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Figure 1: PhishPrint: System Overview

3 System Description

Our PhishPrint system is made up of two modules (see Fig. 1). The main module is the Profiling Module which uses a large

number of benign websites 4 to collect and analyze sensitive profiling information from WSCs and find any cloaking defense

weaknesses. These weaknesses can then be harnessed to mine cloaking attack vectors. The efficacy of these attack vectors can

then be verified with the Attack Module which uses an array of simulated phishing websites 8 for this.

The working of the Profiling Module begins with the Token URL Generator 1 whose job is to periodically generate unique,

never-before-seen URLs that will be given as tokens to various WSCs. The URLs are also stored in a database 5 . Although

each URL is unique, they all point to a single Profiling Website 4 server that we maintain. As discussed in § 2, we use unique

3LDs (all under a single 2LD) for generating these URLs. The mapping between the token URLs and the web server instance

was set up with the help of wildcard DNS records and .htaccess rewrite rules.

The Web Scan Requestor 2 receives URLs periodically from the Token URL Generator and reports them to different WSCs 3

as potential “phishing URLs". We went through an elaborate process to find a comprehensive list of WSCs that can be supported by

the requestor module. Firstly, we included WSCs such as Google Safe Browsing (GSB) and Microsoft SmartScreen which power

the URL blocklists of most web browsers covering millions of users. We also added support for WSCs such as PhishTank, APWG,

and ESET which along with GSB and SmartScreen have all been studied in previous WSC research [37]. Further, we went through

the list of URL scanning services hosted by VirusTotal [12] and included 17 additional WSCs that have a publicly accessible

reporting interface. To our knowledge, none of these have been studied previously. We also tested various communication
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applications such as e-mail clients and social media apps with token URLs to see if we could find evidence of any WSCs being

employed by these vendors. In this process, we discovered that Microsoft employs a WSC to pre-scan all URLs received by its

Office 365 customers using the Outlook e-mail service [1]. Given that Office 365 is a hugely popular application with a current

subscriber base of more than 250 million people [11], we also included it as a WSC to be evaluated bringing the total list of WSCs

to 231 (listed in 1st column of Table 1). The Web Scan Requestor module is built to use different methods such as Selenium-based

browser automation code, emails as well as direct web API calls in order to send periodic phishing URL reports to the 23 WSCs.

After receiving the reports, the WSCs will visit the token URLs. As already noted, all these URLs point to a single web server

hosting a Profiling Website 4 . We designed this website to be able to extract browser fingerprints (BFPs) of any visitor without

requiring any user interaction. For this, we adapted (with permission) the browser fingerprinting code developed and used for the

AmIUnique project [2, 31]. This provided us with a couple of advantages. Firstly, AmIUnique’s website is a good example of a

cross-browser compatible website using modern HTML5 features such as Canvas, WebGL and Web Audio features to carry out its

fingerprinting activities. By having this code in our profiling site, we were able to check if the WSCs have “Real Browsers” that can

successfully run such web client code. Secondly, AmIUnique is a large-scale project that has collected BFPs from more than 2 mil-

lion visitors. By using their code, we were able to directly lookup the collected BFPs of the WSCs in their database and measure the

false positives that a BFP-based cloaking attack might face. Note that the webserver will also store in the database the client’s IP ad-

dress and the HTTP request headers along with all the collected BFPs to enable a comprehensive analysis of the behavior of WSCs.

After eliciting a suitable number of crawls over an extended period of time, we can ascribe the collected BFP data and HTTP

metadata to different WSCs by using the token URLs as a common factor 5 . We can then conduct a thorough analysis of

the cloaking defenses of specific WSCs 6 . This results in mining of different cloaking attack vectors 7 . The mined cloaking

vectors can then be evaluated using the Attack Module. The module contains an array of evasive simulated phishing websites

that are bootstrapped to use the mined cloaking vectors. It is important to note that some of the mined cloaking vectors rely

on blocklists that need to stay up-to-date in order remain continually effective. As a result, in order to use these kind of cloaking

vectors, the Profiling Module needs to continue to run throughout the run time of the Attack Module. More details about the

setup of the phishing websites are discussed in § 5.

We used PHP, Python and JavaScript for building all the above described modules with about 20K lines of code. In the

interest of making a real impact in improving the security architecture of WSCs, we plan to release our code to vetted academic

researchers as well as members of the WSC community upon request. However, we are abstaining from making a public release

of our code in order to deter risks of possible abuse of the system by malicious actors.

1We also discovered that some media applications such as Slack and Facebook Messenger scan our token URLs. However, we do not consider them as WSCs
as they were clearly identifying themselves with the User-Agent headers akin to search engine bots.
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4 Profiling WSCs

We setup PhishPrint to run on our University network. We chose a .com 2LD for the domain name of the Profiling Websites. As

described in § 3, our system was setup to collect and analyze profiling data from 23 different WSCs (Table 1). We ran the system

for a period of 10 weeks beginning in the 2nd week of January 2020. We collected the data for a total period of 77 days (until

last week of March) in order to allow sufficient time for any delayed crawls that might be initiated from some WSCs. During

this period, PhishPrint reported 12 token URLs as fake “phishing reports" daily to each of the 23 WSCs (Ethical considerations

are discussed in § 7). These reports were sent in two hour intervals of time throughout to all the WSCs. As a result, we reported

a total of 840 token URLs to most WSCs2 over the deployment period.

4.1 Analysis and Cloaking Vectors

The above mentioned setup allowed us to collect sensitive profiling data from multiple WSCs over the 10-week period. We

analyzed the data to find WSC weaknesses and mine relevant cloaking vectors. The profiling data we considered for this can

be divided into these 3 categories: browser anomalies, network data and advanced browser fingerprints. It is to be noted that

although PhishPrint’s design allows us to study evasion weaknesses in a generic manner (§ 2), in this research, we focused only

on a few cloaking vectors from these 3 areas. In § 7, we will touch upon how PhishPrint can be used in the future to study more

vectors in these and other areas.

In this section, we will describe how the profiling data from the 3 areas was analyzed and what cloaking vectors were mined

as a result. Before this, it is helpful to first establish some terminology relating to cloaking attack vectors. Regardless of the

nature of the data being used, all cloaking vectors used by attackers trying to evade WSCs can fall into one of two classes:

Anomalies and Blocklists. We will describe these two classes below:

Anomaly cloaking vectors capitalize on characteristic anomalous behaviors exhibited by WSCs when visiting candidate

websites. These vectors can be created after finding any anomalies in the requests being made by WSCs that strongly indicate

the fact that they are not from a potential human victim. For example, consider a HTTP request made by a WSC with a headless

browser’s User-Agent. Attackers can block all such requests to avoid detection without blocking any potential victims as no

victim will use a headless browser. Thus, by definition, all these vectors work with high specificity.

Blocklist cloaking vectors rely on some specific fingerprints known to be associated with WSCs (such as from PhishPrint’s

profiling data) in order to create a blocklist for the operation of cloaking websites. For example, if there are a set of specific

IP addresses that Google uses for its GSB WSCs, they can be made part of a blocklist to evade GSB.

Blocklist vectors differ from anomaly vectors in two key aspects. Firstly, many blocklists need continuous updating in order

to be effective. For example, if a WSC keeps changing its IP addresses, then the corresponding blocklists need to be updated by

2Forcepoint, FortiGuard and GSB are the only exceptions. Forcepoint has a reporting limit of 5 URLs per day restricting us to 350 submitted URLs. Due
to intermittent technical issues on both server and client sides, we could only report 777 and 612 URLs to FortiGuard and GSB respectively.
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the attackers. This is not the case with anomaly vectors which rely on some specific crawler idiosyncracies that are overlooked

by the WSCs and hence remain fixed. Secondly, blocklists might block some potential victims. So, their specificity needs to

be taken into account by attackers before using them. For example, if an attacker simply blocks all /24 subnets of IP addresses

seen from a WSC and if that WSC was using a residential proxy to route its requests, then such a blocklist could potentially

cause a lot of false positives for the attacker. On the other hand, anomaly vectors are all very specific as already discussed.

We will now discuss the three areas of profiling data we analyzed in our study along with the associated cloaking vectors

that we mined and their novelty aspects.

4.1.1 Browser Anomalies

The first area of profiling data we analyzed is the data from the web browsers being used by the visiting WSCs. We observed

several anomalies in the web browsers used (or pretending to be used) by the WSCs. We categorize these into 3 different anomaly

vectors and discuss them here.

JS Execution Anomaly (JSE-A). The first anomaly we discovered was the inability of some WSCs’ clients to execute some

simple JavaScript code. For this, we checked whether or not a visiting crawler is capable of executing a test function that is

passed to Window.setInterval() method. This is very similar to the onload event-based cloaking vector used in [37] (see

Appendix A.2).

Real Browser Anomaly (RB-A). As mentioned in § 3, we adapted code from a real-world modern HTML5 website to build

our profiling website. The website is designed to ship out BFPs to the database without requiring any user interaction. We verified

that this website is cross-platform compatible by manually testing with most used web browsers such as Chrome 79, Firefox

71, Safari 11, Edge 44 and IE 11 on popular OS platforms such as Windows (Vista, 7 and 10), macOS, Linux (Ubuntu), iOS

and Android. During this process, as and when required, polyfill Javascript libraries were to maintain compatibility with older

web browsers that do not fully support some APIs such as Canvas. Further, we also performed a user study in which we verified

that more than 99% of the visiting users showed no Real Browser anomaly.

Thus, we ensured that most users’ web browsers will ship us fingerprints when they visit our website. However, we observed

that many WSCs’ are unable to ship out the fingerprints to us due to a failure on the client side. We refer to this as a Real Browser

anomaly. To our knowledge, no other previous research has attempted to do such analysis against WSCs (the “Real Browser"

vector described in [37] is synonymous with JSE-A above).

Crawler Artifacts Anomaly (CA-A). The data we collected from the profiling websites included some basic BFPs such

as properties of the navigator DOM object and all the HTTP request headers as described previously. We discovered a few

anomalies when analyzing this data from WSCs. For some WSCs, we saw that the navigator.useragent value does not match

the User-Agent header. Similarly, navigator.platform does not always match the platform indicated in the User-Agent

header. For example, it was common to see cases where the User-Agent header indicates a Windows platform, but the
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navigator.platform indicates a Linux platform. Similarly, we saw a number of cases where the User-Agent bears indicators

of automation such as curl, phantomjs, headless etc.

