
University of New Orleans University of New Orleans 

ScholarWorks@UNO ScholarWorks@UNO 

University of New Orleans Theses and 
Dissertations Dissertations and Theses 

Summer 8-7-2020 

A Theory of Preimage Complexity: Data-structures, Complexity A Theory of Preimage Complexity: Data-structures, Complexity 

Measures and Applications to Endofunctions and Associated Measures and Applications to Endofunctions and Associated 

Digraphs Digraphs 

Bradford M. Fournier-Eaton 
University of New Orleans, bradfordfournier@gmail.com 

Follow this and additional works at: https://scholarworks.uno.edu/td 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Fournier-Eaton, Bradford M., "A Theory of Preimage Complexity: Data-structures, Complexity Measures 
and Applications to Endofunctions and Associated Digraphs" (2020). University of New Orleans Theses 
and Dissertations. 2794. 
https://scholarworks.uno.edu/td/2794 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO 
with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the 
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from 
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself. 
 
This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an 
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu. 

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholarworks.uno.edu%2Ftd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2794?utm_source=scholarworks.uno.edu%2Ftd%2F2794&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu


A Theory of Preimage Complexity: 

Data-structures, Complexity Measures and Applications to Endofunctions and Associated Digraphs

A Dissertation

Submitted to the Graduate Faculty of the

University of New Orleans

in partial fulfillment of the

requirements of the degree of 

Doctor of Philosophy

in

Engineering and Applied Science 

Mathematics

by

Bradford M. Fournier-Eaton

B.S. University of New Orleans, 2013

M.S. University of New Orleans, 2016

August, 2020



For Scott 

ii



Acknowledgments 

I would like to express my sincere gratitude to my committee for their patience, kindness and encourage-

ment throughout this process.  To my advisor and mentor Dr. Kenneth Holladay -- a man of great generos-

ity, warmth, and infectious enthusiasm:  I would like to express my most heartfelt thanks for his insight,

creativity, and trust -- without which this dissertation would not have been possible.  Additional thanks to

my dear friend and colleague Aram Bingham whose companionship, conversation, support and encourage-

ment has for many years been a source of strength and whose character and kindness is a model of friend-

ship to which I can only hope to aspire.  Finally to my husband Scott: your kindness of spirit, ever-present

love and unflinching support have made even the most difficult moments in this journey a true gift --

together we can indeed do anything.   Additional thanks to Dr.  Li,   Dr.  Golz,   Dr.  Easterlin,  and Dr.

Ahmed.  

iii



Foreword

Only briefly does the predictable and the understood  hold sway over our human thirst for the captivat-

ing and the beautiful: the kaleidoscope of nature, complexity of peak and valley, textures of schist and

chitin, the care-free path of fjord and tributary, and swells of foam and grain. We marvel at Stravinsky,

Pynchon  and  Pollak.  We exclaim the  unbelievability,  the  near  impossibility.  We  imagine  a  young

genius working without effort, or  living a life unceasing in toil.The above examples speak to the diffi-

culty of tracing causality in complex systems and also invoke the notion of beauty.  It is the seemingly

untraceable course to beauty which we find so compelling: Stone Forrest in Shilin China, Colombia’s

Cano Christales River,  Paro Satang Monastery of Bhutan, and the Fairy Pools in The Isle of Skye. We

are most dumfounded when standing silently,  stupefied and still,  before beauty while  wondering at

history and cause. These wonders have causes, histories, and futures of their own. To know the partial

histories  of these places and forces diminishes neither their beauty nor our awe. The forces and phenom-

ena at work here share a complex beauty and inspire our imagination to ponder their origins.  “Origin"

is the motivating philosophical impulse of this thesis as we embark on a study of discrete causality and

complexity.  Complexity and richness  of  structure  need not  evolve from complex rules;  simple  rules

along with simple initial conditions can give rise to vastly different complexities: from the simple to as

rich as any found in nature.[1]  
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Abstract 

This dissertation develops a new theory of finite function complexity.  This novel approach is based on the

structure of preimage sets generated under repeat application of the inverse.  We encode this information

in our primary data-structure, an square matrix called the sigma matrix.  This matrix allows us to easily

encode  information  about  the  functional  digraph  and  cycle  structure  of  the  associated  endofunction.

Additionally, the sigma matrix is of interest in its own right.  The columns of sigma matrices are integer

partitions of the domain size n, the size of the domain is always an eigenvalue of the sigma matrix, and

calculation of the sigma matrix is highly efficient -- requiring no direct calculation of inverses.  The prob-

lem of finding the number of unique sigma matrices on XX as a function of n, the size of X,  gives rise to a

novel integer sequence Σ(n).  We use the sigma matrix and a natural ordering on these matrices as part of a

flexible and informative definition of preimage complexity.  We give several examples of preimage complex-

ity measures and examine the partition of all endofunctions induced by these measures.  Finally we show

how the integer sequence Σ(n) corresponds to the number of complexity classes induced by the discrete

preimage complexity function. 

Keywords: Preimage Structures, Endofunctions, Sigma Matrices, Integer Partitions, Integer Sequence
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1. Introduction

 

 In this dissertation we develop the theory of preimage complexity of endofunctions on a finite domain.

We roughly divide this work into two parts: the first develops the data-structures required in our analysis

of endofunction complexity and the second develops a flexible measure of a preimage complexity measure.

The primary data-structure developed, the sigma matrix with entries given by Σ[i, j] = f-j(xi), is designed

to  efficiently  capture  the  preimage  structure  of  the  associated  functions  and  is  itself  of  mathematical

interest. The columns of the sigma matrix are integer partitions of n = domf, the matrix is efficiently

calculated, and the number of such matrices as a function of n  is a novel integer sequence.  Additionally,

the sigma matrix may be used to derive useful  information about the digraph associated with a given

endofunction. It is upon this structure that we develop a flexible measure of preimage complexity. Our

preimage complexity functions take each function f : X → X  to some s ∈ S, a countable set, by way of the

sigma matrix. Thus at its most basic, a preimage complexity function is just a function H : XX → ΣXX → S

where ΣXX  is the set of all sigma matrices for the functions XX and S the set in which the complexity value

of f  is assigned. 

We use five benchmarks by which to judge our progress: two of these pertaining to the data-structures and

three pertaining to our desired complexity measure.  The data structures developed should capture the

preimage  structure  of  the  function  and  encode  useful  information  about  the  associated  function  and

digraph (B1). Additionally the data structures should be easy to compute for large domains (B2).   For our

complexity measures we required that they be based on the preimage data structures (B3), be flexible and

informative (B4), and respect the natural dichotomy between the preimage structure of the bijection and

constant (B5).

The first benchmark demands that our structures readily correspond to the reality of the function’s inverse

structure.  By simply examining the chosen structures, we should gain insight into the preimage structure
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of f .  The second benchmark requires that the structures be computable in a simple way.  Our definition of

complexity will be general enough to flexibly partition the set of all endofunctions depending on the needs

of the scientist using the measure: a highly discriminating measure may permit a fine partitioning of the

functions into equivalence classes only when the functions have equal preimage structures whereas coarser

measures may look at qualities beyond just simple equality. Lastly, we must be able to learn something

useful about the function and its structure, often encoded as a digraph. 

  Looking Forward.  In Section 2 we define the data structures which will be useful in talking about our 

functions in the language of preimages: preimage sets as well as image and preimage vectors.  Additionally 

there are composite structures built from the above vectors: the forward image array, preimage array and 

the sigma matrix.  These structures will form the basis from which we organize information about our 

functions and serve as efficient objects upon which to operate and derive a function’s associated inverse 

properties.  In keeping with our goals of the last section, the structures in Section 2 are designed to obey 

certain niceness properties making them useful, efficient, and applicable -- as well as being interesting 

objects in their own right.  At the end of Section 2 we fully develop our primary data structure:  an array of 

set sizes which will play a major role in how we structure and derive our results.  Section 3 proves a 

number of interesting results about the structures developed in section two.  In particular,  we prove 

results about the primary data structure of this paper, the sigma matrix.  In section 4 we show the 

applicability of our approach: extracting from our data-structures information about the associated 

digraphs. Section 5 develops a notion of preimage complexity: desired properties are outlined and justified, 

the definition is given, and several examples of preimage complexity functions are given.  Section 6 

examines the partitions of XX induced by our preimage complexity functions and the sequence of such 

partitions as a function of domf.  We exhibit a novel sequence Σ(n) corresponding to the number of 

equivalence classes of complexity induced by our primary data structure as a function of n.  Lastly, in 

Section 7 several avenues of further exploration and possible lines of inquiry are suggested. 
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2.  Preimage Data-Structures 

 2.1 Notation and Conventions.  In this section we lay out our notational conventions for dealing with 

preimage elements and structures. Our primary structures are lists and matrices - the elements of which 

are often resultant from several applications of the inverse of the function. We start by laying out 

conventions for the indexing of domains, define the jth inverse of x ∈ domf is and examine the creation of 

lists of sets wherein the list ranges over domain elements under a fixed number of applications of the 

inverse. Likewise, we examine the case where the list ranges over increasing applications of f-1 for some 

domain element x.  Forth and finally, we combine the above and examine a matrix, or list of lists, where for 

each ith domain element xi we find its j - back inverse for all 1 ≤ i, j ≤ n.  

Unless otherwise noted, function domains will be in capital letters, usually X, and have size n.  The 

elements of such a domain will be indexed lower-case versions of the letter used for the domain. The typical 

index for a domain element will, as above, be i and j will index the inverse depth where 1 ≤ i, j ≤ n.  I.e., 

given f : X → X we have X = domf = n where X = {x1, x2, ..., xi, ..., xn}.  Thus, recognize f-j(xi) as is 

the preimage of xi ∈ X under j applications of the inverse of f : X → X and X = n.

