e., den-
sity) of vulnerabilities in clones and the non-cloned code have not had any significant difference. We
have also found no significant differences between the proportion of smelly code in code clones and
clone-free source code. Surprisingly, among the three categories (i.e., Type-1, pure Type-2, and pure
Type-3) of clones studied in our work, Type-1 clones are found to be the most smelly whereas pure
Type-3 are the least. These findings inform developers about the characteristics, impacts, and im-
plications of code cloning and problematic clones, which demand extra care. Such information also
helps developers to minimize spreading of smelly code and security vulnerabilities that eventually
can minimize software bugs and improve software quality.

We have also conducted an in-depth quantitative and qualitative analysis of buggy revisions in
understanding of the common patterns of bug-fixing changes. In the study, we have identified not
only existing but also new patterns of bug-fixing changes. We also identify nested bug-fix patterns,
which is a novel contribution of this study. The findings of the study can be leveraged for avoiding
common mistakes of developers that cause bugs and in developing automatic program repair tools.

230

15.2 Contributions

While we have provided the details of our research in the earlier chapters, and presented an abridged
summary of the entire thesis in Section 15.1, here we outline the major contributions of this thesis
as follows:

Detecting developers’ sentiments and emotions: We have first presented an in-depth qualitative
study to identify the difficulties in automated sentiment analysis in software engineering texts. We
develop a number of rules and a domain specific dictionary to address some of the identified difficul-
ties. Our new domain dictionary and the rules are integrated in SentiStrength-SE, a tool we have
developed for improved sentiment analysis in textual contents in a technical domain, especially in
software engineering. Our SentiStrength-SE is the first domain-specific sentiment analysis tool
especially designed for software engineering text.
For the first time, we have conducted a comparative study of the performances of three software
engineering domain-specific sentiment analysis tools (i.e., SentiStrength-SE, Senti4SD, and
SentiCR) on three technical datasets. Our study has not found any clear-cut winner among the
tools for sentiment analysis.
We have developed DEVA, a tool for automated emotion detection in software engineering texts. DEVA
is unique from existing tools as it is capable of detecting both valence and arousal in text andmapping
them for capturing individual emotional states (e.g., excitement, stress, depression, relaxation, and
neutrality). DEVA applies a lexical approach with an arousal dictionary and a valence dictionary, both
crafted for software engineering text. In addition, DEVA includes a set of heuristics, which help the
tool to maintain high accuracy. To evaluate DEVA, we have also constructed a ground-truth dataset
consisting of 1,795 JIRA issue comments.
To create an improved version of DEVA, we have developed another tool that is the first Machine
Learning (ML) based tool for improved detection of four emotional states excitation, stress, depres-
sion, and relaxation expressed in software engineering texts. We have evaluated nine supervised
ML algorithms incorporated in MarValous to measure their applicabilities in detecting the afore-
mentioned four emotional states. We have created a unified dataset by combining two different
benchmark datasets that can be reused in training and testing similar tools as we have done for our
ML-based tool.
Understanding developers’ sentiments: As software development is immensely affected by emo-
tions, we have conducted a quantitative empirical study to understand developers’ sentimental vari-
ations in different types of development activities (e.g., bug-fixing tasks) and development periods
(i.e., days and times), and impacts of sentiments on software artifacts (i.e., commit messages).

231

We have found that developers express significantly more positive sentiment than negative senti-
ments in commits for bug-fixing and refactoring tasks. Surprisingly, the opposite scenario is found
for new feature implementation tasks. We have also found significant positive correlation between
the lengths of commit messages and the sentiment expressed in them. We have also distinguished
a group of developers who express more positive sentiments at bug-fixing commit messages where
as another group shows more negative sentiment. Such findings can be utilized for effective tasks’
assignments and building cohesive teams.
In a separate study, we have quantitatively studied the sentimental variations in bug-introducing and
bug-fixing commit messages. We have found that both bug-introducing and bug-fixing commit mes-
sages have overall statistically significantly higher positive sentimental scores compared to negative
sentimental scores. We have also observed similar findings while analyzing sentimental scores in
bug-introducing and bug-fixing commit messages with respect to three working periods (e.g., be-
fore, after, and during working hours). An exception is found where no significant difference found
between positive and negative sentimental scores in bug-fixing commit messages posted during af-
ter work hours. Such variations of sentiments in commit messages have potential to be used in a
classifier to predict bugs while developers commit code.
Understanding impacts of developers copy-paste action: We have conducted a comparative study
on different types of clones and non-cloned code on the basis of their code smells, which may lead to
software defects, vulnerabilities, and other issues in future. We have found that Type-1 clones contain
the most amount of smelly code whereas pure Type-3 are the least. Moreover, we have identified
five types of code smells that appear more frequently in cloned code compared to non-cloned code.
We have also conducted a similar comparative study on different types of clones and non-cloned
code on the basis of their security vulnerabilities. The latter study has revealed that the security
vulnerabilities found in code clones have higher severity of security risks compared to those in non-
cloned code. However, the proportion (i.e., density) of vulnerabilities in clones and non-cloned
code does not have any significant difference. The findings from the previous two studies add to
our understanding of the characteristics and impacts of clones, which will be useful in clone-aware
software development with improved software security.
Understanding fixing patterns of software bugs: We have conducted an in-depth quantitative and
qualitative analysis over 4,653 buggy revisions of five software systems. Our study has identified 38
bug-fixing edit patterns and exposes 37 new patterns of nested code structures, which frequently host
the bug-fixing edits. While some of the edit patterns were reported in earlier studies, these nesting
patterns are new and were never targeted before. Findings of the study advance our understanding of
patterns and nested locations of software bug-fixings, i.e., bugs. An understanding of the common
patterns of bug-fixing changes is useful in several ways: (a) such knowledge can help developers in

232

proactively avoiding coding patterns that lead to bugs and (b) bug-fixing patterns can be exploited
in devising techniques for automatic program repair.

15.3 Limitations

We have tested our developed tools (i.e., SentiStrength-SE, DEVA, and MarValous) using limited
number of benchmark datasets, which is an obvious limitation of this thesis. The tools could be more
generalizable if we could use enough number of datasets to test the tools’ external validity. However,
this was not possible, since the number of benchmark datasets was limited during the development of
the tools [52, 110]. The detection of irony, sarcasm, and subtle sentiments and emotions expressed
in text is still a challenging task for the developed tools. Uncommon scenarios, such as the use
of attenuators (e.g., rather, lack) and neutralizers (e.g., however, although) [360] in sentences may
hamper the performance of the tools.

In general, the empirical studies presented in this dissertation might have suffered from the limi-
tations of the used tools and algorithms used for data collection and analysis. Although in the studies,
we included a large number of subject systems collected from diverse application domains and writ-
ten in different programming languages, those subject systems were mostly open-source. This can
be regarded as a limitation of this thesis. One may question, to what extent the findings and clone
management implications derived from those studies can be expected to hold for industrial software
systems.

15.4 Future Research Directions

1. Tool Development for Capturing Human Affects:
(a) Scopes for tool improvement: As we discussed in Chapter 4 and mentioned in Sec-

tion 15.3, to improve tools’ accuracies, the research community needs to develop ap-
proaches for detecting irony, sarcasm, and subtle sentiments and emotions expressed in
software engineering texts. We also need better techniques to handle negation, atten-
uators, and neutralizers in sentences that play critical roles in detecting human affects.
Although we have applied a technique to to separate natural language from technical
content (e.g., source code, stack-overflow and HTML elements), there is a scope for
improvement in that area.
Moreover, If a sentence expresses both positive and negative sentiments, the machine
learning based tools (e.g., Senti4SD [128], SentiCR [162], and EmoTxt [56]) can detect
either positive or negative sentiment, which is major limitation of those tools. Moreover,
those machine learning based tools can not detect intensity (i.e., level) of sentiments or

233

emotions. Thus, a machine learning based tool is required that can detect both sentiments
and their intensities from a sentence.

(b) New tool development: In technical and social forums developers often discuss around
software-specific entities (e.g., tools, libraries, and APIs) where developers provide their
valuable opinions on the various aspects (e.g., bug, performance, documentation, and
security) of the entities. Such opinions often sentimentally polarized (i.e., positive or
negative) that play a pivotal role to a considerable degree on the perceptions of other
developers about those entities. Such perceptions influence the choices that developers
make about whether and how they should use those entities. To automatically mine the
perceptions from developers’ discussions in a meaningful way, we need to combine three
things: (i) entity, is an object about what the opinion is expressed, (ii) aspect, is the prop-
erty of an entity, and (iii) affects (e.g., sentiments and emotions) expressed in opinions.
However, the research community lacks a tool that can combine those mentioned three
things.

2. Creation of Benchmark Dataset:

(a) A uniform guideline to annotate human affects: Studies [361, 189] found that hu-
mans are inconsistent in identifying affects in developers’ comments/discussions. This
demonstrates the need for standardized annotation schemes for the human annotators to
build a benchmark dataset, and then perform training on the tools to perform reliable
affect analysis in the software engineering domain.

(b) More benchmark dataset is required: To the best of our knowledge, there are only five
benchmark datasets [130, 52, 162, 362] that consist of only 11,233 labeled comments.
Among the labeled comments around 40% comments are neutral that express no affect.
The scarce of labeled data can cover only very limited expressions and thus can not
guarantee that tools trained and tested on those datasets will be generalized. To address
such a problem, we need to create more benchmark datasets that contain a higher number
of affective comments. We also need a publicly available large dataset where comments
will be annotated to identify entity, aspect, affect, and dependency among those to train
and test a tool for entity- and aspect-level affect analysis.

3. Future Application of Human Affects:

(a) Requirement analysis:
As discussed in Chapter 10, researchers [257, 258, 259, 261] mined sentimental opinions
of non-technical users to identify new requirements and various types of maintenance re-
quests of different applications. We can also mine and analyze developers’ sentimental

234

discussions and opinions to identify developers’ new requirements and maintenance re-
quests regarding various APIs, tools, and libraries they use.

(b) Predictive analysis: Garcia et al. [42] analyzed the relation between the emotions and
the activity of developers in the Open Source Software project Gentoo, and developed an
emotion based predictor to predict the risk of developers leaving the project. In future,
research community can plan to develop a predictor to predict whether the developers’
will stay in or leave their projects by analyzing developers’ affects in comments.

(c) Effective communication and collaboration: It would be very interesting to see the im-
pacts of affective communications on code review and pull-request based development.
More studies are required to analyze affects of discussions in issue repositories to see
their impacts on issue-fixings. Developing a tool to detect the tone/affects of an email
while sending that can contribute in effective communication and collaboration.

(d) Task Assignment: In Chapter 8, we have seen that developers have their preferences of
doing different types of jobs (e.g., bug-fixing and new feature development). In future,
Knowing such preferences of developers can be utilized to assign them their preferred
jobs. Moreover, we will verify whether task assignments based on preferences resulted
in high quality of end product or not.

4. Studies Required to DiscoverMore Bug-fixing Patterns: In Chapter 14, we have conducted
a study to identify bug-fix patterns in five software systems. The research community needs to
conduct large studies to identify more unknown bug-fix patterns to reap the full benefits of it
to develop approaches for automatic program repair. Moreover, studies should be conducted
by focusing on specific bug or issue types, such as security bugs, performance issues, and
client-side programming (e.g., Javascript) mistakes.

235

Bibliography

[1] G. Walia, J. Carver, Using error information to improve software quality, in: Proceedings of
the IEEE International Symposium on Software Reliability Engineering, 2013, pp. 107–107.

[2] F. Huang, B. Liu, Software defect prevention based on human error theories, Chinese Journal
of Aeronautics 30 (3) 1054–1070.

[3] D. Graziotin, X. Wang, P. Abrahamsson, Do feelings matter? On the correlation of affects
and the self-assessed productivity in software engineering, J. of Softw.: Evolution and Proc.
27 (7) (2015) 467–487.

[4] E. Guzman, B. Bruegge, Towards emotional awareness in software development teams, in:
Proceedings of the International Symposium on the Foundations of Software Engineering,
2013, pp. 671–674.

