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Abstract

This dissertation considers the state estimation problems with symmetric Gaus-

sian/asymmetric skew-Gaussian assumption under linear/nonlinear systems. It con-

sists of three parts. The first part proposes a new recursive finite-dimensional exact

density filter based on the linear skew-Gaussian system. The second part adopts

a skew-symmetric representation (SSR) of distribution for nonlinear skew-Gaussian

estimation. The third part gives an optimized Gauss-Hermite quadrature (GHQ)

rule for numerical integration with respect to Gaussian integrals, and applies it to

nonlinear Gaussian filters.

We first develop a linear system model driven by skew-Gaussian process and

present the exact filter for the posterior density with fixed dimensional recursive

representation, i.e., the skew-Gaussian filter (SGF). The SGF not only has an ana-

lytical recursion of a small dimension akin to the Kalman filter, but also possesses

an efficiency comparable to the Kalman filter. The minimum mean-square error

(MMSE) estimator based on our proposed skew-Gaussian filter is demonstrated via

a simulation study.

Next, we propose a skew-symmetric presentation of the posterior density to han-

dle the discrete-time filtering problem for a nonlinear system driven by non-Gaussian

process. The skew-symmetric representation of distributions, which has a product

form of a symmetric pdf (known as the base pdf) times a perturbation function

(known as the skewing function), is employed in this dissertation. Based on a first-

xii



order skew-symmetric representation of Gaussian distribution, we propose the first-

order skew-Gaussian filter (FOSGF) and demonstrate it by applications to the radar

tracking problem.

For the filtering problem where Gaussian integrals are adopted in the state up-

date, we propose an new set of Gauss-Hermite quadrature rules using an optimized

proposal density. The optimized GHQ rule, proposed in this dissertation, finds an

optimized way to improve GHQ-based Gaussian integration when the integrand is

not close to a polynomial by transforming it to one approximated by a polynomial.

The solution is formulated as a nonlinear least-squares problem with linear con-

straints. Several numerical examples based on the optimized GHQ rule are studied

and compared with the traditional methods.

Keywords: Bayesian estimation, exact filtering, nonlinear filter, skew-Gaussian

filtering, first-order skew-Gaussian filtering, Gauss-Hermite quadrature.
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1

Introduction

It is not knowledge, but the act of
learning, not possession, but the
act of getting there, which grants
the greatest enjoyment

Carl Friedrich Gauss

This dissertation focuses on the nonlinear filter for a dynamic systems with a

state-space model within Bayesian estimation framework. We consider linear system

driven by skew-Gaussian process as well as nonlinear system driven by non-Gaussian

process and present three types of nonlinear filters to tackle the nonlinearity in system

dynamics, measurements model and the non-Gaussianness in the statistcal model of

the noise.

1.1 State Estimation in Discrete Time

Estimation theory may trace back to 1795 when Carl Friedrich Gauss, who is accred-

ited to the method of least squares, needed to predict the motions of planets and

comets from telescopic measurements (Mendel, 1995). Until 1960, the Kalman filter
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(Kalman, 1960), one of very few breakthroughs in estimation theory, marked the

beginning of modern estimation theory. As an optimal recursive state estimator, the

Kalman filter is computationally efficient and provides insight into the fundamentals

of the state estimation. This dissertation is devoted to the state-space approach to

filtering in discrete time.

In general, estimation theory can be viewed as the main core of data (or infor-

mation) processing to the design of computer-implemented filters that process data

with uncertainty in an optimal manner. It is at the intersection of the three dis-

ciplines, i.e., information processing, signals and systems, and statistics (Li, 2015).

The applications of estimation theory have been quite successful in the real world,

especially in many physical systems where systems and signals play a role, and its

scope of application is still expanding (Van Trees, 2004; Bar-Shalom et al., 2004;

Singh et al., 2021).

