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Abstract 

A machine learning model is created to predict melt-pool geometries of Ti-6Al-4V alloy 

created by the laser powder bed fusion process. Data is collected through an extensive literature 

survey, using results from both experiments and CFD modeling. The model focuses on five key 

input parameters that influence melt-pool geometries: laser power, scanning speed, spot size, 

powder density, and powder layer thickness. The two outputs of the model are melt-pool width 

and melt-pool depth. The model is trained and tested by using the k fold cross-validation 

technique. Multiple regression models are then applied to find the model that produces the least 

amount of error. Verification of the ML model was achieved by comparing the model results with 

experimental results and CFD results given the same parameter values throughout the models. 

The ML model results are consistent with the experimental and CFD results.  

Keywords: laser powder-bed fusion, machine learning, Ti-6Al-4V, regression models
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Chapter 1  

Introduction 

       Over the last decade, powder-bed fusion (PBF) additive manufacturing (AM) has become a 

wildly popular technique for creating metallic or alloy parts, especially for aerospace, 

automotive, biomedical, dentistry, and electronics applications [1]. In general, AM techniques 

save time, reduce costs, and require minimal proficiency of an operator [1]. However, the 

process can be defective and costly if the processing parameters are not set and optimized 

properly. Researchers usually perform trial and error methods using experiments and physics-

based numerical modeling to determine the correct combination of the processing parameters, 

which takes substantial effort, time, and money [1]. This is where machine learning (ML) comes 

into play, by giving the scope for modeling and predicting desired outputs in a short time 

utilizing a very large data set of certain input parameters. When that data set is obtained and 

provided as an input to the model, the computer can learn and produce its results. The digital 

nature of the PBF process allows ML to identify and resolve the issues in manufacturing 

conveniently. One of the most important PBF processes is the laser PBF (L-PBF) process, where 

the melt-pool geometry is a significant output, showing the width and depth of penetration of the 

laser beam and the heat-affected zone within the workpiece. This output depends on several 

factors, including the material behavior, environment, and laser parameters. Among these factors, 

finding the optimized combination of the laser and material parameters, namely the laser power, 

scanning speed, spot size, layer thickness, and porosity, is extremely crucial when performing the 

L-PBF process effectively [2]. 
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1.1 Additive Manufacturing 

Additive Manufacturing, also known as 3-D printing, is a process where material parts 

are built in layers [3]. The design of the part is first created in a computer aided design (CAD) 

model and then input into a 3-D printing machine [3]. Additive manufacturing reduces material 

waste, saves time, and cost less compared to subtractive manufacturing, the conventional 

manufacturing process. With subtractive manufacturing, the process starts with a bulk piece of 

material, and the designed part is essentially sculpted out of that piece. Not only is significant 

waste produced from subtractive manufacturing but also the manufacturer must pay for the 

entirety of the bulk piece and cut around it. In additive manufacturing, the cost of the piece is 

only the material used to create it. Subtractive manufacturing requires an expert operator to the 

mill the desired part while additive manufacturing only requires a given CAD model and the 

means to input the data into the 3D printing machine.  

 

 

 

 

Figure 1.1: Subtractive vs Additive Manufacturing [4] 
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2.1 Laser Powder Bed Fusion  

The laser powder bed-fusion process is a type of additive manufacturing that is quickly 

gaining popularity. During this process, a rake spreads powder from the powder reserve across a 

build plate [3]. The powder is melted by a laser that selectively scans across the plate based upon 

the given CAD model [3]. As the first layer is complete, the build platform will retreat 

downwards, allowing another layer of powder to be deposited by the rake [3]. This process is 

repeated until the desired part is created. 

 

 

Figure 1.2: Schematic diagram of the L-PBF Process [1] 

One of the most important outputs in the laser powder-bed fusion process is the geometry 

of the melt-pool [2]. The melt-pool geometry is indicative of the depth and width of the laser 

output; geometry can also show defects in the fusion process such as porosity or geometrical 

deviation [5]. Both of those defects along with insufficient laser penetration and spread will have 

a negative effect on the structural integrity of the final product. Therefore, it is vital to produce a 

sufficient melt-pool during the laser powder-bed fusion process in order to manufacture an 
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acceptable and desired material part. The melt-pool geometry is dependent on several laser and 

material properties, including: laser power, scanning speed, spot size, layer thickness, and 

powder density [2]. Optimization of these parameters will reduce cost, minimize part 

deficiencies, decrease surface roughness, reduce build time, and create a dense material with the 

correct material characteristics [6].  

 

     Each of the five key parameters plays a different role in creating an effective melt-pool 

geometry [2]. Therefore, the focus of this study is subjected to these five parameters. Optimizing 

the scanning speed is crucial; if the manufacturing process can be completed as fast as possible, 

the manufacturer will save time. However, if the scanning speed is too fast, the laser will not be 

able to penetrate deep enough into the powder-bed. Therefore, the manufacturer cannot operate 

the laser at maximum speed, but instead must find the optimum speed at which an efficient melt-

pool is created. The second parameter that must be considered is power. The stronger the laser is, 

the more costly that laser becomes. The power of the laser must be sufficient to melt the powder 

layer but using a laser that has more than enough power would only be more costly. The third 

parameter is spot size of the laser, also known as the diameter. A smaller diameter means a more 

concentrated laser (more energy will be transferred deeper into the substrate); with a larger 

Figure 1.3: Defective Melt-Pool Geometries due to Non-optimized Process Parameters [7] 
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diameter the laser will not penetrate as deep because the laser is less focused, and more energy 

spreads out over the surface. Layer thickness is the fourth feature to optimize. If the layer is too 

thin, the laser will penetrate the substrate too deeply, which wastes power and hurts the final 

product’s structural integrity. If the layer is too thick, the laser will not penetrate the layer fully 

which will result in incomplete melting of the powder layer. The final parameter is the porosity 

of the material which is also referred to as the packing density. The porosity considered in this 

study is the porosity of the powder before it is melted. A more porous medium means the 

material is more powder than solid. Having a higher powder ratio is often preferred because the 

laser will be able to melt the powder more easily than if it were only solid. The data set compiled 

consists of these five parameters that will be the input for the ML program. The depth and width 

of the melt-pool geometry, collected from the same data set, will serve as the output [2]. 