Further, we also found discrepancies in the values of navigator.webdriver. This is a Boolean field that indicates whether

a web browser is being driven by browser automation software such as Selenium. While for most web browsers the default

value of this field in a non-automated browser is set to false, in Chrome it is set to undefined. In this regard, we noticed that

in some WSCs, navigator.webdriver was being set to false even though the User-Agent indicated a Chrome browser. This

is a clear anomaly and shows that the property had been tampering with. It is to be also noted that [49] has used similar but more

elaborate methods to find inconsistencies introduced by privacy-protecting browsers and extensions. However, to our knowledge,

ours is the first work that focuses on trying to find such inconsistencies in the browsers used by WSCs. We use the term Crawler

Artifacts to refer to a cloaking vector that relies on all these anomalies.

4.1.2 Network Data

For this part of the analysis, we focused on the IP addresses used by WSCs for initiating web requests to PhishPrint. We collected

these addresses during our deployment period and crafted IP Address Blocklists (IP-B). Thus, we were able to mine a blocklist

cloaking vector from PhishPrint’s data. Note that real-world attackers tend to use massive blocklists made of IP addresses for

building phishing sites [38]. Hence, it is very important to measure how well WSCs are doing (both specifically as well as

cumulatively) in defending against this vector. The performance of WSCs against in-the-wild IP blocklists has been studied

before [37]. However, the novel scalable nature of PhishPrint now allows us to directly collect a large amount of network

infrastructure data and then analyze and compare this across an extensive set of WSCs. In addition, we also mapped the collected IP

addresses to their associated countries in order to measure the geolocation variety of the network infrastructure setup by the WSCs.

AS Blocklist (AS-B). Upon analyzing the Autonomous System (AS) names of the collected IP addresses, we also discovered

that many WSCs are housing their crawlers in IP address spaces that can be mapped to web or cloud hosting companies (such

as Amazon, DigitalOcean) or the organizations related to the WSCs themselves (such as Google, Microsoft, BitDefender, Cisco).

We were able to make a list of 66 such AS names. We refer to this as an AS Blocklist. As it is unlikely for a potential victim

to be visiting an attacker’s website from such IP addresses, an attacker can easily use as AS Blocklist to evade WSCs.

AS Blocklist is a hybrid between anomaly and blocklist cloaking vectors. Similar to anomaly vectors, it is based on an anomaly

and is relatively static as it is unlikely for offending WSCs to frequently change their network infrastructure between different

cloud networks. On the other hand, similar to other blocklist vectors, it takes extensive data collection efforts to construct lists

like this as there a myriad number of web hosting entities. Further, if the blocklist is poorly constructed and includes AS names

of victim IP spaces, then there could be specificity issues as with other blocklist vectors. We empirically demonstrate that this

is not the case with AS Blocklist with a large-scale user study (5.2). To our knowledge, ours is the first work to study such AS

level aspects of the network infrastructure of WSCs.
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4.1.3 Advanced Browser Fingerprints

Recent privacy-oriented studies such as [19, 24] have shown Canvas, WebGL and Font list (obtained via JS) fingerprinting to

be among the most discriminatory identifiers. As a further testament to this, these browser fingerprints (BFPs) have also been

used to develop authentication schemes [15, 28]. At the same time, privacy researchers have also shown that such fingerprints

are not easy to defend against and require elaborate measures [26, 32, 42, 53]. Given this, there is a high potential for developing

an effective cloaking vector if WSCs do not take adequate measures to defend against these fingerprinting techniques. Hence,

we wanted to analyze these BFPs after we collect them from WSCs. In order to collect these BFPs we relied on AmIUnique’s

implementation as described in § 3. For both Canvas and WebGL BFPs (both first introduced in [34] and later used in [24]),

their implementation draws a hidden image on the webpage and a cryptographic hash of that image is produced to be used as

a fingerprint. For font BFPs, a simple trick first proposed in [36] and later used in [24] is used to detect the list of fonts that are

installed in the client using JavaScript. A cryptographic hash of the font list serves as the font fingerprint for the client.

Our analysis showed that the entire WSC ecosystem exhibits very little dynamism across these three BFPs. To capitalize

on this, we propose a novel blocklist cloaking vector. For this, we follow the approaches of prior BFP studies [24, 31], by using

a tuple of the three BFPs: <Font, Canvas, WebGL> (or <F,C,W>) in order to effectively combine their individual fingerprinting

capabilities. Our proposed <F,C,W> Blocklist (FCW-B) for this simply stores all <F,C,W>s seen from WSCs in the past to

aid future evasion.

4.2 Profiling Analysis Results

In this section, along with an overview of the profiling data we collected during the 10-week study, we will present measurements

indicating performance of the WSCs against the six cloaking vectors we introduced previously. All these results are presented

in Table 1. For brevity, we refer to “Column X in Table 1" as X . 1 lists all the WSCs we studied.

VT Sharing. During analysis and investigation, we found that 8 WSCs have shared their token URLs with VirusTotal [12]

(VT). This sharing has taken place at varying degrees. Malwares and Quttera have shared more than 99.5% of their URLs with

VT, while Bitdefender and PhishTank have shared about 10 and 30% of their URLs with VT. VT hosts more than 80 WSCs that

begin scanning the uploaded URLs almost immediately. As a result, all such VT-shared URLs need to be considered separately.

For this, we created a “virtual WSC" named “VT Ecosystem" and consider all VT-shared URLs exclusively here. We treat this

virtual WSC equivalent to other WSCs in the rest of this paper. Since Malwares and Quttera shared most of their URLs with

VT, no meaningful specific analysis can be made for these WSCs. Hence, we avoid their individual rows in the table and just

show them as part of the VT ecosystem. It is to be noted that due to the large number (80) of WSCs hosted on VT (including

18 of our 23 WSCs), the VT ecosystem be considered as a cumulative representative of the entire WSC ecosystem.

2 shows the number of URLs submitted, the number of URLs scanned by the WSCs and the number of URLs contributed

share with VT by each WSC. Overall, in the 10 week period, we submitted about 18,532 token URLs with distinct 3LDs to all
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the 23 WSCs. In terms of crawl back rates, most of the WSCs were pretty good with many of them visiting more than 90% of

the submitted URLs. A notable exception is Norton which visited only 53 of the submitted URLs. The total number of URLs

submitted to VT by other WSCs was 803. 3 describes the number of URLs remaining to be analyzed after we excluded the

VT URLs. These are the URLs we consider for computing the CVD scores as already mentioned. 3 also lists the number of

sessions established for the analyzed URLs indicating the total number of visits made. While WSCs such as PhishTank, and

Scumware establish 50 to 100 sessions for each analyzed URL, some others such as GSB, SmartScreen and Forcepoint visit each

URL only once or twice. Overall, as many as 348,516 sessions were established for scanning 18,532 distinct URLs we submitted.

4 shows the median of time deltas between the first crawl time and the URL submission time for URLs submitted to each WSC.

Some WSCs such as Fortinet and SmartScreen have a slow average response time whereas many other WSCs including GSB,

Outlook take only a few seconds.

CVD Scores. In order to compare the performance of all the WSCs across the six cloaking vectors, we need an intuitive

performance metric. For this, we devised a simple metric called Cloaking Vector Defense Score (CVD score). The CVD score

can be computed for any given WSC (say, W ) and a cloaking vector (say, V ). Assume that we reported x URLs to W and it

scanned y of them (ignoring the VT-shared URLs) during our entire study. We conduct an a posterori analysis of all the y URLs

to determine how many of them were visited at least once by a crawler that does not exhibit the weakness associated with V .

If such a number is z, we report the CVD score of the pair (W,V ) as z
y ×100.

Doing this a posterori analysis for an anomaly vector is straightforward as we simply need to determine if at least one of

the many requests a URL might receive exhibits the anomaly being considered. However, in the case of blocklist vectors, we

will need the respective blocklists in order to make this determination for a given request. We build this blocklist dynamically

using all the historic data collected from the WSC prior to the current request. For example, in order to determine if a request

r at time t can be blocked by a blocklist vector V , we use all prior requests to the WSC before t to build a blocklist and see if

the current request can be blocked by such as blocklist. If it does, we determine this to be a weak request and do not consider it.

From the above, we can see that the CVD score, by definition, reflects the chance (as a %) of a given cloaking vector to launch

a cloaking attack against a given WSC. 5 to 10 show the CVD scores of the WSCs over the six vectors we described previously.

We use red, yellow and green colors in the table to show the bad (<33.3), moderate(33−66) and good (>66) scores respectively.

JSE-A, RB-A. 5 shows that the JSE-A CVD scores are good all across the spectrum of WSCs. This demonstrates a positive

evolution from the situation in [37] which showed that only 1 of the 5 studied WSCs had good score. More such evolutionary

changes in WSCs have been described in A.2. On the other hand, many WSCs seem to be failing in handling the Real Browser

Anomaly vector 6 that we developed. The only notable exceptions are APWG and the VT ecosystem. We noticed that GSB,

for example, completely fails to support the WebGL API in many of its crawlers. Some other notable failures are Outlook, Avira

and Forcepoint that did not visit even a single submitted URL with a Real Browser. The overall combined CVD score of all

WSCs in this respect is thus only 35.2 which shows a lot of scope for improvement.

