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ABSTRACT 
 
An algorithm designer working with parallel computing systems should know how the 
characteristics of their implemented algorithm affects various performance aspects of their 
parallel program. It would be beneficial to these designers if each algorithm came with a 
specific set of standards that identified which algorithms worked better for a specified 
system. Therefore, the goal of this paper is to take implementations of four graphing 
algorithms, extract their features such as memory consumption and scalability using profilers 
(Vtunes /Tau) to determine which algorithms work to their fullest potential in one of the three 
systems: GPU, shared memory system, or distributed memory system. The features extracted 
in this study were scalability, speedup, parallel efficiency and memory consumption. We find 
that when looking at various parallel algorithms: Community Detection, Communities 
through Directed Affiliations (Coda), Cluster Affiliation Model for Big Networks 
(BigClam), and Breadth First Search all achieved noticeable speedup with increasing 
processors. 
 
 
Keywords – Parallel Computing, Community Detection, Graph Mining, Performance tuning, 
Big Data. 
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1 INTRODUCTION 
 

Fluid dynamics, aerospace engineering, genomics, and astronomy, are just a few topics that 
use parallel or high-performance computing (HPC) to answer a variety of academic research 
questions. Traditionally, before the days of high-performance computing and parallel 
programming, an individual would sit in his/her office and think about a particular problem 
and then propose an answer for it. However, now, with the power of HPC and parallel 
computing, the scope and possibilities of the academic research questions asked are much 
larger. This is because we have much more data available for us to process than we did in the 
past. The amount of data that a standard application needs to keep track of is far beyond what 
one person can handle. Hence, the current trend, in almost all areas of research, is to have some 
sort of HPC facility/parallel computing resource that will help ask/answer as many questions 
as fast and efficient as possible [1,2,3]. 

 
The problem is that most algorithms that you can find online today are implemented in 

serial, meaning that one task will begin executing once another has finished. Serial programs 
typically can be optimized via parallel computing that ideally provide concurrency which will 
save designers/developers time and money. The general, idea behind parallel computing is that 
one can take a computational task and break it down into several similar sub-tasks that can be 
processed independently and whose results are combined afterwards, upon completion [4].  

 
Although parallelism is ideal, it can be very difficult for some programs to be parallelized. 

Why exactly? Well, understanding the performance characteristics of applications in HPC 
environments can be overwhelming because of the increase in the complexity of architecture 
and programming paradigms that have been developed over the past couple of years. Even so, 
algorithm developers and researchers alike, aim to understand how parallel algorithms run in 
HPC environments in order to extract as much performance as possible. Taking this into 
consideration we aim to answer the following three research questions: 
 
Q1). What are the performance characteristics of running the serial versions of graph 
algorithms? 
 
Q2). What is the “optimal” running environment for parallel implementations of graph 
algorithm or set of parallel algorithms? 
 
Q3). How much parallelism can we achieve before losing a significant increase in 
performance? 
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2 DESIGN AND APPROACH 
 
This section includes the design of the study which is broken down into two phases. Figure 2 
gives an overview of our approach. First, we gather implementations of multiple C/C++ serial 
and parallel graphing algorithms. Secondly, we run these algorithms on an HPC system along 
with Vtunes and other performance tools. In doing so we are also able to extract features such 
as memory consumption, communication overhead, scalability, speedup, etc.  
 
 

  
 
Figure 2: Study Design 

 

A total of four algorithms were examined.  The BigClam algorithm formulates community 
detection problems into a non-negative matrix factorization and discovers community 
membership factors of nodes. BigClam is an overlapping community detection method that 
scales to large networks which can consists of millions of nodes and edges. Our approach is 
based on the paper presented by Jaewon Yang and Jure Leskovec [7]. The second algorithm 
implements a large-scale overlapping community detection method known as Communities 
through Directed Affiliations (Coda) [8]. Coda handles both directed, as well as undirected 
networks, and is able to find 2-mode communities where the member nodes form a bipartite 
connectivity structure [14]. 
 
Another community detection algorithm was obtained thanks to University of New Orleans 
student Md Abdul Motaleb Faysal and is available online as of December 12, 2019 [19]. The 
last parallel algorithm examined was the Breadth First Search algorithm. 
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Use High Performance 
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2.2 Experimental Setup  
 
Two setups were used to carry out experiment I and experiment II. 
  