 

 

 

1.2 Machine Learning 

Machine learning (ML) is a series of algorithms that are able to predict or classify data 

based upon previous training of similar data. Machine learning can be classified into three 

categories: supervised learning, unsupervised learning, and reinforcement [9]. Supervised 

Figure 1.4: Different Melt-Pool Geometries with Laser Power of 195 W and Varying 

Scanning Speeds [8] 
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learning occurs when the data is labelled with specific inputs and outputs. Within the supervised 

learning category, two subcategories exist: regression and classification. Unsupervised learning 

contains unlabeled data, and the algorithm must find the patterns within the data [9]. The two 

most popular types of unsupervised learning are clustering and association [9]. “Reinforcement 

learning (RL) algorithms provide a mathematical framework for sequential decision making by 

autonomous agents [10].”  

 

 

1.2.1 Supervised Learning  

Regression analysis is a predictive modelling technique for investigating the relationship 

between a dependent variable (i.e., target) and independent variable(s) (i.e., predictor) [11]. 

Classification analysis is when the output is binary, such as a 1 or 0. The classification algorithm 

will be able to map the inputs into two categories. Regression can indicate the strength of impact 

Machine Learning 

Supervised 
Learning 

Regression 

Classification 

Unsupervised 
Learning

Clustering 

Association

Reinforcement 

Figure 1.5: Machine Learning Family Tree 
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of multiple independent variables on a dependent variable. As a simple type of regression, linear 

regression relates an independent variable with a dependent variable [12]. The variables must 

have a linear relationship. Independent variables and dependent variables are plotted on a scatter 

plot [12] and a best fit line is applied to the data [12]. The best fit line produces an equation and 

allows one to predict the dependent variable given the independent variable [12]. The residual 

distance is the distance between the actual value and the predicted value. A simple linear 

regression model follows the equation: 

 𝑦 = 𝛽𝑜 +  𝛽1 𝑥 (1) 

In Eq. (1), y is the dependent variable, x is the independent variable, 𝐵𝑜 is the y-intercept, and 𝐵1 

is the slope of the regression line.  

 

 

 

Figure 1.6: Linear Regression Line  
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A multivariate linear regression model has more than one independent variable and one 

dependent variable. The multivariate linear regression model follows the following equation 

[12]: 

 𝑦 = 𝛽0 + 𝛽1 𝑥1+. . . 𝛽𝑛 𝑥𝑛 (2) 

Another type of regression is polynomial regression, which is used when the data set 

follows more of a parabolic shape. Polynomial regression is a variation of linear regression 

where the relationship between the independent and dependent variables can be a polynomial to 

the 𝑛th degree [13]. The equation for polynomial regression is as follows [13]: 

 𝑦 = 𝐵0 + 𝐵1𝑥1 + 𝐵2𝑥2
2 + 𝐵3𝑥3

3 + 𝐵𝑛𝑥𝑛
𝑛 (3) 

where n is the degree of polynomial.  

 

A type of classification model is logistic regression. Although it is called logistic 

regression, it is technically a classification model. Logistic regression uses a logistic function to 

relate independent variables to dependent variables using a Bernoulli conditional distribution 

Figure 1.7: Polynomial Regression Trend Curve 

Polynomial Regression Trend 

Line 

Polynomial Regression Equation  
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[11] and can be binomial, ordinal, or multinomial. The outcome of an input data being 1 has a 

probability, P, while the outcome of an input data being 0 has a probability of 1-P. The equations 

for logistic regression are as follows [11]: 

 𝑂𝑑𝑑𝑠 = ln (
𝑃

1−𝑃
) (4) 

 𝑙𝑜𝑔𝑖𝑡(𝑃) = ln (
𝑃

1−𝑃
) = 𝐵𝑜 + 𝐵1𝑋1 + 𝐵2𝑋2 + 𝐵𝑛𝑋𝑛 (5) 

1.2.2 Unsupervised Learning  

Unsupervised learning includes many different types of methods, but the most common 

are association and clustering. Clustering is an algorithm that groups or “clusters” patterns in 

data based upon their likeness to one another [14]. In supervised learning the data is in labelled 

patterns; the algorithm learns these patterns from training and labels new patterns in testing [14]. 

Clustering labels the data itself and must group them based upon similarities [14]. Clustering is 

used in many aspects of data analysis including pattern classification, image segmentation, 

document retrieval and data mining [14]. Association is a series of rules that contain “if-then 

statements” in order to identify patterns in data [15]. Three attributes determine the strength of an 

association rule: support, confidence, and lift [16]. Support is defined as the frequency of an item 

[16]. Confidence is defined as the probability that Y also happens given that X happens [16]. Lift 

is defined as the support divided by the probability of Y times the probability of X given no 

association between them [16]. Association algorithms are most commonly used in market 

basket analysis of customer transactions [15]. 
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1.2.3 Reinforcement Learning 

Reinforcement learning is a type of machine learning that involves an agent, an 

environment, and a reward. The agent produces an action in a certain environment that results in 

a reward, and cumulative rewards should be maximized [17]. The trial-and-error process is used 

to achieve learning when the agent interacts with the environment [17]. Reinforcement learning 

learns by consequences, the program is rewarded for choosing the right action and punished for 

choosing the wrong action [18]. When compared to supervised and unsupervised learning, 

reinforcement learning is more analogous to the human intellect [10]. In supervised learning, the 

data is classified as what is rewarded behavior and what is punished behavior; in reinforcement 

learning, the environment’s response only indicates when the action is rewarded or punished 

[10].  Reinforcement learning is utilized in a multitude of fields including cloud computing, 

robotics, recommender systems, inventory control, and vehicular traffic management [10]. 

Rule: X -Y

Support =
𝑓𝑟𝑞(𝑋,𝑌)

𝑁

Confidence =
𝑓𝑟𝑞 𝑋, 𝑌

𝑓𝑟𝑞(𝑋)

Lift =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑋 𝑥(𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑌)

Figure 1.8: Association Attributes [16] 
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1.3 Motivation of the Work 

In order to produce efficient and geometrically consistent melt pools in laser powder bed 

fusion, manufacturers must conduct experiments using many different laser and material 

parameters. These experiments become extremely costly when done repeatedly while also 

needing plenty of time to run the actual experiments. Another option is to create a CFD model of 

the laser powder bed fusion process. This requires an operator who is technically proficient in 

creating CFD models. CFD models also require a great deal of time to generate and can be 

computationally expensive. In order to eliminate the costs of conducting experiments and 

generating a CFD model while simultaneously reducing the time it requires to run both of these 

processes, a machine learning model is created to predict melt-pool geometries in laser powder 

bed fusion. The model created does not need a proficient operator who is skilled in additive 

manufacturing or generating CFD models; the operator only needs to be able to input data into 

the existing code. This machine learning model data results are specific to the material Ti-6Al-

4V; however, the model is extremely versatile and can be used for any material that is used in 

additive manufacturing. The operator will have to collect melt-pool geometries from those 

specific materials used in laser powder bed fusion and apply that data to the code. The machine 

learning model is easy to operate and produces accurate results. 
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Chapter 2 

Literature Review 

The purpose of this literature review is to familiarize the reader with the many different 

methods of machine learning and how they are implemented in studying melt-pool geometries. 