[5] D.Amalfitano, A. Fasolino, P. Tramontana, B. Ta, A.Memon,Mobiguitar: Automatedmodel-
based testing of mobile apps, IEEE Software 32 (5) (2015) 53–59.

[6] D. Amalfitano, A. Fasolino, P. Tramontana, S. Carmine, A. Memon, Using gui ripping for
automated testing of android applications, in: Proceedings of the International Conference on
Automated Software Engineering, 2012, pp. 258–261.

[7] V. Garousi, Empirical analysis of a genetic algorithm-based stress test technique, in: Pro-
ceedings of the 10th annual conference on Genetic and evolutionary computation, 2008, pp.
1743–1750.

[8] Z. Jiang, A. Hassan, A survey on load testing of large-scale software systems, IEEE Transac-
tions on Software Engineering 41 (11) (2015) 1091–1117.

[9] Flawfinder - C/C++ Source Code Analyzer, http://www.dwheeler.com/flawfinder/, July 2017.
[10] K. Liu, D. Kim, T. Bissyande, S. Yoo, Y. Traon, Mining fix patterns for findbugs violations,

IEEE Transactions on Software Engineering (2018) 1–24.
[11] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: a multilinguistic token-based code clone de-

tection system for large scale source code, IEEE Trans. Softw. Eng. 28 (7) (2002) 654–670.
[12] PMD - Source Code Analyzer, http://pmd.sourceforge.net, July 2017.
[13] Cppcheck - A tool for static C/C++ code analysis, http://cppcheck.sourceforge.net, July 2017.
[14] SPLINT - Secure Programming LINT, http://www.splint.org, July 2017.
[15] G. Baah, A. Podgurski, M. Harrold, Causal inference for statistical fault localization, in: Pro-

ceedings of the International symposium on Software testing and analysis, 2010, pp. 73–84.
[16] E. Alves, M. Gligoric, V. Jagannath, M. d’Amorim, Fault-localization using dynamic slicing

and change impact analysis, in: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 2011, pp. 520–523.

236

[17] R. Abreu, P. Zoeteweij, R. Golsteijn, A. Gemund, A practical evaluation of spectrum-based
fault localization, Journal of Systems and Software 82 (11) (2009) 1780–1792.

[18] R. Abreu, A. Gonzalez, P. Zoeteweij, A.Gemund, Automatic software fault localization using
generic program invariants, in: Proceedings of the ACM Symposium in Applied Computing,
2008, pp. 712–717.

[19] M. Martinez, M. Monperrus, Astor: A program repair library for java, in: Proceedings of the
International Symposium on Software Testing and Analysis, 2016, pp. 441–444.

[20] Y. Xiong, J. Wang, R. Yan, J. Z. S. Han, G. H. L. Zhang, Precise condition synthesis for pro-
gram repair, in: Proceedings of the Proceedings of the International Conference on Software
Engineering, 2017, pp. 416–426.

[21] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, X. Chen, Shaping program repair space with exist-
ing patches and similar code, in: Proceedings of the International Symposium on Software
Testing and Analysis, 2018, pp. 298–309.

[22] B. Liblit, A. Aiken, A. Zheng, M. Jordan, Bug isolation via remote program sampling, in:
Proceedings of the SIGPLAN Conference on Programming Language Design and Implemen-
tation, 2003, pp. 141–154.

[23] M. Harman, Automated patching techniques: the fix is in: technical perspective, Communi-
cations of the ACM 53 (5) (2010) 108–108.

[24] J. Reason, Human error: models and management, West J Med. 172 (6) (2000) 393–396.
[25] F. Rahman, C. Bird, P. Devanbu, Clones: what is that smell?, in: Proceedings of the Interna-

tional Conference on Mining Software Repositories, 2010, pp. 72–81.
[26] M. Choudhury, S. Counts, Understanding affect in the workplace via social media, in: Pro-

ceedings of the Computer supported cooperative work, 2013, pp. 303–316.
[27] R. Feldt, L. Angelis, R. Torkara, M. Samuelssonc, Links between the personalities, views and

attitudes of software engineers, Information and Software Technology 52 (6) (2010) 611–624.
[28] R. Palacios, A. López, A. Crespo, P. Acosta, A study of emotions in requirements engineering,

Organizational, Business, and Technological Aspects of the Knowledge Society 112 (2010)
1–7.

[29] P. Dewan, Towards emotion-based collaborative software engineering, in: Proceedings of the
International Workshop on Cooperative and Human Aspects of Software Engineering, 2015,
pp. 109–112.

[30] P. Denning, Moods, Communications of the ACM 55 (12) (2012) 33–35.
[31] M. Wrobel, Emotions in the software development process, in: Proceedings of the Interna-

tional Conference on Human System Interaction, 2013, pp. 518–523.
[32] D. McDuff, A. Karlson, A. Kapoor, A. Roseway, M. Czerwinski, Affectaura: an intelligent

system for emotional memory, in: Proceedings of the Conference on Human Factors in Com-
puting Systems, 2012, pp. 849–858.

237

[33] G. Destefanis, M. Ortu, S. Counsell, M.Marchesi, R. Tonelli, Software development: do good
manners matter?, PeerJ PrePrints (2015) 1–17.

[34] E. Guzman, D. Azócar, Y. Li, Sentiment analysis of commit comments in github: An empir-
ical study, in: Proceedings of the International Conference on Mining Software Repositories,
2014, pp. 352–355.

[35] F. Calefato, F. Lanubile, Affective trust as a predictor of successful collaboration in distributed
software projects, in: Proceedings of the International Workshop on Emotion Awareness in
Software Engineering, 2016, pp. 3–5.

[36] S. Chowdhury, A. Hindle, Characterizing energy-aware software projects: Are they different?,
in: Proceedings of the International Conference on Mining Software Repositories, 2016, pp.
508–511.

[37] M. Islam, M. Zibran, Exploration and exploitation of developers’ sentimental variations in
software engineering, International Journal of Software Innovation 4 (4) (2016) 35–55.

[38] M. Islam, M. Zibran, Towards understanding and exploiting developers’ emotional variations
in software engineering, in: Proceedings of the International Conference on Software Engi-
neering Research Management and Applications, 2016, pp. 185–192.

[39] M. Mantyla, B. Adams, G. Destefanis, D. Graziotin, M. Ortu, Mining valence, arousal, and
dominance – possibilities for detecting burnout and productivity, in: Proceedings of the In-
ternational Conference on Mining Software Repositories, 2016, pp. 247–258.

[40] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, R. Tonelli, Are bullies more
productive? Empirical study of affectiveness vs. issue fixing time, in: Proceedings of the
International Conference on Mining Software Repositories, 2015, pp. 303–313.

[41] D. Pletea, B. Vasilescu, A. Serebrenik, Security and emotion: Sentiment analysis of security
discussions on github, in: Proceedings of the International Conference on Mining Software
Repositories, 2014, pp. 348–351.

[42] D. Garcia, M. Zanetti, F. Schweitzer, The role of emotions in contributors activity: A case
study on the gentoo community, in: Proceedings of the International Conference on Cloud
and Green Computing, 2013, pp. 410–417.

[43] P. Tourani, Y. Jiang, B. Adams, Monitoring sentiment in open source mailing lists – ex-
ploratory study on the apache ecosystem, in: Proceedings of the Conference of the Centre
for Advanced Studies on Collaborative Research, 2014, pp. 34–44.

[44] N. Novielli, F. Calefato, F. Lanubile, Towards discovering the role of emotions in stack over-
flow, in: Proceedings of the International Workshop on Social Software Engineering, 2014,
pp. 33–40.

[45] M. Thelwall, K. Buckley, G. Paltoglou, Sentiment strength detection for the social web, Jour-
nal of the American Society for Info. Science and Tech. 63(1) (2012) 163–173.

[46] NLTK, Natural Language Toolkit for Sentiment Analysis,
238

http://www.nltk.org/api/nltk.sentiment.html, last access: March 2019.
[47] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, C. Potts, Recursive deep

models for semantic compositionality over a sentiment treebank, in: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, 2013, pp. 1631–1641.

[48] R. Jongeling, S. Datta, A. Serebrenik, Choosing your weapons: On sentiment analysis tools
for software engineering research, in: Proceedings of the International Conference on Soft-
ware Maintenance and Evolution, 2015, pp. 531–535.

[49] N. Novielli, List of Tools Used in Software Engineering to Detect Emotions,
http://www.slideshare.net/nolli82/the-challenges-of-affect-detection-in-the-social-
programmer-ecosystem, last access: March 2019.

[50] N. Novielli, F. Calefato, F. Lanubile, The challenges of sentiment detection in the social pro-
grammer ecosystem, in: Proceedings of the International Workshop on Social Software En-
gineering, 2015, pp. 33–40.

[51] P. Tourani, B. Adams, The impact of human discussions on just-in-time quality assurance, in:
Proceedings of the International Conference on Software Analysis, Evolution, and Reengi-
neering, 2016, pp. 189–200.

[52] M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. Marchesi, B. Adams, The emo-
tional side of software developers in JIRA, in: Proceedings of the International Conference
on Mining Software Repositories, 2016, pp. 480–483.

[53] V. Sinha, A. Lazar, B. Sahrif, Analyzing developer sentiment in commit logs, in: Proceedings
of the International Conference on Mining Software Repositories, 2016, pp. 520–523.

[54] SentiStregth-SE, Sentiment Analysis Tool, freely available for download,
http://laser.cs.uno.edu/Projects/Projects.html, last access: March 2019.

[55] F. Calefato, F. Lanubile, F. Maiorano, N. Novielli, Sentiment polarity detection for software
development, Empirical Software Engineering (2017) 352–1382.

[56] F. Calefato, F. Lanubile, N. Novielli, Emotxt: A toolkit for emotion recognition from text, in:
Proceedings of the Seventh International Conference on Affective Computing and Intelligent
Interaction Workshops and Demos, 2017.

[57] M. Islam, M. Zibran, A comparison of dictionary building methods for sentiment analysis in
software engineering text, in: Proceedings of the ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2017, pp. 478–479.

[58] M. Islam, M. Zibran, Deva: Sensing emotions in the valence arousal space in software engi-
neering texmotions in the valence arousal space in software engineering text, in: proceedings
of the 33rd ACM/SIGAPP SymposiumOnApplied Computing (SAC), 2018, pp. 1536 –1543.

[59] URL for downloading DEVA and Benchmark Dataset,
https://figshare.com/s/277026f0686f7685b79e, verified: Dec 2017.

[60] D. Graziotin, X. Wang, P. Abrahamsson, Are happy developers more productive? The corre-
239

lation of affective states of software developers and their self-assessed productivity, in: Pro-
ceedings of the International Conference on Product-Focused Software Process Improvement,
2013, pp. 50–64.

[61] I. Khan, W. Brinkman, R. Hierons, Do moods affect programmers’ debug performance?,
Cogn. Technol. Work 13 (4) (2010) 245–258.

[62] T. Lesiuk, The effect of music listening on work performance, Psychology of Music 33 (2)
(2005) 173–191.

[63] A. Murgia, P. Tourani, B. Adams, M. Ortu, Do developers feel emotions? An exploratory
analysis of emotions in software artifacts, in: Proceedings of the International Conference on
Mining Software Repositories, 2014, pp. 261–271.

[64] T. Shaw, The emotions of systems developers: an empirical study of affective events theory,
in: SIGMIS CPR, 2004, pp. 124–126.

[65] M. Islam, M. Zibran, Sentiment analysis of software bug related commit messages, in: Pro-
ceedings of the 27th International Conference on Software Engineering andData Engineering,
2018.

[66] M. Rieger, Effective clone detection without language barriers, PhD thesis, Institut fur̈ Infor-
matik und angewandte Mathematik, Germany (2005).

[67] C. Roy, J. Cordy, A survey on software clone detection research, Tech Report TR 2007-541,
Queens University, Canada (2007).