For experiment I, the network used to connect to the HPC system was the Louisiana Optical 
Network Infrastructure (LONI) network. Using the LONI network we were able to access 
Queen Bee 2 (QB2), LSU’s HPC cluster, which we then used execute our parallel algorithms 
and perform our analysis. QB2 is a 1.5 Petaflop peak performance cluster which contains 504 
compute nodes, 960 NVIDIA Tesla K20x GPU’s and over 10,000 Intel Xeon processing 
cores. The operating system used on these nodes is RedHat Enterprise Linux 6 OS. [11].  
 
For experiment II, LONI infrastructure was used but a different cluster. Using the LONI 
network we were able to access Queen Bee 3 (QB3), LSU’s HPC cluster, which we then used 
execute our parallel algorithms and perform our analysis. QB3 has 192 compute nodes each 
having two 24-core Intel Cascade Lake (Intel® Xeon® Platinum 8260 Processor) CPUs. 
Each node also has 600 GB HDD and 192GB memory. Operating system used on these 
nodes is RedHat Enterprise Linux 7 OS. [23] 

 
To obtain our features, two profiling tools were used: VTunes Amplifier, TAU and 
hardcoded analysis. VTune Amplifier is a performance profiler application that allows for 
software performance analysis of 32 and 64-bit x86 based machines [12]. It can be run via the 
command line or via its graphical user interface (GUI) which is easy to use on a system given 
the right permissions at set on the server side. A few types of general analyses that can be 
done via Vtunes are hotspot analysis, memory consumption, HPC performance 
characterization and threading analysis. Vtunes is free for students and hence the preferred 
choice.  Tuning and Analysis Utilities, also known as TAU, is a portable profiling and tracing 
toolkit that is used for performance analysis of parallel programs which are written in 
Fortran, C, C++, UPC, or Java. TAU is capable of gathering performance information 
through instrumentation of functions, methods, basic blocks, and statements as well as event-
based sampling [13]. TAU also has a profile visualization tool known as ParaProf, which 
provides graphical displays of all the performance analysis results in aggregate (max, mean, 
std. dev) and in single node/context/thread forms. Examples of this visualization will be 
shown and explained in more detail. In addition to ParaProf, TAU also has PerfExplorer, a 
framework for parallel performance datamining. PerfExplorer allows for comparative feature 
analysis via graphical charts. Some of the charts that can be generated are time-steps per 
second, relative efficiency, and speedup of the entire application.   
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2.3 DATASETS 
 
       The datasets used range from a network 0.036 million (M) to 0.1M nodes and edges from 
about 0.2M to 3M. For evaluating BigClam and Coda algorithms, we used the Enron email 
network which includes approximately half-a-million emails. This data was originally made 
public, and posted to the web, by the Federal Energy Regulatory Commission during its 
investigation. [19] 
 
   The dataset used, by the community detection algorithm, was the YouTube network dataset. 
The final dataset used pertained to Facebook’s social network. [20] Table 2.3 gives the 
summary of the datasets showing nodes, edges and network descriptions. Note that the 
YouTube data set is has more nodes and edges when compared to the Enron and Facebook 
data sets) 
 
       Using the execution time from the log files as our feature we were able to derive three 
metrics that were used for our analysis: Scalability, Speedup, and Parallel Efficiency. 
 
 
 
 
NETWORK  NODES EDGES DESCRIPTION 
Enron-Email 36692 183831 Half a Million Enron emails 
YouTube 1134890 2987624 YouTube social Network 
Facebook 4039 88,234 Facebook social Network 

 
Table 2: Dataset for Experiments 
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3 EXPERIMENTAL ANALYSIS I 
 
3.1 Implementation 
 

After logging into the LONI network, we are given access to LSU’s QB2 cluster. By 
default, the user will be placed in his/her home directory, which works off of the head node. 
The head node itself is limited in terms of storage space and number of available cores that can 
be used to run a particular program. So, in order to run our parallel programs and measure our 
features (scalability, speed up, and parallel efficiency) we must put in an allocation request via 
the qsub command. The standard qsub command that is used by the LONI network is shown 
here: 

 
     qsub -X -I -l walltime=hh: mm: ss, nodes=n: ppn=20 -A allocation name 
 

-I is a flag which allows us to specify which resources we require. -l flag allows us to set the 
walltime, which can be thought of as the amount of time that we have access to our allocation. 
Note that we can also specify the number of computing nodes (nodes = n) and processors per 
node (ppn =20). In the case of QB2, every computing node has 20 processors available to us 
 