For example, consider the immediate preimage set to an element y in the domain of a function, i.e.,  

f-1(y) = {x : f1(x) = y}.  Extending the inverse depth to provide a more complete genealogy of y under f , we 

may consider f-j(y) = { x : f j(x) = y} where 1 ≤ j ≤ n .  Likewise suppose we wish to find the jth inverse 

across several domain elements. Suppose A = {a, b, c} to find  f-jA simply calculate 

f-1A = f-1(a)⋃ f-1b ⋃ f-1(c).  Thus we use the convention that

f-jA := 

x∈A

f-j(x).
(1)
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Often we will create a list of preimage sets for a particular x ∈ X as we apply the inverse multiple times. To 

keep such an accounting, we create a list of inverse sets of x at depths ranging from 1 to n, using brackets 

to indicate the range of values over which the bracketed index ranges.  For example, if we wish populate a 

list with the inverses f-j(x) at depths from the first to nth inverse, we create the n element list of such 

elements using brackets to indicate the values over which j should range, 

f-[1,n](x) := f-1(x), f-2(x), …, f-n(x). (2)

   To construct a list which iterates over all n  domain elements while holding the inverse depth at a con-

stant j, we place brackets around the set of elements which f-j should take as arguments. Typically we do

this for the set of all n domain elements X = ⋃i=1
n xi as in

f-j[X] := f-j(x1), f-j(x2), …, f-j(xn). (3)

In summary, brackets enclose the range of values which varies with the indexing of the list elements.   For

example,  in f-[1,j](x),  it  is  the inverse depth which varies:  ranging over 1 to j  for the single element x.

However in f-j[X] the inverse depth j is fixed and we consider this jth inverse as the domain elements range

from x1 to xn. 

Example 2.1.   Let f = a, b, b, a, (c, a), d, b.  

If  we  wish  to  construct  the  list  of  the  three-back  inverses  for  each  domain  element  in

X = {a, b , c, d} we write the following

f-3[X] = f-3(a), f-3b, f-3(c), f-3d .

To examine the set of all such elements at an inverse depth of three,  we find 

f-3(X) = f-3(a), f-3b, f-3(c) = {a, b, c, d}.

Finally, for a fixed element b, we can list the preimage sets at depths 1 to n. For the element b, 

f-[1,n]b = f-1b, f-2b, f-3b = [ {a, d}, {b, c}, {a, d} ] .

We want a list of lists capture the complete preimage picture of a function and summarize the above in 

the following definition.  

 Definition 2.2.  The  matrix  of  preimage  sets  for  each  domain  element  xi  and  each  inverse  depth

1 ≤ j ≤ n  will  be called the preimage matrix  F-.  The entry in the ith  row and jth  column is  given by

F-[i, j] := f-j(xi).  This may be seen as a matrix of rows with ith  row corresponding to the list f-[1,n](xi).
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Similarly this can be viewed as  a column matrix with the jth column corresponding the list f-j[X] .  We use

the notation f-[1,n][X]  to indicate such a matrix which iterates over both domain elements [X] and inverse

depth [1, 2, ..., n]. 

F- := f-[1,n][X] =

f-1(x1) f-2(x1) ⋯ f-n (x1)

f-1 (x2) f-2 (x2) ⋯ f-n (x2)

⋮ ⋮ ⋱ ⋮

f-1 (xn) f-2 (xn) ⋯ f-n (xn)

. (4)

Example 2.3   Let f a, b, b, a, (c, a), d, b 

The preimage matrix F- is the list of lists f-[1,n][X].  The first and second column of this matrix are

given by the lists 

f-1[X] = f-1(a), f-1b, f-1(c), f-1d = [{b, c}, {a, d}, {}, {}]

and

f-2[X] = f-1f-1(a), f-1f-1b, f-1f-1(c)

The first element of the second column, F-[1, 2] = F(1,2)
- is f-2(x1 = a) which we calculate as 

f-2(a) = f-1f-1(a) = f-1b, c f-1b ⋃ f-1(c) = {a, d}.

 Continuing for the each 1 ≤ i, j ≤ 4 we populate the preimage matrix as

           

F- =

{b, c} {a, d} {b, c} {a, d}

{a, d} {b, c} {a, d} {b, c}

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

.

We now briefly preview a motivation for the next sub-section. Suppose we are given two functions f  and g.

Assume the preimage matrices of f  and g are 

F- =

a a a

b b b

c c c

and G- =

c b a

a c b

b a c

.

Notice that each of these preimage matrices are made of singleton entries.  So, for each additional inverse

step there is a unique elemental inverse.  Functions like f  and g above with unique inverse elements should

be recognized as bijections. Thus in addition to the particular elements making up the inverse sets, the size

of the inverse sets themselves gives useful information. Capitalizing on this feature, we develop a structure

that captures the sizes of the elements of the preimage matrix to exploit the information contained therein:
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the sigma matrix.  

 2.2 The Sigma Matrix.  We now turn to developing our primary object for the analysis of preimage

structures.  Recall that the preimage matrix F-  is an n ⨯ n  matrix of rows populated with set elements

such that the row number i row corresponds to a unique domain element xi and the column number j to the

inverse depth f-j.  Thus, F-[i, j] = f-j(xi). 

Definition 2.4. The Sigma Matrix Σf  of f  is an n⨯n  matrix with entries equal to the size of the corre-

sponding entries in the preimage matrix.  I.e., Σf [i, j] := F-[i, j] = f-j(xi).

Σf :=

f-1(x1) f-2(x1) ⋯ f-n(x1)

f-1(x2) f-2(x2) ⋯ f-n(x2)

⋮ ⋮ ⋮ ⋮

f-1(xn) f-2(xn) ⋯ f-n(xn)

We define that two sigma matrices Σ1 and Σ2 are equal if and only if there exists a permutation of

rows π so that the two are element-wise equal. 

2.3 Computation of  Sigma Matrices.   Computing the sigma matrix   Σf  by a  naieve element-wise

determination and count of preimage elements F-[i, j] = f-j(xi)  for all 1 ≤ i, j ≤ n  is not without its costs.

For example, creating the three-by-three sigma matrix of f = a, b, b, a, c, b requires us to first create

the  n2 = 9  sets  to  populate  the  preimage  matrix  F-.   For  just  the  first  row  of  the  matrix,

F-[x1, *] = F-[a, *] ,  we need f-j(a) for each of j = 1, 2, 3. 

f-1(a) = {b} ,

f-2(a) = f-1b = {a, c} , and

f-3(a) = f-1(a)⋃ f-1(c) = {b}⋃ {} = {b}.

So,  here we would produce F-[a, *] = [{b}, {a, c}, {b}]  as  the first  row.  Next,  we need the sizes  of  the

aforementioned list elements to populate the sigma matrix.  Again we only calculate the first row corre-

sponding  to  the  element  x1 = a  giving  Σf [a, *] := [{b}, {a, c}, {b}] = [1, 2, 1] .   Since  this  only  corre-

sponds to a ∈ X   we would need to repeat the process for x = b, and x = c.  To call this method cumber-

some is generous.  One of our goals is to define and compute our preimage structures in a simple way:  the
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above approach will not suffice.  To enable a far more efficient method for calculation of the sigma matrix,

we define two matrices:  the image matrix F+ and the column accumulation matrix ColSum(M).  In addi-

tion we define two lists which make up the rows of the respective matrices. 

Definition 2.5 : The image list of x under f , is the list of images of x under repeat application of f  from

f1 to fn. We write   f [1,n](x) = [ f(x), f2(x), … , fn-1(x), fn(x) ].

Definition 2.6 : The image matrix of f   is the matrix in which the rows are the image lists of f  for

each x.  We write F+ := f [1,n][X] =  [f [1,n](x1), f [1,n](x2), ..., f [1,n](xn)] .   Thus an arbitrary element of  the

image matrix is given by  F+[i, j] = f j(xi). 

Example 2.7. Let f = a, b, b, c, (c, c).  Find the image list of a under f  and the image matrix of f . 

The image list of a under f  is the list with jthentry f j(a) by Definition 2.5  Here since we only have

three domain elements, we are looking for the list f [1,3](a)  which is [f(a), f2(a), f3(a)] = [b, c, c] . By Defini-

tion 2.6, F+(a) = f [1,3](a) as calculated above.  We need to find the remaining rows F+[b, *] and F+[c, *].

These rows, along with the first are given by

F+[a, *] = f [1,3](a) = f(a), f2(a), f3(a) = [b, c, c]

F+[b, *] = f [1,3]b = fb, f2b, f3b = [c, c, c] .

and

F+[c, *] = f [1,3](c) = f(c), f2(c), f3(c) = [c, c, c] .

This forms the matrix:                   

F+ =

b c c

c c c

c c c

Now we define a matrix which, in a given ith row, counts the number of xi’s in each column of some other

matrix M . We can define the rows of such a matrix in the following definition. 

Definition 2.8 : Let L be of length n and M  be an n⨯n matrix. L is a column accumulator of x over

M  when the jth entry L[j] counts the occurrences of x in the jth column of M . We write ColSum(M : x) and

ColSum(M : x) [j] for the accumulator list of x over M  and its jthentry respectively. 
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We now define a matrix built from the column accumulator lists of some matrix M  ColSum(M : x) as its

rows. 

Definition 2.9.  A matrix M  is a column accumulation matrix of M  when the rows of M  are the

column  accumulator  lists  of  M .   This  matrix  has  entries  M[i, j] := ColSum(M : xi)[j]  and  we  write

ColSum(M : X) or just Colsum(M). 

Example 2.10. Find the Column Accumulation Matrix of M =

n m n

l n m

l l m

1.   First for each unique entry x of M ∈ { * }n⨯n we find the column accumulator list Colsum(M : x).  

Recall that this is done element-wise by finding the number of x ' s in in each column of  M  so that 

Colsum(M : x) is the list [Colsum(M : x)[1], Colsum(M : x)[2], Colsum(M : x)[3]]. Doing this for x = l:  

there are two l’s in column one, one l in column two and none in column three. Thus we have 

ColsumM : l[1] = 2, ColsumM : l[2] = 1, and  ColsumM : l[3] = 0.  These values populate the list 

ColsumM : l = [2, 1, 0].  Repeat this for elements m and n giving ColsumM : l = [2, 1, 0], 

Colsum(M : m) = [0, 1, 2], Colsum(M : n) = [1, 1, 1]. 

2.   We now find Colsum(M) := Colsum(M : X). From the definitions this is the list 

ColsumM : l, Colsum(M : m), Colsum(M : n).  Using the lists found in part 1 above, we form the 

matrix 

Colsum(M) =

2 1 0

0 1 2

1 1 1

.

Example 2.11.  Let g = a, d, b, d, (c, e), d, f, e, d, f , e .  We find another column accumulator

matrix, here of  an image matrix G+. 

G+ = g[1,n][X] =

d f e d f e

d f e d f e

e d f e d f

f e d f e d

d f e d f e

e d f e d f

8



We now find the ColSumG+ = ColSumG+ : a, ColSumG+ : b, ..., ColSumG+ : f.   To calcu-

late, for example, the fifth row,  ColSumG+ : x5 = e, we count the number of m’s in each column of G+.