[68] M. Zibran, R. Saha, M. Asaduzzaman, C. Roy, Analyzing and forecasting near-miss clones in
evolving software: An empirical study, in: Proceedings of the IEEE International Conference
on Engineering of Complex Computer Systems, 2011, pp. 295–304.

[69] M. Rieger, S. Ducasse, M. Lanza, Insights into system-wide code duplication, in: Proceedings
of the Working Conference on Reverse Engineering, 2004, pp. 100–109.

[70] S. Ducasse, M. Rieger, S. Demeyer, A language independent approach for detecting duplicated
code, in: Proceedings of the IEEE International Conference on Software Maintenance, 1999,
pp. 109 –118.

[71] C. Kapser, M. Godfrey, “Cloning considered harmful” considered harmful: patterns of
cloning in software, Empirical Software Engineering 13 (2008) 645–692.

[72] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, Do code clones matter?, in: Proceed-
ings of the International Conference on Software Engineering, 2009, pp. 485–495.

[73] A. Lozano, M. Wermelinger, Assessing the effect of clones on changeability, in: Proceedings
of the IEEE International Conference on Software Maintenance, 2008, pp. 227–236.

[74] M. Fowler, K. Beck, J.Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of
Existing Code, Addison Wesley, 1999.

[75] M. Zibran, C. Roy, Conflict-aware optimal scheduling of code clone refactoring, IET Software
7 (3) (2013) 167–186.

240

[76] R. T. Institute, The economic impacts of inadequate infrastructure of software testing, RTI
Project Report 7007.011, National Inst. of Standards and Tech. (2002).

[77] I. Baxter, M. Conradt, J. Cordy, R. Koschke, Software clone management towards industrial
application (dagstuhl seminar 12071), DagStuhl Report 2 (2) (2012) 21–57.

[78] N. Göde, J. Harder, Clone stability, in: Proceedings of the European Conference on Software
Maintenance and Reengineering, 2011, pp. 65–74.

[79] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto, Is duplicate code more frequently modified than
non-duplicate code in softw. evolution?: an emp. study on open source softw., in: IWPSE-
EVOL, 2010, pp. 73–82.

[80] J. Krinke, Is cloned code more stable than non-cloned code?, in: Proceedings of the Proceed-
ings of the IEEE International Working Conference on Source Code Analysis and Manipula-
tion, 2008, pp. 57–66.

[81] J. Krinke, Is cloned code older than non-cloned code?, in: Proceedings of the International
Workshop on Software Clone, 2011, pp. 28–33.

[82] M. Mondal, C. Roy, K. Schneider, An empirical study on clone stability, ACMApplied Com-
puting Review 12 (3) (2012) 20–36.

[83] L. Barbour, F. Khomh, Y. Zou, Late propagation in software clones, in: Proceedings of the
IEEE International Conference on Software Maintenance, 2011, pp. 273–282.

[84] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park, E. Lee, Experience
of finding inconsistently-changed bugs in code clones of mobile software, in: Proceedings of
the International Workshop on Software Clone, 2012, pp. 94–95.

[85] L. Jiang, Z. Su, E. Chiu, Context-based detection of clone-related bugs, in: Proceedings of
theACMSIGSOFT International Symposium on Foundations of Software Engineering, 2007,
pp. 55–64.

[86] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, Static bug detection through analysis
of inconsistent clones, in: TESO, 2008, pp. 443–446.

[87] J. Li, M. Ernst, CBCD: Cloned buggy code detector, in: Proceedings of the International
Conference on Software Engineering, 2012, pp. 310–320.

[88] G. Selim, L. Barbour, W. Shang, B. Adams, A. Hassan, Y. Zou, Studying the impact of clones
on software defects, in: Proceedings of the Working Conference on Reverse Engineering,
2010, pp. 13–21.

[89] S. Xie, F. Khomh, Y. Zou, An empirical study of the fault-proneness of clone mutation and
clone migration, in: Proceedings of the International Conference on Mining Software Repos-
itories, 2013, pp. 149–158.

[90] N. Göde, R. Koschke, Frequency and risks of changes to clones, in: Proceedings of the Inter-
national Conference on Software Engineering, 2011, pp. 311–320.

[91] A. Lozano, M. Wermelinger, B. Nuseibeh, Evaluating the harmfulness of cloning: A change
241

based exp., in: Proceedings of the International Conference onMining Software Repositories,
2007, pp. 18–21.

[92] J. Jang, A. Agrawal, D. Brumley, Redebug: Finding unpatched code clones in entire os dis-
tributions, in: SSP, 2012, pp. 48–62.

[93] H. Li, H. Kwon, J. Kwon, H. Lee, CLORIFI: software vulnerability discovery using code
clone verification, Concurrency and Computation: Practice and Experience 28 (6) (2015)
1900–1917.

[94] R. Tonder, C. Goues, Defending against the attack of the micro-clones, in: Proceedings of the
International Conference on Program Comprehension, 2016, pp. 1–4.

[95] M. Islam, M. Zibran, A comparative study on vulnerabilities in categories of clones and non-
cloned code, in: Proceedings of the International Workshop on Software Clone, 2016, pp.
8–14.

[96] M. Islam, M. Zibran, A. Nagpal, Security vulnerabilities in categories of clones and non-
cloned code: An empirical study, in: Proceedings of the International Symposium on Empir-
ical Software Engineering and Measurement, 2017, pp. 20–29.

[97] M. Islam, M. Zibran, On the characteristics of buggy code clones: A code quality perspective,
in: Proceedings of the International Workshop on Software Clones, 2018, pp. 23 – 29.

[98] E. Campos, M. Maia, Common bug-fix patterns: A large-scale observational study, in: Pro-
ceedings of the Empirical Software Enginerign and Measurement, 2017, pp. 404–413.

[99] Merriam-Webster Online, http:// www.merriam-webster.com/dictionary/, last access: March
2019.

[100] P. Lang, M. Greenwald, M. Bradley, A. Hamm, Looking at pictures: A ective, facial, visceral,
and behavioral reactions, Psychophysiology 30 (3) (1993) 261–273.

[101] M.Munezero, C.Montero, Are they different? affect, feeling, emotion, sentiment, and opinion
detection in text, IEEE Transaction on Affective Computing 5 (2) (2014) 101–111.

[102] E. Shouse, Feeling, emotion, affect, Journal of Media and Culture 8 (6) (2005) NA.
[103] R. Lane, P. Chua, R. Dolan, Common e ects of emotional valence, arousal and attention on

neural activation during visual processing of pictures, Neuropsychologia 37 (9) (1999) 989–
997.

[104] M. Zajenkowski, E. Goryoska, M. Winiewski, Variability of the relationship between person-
ality and mood, Personality and Individual Differences 52 (7) (2012) 858–861.

[105] M. Hasan, E. Rundensteiner, E. Agu, Emotex: Detecting emotions in twitter messages, in:
Proceedings of the IEEE/ACM International Conference on Automated Software Engineer-
ing, 2014, pp. 27–31.

[106] J. Russell, A. Mehrabian, Evidence for a three-factor theory of emotions, Journal of Research
in Personality 11 (3) (1977) 273–294.

[107] R. Palacios, C. Lumbreras, P. Acosta, A. Acosta, Using the affect grid to measure emotions
242

in software requirements engineering, Journal of Universal Computer Science 17 (9) (2011)
1281–1298.

[108] Common Weakness Enumeration, https://cwe.mitre.org, July 2017.
[109] M. Islam, M. Zibran, SentiStrength-SE: Exploiting domain specificity for improved sentiment

analysis in software engineering text, Journal of System and Software 145 (2018) 125–146.
[110] M. Islam, M. Zibran, Leveraging automated sentiment analysis in software engineering, in:

Proceedings of the Mining Software Repositories, 2017, pp. 203–214.
[111] T. Ahmed, A. Bosu, A. Iqbal, S. Rahimi, Senticr: a customized sentiment analysis tool for

code review interactions, in: Proceedings of the IEEE/ACM International Conference on Au-
tomated Software Engineering, 2017, pp. 106–111.

[112] J. Bross, H. Ehrig, Automatic construction of domain and aspect specific sentiment lexicons
for customer review mining, in: CIKM, 2013, pp. 1077–1086.

[113] H. Hammer, A. Yazidi, A. Bai, P. Engelstad, Building domain specific sentiment lexicons
combining information from many sentiment lexicons and a domain specific corpus, in: Pro-
ceedings of the Computer Science and Its Applications, 2015, pp. 205–216.

[114] M. Kim, J. Kim, C. Juing, Performance evaluation of domain-specific sentiment dictionary
construction methods for opinion mining, Intl. J. of Database Theory and Application 9 (8)
(2016) 257–268.

[115] L. Young, S. Soroka, Affective news: The automated coding of sentiment in political texts,
Political Communication 29 (2012) 205–231.

[116] A. Reagan, B. Tivnan, J. J. Williams, C. Danforth, P. Dodds, Benchmarking senti. anal. meth-
ods for large-scale texts: A case for using continuum-scored words and word shift graphs,
ArXiv e-printsarXiv:1512.00531.

[117] A. Pablos, M. Cuadros, G. Rigau, A comparison of domain-basedword polarity estimation us-
ing different word embeddings, in: Proceedings of the International Conference on Language
Resources and Evaluation, 2016, pp. 54–60.

[118] F. Nielsen, A new ANEW: Evaluation of a word list for sentiment analysis in microblogs,
in: Proceedings of the ESWC 2011 Workshop on ’Making Sense of Microposts’, 2011, pp.
93–98.

[119] T. Wilson, J. Wiebe, P. Hoffmann., Recognizing contextual polarity: An exploration of fea-
tures for phrase-level sentiment analysis, Journal of Computational Linguistics 35 (3) (2009)
399–433.

[120] C. Hutto, E. Gilbert, Vader: A parsimonious rule-based model for sentiment analysis of social
media text, in: Proceedings of the Proceedings of the Eighth International AAAI Conference
on Weblogs and Social Media, 2014, pp. 216–225.

[121] S. Muller, T. Fritz, Stuck and frustrated or in flow and happy: Sensing developers’ emotions
and progress, in: Proceedings of the International Conference on Software Engineering, 2015,

243

http://arxiv.org/abs/1512.00531

pp. 688–699.
[122] M. Thelwall, Tensistrength: stress and relaxation magnitude detection for social media texts,

Information Processing and Management 53 (1) (2017) 106–121.
[123] A. Bifet, E. Frank, Sentiment knowledge discovery in twitter streaming data, in: Proceedings

of the International Conference on Discovery Science, 2010, pp. 1–15.
[124] M. Pennacchiotti, A. P. Democrats, Republicans and starbucks afficionados: User classifica-

tion in twitter, in: Proceedings of the International Conference on Knowledge Discovery and
Data Mining, 2011, pp. 430–438.

[125] B. Panga, L. Lee, S. Vaithyanathan, Thumbs up? Sentiment classification using machine
learning techniques, in: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2002, pp. 79–86.

[126] Y. Wan, D. Gao, An ensemble sentiment classification system of twitter data for airline ser-
vices analysis, in: Proceedings of the IEEE 15th International Conference on Data Mining
Workshops, 2015, pp. 1318–1325.

[127] D. Alboaneen, H. Tianfield, Y. Zhang, Sentiment analysis via multi-layer perceptron trained
by meta-heuristic optimisation, in: Proceedings of the IEEE International Conference on Big
Data, 2017, pp. 4630–4635.

[128] F. Calefato, F. Lanubile, F. Maiorano, N. Novielli, Sentiment polarity detection for software
development, Empirical Software Engineering (2017) 1–31.

[129] M. Islam, M. Zibran, Deva: Sensing emotions in the valence arousal space in software engi-
neering text, in: Proceedings of the The ACM/SIGAPP Symposium On Applied Computing,
2018, pp. 1536–1543.

[130] N. Novielli, F. Calefato, F. Lanubile, A gold standard for emotion annotation in stack overflow,
in: Proceedings of the International Conference on Mining Software Repositories, 2018, pp.
14–17.

[131] R. Dyer, H. Nguyen, H. Rajan, T. Nguyen, Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories, in: Proceedings of the International Conference on
Software Engineering, 2013, pp. 422–431.