CA-A. Another positive results is that most WSCs seem to to have some crawlers that do not carry crawler artifacts 7 .
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1

WSCs

2

# URLs
Submitted
/ Scanned

/ VT Shared

3

# URLs
Analyzed

/ # Sessions

4

Reply
Time

Browser Anomalies Network Data Advanced BFPs

5 6 7 8 9 10

JSE-A RB-A CA-A # IPs
/ # CCs IP-B AS-B

# <F,C,W>s
/ #F - #C - #W

(FCW-B)

AlienVault 840 / 837 / 0 837 / 2354 0:00:16 99.5 18.9 0 1 / 1 0.1 0 2 / 1-2-2 (0.2)
APWG 840 / 839 / 0 839 / 4658 0:00:10 100 99.5 99.8 2726 / 8 99.1 62.9 6 / 7-7-3 (0.6)
Avira 840 / 837 / 0 837 / 2082 0:50:27 92.1 0 0 70 / 3 8.4 43.0 0 / 0-0-0 (0)
Badware 840 / 837 / 0 837 / 837 0:00:08 99.8 0 100 1 / 1 0.1 100 0 / 0-0-0 (0)
Bitdefender 840 / 542 / 67 475 / 3918 4:16:10 97.9 40.2 97.3 62 / 10 9.1 79.6 46 / 46-38-12 (9.3)
Dr.Web 840 / 836 / 0 836 / 846 0:00:22 79.8 0 0 15 / 3 1.8 71.8 0 / 0-0-0 (0)
ESET 840 / 764 / 0 764 / 987 3:35:02 99.7 17.9 100 12 / 2 1.4 99.9 6 / 3-6-3 (0.8)
Forcepoint 350 / 295 / 0 295 / 295 0:00:24 85.1 0 45.8 1 / 1 0.3 100 0 / 0-0-0 (0)
FortiGuard 777 / 764 / 8 756 / 4590 0:00:46 97.1 9.4 100 19 / 3 2.0 12.7 27 / 25-25-8 (3.4)
Fortinet 840 / 772 / 5 767 / 4495 11:45:36 98.8 5.9 100 2 / 2 0.3 7.4 12 / 12-11-6 (1.6)
GSB 612 / 591 / 0 591 / 775 0:00:04 99.2 23.9 100 619 / 83 94.4 90.9 2 / 2-2-2 (0.3)
SmartScreen 840 / 822 / 0 822 / 1133 2:58:11 99.8 44.0 77.6 50 / 2 2.6 100 17 / 13-8-5 (1.7)
Norton 840 / 53 / 0 53 / 69 0:31:42 86.8 13.2 88.7 19 / 3 34.0 98.1 1 / 1-1-1 (1.9)
Notmining 840 / 838 / 0 838 / 1675 0:00:10 84.3 0 0 1 / 1 0.1 0 0 / 0-0-0 (0)
OpenPhish 840 / 835 / 0 835 / 4928 1:00:02 99.8 59.6 100 2 / 2 0.1 0 1 / 1-1-1 (0.1)
Outlook 840 / 672 / 0 672 / 676 0:00:18 98.7 0 100 535 / 1 79.5 0 0 / 1-1-0 (0)
PhishTank 840 / 838 / 259 579 / 45976 0:00:10 100 82.2 100 4096 / 50 93.4 100 51 / 55-69-19 (7.4)
Scumware 840 / 633 / 2 631 / 29537 0:25:47 100 80.0 100 1643 / 59 82.9 100 27 / 37-32-5 (3.0)
Sophos 840 / 793 / 0 793 / 2170 0:01:47 97.6 3.5 91.2 26 / 3 2.0 100 3 / 2-3-1 (0.4)
Sucuri 840 / 830 / 0 830 / 2488 0:00:09 87.2 0 100 837 / 70 100 96.6 0 / 0-0-0 (0)
ZeroCERT 840 / 840 / 462 378 / 1152 0:05:11 100 0.5 100 3 / 1 0.8 100 1 / 2-2-1 (0.3)
VT Ecosystem 2483 / 2465 / - 2465 / 232875 0:04:18 99.9 98.8 100 7795 /76 82.1 99.8 101 / 111-97-21 (3.1)
All 18532 / 16730 / 803 16730 / 348516 0:01:15 96.3 35.2 77.4 15394 /113 33.4 65.6 204 / 182-162-36 (1.1)
Best Score - - - 100 99.5 100 - 99.1 100 9.3

Table 1: An overview of all the profiling information collected and cloaking vectors mined by PhishPrint from 23 WSCs

However, some WSCs such as AlienVault and Avira have an anomalous navigator.webdriver which was causing all their

crawler visits to be easily evadable. On a related note, PhishTank was exposing another artifact from its web portal.

IP-B. The IP-B CVD scores along with the number of distinct IP addresses of source requests and the countries they are associ-

ated (# CCs) with is in 8 . We note that as many as 11 WSCs make their visits from less than 20 distinct IP addresses even though

they visit hundreds of domains forming thousands of sessions across time. WSCs such as AlienVault and OpenPhish visit only from

1 or 2 IP addresses. A control experiment reports later that this situation persists even when doing repeated reports from diverse

sources (§ 4.2.2). On the other hand URLs submitted to some WSCs including GSB, Outlook, PhishTank and APWG are scanned

by a large number of distinct IP addresses. For PhishTank, this number is as high as 4096 IP addresses (spread over 51 countries) for

the 579 URLs we analyzed. Figure 2 charts the growth of the distinct number of IP addresses we have seen across the days of our

experiment. The graphs shows a near-linear growth for APWG and GSB indicating greatest diversity in IP addresses. SmartScreen

shows an interesting IP infrastructure growth. The number of IP addresses was 1 for the first 50 days of the experiment but has

risen to 50 in the last 20 days. This indicates an infrastructure change during the last 20 days which was referred to during our vul-

nerability disclosure process as well. One more interesting point to note is the number of countries associated with the IP addresses.

APWG is interesting example, in that even though they employ 2726 IP addresses, they are all associated with only 8 countries

which makes a country-based cloaking vector feasible for targeting victims outside those 8 countries. The CVD scores demonstrate

a very polarized situation with roughly half the WSCs having very good scores >80 and half having very bad scores <10.

AS-B. Many WSCs including Outlook and AlienVault showed bad AS-B CVD scores 9 . Outlook, in particular was using

crawlers that were all housed in a Microsoft IP space and is hence evadable despite using a large number of IPs for visiting the
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Figure 2: Growth of distinct IP addresses and fingerprints in PhishPrint database for different WSCs

URLs. The same is the case with FortiGuard, Avira and OpenPhish who were using common cloud and web hosting companies for

housing their crawler bots. On the other hand, there were several WSCs such as PhishTank and GSB performed well in this respect.

FCW-B. 10 shows the the number of distinct <F,C,W> BFPs and the individual Font, Canvas and WebGL BFPs collected

from the WSCs. It also shows the FCW-B CVD scores. Despite scanning 16,730 distinct domains and initiating 348,516 HTTP

sessions that shipped BFPs over 70 days,we see that WSCs collectively only had 204 distinct <F,C,W> BFPs including 162

Canvas and 182 Font fingerprints. These numbers can be put into perspective by seeing that a prior BFP study [24] using the

same implementation as ours has collected as many as 78K distinct Canvas FPs and 17K distinct Font FPs over a 6-month period

with the help of a few regional websites 3. Further, we can also notice that overall, these WSCs used as many as 15,394 distinct

IP addresses. This shows that while many WSCs are actively trying to change their network infrastructure fingerprints, little

is being done to vary the advanced browser fingerprints such as <F,C,W> BFPs.

Inspecting the individual rows, we can see that even WSCs that invested a lot into their network infrastructure such as GSB

and APWG only have a handful of distinct <F,C,W> BFPs (2 and 6). Note that 7 WSCs have a 0 score in combating the RB-A

cloaking vector. This means their browsers are not even capable of running the fingerprinting code and hence we did not collect

any <F,C,W> BFPs from them. Some WSCs such as PhishTank, Bitdefender and the VT ecosystem fare slightly better with 51,

46 and 101 distinct values of <F,C,W> BFPs. However, these still not seem be to sufficient as demonstrated by the FCW-B CVD

scores. Bitdefender’s score although the highest among all WSCs is still only 9.3. This means that more than 90% of the token

URLs would have evaded detection from Bitdefender using the <F,C,W>s as a simple blocklist. It is also interesting to see the

growth rate graphs of distinct font, canvas and BFPs collected by PhishPrint. While the IP addresses had an almost linear growth

for many WSCs (such as GSB and APWG), the Font and Canvas FP growth rates present a completely opposite picture. As GSB

has only 2 such BFPs that were used from day 1, it’s just a flat line. For APWG, PhishTank and Bitdefender, the growth rate is very

low in the last 30 days showing 0, X and X new Canvas FPs during that period. This indicates the high likelihood of a successful

blocklist cloaking vector which we will demonstrate later § 5. SmartScreen has only 17 <F,C,W> BFPs for its 822 URLs. The

growth rate for these is in a step-wise fashion with long flat lines indicating again the utility of a blocklist cloaking vector.

Further, this best score of 9.3 remains in very stark contrast with best scores for the other five cloaking vectors as shown in the

3This study did not include AmIUnique’s current WebGL FP implementation. Further, our experiments showed they are the least specific of the 3 BFPs § 4.2.1.
Hence, we avoid discussing WebGL FPs here. However, we do use these as part of the <F,C,W> tuple as already described.
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BFP # Unique Median 75% 95% Max Sum

Font 53 20 0.0009% 0.042% 2.16% 12.46% 25.46%
Canvas 46 11 0.0034% 0.07% 1.57% 2.17% 10.47%
WebGL 16 1 0.081% 2.09% 5.53% 11.47% 25.63%

Table 2: Comparison of WSC BFPs with AmIUnique dataset

final row of the table. This shows that while the other cloaking vectors are being well handled by atleast some WSCs, advanced

BFPs such as <F,C,W> BFPs present a grave cloaking weakness that seems to be affecting all the entities in the WSC ecosystem.

4.2.1 Specificity of Advanced BFPs

As FCW-B is a blocklist vector, its specificity needs to be taken into account as already discussed. This is even more important

given that our longitudinal study showed this vector is the only one which cannot be defended by any entity in the WSCs

ecosystem. Hence, we attempted to measure FCW-B specificity by collecting a set of <F,C,W> BFPs from WSCs and measuring

how common they are among regular internet users. For this, we re-deployed PhishPrint on 3 days spread evenly over September

2020. We collected all BFPs from 5 major WSCs (listed in Fig 3) by sending 12 token URLs each day to each of the 5 WSCs.

It is to be noted that 35 of these 180 URLs (including 34 PhishTank URLs) were shared with VirusTotal immediately, thereby

soliciting crawls from many of the 80 VT WSCs similar to the longitudinal study. At the end of each day, we waited for a 24 hour

period and then sent the collected BFPs to AmIUnique project’s API [2]4. This allowed us to directly measure the percentage of

AmIUnique visitors who have the same Font, Canvas or WebGL FPs. Each time we made a query, the API would look up the data

of visitors in the past 90 days5. As our 3 querying days are spread across a one month period, the datasets of visitors against which

our BFPs were compared on each day is different. Among the 3 datasets, the smallest dataset is made up of 467,696 visitors.