This  gives  us  the  list   [2, 1, 3, 2, 1, 3].  We  proceed  the  same  way  for  each

x ∈ dom(g) = {x1 = a, x2 = b, ..., xn=6 = f}. This results is the column accumulator matrix of G+. 

ColSumG+ =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 2 1 3 2 1

2 1 3 2 1 3

1 3 2 1 3 2

2.4  Computing the Sigma Matrix. In the last section we presented several widgets for which will be

instrumental in computing the sigma matrix, our primary data structure of interest.  Of particular interest

will be the image matrix and the column accumulator matrix. Recall that the image matrix is simply the

matrix with entries F+[i, j] corresponding to the image of xi under j applications of f .  The column accumu-

lator matrix of M  was a matrix Mcs = ColSum(M)  where the (i, j)th   is  given by the number of xi’s  in

column j of M . 

Mcs[i, j] = ColSum(M : i)[j] = ColSum(M)[i, j]

These  two  matrices,  F+  and  ColSum(M)  will  be  instrumental  in  an  efficient  calculation  of  the  sigma

matrix. Since sigma matrix was defined as the sizes of the preimage matrix entries: Σf [i, j] = f-j(xi) we

may ask what place an image matrix and a column accumulation matrix have in this calculation. Because

nearly all of the work that follows will be using sigma matrices as its foundation, the efficient computation

of these matrices is critical. We prove a rather surprising result that we first state as a claim. 

Claim:   The sigma matrix, a  matrix of preimage set sizes, can be constructed without ever calculating a

preimage set.

Theorem 2.12.   The sigma matrix Σf  is  the column accumulator matrix of  F+ 

Proof:  Call the image matrix F+ and its column accumulator matrix C.  Since C  is the column

accumulator matrix of F+, the matrix element C[i, j] = ColSum(F : xi)[j] counts the number of xi in the jth

column of F.   This is just a count of the xi ' s  in [f j(x1), f j(x2), ..., f j(xn)].   For each occurrence of xi  in
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column j there is a corresponding element x  so that f j(x) = xi.  For example,  if xi  occurs in position k  of

f j[X],  then xk ∈ {x : f j(x) = xi}.  Note that since each occurrence of xi  corresponds to a unique row k,   it

corresponds to a unique domain element xk and thus the number of xi’s in column j is exactly the same as

the size of {x : f j(x) = xi}. I.e., 

C[i, j] = ColSum(F+ : xi)[j] = x : f j(x) = xi (5)

Recall that the element F
-
[i, j] of the preimage matrix, is itself given by the set f-j(xi) = {x : f j(x) = xi}.

Taking  absolute values, we see that C[i, j] = ColSumF+ : xi[j]  is equal to the size of the preimage matrix

element, F
-
[i, j] . By definition of the sigma matrix,  its (i, j) entry is the size of the F

-
[i, j] which gives us

that

C[i, j] = ColSum(F+ : xi)[j] = F
-
[i, j] = f-j(xi) = Σf (i, j) . (6)

∴

ColSum(F+) = Σf (7)

Q.E.D.      

 

          

Theorem 2.12 above is crucial: it shows that we can circumvent the cumbersome element-wise creation of

the sigma matrix from the preimage elements-- despite the fact that the sigma matrix element is given by

Σ[i, j] = f-j(xi).  We simply need to calculate the ColSum(F+ : x) for each x ∈ domf. This requires no

calculation of any inverses as Σf  is just the result of ColSum(F+), itself is simply a function of the image

matrix: a matrix of singletons built from a simple procedure: repeat application of f .  It should be noted

ColSum is simply a function which takes as argument a matrix of singletons. The ColSum does not always

generate a sigma matrix. The input to ColSum must be the image matrix for some f : X → X. Thus (7)

tells us that applying ColSum to an image matrix of f  yields its sigma matrix.  See Example 2.10 for an

example of ColSum(M) which does not result in a sigma matrix. 

At this point we wish to distinguish between the statement that some matrix M  is known a priori to be a

sigma matrix, and that M  is a sigma matrix derived from application of ColSum to an image matrix F+ of

some known function f . We will use the following nomenclature: we say that M  is a sigma matrix if we

know there exists at least one f  so that ColSum(F+) = M . In this case we typically will employ simply Σ or

indicate that M  “is a sigma matrix”.  However, we say that  M  is the sigma matrix of f  if we have been

given an f  and know its sigma matrix is M  having carried out a construction. In this latter case we will
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typical indicate the function from which it is derived using the subscript in Σf .  In summary, the sigma

matrix  of  a  given  function  f  is  simply  the  column  accumulator  of  the  image  matrix  of  f ,  i.e.,

Σf = ColSum(F+).  This allowing a computation of Σf  without computing the matrix of elements F-  from

which its definition is derived. 

Making this recipe algorithmic, we see that to construct the image matrix F+ a list of lists.  Here the sub-

lists  F+[ * , j]  are  columns  of  a  matrix  with  elements  corresponding  to  f j(xi)  for  each  1 ≤ i ≤ n.   I.e.,

F+[i, j], corresponds to the result of applying f  to xi j times.  We call this procedure P+ . 

In pseudocode the procedure P+ becomes

PPlus = [ ]

j=1

for j in range 1 to n

append column [ ]

for i in range 1 to n

append to column f j(xi)

Pseudocode 2.1 

Creation of the Image Matrix. 

As we did with the image matrix, to construct the ColSum of an n⨯n matrix M , we start with an empty

list. To this list we append a list corresponding to the rows ColSum(M)[i, *] each having a jth  elements

corresponding to a count of the number of occurrences of xi in the jth column of M .  We call this procedure

Pcs which is the procedure for generating the column sum of a given n⨯n matrix. 

In pseudocode the procedure Pcs becomes
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ColSum(M) = [ ]

i=1

for each row i in M

append an empty row i to ColSum(M)

for j in range 1 to n

append count(xi) to row of ColSum(M)

Pseudocode 2.2

Creation of the ColSum Matrix

We need a procedure PΣ  for computing the sigma matrix.  This procedure will be composed of two sub-

procedures. The first sub-procedure P+ takes a function f  from the set XX and outputs its image matrix, an

n × n  matrix of  singletons;  i.e.,  F+ ∈ { * }n×n  .   The second sub-procedure Pcs  takes as input the image

matrix and outputs the sigma matrix, a matrix of non-negative integers Σf ∈ ℤ+(n ×n) .  Letting F+
XX  be

the set of all image matrices, and ΣXXthe set of all sigma matrices. 

P+ : XX → F+
XX s.t. P+f = F+ (8)

Pcs : F+
XX → ΣXX s.t. Pcs(F

+) = Σf (9)

Thus the composite is defined 

PΣ := (Pcs ∘P+) : XX → F+
XX → ΣXX (10)

PΣf = Pcs ∘P+f = Σf (11)

3.  Results on Sigma Matrices

3.1 Properties of  the sigma matrix.   In  Section 2  the primary data structures  of  this  paper  were

defined: the image, preimage and sigma matrices. The image matrix F+  with entries f j(xi) corresponds to

the images of domain elements xi under j application of f .  The preimage matrix F- with entries of the form

f-j(xi), corresponds to the preimage of domain elements xi, under j applications of f-1.  Lastly, the sigma

matrix Σ ∈ (ℤ+)n⨯n  was defined element-wise as having entries corresponding to the size of the preimage
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matrix entries at the same position. I.e., Σ[i, j] := f-j(xi) = F-[i, j].  

Having now defined the sigma matrix and shown its  construction from a column accumulation of  the

image matrix, we move on to describing properties of Σ.  We will refer to a property of Σ which holds for all

sigma matrices, independent of the particular function used to build it, as a universal property of sigma

matrices Σ. Likewise a property which depends on properties of a particular function f  as a local property of

the sigma matrix Σf .  For example, we will prove that the sum of all elements in any column of a sigma

matrix is invariant under f . This invariance is thus a universal property of these matrices. Contrastingly,

we will prove that any constant function’s sigma matrix will have a row of all n ' s.  Since this holds for all

constants, but not all functions in XX, this is a local property of such matrices. 

3.2  Universal  Properties  of  Sigma  Matrices.  We  start  with  some  universal  properties  of  sigma

matrices that will be useful going forward. These are  properties of all sigma matrices and thus tell us

something about the preimage set sizes of arbitrary endofunctions under iterated inverse. These properties

will be useful in specifying the structure of sigma matrices and in confirming a correct computation of Σ for

a given f . 

Proposition 3.1:    All entries of sigma matrices are non-negative integers. 

Proof:  Since by the definition of a sigma matrix Σ[i, j] := F-[i, j] := f-j(xi), the entries σ(i,j)

correspond to set sizes of the preimage matrix. Sets are either empty or non-empty. If a set is empty its size

is zero. If a set is non-empty its size is non-zero and positive.  Thus σ(i,j) ≥ 0 for all 1 ≤ i, j ≤ n  since

f-j(xi) ≥ 0 for both empty and non-empty sets alike. This holds for any sigma matrix and thus is a univer-

sal property of these matrices. 

■

Proposition 3.2 :   If  some row element of a sigma matrix is zero , then all remaining elements of that row

are also zero. 

       

Proof.  Suppose row i has entry σ(i,k) = 0 in its kth position.  By definition σ(i,k) = Σ[i, k] =  f-k(xi)

and so the associated preimage set  f-k(xi) = {x : fk(x) = xi} must be empty as σ(i,k) = 0 tells us that it has no
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elements in it.  If f-k(xi)  is empty so is its preimage  set f-(k+1)(xi) = {x : f(x) ∈ f-k(xi)}. This set must be

empty  as  {x : f(x) ∈ f-k(xi)} becomes {x : f(x) ∈ {}}  when  f-k(xi)  is  empty.  Recognizing  that

 f-(k+1)(xi) = σ(i,k+1) = 0, we see that any matrix element following a zero in the ith row must also be zero. 

■

Theorem 3.3. Each column of a sigma matrix is a partition of n

 

Proof:   The element σ(i,j)  of the sigma matrix is constructed using column accumulation of the

image matrix. That is, the sigma matrix is defined by Σf = ColsumF+ : X := Colsumf [1,n](X)  where the

elements of F+ are of the form f j(xi). The image of any x ∈ X under j applications of f is always a singleton

since f  is a function.  Since the forward image matrix F+ is of type { * }n⨯n it has n rows of singletons. Thus,

we count a total of n elements populating any particular column F+[ * , j] and hence any column of the

sigma matrix reflects this sum. 