[132] F. Ramsey, D. Schafer, The Statistical Sleuth, 2nd Edition, Duxbury-Thomson Learning,
2002.

[133] A. Ciurumelea, A. Schaufelbuhl, S. Panichella, H. Gall, Analyzing reviews and code ofmobile
apps for better release planning, in: Proceedings of the IEEE International Conference on
Software Analysis, Evolution and Reengineering, 2017, pp. 91–102.

[134] F. Calefato, F. Lanubile, M. Marasciulo, N. Novielli, Mining successful answers in stack
overflow, in: Proceedings of the International Conference on Mining Software Repositories,
2015, pp. 430–433.

[135] F. Calefato, F. Lanubile, N. Novielli, Moving to stack overflow: Best-answer prediction in
244

legacy developer forums, in: Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement, 2016.

[136] J. Jiarpakdee, A. Ihara, K. Matsumoto, Understanding question quality through affective as-
pect in Q&A site, in: Proceedings of the International Workshop on Emotion Awareness in
Software Engineering, 2016, pp. 12–17.

[137] G. Yang, S. Baek, J. Lee, B. Lee, Analyzing emotion words to predict severity of software
bugs: A case study of open source projects, in: Proceedings of the The ACM/SIGAPP Sym-
posium On Applied Computing, 2017, pp. 1280–1287.

[138] C. Roy, J. Cordy, NICAD: Accurate detection of near-miss intentional clones using flexible
pretty-printing and code normalization, in: Proceedings of the International Conference on
Program Comprehension, 2008, pp. 172–181.

[139] SourceMeter: Static source code analysis solution for Java, C/C++, C#, Python and RPG,
https://www.sourcemeter.com, verified: Jan 2018.

[140] M. Wrobel, Towards the participant observation of emotions in software development teams,
in: Proceedings of the Federated Conference on Computer Science and Information Systems,
2016, pp. 1545–1548.

[141] Gold Standard Dataset Labeled with Manually Annotated Emotions,
http://ansymore.uantwerpen.be/system/files/uploads/artefacts/alessandro/
MSR16/archive3.zip, last access: March 2019.

[142] R. Jongeling, P. Sarkar, S. Datta, A. Serebrenik, On negative results when using sentiment
analysis tools for software engineering research, Empirical Software Engineering (2017) 1–
42.

[143] N. Godbole, M. Srinivasaiah, S. Skiena, Large-scale sentiment analysis for news and blogs,
in: Procceding of the First International AAAI Conference on Weblogs and Social Media,
2007.

[144] M. Hu, B. Liu, Mining and summarizing customer reviews, in: Proceedings of the Interna-
tional Conference on Knowledge Discovery and Data Mining, 2004, pp. 168–177.

[145] G. Qiu, B. Liu, J. Bu, C. Chen, Expanding domain sentiment lexicon through double propa-
gation., in: Proceedings of the International Jont Conference on Artifical Intelligence, 2009,
pp. 1199–1204.

[146] StanfordCoreNLP, Stanford Core NLP Sentiment Annotator,
http://stanfordnlp.github.io/CoreNLP/sentiment.html, last access: March 2019.

[147] E. Riloff, A. Qadir, P. Surve, L. Silva, N. Gilbert, R. Huang, Sarcasm as contrast between
a positive sentiment and negative situation, in: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2013, pp. 704–714.

[148] Q. Gan, Y. Yu, Restaurant rating: Industrial standard and word-of-mouth a text mining and
multi-dimensional sentiment analysis, in: Proceedings of the Hawaii International Conference

245

on System Sciences, 2015, pp. 1332–1340.
[149] F. Koto, M. Adriani, A comparative study on twitter sentiment analysis: Which features are

good?, in: Proceedings of the International Conference on Applications of Natural Language
to Information Systems, 2015, pp. 453–457.

[150] J. Fleiss, Measuring nominal scale agreement among many raters, Psychological bulletin
76 (5) (1971) 378.

[151] N. Bettenburg, B. Adams, A. Hassan, A lightweight approach to uncover technical informa-
tion in unstructured data, in: Proceedings of the International Conference of Program Com-
prehension, 2011, pp. 185–188.

[152] Jazzy- The Java Open Source Spell Checker, http://jazzy.sourceforge.net, last access: March
2019.

[153] T. Dietterich, Approximate statistical tests for comparing supervised classification learning
algorithms, Journal of Neural Computation 10 (7) (1998) 1895–1923.

[154] M. Rahman, C. Roy, I. Keivanloo, Recommending insightful comments for source code using
crowdsourced knowledge, in: Proceedings of the InternationalWorkingConference on Source
Code Analysis and Manipulation, 2015, pp. 81–90.

[155] V. Sinha, Sentiment analysis on java source code in large sofyware repositories, Master’s
thesis, Youngstown State University, USA (2016).

[156] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, C. Potts, Recursive deep
models for semantic compositionality over a sentiment treebank, in: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, 2013, pp. 1631–1642.

[157] SentiStregth-SE, Automatic Domain Independent Tool for Sentiment Analysis,
http://sentistrength.wlv.ac.uk, last access: March 2019.

[158] S. Baccianella, A. Esuli, F. Sebastiani, Sentiwordnet 3.0: An enhanced lexical resource for
sentiment analysis and opinion mining, in: Procceding of the International Conference on
Language Resources and Evaluation, 2010, pp. 2200–2204.

[159] M. G. L. Gatti, M. Turchi, Sentiwords: Deriving a high precision and high coverage lexicon
for sentiment analysis, IEEE Transactions on Affective Computing 7 (4) (2016) 409–421.

[160] A. Warriner, V. Kuperman, M. Brysbaert, Norms of valence, arousal, and dominance for
13,915 english lemmas, Behavior research methods 45 (4) (2013) 1191–1207.

[161] M. Mäntylä, N. Novielli, F. Lanubile, M. Claes, M. Kuutila, Bootstrapping a lexicon for emo-
tional arousal in software engineering, in: Proceedings of the International Conference on
Mining Software Repositories, 2017, pp. 1–5.

[162] T. Ahmed, A. Bosu, A. Iqbal, S. Rahimi, Senticr: a customized sentiment analysis tool for
code review interactions, in: Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, 2017, pp. 106–111.

[163] C. Blaz, K. Becker, Sentiment analysis in tickets for it support, in: Proceedings of the Inter-
246

national Conference on Mining Software Repositories, 2016, pp. 235–246.
[164] A. Rousinopoulos, G. Robles, J. Barahona, Sentiment analysis of free/open source developers:

preliminary findings from a case study, Revista Eletronica de Sistemas de Informacao 13 (2)
(2014) 1–21.

[165] E. Dragut, C. Yu, P. Sistla, W. Meng, Construction of a sentimental word dictionary, in: Pro-
ceedings of the International Conference on Information and Knowledge Management, 2010,
pp. 1761–1764.

[166] L. Passaro, L. Pollacci, A. Lenci, Item: A vector space model to bootstrap an italian emo-
tive lexicon, in: Proceedings of the Second Italian Conference on Computational Linguistics
CLiC-it, 2015, pp. 215–220.

[167] M. Host, B. Regnell, C. Wohlin, Using students as subjects: A comparative study of students
and professionals in lead-time impact assessment, Empirical Software Engineering 5 (3).

[168] S. Panichella, A. Sorbo, E. Guzman, C. Visaggio, G. Canfora, H. Gall, How can i improve my
app? Classifying user reviews for software maintenance and evolutio, in: Proceedings of the
IEEE International Conference on Software Maintenance and Evolution, 2015, pp. 281–290.

[169] N. Prollochs, S. Feuerriegel, D. Neumann, Detecting negation scopes for financial news sen-
timent using reinforcement learning, in: Proceedings of the Hawaii International Conference
on System Sciences, 2016, pp. 1164–1173.

[170] A. Asmi, T. Ishaya, Negation identification and calculation in sentiment analysis, in: Pro-
ceedings of the Second International Conference on Advances in Information Mining and
Management, 2012, pp. 1–7.

[171] R. Morante, A. Liekens, W. Daelemans, Learning the scope of negation in biomedical texts,
in: Proceedings of the Conference on Empirical Methods in Natural Language Processing,
2008, pp. 715–724.

[172] L. Jia, C. Yu, , W. Meng, The effect of negation on sentiment analysis and retrieval effective-
ness, in: Proceedings of the ACM Conference on Information and Knowledge Management,
2009, pp. 1827–1830.

[173] Y. Choi, C. Cardie, Learning with compositional semantics as structural inference for sub-
sentential sentiment analysis, in: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2008, pp. 793–801.

[174] A. Kennedy, D. Inkpen, Sentiment classification of movie and product reviews using contex-
tual valence shifters, Computational Intelligence 22 (2) (2006) 110–125.

[175] S.Wu, T.Miller, J. Masanz, M. Coarr, S. Halgrim, D. Carrell, C. Clark, Negation’s not solved:
Generalizability versus optimizability in clinical natura, PLoS ONE 9 (11) (2014) e112774.

[176] A. Bacchelli, A. Cleve, M. Lanza, A. Mocci, Extracting structured data from natural language
documents with island parsing, in: Proceeding of the International Conference on Automated
Software Engineering, 2011, pp. 476–479.

247

[177] A. Reyes, P. Rosso, D. Buscaldi, From humor recognition to irony detection: The figurative
language of social media, Data and Knowledge Engineering 74 (2012) 1–12.

[178] A. Balahur, J. Hermida, A.Montoyo, Detecting implicit expressions of sentiment in text based
on commonsense knowledge, in: Proceedings of theWorkshop on Computational Approaches
to Subjectivity and Sentiment Analysis, 2011, pp. 53–60.

[179] AlchemyLanguage: Natural language processing for advanced text analysis,
http://www.alchemyapi.com/products/alchemylanguage/sentiment-analysis, last access:
March 2019.

[180] E. Guzman, Visualizing emotions in software development projects, in: Proceedings of the
Conference on Software Visualization, 2013, pp. 1–4.

[181] M. Ortu, G. Destefanis, S. Counsell, S. Swift, R. Tonelli, M. Marchesi, Arsonists or fire-
fighters? Affectiveness in agile software development, in: Proceedings of the International
Conference on Extreme Programming, 2016, pp. 144–155.

[182] E. Guzman, W. Maalej, How do users like this feature? A fine grained sentiment analysis
of app reviews, in: Proceedings of the International Requirements Engineering Conference,
2014, pp. 153 – 162.

[183] M. Choudhury, M. Gamon, S. Counts, Happy, nervous or surprised? Classification of human
affective states in social media, in: Proceedings of the International AAAI Conference on
Weblogs and Social Media, 2012, pp. 435–438.

[184] A. Muhammad, N. Wiratunga, R. Lothian, R. Glassey, Domain-based lexicon enhancement
for sentiment analysis, in: Proceedings of the SGAI International Conference on Artificial
Intelligence, 2013.

[185] A. Murgia, M. Ortu, P. Tourani, B. Adams, An exploratory qualitative and quantitative anal-
ysis of emotions in issue report comments of open source systems, Empirical Software Engi-
neering (2017) 1—44.

[186] Stack Exchange Data Dump, https://archive.org/details/stackexchange, last access: March
2019.

[187] J. Ding, H. Sun, X. Wang, X. Liu, Entity-level sentiment analysis of issue comments, in: Pro-
ceeding of the Third InternationalWorkshop on Emotion Awareness in Software Engineering,
2018.

[188] M. Islam, M. Zibran, A comparison of software engineering domain specific sentiment anal-
ysis tools, in: IEEE International Conference on Software Analysis, Evolution and Reengi-
neering, 2018, pp. 487–491.

[189] N. Novielli, D. Girardi, F. Lanubile, A benchmark study on sentiment analysis for software
engineering research, in: Proceedings of the International Conference on Mining Software
Repositories, 2018, pp. 799–808.

[190] A. Abbasi, A. Hassan, M. Dhar, Benchmarking twitter sentiment analysis tools, in: Proceed-
248

ings of the International Conference on Language Resources and Evaluation, 2014, pp. 823–
829.