The state estimation is the (sequential or recursive) state filtering of a (unob-

served) dynamic system from (observed) noisy measurements, as shown in Figure 1.1

for ideal situations where observations are received at every time instant of inter-

est. A general state-space model in discrete time, which can be discretized from a

continuous-time dynamic model, is of the form (Arasaratnam et al., 2007)

xk = f(xk−1, wk−1, k − 1) (1.1)

zk = h(xk, vk, k) (1.2)

A special case of (1.1) and (1.2) is the one with additive noise

xk = f(xk−1, k − 1) + wk−1 (1.3)

zk = h(xk, k) + vk (1.4)

where xk ∈ Rnx and zk ∈ Rnz are the state and measurement of the system at time k,

{wk} is the process noise that drives the dynamic system through the state transition

2



zk−2 zk−1 zk

xk−2 xk−1 xk

Unobserved

Observations

Figure 1.1: Ideal state-space model

function f , and {vk} is the measurement noise corrupting the observation of the state

through the measurement function h.

The filtering problem is nonlinear if either the system dynamics f or the mea-

surement mode h is nonlinear.

Usually, the noise processes {wk} and {vk} are assumed to be white, mutually

independent, and independent of the initial state x0, which make the state process

{xk} a Markov sequence, and so a probabilistic solution may exist.

Depending on the different types of estimation results, i.e., a single value or the

whole density of the state, the state estimation consists of point estimation and

density estimation, which will be discussed later.

1.2 Optimal Solution under Bayesian Framework

The Bayesian framework is the most commonly used approach to studying the state

estimation problem (Ho and Lee, 1964). Following this framework, the optimal

estimation solution is closely related to the calculation of the conditional pdf p(xk|zk)

of xk given all observations up to time k, i.e., zk = {z1, . . . , zk}.

Often, the two noise processes {wk} and {vk} are assumed to be independent, and

it turns out that the state {xk} is a partially observed Markov process with initial

3



probability density p(x0) and transition densities p(xk|xk−1), and the observation zk

at time k is conditionally independent of the previous observations zk−1 (Li, 2015).

The Bayesian approach for the Markov process xk can be accomplished as follows:

1. Predict by the Chapman-Kolmogorov equation:

p(xk|zk−1) =

∫
Rnx

p(xk|xk−1)p(xk−1|zk−1)dxk−1 (1.5)

2. Update by Bayes’ rule

p(xk|zk) =
p(zk|xk)p(xk|zk−1)∫

Rnx p(zk|xk)p(xk|zk−1)dxk

(1.6)

If the Markovian property of xk and the conditional independence of zk does not

hold, the Bayesian approach is as follows.

1′ Predict

p(xk|zk−1) =

∫
Rnx

p(xk|xk−1, z
k−1)p(xk−1|zk−1)dxk−1 (1.7)

2′ Update by Bayes’ rule

p(xk|zk) =
p(zk|xk, z

k−1)p(xk|zk−1)∫
Rnx p(zk|xk, zk−1)p(xk|zk−1)dxk

(1.8)

For point estimation, usually the first two moments of p(xk|zk) are of interest,

that is, the minimum mean-square error (MMSE) estimator of the following

x̂k|k = E(xk|zk) =
∫
Rnx

xkp(xk|zk)dxk

MSE(x̂k|k) = Pk|k =

∫
Rnx

(xk − x̂k|k)(xk − x̂k|k)
′p(xk)dxk

The MMSE estimator turns out to minimize not only the mean-square error of the

estimator, but also a large class of the Bayesian risks (see Section 2.2).

4



For density estimation, the posterior density p(xk|zk) in (1.6) is sought after.

However, to obtain it more resources are required, both technically and computa-

tionally, than point estimation, but it provides a complete solution to many state

estimation problems (Li and Jilkov, 2010).

1.3 Exact Filtering

Exact filtering delineates a class of filtering problems of which the computation of the

desired solution, i.e., the posterior density, is exact. Thus, the exact filtering, more

precisely the exact density filtering, simply denotes to those estimation problems

whose posterior densities can be obtained analytically.