Some types of machine learning methods are also described in detail. 

Mondal et al. [19] created a low-cost surrogate model using the gaussian process and 

Bayesian optimization in order to estimate process parameter evolution throughout the time of 

the process [19].  A gaussian process is a stochastic process for a finite set of random variables 

under a multivariate jointly gaussian distribution [19]. Unlike polynomial regression, gaussian 

processes do not assume default functional associations between inputs and outputs [19]. 

Gaussian processes excel in modeling nonlinear functions with the predictions made by a 

posterior probability distribution [19]. The structure of the model contained three significant 

steps: “evaluation of the thermal field using an experimentally validated 3D analytically melt-

pool evolution model which serves as a source of a data for formulating a gaussian process 

surrogate,” creation of gaussian processes with adaptable kernel structures, under a tight budget 

formulation of a Bayesian optimization model including a gaussian process surrogate intended 

on solving global optimization problems [18]. Optimization refers to solving for the maximation 

of the target function [19]. The equation is as follows:  

 𝑥 ∗= 𝑎𝑟𝑔𝑚𝑎𝑥𝑓(𝑥) (6) 

however, if 𝑓 is unknown, a gradient free optimization method must be used. Bayesian 

optimization is a gradient free method which inputs predictions into a surrogate model for active 

learning by finding the global optima of the target function [19]. 
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Yang et al. [20] created a convolutional neural network that can provide accurate 

classification of melt-pool geometries of real time laser powder bed fusion in a closed loop 

control. Convolutional neural network is an artificial neural network that uses multi-layer 

feedforward propagation for data processing of 2D images [20]. A conventional convolutional 

neural network consists of nested convolutional and pooling layers in the beginning followed by 

connected layers at the end [20].  

   

 

The network of Yang et al. was a four-class classification model. The four classes included: no 

melt-pool (Z), small melt-pool (S), normal melt-pool (N), and larger melt-pool (L). Four 

examples of each melt-pool image are shown below.  

 

Figure 2.1: Yang et al. Convolutional Neural Network Structure [19] 
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The training data consisted of 2763 melt-pool images while the testing data consisted of 2926 

melt-pool images. Overall accuracy of the test data was 90.84% with 268 misclassifications [20].  

Lee et al. [21] employed a data analytics method to calculate multi-physics-based 

phenomena in additive manufacturing. They utilized machine learning to predict melt-pool 

geometries in the laser powder bed fusion process [21]. The database consisted of LPBF-

processed single track nickel Alloy 625 and nickel Alloy 718 powders [21]. The machine 

learning models’ accuracy increased via the data correlation analysis. Two types of correlation 

analysis were used, maximal information coefficient (MIC) and Pearson’s correlation coefficient 

(POC). POC can detect and model non-linear relationships while MIC is used to characterize 

linear relationships. Six different machine learning models predicted the melt-pool geometries: 

Bayesian ridge regression, kernel ridge regression, linear regression, nearest neighbors 

regression, random forest regression, and support vector machine. With the implementation of 5-

fold cross-validation, the accuracy of the machine learning models was assessed by the 

coefficient of determination (R^2), which was calculated among the actual and predicted values 

as a function of the features associated with both analytic correlation approaches [21]. “The 

results demonstrated the data analytics approach prioritizes key materials/ process parameters of 

Figure 2.2: Melt-pool image classification from left to right: no melt pool (a),                   

small melt pool (b), normal melt-pool (c), larger melt-pool (d) [20] 
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the melt-pool formation and facilitates the accurate prediction of melt-pool geometries for the 

additive manufacturing process optimization [21].” 

 Code surrogates were created by Kamath and Fan [22] for the prediction of melt-pool 

geometries. The purpose of the study was to show that an accurate code surrogate can be created 

using a small data set [22]. Data was generated by two models, the Eagar-Tsai model and the 

Verhaeghe model [22]. The Eagar-Tsai model consists of a Gaussian laser beam scanning across 

a 3D flat plate [22]. The temperature distribution of the laser beam is used to calculate the melt-

pool characteristics as a function of four input parameters: laser power, scanning speed, spot size, 

absorptivity of the powder [22]. The model is computationally cheap and runs in about one 

minute [22]. The Verhaeghe model has a greater number of parameters while being 

computationally more expensive [22]. The model takes into consideration multiple physical 

phenomena involved in laser powder bed fusion [22]. It takes around one to three hours to run 

[22]. Three data sets were input into five machine learning models consisting of 461, 100, and 41 

points of data [22]. The five types of machine learning models were trained and tested: nearest-

neighbor method, regression trees, multivariate adaptive regression splines, support vector 

regression, and gaussian process [22]. The four input variables were laser power, laser speed, 

beam size, and absorptivity of the material as a fraction while the 3 target variables were melt-

pool width, melt-pool depth, and length [22]. While the support vector regression and regression 

tree performed the worst, the remaining three methods performed accurately with the gaussian 

process performing the best [22].  

Scime and Beuth [23] categorized melt-pool geometries during testing using the machine 

learning method support vector machine which is a binary classifier [23]. The purpose of the 

study was to identify defective melt-pool geometries that contained balling or keyhole effects. 
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The data set was created by collecting images of the melt-pool geometry during laser powder bed 

fusion of Inconel 718 alloy by a megapixel Photron FASTCAM Mini AX200 high speed camera 

[23]. During training, bag of words, an unsupervised machine learning technique, separated the 

melt-pool images captured by the high-speed camera [23]. The initial captured images are in a 

Eulerian frame of reference and make it difficult to differentiate the melt-pool geometries; 

therefore, Bag of words is applied to convert the images into a coaxial reference frame [23].  

Akbari et al. [24] designed a two feed forward back propagation neural networks with 

eleven and fourteen neurons to predict melt-pool geometries of Ti-6Al-4V alloy. A neural 

network has three main features: structure that exhibits connections between layers and neurons, 

a learning algorithm that updates the weighs on the connections, and a transfer function [24].  