[191] F. Ribeiro, M. Araújo, P. Gonçalves, M. Gonçalves, G. Benevenuto, SentiBench - A bench-
mark comparison of state-of-the-practice sentiment analysis methods, EPJData Science 5 (23)
(2016) Open access.

[192] P. Gonçalves, M. Araújo, F. Benevenuto, M. Cha, Comparing and combining sentiment analy-
sis methods, in: Proceedings of the First ACM Conference on Online Social Networks, 2013,
pp. 27–38.

[193] S. Loria, Textblob: Simplified text processing, Secondary TextBlob: Simplified Text Process-
ing, 2014.

[194] N. Pappas, G. Katsimpras, E. Stamatatos, Distinguishing the popularity between topics: A
system for up-to-date opinion retrieval and mining in the web, in: Proceedings of the 14th
International Conference on Computational Linguistics and Intelligent Text Processing, 2013,
pp. 197–209.

[195] V. Narayanan, I. Arora, A. Bhatia, Fast and accurate sentiment classification using an en-
hanced naive bayes model, in: Proceedings of the 14th International Conference on Intelligent
Data Engineering and Automated Learning, 2013, pp. 194–201.

[196] URL for downloading DEVA and Benchmark Dataset,
https://figshare.com/s/277026f0686f7685b79e, verified: Dec 2017.

[197] C. Yang, K. Lin, H. Chen, Building emotion lexicon from weblog corpora, in: Annual Con-
ference of the Association for Computational Linguistics, 2007, pp. 133–136.

[198] C. Yang, K. Lin, H. Chen, Writer meets reader: Emotion analysis of social media from both
the writer’s and reader’s perspectives, in: Proceedings of the IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology, 2009, pp. 287–290.

[199] T. Allen, Bulletin boards of the 21st century are coming of age, Smithsonian 19 (6) (1988)
83–93.

[200] Z. Chuang, C. Wu, Emotion recognition from textual input using an emotional semantic net-
work, in: Proceedings of the International Conference on Spoken Language Processing, 2002.

[201] List of interjections, https://www.vidarholen.net/contents/interjections/, verified: Aug 2017.
[202] M. Mäntylä, K. Petersen, T. Lehtinen, C. Lassenius, Time pressure: A controlled experiment

of test case development and requirements review, in: Proceedings of the International Con-
ference on Software Engineering, 2014, pp. 83–94.

[203] N. Nan, D. Harter, Impact of budget and schedule pressure on software development cycle
time and effort, IEEE Transactions on Software Engineering 35 (5) (2009) 624–637.

[204] G. Miller, Wordnet: A lexical database for english, Communications of the ACM 38 (11)
(1995) 39–41.

[205] A. Bacchelli, M. Lanza, R. Robbes, Linking e-mails and source code artifacts, in: Proceedings
249

of the International Conference on Software Engineering, 2010, pp. 375–384.
[206] W.Medhat, A. Hassan, H. Korashy, Sentiment analysis algorithms and applications: A survey,

Ain Shams Eng 5 (4) (2014) 1093–1113.
[207] A. Yadollahi, A. Shahraki, O. Zaiane, Current state of text sentiment analysis from opinion

to emotion mining, ACM Computing Surveys 50 (2) (2017) 1–33.
[208] G. Uddin, F. Khomh, Automatic summarization of api reviews, in: Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, 2017, pp. 159–
170.

[209] G. Uddin, F. Khomh, Opiner: An opinion search and summarization engine for apis, in: Pro-
ceedings of the IEEE/ACM International Conference on Automated Software Engineering,
2017, pp. 978–983.

[210] A. D’Andrea, F. Ferri, P. Grifoni, T. Guzzo, Approaches, tools and applications for sentiment
analysis implementation, International Journal of Computer Applications 125 (3) (2015) 26–
33.

[211] L. Polanyi, A. Zaenen, Contextual valence shifters, Computing Attitude and Affect in Text:
Theory and Applications 20 (2006) 1–10.

[212] B. M. A. R. R. C. J. García, R. Alcaraz, Application of entropy-based metrics to identify
emotional distress from electroencephalographic recordings, Entropy 18 (6).

[213] T. Eerola, J. Vuoskoski, A comparison of the discrete and dimensional models of emotion in
music, Psychology of Music 39 (1) (2010) 18–49.

[214] Scikit-learn: Machine Learning in Python, http://scikit-learn.org/stable/, Verified: Sept 2018.
[215] M. Thelwall, Heart and soul: Sentiment strength detection in the social web with sen-

tistrength,, in: CyberEmotions, 2013, pp. 1–14.
[216] D. Ye, Z. Xing, C. Foo, Z. Ang, J. Li, N. Kapre, Software-specific named entity recognition

in software engineering social content, in: SANER, 2016, pp. 90–101.
[217] SyntaxNet: NeuralModels of Syntax, https://github.com/tensorflow/models/tree/master/research/syntaxnet,

Verified: Aug 2018.
[218] Industrial-Strength Natural Language Processing, https://spacy.io, Verified: Sept 2018.
[219] F. Omran, C. Treude, Choosing an nlp lib. for analyzing softw. documentation: A systematic

lit. review and a series of exp., in: Proceedings of the International Conference on Mining
Software Repositories, 2017, pp. 187–197.

[220] Snowball, http://snowballstem.org, Verified: Sept 2018.
[221] TF-IDF, http://www.tfidf.com, Verified: Aug 2018.
[222] L. Khreisat, Arabic text classification using n-gram frequency statistics a comparative study,

in: CDM, 2006, pp. 78–82.
[223] The Social Media Glossary: 226 Essential Definitions, https://blog.hootsuite.com/social-

media-glossary-definitions/, Verified: Aug 2018.
250

[224] M. Raymer, W. Punch, E. Goodman, L. Kuhn, A. Jain, Dimensionality reduction using genetic
algo., IEEE Trans. on Evol. Comp. 4 (2) (2000) 164–171.

[225] W.Maalej, H. Happel, Fromwork to word: How do software developers describe their work?,
in: Proceedings of the International Conference on Mining Software Repositories, 2009, pp.
121–130.

[226] Y. Ayalew, K. Mguniin, An assessment of changeability of open source software, Computer
and Information Science 6 (3) (2013) 68–79.

[227] G. Pinto, F. Castor, Y. Liu, Mining questions about software energy consumption, in: Pro-
ceedings of the International Conference on Mining Software Repositories, 2014, pp. 22–31.

[228] H. Malik, P. Zhao, M. Godfrey, Going green: An exploratory analysis of energy-related ques-
tions, in: Proceedings of the International Conference onMining Software Repositories, 2015,
pp. 418–421.

[229] I. Moura, G. Pinto, F. Ebert, F. Castor, Mining energy-aware commits, in: Proceedings of the
International Conference on Mining Software Repositories, 2015, pp. 56–67.

[230] Z. Zeng, G. Roisman, T. Huang, A survey of affect recognition methods: audio, visual, and
spontaneous expressions, IEEE Transactions on Pattern Analysis and Machine Intelligence
31 (1) (2009) 39–58.

[231] G. Yang, S. Baek, J. Lee, B. Lee, Analyzing emotion words to predict severity of softw. bugs:
A case study of open source proj., in: Proceedings of the The ACM/SIGAPP Symposium On
Applied Computing, 2017, pp. 1280–1287.

[232] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, P. Devanbu, On the “naturalness" of
buggy code, in: Proceedings of the International Conference on Software Engineering, 2016,
pp. 428–439.

[233] M. Islam, M. Zibran, A. Nagpal, Security vulnerabilities in categories of clones and non-
cloned code: An empirical study, in: ESEM, 2017, pp. 20 – 29.

[234] D. Anderson, D. Sweeney, T. Williams, Statistics for Business and Economics, 10th Edition,
Thomson Higher Education, 2009.

[235] T. Miller, S. Pedell, A. Lopez-Lorca, A. Mendoza, L. Sterling, A. Keirnan, Emotionled mod-
elling for people-oriented requirements engineering: the case study of emergency systems,
Journal of Systems and Software 105 (C) (2015) 54–71.

[236] R. Souza, C. Chavez, R. Bittencourt, Patch rejection in firefox: negative reviews, backouts,
and issue reopening, Journal of Software Engineering Research and Development 3 (9) (2015)
NA.

[237] J. Cheruvelil, B. Silva, Developers’ sentiment and issue reopening, in: IEEE/ACM 4th Inter-
national Workshop on Emotion Awareness in Software Engineering, 2019, pp. 29–33.

[238] Q. Umer, H. Liu, Y. Sultan, Emotion based automated priority prediction for bug reports,
IEEE Access 6 (2018) 35743–35752.

251

[239] Q. Umer, H. Liu, Y. Sultan, Sentiment based approval prediction for enhancement reports,
The Journal of Systems and Software (57–69).

[240] G. Yang, T. Zhang, B. Lee, An emotion similarity based severity prediction of software bugs:
A case study of open source projects, IEICE TRANS INF & SYST E101 (8) (2018) 2015–
2016.

[241] G. Williams, A. Mahmoud, Modeling user concerns in the app store: A case study on the rise
and fall of yik yak, in: 64-75 (Ed.), Proceedings of the International Requirements Engineer-
ing Conference, 2018.

[242] L. Carreno, K.Winbladh, Analysis of user comments: An approach for software requirements
evolution, in: Proceedings of the International Conference on Software Engineering, 2013,
pp. 582–591.

[243] Y. Jo, A. Oh, Aspect and sentiment unification model for online review analysis, in: Proceed-
ings of the fourth ACM international conference on Web search and data mining, 2011, pp.
815–824.

[244] O. Shmueli, N. Pliskin, L. Fink, Explaining over-requirement in software development
projects: An experimental investigation of behavioral effects, International Journal of Project
Management 33 (2) (2014) 380–394.

[245] D. Kahneman, J. Knetsch, R. Thaler, Experimental tests of the endowment effect and the
coase theorem, Journal of Political Economy 98 (6) (1990) 1325–1348.

[246] M. Norton, D. Mochon, D. Arielyc, The ikea effect: When labor leads to love, Journal of
Consumer Psychology 22 (3) (2012) 453–460.

[247] N. Franke, M. Schreier, Why customers value self-designed products: The importance of
process effort and enjoyment, Journal of Product Innovation Management 7 (2010) 1020–
1031.

[248] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, N. Sadeh, Why people hate your app - making
sense of user feedback in a mobile app store, in: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2013, pp. 1276–1284.

[249] D. Blei, J. Lafferty, Dynamic topic models, in: Proceedings of the 23rd international confer-
ence on Machine learning, 2006, pp. 113–120.

[250] W. Jiang, H. Ruan, L. Zhang, P. Lew, J. Jiang, For user-driven software evolution: Require-
ments elicitation derived from mining online reviews, in: Proceedingd of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 2014, pp. 584–595.

[251] L. Zhao, A. Zhao, Sentiment analysis based requirement evolution prediction, Future Internet
(2019) 1–14.

[252] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8) (1997)
1735–1780.

[253] E. Biswas, K. Shanker, L. Pollock, Exploring word embedding techniques to improve senti-
252

ment analysis of software engineering texts, in: IEEE/ACM 16th International Conference on
Mining Software Repositories, 2019, pp. 68 – 78.

[254] F. Zhou, J. Jiao, X. Yang, B. Lei, Augmenting feature model through customer preference
mining by hybrid sentiment analysis, Expert Systems with Applications 89 (2017) 306–317.

[255] L. Northrop, Sei’s software product line tenets, IEEE Software 19 (4) (2002) 32–40.
[256] S. Panichella, A. Sorbo, E. Guzman, Ardoc: App reviews development oriented classifier, in:

Proceedings of the International Symposium on the Foundations of Software Engineering,
2016, pp. 1023–1027.

[257] A. Sorbo, S. Panichella, C. Alexandru, J. Shimagaki, C. Visaggio, G. Canfora, H. Gall,
What would users change in my app? summarizing app reviews for recommending software
changes, in: Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2016, pp. 499–510.