Table 2 summarizes the results of all our queries. In total, we collected and queried 53 Font, 46 Canvas and 16 WebGL FPs.

Interestingly, we noticed that many WSCs continued to carry the same BFPs as the ones we saw in our longitudinal study despite

the 6 month difference in time. For example, all FPs collected from APWG and SmartScreen were already seen in the previous

study. In total, 71.3% of BFPs were already collected previously. The table shows the distribution of prevalence (in %) of the 3

BFPs and the graphs in Fig 3 break this data down by each WSC. Similar to results from prior privacy-oriented BFP studies [31],

this data shows that most of the BFPs are very rare with only a handful of BFPs being prevalent in more than 1% of the visitors.

For example, as many as 20 Font FPs were unique and not seen among any of the visitors. The table also shows the sum of all these

BFP prevalence percentages which could be used as a direct measure of specificity if these BFPs were individually used as cloaking

vectors. For example, the lowest of these is 10.47% for Canvas FP thus indicating that attackers will only lose about 10.47% of

potential victims if they were to use a blocklist made solely of Canvas-based WSC FPs as their cloaking vector. However, if they

used a more specific cloaking vector such as the triplet <F,C,W>, we can expect this lost victim percentage to be even lesser. Fig

4We thank AmIUnique project developers for permitting us to submit up to 100 queries to their internal web API for this experiment.
5Canvas and Font BFPs are relatively stable for a user with a median lifetime of more than 9 months [50].
6Note that for some WSCs such as PhishTank and Bitdefender the markers on the y-axis refer to multiple BFPs. In these cases, if atleast one of those BFPs

was found in the longitudinal study, we marked that point in solid.
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Figure 3: CDF plots showing the prevalence of different WSCs’ BFPs among AmIUnique Visitors in %. Solid markers indicate
BFPs that were also found in the 10-week study6

2 shows that this situation is even more bleak for individual WSCs with both APWG and GSB’s Canvas FPs accounting for only

0.02% and 0.07% of all visitors. Thus, despite their massive network infrastructure (as seen in the longitudinal study, Table 1), due

to this extreme lack in diversity of BFPs, attackers can specifically evade these WSCs without fear of losing any potential victims.

4.2.2 Diverse Repeated Reporting Experiment

In August 2020, we performed another control experiment. The goal of this was to study any potential effects that repeated

reporting of token URLs from diverse sources could have on the profiling information that is collected from the WSCs. We note

that during our 10-week longitudinal study, we only registered a single 2LD and reported each token URL created under it only

a single time to each WSC. To replicate this setup, we created a similar configuration in this study by creating 50 different 3LDs

under a single .xyz 2LD (called SR). We then set up an alternate configuration for diverse and repeated reporting (called DRR) by

using 5 different .xyz TLDs. On a single day, we used PhishPrint to report each of the 50 SR 3LDs to 10 different WSCs from a

U.S. IP address (namely: AlienVault, APWG, Fortinet, GSB, SmartScreen, Norton, OpenPhish, Outlook, Sophos and ZeroCert).

On the same day, we used a private VPN provider to connect to 10 IP addresses located in 7 different countries around the world

(3 IPs in various regions of the U.S.) and submitted 10 reports on each domain in DRR set to all the WSCs. For some WSCs, such

as Outlook and APWG, where the reporting is via e-mail, we created and used 10 different e-mail addresses for each domain

in the DRR set. This setup ensured that an equal number of URL reports get sent from each configuration (50 to each WSC) in

order to keep the comparison balanced.

Table 3 shows an overview of the comparison between the profiling results obtained from the two configurations. We can
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Config # Sessions #IPs # <F,C,W>

SR 954 291 10
DRR 799 188 10

Similarity - 0.046 0.54

Table 3: Results of Diverse Repeated Reporting Experiment

see that despite repeated diverse reporting, the URLs reported via the SR configuration involved more sessions and more WSC

IP addresses. We surmise that this could be a result of some WSCs deliberately ignoring repeated reports even if coming from

diverse sources. For example, we noticed that PhishTank’s website shows an error message saying the URL is already submitted

even if we try to do a repeat submission from a different account. The final rows show the Jaccard Similarity between the IP

addresses and the <F,C,W> sets from the two configurations. The high variability in the IP addresses used by WSCs could have

caused the low similarity between the two sets. It is to be noted that if we consider the associated Autonomous Systems of the

IPs instead the similarity rises to about 0.57. Furthermore, breaking these results down by WSCs shows that all the ASs used by

8 of the 10 WSCs in the DRR set are also present in the SR set. The same is the case with <F,C,W>s where 4 of the 6 WSCs from

which we collected <F,C,W>s have a complete match. Further, the WSCs such as OpenPhish and AlienVault which showed very

less diversity in their IP space previously, have displayed exactly same behavior in the DRR set. Overall, this experiment shows

that using a non-diverse URL reporting setup as we did in our study can still enable mining of valuable profiling information.

16



5 Cloaking Vectors in Action

Our large-scale WSC profiling data analysis showed that five of the six cloaking vectors we devised can exploit existing weak-

nesses in WSCs without specificity concerns (for FCW-B). In this section, we present supplementary experiments that directly

put these five vectors in action against WSCs as well as real users with goals to directly assess and confirm their evadability

benefits as well as false positive consequences for the attackers.

5.1 Phishing Experiments

As described in § 2, PhishPrint does not need to use simulated phishing websites for evaluating WSCs or mining new cloaking

vectors. However, in order to confirm the real-world utility of these vectors, we do need to build phishing websites powered

with the five candidate vectors, self-report them to WSCs and measure how long they will survive without getting blocked in

any of the browsers (via a Monitoring Module). Here, our approach will be similar to prior works [37, 39]. These experiments

constitute the Attack Module 8 depicted in Fig. 1.

5.1.1 Setup

For these experiments, we built two kinds of phishing websites: Baseline sites which do not employ any cloaking and PhishPrint-

cloaked sites which use all the five effective cloaking vectors from § 4.2: RB-A, CA-A, IP-B, AS-B and FCW-B. The cloaked

sites show benign content if any of the 5 vectors decide that the visitor should be given a cloaked page. All the cloaking logic is

implemented in server-side using a simple PHP script. The phishing payload stays encrypted (using AES-256) until the cloaking

logic returns a key to the client. If any of the five vectors decide not to show the phishing content, then some benign content gets

loaded into the pages instead of the phishing payload. We have used two kinds of simulated phishing payloads: “PayPal" and “Bank

of America". For benign payloads, we built multiple simple web pages discussing topics such as food and famous personalities.

As mentioned before in § 3, the Profiling Module needs to be running in parallel during these experiments in order to keep

the blocklists associated with IP-B and FCW-B updated with the latest profiling data. Hence, we have started performing this

experiment 25 days after Profiling Module’s deployment (first week of February 2020) to give some time for the two blocklists

to be populated while still allowing both modules to run in parallel. In the rest of this section, we will discuss the site monitoring,

reporting and web site configuration aspects of these experiments.

Monitoring Module. As the ultimate goal of the attacker is to be able continue to deliver phishing content to the victims, we

built a fully automated Monitoring Module to periodically check if phishing sites are still functional or blocked in web browsers.

We have chosen Chrome, IE and Opera desktop browsers for this as they employ different blocklists (GSB, SmartScreen and

Opera) that cover most of the web users [37, 39]. The module loads phishing sites inside the browsers and checks if the sites

are blocked or not. As browser automation libraries tend to disable browser blacklists [37], we used a web based cross-browser

17



testing platform [4] for this purpose. The monitoring module runs a headless Chrome browser to open the target site in the testing

platform and uses an OCR library to do the liveness check. We found this to be a more light-weight approach than using VMs

as suggested in [37]. We did this check every 2 hours for each site. Note that while previous studies have done this monitoring

for 3 [37] or 7 [39] days, we kept monitoring our sites for a period of 1 month in order to capture any late blocking that might

happen due to our aggressive reporting strategy.

Aggressive Reporting. We used our Profiling Module’s Web Scan Requestor ( 2 in Fig. 1), to self-report all our website

to WSCs. In contrast to prior works that reported each phishing site only one time [37, 39] to a few WSCs, we opted for a much

more aggressive approach where we repeatedly report each site (once daily) over a period of two weeks to all the 23 WSCs.

It is to be noted that during the longitudinal study, we noticed that a couple of WSCs share most of their URLs to VirusTotal.

Confirming similar behavior, we found that all our phishing sites have been shared with VirusTotal too. As a result, our phishing

sites were shared and scanned by more than 80 WSCs that are hosted on VirusTotal as well.

Site configuration. For our experiments, we set up a total of 26 phishing websites. All 26 websites were hosted with accounts

by the same hosting provider (Hostinger) and had different domain names. We used 6 of these as baseline sites (with 3 free

accounts) and 20 of these as the cloaked sites powered by the 5 cloaking vectors (with 1 paid account). It is to be noted here

that despite multiple requests and conversations about the nature of our research, we were unsuccessful in getting immunity

for any of our accounts from the hosting provider. We chose only 6 sites for our baseline as there are already prior large-scale

studies establishing clearly the baseline blocklisting speed (for e.g., [39] whose results will be discussed later). For the same

reason, we did not choose to register a separate 2LD for these 6 baseline sites but used the free 3LDs provided by the hosting

provider to conserve financial resources. For the cloaked sites, we registered 20 different .xyz domain names as we were unable

to obtain that many free 3LDs. Other than this minor difference, the setup for the experiments for both sets of sites is exactly the

same. In order to prevent pre-emptive blacklisting of our websites without scanning [37], we avoided deceptive keywords such

as ‘paypal’ or ‘bank’ in the URLs for the phishing pages. We instead used words related to the benign payloads for all the URLs.