1.3.1 Importance of Exact Filtering

Exact filter is crucial for many engineering problems. Not only is it theoretically

solid, but it also has potential to provide the guidance to approximate nonlinear

filtering if no exact filtering solution is available. The most well-known example

is the linear systems with Gaussian assumption1 (also known as linear Gaussian

estimation). It has a wide application in the real world, and in return, contributes

to the development of state estimation theory. The Kalman filter, being the solution

to the linear Gaussian system, is optimal not only with respect to point estimation

(e.g., in the MMSE sense), but also with is exact respect to density estimation.

The Kalman filter, an exact density filter for linear Gaussian systems, has many

merits that bring a lot of insight, intuition, and impetus to the state estimation

theory, e.g., it is recursive, finite dimensional, and optimal in almost all statistical

senses. As will be given in Section 2.4, many concepts/properties of state estimation

theory, e.g., the exactness, the recursitiveness, the finite-dimensionality, etc., deduce

1 (1.1) and (1.2) (more specifically, (1.3) and (1.4)) are both linear, and the initial state x0,
the process noise {wk}, and the measurement noise {v0} are mutually independent and Gaussian
distributed.
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from the research of the Kalman filtering theory, and such concepts/properties, which

are also crucial in practice, enlighten further research, and one of the examples is

the results of the recursibility for the linear minimum mean-square error (LMMSE)

estimator (Li, 2004).

In nonlinear systems, the exact filtering provides the theoretical foundation of

nonlinear filtering approximate methods, for example, the Gaussian filtering is in-

spired by the Kalman filter. The Gaussian filter, being the density-assumed filter,

assumes the distribution of the state and the measurement in (1.3) and (1.4) are

jointly Gaussian. Despite being a strong assumption in reality, it still works well in

many practical problems. Another important topic of state estimation theory that

gets inspired by the exact filtering (specially, the Kalman filter) is the LMMSE es-

timation, which is still the workhorse of many nonlinear state estimation problems,

and achieves a good trade-off between the performance and computation efficiency in

applications where the nonlinearity is moderate. A textbook that discusses in detail

the LMMSE estimation is (Anderson and Moore, 2005), and this dissertation also

gives a brief review of the LMMSE estimation in Section 2.3.

In summary, exact filers have potential to deepen the understanding of the state

estimation and may guide the development of new approaches to nonlinear approx-

imate methods. Even though it is arduous, the exact filtering plays a fundamental

role in state estimation and is worth further research.

1.3.2 Existing Research of Exact Filtering

Although it is important and deserves more research, an exact filter rarely exists

beyond the linear Gaussian world (Daum, 2005). A vivid description of the nonlinear

filtering research is given by (Li and Jilkov, 2010):

In the garden of nonlinear filtering (NLF), there are three trees: continuous-

time NLF, discrete-time NLF, and mixed-time NLF. The tree of continuous-
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time NLF is spectacular: Its theoretical flowers blossom with little wa-

tering by practical problems, but few of the flowers have turned into

application fruits. Most gardeners here care only about the flowers but

not the fruits. ... Many of these gardeners are now watering plants in

other gardens or lands. In contrast, the tree of discrete-time NLF grows

many application fruits but few theoretical flowers. The tree of mixed-

time NLF has been largely neglected by most gardeners. As a result, it

is smallest and it deserves much better care.

As quoted above, most theoretical results of exact nonlinear filtering are limited

only in continuous time, not to mention that existing theoretical results in continuous

time, except for the linear Gaussian case, cannot be directly applied nor provide

much guidance to implements, which results in a gap between estimation theory and

practical applications. Exact filtering in continuous time is beyond the scope of this

dissertation, and readers who are interested in the continuous case may refer to (Li

and Jilkov, 2010).