[258] A. Sorbo, S. Panichella, C. Alexandru, C. Visaggio, G. Canfora, SURF: summarizer of user
reviews feedback, in: Proceedings of the IEEE/ACM International Conference on Software
Engineering, 2017, pp. 55–58.

[259] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, Recommending and localizing change re-
quests for mobile apps based on user reviews, in: Proceedings of the International Conference
on Software Engineering, 2017, pp. 106–117.

[260] X. Gu, S. Kim, What parts of your apps are loved by users, in: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, Vol. 760–770, 2015.

[261] W. Maalej, H. Nabil, Bug report, feature request, or simply praise? On automatically classi-
fying app reviews, in: Proceedings of the 25th International Requirements Engineering Con-
ference, 2015, pp. 116–125.

[262] G. Williams, A. Mahmoud, Mining twitter feeds for software user requirements, in: Proceed-
ings of the IEEE 25th International Requirements Engineering Conference, 2017, pp. 1–10.

[263] E. Guzman, M. El-Halaby, B. Bruegge, Ensemble methods for app review classification: An
approach for software evolution, in: IEEE/ACM International Conference onAutomated Soft-
ware Engineering, 2015, pp. 771–776.

[264] E. Guzman, M. Ibrahim, M. Glinz, A little bird told me: Mining tweets for requirements and
software evolution, in: Proceedings of the International Requirements Engineering Confer-
ence, 2017, pp. 11–20.

[265] N. Jha, A. Mahmoud, Mining non-functional requirements from app store reviews, Empirical
Software Engineering 24 (2017) 3659–3695.

[266] M. Nayebi, H. Farrahi, G. Ruhe, Which version should be released to the app store?, in:
ESEM, 2017, pp. 324–333.

[267] G. Uddin, F. Khomh, Automatic mining of opinions expressed about apis in stack overflow,
IEEE Transaction on Software Engineering.

253

[268] B. Lin, F. Zampetti, G. Bavota, M. Penta, M. Lanza, Pattern-based mining of opinions in q&a
websites, in: Proceedings of the International Conference on Software Engineering, 2019, pp.
548–559.

[269] L. Bradley, Measuring emotion: the self-assessment semantic differential., Journal of Behav-
ior Therapy and Experimental Psychiatry 25 (1) (1994) 49–59.

[270] D. Graziotin, X. Wang, P. Abrahamsson, Happy software developers solve problems better:
psychological measurements in empirical software engineering., PeerJ 2 (1).

[271] M. Ortu, G. Destefanis, S. Counsell, M. Marchesi, R. Tonelli, Connecting the dots: Mea-
suring effectiveness and affectiveness in software systems, in: IEEE/ACM 2nd International
Workshop on Emotion Awareness in Software Engineering, 2017, pp. 52–53.

[272] M.Ahasanuzzaman,M.Asaduzzaman, C. Roy, K. Schneider, Classifying stack overflow posts
on api issues, in: Proceedings of the IEEE International Conference on Software Analysis,
Evolution and Reengineering, 2018, pp. 244–254.

[273] C. Sutton, A. McCallum, An introduction to conditional random fields, Found. Trends Mach.
Learn. 4 (4) (2012) 267–373.

[274] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.
[275] M. Scott, A cluster analysis method for groupingmeans in the analysis of variance, Biometrics

30 (3) (1974) 507–512.
[276] A. Mondal, M. Rahman, C. Roy, Embedded emotion-based classification of stack overflow

questions towards the question quality prediction, in: Proceedings of the International Con-
ference on Software Engineering and Knowledge Engineering, 2016.

[277] S. Robertson, Understanding inverse document frequency: On theoretical arguments for idf,
Journal of Documentation 60.

[278] K. Hornik, M. Stinchcombe, H. White., Multilayer feedforward networks are universal ap-
proximators, Neural Network (1989) 359–366.

[279] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning (273–297) 1995.
[280] R. Serva, Z. Senzer, L. Pollock, K. Vijay-Shanker, Automatically mining negative code ex-

amples from software developer q & a forums, in: IEEE/ACM International Conference on
Automated Software Engineering Workshop, 2015, pp. 115–122.

[281] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, J. Noble, Qualitas
corpus: A curated collection of java code for empirical studies, in: Proceedings of the Asia
Pacific Software Engineering Conference, 2010, pp. 336 – 345.

[282] R. Duda, P. Hart, D. Stork, Pattern Classification, A Wiley-Interscience Publication, 2000.
[283] L. Aversano, L. Cerulo, M. Di Penta, How clones are maintained: An empirical study, in:

Proceedings of the European Conference on Software Maintenance and Reengineering, 2007,
pp. 81–90.

[284] M. Zibran, C. Roy, A constraint programming approach to conflict-aware optimal schedul-
254

ing of prioritized code clone refactoring, in: Proceedings of the IEEE International Working
Conference on Source Code Analysis and Manipulation, 2011, pp. 105–114.

[285] H. Sajnani, V. Saini, C., A comparative study of bug patterns in java cloned and non-cloned
code, in: Proceedings of the IEEE International Working Conference on Source Code Anal-
ysis and Manipulation, 2014, pp. 21–30.

[286] C. Roy, M. Zibran, R. Koschke, The vision of software clone management: Past, present, and
future, in: CSMR-18/WCRE-21 Software Evolution Week (SEW’14), 2014, pp. 18–33.

[287] R. Al-Ekram, C. Kapser, R. Holt, M. Godfrey, Cloning by accident: An empirical study of
source code cloning across software systems, in: Proceedings of the International Symposium
on Empirical Software Engineering, 2005, pp. 376–385.

[288] M. Gabel, Z. Su, A study of the uniqueness of source code, in: Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2010, pp. 147–
156.

[289] R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, K. Schneider, Evaluating code clone genealo-
gies at release level: An empirical study, in: Proceedings of the IEEE International Working
Conference on Source Code Analysis and Manipulation, 2010, pp. 87–96.

[290] M. Zibran, R. Saha, C. Roy, K. Schneider, Evaluating the conventional wisdom in clone re-
moval: A genealogy-based empirical study, in: Proceedings of the The ACM/SIGAPP Sym-
posium On Applied Computing, 2013, pp. 1123–1130.

[291] M. Zibran, R. Saha, C. Roy, K. Schneider, Genealogical insights into the facts and fictions of
clone removal, ACM Applied Computing Review 13 (4) (2013) 30–42.

[292] H. Brar, P. Kaur, Comparing detection ratio of three static analysis tools, Int. Journal of Com-
puter Applications 124 (13) (2015) 35–40.

[293] RATS - Rough Auditing Tool for Security, http://www.securesw.com/rats/, July 2017.
[294] J. Viega, J. Bloch, T. Kohno, G. Macgraw, Token-based scanning of source code for security

problems, ACM Transactions on Information and System Security 5 (3) (2002) 238–261.
[295] R. McLean, Comparing static security analysis tools using open source software, in: SSRC,

2012, pp. 68–74.
[296] J. Wilander, M. Kamkar, A comparison of publicly available tools for dynamic buffer over-

flow prevention, in: Proceedings of the 10th Network and Distributed System Security Sym-
posium, 2003, pp. 124–138.

[297] D. Pozza, R. Sisto, L. Durante, A. Valenzano, Comparing lexical analysis tools for buffer
overflow detection in network software, in: Proceedings of the International Conference on
Communication System Software and Middleware, 2006, pp. 126–133.

[298] G. Tan, J. Croft, An empirical security study of the native code in the jdk, in: SS, 2008, pp.
365–377.

[299] A. Sotirov, Automatic vulnerability detection using static source code analysis, Master’s the-
255

sis, The University of Alabama (2005).
[300] NIST Software Assurance Reference Dataset, https://samate.nist.gov/SRD/, July 2017.
[301] J. Islam, M. Mondal, C. Roy, Bug replication in code clones: An empirical study, in: Pro-

ceedings of the IEEE International Conference on Software Analysis, Evolution and Reengi-
neering, 2016.

[302] M. Rahman, C. Roy, On the relationships between stability and bug-proneness of code clones:
An empirical study, in: SCAM, 2017, pp. 131–140.

[303] M. Mondal, C. K. Roy, K. A. Schneider, Identifying code clones having high possibilities of
containing bugs, in: Proceedings of the International Conference on ProgramComprehension,
2017.

[304] M. Zibran, C. Roy, Conflict-aware optimal scheduling of code clone refactoring: A constraint
programming approach, in: Proceedings of the International Conference on Program Com-
prehension, 2011, pp. 266 – 269.

[305] N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component failures, in: 2006,
Proceedings of the International Conference on Software Engineering, pp. 452–461.

[306] V. Saini, H. Sajnani, C. Lopes, Comparing quality metrics for cloned and non-cloned java
methods: A large scale empirical study, in: Proceedings of The International Conference on
Software Maintenance and Evolution, 2016, pp. 256–266.

[307] JGit, https://www.eclipse.org/jgit/, verified: Jan 2018.
[308] J. Islam, M. Mondal, C. Roy, K. Schneider, A comparative study of software bugs in clone

and non-clone code, in: Proceedings of the International Conference on Software Engineering
and Knowledge Engineering, 2017, pp. 436–443.

[309] R. Snelick, A. Mink, M. Indovina, A. Jain, Large-scale evaluation of multimodal biometric
authentication using state-of-the-art systems, IEEE Trans. on Pattern Analysis and Machine
Intelligence 27 (3) (2005) 450–455.

[310] J. Svajlenko, C. K. Roy, Evaluating modern clone detection tools, in: ICSME, 2014, pp. 321
– 330.

[311] G. Greene, B. Fischer, Cvexplorer: Identifying candidate developers by mining and exploring
their open source contributions, in: Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, 2016, pp. 804–809.

[312] H. Osman, M. Lungu, O. Nierstrasz, Mining frequent bug-fix code changes, in: Proceedings
of the IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering,
2014, pp. 343–347.

[313] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, H. Mei, Can i clone this piece of code
here?, in: Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, 2012, pp. 170–179.

[314] M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke, K. Schneider, Comparative stability of
256

cloned and non-cloned code: An empirical study, in: Proceedings of the The ACM/SIGAPP
Symposium On Applied Computing, 2012, pp. 1227–1234.

[315] M. Mondal, C. Roy, K. Schneider, Dispersion of changes in cloned and non-cloned code, in:
IWSC, 2012, pp. 29–35.

[316] M. Kim, D. Notkin, Discovering and representing systematic code changes, in: Proceedings
of the International Conference on Software Engineering, 2009, pp. 309–319.

[317] S. Kim, K. Pan, E. Whitehead, Memories of bug fixes, in: Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2006, pp. 35–45.

[318] K. Pan, S. Kim, E. W. Jr., Toward an understanding of bug fix patterns, Empirical Software
Engineering 14 (3) (2009) 286–315.

[319] J. Falleri, F. Morandat, X. Blanc, M. Martinez, M. Monperrus, Fine-grained and accurate
source code differencing, in: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 2014, pp. 313–324.

[320] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, W. Zhao, Cldiff: Generating con-
cise linked code differences, in: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, 2018, pp. 679–690.

[321] J. Maletic, M. Collard, Supporting source code difference analysis, in: Proceedings of the
IEEE International Conference on Software Maintenance, 2004, p. PP.

[322] B. Fluri, M.Wursch, M. Pinzger, H. Gall, Change distilling: Tree differencing for fine-grained
source code change extraction, IEEE Transactions on Software Engineering 33 (11) (2007)
725–743.

[323] M. Hashimoto, A. Mori, Diff/TS: A tool for fine-grained structural change analysis, in: Pro-
ceedings of the Working Conference on Reverse Engineering, 2008, pp. 279–288.

[324] D. Kim, J. Nam, J. Song, S. Kim, Automatic patch generation learned from human-written
patches, in: Proceedings of the International Conference on Software Engineering, 2013, pp.
802–811.

[325] M. Martinez, L. Duchien, M. Monperrus, Automatically extracting instances of code change
patterns with ast analysis, in: Proceedings of the IEEE International Conference on Software
Maintenance, 2013, pp. 22 – 28.