 

 

The input layer of a neural network is multiplied by the weights which are randomly selected 

[24]. The layer output is calculated by the equation below [24]: 

Figure 2.3: Structure of a Neural Network [24] 
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 𝑌 = 𝑓(∑𝑋𝑗𝑊𝑖𝑗 + 𝑏) (7) 

“Where 𝑊𝑖𝑗 is the weight of the connection bewtweeen each neuron (j) in the input layer and 

each neuron (i) in the hidden layer and between hidden layer and output layer. 𝑋𝑗 is the value of 

the input (j) at the input layer, f is the transfer function and b is the bias [24].”  The tan-sigmoid 

transfer function was used the hidden and output layers. Tan-sigmoid function equation is: 

 𝑓(𝑥) =
1

1+𝑒−𝑥 (7) 

Akbari et al. implemented the mean square error in order to reduce the error. The results showed 

a mean square error of .079 and .063 for each neural network and agreed with experimental and 

numerical data.  
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 Chapter 3 

Material and Methodology 

3.1 Material 

The material used in the laser powder bed fusion process is Ti-6Al-4V alloy. Ti-6Al-4V is 

chosen because it is commonly used in many industries, especially the aerospace, dental, and 

biomedical industries [25]. It is a high entropy material, can withstand very high temperatures, 

and has a large strength to weight ratio [25]. However, Ti-6Al-4V is an expensive alloy 

compared to other leading industry metals such as stainless steel and carbon steel; therefore, it is 

imperative to ensure that the L-PBF process is conducted correctly the first time [2]. A correct 

combination of the laser power, scanning speed, spot size, layer thickness, and powder porosity 

is required to reduce or eliminate material wastage, part defects, and time delays in the L-PBF 

process [2]. 

 

 

 

 

 

 

 

Material Property Ti-6Al-4V 
316L Stainless 

Steel  

Hardness (Brinell) 379 217 

Tensile Strength Ultimate 
(MPa) 

1170 485 

Tensile Strength Yield 
(MPa) 

1100 170 

Melting Point (°C) 1604-1660 1390-1440 

Shear Modulus (GPa) 44 82 

Price ($) of Metal Sheet 
(.05"x24"x36") 

1733.63 221.31 

Table 3.1: Comparison of Material Properties of Ti-6Al-4V and 316L Stainless Steel [26-28] 
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As seen from Table 3.1, the hardness, ultimate tensile strength, yield tensile strength, and range 

of melting points of Ti-6Al-4V are much greater than the 316L stainless steel. However, stainless 

steel has a greater shear modulus value. The price of a sheet of Ti-6Al-4V is almost eight times 

as much as a sheet of 316L stainless steel.  

3.2 Machine Learning Methods  

Multiple regression models were trained and tested with the data set, and each model 

implements a different method to predict the outputs. Every model used will not be described in 

detail (there is a total of nineteen different models); however, one of the worst performing 

models and one of the best performing models will be discussed in this section.    

3.2.1 Linear Regression 

Linear regression relates an independent variable to a dependent variable. When all the 

data is plotted on a scatter plot, the trend line will follow the equation as referenced before: 

  𝑦𝑝 = 𝛽𝑜 +  𝛽1 𝑥 (8) 

This line is representative of the predicted values. In order to find the most accurate trend line, 

the variables 𝐵𝑜 and 𝐵1 must be optimized, meaning finding the best values of those variables 

that will give the lowest error. An error function is a measurement of the distance between the 

predicted value and the actual value, which is referred to as the residual distance. There are many 

types of error functions used to minimize the residual distance; one common method is the mean 

square error. Starting with the mean square error equation [29]: 

 𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝑦𝑝)

2𝑛
𝑖=1

𝑛
  (9) 
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where 𝑦𝑖 is the actual value and 𝑦𝑝 is the predicted value. Substituting (8) into (9) produces [29]: 

 𝑀𝑆𝐸 =
∑ (𝑦𝑖−𝛽𝑜+ 𝛽1 𝑥)2𝑛

𝑖=1

𝑛
  (10) 

Next, gradient descent will be calculated which will find the minimum of the error function. 

First, values of 𝐵𝑜 and 𝐵1 will start at zero [29]. The partial derivative of the mean square error 

function will be calculated with respect to 𝐵𝑜 and 𝐵1[29]: 

 𝑑𝐵0 
= − 

2

𝑛
∑ (𝑦𝑖 + 𝑦𝑝)𝑛

𝑖=1  (11) 

 𝑑𝐵1 
= − 

2

𝑛
∑ 𝐵1(𝑦𝑖 + 𝑦𝑝)𝑛

𝑖=1  (12) 

Next, current value of 𝑑𝐵𝑜 and 𝑑𝐵1 will be updated with the following equations where L is the 

learning rate; the learning rate is the rate at which the 𝐵1 changes, also known as the step size 

[29].  

 𝑛𝑒𝑤 𝐵𝑜 = 𝐵𝑜 − 𝐿(𝑑𝐵𝑜
) (13) 

 𝑛𝑒𝑤 𝐵1 = 𝐵1 − 𝐿(𝑑𝐵1
) (14) 

This is done until the error loss function is very small.  

3.2.2 Random Forest 

The random forest model consists of an ensemble of decision trees which are structured 

like a flowchart of rules that lead to a prediction [30]. Data is input into the root node of the tree, 

and the algorithm splits the data into smaller groups until the data cannot be split any further or it 

reaches a rule that stops the splitting [30]. Decision trees can be regressive or categorical. 

Random forest is a collection of many decision trees, where each tree is created on random 
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subsets of variables and observations [30]. The randomness of the variables and observations 

creates a more accurate prediction [30]. “The random predictors are used at each split in the tree 

which de-correlate the trees forming the forest [30].”  

3.3 Error Calculations  

Error calculations measure the residual distance between the actual values and predicted 

values in regression, thus exhibiting the accuracy of the model [2]. Four error functions were 

tested to find the least amount of error: the mean absolute error, the root mean square error, 

relative error percentage, and root relative squared error. The mean absolute error (MAE) 

formula calculates the error between actual values and predicted values. The formula is  

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
  (16) 

 

with y as the predicted value, x as the actual value, and n as the total number of data points. The 

root-mean-square-error (RMSE) or the root-mean-square-deviation (RSMD) measures the 

standard deviation of the distances between the actual values and the predicted values (residuals). 

The formula is given below: 

 

     𝑅𝑆𝑀𝐷 = √
∑ (𝑦𝑖−𝑥𝑖)2𝑁

𝑖=1

𝑛
 (17)

  

with y as the predicted value, x as the actual value, and n as the total number of data points. 

Relative absolute error (RAE) percentage calculates the absolute error divided by the actual 
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value. The absolute error is the absolute value of the difference between the predicted value and 

actual value. The formula is 

 

 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =  |𝑦𝑖 − 𝑥𝑖| (18)

  

And 

 𝑅𝐴𝐸 =
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

𝑥𝑖
×  100  (19) 

 

with y as the predicted value and x as the known value. The root relative squared error formula is 

 

 𝑅𝑅𝑆𝐸 = √
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

  (20) 

 

where 

 

 �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  (21) 

 

with y as the predicted value, x as the actual value, and n as the total number of data points [2]. 