Even though exact filtering in discrete time is more appealing for computer-based

implementation and more easily understood by researchers, fewer theoretical results

exist in discrete time than in continuous time, not to mention that the exact filter

often goes with other requirements, e.g., the finite-dimensionality, due to the practical

needs, which further makes it more difficult to exist.

For exact fixed finite-dimensional filtering in discrete time, there are very few

results, and the two cases that are widely used are the Kalman filter for linear

Gaussian models and the discrete-time Wonham filter (Rabiner, 1989) for finite state

Markov chains. Further results along these two models can be found in (Elliott and

Krishnamurthy, 1999; Krishnamurthy and Evans, 1998). Recent research includes

(Rezaie and Li, 2020), who solved the filtering problem on the Gaussian conditional
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Markov sequence instead of the Gauss-Markov sequence (Rezaie and Li, 2019).

There are many results on exact filtering, but very few (explicit) exact filters have

found of exact filtering except a few noteworthy papers in proving the existence of the

exact fixed finite-dimensional filter in discrete time. Sawitzki (1979) discussed the

existence of the exact fixed finite-dimensional filter in the exponential family, along

with its density propagation. In (Ferrante and Runggaldier, 1990; Ferrante, 1992;

GÜnther, 1981), the authors provided a necessary and sufficient condition of the

existence of an exact fixed finite-dimensional filter under the following regularities:

i) the state {xk} is Markov with an initial density p(x0) and transition densities

p(xk|xk−1), ii) the observation zk and the state xk are related by the likelihood

function p(zk|xx), the posterior density and the likelihood function must be from the

exponential family if an exact fixed finite-dimensional filter exists.

Based on the theoretical results above, conjugate families play a fundamental role

in exact fixed finite-dimensional filters. Along this direction, some filters have been

proposed, e.g., (Ferrante and Giummolé, 1995; Girón and Rojano, 1994; Benavoli

et al., 2020), even though such construction is usually ad-hoc and hardly has any

application. One of the classes that finds application in the robust estimation is

the exact filtering in the elliptical distributions (Girón and Rojano, 1994). It has

a similar propagation strategy as the Kalman filter by assuming the state and two

noises are jointly elliptical distributed with no correlation involved. However, these

three components are generally dependent unless Gaussian distributed (Kollo, 2005).

By allowing the dimension of the exact filter not being fixed, some exact but

increasing finite-dimensional filters can be found in some special classes, e.g., the

state estimator problem for linear systems in Gaussian noise with the coefficients

being functions of a finite-state Markov chain (Elliott et al., 1996). More recent

work on the exact filtering with increasing dimension is related to the application

to the skew-Gaussian distribution, e.g., (He et al., 2018; Rezaie and Eidsvik, 2014);
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however, both suffer a lot from the increasing of dimensionality over time.

In recent years, research of seeking for exact filtering grows in many areas, one

example is the extended object tracking. Models which can describe the state dy-

namics as well as the object extension are explored intensely. Some of the relevant

work are dealing with the state dynamic with random matrix whose form being se-

lected deliberately (Koch, 2008; Feldmann et al., 2010; Lan and Li, 2016), so that

the joint state and extension, being modeled as the inverse-Wishart Gaussian dis-

tribution, can be propagated exactly. However, no such expected result is obtained.

Recent work that affords a closed-form prediction of the joint state and extension

is (Bartlett et al., 2020) by employing a non-central inverse Wishart distribution to

model the state transition density of the target extent.

1.4 Approximate Filtering

Since exact nonlinear filters usually do not exist, numerous approximate solutions

to the Bayesian state estimation problems have been proposed over the last few

decades. These approaches, depending on either density filtering or point filtering,

can be classified into the following groups (Li and Jilkov, 2012, 2004), and some of

them will be elaborated in more details later:

1.4.1 Approximate Density Filtering

• Sequential Monte Carlo methods: The sequential Monte Carlo method is

a set of simulation-based methods to deal with densities without making ex-

plicit assumption (Doucet et al., 2001). Unlike the grid based methods whose

grid is predetermined or adaptive, these methods employ a random sampling

strategy (the importance sampling) to approximate the filtering density. These

approaches suffer from the curse of dimensionality and the degeneration phe-

nomenon that all sampling points will collapse to a single point after some
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time. Careful design of the density representation points as opposed to ran-

dom particles includes the feedback particle filter (Taghvaei and Mehta, 2021)

and the ensemble particle filter (Evensen, 1994).