3.2 Vtunes Analysis 
 
Using VTune Amplifier, we can connect to the LONI network, via SSH connectivity, to 
execute the program and to extract the needed performance features. To do so, Vtunes requires 
a small script which contains a run command and the needed parameters that are specific to 
that particular parallel program (i.e. # of processors used, input graph used etc.).  Figure 3.1 
and Figure 3.2.1 shows the sample results obtained. Here is an example of a run command that 
could be found in a  
 
small script:  mpirun -n 8 ./BFS.out 
 
 
The analysis shows important performance characterization metrics like, clocks per instruction 
(CPI) and execution time. Execution time is the main feature of this research, in this case: 8.292 
seconds. Vtunes also provides an analysis of how effectively the available CPUs were utilized. 
In this case the effectiveness was only about 36 %. This indicates that more parallelism can be 
attained and hence better CPU utilization. Additional experiments using the same algorithm, 
with an increasing number of utilized CPUs are discussed in chapter 4. 
 
Using the BigClam algorithm shown in figure 3.2.2, we see an execution time of 45.4 seconds 
and effective CPU utilization of about 50 %. Note, that this second experiment focuses only on 
threading efficiency. 
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Figure 3.2.1: Vtunes Analysis using 8 Core 

 

 
 
Figure 3.2.2:  Vtunes example for BigClam algorithm with 16 cores in use. 
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3.3 TAU Analysis 
 

Profiling via TAU is slightly different when compared to profiling via VTune Amplifier, 
in that, it must be run through the command line interface of LONI. Once we connect to the 
LONI network we must load the TAU module in order to use its profiling tools. We do this by 
inputting the command as such: module load tau. Once the module finishes loading, we add 
tau_exec to the run command. This command ensures that tau profiles the parallel program. 
An example run command using TAU: 

 
       mpirun -np 64 tau_exec./ompRelaxmap 

 
       We are then able to use TAU’s visualization tool, ParaProf, by typing paraprof into the 
command line. Figure 3.3.1 and figure 3.3.2 is an example visualization using execution time 
as the metric measured. Note that for this example we ran the program with 64 processors. 
 

 
 
  Figure 3.3.1:  TAU Analysis of Execution time 
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Figure 3.3.2: An example of TAUs ParaProf visualization tool.  

 
3.4 Logging Analysis 
 
Another effective and reliable way we found to analyze the algorithms was through logging 
the time at code level. Vtunes and Tau results were compared to the results the manual 
logging.  
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4 RESULTS AND EVALUATION I 
 
4.1 Scalability 
 

   The scalability of a parallel algorithm on parallel architecture is a measure of its capacity 
to effectively utilize an increasing number of processors [14]. In this study we use strong 
scaling which is defined as how the solution time varies with the number of processors for a 
fixed total problem size.[21] 

 
 Table 4.1 describes the scalability of the four algorithms in terms of execution time and 

processor count.  
 

# Processors Coda BFS BigClam Infomap 
1 41.00 16.65 397.00 397.94 
2 25.00 8.48 61.00 345.92 
4 15.00 4.64 35.00 282.18 
8 10.00 3.77 22.00 274.37 

16 8.00 3.43 15.00 215.34 
32 6.00 1.4 14.00 178.89 
64 6.00 0.69 13.00 178.73 

 
  Table 4.1: Processor Count and Execution time for each algorithm 

When we look at the results, all four algorithms analyzed show considerably strong 
scalability. For example, Coda runs serially at 41 seconds. Note that as we add more processors, 
the execution time improves significantly with the introduction of just one additional core (2 
in total). Two cores alone, reduces the execution time by nearly 40 % from 41 to 25 seconds. 
Further addition of cores reduces the execution time until a point when the addition of more 
hardware no longer yields tangible improvement in performance (You could kind of just say 
that you have a plateau point here rather than this lengthy sentence). This happens at 32 
processors for Coda, with an execution time of 6 seconds. Hence the optimum number of cores 
is 32. Figure 4.1.1 Shows the plot. 
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Figure 4.1.1: Coda Scalability Plot 

The BFS algorithm shows a significant reduction in execution time with the addition of a 
second core (~50% from about 17 seconds to 9 seconds). Note, that no noticeable gains, in 
terms of execution time, were seen after 8 cores (execution time for 8 cores and 16 cores is 
nearly the same time avg.~3.5 seconds). Therefore, the optimum number of cores is 8. Figure 
4.1.2 shows the plot. 