5.1.2 Results

The results show that our 6 baselines sites were quickly blocked on all the browsers. Chrome (GSB) was the quickest to do this

in 3 hours and 10 minutes. In fact, all the browsers blocked the 6 sites in about 10.5 hours. This agrees with a recent large-scale

study done on browser blocklists [39] which showed that the fastest blocklist (GSB) would block most of its 324 baseline sites

in about 3 hours time. On the other hand, none of the 20 PhishPrint-cloaked sites were blocked in the first four days despite

repeated reporting to all the WSCs. In the one month period in which we did the monitoring, only 2 sites (say, ‘A’ and ‘B’) got

blocked as shown in Table 4. A was blocked on day 57 while B got blocked on day 16. It is to be noted that even for cloaked sites

such lengthy blocking time is highly unusual. For reference, [39] study showed that most cloaked sites get either get blocked in a

7Our cloaked sites experienced a 10 hour down time after A got blocked as our hosting provider disabled our account. We then moved all our sites to another
provider (Namecheap).
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few hours or remain unblocked. Given this, we surmised that both the blocked sites were likely due to manual vetting. To confirm

this, we investigated this by reloading the page in the browser that first blocked it (Opera). We noted that the browser message

specified the source for the blockage as a third-party report from PhishTank. When we looked up the URL on PhishTank, we

saw that our site was manually verified as a phishing URL by 3 users thus confirming our suspicions. Interestingly, we note

that 1 user has also marked our site as a benign site.

Type # Sites Alive Time

Baseline 6 3h, 10min
Cloaked site A 1 4 days, 11h
Cloaked site B 1 15 days, 14h

Table 4: Lifetimes of the blocked phishing sites

As for site B, we found that it was not blocklisted by any browser, but was taken down by xyz registrar on day 16 due to

an abuse report. We were unable to get further details on what the source for this report could be. The remaining 18 cloaked

sites continued to be functional through out the monitoring period of 1 month. We verified manually that even at the time of

writing this manuscript in September, the 18 remaining phishing sites are still live and loading the phishing payloads on all the

major browsers. Thus, we can conclude that cloaking vectors we mined and powered by PhishPrint are very effective in vastly

increasing the survival chances and lifetimes of phishing websites.

5.2 User Study Experiment

The phishing experiments showed that the five cloaking vectors powered by PhishPrint’s data can be very helpful in evading

WSCs. However, we also need to verify the specificity of these vectors and confirm that they are not excluding a lot of potential

victims. For this, we did an empirical evaluation with the help of a user study. We modeled our experiment as a survey on the

MTurk platform as this allowed us to ensure that unique workers take part in our experiment. We designed our experiment such

that after obtaining prior user consent, users are exposed to a web page with exactly the same client-side fingerprinting code

and server-side cloaking logic as in the phishing experiments. However, we removed the phishing payloads for this experiment

to avoid showing malicious content to real users. Also, same as in the phishing experiment, the IP-B and FCW-B vectors are

powered by the data collected by the profiling module in real-time. In the end, we made measurements of whether or not any

of the cloaking vectors decide to show cloaked content to the visiting users.

We received an exemption from our university IRB board for this experiment. In compliance with the terms of the exemption,

we took measures to not store any of sensitive information persistently such as the <FCW> BFPs or any other information

identifying the users such as IP addresses and request headers in our web servers. But, we did store the AS information for each

client’s IP address in order to gauge the geographical variety in locations of participants.

We performed this experiment from the third week of February 2020 to the first week of March 2020 as the profiling module

was collecting data for the longitudinal study. 150 unique users participated in our study that lasted about 16 days. 66% of the
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Canvas (s) Font (s) Total (s)

Mean 0.09 3.97 4.26
Median 0.06 2.36 2.52
90% 0.16 8.88 9.4

Table 5: Time taken for obtaining BFPs during user study

participants in our study were from the United States. However, the remaining 34% participants were spread across 35 countries

in 6 continents. Overall, the results showed that PhishPrint-powered cloaking logic decided to show phishing content for 79% of

the users. These numbers are 76.1% for U.S. users and 81.4% for non-U.S. users. This shows that the PhishPrint-based evasive

cloaking logic is largely specific to WSCs and can inflict harm on a large portion of users irrespective of their geographical location.

Breaking down the 21% false positive rates by cloaking vectors, we saw these numbers: FCW-B - 17.5%, AS-B - 1.7%,

CA-A - 1%, RB-A - 0.7%, IP-B - 0.1%. This was expected as other than FCW-B, all others cloaking vectors are known to be

specific either by definition (anomaly vectors and AS-B) or due to the nature of identifier used (chances of a WSC and a victim

sharing the same exact IP address are very low). As we did not store the <FCW>s, we were unable to analyze the distribution of

<FCW>s responsible for this. However, we have performed a thorough analysis on overlap between the <FCW>s of a much larger

pool of users and WSC data in 4.2.1.

One might also argue that such sophisticated fingerprinting based cloaking logic will result in a computational time delay that

can reduce the effectiveness of social engineering attacks launched on real users. In order to see if this is true, we measured the time

required to perform the cloaking logic as for the users in the user study. Our results (Table 5) show that most of the time is spent in

obtaining font fingerprints with mean time for the cloaking logic being 4.26 seconds. However, given that the mean time to fully

load a web page on desktop machine is about 10.4 seconds [9], we believe this is not a significant overhead that deters the attackers.
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6 Countermeasures

The CV Defense Scores reported in Table 1 can serve as a “report card" for WSCs trying to prioritize their mitigation efforts

across different cloaking vectors as below.

RB-A, CA-A. On the outset, this seems like a simple question of applying best practices as some WSCs already have “near-

perfect" scores. However, this is only true to a certain extent. One issue is that many WSCs process a large number of URLs daily.

For this, it is common practice to make to use headless browsers for scalability [18]. However, this results in an arms race8 between

such browsers and their detectors [27]. While our rudimentary CA-A vectors did not take such sophisticated headless browser

detection features into account, it should be trivial to include them in PhishPrint profiling pages and come up with a much more

sophisticated anomaly cloaking vector. Further, biometric behavior-based bot detection systems can further complicate this issue

for WSCs [20] opening room for new evasion vectors. While handling all these issues might involve elaborate browser changes,

ML-driven crawler behavior, and/or scalability compromises, we suggest the WSCs to prioritize on fixing the simpler issues.

All WSCs should visit each URL atleast once with a “Real Browser" (even if headless) and try to hide all known artifacts [49].

IP-B, AS-B. For handling these vectors, WSCs have to diversify their network infrastructure in terms of both IP addresses

as well as geographical diversity and using residential networks. GSB and PhishTank are some of the best examples for this.

However, during our vulnerability disclosure, some WSCs have mentioned that it might be difficult for them to address this due

to financial implications. In these cases, we suggest that WSCs consider approaches such as using peer-to-peer VPN networks [7]

and sharing URLs with other WSCs to help improve network diversity.

FCW-B. FCW-B’s results were the most alarming as there was extremely limited diversity of <F,C,W>s across the entire WSC

ecosystem. The maximum score across all WSCs was only 9.3 with several WSCs having less than 10 distinct BFPs across hun-

dreds of scanned URLs. Among these 3 BFPs, improving font diversity is the easiest to fix as it only needs increasing the number

of “font sets" installed in the crawler instances. When doing this, it need to be ensure though that the fonts match the general font

set characteristics of users from that geolocation. Some WSCs already started doing this as a result of our disclosures. However,

the Canvas and WebGL BFPs require more intricate mitigations. Currently, there are 3 approaches for such BFP defenses:

• Blocking. [26] proposed an ML-based BFP script blocking solution that detects BFP code. However, such solutions cannot be

used by WSCs as the presence of such blocking can itself be used for evasion (like RB-A). Instead of blocking, URLs can be

isolated for further automated/human analysis. However, the attackers can even fingerprint such analysts and add those BFPs

to their blocklists. Hence, such BFP detection methods might not work for WSCs. While client-side BFP blocking solutions

might still work, the problem here is that of coverage. Unless such a client-side solution is baked into all major browsers, it

might not achieve good coverage. This problem is further exacerbated by the fact that many phishing victims may also be

slow adopters for technologies such as security extensions.

• Uniformity. Uniform software re-rendering (upon readback) approaches that result in the same BFPs for all users have also

8At the time of writing this manuscript in October 2020, unfotunately the headless detectors seem to be winning this battle.
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been proposed [53]. However, these also have the same coverage issues as above. Unless, a majority of all users adopt the

same solution, WSCs will not be able to adopt these solutions. If not, the resulting uniform fingerprint can itself be used as

an evasion vector.

• Randomization. This works by randomizing the BFPs in each browsing session [35]. Brave browser has recently adopted

this to devise a solution for Canvas and WebGL BFPs by adding small random noise to the generated data. This is the most

promising approach for WSCs as it does not need to be adopt by non-WSCs for this to work.

Hence, we recommend WSCs to adopt similar transparent randomization-based defenses for their crawlers in order to

prevent Canvas and WebGL BFP cloaking weaknesses. Another possible solution is to use dynamic software reconfiguration

approaches [29], although these might have some scalability limitations.

While improvements in crawler infrastructure are imperative, it is also important for all the WSCs to prevent abuse of their

reporting infrastructure. In this research, by simply registering a single 2LD and self-reporting its wild card 3LDs, we were

able to collect a large amount of sensitive information such as BFPs and IP addresses of many WSCs at a very low cost. While

resources (such as network infrastructure) can be restricted based on 2LD, such strategies can also backfire. For example, an

attacker could self-report her own benign URLs to learn the limited and specialized profiling data related to her 2LD and then

easily switch into an evasive and malicious mode. However, the WSCs can at least use such separation techniques to divide their

limited crawler resources between submissions from vetted and non-vetted URL reporters. WSCs can also leverage existing spam

and anomaly detection research work to monitor and detect abuse of URL reporting services and prevent anomalous submissions

of token URLs for profiling of WSCs. This is even more important in the light of the fact that there has been an on going arms

race in the field of browser fingerprinting that could result in more novel BFP-based cloaking vectors in the future.
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7 Discussion

Vulnerability Disclosure. We are completing an effective vulnerability disclosure process and already submitted initial reports

to all 23 WSCs (21 vendors) that we have specifically profiled. 9 WSC vendors have so far acknowledged our results including

Google (GSB), Microsoft (SmartScreen, Outlook), Norton, AlienVault and Sophos. We had follow-up discussions over e-mail

and online meetings with 7 WSC vendors on our results. Of the 10 vendors, 3 mentioned that they are already working on changes

or aware of these limitations. 6 of them have reported to be working on follow-up changes with one vendor mentioning about

having tasked multiple engineers to work on the problems we pointed out in our paper. We also received a Google Vulnerability

Reward for ‘abuse-related methodologies’. Our reward amount was the highest in our category of ‘abuse-related methodologies’

indicating both ‘High Impact’ and ‘High Probability’ [10] of our mined cloaking vectors for GSB (RB-A and FCW-B).