• Grid-based methods: Grid-based methods rely heavily on general-purpose

numerical techniques. By approximating the true density using sepcial function

over a uniformly distributed grid located at the “area of interest”, these meth-

ods evolve along with the time-consuming computation of convolution, and the

grid design. Their performance is guaranteed by the theory of probability, that

is, the true density can be approached by the pointwise limit of a monotonic

increasing sequence of non-negative simple functions (Chung, 2001). For more

details, see, e.g., the point mass method (Šimandl et al., 2006).

• Spectral methods: Spectral methods approximate the density by a linear

combination of some basis functions from a functional space. Usually the basis

is chosen by some representation theory, e.g., the generalized Edgeworth series

expansion (Challa et al., 2000), and Wiener chaos expansion (Lototsky, 2006).

Their estimation performance is guaranteed by the approximation theory in an

inner product space. However, the required number of terms is usually large

in order to achieve the desirable accuracy.

• Parametric family approximation: Parametric family methods approxi-

mate the filtering density at each time by a member or a subset of a para-

metric family of distributions, then the density filtering problem is simplified

to estimate the finite-dimensional parameter of the family (Kushner, 1967).

Their performance may be achieved by minimizing some density measures,

e.g., the Kullback-Leibler divergence. Popular methods include variational

Bayesian methods (Smidl and Quinn, 2008), Gaussian sum methods (Alspach
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and Sorenson, 1972), and reduced statistics method (Kulhavỳ, 1996).

• Optimal interpolation: Inspired by the deterministic interpolation for func-

tion approximation, one can approximate a probability density function by

some interpolation methods, e.g., the B-splines (He et al., 2014). These meth-

ods may use fewer knots while maintain the same estimation accuracy and do

not have degeneracy problems as the sequential Monte Carlo methods do.

1.4.2 Approximate Point Filtering

• Function approximation: Approximating a nonlinear function by its linear

counterpart is a natural idea to solve the nonlinear state estimation problem.

The conventional method is the first order Taylor series expansion, which re-

sults in the extended Kalman filter. However, in the situation where some

higher terms cannot be negligible, iterated extended Kalman filter (Denham

and Pines, 1966) and second-order extended Kalman filters (e.g., (Henriksen,

1982; Jazwinski, 2007)) were given to compensate the performance loss. Note

that there always exist cases that this technique fail or even diverge.

• Sampling-based moment approximation: Sampling-based methods ap-

proximate the quantities of interest (usually, the mean and covariance) di-

rectly. Unlike the Monte Carlo method, the moment approximation techniques

include: the Gauss-Hermite filter (GHF) based on the Gauss-Hermite quadra-

ture (GHQ) (Ito and Xiong, 2000; Arasaratnam et al., 2007), the unscented

filter (UF) using the unscented transformation (UT) (Julier and Uhlmann,

2004), the cubature Kalman filter (CKF) by the cubature rule (Arasaratnam

and Haykin, 2009), etc. They are either restricted to Gaussian assumptions

or reliant on the LMMSE update at the cost of neglecting potentially effective

information about higher moments.
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• Stochastic model approximation: Stochastic model approximation meth-

ods are a promising way to solve nonlinear state estimation problem by consid-

ering both the accuracy and the efficiency. Usually an optimal linear stochastic

model is employed to accomplish this task. It turns out that the deterministic

sampling methods belong to stochastic linear model approximation (Lefebvre

et al., 2002).