3.4 Preparation of Data Set  

 The data set is compiled from multiple sources, from both experimental data and simulated 

data for single track laser scans. Dilip et al. [8] ran experiments on Ti-6Al-4V researching the 

effects laser power and scan speed had on melt-pool width, microstructures, and porosity. Gong 

et al. [7] performed experiments on Ti-6Al-4V using a range of laser power and speed values to 



23 

 

produce melt pools. These melt pools were then examined to find the optimum hatch spacing in 

the fabrication of metallic test sheets [7]. The topology of the test sheets was analyzed to find the 

ideal parameters [7]. Solyemez [31] created a numerical model that would simulate melt-pool 

widths and depths created by a wide range of laser powers and scan speeds from experiments 

[31]. Kusuma [32] performed experiments with varying laser powers and scans speed to examine 

the effect these parameters have on melt-pool width and melt-pool depth.  

After interpreting their data and collecting feedback from the authors, the data set is prepared 

in the form of an Excel file having 667 rows and 7 columns of variables, five of the columns are 

features (𝑥1 to 𝑥5) and two are target variables (𝑦1 and 𝑦2) [2]. However, two separate models 

are created, one targeting the five input parameters’ influence on the melt-pool width and the 

other focusing on the five input parameters’ influence on the melt-pool depth [2]. The input 

parameters include laser power, P (in W), scanning speed, vs (in mm/s), spot size, Φ (in μm), 

layer thickness, 𝑙𝑡 (in μm), and powder porosity, φ (%). The output parameters are melt-pool 

width, w and melt-pool depth, d (both in μm). This model is trained twice, once for the melt 

pool-width and once for the melt-pool depth. The maximum and minimum values of the 

variables in the data set are shown in Table 3.2 [2]. 

                                Table 3.2: Maximum and Minimum Values in the Data Set 

Param.* P(w) vs (mm/s) Φ (μm) 𝒍𝒕 (μm) 𝝋(%) w (μm) d(μm) 

Max 400 3200 100 70 50 412 980 

Min 50 100 58 30 0 45 5 

*Param. = Parameters 
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The data is separated into two groups, a training group and a testing group. Approximately 

80% of the data are categorized into the training group while 20% are organized into the test 

group for 5-fold cross-validation while 90% of the data is split into the training group and 10% is 

split into the testing group during 10-fold cross-validation. The entire data set is shuffled before 

being presented to the regression models in order to prevent any biasness. For the training data 

set, the model is given the inputs as well as the outputs. It creates a scatter plot and a regression 

line using the log-structured merge-tree [2]. Once the percent error is calculated and the model is 

considered accurate, the model is given the test data. The test data only includes the inputs; the 

model predicts the outputs based upon the regression line it previously calculated. The predicted 

values are measured against the actual values to see how accurate the model is [2]. 

3.5 K-Fold Cross-validation  

 In order to test the accuracy of the model, the k-fold cross-validation method is used. With 

this method, the original sample data are shuffled and randomly partitioned into k equal parts [2]. 

Afterwards, the model will choose one set of data as the validation set and the other sets (the 

remaining k–1) as the training sets. This is done k times, with each specific set of data serving as 

the validation set exactly once [3]. When the model has completed its cross-validations, the 

results are averaged to give an accuracy of the model [3]. This study used a 5-fold cross-

validation model as well as a 10-fold cross-validation model and compared which one was more 

accurate [2].  
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3.5 Smaller and Larger Data Sets  

As the research progressed, the data set continued to grow. As a result, this entire process 

was repeated twice with another data set created in Excel which consisted of 2922 rows and 7 

columns of the same variables. This data is significantly larger than the first, and the two data 

sets are compared to confirm that increasing the data set will decrease the error of the model.  

 

Figure 3.1: Representation of 5-Fold Cross-Validation [33] 

Figure 3.2: Representation of 10-Fold Cross-Validation 

[34] 
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Chapter 4 

Results and Discussion 

4.1 Data Correlation 

Figures 4.1 and 4.2 show the correlation between the input parameters and output 

parameters of the entire data set. They also show the range of values of each parameter. The most 

varied parameters are laser power and scanning speed while spot size and porosity were the same 

value for most of the data entries. Power has a positive linear relationship to melt-pool width and 

melt-pool depth most exemplified in the bottom left corner of each scatter plot with power as the 

x-axis. This would make sense as the more power the laser has, the more energy exerted upon the 

substrate, increasing the melt-pool width and depth [2]. However, some higher power data points 

lie in the bottom right corners of the scatter plots with power as the x-axis. These power data 

points are associated with higher scanning speeds; consequently, these data points have lower 

depths of penetration and surface area spread. Even though the power parameter is set at a high 

threshold, the scanning speed can dictate the depth of penetration if set too high. The scanning 

speed has a negative exponential relationship to both melt-pool width and melt-pool depth. The 

widths and depths are greatest when the scanning speed is the slowest. This is expected; as the 

scanning speed increases, there is less time for the energy of the laser to penetrate the substrate. 

This is clearly illustrated in the scanning speed vs melt-pool width and the scanning speed vs 

melt-pool depth plots. The highest value of each output parameter is in the top left corner; as 

scanning speed increases, both output parameters slowly decrease. Figure 4.3 shows the heatmap 

correlation matrix where the correlation among the features and target variables are qualitatively 

portrayed on a scale of -0.5 to 1 [2]. 
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Figure 4.1: Scatter Plots Between Melt-Pool Widths and Correlated Variables 
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Figure 4.2: Scatter Plots Between Melt-Pool Depths and Correlated Variables 
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4.2 Performance Analysis 

First, the data set is tested using Python code and implementing the five-fold and ten-fold 

cross-validation techniques for each of the data sets [2]. The negative mean absolute error is 

Figure 4.3: The Heat Map Correlation Matrix 
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obtained from various regressor models and compared for evaluating the performance. These 

results are obtained by using open-source library codes from scikit-learn and modifying the 

codes based on the current analysis. For the smaller data set, the highest error in both the five-

fold cross-validation and ten-fold cross-validation was calculated by the linear regression model. 

This error was significantly higher than the lowest calculated error, the extra trees regressor. As a 

whole, the ten-fold cross-validation error in all models with the exception of the melt-pool depth 

in linear regression, was slightly smaller than the error of the five-fold cross-validation error. The 

10-fold cross-validation extra trees regressor produced the least amount of error and performed 

the best of all the models.   