 

 
 

Figure 4.1.2: BFS Scalability Plot. 

As for the BigClam algorithm, we see the greatest improvement of all the algorithms studied 
after the addition of a second core. The improvement in execution time is about 600%, from 
397 seconds to 61 seconds. The improvement diminishes slowly with the addition of more 
cores as seen in the previous plots above. The optimum number of processors is seen at about 
16 cores with the execution time reduced to 15 seconds (26x better than the serial execution 
time). Figure 4.1.3 shows the plot. 

 
 
 

Figure 4.1.3: Big Clam Scalability Plot 
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Finally, the Infomap algorithm begins at 397 seconds when run serially and improves to an 
optimum of 178 seconds when 32 cores are used. Beyond 32 cores, we are merely wasting 
hardware, as no significant improvements are seen when 64 cores are utilized. Figure 4.1.4 
depicts the plot. 

 

 
 

    Figure 4.1.4: Infomap Community Detection plot. 

 
4.2 Speedup 
 

   Speedup is simply defined as the execution time using one processor divided by the 
execution time using multiple p processors. The notion of speedup was established by Amdahl's 
law, which was particularly focused on parallel processing [22]. Using results from table 4.1 
we evaluate the speedup for all the algorithms depicted in table 4.2. 

 
# Processors Coda BFS BigClam Infomap 

1 1.00 1.00 1.00 1.00 
2 1.64 1.96 6.51 1.15 
4 2.73 3.59 11.34 1.41 
8 4.10 4.42 18.05 1.45 

16 5.13 4.85 26.47 1.85 
32 6.83  28.36 2.22 
64 6.83    2.23 

 
           Table 4.2: Speedup for each algorithm 

Looking at table 4.2, we see the optimum speed up for Coda is 6x at 32 processors. The 
BFS algorithms has ~5x speedup with 16 processors. On the other hand, BigClam has a 
considerable 26x speedup at 16 processors. The Infomap algorithm shows a speedup of 2x 
at 32 processors. In the case of a machine learning model, Algorithms similar to Coda or the 
Infomap would have 32 cores for optimum speedup. Algorithms similar to BFS 
implementation and BigClam would have 16 cores for the predicted optimum speedup. 
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Further testing would be required to solidify these findings. 
 
 

4.3 Parallel Efficiency 
 

    The last metric is parallel efficiency, which is defined as the speedup obtained divided by 
the number of processors used. Using table 4.2 we derive table 4.3. Parallel efficiency helps us 
measure the quality analysis of our parallel implementation, in terms of workload balancing, 
as the processing nodes increase. We observe that all algorithms exhibit diminishing efficiency 
as nodes are added. At some point, which we deem as the optimum, there is little efficiency 
gained as more nodes are added. It is at this point for each algorithm that we stop adding more 
nodes. 
 
 

# Processors Coda BFS BigClam Infomap 
1 1.00 1.00 1.00 1.00 
2 0.82 0.98 3.25 0.58 
4 0.68 0.90 2.84 0.35 
8 0.51 0.55 2.26 0.18 

16 0.32 0.30 1.65 0.12 
32 0.21  0.89 0.07 

 
Table 4.3: Parallel Efficiency for all Algorithms 
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5 EXPERIMENTAL ANALYSIS II 
 

To obtain our features, code level logging analysis was utilized Similar runs were done as in 
experiment 1 on different hardware. The QB3 cluster was used to run the tests.  Based on the 
results of experiment 1, we note that only one compute node having 48 cores will be enough 
for experiment II. This is because the optimum number of cores for experiment did not 
exceed 32 cores for any the algorithms. 
 
5.1 Implementation 
 
To run an algorithm on the QB3 cluster, a different approach is detailed below. 
 
First, we request a compute node: 
 
srun -p workq --pty /bin/bash 
 
Next, we run the algorithm once the node is allocated. 
 
srun -n16 ./bfs ./enron.csr 
 
This command was used to run the BFS algorithm. Similar commands were used for the 
other algorithms with different parameters being passed depending on the specific algorithm. 
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6 RESULTS AND EVALUATION II 
 
6.1. Scalability 
 
The Results obtained were as follows: Dataset Enron-emails on QB3 cluster. 
 