1.5 Gaussian Filtering

In this section, nonlinear filtering with Gaussian assumption is introduced neglecting

the linear case (since this result is well-known). Unless stated otherwise, the terms

“Gaussian filtering (or filters)” refers to filtering (or filters) with Gaussian assumption

in nonlinear systems in this dissertation.

The Gaussian filter rests on two assumptions: i) the conditional state probability

density p(xk|zk−1) at each step k is assumed to be Gaussian; ii) the conditional state

and measurement probability density p(xk, zk|zk−1) at each step k is also jointly

Gaussian. Based on these two assumptions, nonlinear estimation turns out to be a

successive approximation of the Gaussian densities by moment-matching, and some

efficient numerical integration methods are required for recursive filtering.

Based on different integration methods, different Gaussian filters have been pro-

posed. The implementation of the Gaussian-Hermite quadrature (GHQ) by the

tensor rule was used early in (McReynolds, 1975), and rediscovered in (Ito and

Xiong, 2000). A sparse-grid version of GHQ was proposed in (Jia et al., 2012).

In (Arasaratnam and Haykin, 2009), the Gaussian cubature integration was used

tde in the spherical-radial coordinate system instead of the Cartesian coordinate

system. Higher Gaussian cubature rules were discussed in (Jia et al., 2014). How-

ever, performance evaluation of these numerical integration is still inadequate and a

discussion by some numerical studies given in (Wu et al., 2006). More details will be
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discussed in Chapter 5.

1.6 Skew-Gaussian Filtering

Even though Gaussian filters provide a good compromise between estimation accu-

racy and computation efficiency, the Gaussian assumption is insufficient for many

nonlinear filtering problems, especially in situations where information of higher mo-

ments (such as skewness and kurtosis) is not negligible.

In this section, the state estimation with skew-Gaussian assumption is introduced

in linear/nonlinear systems.

1.6.1 Skew-Gaussian Filtering in Nonlinear Systems

In general, even nonlinear transformation (i.e., (1.1), (1.2) or both) of Gaussian densi-

ties often results in asymmetry and distortion of other nice properties of the posterior

(Julier, 1998), which always invalidates the Gaussian assumption if the Markov prop-

erty of {xk} is assumed (Rezaie and Li, 2019). So, there is room for improvement if

information about higher moments is incorporated in nonlinear estimation.

In order to model more complex nonlinear problems with some simple tractable

form beyond the Gaussian assumption, especially the skewness, a skew-symmetric

representation of distributions was proposed in the statistical community, see, e.g.,

(Genton, 2004). By multiplying a perturbation function (known as the skewing func-

tion), the skew-symmetric representation has potential to transfer any symmetric dis-

tribution (known as the base pdf) to a skewed one. Moreover, such a representation

can approximate any density at any desirable accuracy (Ma and Genton, 2004).

Based on the skew-symmetric representation of distributions, the first-order skew-

Gaussian filter is presented with application to a tracking problem. This skew-

Gaussian type filter can capture the departure from the symmetry of Gaussian den-

sities for practical problems, and may attain a reasonable compromise between math-
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ematical tractability and shape flexibility of the filtering pdf. More details will be

presented in Chapter 4.

1.6.2 Skew-Gaussian Filtering in Linear Systems

Linear systems with non-Gaussian state/output, especially the skewed ones, occur

in practice (Huang et al., 2017b; Wu, 1993; Wu and Chang, 1996). However, for

problems where skewness exists in linear systems, the Kalman filter does not perform

optimally due to the violation of the linear Gaussian assumption. As such, a linear

skew-Gaussian system where the state, the process noise, and the measurement noise

are skew-Gaussian is proposed in Chapter 3.

The linear skew-Gaussian system can model skewness caused by linear hidden

truncation, and its filtering result has an exact recursive finite-dimensional filtering

form, i.e., the SGF. Like the linear Gaussian estimation, the linear skew-Gaussian

estimation provides a theoretical and applicable approach to the state estimation

with skewness.