Corollary 3.4.  Every sigma matrix Σf  has n as an eigenvalue. 

Proof:  By Theorem 3.3 above, the sum of each row of a sigma matrix is n.  A square matrix with

common row-sum has eigenvalue equal to the common row sum.  Thus an eigenvalue of any sigma matrix

is domf = n

■

Corollary 3.5.   The sum of all elements of a sigma matrix is n2.

Proof:   Theorem 3.5  gives each column sum of n.  Since Σ has n  columns, it follows that the

matrix has a total sum of n2. 

■

Proposition 3.6.  Let Y = {y1, y2, ..., yj, ... yn} be a system of n equations formed from the columns of

a sigma matrix Σ.  For example, y4 := a1 +∑i=1
n ai xi  where ai = σ(i,4).   All  polynmials in Y  pass through

(1, n).

Proof:   Examine  the  jth  equation  corresponding  to  the  jth  column  of  the  sigma  matrix:

yj = a1 + a2 * x + a3 * x2 + ... + an * xn.  The coefficients are taken from the entries of column j.   Letting
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x = 1 gives yj(1) = a1 + a2 + ... + an. By Theorem 3.5, the sum of any column is n and so it must be that

the sum of all coefficients ∑i=1
n ai = n. So the curve yj  passes through (1, n). This argument holds for each

column.  Thus all the polynomials formed from the columns of a sigma matrix pass through the point

(1, n) ∈ ℝ2. 

■

3.3 Some Local Properties of Sigma Matrices.  We now examine some of the properties of sigma

matrices for certain types of functions. In particular we are interested in the properties of sigma matrices of

the constant function and the bijection. Recalling that by (B5) we require that any complexity measure

developed take into account the contrast between these functions. 

Proposition 3.7.  If f  is the constant function on n elements, then Σf  has a row of all n's. 

Proof.  If f  is constant, then there is some c such that for all x , f(x) = c. Thus in the graph of f ,

vertex c has in-degree n  and all others have in-degree 0. Recall that j corresponds to the column number

and i the row associated with the ith domain element. Without loss of generality assume the first row of Σf

corresponds to the fixed point of f , i.e., x1 = c .   To verify that indeed the first element of such a row is n,

we only need to show that the first inverse of the fixed point contains all points of X.  Because f  is the

constant function, the first row element σ(1,1) = f-1(x1 = c) = X = n . Now suppose the jth  entry of the

row is also n, then the (j + 1)th  element in  row is given by σ(1,j+1) = f-(j+1)(c) = f-1f-j(c).  Since f  is con-

stant  and  c  the  fixed  point,  f-j(c) = {x : f j(x) = c} = X  thus   f-1f-j(c) = f-1(X).   Since  c ∈ X  and

f-1(c) = X = n we have that σ(1,j+1) = n. 

■

Proposition 3.8.  If f  is a bijection then all elements of Σf  are 1's. 

Proof.  For f  to be a bijection is for its elements to have uniquely defined first inverses. Thus

f-1(xi)  is  a singleton for any xi.  I.e,  σ(i,1) = 1.  Suppose now that σ(i,j) = f-j(xi) = 1 then since this is a
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bijection, there is a unique f-(j+1)(x) so that ff-(j+1)(x) = f-j(x). The set f-(j+1)(xi) is also a singleton and

thus  σ(i,j+1) = f-(j+1)(x) = 1 and thus we have shown inductively that for any xi  and any j,  f-j(xi)  so

σ(i,j) = 1 for any i, j ≤ n .

■

Example 3.9. Consider f = a, b, b, a, (c, c) and g = (a, a), b, b, (c, c)

The preimage, forward image, and sigma matrices of f  and g are given by

F- =

b a b

a b a

c c c

F+ =

b a b

a b a

c c c

Σf =

1 1 1

1 1 1

1 1 1

G- =

a a a

b b b

c c c

G+ =

a a a

b b b

c c c

Σg =

1 1 1

1 1 1

1 1 1

These two functions have identical inverse set structures: they are both bijections and thus each

element has a unique inverse element. While f  has a loop from b to a to b and a self-loop at c, there is no

uncertainty about a predecessor. This also holds for g: for this function each element is a self-loop and thus

also uniquely determined.  Despite the fact that these functions have different inverse structures, they are

the same with respect to preimage set sizes.  

Example 3.10. Sigma Matrices of Constants and Bijections. 

 If  we  compare  the  bijection  f = a, b, b, a, (c, c)  from  above  to  the  constant  function

c = (a, a), b, a, (c, a), we see that we have quite different preimage structures. We see a total consolid-

tion of elements to the first row in Σc and the matrix-wide distribution of elements in  a bijection as in Σg.

  Σc =

3 3 3

0 0 0

0 0 0

         Σg =

1 1 1

1 1 1

1 1 1

Corollary 3.11.  The constant function has n - 1 rows of all 0’s. 

Proof:  By Proposition 3.6 the constant has a row of all n's, and by Corollary 3.4, the sum of all
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elements of a sigma matrix is n2.  However a row of length n, of all n's, has a sum of n2.  Since no values of

a sigma matrix are negative the remaining entries must all be zeros. 

■

4.  Graphs and Sigma Matrices. 

4.1   A Brief Review of Graphs.  In the previous section we proved key facts about sigma matrices. For

example, we showed that the sum of the entries of any column of a sigma matrix is n.  Since every sigma

matrix is n⨯n, we also therefore showed that the sum of all its entries is n2. Certain functions result in

wildly different sigma matrices.   For example,  the bijections and the constant function have radically

different matrices.   The constant function has its non-zero entries condensed in a single row of all  n’s

whereas the bijections evenly distribute such entries into all possible coordinates thus having 1’s for all

entries σ(i,j).  Next, we turn to an exploration of the relationship between the sigma matrix of f  and the

graph Gf.  The world of finite graphs provides a rich and visual model of finite functions which are easily

represented  by  edges  corresponding  to  the  ordered  pairs  making  up  function  elements.   While  sigma

matrices tell us only about the sizes of preimage sets and not the elements themselves, they nonetheless tell

us something about the structure of the associated graph. 

We now present a basic vocabulary for talking about graphs associated with functions. Since functions are

made up of ordered pairs we will find that a key structure is know as the digraph. 

Definition 4.1 : A directed graph G  as consisting of a finite, nonempty set V  of vertices and a set E of

ordered pairs of vertices from V.  The members of E are called (directed) edges where V  and E are called

the vertex set and edge set respectively. That is, a digraph  is an ordered pair of the vertex and edge sets,

i.e., G := (V, E). 
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Visually we represent any function f : X → X  as a digraph Gf by a set of points and arrows. The points

correspond to vertices and the arrows to the directed edges. For each given edge (x, y) ∈ E we associate an

arrow given by the projection of the first and second coordinates of the edge pair (x, y).  

In a directed graph we often speak about the in degree and out degree of a vertex: the number of edges

directed towards v, notated degin(v) , or those directed away from v, degout(v).  Since f  will be a function,

the number of arrows leaving any vertex v is one and thus so is its out-degree. We define the neighborhood

of a vertex v  as all vertices adjacent to v,  written as Nbd(v).  Notice that Nbd(v) = degin(v) + degout(v).

Finally, any vertex with Nbd(v) = 1 is called a leaf. 

Example 4.2 Let h be represented by its ordered pairs as follows

h = (a, c), b, c, c, d, d, e, e, f, f , g, g, d.

We find the  associated graph Gh = (V, E)  and exhibit  its  vertex set,  edge  set,  and graphical

representation. Here the set of all possible vertices are all first and second elements of the elements of h.

The  vertex  and  edge  sets  are  given  by  V = {a, b, c, d, e, f , g}  and

E = (a, c), b, c, c, d, d, e, e, f, f , g, g, d.  Thus Gh = (V, E)  with the aforementioned V and E.

In  this  example  degind = 2  since  f(c) = d  and  f(g) = d   and  degoutd = 1  as  f  is  functional.  Here,

Nbdd = {g, e, c} where Nbdd = {g, c} + {e} = 3. The leaves of G below are vertices b, and a. 

 Gh 

Figure 4.1   A Cyclic Graph of Order 7

 

The  graph  above  corresponds  to  the  function  in  Example  4.2.   There  is  a  one-to-one  correspondence

between the domain of h and the vertex set V -- as well as between the set of ordered pairs making up the

function, X⨯X  and the edge set E.  Sometimes we will  want to verify that a given graph G  is  indeed
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functional, i.e, that there exists a function f  whose associated digraph is G. We do not need to explicitly

construct the function associated with G, rather we will simply check the graph for the properties of a

functional relation. That is, we check that for an any element v ∈ V  if v, v ' and v, v '' are in EG then

v ' = v ''.   Since  we  are  developing  the  theory  of  functional  preimage  complexity,  all  graphs  discussed

correspond to functions f : X → X and are thus functional. 

Recall that in Section 2 we showed that to build the sigma matrix of a function does not require a calcula-

tion of the preimage matrix F-; rather, we only need calculate the forward image matrix F+  and take a

column accumulation of this matrix.  For example, we can calculate the sigma matrix of a function f  given

its (functional) graph G. We do this for the graph in Figure 4.1. 

The first row of F+  below, corresponding to x1 = a, is found by calculating [f(a), f2(a), ..., fn=7(a)] , like-

wise the last row of Σf  which here corresponds to x7 = g is found by calculating the number of x7 = g in each

column of F+ : there is one g in columns 1, 2 and 3;  two in column 4,  and so on. Thus from the functional

graph G in figure 4.1 we produce the following: 

F+ =

c d e f g d e

c d e f g d e

d e f g d e f

e f g d e f g

f g d e f g d

g d e f g d e

d e f g d e f

Σ =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2 0 0 0 0 0 0

1 3 1 1 2 3 1

1 2 3 1 1 2 3

1 1 2 3 1 1 2

1 1 1 2 3 1 1

A single component graph which is acyclic (has no loops) is called a tree. We make the following definition

as we will use these conditions often: 

Definition 4.3  If f : X → X  and then its graph G is a (functional) tree with root v0 when 

1. The cycle of G is a self loop (v0, v0) ∈ E corresponding to the fixed point x0 of f  so that f (x0) = x0. 

2. G is connected. 

 

Example 4.4  Let h = {(8, 6), (7, 4), (6, 4), (5, 4), (4, 2), (3, 2), (2, 1), (1, 1)}. 