# Processors BFS Coda BigClam 
1 12.15 35.41 365 
2 6.17 24 62 
4 3.17 15 41 
8 1.56 11 35 

16 0.99 6 21 
32 0.75 5 17 
48 0.71 5 15 

 
Table 6.1.1 QB3 Execution times (in seconds) for the algorithms profiled 

 
The second experiment demonstrates that the results and parallel efficiencies of the 
algorithms will hold even for different hardware. With this knowledge we are able to confirm 
that we can predict the optimum running parameters for similar algorithms. However, we 
need to establish the definition of similarity when referring to various differing algorithms. 
More research is required for the specifics each algorithm and its numerous implementations 
in order for us to obtain features which could be used for a machine learning model.  
 
6.2 Speedup 
 
From table 6.1.1 we obtain the speed up and compare the values with the results of 
experiment I. For discussion purposes, we use two of the algorithms to demonstrate the 
correlation of the results.  
 
Coda Speed up Values  
# 
Processors 

Experiment I 
QB2 

Experiment II 
QB3 

1 1.00 1.00 
2 1.64 1.48 
4 2.73 2.36 
8 4.10 3.22 

16 5.13 5.90 
32 6.83 7.08 

 
Table 6.2.1: Speed up for Coda on QB2 cluster vs QB3 cluster 

 
Figure 6.2.2 visualizes the similarity in performance for different clusters 
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Figure 6.2.2: Coda Speedup Vs Processors for QB2 and QB3 

 
Looking at figure 6.2.2, we see that almost identical speedup is achieved for both experiment 
I and experiment II. This validates the quality of our results. This gives much promise to the 
automation of optimum system specifications for similar graph algorithms. 
 
We also obtain the results for BigClam as follows:  
Note: to avoid repetition of similar results, we are only presenting the speedup graph here. 
 
 

 
 
Figure 6.2.3 BigClam Speedup Vs Processors for QB2 and QB3 

Once more, we see that the performance of the algorithms on different clusters is similar. 
Although not replicated in this paper, the results show an analogous pattern for both profiled 
BFS and Infomap algorithms. Examining BigClam, we notice the speed starts to sharply 
decline around 16 to 32 processors where it nearly flattens out. This shows that more 
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computing resources yield little gain, hence we stop right there and set the points where the 
graphs flatten out as optimum number of cores for each algorithm respectively (Sentence runs 
on to long). We notice the speedups are slightly impacted by the different computational 
capabilities of the different clusters. 
 
6.3 Experimentation with other Networks 
 
Further experimentation was done for the two algorithms using different datasets to help 
validate results of the optimum number of cores. The results obtained for the Facebook 
dataset are discussed as follows in figure 4.5.4. for the Coda algorithm. 
 
Coda  Execution time 
# Processors Facebook YouTube 

1 68 173 
2 25 34 
4 23 19 
8 11 15 

16 8 10 
32 7 9 
48 6 8 

 
 
Table 6.3.1: QB3 Scalability on Facebook Dataset for the Coda Algorithm 

We see from the results that both algorithms, for this dataset, also exhibit scalability as more 
processors are added. 
 
We obtain the speed-ups and compare them with results obtained from Enron emails dataset. 
The results are shown in table 4.6 and figure 4.7. 
 
Coda  

# 
Processors Enron Facebook YouTube 

1 1.00 1.00 1.00 
2 1.48 2.72 2.35 
4 2.36 2.96 3.33 
8 3.22 6.18 4.18 

16 5.90 8.50 5.58 
32 7.08 9.71 6.76 

 
Table 6.3.2: Coda algorithm Speedup on QB3 for different datasets. 

In order to better understand the results, we use table 6.3.2 to plot figure 6.3.3  
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Figure 6.3.3: Speedup over different networks for Coda 

Speedup for every network in the dataset is measured against the runtime of detecting 
communities in a single processing unit.  
 
We noticed that different networks show a similar pattern in speedup, but the values are not 
the same. This is due to the fact that the number of nodes and edges in a dataset plays an 
important role in computation and communication. With more nodes and edges, it means 
more computation and communication and perhaps more memory. All networks exhibit 
similar behavior as the speedup declines around 16 core and almost flattens out around 32 
cores. This consistency is the basis we can use to model predictions for similar algorithms. 
 