 

 

-35

-30

-25

-20

-15

-10

-5

0

N
eg

at
iv

e 
M

ea
n

 A
b

so
lu

te
 E

rr
o

r

Smaller Data Set 5 Fold Cross-Validation 

Melt Pool Width Melt Pool Depth

Figure 4.4: Smaller Data Set 5-Fold Cross-Validation 
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For the larger data set, the five-fold cross-validation error was again highest in the linear 

regression model. The extra trees regressor had the lowest error and was considerably lower than 

all the other models. The linear regression model produced the highest error in the ten-fold cross-

validation model while the extra trees regressor performed the best, producing the least amount 

of error. All models performed better in the ten-fold cross-validation than in the five-fold cross-

validation for the larger data set.  
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Figure 4.5: Smaller Data Set 10-Fold Cross-Validation 
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Figure 4.6: Larger Data Set 5-Fold Cross-Validation 

Figure 4.7: Larger Data Set 10-Fold Cross-

Validation 



33 

 

The larger data set outperforms the smaller data set in all regression models. This 

confirms the hypothesis that increasing the data set will increase the accuracy of the model. The 

best performing model, extra trees regressor, calculated the smallest error in the ten-fold cross-

validation of the larger data set in comparison to the other k fold cross-validation models.  

More results on the performance of the regression analysis are shown in Tables 4.1 to 4.8. 

The melt-pool width and depth are predicted separately by two regression models. These results 

are obtained by training and testing the data set using Weka 3.6.14 tool. 

Tables 4.1 to 4.4 exhibit the error values of the width and depth melt-pool predictions in 

five-fold cross-validation and ten-fold cross-validation. The highest error values in all models are 

produced in the simple linear regression model, and the lowest error values in all models are 

calculated in the additive regression random forest models. The lowest error function within the 

additive regression random forest is the mean absolute error. In the depth prediction, the mean 

absolute error is slightly smaller in the ten-fold cross-validation with a value of 6.2466 than the 

five-fold cross-validation showing a value of 7.199. Regarding the mean absolute error width 

prediction, the values are nearly identical for the five-fold and 10-fold cross-validations 

producing values of 3.4759 and 3.4928 respectively.  
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.9124 11.8832 22.4233 30.4354 40.9033 

Simple Linear 
Regression 

0.7418 21.9754 36.725 56.2837 66.9915 

SVM Regression 
(normalized) 
kernel poly 

0.9074 11.0029 23.0219 28.1807 41.9952 

SVM Regression 
(standardized) 

kernel poly 
0.9088 10.9688 22.8557 28.0934 41.6919 

kNN (k=3) 0.9169 5.9672 21.953 15.2833 40.0453 

kNN (k=5) 0.911 6.2561 22.7518 16.0232 41.5024 

kNN (k=7) 0.9071 6.4085 23.3343 16.4135 42.5649 

kNN (k=9) 0.8983 6.6048 24.3083 16.9162 44.3417 

Additive 
Regression 

(Decision Stump) 
0.9232 13.0485 21.1553 33.42 38.5902 

Additive 
Regression 

(Random Forest) 
0.9821 3.4759 10.3384 8.9026 18.8587 

Additive 
Regression 

(Random Tree) 
0.9541 5.1415 16.95 13.1685 30.9192 

RepTree 0.9616 6.735 15.0409 17.2499 27.4367 

Random Forest 0.9775 4.0185 11.5742 10.2923 21.1129 

Random Tree 0.9547 5.9081 16.6614 15.1318 30.3927 

Multi-Layer 
Perceptron 

0.9693 7.7993 13.667 19.9756 24.9304 

 

Table 4.1: Melt-Pool Width Prediction for 5-Fold Cross-Validation for Smaller Data Set 
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.8091 27.5143 49.4172 56.9285 58.7073 

Simple Linear 
Regression 

0.6324 30.1196 65.1447 62.3192 77.3914 

SVM Regression 
(normalized) kernel 

poly 
0.8079 19.6716 54.8246 40.7017 65.1312 

SVM Regression 
(standardized) kernel 

poly 
0.8077 19.6611 54.8745 40.6798 65.1905 

kNN (k=3) 0.8762 9.0828 41.305 18.7928 49.07 

kNN (k=5) 0.8694 9.5005 43.1183 19.657 51.2241 

kNN (k=7) 0.8426 10.3226 46.1571 21.3581 54.8343 

kNN (k=9) 0.8277 11.004 48.0119 22.7678 57.0377 

Additive Regression 
(Decision Stump) 

0.82 24.8862 48.3859 51.4909 57.482 

Additive Regression 
(Random Forest) 

0.93 7.199 30.9371 14.8951 36.753 

Additive Regression 
(Random Tree) 

0.8681 10.6584 42.5885 22.0528 50.5948 

RepTree 0.8405 14.4961 45.5895 29.9932 54.16 

Random Forest 0.9058 9.1202 35.6688 18.8702 42.3743 

Random Tree 0.8438 11.5544 47.2061 23.9066 56.0805 

Multi-Layer 
Perceptron 

0.9334 13.0646 30.5374 27.0315 36.2782 

Table 4.2: Melt-Pool Depth Prediction for 5-Fold Cross-Validation for Smaller Data Set 
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.9028 12.0265 23.5775 30.7875 43.0162 

Simple Linear 
Regression 

0.7446 21.9747 36.5538 56.2543 66.6911 

SVM Regression 
(normalized) kernel 

poly 
0.879 11.5338 26.2092 29.5262 47.8176 

SVM Regression 
(standardized) 

kernel poly 
0.8796 11.515 26.1574 29.478 47.7232 

kNN (k=3) 0.9063 6.0586 23.1808 15.5097 42.2925 

kNN (k=5) 0.901 6.3954 23.8423 16.372 43.4994 

kNN (k=7) 0.9039 6.4076 23.5888 16.4033 43.0369 

kNN (k=9) 0.892 6.7965 24.9185 17.3988 45.4628 

Additive 
Regression 

(Decision Stump) 
0.9124 13.5996 22.8324 34.8144 41.6567 

Additive 
Regression 

(Random Forest) 
0.9805 3.4928 10.7886 8.9414 19.6834 

Additive 
Regression 

(Random Tree) 
0.9625 4.7474 15.0955 12.1532 27.5412 

RepTree 0.9547 7.4082 16.4928 18.9647 30.0904 

Random Forest 0.9767 3.9497 11.7548 10.111 21.4462 

Random Tree 0.953 6.0636 16.8871 15.5226 30.8098 

Multi-Layer 
Perceptron 

0.9256 16.7674 22.9872 42.9238 41.9393 

Table 4.3: Melt-Pool Width Prediction for 10-Fold Cross-Validation for Smaller Data Set 
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.8069 27.5294 49.6764 56.9235 58.9976 