[326] M.Martinez, M.Monperrus, Mining software repair models for reasoning on the search space
of automated program fixing, Empirical Software Engineering 20 (1) (2015) 176–205.

[327] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, M. Maia, Dissection of a bug dataset:
Anatomy of 395 patches from Defects4J, in: Proceedings of the IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering, 2018.

[328] R. Yue, N. Meng, Q. Wang, A characterization study of repeated bug fixes, in: Proceedings
of the International Conference on Software Maintenance and Evolution, 2017, pp. 422–432.

[329] R. Saha, Y. Lyu, H. Yoshida, M. Prasad, Elixir: Effective object-oriented program repair, in:
257

Proceedings of the IEEE/ACM International Conference on Automated Software Engineer-
ing, 2017, pp. 648–659.

[330] P. Fournier-Viger, C. Wu, A. Gomariz, V. Tseng, VMSP: Efficient vertical mining of maximal
sequential patterns, Advances in Artificial Intelligence 8436 (2014) 83–94.

[331] J. Wang, J. Han, C. Li, Frequent closed sequence mining without candidate maintenance,
IEEE Trans. on Knowledge Data Engineering 19 (8) (2007) 1–15.

[332] P. Fournier-Viger, J. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng, The SPMF open-
source data mining library version 2, in: Proceedings of the Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, 2016, pp. 36–40.

[333] I. Miliaraki, K. Berberich, R. Gemulla, S. Zoupanos, Mind the gap: Large-scale frequent
sequence mining, in: Proceedings of the International Conference on Management of Data,
2013, pp. 797–808.

[334] X. Jin, J. Han, K-Medoids Clustering, Encyclopedia of Machine Learning (Springer), 2011.
[335] A. jain, Data clustering: 50 years beyond k-means, Pattern Recognition Letters 31 (8).
[336] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data set via the

gap statistic, Journal of the Royal Statistical Society 63 (2) (2001) 411–423.
[337] Python-String-Similarity, https://github.com/luozhouyang/python-string-

similarity/blob/master/README.md, last access: Jan 2019.
[338] PyCluster - Clusteringmodule for Python, https://bioconda.github.io/recipes/pycluster/README.html,

last access: Jan 2019.
[339] A. Cantor, Sample-size calculations for cohen’s kapp, Psychological Methods 1 (2) (1996)

150–153.
[340] A. Mockus, L. Votta, Identifying reasons for software changes using historic databases, in:

Proceedings of the International Conference on Software Maintenance and Evolution, 2000,
pp. 120–130.

[341] J. Bevan, E. Whitehead, S. Kim, M. Godfrey, Facilitating software evolution research with
kenyon, in: Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, pp. 177–186.

[342] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, T. Nguyen, Graph-based mining of multiple
object usage patterns, in: Proceedings of the ACM SIGSOFT Symposium on Foundations of
Software Engineering, 2009, pp. 383–392.

[343] R. Just, D. Jalali, M. Ernst, Defects4j: A database of existing faults to enable controlled
testing studies for java programs, in: Proceedings of the International Symposium on Software
Testing and Analysis, 2014, pp. 437–440.

[344] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, D. Poshyvanyk, On learning meaningful
code changes via neural machine translation, in: Proceedings of the International Conference
on Software Engineering, 2019, p. (to appear).

258

[345] GumtreeSpoon - Spoon version of GumTree, https://github.com/SpoonLabs/gumtree-spoon-
ast-diff, last access: Jan 2019.

[346] M. Soto, F. Thung, C.Wong, C. Goues, D. Lo, A deeper look into bug fixes: Patterns, replace-
ments, deletions, and additions, in: Proceedings of the International Conference of Mining
Software Repositories, 2016, pp. 512–515.

[347] Q. Hanam, F. Brito, A. Mesbah, Discovering bug patterns in javascript, in: Proceedings of
theACMSIGSOFT International Symposium on Foundations of Software Engineering, 2016,
pp. 144–156.

[348] S. Sudhakrishnan, J. Madhavan, E. W. Jr., Understanding bug fix patterns in verilog, in: Pro-
ceedings of the International Working Conference on Mining Software Repositories, 2015,
pp. 39–42.

[349] F. Long, M. Rinard, Automatic patch generation by learning correct code, in: Proceedings of
the Annual ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2016, pp. 298–312.

[350] H. Oumarou, N. Anquetil, A. Etien, S. Ducasse, K. Taiwe, Identifying the exact fixing actions
of static rule violation, in: Proceedings of the IEEE International Conference on Software
Analysis, Evolution and Reengineering, 2015, pp. 371–379.

[351] R. Rolim, G. Soares, R. GheyI, T. Barik, L. D’Antoni, Learning quick fixes from code repos-
itories, in: arXiv preprint arXiv:1803.03806, 2018.

[352] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, K. Stephens, Improving your soft-
ware using static analysis to find bugs, in: Proceedings of the ACM SIGPLAN Symposium
on Object-oriented Programming Systems, Languages, and Applications, 2006, pp. 673–674.

[353] B. Fluri, E. Giger, H. Gall, Discovering patterns of change types, in: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, 2008, pp. 15–19.

[354] T. Molderez, R. Stevens, C. Roover, Mining change histories for unknown systematic edits,
in: Proceedings of the International Conference on Mining Software Repositories, 2017, pp.
248–256.

[355] M. Kim, J. Beall, D. Notkin, Discovering and representing logical structure in code change.,
Tech. rep., University of Washington (2007).

[356] M. Kim, D. Notkin, D. Grossman, Automatic inference of structural changes for matching
across program versions., in: Proceedings of the International Conference on Software Engi-
neering, 2007.

[357] S. Breu, T. Zimmermann, Mining aspects from version history, in: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, 2006, pp. 221–
230.

[358] S. Negara, M. Codoban, D. Dig, R. Johnson, Mining fine-grained code changes to detect
unknown change patterns, in: Proceedings of the International Conference on Software En-

259

gineering, 2014, pp. 803–813.
[359] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, L. Zhang, Precise condition synthesis

for program repair, in: Proceedings of the International Conference on Software Engineering,
2017, pp. 416–426.

[360] S. Gievska, K. Koroveshovski, T. Chavdarova, A hybrid approach for emotion detection in
support of affective interaction, in: CDMW, 2014, pp. 352–359.

[361] N. Imtiaz, J. Middleton, P. Girouard, E. Murphy-Hill, Sentiment and politeness analysis tools
on developer discussions are unreliable, but so are people, in: Proceedings of the 3rd Inter-
national Workshop on Emotion Awareness in Software EngineeringJune, 2018, pp. 55–61.

[362] B. Lin, F. Zampetti, R. Oliveto, M. Penta, M. Lanza, G. Bavota, Two datasets for sentiment
analysis in software engineering, in: IEEE International Conference on SoftwareMaintenance
and Evolution (ICSME), 2018, pp. 712–712.

260

Appendix A

Publications Out of This Dissertation
Research

Parts of this thesis work have been published in journals, conferences, and workshops of Software
Engineering, as well as under preparation for submission. The list of the publications is mentioned
below.

a) Refereed Journal Contributions
[a1] Md Rakibul Islam andMinhaz F. Zibran. SentiStrength-SE: Exploiting Domain Speci-

ficity for Improved Sentiment Analysis in Software Engineering Text. Elsevier Journal
of Systems and Software (JSS), 145: 125-146, 2018.

[a2] Md Rakibul Islam, Minhaz F. Zibran. Exploration and Exploitation of Developers’
Sentimental Variations in Software Engineering. International Journal of Software In-
novation, 4 (4): 35 - 55, 2016.

b) Refereed Conference & Workshop Contributions

[b3] Md Rakibul Islam and Minhaz F. Zibran. How Bugs Are Fixed: Exposing Bug-fix
Patterns with Edits and Nesting Levels. In proceedings of the 35th ACM/SIGAPP Sym-
posium on Applied Computing (SAC), pp. NA, Brno, Czech Republic, 2020 (forthcom-
inmag)

[b4] Md Rakibul Islam, Md Kauser Ahmmed and Minhaz F. Zibran. MarValous: machine
learning based detection of emotions in the valence-arousal space in software engineer-
ing text. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing
(SAC), pp. 1786-1793, Limassol, Cyprus, 2019.

[b5] Md Rakibul Islam and Minhaz F. Zibran. DEVA: Sensing Emotions in the Valence
Arousal Space in Software Engineering Text. In Proceedings of the 33rd ACM/SIGAPP
Symposium On Applied Computing (SAC), pp. 1536 - 1543, France, 2018.

[b6] Md Rakibul Islam and Minhaz F. Zibran. A Comparison of Software Engineering Do-
main Specific Sentiment Analysis Tools. In Proceedings of the 25th IEEE International

261

Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 487 -
491, Italy, 2018.

[b7] Md Rakibul Islam and Minhaz F. Zibran. Sentiment Analysis of Software Bug Related
Commit Messages. In Proceedings of the 27th International Conference on Software
Engineering andData Engineering (SEDE), USA, 2018 (Winner of Best PaperAward).

[b8] Md Rakibul Islam, Minhaz F. Zibran, and Aayush Nagpal. Security Vulnerabilities in
Categories of Clones and Non-Cloned Code: An Empirical Study. In Proceedings of
the 11th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 20-29, Canada, 2017.

[b9] Md Rakibul Islam and Minhaz F. Zibran. A Comparison of Dictionary Building Meth-
ods for Sentiment Analysis in Software Engineering Text. In Proceedings of the 11th
ACM/IEEE International Symposium on Empirical Software Engineering andMeasure-
ment (ESEM), pp. 478 - 479, Canada, 2017.

[b10] Md Rakibul Islam and Minhaz F. Zibran. Leveraging Automated Sentiment Analysis
in Software Engineering. In Proceedings of the 14th International Conference onMining
Software Repositories (MSR), pp.203 - 214, Buenos Aires, Argentina, May 2017.

[b11] Md Rakibul Islam and Minhaz F. Zibran. Towards Understanding and Exploiting De-
velopers’ Emotional Variations in Software Engineering. In Proceedings of the 14th
IEEE International Conference on Software Engineering Research, Management and
Applications (SERA), pp. 185-192, Baltimore, Maryland, USA, 2016 (invited at the
International Journal of Software Innovation).

[b12] MdRakibul Islam andMinhaz F. Zibran. On theCharacteristics of BuggyCodeClones:
A Code Quality Perspective. In Proceedings of the 12th IEEE International Workshop
on Software Clones (IWSC), pp. 23 - 29, Italy, 2018.

[b13] Md Rakibul Islam and Minhaz F. Zibran. A Comparative Study on Vulnerabilities in
Categories of Clones and Non-Cloned Code. In Proceedings of the 10th IEEE Interna-
tional Workshop on Software Clones (IWSC), pp. 8 - 14, Osaka, Japan, 2016 (Winner
of Best Paper Award).

c) Poster Presentation

[c14] Md Rakibul Islam and Minhaz F. Zibran. Entity Based Aspect-Oriented Opinion Min-
ing in Software Engineering. InnovateUNO, New Orleans, LA, USA, 2019.

[c15] Md Rakibul Islam and Minhaz F. Zibran. An Empirical Study of Security Vulnerabili-
ties in Software Systems. In 10th EAI International Conference on Digital Forensics &
Cyber Crime (ICDF2C 2018), New Orleans, USA, 2018.

262

[c16] Md Rakibul Islam andMinhaz F. Zibran. Understanding Bug Fix Patterns: Towards an
Improved Automated Program Repair Method. InnovateUNO, New Orleans, LA, USA,
2018.

d) Miscellaneous
[d17] Md Rakibul Islam and Minhaz F. Zibran. Insights into Continuous Integration Build

Failures. In Proceedings of the 14th International Conference on Mining Software
Repositories (MSR), pp. 467-470, Buenos Aires, Argentina, May 2017.

[d18] Duaa Alwad, Manisha Panta, Minhaz F. Zibran and Md Rakibul Islam. An Empiri-
cal Study of the Relationships between Code Readability and Software Complexity, In
Proceedings of the 27th International Conference on Software Engineering and Data
Engineering (SEDE), USA, 2018.