We also run the network test on the Big Clam algorithm and the results are shown in table 
6.3.4 and illustrated in figure 6.3.5 
 
 
BigClam 

# 
Processors Enron Facebook YouTube 

1 1.00 1.00 1.00 
2 5.89 2.72 7.72 
4 8.90 2.96 11.71 
8 10.43 6.18 15.88 

16 17.38 8.50 22.02 
32 21.47 9.71 24.83 

 
Table 6.3.4: Speedup over different networks for BigClam 

 

The resulting plot for the above results is shown in figure 6.3.5 
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Figure 6.3.5 Speedup over different networks for BigClam 

 
The experiments for the two algorithms show clear similarity in Algorithm behavior over 
different networks. The results should hold for other algorithms as well. The concept has 
been thoroughly tested with regard to scalability, speedup and also different hardware. When 
we profile more algorithms in the future, a proper model needs to be developed and tested to 
finalize the desired outcome of our preliminary research. The YouTube network was the 
largest and also benefited most from parallelism. We also noted that the smallest network 
profiled also depicted the smallest speedup. However, no conclusions can be made at this 
point, as the previous results differ. In figure 6.3.3 we note that Facebook network exhibited 
the greatest speedup. 
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7 EXPERIMENTAL ANALYSIS III: MEMORY CONSUMPTION 
 
The third and final experiment done was on memory usage with respect to scalability of the 
graph algorithms. Two algorithms were tested; Coda and BigClam. The experiment was done 
on QB3 cluster using command line-based analysis using Intel® Parallel Studio XE 2020. 
 
Memory Consumption analysis explorse memory consumption (RAM) over time and identify 
memory objects allocated and released during the analysis run. During Memory Consumption 
analysis, the VTune Profiler data collector intercepts memory allocation and deallocation 
events and captures a call sequence (stack) for each allocation event (for deallocation, only a 
function that released the memory is captured). VTune Profiler stores the calling instruction 
pointer (IP) along with a call sequence in data collection files, and then analyzes and displays 
this data in a result tab. [24] 
 
To get start: A dedicated node had to be requested using the following command: 
 
srun -p workq -w nodeName --pty /bin/bash 
 
 
I needed a specific node because for the analysis to take place, we need the 
perf_event_paranoid value to be set to 1 or less. This allows performing of analysis on the 
computing node. 
 
Next, export the path variable to point to where the analysis software is installed. 
 
Export PATH=/usr/local/compilers/Intel/parallel_studio_xe_2019.5/vtune_amplifier_2019/bin64/: 
$PATH 
 
Then we run the analysis 
amplxe-cl -report summary -report-knob show-issues=false -r ./myresult -collect memory-
consumption srun -n16 ./x ./enron.csr 
 
After the results were obtained, I securely transferred them to an ordinary computer with Vtunes GUI 
installed. This was done to easy the analysis.  Figure 7.0.1 shows the results of the BigClam for 16 
cores being used. 
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Figure 7.0.1: Vtunes Memory Analysis for BigClam with 16 processors run. 
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8 RESULTS AND ANALYSIS III 
 
 
We run memory analysis on the Coda and BigClam algorithms. The both algorithms had a 
top memory-consuming function. Table 8.0.1 shows the memory consumption functions for 
both algorithms in relations to parallelism. This test was performed on the Facebook Network 
dataset. 
 
 
 
Facebook  MB 
# 
Processors Coda BigClam 

1 8192 1024 
2 627 471 
4 624 469 
8 624 469 

16 624 465 
32 599 465 
48 599 465 

 
Figure 8.0.1: Top memory-consuming functions memory usage. 

 
 
 
 
 
 
From table 8.0.1, we see that the serial versions of the algorithms use up a lot of memory as 
compared to the parallel versions. For the Coda algorithm, it was noticeable that additional 
cores had a significant reduction in memory usage of ~1200 %. However, the memory 
consumption remained more less the same even though more cores were used from the 2nd to 
the 48th core. It may have to do with how the program was written.  
 
On the other hand, for BigClam, running the algorithm with one core verses two cores shows 
a reduction in memory consumption of about ~55% for the parallel version. Like the Coda 
algorithm, additional cores did not significant alter the memory consumption.  
 