Limitations. We note that all the profiling data we mined from WSCs was a result of reporting thousands of 3LDs of a single

.com 2LD. Each 3LD was reported only once from a single IP address. Hence, one might argue, that this data is not reflective

of the real weaknesses of the WSCs. However, our control experiment in § 4.2.2 shows that the profiling data when doing

repeated URLs (of multiple 2LDs) from multiple vantage points across the world looks very similar to the data we collected

with our setup. Furthermore, the results from our Phishing Experiments show that this profiling data generalizes well enough

to help successfully extend the life of 20 simulated phishing 2LDs created under the .xyz TLD (5.1.2). Finally, our successful

vulnerability disclosure process in which WSC vendors have directly confirmed the sensitive nature of the obtained profiling data

also proves the utility of PhishPrint. In the future, even if WSCs were to divide and limit their exposed crawling infrastructure

by the reporting IP addresses or TLDs, it would be easy to simply diversify this setup by using a VPN or creating multiple

representative sites. If this limitation was done by 2LD however, this can have even worse consequences as attackers can start

profiling and evading with the same 2LD. They can simply launch their 2LD as a benign site, self-report the site and gather all

the profiling data of the infrastructure reserved for this 2LD from the WSCs. They can they switch into an “malicious evasion"

mode powered by the gathered data. This essentially limits the amount of profiling that they will need to do.

On a related note, we would like to point out the “double-edged sword" nature of PhishPrint. In § 2, we mentioned how the

system design can allow researchers to study WSCs in a low-cost, highly scalable manner. However, at the same time, if a system

like PhishPrint falls into the hands of the attackers, they will be able to host long-lasting evasive malicious websites at a low-cost.

For this purpose, we have made recommendations, to monitor abuse of reporting APIs to all WSCs in 6. If such monitoring does

come into effect as a result of this study, we would welcome that as another positive security outcome. Furthermore, security

researchers can still seek special permissions to bypass such monitors and continue their evaluation of WSCs in a low-cost manner.

Future Work. Given the low-cost and scalable nature of PhishPrint, we would like to continue to use it to study more cloak-

ing vectors. During our vulnerability disclosure, many WSCs have also encouraged us to do so. We received two Vulnerability

Research Grants from Google encouraging us to continue this line of work on studying their WSC (GSB). In the future, we

would like to study the resilience of WSCs against some other advanced BFP vectors such as MediaDevices and Battery Web
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API, Audio fingerprinting and fingerprinting of devices such as accelerometer and gyroscope. Furthermore, we would like to

use PhishPrint to measure the behavioral biometrics aspects of WSCs (such as their mouse movements, key presses etc) and

see the potential of developing ML-driven cloaking vectors from them.

Ethical Considerations. Our 70-day profiling study resulted in submitting 840 ‘token URLs’ to most WSCs at the rate of 12

URLs per day. During the 2-week period when our 20 phishing URLs were reported as well, this number went up to 32 per WSC

per day. While we concede that the time spent in scanning these URLs is a waste for the WSCs, we argue that this number is very

small in comparison to the huge number of URLs they receive each day. We have also disclosed our URL submission frequency

to all WSCs. Moreover, our method of submitting token URLs to WSCs to gain insights is similar to some prior works [37,39,40].

We assess the impact of our token URL submissions, with PhishTank as an example. With the help of PhishTank’s web portal

we were able to determine that our token URLs from both experiments accounted for less than 0.8% of their total received URLs

during that period. We argue that the security benefits gained by all the WSCs from our study far outweigh this minor overhead

that these WSCs experienced during our experimentation period. Some WSCs have also mentioned the same and asked us to

continue to submitting these URLs and share new insights in the future. With regards to the simulated phishing websites used

during the experiments, we did not share those URLs with any human users and only submitted them to the WSCs. We also

made sure that they are completely non-functional by removing all form submit buttons in order to prevent effects of accidental

exposure to users. Similar efforts were also made previously [37, 40]. We obtained IRB exemption for our user study and did

not store any sensitive information such as IPs or BFPs as described there ( 5.2).
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8 Related Work

Web security crawlers have largely been understudied despite their importance in protecting against a wide range of web attacks.

The closest works to ours are [37, 39, 40] all of which have focused on conducting blocklisting-oriented studies of web security

crawlers by using simulated phishing sites. PhishFarm [37] by Oest et al. has evaluated 10 WSCs against anti-cloaking techniques

used in real phishing kits. All of these works have focused on studying simple evasion techniques based on client’s IP address

or HTTP headers-based filtering, execution of simple JavaScript or obfuscation of page content. As a result, present WSCs (at

least collectively) have improved in handling such techniques [37]. PhishTime by Oest et al. conducted a longitudinal measure

of phishing websites in a controlled environment by manually crafting such phishing sites after finding in the wild. This showed

the effectiveness of WSCs in blacklists consistency. As such, it was able to provide a effective measurements in detecting the

weakness in the anti-phishing ecosystem in blacklist behavior for such evasive websites in longitudinal study [39]. Similary,

Peng et al. [40] evaluated the 68 vendors of VirusTotal in effectiveness against phishing URLs. The measurement analyzed the

network traffic, and dynamic label provided from each vendor, and their discrepancy in flagging such phishing URLs.

These above works focus on first creating multiple phishing websites, pre-fitting them with a chosen cloaking vector and

selectively self-reporting them to multiple WSCs to measure their effectiveness via observing blocklisting. However, PhishPrint,

provided a completely different design where we first use fully benign sites to profile the WSCs in a scalable, long-term fashion

and obtain sensitive profiling data from them. This profiling data can be analyzed directly to find unknown cloaking weaknesses

without need for any blocklisting. Such an approach allows much more scalable, low-cost generic evaluation of WSCs. We

discuss the design difference from prior works in § 2. Our system tries to mine multiple novel cloaking vectors that are shown

to be effective in driving phishing sites. This was not the case with these prior works which were only able to test already known

cloaking vectors or those found in-the-wild [37, 39].

Similary, a few other research works have focused on studying in-the-wild cloaking and evasive techniques [25, 38, 45, 52]

which was not our focus. These previous works have discussed cloaking techniques used to hide the true nature of the website.

One of the key and effective cloaking vectors we discovered uses advanced browser fingerprinting techniques on which there

have been many studies. This research included novel browser fingerprinting techniques [14, 21, 23, 36, 41, 43, 44], defenses

to thwart such fingerprinting [22, 29, 30, 35, 46, 47] and large-scale measurement analyses [24, 31, 50]. Pierre et al. [31] used

a 17-attribute (including features proposed by Eckersley [23]) fingerprinting script that used advanced fingerprinting techniques

like canvas fingerprinting and WebGL fingerprints to fingerprint client browsers. Acar et. al [14] discussed improvement of

transparency of advanced web tracking techniques for better privacy. While these works have studied the implications of browser

fingerprinting on privacy, our research work is focused on the security implications of these browser fingerprinting techniques.

No research study has been conducted so far to test the scanning engines used by the URL blacklisting services against these

advanced fingerprinting techniques proposed in the past several years.

All of these works were concerned with technicalities and privacy implications of browser fingerprinting but our work talks
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about the security effects of browser fingerprinting by deploying it as a cloaking vector.

Recently, researchers have begun to explore the question of how advanced browser fingerprinting can be leveraged to yield

security benefits [15, 28, 47, 51]. In particular, [51] analyzed the use of fingerprinting-based anti-bot scripts being used by

popular websites in the wild. Then, by using an array of handcrafted crawlers, the authors tried to measure the robustness of such

websites in detecting malicious crawlers. In our research, we answered the complementary question of how good the present

WSC bots are in detecting fingerprinting-based malicious cloaking websites.

To summarize, our work draws ideas from two related research areas: web cloaking and browser fingerprinting. We conducted

an in-depth review of the existing browserfingerpriting and cloaking mechanisms against WSCs. There has been study on web

cloaking and browser fingerprinting in large scale and in-depth; however none of these works have focused on systematically

evaluating the effectiveness of WSCs in defending against cloaking attacks devised using advanced browser fingerprinting

techniques such as Canvas and Font fingerprinting. To best of our knowledge, PhishPrint found to be the first work to focus

on building a platform for evaluation of WSCs against unknown cloaking weakness while completely avoiding the use of any

simulated phishing sites and blocklisting measurements. It thus enable mining of novel cloaking vectors from the unknown

weaknesses found in the WSCs. Our work mainly focus on evaluating the robustness of present-day web scanning engines

(WSCs) in defending against cloaking techniques that use advanced browser fingerprinting techniques. The study of 23 WSCs

discovered serious flaws that make them susceptible to advanced cloaking attacks.
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9 Conclusion

We built a novel scalable, low-cost and generic platform named PhishPrint to enable evaluation of Web Security Crawlers

(WSCs) against previously unknown cloaking weaknesses. PhishPrint completely avoids the use of any simulated phishing

sites and blocklisting measurements. We used PhishPrint to evaluate 23 WSCs. Our 70-day study found several unknown

cloaking weaknesses. In particular, it was shown that the entire WSC ecosystem is extremely vulnerable to a novel browser

fingerprinting-based cloaking attack. We confirmed the practical impact of our findings by deploying evasive phishing web

pages. We confirmed the specificity of these attack vectors. We also discuss countermeasures that all WSCs should take up in

terms of both their crawler infrastructure as well as reporting infrastructure. We have relayed the found weaknesses to the WSCs

through a vulnerability disclosure process that resulted in some remedial actions as well as multiple vulnerability rewards.

27



References

[1] Advanced outlook.com security for office 365 subscribers. https://web.archive.org/web/20200901032551/https:

//support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-

882d2243-eab9-4545-a58a-b36fee4a46e2.

[2] Amiunique. https://amiunique.org.

[3] Browser market share worldwide. https://gs.statcounter.com/browser-market-share.

[4] Browserling. https://www.browserling.com/.

[5] Google safe browsing block all my subdomains instead only effected one. https://support.google.com/webmasters/

thread/17514260?hl=en.

[6] Google safe browsing erroneously blocking my whole domain and subdomains. https://support.google.com/

webmasters/thread/32022154?hl=en.

[7] Hola better internet – access censored sites. https://hola.org/faq.