We have a function h whose graph has no loops other than the self-loop on vertex 1. Thus we have

a functional tree of order 8 with root 1 ∈ VGh due to fixed point (1, 1) ∈ EGh.  Since h is a function,

degout(v) = 1  for  all  v ∈ V.   The  vertex  with  the  largest  in-degree  is  “4"  with  degin(4) = 3,  where
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Nbd"4" = 4  noting  that  indeed  Nbd(4) = degin(4) + degout(4).  The  set  of  leaves  LG ⊂ V  is  given  by

LG = {7, 8, 5, 3}  as  Nbd(v) = 1  for  all  v ∈ LG.  Since  h  is  functional,  if  Nbd(v) = 1  then  degin(v) = 0.

Calculation of the H+ and Σh would be done as in Example 5.1.  

Figure 4.2  A Functional Tree of Order 8

Definition 4.5   A non-empty directed trail in which the first and last vertices are repeated, for exam-

ple (v1, v2, …, vn, v1), where there is only one repeated vertex, v1, is a directed cycle. 

Example 4.6   The following graph, considering only the black edges {(0, 1), (0, 2), (1, 3), (3, 4)}  is  a

directed  acyclic  graph.  However  when  adding  the  red  edges  {(2, 0), (3, 0), (4, 4)}  we  have  three  cycles

c1 = (0, 2, 0), c2 = (0, 1, 3, 0), c3 = (4, 4). 

Figure 4.3. A Directed Acyclic (all black edges) and Cyclic (with red) Graph. 
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4.2  Results on Graphs and Sigma Matrices.  The values of the sigma matrix encode information

about the graph the function or functions corresponding to that matrix. One important property of graphs

is  cycle  detection and determination of  cycle  membership.  These  properties  are  particularly  useful  for

subsequent proofs which give us further insight into the associated graph G for functions with a particular

sigma matrix.  

 

Proposition 4.7  If xi is  a cycle element of Gf then all elements of the ith row of Σf  are positive and

non-zero. 

Proof:  If some vertex xi  of Gf is in a cycle C ⊆ Gf, xi  is either the intersection of some tree

T ⊆Gf entering the cycle, or is purely a cycle element.  Suppose for the first case that xi is not an element

of some tree. Then for any given tree T, xi ∉ T ⋂C, and thus xi has only one predecessor: f-1(xi) = 1. In

the second case, where  x ∈ T ⋂C  for some tree T ⊆ G,  then there exists at least two distinct vertices

y1, y2  of Gf where {y1, y2} ⊆ f-1(x). One of these vertices is the predecessor of xi  in the cycle C  and the

other is the predecessor in the tree T.  Thus, in this case we have f-1(xi) > 1.  In short, if xi  is a cycle

element, there is a non-empty preimage f-j(xi) for any natural number j and thus Σ[i, j] = f-j(xi) ≥ 1 for

any j, all elements of the ithrow are non-zero.

■

             

Proposition 4.8 If xi is not a cycle element of Gf then some element of the ith row will be zero. 

 

Proof:  If xi is not part of a cycle, it is part of a tree. At minimum, every functional digraph on n

vertices contains a cycle of length 1. Thus, at maximum, the number of vertices not part of a cycle is n - 1.

Therefore, the maximum distance from some xi  to a leaf is n - 1. Lastly, for any leaf xl,  f-1(xl) = ∅, thus

since each row has has n elements, there is some j ≤ n - 1 so that  σ(i,j) = 0. 
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Proposition 4.9  Let f : X → X. Denote by LG the set of vertices of G which are leaves. LG = q if and

only if there are q rows of all zeros in Σf . 

Proof:  Thus the first column of Σf  has entries  σ(i,1) = {x : f-1(x) = xi} for 1 ≤ i ≤ n. If xi is a leaf

in Gf then   f-1(xi) = ∅ and thus f-1(xi) = 0.  If xi is not a leaf of Gf then there is some x : f(x) = xi and

thus f-1(xi) ≠ ∅ and so f-1(xi) = σ(i,1) ≠ 0. 

By proposition 3.2, if σ(i,j) = 0 then σ(i,k) = 0 for all k > j. So for each xi ∈ LG, the ith row of Σf  is all zeros

and for each xi ∉ LG we do not have an ith row of all zeros.  Therefore if LG = q then we have q rows of all

zeros. 

Conversely if we have q  rows of all zeros then we have q  rows where σ(i,1) = 0. By definition σ(i,1) = 0

gives  us  that  f-1(xi) = 0  and thus  f-1(xi) = ∅.  However   f-1(xi) = ∅  only  when xi ∈ LG  and  therefore

LG = q. 

■

Proposition 4.10  If the columns of Σf  converge to n then Gf is a functional tree. 

Proof:  By Proposition 4.2, when xi is not a cycle element then for some k < n,  σ(i,k) = 0. So if no

element of the ith row is zero, xi  is a cycle element. Now since each column of Σf  partitions n, if σ(i,n) = n

then all remaining entries of the nth column must be zero. I.e., we have σ(k,n) = 0  for k ≠ i, thus the only

cycle element is xi. The only functions corresponding to  (xi, xi) are functional trees. 

■ 
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5. Preimage Complexity Functions

5.1   In the last section, we showed how structural information about a function, and its associated 

directed graph, could be extracted from the sigma matrices. Such structural facts included cycle detection, 

information about level sets and vertex height. At the core of the chapter we define a preimage complexity 

function, a generalization of what we discovered to be relevant with respect preimage complexity 

specification. We exhibit the flexibility of the preimage complexity function by giving three complete 

examples of such preimage complexity functions and examine how each views complexity differently. In 

essence we prove that our definition of preimage complexity fulfills our goals and benchmarks outlined in 

section 1. In the final section we will discuss the set of all sigma matrices which may be generated on the 

set of XX and provide a complete analysis of the associated sigma matrices, complexities under a chosen 

preimage complexity function. 

5.2 Desired Characteristics of Preimage Complexity Function.  The first of three requirements we

placed on any definition of a preimage complexity function corresponds to benchmark B3 in section 1.2.

That is, we require that any measure of the preimage complexity of a function f  must, as the terminology

suggests, be a function of the preimage data structures.  The definition of a preimage complexity function

H : XX → S  will  obey this  requirement as there will  be defined an auxiliary function K : ΣX → S  taking

sigma matrices to values of a finite set in such a way that if two sigma matrices have equal images under K

then their generating functions will likewise have equal values under H.  Thus, H  will partition all func-

tions f : X → X  by way of their value under K  which is a function of the preimage data structure - the

sigma matrix.

Our second requirement, (B4) of the preimage complexity function is that it be flexible and informative.

While equality detection among sigma matrices is important, the complexity function should distinguish

properties that two such matrices have in common despite being entry-wise different.  For example, we

may be interested in the number of  0’s  in a sigma matrix.  There are multiple matrices with an equal

number of zeros, there is at least one pair f , g where Σf ≠ Σg while K(Σf ) = K(Σg).  We are extracting useful

information from the recognition of commonalities between f  and g despite their distinct sigma matrices.

Finally, in addition to extending our view of functions beyond mere comparison of their sigma matrices, we
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occasionally wish to speak about the relative complexity of two functions.  To this point, inequality in S of

matrices under K simply meant their respective function complexities were not the same - as they would

each inhabit a different block of the partition of XX  by ~H .  Since Hf ∈ S, and S  may or may not be

ordered we can only conclude that the above statements are meaningless except to communicate the fact

that Hf = 0 ≠ 6 = H(g).  We will address this shortly after the definition. 

To satisfy B5 any complexity measure based on the preimage structures thus far developed should take

into account the natural dichotomy between the functions which are bijections and the constants.  This

contrast is evident on both a structural and informational level.  Structurally, the difference between the

sigma matrices of bijections and of the constant functions is stark.  In particular, the distribution of the n2

values of the sigma matrix is illustrative. In the constant function we have a row of all n ' s like any sigma

matrix each column is a partition of X = n however the row distribution of integers summing to n2 is an

extreme case for both.  In the bijection we have a matrix of values evenly distributed: each row Σ[i, *] and

each column Σ[ * , j] of its sigma matrix is a partition of n. That is

Σ
i
σij = Σ

j
σij = n sinceσ(i,j) = 1 for all 1 ≤ i, j ≤ n.

In addition to the distribution of values in the sigma matrices there are information-theoretic differences

between the constants c : X⟶X  and the bijections α : X⟶X.  The sigma matrix is a representation of

the size of predecessor sets at varying inverse depths.  One natural question is to determine the set of

possible outcomes when computing applying f  then f-1 for any x ∈ X.  Note that while f-1 may be empty,

the set f-1f(x) is always inhabited and thus is a way to measure the number of  siblings of x or measure

the number of alternative paths from x  to f(x).   In essence, this question is tied to a quantification of

determinism. If,  for  example,  the set  of  possible  elements in the set  f-1f(x)  is  large then the relative

bijectivity of f  at y = f(x) is low: many elements x  have image y = f(x), whereas if f-1f(x) is a small set

then only a small number of elements could be ancestors to y.  Given a bijection α and an arbitrary ele-

ment xi ∈ X, α-1(α(xi)) = {xi}, a singleton, and thus α-1 is uniquely determined. Information is  preserved.

In contrast, letting c : X⟶X  be a constant, given any xi ∈ X,  c-1(c(xi)) = {x1, x2, ..., xi, ... xn} = X  and

thus all information is destroyed. 

We formalize this by providing a natural ordering on the set of sigma matrices ΣXX  which matches our

intuition. 

5.3 The Composition Poset of  Sigma Matrices.   Recall  that  we desire  any measure of  preimage

complexity  to  respect  the  natural  dichotomy between the  preimage structure  of  the  constant  and the
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bijections as reflected by the sigma matrices.  To highlight the visual form any non-zero entry of a sigma

matrix are indicated by black squares and zeros by white squares.  In the diagram below we show the

visual form for the sigma matrix of three functions: a bijection, a tree, and a constant.

■ ■ ■ ■

■ ■ ■ ■

■ ■ ■ ■

■ ■ ■ ■

 

■ ■ ■ ■

■ ■ □ □

■ □ □ □

□ □ □ □

 

■ ■ ■ ■

□ □ □ □

□ □ □ □

□ □ □ □

Figure 5.1 

Non-Zero Entries of Σf  for f a bijection, tree and constant respectively. 