Other tests may need to be performed on memory usage to have a better idea of how the 
memory is being utilized. 
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9 LIMITATIONS 
 
    When using VTune Amplifier we were unable to come up with the correct configuration to 
profile the parallel algorithms using more than 20 processors. Recall that the QB2 cluster 
requires the user to submit an allocation request in order to use more than 20 processors. Also 
recall that VTune Amplifier also requires a script which allows for the execution and profiling 
of a parallel program. We believed that in order to run a parallel program with more than 20 
nodes we would also have to insert the allocation command into our script which contained our 
run command. However, when running this script, VTune Amplifier obtains the allocation but 
only profiles the running script rather than profiling our actual parallel program. To overcome 
this, A breakthrough came in later in the research with the introduction of QB3 cluster which 
has 48 computing cores on one node. However due to permission limitations, an allocated 
cluster does not allow ssh connections which is required by an external Vtunes application. I 
had to resort to command line-based analysis using Vtunes which is not as visual or user 
friendly. To further overcome this problem, I had to export the command line-based results to 
another ordinary computer which helped me view the visualizations of the results. The process 
ate away valuable time as I spent countless days of debugging and learning how to use the 
system with limitations. To avoid all the challenges, all that was needed was to set 
perf_paranoid value on the server to 0.  However, LONI, possibly for security reasons, does 
not allow this. They were gracious enough to set it to 1 for me on one single node after much 
discussion. Setting the per_paranoid value to 1 allows for command-line based analysis. 
 
    Failing to find a timely solution to the VTune Amplifier problems, we then moved onto TAU 
as an alternative profiler. With TAU we were able to obtain the execution time of our 
community detection algorithm. However, when we compared the results obtained from TAU 
with the results of our program logs, it was discovered that the execution time measure via 
TAU was significantly larger. We are still unsure as to why this was the case, but we believe 
it might have something to do with TAU inefficiently utilizing the allocated processors (load 
balancing issues or not using all the nodes as specified). We are learning more about TAU by 
reading its documentation so that we can determine exactly why we have this large difference 
in execution time. 
 
    It must also be noted that finding and testing these parallel algorithms was an extremely 
challenging task. The reason being, is that there are very few publicly available parallel 
algorithms online and of the few that are available most of them are poorly documented and/or 
require various amounts of refactoring before they are able run.  
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10 RELATED WORK 
 

In this section we will discuss some related works in terms of feature classification and 
parallel algorithms. Our report relies heavily on feature analysis. Islam et al presents a 
customizable framework for analyzing performance measurements and visualizing through a 
web-based interactive dashboard for interactively exploring a large volume of hierarchal 
information. The interactive framework they developed known as DASHING allows for 
interactive visualizations that provide both coarse and fine-grained information about the 
causes of a target performance metric (e.g. efficiency loss) [15]. 

 
 Arifuzzaman et al describes that big graphs can consists of millions or even billions of node 

and edges and that these graphs demand the development of parallel computing algorithms. 
The triangle counting algorithm they developed uses dynamic load balancing such that the 
algorithm can compute the exact number of triangle ins a network with 1 billion edges in only 
2 minutes using only 100 processors (i.e. good speed-up and scaling) [16]. 

 
Rastogi et al describes the history, significance, and need for parallel algorithms. They also 

discuss load distribution, synchronization, fault tolerance and communication overhead along 
with the PRAM model for parallel computation [17]. 
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11 CONCLUSION AND FUTURE WORK 
 

In this thesis, we analyzed the four parallel algorithms and were able to extract execution 
time as our defining feature. Using execution time, we were able to determine three other 
metrics: scalability, speed-up, and parallel efficiency. For all algorithms profiled, we noticed 
that scalability was plateaus, between 8 and 64 processors at some point for each graph, the 
parallelization overhead produced resulted in little to no speed-up. Our work done up to this 
point is far from complete. In the future, we need to obtain more parallel implementations. 
Further, we need to fully understand how TAU works in order for us to extract even more 
features (hardware counters, memory analysis etc.…). We would also need to run our 
algorithms on the various environments that that the QB2/3 cluster offers (i.e. test our 
algorithms on their GPU’s instead of their CPUs). After this stage, we would apply machine 
learning techniques to classify algorithms according to similarity in optimum performance 
features and come up with a model to automate this process. 
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