[8] Hostinger: Terms and conditions. https://www.hostinger.com/terms-of-use.

[9] Page load times. https://backlinko.com/page-speed-stats.

[10] Program rules – application security.

[11] Teams powers office 365 growth. https://office365itpros.com/2020/04/30/office365-teams-power-growth/.

[12] Virustotal. https://www.virustotal.com/gui/.

[13] Xyz domain name policies. https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0.

[14] Gunes Acar, Marc Juárez, Nick Nikiforakis, Claudia Díaz, Seda F. Gürses, Frank Piessens, and Bart Preneel. Fpdetective:

dusting the web for fingerprinters. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC

Conference on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 1129–1140.

ACM, 2013.

[15] Furkan Alaca and Paul C. van Oorschot. Device fingerprinting for augmenting web authentication: classification and

analysis of methods. In Stephen Schwab, William K. Robertson, and Davide Balzarotti, editors, Proceedings of the 32nd

Annual Conference on Computer Security Applications, ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016, pages

289–301. ACM, 2016.

28

https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://amiunique.org
https://gs.statcounter.com/browser-market-share
https://www.browserling.com/
https://support.google.com/webmasters/thread/17514260?hl=en
https://support.google.com/webmasters/thread/17514260?hl=en
https://support.google.com/webmasters/thread/32022154?hl=en
https://support.google.com/webmasters/thread/32022154?hl=en
https://hola.org/faq
https://www.hostinger.com/terms-of-use
https://backlinko.com/page-speed-stats
https://office365itpros.com/2020/04/30/office365-teams-power-growth/
https://www.virustotal.com/gui/
https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0


[16] APWG. Phishing activity trends report: 3rd quarter, 2019. https://docs.apwg.org/reports/apwg_trends_report_

q3_2019.pdf.

[17] Michael Archambault. Microsoft security reports a massive increase in malicious phishing scams. https:

//www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/.

[18] Eric Bidelman. Getting started with headless chrome, Jan 2019.

[19] Yinzhi Cao, Song Li, and Erik Wijmans. (cross-)browser fingerprinting via OS and hardware level features. In 24th Annual

Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1,

2017. The Internet Society, 2017.

[20] Zi Chu, Steven Gianvecchio, Aaron Koehl, Haining Wang, and Sushil Jajodia. Blog or block: Detecting blog bots through

behavioral biometrics. Comput. Networks, 57(3):634–646, 2013.

[21] Anupam Das, Nikita Borisov, and Matthew Caesar. Do you hear what I hear?: Fingerprinting smart devices through embed-

ded acoustic components. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of the 2014 ACM SIGSAC Con-

ference on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 441–452. ACM, 2014.

[22] Amit Datta, Jianan Lu, and Michael Carl Tschantz. Evaluating anti-fingerprinting privacy enhancing technologies. In Ling

Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia, editors,

The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pages 351–362. ACM, 2019.

[23] Peter Eckersley. How unique is your web browser? In Mikhail J. Atallah and Nicholas J. Hopper, editors, Privacy

Enhancing Technologies, 10th International Symposium, PETS 2010, Berlin, Germany, July 21-23, 2010. Proceedings,

volume 6205 of Lecture Notes in Computer Science, pages 1–18. Springer, 2010.

[24] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. Hiding in the crowd: an analysis of the effectiveness of

browser fingerprinting at large scale. In Pierre-Antoine Champin, Fabien L. Gandon, Mounia Lalmas, and Panagiotis G.

Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France,

April 23-27, 2018, pages 309–318. ACM, 2018.

[25] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu, Jean Michel Picod, and Elie Bursztein. Cloak

of visibility: Detecting when machines browse a different web. In IEEE Symposium on Security and Privacy, SP 2016,

San Jose, CA, USA, May 22-26, 2016, pages 743–758. IEEE Computer Society, 2016.

[26] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the fingerprinters: Learning to detect browser

fingerprinting behaviors. CoRR, abs/2008.04480, 2020.

[27] Paul Irish. paulirish/headless-cat-n-mouse. https://github.com/paulirish/headless-cat-n-mouse, Jan 2018.

29

https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://github.com/paulirish/headless-cat-n-mouse


[28] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. Morellian analysis for browsers: Making web

authentication stronger with canvas fingerprinting. In Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus

Almgren, editors, Detection of Intrusions and Malware, and Vulnerability Assessment - 16th International Conference,

DIMVA 2019, Gothenburg, Sweden, June 19-20, 2019, Proceedings, volume 11543 of Lecture Notes in Computer Science,

pages 43–66. Springer, 2019.

[29] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. Fprandom: Randomizing core browser objects to break advanced

device fingerprinting techniques. In Eric Bodden, Mathias Payer, and Elias Athanasopoulos, editors, Engineering Secure

Software and Systems - 9th International Symposium, ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings, volume

10379 of Lecture Notes in Computer Science, pages 97–114. Springer, 2017.

[30] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Mitigating browser fingerprint tracking: Multi-level

reconfiguration and diversification. In Paola Inverardi and Bradley R. Schmerl, editors, 10th IEEE/ACM International

Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy, May 18-19,

2015, pages 98–108. IEEE Computer Society, 2015.

[31] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the beast: Diverting modern web browsers to build

unique browser fingerprints. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016,

pages 878–894. IEEE Computer Society, 2016.

[32] Peter Snyder Mark Pilgrim and Ben Livshits. Fingerprint randomization. https://web.archive.org/web/

20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/.

[33] Angela Moscaritolo. Beware: Phishing attacks are on the rise. https://www.pcmag.com/news/beware-phishing-

attacks-are-on-the-rise.

[34] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting canvas in html5.

[35] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiving fingerprinters with little white lies. In

Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International Conference

on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 820–830. ACM, 2015.

[36] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna.

Cookieless monster: Exploring the ecosystem of web-based device fingerprinting. In 2013 IEEE Symposium on Security

and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 541–555. IEEE Computer Society, 2013.

[37] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and Kevin Tyers. Phishfarm: A scalable

framework for measuring the effectiveness of evasion techniques against browser phishing blacklists. In 2019 IEEE

Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 1344–1361. IEEE, 2019.

30

https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://www.pcmag.com/news/beware-phishing-attacks-are-on-the-rise
https://www.pcmag.com/news/beware-phishing-attacks-are-on-the-rise


[38] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad Wardman, and Gary Warner. Inside a phisher’s mind:

Understanding the anti-phishing ecosystem through phishing kit analysis. In 2018 APWG Symposium on Electronic Crime

Research, eCrime 2018, San Diego, CA, USA, May 15-17, 2018, pages 1–12. IEEE, 2018.

[39] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad Wardman, Kevin Tyers, Yan Shoshitaishvili, and Adam Doupé.

Phishtime: Continuous longitudinal measurement of the effectiveness of anti-phishing blacklists. In Srdjan Capkun and

Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, pages 379–396.

USENIX Association, 2020.

[40] Peng Peng, Limin Yang, Linhai Song, and Gang Wang. Opening the blackbox of virustotal: Analyzing online phishing

scan engines. In Proceedings of the Internet Measurement Conference, IMC 2019, Amsterdam, The Netherlands, October

21-23, 2019, pages 478–485. ACM, 2019.

[41] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. Clock around the clock: Time-based device fingerprinting.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages

1502–1514. ACM, 2018.

[42] Peter Snyder and Ben Livshits. Brave, fingerprinting, and privacy budgets. https://web.archive.org/web/

20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/.

[43] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis. Unnecessarily identifiable: Quantifying

the fingerprintability of browser extensions due to bloat. In Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri,

Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia, editors, The World Wide Web Conference, WWW 2019, San

Francisco, CA, USA, May 13-17, 2019, pages 3244–3250. ACM, 2019.

[44] Oleksii Starov and Nick Nikiforakis. XHOUND: quantifying the fingerprintability of browser extensions. In 2017 IEEE

Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 941–956. IEEE Computer

Society, 2017.

[45] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang Wang. Needle in a haystack: Tracking down elite phishing

domains in the wild. In Proceedings of the Internet Measurement Conference 2018, IMC 2018, Boston, MA, USA, October

31 - November 02, 2018, pages 429–442. ACM, 2018.

[46] Christof Ferreira Torres, Hugo L. Jonker, and Sjouke Mauw. Fp-block: Usable web privacy by controlling browser

fingerprinting. In Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, Computer Security - ESORICS 2015

- 20th European Symposium on Research in Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part

II, volume 9327 of Lecture Notes in Computer Science, pages 3–19. Springer, 2015.

31

https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/


[47] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam Doupé. Everyone is different: Client-side

diversification for defending against extension fingerprinting. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX

Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1679–1696. USENIX

Association, 2019.

[48] Phani Vadrevu and Roberto Perdisci. What you see is NOT what you get: Discovering and tracking social engineering

attack campaigns. In Proceedings of the Internet Measurement Conference, IMC 2019, Amsterdam, The Netherlands,

October 21-23, 2019, pages 308–321. ACM, 2019.

[49] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. Fp-scanner: The privacy implications of

browser fingerprint inconsistencies. In William Enck and Adrienne Porter Felt, editors, 27th USENIX Security Symposium,

USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 135–150. USENIX Association, 2018.

[50] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. FP-STALKER: tracking browser fingerprint

evolutions. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,

California, USA, pages 728–741. IEEE Computer Society, 2018.

[51] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. Fp-crawlers: Studying the resilience of browser

fingerprinting to block crawlers. In NDSS Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb’20),

Feb 2020.

[52] David Y. Wang, Stefan Savage, and Geoffrey M. Voelker. Cloak and dagger: dynamics of web search cloaking. In

Yan Chen, George Danezis, and Vitaly Shmatikov, editors, Proceedings of the 18th ACM Conference on Computer and

Communications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, pages 477–490. ACM, 2011.

[53] Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang. Rendered private: Making GLSL execution uniform to prevent

webgl-based browser fingerprinting. In Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium,

USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1645–1660. USENIX Association, 2019.

32



A Appendix

A.1 Specific Recommendations

During our profiling study, we saw some specific problems with PhishTank and GSB WSCs that are discussed below along with

suitable recommendations.