 Following our demands that for a bijection α and constant c, H(α) ≠ Hf and Hf ≠ H(c)  for any f  , we

wish to find a poset structure on the sigma matrices so that Σα and Σc are at opposing extremes of such an

ordering.  The set ΣX of all sigma matrices for the endofunctions on a set X  may be endowed with a poset

structure in a natural way which respects the above dichotomy. 

We aim to traverse the set of these sigma matrices via composition of the underlying functions noting that

given f ∘g = h the size of the image set of h must be smaller or equal to the size of the image set of g for any

f . At the extreme, a maximal restriction of an endofunction’s image set to a singleton corresponds to a

maximal lack of injectivity, and thus to the constant function. This is  reflected by the fact that since

composition yields a consolidation of the image set,  for any function f  and for a constant c,  f ∘c  must

remain a constant.  At the other end of our spectrum we find a similar situation. The function with a

maximal image set is a bijection as for any α : X → X, Im(α) = X. Given f ∘α = h where g is a bijection, the

application of fcan only serve to restrict (or maintain) the image of f  relative to α. 

We summarize this as follows. 

1. If f ∘g = h then Imh ≤ Im(g) for any g. 

2. If α is a bijection then for any h there is always some f  so that f ∘α = h

3. If c is a constant and g ≠ c then there does not exist an f  so that f ∘c = g. 

 Using the above simple properties we define the poset of sigma matrices as follows. 

Definition 5.1: Given two functions f1, f2 : X → X we will define the poset of sigma matrices (ΣX, ≤ ) in

the following way: we say that Σf1
≤ Σf2

 iff   there is  some g ∈ XXso that f2 = g∘ f1.  Similarly we write

Σf1
~ Σf2

 iff there is some g1 so that f2 = g1 ∘ f1 and some g2 so that  f1 = g2 ∘ f2
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We can easily see the following which nicely follows our notions developed above. 

Property 5.2:  Σα ≤ Σf  for all f  and α a bijection. Also,  Σf ≤ Σc for all f  and c a constant. 

Given any bijection α and any function f  there is some g so that g∘α = f , thus Σα ≤ Σf .  Likewise,

since for any f ,  c∘ f = c we have that Σf ≤ Σc. 

Before defining our preimage complexity function, recall that procedure PΣ calculates the sigma matrix of f

by way of two sub-procedures: P+  first calculates the n × n  image matrix F+  of a function f ,   then Pcs

calculates the sigma matrix Σf  from F+, the result of P+.  In short, PΣ : XX → ΣX where PΣ = Pcs ∘P+.  We

now present the definition of a preimage complexity function in satisfaction of our benchmarks B3-5. 

Definition 5.3.  Let H : XX → S   be the composite H := K ∘PΣ  where PΣ : XX → ΣXX  builds a function’s

sigma matrix and  K : ΣXX → S  assigns the matrix a value in a finite set S.  If the following holds then H is

a preimage complexity function.

1. Equality of sigma matrices implies equality under H

If Σf = Σg then Kf = K(g)

2. Equality of sigma matrices under K implies the associated functions are equal under H.  

For all f , g ∈ PΣ
-1 ∘K-1(s), Hf = H(g)

3. Any bijection α and any constant c have different values under H.

H(α) ≠ H(c)

In addition to the properties of a preimage complexity function from Definition 5.1 above, we may wish to

give meaning to statements like “the preimage complexity of f  is less than that of g.” In such a case, we

define a preimage complexity function with order. 

Definition 5.4  A preimage complexity function with order, H , satisfies all the properties of Definition 5.1

and additionally requires that the image of matrices under K are real numbers where their relative magni-

tude  is  respected  by  H.   That  is,  for  any  f1  with  sigma  matrix  Σ1,  and  f2  with  sigma  matrix  Σ2,

K : ΣX⟶S ⊂ ℝ  and if K(Σ1) = s1 ≤ s2 = K(Σ2) then Hf ≤ H(g). 
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5.3 Example Preimage Complexity Functions.  Per our discussion in section 5.2, preimage complex-

ity functions are to be flexible and useful: we will want PCFs which can finely and coarsely partition XX

according to our needs. The two examples below illustrate the opposing ends of this spectrum: the discrete

(preimage)  complexity  function  Hd  and  the  indiscrete  complexity  function  HX.  The  discrete  preimage

complexity function, the finest partitioning possible P~H  of XX  by H, maximizes the number of blocks of

XX partitioned by a preimage complexity function by demanding that no commonality other than equality

may be considered between two sigma matrices. In other words, if Σf ≠ Σg then there is no other property

of the matrices that could make the image of their parent functions f , g equal under H.  Contrastingly, the

indiscrete complexity function HX results in the partition of XX with the fewest blocks. In this complexity

function all sigma matrices are considered equal under K unless they are the sigma matrices of bijections or

constants -- in which case they are given their own value under H. This is the coarsest possible partitioning

of XX by a preimage complexity function. 

Example 5.5  The discrete preimage complexity function, Hd

The PCF which most finely partitions XX  is the function that requires equality of sigma matrices

to partition their parent functions in the same block.  This is an extension of Definition 5.1 to bidirectional-

ity 

Σf = Σg iff Hf = H(g).

Let S be the set of all sigma matrices of the functions in XX, i.e.,  S = ΣX giving K : ΣX⟶ΣX s.t. 

Hf := KPΣf s.t K(Σ) = Σ

Proposition 5.6.  Hd is a preimage complexity function.  

Proof: Firstly, if Σf = Σg then K as defined above gives us that K(Σf ) = K(Σg) satisfying part one

of the definition. Secondly since K(Σf ) = s = K(Σg)  only when Σf = Σg  then K(Σf ) = s = K(Σg) ⟹ Σf = Σg

and thus Hf = H(g) by (1).  Lastly if α is a bijection and c the constant then Σα ≠ Σc by section 3 and thus

by K(Σ) = Σ above,  K(Σα) = Σα ≠ Σc = K(Σc). Thus by definition of Hdf := KPΣf we have H(α) ≠ H(c)

satisfying (3).  Hence H as defined is indeed a PCF which we call the discrete PCF and denote it Hd.   

■
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Now, on the opposite side of the spectrum is the preimage complexity measure with resulting in the coars-

est partitioning of XX, the indiscrete PCF. 

Example 5.7.   The indiscrete PCF.

The indiscrete  PCF on X,  denoted  HX,  is  the  function  which  partitions  together  all  functions

allowable  by  the  definition.  Thus  in  the  indiscrete  PCF  we  want  H(α) ≠ Hf = H(g) ≠ H(c)  for  any

bijection  α,  a  constant  function  c,  and  all  other  functions   neither  constant  nor  bijective.  Let

S = {sα, sc, s} and define K : ΣX → S and H by 

KX(Σ) =

sα if Σ = Σα
sc if Σ = Σc

s otherwise

,

where Σα[i, j] = 1 , Σc[i, j] = 
n i = 1

0 i ≠ 1

Proposition 5.8.  HX is a preimage complexity function. 

Proof:  We satisfy definition 5.1 part (1) since if Σ1 = Σ2 then KX(Σ1) = KX(Σ2). We also satisfy

5.1.2:  Let α1  and α2 be bijections. Their sigma matrices are matrices of all 1's and thus have the property

that Σ[i, j] = 1 for all 1 ≤ i, j ≤ n. So, 

PΣ(α1) =

1 ⋯ 1

⋮ ⋱ ⋮

1 ⋯ 1

= PΣ(g) and thus K(Σα1
) = K

1 ⋯ 1

⋮ ⋱ ⋮

1 ⋯ 1

= sα = K(Σα2
).

Equality of α1 and α2 under H follows directly from the definition HX(α1) := K(PΣ(α1)) since

H(α1) = K(PΣ(α1)) = K
1 ⋯ 1

⋮ ⋱ ⋮

1 ⋯ 1

= sα,

H(α2) = K(PΣ(α2)) = K
1 ⋯ 1

⋮ ⋱ ⋮

1 ⋯ 1

= sα.

so indeed Hf = H(g). Likewise for any constants c1, c2, 

PΣ(c1) =

n ⋯ n

0 ⋯ 0

⋮ ⋯ ⋮

= Σc = PΣ(c2) and so K(Σc1
) = K

n ⋯ n

0 ⋯ 0

⋮ ⋯ ⋮

= sc = K(Σc2
). 

similarly HXf := KPΣf gives
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H(c1) = K(PΣ(c1)) = K
n ⋯ n

0 ⋯ 0

⋮ ⋯ ⋮

= sc,  

H(c2) = K(PΣ(c2)) = K
n ⋯ n

0 ⋯ 0

⋮ ⋯ ⋮

= sc,

 

so H(c1) = H(c2) thus satisfying part two of our definition.  This property of equivalence under H  must

hold for all other functions f : X → X as well. Letting PΣf1 := Σ1 and PΣf2 := Σ2,  if f1 and f2 are neither

bijections nor constants then Σf is neither a matrix of all ones or a matrix of all n's in the first row. I.e.,

Σf is neither  Σα nor Σc and therefore K(Σ1) = K(Σ2) = s. So under H

Hf1 = KPΣf1 = K(Σ1) = s,

and 

Hf2 = KPΣf2 = K(Σ2) = s,

Lastly, in accordance with (3) the bijections and constants must have different values under H.  Here, 

H(α) = sα ≠ sc = H(c).

This proves our claim that indeed HX is a preimage complexity function. 

■

Proposition 5.9.  There is no H which trivially partitions all of XX into one block. 

Proof:  Suppose  there  were,  then  for  any  f , g ∈ XX,  f ∈ [g]~H  and  Hf = H(g).  But  since  the

bijections and constants would then be in the same and only block and hence would have the same values

under H contradicting  part 3 of our definition. 

■

 

In addition to the properties of a preimage complexity function from definition 5.1 above, we may wish to

give meaning to statements like “the preimage complexity of f  is less than that of g.” In such a case, we

define a preimage complexity function with order. 