Simple Linear 
Regression 

0.6348 30.1076 64.9649 62.2545 77.1549 

SVM Regression 
(normalized) 
kernel poly 

0.7927 19.8468 55.3832 41.0379 65.7753 

SVM Regression 
(standardized) 

kernel poly 
0.7916 19.9009 55.4788 41.1498 65.8888 

kNN (k=3) 0.8773 9.0116 40.9779 18.6336 48.6669 

kNN (k=5) 0.8721 9.4356 42.6792 19.5103 50.6875 

kNN (k=7) 0.849 9.9648 45.2984 20.6045 53.7981 

kNN (k=9) 0.8313 10.6759 47.4597 22.0749 56.365 

Additive 
Regression 

(Decision Stump) 
0.8326 23.5127 46.7722 48.6181 55.5485 

Additive 
Regression 

(Random Forest) 
0.9429 6.2466 28.0736 12.9162 33.3412 

Additive 
Regression 

(Random Tree) 
0.8158 12.1472 52.5371 25.1171 62.3951 

RepTree 0.789 14.3253 51.6844 29.6208 61.3824 

Random Forest 0.9194 8.1925 33.3494 16.94 39.607 

Random Tree 0.8556 11.5718 46.2141 23.9274 54.8856 

Multi-Layer 
Perceptron 

0.9113 18.7831 34.7865 38.8385 41.3138 

Table 4.4: Melt-Pool Depth Prediction for 10-Fold Cross-Validation for Smaller Data Set 
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The results of the larger data set seen in Tables 4.5 to 4.8 are similar compared to the 

smaller data set. In all cross-validation models, simple linear regression once again produces the 

most error while additive regression random forest produces the least. The mean absolute error 

calculated the least amount of error in all models as well. However, the five-fold cross-validation 

models for both the width and depth predictions were more accurate than the ten-fold cross-

validation models. The width prediction for the five-fold cross-validation model is 0.8579 while 

the ten-fold cross-validation model is 0.8833; the depth prediction for the five and ten cross fold 

models shows a value of 1.3664 and 1.4864, respectively.  

When evaluating the larger and smaller data sets, the larger data set is significantly more 

accurate. The lowest error value for the width prediction of the larger and smaller data sets were 

0.8579 and 3.4759, respectively. And the depth prediction’s lowest error values for the larger and 

smaller data sets were 1.3664 and 6.2466, respectively. This data confirms once again that 

increasing the data set will produce a more accurate model.  
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.955 7.0737 13.1638 19.8162 29.6433 

Simple Linear 
Regression 

0.8651 14.8741 22.2585 41.6682 50.1237 

SVM Regression 
(normalized) kernel 

poly 
0.9549 6.9062 13.3004 19.347 29.951 

SVM Regression 
(standardized) 

kernel poly 
0.9547 6.9093 13.3452 19.3556 30.0518 

kNN (k=3) 0.9765 1.259 9.5792 3.5269 21.5712 

kNN (k=5) 0.973 1.3538 10.2875 3.7925 23.1664 

kNN (k=7) 0.9662 1.4538 11.4696 4.0727 25.8282 

kNN (k=9) 0.9641 1.5096 11.8186 4.2289 26.6141 

Additive 
Regression 

(Decision Stump) 
0.9511 9.0502 13.8195 25.3531 31.12 

Additive 
Regression 

(Random Forest) 
0.9913 0.8579 5.8506 2.4032 13.1749 

Additive 
Regression 

(Random Tree) 
0.9738 1.3918 10.1122 3.8989 22.7714 

RepTree 0.9738 2.6613 10.0963 7.4553 22.7357 

Random Forest 0.9905 1.2214 6.121 3.415 13.7837 

Random Tree 0.9842 1.9343 7.8958 5.4188 17.7804 

Multi-Layer 
Perceptron 

0.9789 5.039 9.4655 14.1161 21.3153 

 

Table 4.5: Melt-Pool Width Prediction for 5-Fold Cross-Validation for Larger Data Set 
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.8613 14.0505 27.5084 38.023 50.7921 

Simple Linear 
Regression 

0.7607 17.7688 35.1421 48.0853 64.8871 

SVM Regression 
(normalized) 
kernel poly 

0.857 11.4893 29.487 31.092 54.4454 

SVM Regression 
(standardized) 

kernel poly 
0.8572 11.4812 29.5241 31.0701 54.5139 

kNN (k=3) 0.9534 1.9049 16.4715 5.1549 30.4134 

kNN (k=5) 0.9398 2.05484 18.7751 5.5704 34.6667 

kNN (k=7) 0.9277 2.2442 20.522 6.0732 37.8922 

kNN (k=9) 0.9213 2.4152 21.3363 6.536 39.3957 

Additive 
Regression 

(Decision Stump) 
0.8783 14.2288 26.1502 38.5055 48.2843 

Additive 
Regression 

(Random Forest) 
0.9758 1.3664 11.8903 3.6978 21.9545 

Additive 
Regression 

(Random Tree) 
0.9531 2.0225 16.3949 5.4732 30.2718 

RepTree 0.9153 5.0917 22.0243 13.7791 40.666 

Random Forest 0.9687 1.9305 13.482 5.2244 24.8935 

Random Tree 0.9466 2.9903 17.7637 8.0922 32.7992 

Multi-Layer 
Perceptron 

0.972 7.0322 13.7756 19.0303 25.4355 

 

Table 4.6: Melt-Pool Depth Prediction for 5-Fold Cross-Validation for Larger Data Set 
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.9523 7.1164 13.5423 19.9364 30.4991 

Simple Linear 
Regression 

0.865 14.882 22.2719 41.6916 50.1594 

SVM Regression 
(normalized) kernel 

poly 
0.9533 6.8939 13.5311 19.313 30.474 

SVM Regression 
(standardized) kernel 

poly 
0.9531 6.897 13.5746 19.3219 30.5718 

kNN (k=3) 0.9655 1.3693 11.5633 3.8359 26.0421 

kNN (k=5) 0.9713 1.3336 10.5926 3.7361 23.856 

kNN (k=7) 0.9667 1.4421 11.3915 4.0399 25.6533 

kNN (k=9) 0.9634 1.4803 11.9357 4.1469 26.8809 

Additive Regression 
(Decision Stump) 

0.9521 9.1662 13.6946 25.6788 30.842 

Additive Regression 
(Random Forest) 