A.1.1 PhishTank

PhishTank shows the reported URLs on their website to allow human analysts to investigate them. We found a couple of serious

issues with PhishTank’s web portal ecosystem that are described below:

1. We noticed that repeated URL submissions are ignored by PhishTank and not shown in their homepage even if the URL

is being re-submitted from a different user account. An attacker can exploit this by simply self-reporting their URLs to

PhishTank a few days before adding malicious content to them. This will effectively prevent the URL from ever showing

up on the homepage and thus reduce the potential variety of visitors to which the website will get exposed. To prevent this,

PhishTank should bump up URLs to their homepage whenever they get resubmitted by a different user account.

2. We noticed that PhishTank allows their website visitors to open and check the new URLs either in a new window or in an

iframe in PhishTank. However, in both cases, it is possible for an attacker to check if the Referer points to phishtank.com

and trigger benign behavior. We have used this same evasion logic in our experiments. Thus, unless a human analysts copies

the URL and pastes it in their URL address bar, it will always carry the Referer artifact, thus making it easy for an attacker

to decide to cloak and evade manual analysis. Hence, we strongly recommend PhishTank to use Referrer-Policy headers

(for example, by setting it to same-origin) to combat such evasion strategies.

A.1.2 GSB

During the initial setup phase of our longitudinal study, we saw a couple of serious issues with GSB’s WSC infrastructure. As

these are specific to GSB, we are reporting them separately here.

1. We noticed that Google’s infrastructure was restricting large-sized data packets from being shipped out of their network

hosting their crawlers. For example, we were unable to ship 50 KB sized packet from the WSCs client browsers to our servers.

This was a peculiar restriction that we did not notice with any other WSC. As an attacker can easily abuse such properties

for evasion, we recommend GSB to re-consider such restrictions.

2. Further, we noticed that while all other WSCs take at least a couple of seconds to execute our fingerprinting scripts, GSB’s

crawlers were able to do this in less than 30 milliseconds. Our preliminary manual testing with many popular web browsers

also showed that it takes at least two seconds to execute this code. Attackers can thus use such timing discrepancies to detect
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WSCs Mobile Devices US Desktop - GSB Non-US Desktop GSB Real Browser
(B) (C) (D) (F = JSE-A)

APWG 1.000 0.942 0.690 1.000
GSB 0.000 0.347 0.741 0.914
SmartScreen 0.000 0.001 0.075 0.989
PhishTank 0.992 0.998 0.998 1.000

Table 6: WSCs - PhishFarm’s anomaly-based cloaking vectors and PhishPrint’s JS-based cloaking vectors

the presence of a powerful JavaScript execution framework and trigger their cloaking logic. We did not need to include these

timing-based side channels in our cloaking logic as we were already able to handle GSB and other WSCs by using FCW-B.

A.2 Evolution of WSCs: Comparison with PhishFarm

As mentioned earlier, PhishPrint is a generic cloaking vector analysis system for WSCs. Thus, it allows us to compare the results

from previous research that surveyed some specific cloaking vectors against WSCs. To demonstrate this, we use PhishFarm [37].

Specifically, PhishFarm studied the effectiveness of 4 user agent-based cloaking vectors (called as Filters B,C,D and F) and

1 blocklist-based cloaking vector (called Filter E) against 5 WSCs. 4 of those WSCs overlap with our work. Hence, we wanted to

use our dataset to gauge the performance of these 4 WSCs against these cloaking vectors and see how these WSCs have evolved.

Filter B serves malicious traffic to only mobile user agents. Filters C and D serve malicious traffic to US and non-US based

clients that use Desktop GSB browsers (Chrome, Firefox or Safari). Filter F refered to as a “Real Browser" filter in their work is

in fact equivalent to JSE-A (as it is tied to a JS onload event execution). By analyzing the HTTP headers and IP addresses of the

collected data, we were able to gauge how well the WSCs would have defended against these filters if they were deployed in our

reported URLs. Table 6 shows the results. The CVD scores for these 4 vectors is shown in the 4 columns. The scores are shown as

fractions here in order to enable direct comparison with results from [37] which reported the scores on a scale of 0 to 1. Note that

we were unable to report about Filter E as it use a specific .htaccess file for blocklisting for which we do not have any access.

In the PhishFarm study, it was reported that except for Filter B, all the other filters would be defended against by one of

the WSCs. Further, it was mentioned that after the study, improvements have been made for defending against Filter B as well.

Our study confirms these results. Compared to the previous study, both APWG and PhishTank have massively improved with

respect to Filters B, C and D. However, unfortunately SmartScreen and GSB still don’t adequately scan from mobile user agents.

Further SmartScreen continues to perform badly on both filters C and D. The reason is that they mostly use IE based web browser

agents which the filter explicitly avoids. Thus, we can see how even though we did not have any of these vectors in mind when

designing PhishPrint, we were still able to evaluate the WSCs we saw in the study against these specific vectors by making

use of all the profiling data we obtained. This shows the generic nature of cloaking vector analysis provided by PhishPrint.

A.3 Browser Fingerprinting Code

We provide below the JavaScript code snippets for Canvas, WebGL and Font Fingerprinting that we adapted from AmIUnique
for profiling the WSCs.
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Listing 1: Canvas Fingerprinting Code

1

2 function generate_canvas_data() {

3 try {

4 var canvas = document.createElement('canvas');

5 canvas.height = 60;

6 canvas.width = 400;

7 var canvasContext = canvas.getContext('2d');

8 canvas.style.display = 'inline';

9 canvasContext.textBaseline = 'alphabetic';

10 canvasContext.fillStyle = '#f60';

11 canvasContext.fillRect(125, 1, 62, 20);

12 canvasContext.fillStyle = '#069';

13 canvasContext.font = '11pt no-real-font-123';

14 canvasContext.fillText("Cwm fjordbank glyphs vext quiz , \uD83D\uDE03", 2, 15);

15 canvasContext.fillStyle = 'rgba(102, 204, 0, 0.7)';

16 canvasContext.font = '18pt Arial';

17 canvasContext.fillText("Cwm fjordbank glyphs vext quiz , \uD83D\uDE03", 4, 45);

18 canvasData = canvas.toDataURL();

19 return canvasData;

20 } catch (e) {

21 canvasData = 'Not supported';

22 return canvasData;

23 }

24 }

Listing 2: WebGL Fingerprinting Code

1

2 function generate_web_gl_data() {

3 try {

4 var gl = canvas.getContext('webgl') || canvas.getContext('experimental-webgl');

5 var vShaderTemplate = 'attribute vec2 attrVertex;varying

vec2 varyinTexCoordinate;uniform vec2 uniformOffset;void main(){varyinTexCoordinate=attrVertex+uniformOffset;gl_Position=vec4(attrVertex ,0,1);}';

6 var fShaderTemplate = 'precision mediump float;varying vec2 varyinTexCoordinate;void main() {gl_FragColor=vec4(varyinTexCoordinate ,0,1);}';

7 var vertexPosBuffer = gl.createBuffer();

8 gl.bindBuffer(gl.ARRAY_BUFFER , vertexPosBuffer);

9 var vertices = new Float32Array([-.2, -.9, 0, .4, -.26 , 0, 0, .732134444, 0]);

10 gl.bufferData(gl.ARRAY_BUFFER , vertices , gl.STATIC_DRAW);

11 vertexPosBuffer.itemSize = 3;

12 vertexPosBuffer.numItems = 3;

13 var program = gl.createProgram();

14 var vshader = gl.createShader(gl.VERTEX_SHADER);

15 gl.shaderSource(vshader , vShaderTemplate);

16 gl.compileShader(vshader);

17 var fshader = gl.createShader(gl.FRAGMENT_SHADER);

18 gl.shaderSource(fshader , fShaderTemplate);

19 gl.compileShader(fshader);

20 gl.attachShader(program , vshader);

21 gl.attachShader(program , fshader);

22 gl.linkProgram(program);

23 gl.useProgram(program);

24 program.vertexPosAttrib = gl.getAttribLocation(program , 'attrVertex');

25 program.offsetUniform = gl.getUniformLocation(program , 'uniformOffset');

26 gl.enableVertexAttribArray(program.vertexPosArray);

27 gl.vertexAttribPointer(program.vertexPosAttrib , vertexPosBuffer.itemSize , gl.FLOAT , !1, 0, 0);

28 gl.uniform2f(program.offsetUniform , 1, 1);

29 gl.drawArrays(gl.TRIANGLE_STRIP , 0, vertexPosBuffer.numItems);

30

31 if (gl.canvas != null) {

32 return gl.canvas.toDataURL();

33 }
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34 else {

35 return 'Not supported';

36 }

37

38 } catch (e) {

39 return 'Not supported';

40 }

41 }

Listing 3: Font List Fingerprinting Code

1

2 function get_font_list() {

3 var baseFonts = ['serif', 'sans-serif', 'monospace'];

4 // 1000+ test font list

5 var testFonts = ['.Aqua Kana', '.Helvetica LT MM', .... 'ori1Uni'];

6 var testSize = '72px';

7 var testChar = 'A';

8 var h = document.getElementById('font');

9

10 // Get the width of the text by creating a span

11 var s = document.createElement('span');

12 s.style.fontSize = testSize;

13 s.innerText = testChar;

14 var defaultFonts = {};

15

16 for (var indexBaseFonts in baseFonts) {

17 baseFont = baseFonts[indexBaseFonts];

18 s.style.fontFamily = baseFont;

19

20 if (h) {

21 h.appendChild(s);

22 defaultFonts[baseFont] = {};

23 defaultFonts[baseFont]['offsetWidth'] = s.offsetWidth;

24 defaultFonts[baseFont]['offsetHeight'] = s.offsetHeight;

25 h.removeChild(s);

26 }

27 }

28

29 fontsDetected = {};

30

31 for (var indexFont in testFonts) {

32 font = fonts[indexFont];

33 detected = false;

34 fontStyle = '"' + font + '"';

35

36 for (var indexBaseFonts in baseFonts) {

37 baseFont = baseFonts[indexBaseFonts];

38 // Append base font at the end of test font for fallback

39 s.style.fontFamily = fontStyle + ',' + baseFont;

40

41 if (h) {

42 h.appendChild(s);

43 var match = s.offsetWidth != defaultFonts[baseFont]['offsetWidth'] || s.offsetHeight != defaultFonts[baseFont]['offsetHeight'];

44 h.removeChild(s);

45 detected = detected || match;

46

47 if (detected) {

48 break;

49 }

50 }

51 }

52

53 fontsDetected[font] = detected;
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54 }

55

56 return fontsDetected;

57 }
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