Definition 5.10  A preimage complexity function with order, H≤ , satisfies all the properties of Definition

5.1 and additionally requires that the image of matrices under K  are real numbers where their relative
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magnitude is respected by H  and that the complexity of a bijection and a constant are the minimum and

maximum respectively of any functions in XX. Let K : ΣX⟶S ⊂ ℝ and let c be a constant function and α

be a bijection. Then in addition to the properties in definition 5.1, the following must hold 

K(Σ1) = s1 ≤ s2 = K(Σ2) ⟹ Hf1 ≤ Hf2 for f1 ∈ PΣ
-1 ∘K-1(s1) and f2 ∈ PΣ

-1 ∘K-1(s2)

H(α) ≤ Hf for all f ∈ XX

Hf ≤ H(c) for all f ∈ XX

Recall that we can view the constant and the bijection diametrically as destroying and preserving informa-

tion respectively. 

Consider the number of zeros in some sigma matrix Σf . As we move from a bijection α to a constant func-

tion c,  we move from corresponding sigma matrices with n2  ones, and thus no zeros, to a matrix with

n(n - 1) zeros. The more zeros trailing a row Σ[i, *] the shorter the maximum path from xi to a leaf and the

fewer steps required to step backwards through all predecessors of xi. One crude measure of this relative

consolidation of nodes towards the root, and thus of the function away from bijectivity, is a count of the

number of zeros in Σf . 

Example 5.11. A measure of bijectivity, H0. 

The definition of a PCF is flexible enough to suit many interpretations of relative complexity. If we

claim that increased relative bijectivity is decreased complexity then the complexity is proportional to the

number of zeros in the sigma matrix: more zeros to corresponds to a higher complexity. To accomplish

this,  we define a function z  and assign a value of z(σ(i,j)) = 1 if  σ(i,j) = 0 and assign a value z(σ(i,j)) = 1

otherwise. We then let K sum the number of entries equal to zero. 

Let S = ℤ+ and and define K0 : ΣX → ℤ+ and H by 

K0(Σ) = 
i=1,j=1

n,n

z(σ(i,j)) : z(σ(i,j)) =
1, σ(i,j) = 0

0, σ (i,j) ≠ 0

Proposition 5.12:  H0 is indeed a PCF with order

Proof:  Clearly if two matrices Σ1 and Σ2 are the same, then they have the same number of zeros

and thus K(Σ1) = K(Σ2). Next,  if two matrices have the same number of zeros, say m, then they are in the

set of all sigma matrices with m zeros: 

K(Σ1) = m = K(Σ2) then Σ1, Σ2 ∈ K-1(m) = {Σ : K(Σ) = m} .

If a function f  is one such function having a sigma matrix with m zeros then it is in the set K-1(m). We can
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write this nested set membership as 

f ∈ f : PΣf ∈ K-1(m) = PΣ
-1 ∘K-1(m)

which is what we wished to show: that for any f1, f2 in the above set Hf1 = Hf2. 

We need to show that when applying H, the bijections and constants have different values. Since we know

that  any  bijection  α  has  no  zeros  in  its  sigma  matrix  and  constants  have  n(n - 1)  zeros  then

H(c) = n(n - 1). Since n ≥ 2, H0(c) = n(n - 1) ≥ 2 ≠ 0 = H0(α). Thus H0 is a preimage complexity function.

Lastly, we show that H0  is a PCF with order.  Cod(K0) = ℤ+   which is a subset of the reals. Suppose

K (Σ1) = m1 ≤ m2 = K (Σ2)  then  the  count  of  zeros  in  Σ1  is  less  than  the  count  of  zeros  in  Σ2.   Since

H := K ∘PΣ  it follows that Hf1 ≤ Hf2 for all f1 ∈ PΣ
-1 ∘K-1(m1) and f2 ∈ PΣ

-1 ∘K-1(m2). Finally the num-

ber  of  zeros  in  bijections  α  is  zero,  and  the  number  of  zeros  in  the  constant  is  n(n - 1)  thus  for  all

f , H0(α) = 0 ≤ H0f ≤ n(n - 1) = H0(c). 

■

Suppose for some application we say that a decrease in information preservation is  correlated with an

increase in complexity and that a decrease in information preservation is correlated with an increase in

complexity.  In such a case we are going beyond a delineation of equality under H. We are not claiming

that Hf - H(g) is meaningful, rather we wish to say that if f  is less complex than g then we can write

Hf ≤ H(g).  Next, if we claim that bijectivity of f  is inversely proportional to the number of zeros of Σf

then if the number of zeros in Σf  is less than the number of zeros of Σg then we need that Hf ≤ H(g).  We

prove this holds for the extremes of the bijections and the constants. 

To prove this holds for the constants and bijections we simply determine the number of zeros in their

respective sigma matrices and verify that this is proportional to the value of H.  We have a ready-made

function to handle the counting of zeros in a sigma matrix, namely K0. From our work in chapter 3 we

know that the constant function has a sigma matrix with n(n - 1) zeros and that bijections have a sigma

matrix  with  no  zeros.  In  the  example  above  we  found  that   K0(Σc) = n(n - 1) ≠ K0(Σα) = 0  implied

H(c) ≠ H(α), here we can extend this to say 

K0(Σc) = n(n - 1) ≥ K0(Σα) = 0⟹H0(α) ≤ H0(c).

It should be noted that how our auxiliary function K is defined can impact the intuition behind a measure-

ment of complexity. For example, had we defined

z(σ(i,j)) =
0, σ(i,j) = 0

1, σ (i,j) ≠ 0
,

we would be counting the number of non-zero elements and thus a larger value of K0 would correspond to a

lower complexity assignment. 
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6. The Partition Induced by Preimage Complexity Functions. 

In this section we examine the induced partition of endofunctions on X by preimage complexity functions.

The importance  of  the  discrete  PCF is  highlighted and we examine the  sequence  and size  of  induced

partitions as a function of domf = n.  Each preimage complexity function H  induces a partition H  of

XX.  In examples 5.2 and 5.4 we have seen the extremes of coarseness and fineness of such a partitioning

under the indiscrete HX  and discrete Hd  complexity functions respectively.  In the case of the indiscrete

function HX  we only have three complexity classes. Preimage complexity functions ultimately rely on the

properties of the sigma matrices of all endofunctions on a given set. The more sensitive the function is to

changes in the preimage structure, the finer the measure.  The PCF which most closely tracks the underly-

ing preimage structure is the discrete measure Hd.  Here, if two sigma matrices differ, the values of the

associated functions under H differs. 

Example 6.1.  The partition H0
 induced by H0 on X = {a, b, c}. 

Since H0 partitions XX by the number of zeros of the function’s associated sigma matrix, we count

the zeros in each of the above and partition the set of matrices by this count. The range of possible values

of f  under H0 is {6, 5, 3, 0} -- an accounting of the number of possible zeros of the sigma matrices in Σ{a,b,c}.

If we associate each block of the partition with the value of its members under H0, i.e., a count of the zeros

in the respective sigma matrices, we find that 

[f]6 = f : Hf = 6 = f : Σf =

3 3 3

0 0 0

0 0 0



[f]5 = f : Hf = 5 = f : Σf =

2 3 3

1 0 0

0 0 0



[f]3 = f : Hf = 3 = f : Σf ∈ 

2 2 2

1 1 1

0 0 0

,

2 1 2

1 2 1

0 0 0
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[f]0 = f : Hf = 0 = f : Σf =

1 1 1

1 1 1

1 1 1



So for n = 3,  H0
(3) = {[f]6, [f]5, [f]3, [f]0} and thus H0

(3) = 4. 

Example 6.2. The partitions Hd induced by Hd on X = {a, b} and {a, b, c}

1.  Recall that we defined Hdf = Hd(g) if and only if Σf = Σg.  Thus the number of blocks of the

partition induced by Hd  is the same as the number of unique sigma matrices, d  = ΣXX  . For X = {a, b}

we can calculate d  by looking at all unique sigma matrices on {a, b}{a,b}. This gives us 

ΣXX = Σ{a,b}{a,b} = 
1 1

1 1
,

2 2

0 0


and so Hd{a, b} = 2. We write Hd(2) = 2 to mean the number of blocks of the partition Hd  on two

elements. 

 2.  For X = {a, b, c} we have 33 = 27 possible functions, the set of which is XX. We have three

constants each with a sigma matrix of all zeros except for a row of all 3's.  Next we have six bijections each

with a sigma matrix of all ones.  Finally, we have eighteen other functions -- six of which correspond to

each of three different sigma matrices.  Thus the unique set of sigma matrices for {a, b, c}{a,b,c} are given by

the set 

ΣXX = Σ{a,b,c} =



3 3 3

0 0 0

0 0 0

,

2 3 3

1 0 0

0 0 0

,

2 2 2

1 1 1

0 0 0

,

2 1 2

1 2 1

0 0 0

,

1 1 1

1 1 1

1 1 1

,

therefore d{a, b, c} = ΣX = 5.  I.e., d(3) = 5. 

We have shown the way in which preimage complexity functions induce partitions of the endofunctions on

a given set and given several examples. A natural question to ask is : given some H for each domain size n,

how many equivalence classes are there? 

Definition 6.3. The sequence of partition sizes as a function of X = n, induced by a preimage complexity

function H~ , will be written H~
(n). 
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Example 6.4.  We see from the above two examples that we know d(2) = 2 and d(3) = 5. We have to be

careful not to assume that Hd(n) = Σ(n). The only issue here is d(1). While there is a single sigma matrix

on XX where X = 1 , namely a 1⨯1 matrix with entry 1, there is no induced partition on X = {x1} as the

function f(x1) = x1 is both constant 

Hd(n) = {d(1), d(2), d(3) ...} = {0, 2, 5, ...}

Since the discrete preimage complexity function Hd  simply assigns a block to any function with a

unique sigma matrix we can use the upcoming question to help us answer produce values in the sequence

d(n). 

6.2  The Novel Sequence Σ(n)   The number of sigma matrices for all f ∈ XX  as a function of domain

size n  is  of  great importance to any calculation of  a  preimage complexity function.   Interestingly this

sequence appears to be novel in the literature [2].  Likewise, the discrete preimage complexity function

takes an important place in the theory: in the calculation of every preimage complexity function’s induced

partitioning, we first look at the distinct sigma matrices and their associated functions. Since Hd  is our

finest measure, each block of an induced partition H~
 is thus some union of blocks of Hd.  From there,

additional  properties  are  added to  consolidate  blocks  of  H  as  required.  See  Example  6.1  for  such an

example. 

Question:  How many sigma matrices are there as a function of n, where X = {1, 2, 3, ..., n}?   We will

notate this sequence Σ(n) and use the code in Appendix B to calculate the first few values 

Σ(n) = {1, 2, 5, 13, 35, 93, 260, ...} (12)
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7.  Directions for Future Research. 