[d19] Naw Safrin Sattar, MdA.M. Faysal, Minhaz Zibran, Shaikh Arifuzzaman, andMdRak-
ibul Islam. Data Mining in-IDE Activities: Why Software Developers Fail, In Proceed-
ings of the 27th International Conference on Software Engineering andData Engineering
(SEDE), USA, 2018.

The publications [a1] and [b10] constitute the Chapter 4. The publications [b5] and [b4] con-
tribute in writing Chapter 6 and Chapter 7, respectively. Chapter 5 is composed of the performance
comparison of the existing sentiment analysis tools that appears in the publication [b6]. Chapter 8
corresponds to the publications [a2] and [b11]. The publication [b7] contributes in writing Chap-
ter 9. The empirical studies appeared in [b8], [b12], and [b13] constitute the Chapter 12, Chapter 13,
and Chapter 11, respectively. The empirical study of bug-fixing patterns appeared in the publica-
tion [b3] constitutes the Chapter 14. The publications [c14], [c15], and [c16] are also related to this
thesis as a whole.

A.1 Co-authorship

In this thesis I have presented my own research conducted under the supervision of Minhaz F. zibran.
Citations are properly mentioned for the ideas and techniques that are not products of my own work.
In cases where citations are not available, we describe the ideas and techniques in such a way that
indicates they existed prior to this work.

Small parts of the research presented in this thesis involved joint work with other researchers to
make co-authored publications. Md Kauser Ahmmed and Aayush Nagpal are two co-authors of the
publications [b4] and [b8], respectively. MdKauser Ahmmedwas the lead developer in transforming
my ideas into a machine learning based emotions mining tool MarValous. Aayush Nagpal helped
in conducting data analysis to present in the publication [b8]. I am the sole contributor in initial

263

formulation of the idea, data collection, writing, and shaping the results of the published research
papers [b4], [b8].

Other than the aforementioned contributions of the co-authors of my papers, the entire work
presented in this thesis is the outcome of my own research carried out under the supervision of
Minhaz F. zibran.

264

Vita

Md Rakibul Islam has successfully defended his PhD thesis in Computer Science department at The
University of New Orleans (UNO), Louisiana, USA. After hafing his degree, in Fall 2020, he will
join as a tenure-track Assistant Professor in the Computer Science Department at the University of
Wisconsin- Eau Claire. His research interests include: (i) Human Aspects in Software Engineering,
(ii) Software Security, (iii) Source Code Analysis, and (iv) Natural Language Processing. He often
blends his research interests and apply various techniques, such as Machine Learning, Data Mining,
and Graph Theories to come up with useful tools and interesting insights (achieved empirically) for
greater benefits of concerned communities. He has co-authored more than 15 papers in different
journal and venues that include MSR, SANER, ESEM, SAC and others.

265

	Analysis of Human Affect and Bug Patterns to Improve Software Quality and Security
	Recommended Citation

	List of Figures to.44em.
	List of Tables to.44em.
	Abstract to.44em.
	Introduction and Motivation
	Mining and Analyzing Human Affect in Software Engineering
	Sub-problem I: Detecting developers' sentiments and emotions and emotions with high accuracy
	Contribution
	Sub-problem II: Understanding developers' sentiments
	Contribution

	Mining and Analyzing Impacts of Developers' Copy-Paste Actions
	Sub-problem III: Understanding impacts of developers copy-paste action
	Contribution

	Mining and Analyzing Fixing Patterns of Developers' Mistakes
	Sub-problem IV: Understanding fixing patterns of software bugs
	Contribution

	Outline of the Thesis

	Background
	Software Engineering Terminologies
	Sentiment Related Terminologies
	Dimensional Framework of Emotions
	A Popular Sentiment Analysis Technique in Software Engineering

	Terminologies Related to Developers' Copy-paste Actions
	Clone Granularity

	Code Smell
	Security Vulnerabilities
	Summary

	Research Methodology
	Mining and Analyzing Developers' Sentiments
	Improving Sentiment Analysis in Software Engineering Text
	A Comparison of Domain Specific Sentiment Analysis Tools
	A Comparison of Dictionary Building Methods for Sentiment Analysis
	Detection of Emotions in the Valence-Arousal Space
	Improving Detection of Emotions in the Valence-Arousal Space
	Understanding and Exploiting Developers' Sentimental Variations
	Sentiment Analysis of Software Bug Related Commit Messages

	Mining and Analyzing Impacts of Developers' Copy-Paste Actions
	A Study on Code Smells in Categories of Clones and Non-Cloned Code
	A Study on Security Vulnerabilities in Clones and Non-Cloned Code
	On the Characteristics of Buggy Code Clones: A Code Quality Perspective

	Mining and Analyzing Fixing Patterns of Developers' Mistakes
	Summary

	Detecting Developers' Sentiments
	Introduction
	Exploratory Study of the Difficulties in Sentiment Analysis
	Benchmark Data
	Emotional Expressions to Sentimental Polarities
	Computation of emotional scores from human rated dataset
	Illustrative Example of Computing sentimental Polarity

	Sentiment Detection Using SentiStrength
	Analysis and Findings
	Insights into SentiStrength's Internal Algorithm
	Difficulties in Automated Sentiment Analysis in Software Engineering

	Leveraging Automated Sentiment Analysis
	Creating a New Domain Dictionary for Software Engineering
	Further Enhancements to the Preliminary Domain Dictionary

	Inclusion of Heuristics in Computation of Sentiments
	Addition of Contextual Sense to Minimize Ambiguity
	Bringing Neutralizers in Effect
	Integration of a Preprocessing Phase
	Parameter Configuration for Better Handling of Negations

	Empirical Evaluation of SentiStrength-SE
	Head-to-head Comparison Using a Benchmark Dataset
	Comparison with respect to Human Raters' Disagreements
	Evaluating the Contribution of Domain Dictionary
	Comparison between the SentiStrength and SentiStrength*

	Our Domain Dictionary vs. SentiStrength's Optimized Dictionary
	Optimizing SentiStrength's Dictionary
	Comparison between SentiStrengthO and SentiStrength*

	Comparison with a Large Domain-independent Dictionary
	Choosing a Domain Independent Dictionary for Comparison
	Range Conversion
	Comparison between SentiStrengthW and SentiStrength*
	Manual Investigation to Reveal Cause

	Comparison with an Alternative Domain Dictionary
	Building an Alternative Domain Dictionary
	Comparison between the New Dictionary and SentiStrength-SE's Dictionary
	Manual Investigation to Determine Reasons

	Evaluating the Contributions of Heuristics
	Further Manual Investigation

	Qualitative Evaluation of SentiStrength-SE
	Threats to Validity
	Construct Validity and Internal Validity
	External Validity
	Reliability

	Limitations of SentiStrength-SE and Future Possibilities
	Related work
	Summary

	Comparison of Sentiment Analysis Tools
	Introduction
	Datasets
	JIRA Issue Comments (JIC) Dataset
	Emotional Expressions to Sentimental Polarities
	Assignment of Sentiments to Text

	Stack Overflow Posts (SOP) Dataset
	Code Review Comments (CRC) Dataset

	Sentiment Analysis Tools under Study
	Evaluation and Findings
	Comparative Accuracy Analysis
	Analysis of Agreements

	Threats to Validity
	Related Work
	Summary

	Detection of Developers' Emotions
	Introduction
	Emotional Model
	DEVA
	Capturing Arousal
	Combining the SEA and ANEW dictionaries
	Adjusting the ranges of arousal scores
	Computing arousal score for text

	Capturing Valence
	Computing valence score for text

	Emotional States from Valence and Arousal
	Heuristics in DEVA

	Evaluation
	Creation of Ground-Truth Dataset
	Construction of a manageable subset
	Manual annotation by human raters

	Measurement of Accuracy
	Comparison with a Baseline
	Comparison with TensiStrength

	Threats and Limitations
	Related work
	Summary

	Machine Learning Based Detection of Developers' Emotions
	Introduction
	Emotional Model
	Marvalous
	Preprocessing
	Feature Selection
	Algorithm Selection

	Evaluation
	Dataset
	Evaluation of ML Algorithms
	Evaluation of Features in MarValous
	Comparison with DEVA

	Limitations and Threats to Validity
	Related work
	Summary

	Understanding and Exploiting Developers’ Sentimental Variations
	Introduction
	Methodology
	Sentiment Analysis
	Metrics
	Tuning of SentiStrength
	Data Collection

	Analysis and Findings
	Emotional Variations in Different Task Types
	Emotional Variations in Bug-Fixing Tasks
	Emotional Variations in Days and Times
	Emotional Impacts on Commit Lengths

	Threats to Validity
	Related Work
	Summary

	Sentiment Analysis in Commit Messages of Buggy Code
	Introduction
	Methodology
	Data Collection
	Sentiment Analysis
	Statistical Measurements

	Analysis and Findings
	Overall Emotional Variations
	Hour-wise Emotional Variations

	Threats to Validity
	Related Work
	Summary

	Roles of Affects in Software Engineering
	Sentiments Analysis in Software Design and Quality
	Affective Analysis in Requirement Analysis and Software Maintenance
	Correlational Analysis between Developers' Affects and Their Performances
	Sentiment Analysis in Software Social Forums
	Summary

	Code Smells in Categories of Clones and Non-Cloned Code
	Introduction
	Terminology and Metrics
	Characterizing Terminologies
	Metrics

	Study Setup
	Subject Systems
	Clone Detection
	Vulnerability Detection

	Analysis and Findings
	Comparative Vulnerability of Cloned vs. Non-Cloned Code
	Comparative Vulnerability of Different Types of Clones
	Relatively Frequent Vulnerabilities

	Threats to Validity
	Related Work
	Summary

	Security Vulnerabilities in Clones and Non-Cloned Code
	Introduction
	Terminology and Metrics
	Security Vulnerabilities
	Metrics

	Study Setup
	Subject Systems
	Code Clone Detection
	Security Vulnerability Detection
	Flawfinder
	Limiting false positives in Flawfinder
	Effectiveness of customized configuration

	Cppcheck

	Analysis and Findings
	Vulnerabilities in Clones vs. Non-Cloned Code
	Densities of Vulnerabilities in Different Types of Clones
	Severity of Security Risks in Cloned and Non-Cloned Code
	Severity of Security Risks in Different Types of Clones
	Frequently Encountered Categories of Vulnerabilities

	Threats to Validity
	Related Work
	Summary

	Characteristics of Buggy Code Clones
	Introduction
	Study Setup
	Subject Systems
	Clone Detection
	Distinguishing Buggy Clones
	Computation of Source Code Quality Metrics

	Analysis and Findings
	Complexity of Buggy and Non-buggy Clones
	Size Difference of Buggy and Non-buggy Clones
	Documentation in Buggy and Non-buggy Clones
	Coupling in Buggy and Non-buggy Clones

	Threats to Validity
	Related Work
	Summary

	Exposing Bug-fix Patterns
	Introduction
	Methodology
	Subject Systems
	Collecting Bug-fixing Commits
	Generating Abstract Syntax Tree of Bug-fixing Changes

	Bug-fixing Edit Patterns
	Making Sense of GumtreeSpoon's Outputs
	Mapping GSPatterns to PanPatterns
	Dominant Bug-fixing Edit Patterns
	Detected PanPatterns
	New bug-fixing edit patterns
	Comparative frequencies of the new patterns

	Dominant Nesting Patterns
	Sequential Pattern Mining of Nested Code Structures
	Clustering of Nesting Patterns
	Selection of clustering algorithm
	Determining optimal number of clusters
	Defining a distance function for k-medoids

	Characterization of the Clusters by Experts
	Mining Results

	Threats to Validity
	Related Work
	Identifying bug-fixing edit patterns
	Identifying code-change patterns

	Summary

	Conclusion
	Summary
	Contributions
	Limitations
	Future Research Directions

	Bibliography
	Publications Out of This Dissertation Research
	Co-authorship

	Vita to.44em.