0.9905 0.8833 6.101 2.4746 13.7404 

Additive Regression 
(Random Tree) 

0.9702 1.5059 10.8199 4.2187 24.3679 

RepTree 0.9844 2.3686 7.8149 6.6355 17.6002 

Random Forest 0.9905 1.1896 6.1105 3.3326 13.7617 

Random Tree 0.9841 1.9006 7.8906 5.3244 17.7708 

Multi-Layer 
Perceptron 

0.9764 5.1238 9.6067 14.3541 21.6356 

 

Table 4.7: Melt-Pool Width Prediction for 10-Fold Cross-Validation for Larger Data Set 
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Method 
Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 
error (%) 

Root 
relative 
squared 
error (%) 

Linear Regression 0.8596 14.0663 27.6622 38.0711 51.0798 

Simple Linear 
Regression 

0.7601 17.7506 35.1793 48.0428 64.9605 

SVM Regression 
(normalized) kernel 

poly 
0.8558 11.5286 29.5535 31.2026 54.5723 

SVM Regression 
(standardized) 

kernel poly 
0.8557 11.5256 29.6124 31.1944 54.681 

kNN (k=3) 0.9521 1.9341 16.6673 5.2347 30.7771 

kNN (k=5) 0.9428 2.0005 18.3892 5.4143 33.9567 

kNN (k=7) 0.9292 2.2402 20.3321 6.0631 37.5444 

kNN (k=9) 0.918 2.4152 21.7399 6.5368 40.144 

Additive Regression 
(Decision Stump) 

0.8807 14.0449 25.8221 38.0132 47.6819 

Additive Regression 
(Random Forest) 

0.9707 1.4864 13.0059 4.023 24.0161 

Additive Regression 
(Random Tree) 

0.9265 2.3986 20.4576 6.4918 37.7762 

RepTree 0.9024 4.7016 12.725 43.0811  34.7261 

Random Forest 0.963 2.0568 14.6108 5.5667 26.9797 

Random Tree 0.9401 3.0304 18.9886 8.2018 35.0636 

Multi-Layer 
Perceptron 

0.958 8.0572 15.5944 21.807 28.7959 

 

Table 4.8: Melt-Pool Depth Prediction for 10-Fold Cross-Validation for Larger Data Set 
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4.3 Model Validation  

The predicted results from the ML model are compared with the CFD modeling and 

experimental results for the melt-pool width and depth [2]. The CFD simulation of the L-PBF 

process with Ti-6Al-4V powder-bed material is conducted in ANSYS 2019 R3 [25]. The laser 

melting experiments are conducted in a custom-designed ytterbium fiber laser processing system 

(IPG model: YLR-200-AC-Y11) [35]. The cross-sections of the processed specimens are 

examined using scanning electron microscope (SEM) to obtain melt-pool width and depth 

results. The process parameters, i.e., the five features are kept same for both the experiment and 

the CFD model in order to facilitate the comparative study. The values for the simulation and 

experimental parameters and the five features considered for the ML model are shown in Table 

4.9, where UDF represent user defined functions in terms of temperature [2, 25, 35]. 
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                           Table 4.9: List of Simulation and Experimental Parameters [35] 

Parameters Values 

Solidus temperature, TS (K) 

Liquidus temperature, TL (K) 

Latent heat of fusion, Lf (kJ/kg) 

Spot size of laser beam, Φ (µm) 

Scanning speed, vs (mm/s)  

Laser power, 𝑃 (W) 

Initial temperature, 𝑇𝑖𝑛  (K) 

Laser absorption efficiency, 𝜂𝑙 

Powder porosity (%) 

Powder layer thickness, 𝑙𝑡 (mm) 

Beam penetration depth, S (µm) 

Convection coefficient, h (W/m2-K) 

Effective viscosity, µ (kg/m-s)  

Specific heat, cp (J/kg-K) 

Thermal conductivity, k (W/m-K) 

Emissivity, 𝜀 

Density, 𝜌 (kg/m3) 

1878  

1938  

440  

100 

300 

200 

298  

0.865 

50 

0.07 

62 

10 

UDF 

UDF 

UDF 

UDF 

UDF 

                                      

The comparison of the results and percentage of deviation are depicted in Table 4.10 and 

Table 4.11. As a whole, the larger data set yielded a maximum error of 11.30% while the smaller 

data set yielded a maximum error of 11.57% confirming that a larger data set model is more 

accurate. However, because the experimental and CFD model values vary greatly, the smaller 

data set produces better results in some individual comparisons of the CFD and experimental 
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models. For example, the smaller data model predicted the exact depth of the CFD model but 

produced 11.57% error when compared to the experimental model. Overall, the machine learning 

model results for melt-pool width and depth show a good agreement with the CFD modeling and 

experimental results. The ML model can save a significant amount of time while predicting the 

melt-pool geometry as compared to the other two techniques. 

 

Variable ML CFD Model Exp.* 

% of Deviation 

from CFD 

Model 

% of Deviation 

From Exp.* 

Melt-Pool 

Width 
201 186 205 8.06 1.95 

Melt-Pool 

Depth 168 168 190 0 11.57 

                         

 

Variable ML CFD Model Exp.* 

% of Deviation 

from CFD 

Model 

% of Deviation 

From Exp.* 

Melt-Pool 

Width 
192 186 205 3.22 6.34 

Melt-Pool 

Depth 187 168 190 11.30 1.58 

             

 

 

 

 

 

Table 4.10: Results Comparison and Validation for Smaller Data Set 

Table 4.11: Results Comparison and Validation for Larger Data Set 
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Chapter 5 

Conclusion and Future Work 

5.1 Concluding Comments 

A supervised machine learning (ML) model is developed to predict the melt-pool width 

and depth of Ti-6Al-4V alloy in the laser powder-bed fusion (L-PBF) process. Five-fold and ten-

fold cross-validation methods were compared in order to show which model produced more 

accurate results. A smaller data set consisting of 667 data points was tested against a larger data 

set consisting of 2922 data points to confirm that a larger data set will yield more accurate 

results. The Additive Regression Random Forest 10-fold cross-validation model generated with 

the larger data set produced the most accurate results with a maximum error of 11.30%. The 

overall study shows that the ML model can be a very good tool to generate faster yet reliable 

results for melt-pool geometry and similar parameters in the L-PBF process. 

5.2 Future Work 

Future work for this research includes improving the accuracy of the model. This can be 

achieved in numerous methods including: finding data that has more varied porosity and layer 

thickness values in order to create a more robust model, increasing the data set even further, 

focusing on more than five parameters, creating a neural network with images of melt-pool 

geometries that could be even more accurate than the regression models.   
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