We have developed the theory of preimage complexity of endofunctions using the sigma matrix, a matrix

of preimage set sizes at varying inverse depths.  The data structures have been shown to be of interest in

their own right -- having a natural order and illuminating characteristics of their generating functions.

Likewise the preimage complexity functions are shown to be useful and flexible.  In addition, we exhibit a

novel sequence Σ(n) corresponding to the number of equivalence classes of XX  as a function of the size of X

and induced by equality of sigma matrices has been described. 

There is much work to be done, and many questions to be asked.  Below we list three possible areas of

inquiry which would be useful in expanding the developed framework.  

1.  We would like to know more about the sequence Σ(n) from Section 6.  In particular, knowing if Σ(n) is a

super-sequence or sub-sequence of a known sequence would given insight into the structure of the iterated

inverses of endofunctions or may connect this particular approach to other areas in the literature.  Know-

ing if there a closed or recursive definition of Σ(n) would be particularly interesting.  Calculation of the

sigma  matrix  of  f  is  particularly  efficient  using  our  method  in  Section  2  where  we  prove  that

Σf = ColSum(F+).  However our particular code, using libraries in the SageMath package of Python 3.X

readily is overwhelmed by the combinatorial explosion as this requires the calculation of all sigma matrices

on nn functions,  and the identification of duplicates under permutation of rows. 

2.  Generalize the preimage structures, particularly the sigma matrix, to be useful in the analysis of non-

functional relations on a finite set X.  Finite endofunctions f : X → X are a rich environment and provide a

natural  structure  for  the  analysis  of  functional  digraphs.  However,  many real-world  systems  are  non-

functional. An extension to more general relations on X⨯X would be a major step towards broadening the

set of  possible applications of the preimage approach.  One approach to this is  to adapt the preimage

matrix F-  to contain multiple sets per entry by adapting the image matrix to be a matrix of sets, not

35



simply singleton entries. Consider the following example. 

Example 7.1.  Consider the relation R = a, b, b, a, b, c, (c, c) which fails to be functional as

the image of b is {a, c}. 

We may start by attempting to compute our data structures (the image, preimage and

sigma matrices) as we did for functional relations. Starting with the image matrix, we find the rows of the

sigma matrix and then construct the matrix itself as follows: 

R+[a, *] = [{b}, {a, c}, {{b}, {c}}],

R+[b, *] = [{a, c}, {{b}, {c}}, {{a, c}, {c}}],

R+[c, *] = [{c}, {c}, {c}]

R+ =

{b} {a, c} {b}, {c}

{a, c} {b}, {c} {a, c}, {c}

{c} {c} {c}

Now, since each entry of F+ when functional is a singleton, we adapt “element” to mean set

for our relation R.  So we can take the ColSum as usual except where the unique elements of the matrix are

sets.  For each entry Xi we calculate ColSum(R+, Xi ⊂ X) and construct the “Relational Sigma Matrix”

ColSumR+, {b} = [1, 1, 1], ColSum(R+, {c}) = [1, 2, 3], ColSum(R+, {a, c}) = [1, 1, 1]

ΣR = ColSum(R+) =

1 1 1

1 2 3

1 1 1

 It should be noted here that the sum of each column of the sigma matrix is incremented by

1.  Note that Imb = 2 and ColSumR+, {b} = [1, 1, 1].  The aforementioned ColSum tells us that the

split resulting in an additional set element happens once per column and thus so does the addition of 1 to

the sum of the columns of the sigma matrix. 


i=1

n

σ(i,j) = 1 +
i=1

n

σ(i,j-1)

Such an alteration of the sigma matrix could then be incorporated as to examine the number of and multi-

plicity of non-functional splits per iteration and thus per row of the sigma matrix.  With such an alteration

of our main data structures it would be useful to know if similar insights into the associated digraphs can

be constructed.  Likewise we would like to know if there an ordering the set of these non-constant column-

sum sigma matrices and if a similar measure of complexity can be developed. 
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3.  Define a more general composition poset on ΣX.  Our composition poset of (ΣXX , ≤ ) is particularly

useful in that it does indeed generate a substrate upon which complexity measures with order can be built.

In particular, as defined in Definition 3.12, the poset highlights an ordering with respect to injectivity/bijec-

tivity to which the consolidation of values in the sigma matrices similarly belies. This is however a “first-

order” or “first column” effect: it is constructed via single composition and corresponds only to informa-

tion contained in the first column of the sigma matrix.  In particular, as defined, the poset of Sigma Matri-

ces has the property that if  two sigma matrices are poset equivalent then their graphs have the same

degree sequence.  More succinctly, if two matrices are equivalent in the poset then their first columns are

equal. 

Σf ~Σg⟹Σf [ * , 1] = Σg[ * , 1]

Ideally, any poset structure on the sigma matrices should take into account more than just the first column

of an n  column matrix.  We suggest that the maximum length path PmaxG through a given function's

graph should determine the number of columns required to specify this equivalence. Given f , g : X → X, if

PmaxGf > PmaxG(g) and fm = f l  and gm' = gl'  where l < m < n  and l ' < m ' < n, then min(m) should

be the maximum and minm ' the minimum number of columns of the sigma matrices considered in the

determination of order in the poset of sigma matrices. 

In fact we claim the following.  Let D be a set of functions whose sigma matrices have the same first col-

umn I.e., for any f , g ∈ D, Σf [ * , 1] = Σg[ * , 1].  Then if α is the bijection with a single component (of size

n = X) then the set D ⊆ {α1 ∘ f , α2 ∘ f , ..., αn ∘ f} for any choice of f ∈ D.

Said another way, given a function f  with a graph of degree sequence d, by applying α we can reach any

other function with a graph having the same degree sequence.  Thus the poset structure we have imposed

on our sigma matrices are only  “first column sensitive".  Using a poset structure which depends on all

relevant depths of the inverse would be preferable. 

37



References

1.  Wolfram, S. (2002). A new kind of science (Vol. 5, p. 130). Champaign, IL: Wolfram media.

2.  OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences, http://oeis.org

38



Appendix A: 

Notation and Conventions

XX = {f : X → X} all endofunctions on X

X = {x1, x2, ..., xi, ..., xn} = domf

f-j(y) :=  x : f j(x) = y

f-jA := 

x∈A

f-j(x).

f-[1,n](x) := f-1(x), f-2(x), …, f-n(x).

f-j[X] := f-j(x1), f-j(x2), …, f-j(xn).

F- := f-[1,n][X] : F-[i, j] := f-j(xi)

Σf the sigma matrix of f

Σf [i, j] := F-[i, j] = f-j(xi)

Σf [i, j] := σ(i,j)

(ΣX, ≤ ) composition poset of sigma matrices

ΣXX the set of all sigma matrices of XX

Σ{a,b}{a,b} set of all sigma matrices on functions {a, b} → {a, b} ,

f [1,n](x) = [ f(x), f2(x), … , fn-1(x), fn(x) ].

F+ := f [1,n][X] = f [1,n](x1), f [1,n](x2), ..., f [1,n](xn) : F+[i, j] := f j(xi)

F+[i, j] := f j(xi)

M[i, *] := [M(i,1), M(i,2), ..., M(i,n)] ith row of an n⨯n matrix M

M[ * , j] := [M(1,j), M(1,j), ..., M(1,j)] jth column of an n⨯n matrix M

F+[xi, *] = f [1,n](xi)

ColSum (M : x) list counting the x ' s in each column of the square matrix M

Mcs = ColSum(M : X) matrix made up of counts for all elements in each column of M

Mcs[i, j] = ColSum(M : xi) [j] count of xi ' s in the jth column of an n⨯n matrix M

{ * }n⨯n an n⨯n matrix of singletons

Pcs procedure calculating the ColSum(M) from M

P+ procedure computing the image matrix F+ from f

PΣ : XX → ΣXX
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PΣ := Pcs ∘P+

α : X -> X bijections on X

c : X -> X constant functions on X

H : XX → S preimage complexity function, S finite set

H := K ∘PΣ

H~ an arbitrary preimage complexity function

K : ΣXX → S

Hd the discrete preimage complexity function where Kd(Σ) = Σ

HX the indiscrete preimage complexity function see Example 5.3 for definition of KX

H0 bijectivity preimage complexity measure.

P ⊢ n an integer partition of n

P ⊢XX partition of all functions X → X

Hd, HX , H0
the partitions of XX induced by Hd, HX and H0

[g]H~
the partition element containing representative g ∈ Pi ∈  ⊢XX induced by H~

[f]=r = f : Hf = rwhen context makes the PCF in use clear.

H~
(3) the size of the partition of XX induced by H~ where X = 3

H~
(n) the sequence of sizes for partitions of XX where for domain sizes {1, 2, 3 ...}

Σ (n) sequence of the number of unique sigma matrices as a function of dom f = n
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Appendix B

Calculation of Sequence Σ(n)

# Calculation of Novel Sequence Sigma(n)

import sagemath

def reverse_numeric(x, y):    #optionally used for sorting sigma matrices from nonzero rows to zeros, default is reverse of this

   return y - x

   

def sigSet(n):

   l=list(FiniteSetMaps(n))   # create the list of finite functions

   sigMat=set()              # prepare set of sigMats

   for f in l:                #build sigma matrices for each

       comps=[list(f)]      #comps is the auxiliary matrix of compositions of f

       u=f                  # initialize, first column

       for i in range(1,n):    # apply function to itself as many times as necessary

           v=[]

           for k in u:

               v.append(f[k])

           comps.append(v)    #comps is a list of lists at this point

           u=v    

       m=matrix(comps)     # make it a matrix object

       m=m.transpose()        #take the transpose so rows become columns

       sm=matrix(n, n)       #prepare sigma matrix for f

       for i in range(n):    

           for j in range(n):

               c=m.column(j)

               x=list(c).count(i)

               sm[i,j]=x          # by definition

       ssm=list(tuple(sm[i]) for i in range(n))   

       ssm.sort()                                    #sort the rows lexicographically to prepare setification

       essm=tuple(ssm)

       sigMat.add(essm)    # add to the collection of sigma matrices

   return sigMat    

   print(sigMat)   

q=sigSet(8); q; len(q)    # 8 can be changed to the desired index

#The Sage Notebook is based upon work supported by the National Science Foundation Grants
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