By incorporating additional parameters to model the skewness, the linear skew-

Gaussian estimation not only includes the linear Gaussian estimation as a special

case, but also provides one closed-form exact filter to state estimation with higher

moments being considered. For example, in nonlinear filtering where the skewness

is considered, the filtering results can be applied by linearization methods e.g., the

first-order Taylor expansion, the statistical linearization, etc.

1.7 Research Motivation

State estimation becomes difficult beyond the linear Gaussian estimation. However,

systems with non-Gaussian state and/or measurements abounds in practice. Many

nonlinear filters, especially those based on LMMSE estimation, only propagate the

first two moments without paying attention to other important information carried
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Table 1.1: Outline of the dissertation

Gaussian Assumption Skew-Gaussian Assumption
Linear
System

The Kalman filter
(density filtering)

The Skew-Gaussian filter
(density filtering)

Nonlinear
System

Optimized GHQ rule
(point filtering)

skew-symmetric representation
of distributions (point filtering)

by higher moments. By considering the effect of skewness in the linear/nonlinear

system, we proposed three methods, shown in Table 1.1, neglecting the linear case

(since this result is well-known).

We first consider the effect of skewness in linear systems, and propose a linear

skew-Gaussian system, a generalization of the linear Gaussian system, and derive its

corresponding filter. Like the Kalman filter, our SGF, as the filter of linear skew-

Gaussian system, is a recursive fixed dimensional exact density filter. The SGF not

only has an analytical recursion of a small dimension akin to that of the Kalman

filter, but also is efficient, which is comparable to the Kalman filter.

For nonlinear systems with significant skewness, nonlinear filters that only use

the first two moments often do not perform well. A skew-symmetric representation

of distributions is employed in order to model such complex nonlinear problems

involving higher moments. Based on a first-order skew-Gaussian representation, a

novel method for nonlinear point estimation is developed. The proposed first-order

skew-Gaussian filter (FOSGF) is more general than the traditional Gaussian filters

and LMMSE-based nonlinear filters, which propagate only the first two moments.

Numerical results illustrate that our FOSGF can outperform conventional nonlinear

filtering methods.

As for nonlinear systems with negligible skewness, the Gaussian filtering, is widely

used in such situations. Gaussian filters usually obtain good performance efficiently

by different quadrature methods. However, the performance of different choices

of quadrature points is not predictable, and often degenerates if the integrand is
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not close to a polynomial. An optimization method to improve the performance of

quadrature integration is proposed in this dissertation. It attempts to guarantee

the integration accuracy by approximating the integrand as a polynomial, which fits

quadrature rules well. The problem of optimizing the quadrature rule through this

approximation is formulated and solved as a nonlinear least-squares problem with

linear constraints. A new quadrature Gaussian filter is developed and compared with

several popular nonlinear filters through simulation of two nonlinear examples.

1.8 Dissertation Outline

This rest of the dissertation, consisting of six chapters, is organized as follows.

Chapter 2 presents the basics of estimation theory, Gaussian/skew-Gaussian den-

sities and its properties used in later chapters.

Chapter 3 proposes a fixed finite-dimensional recursive exact skew-Gaussian filter,

which is based on the paper “Recursive Fixed Dimensional Exact Density Filtering

for Discrete-Time Linear Skew-Gaussian Systems” submitted to Automatica.

Chapter 4 presents a nonlinear point filter based on skew-symmetric represen-

tation of the Gaussian distribution, which is based on the paper “Nonlinear State

Estimation Using Skew-Symmetric Representation of Distributions” in 22th Inter-

national Conference on Information Fusion, 2019.

Chapter 5 proposes the optimized Gauss-Hermite quadrature rule for nonlinear

Gaussian filters, which is based on the paper “Optimized Gauss-Hermite Quadra-

ture with Application to Nonlinear Filtering” in 21st International Conference on

Information Fusion, 2018.

Chapter 6 draws conclusions and discusses future work.
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2

Preliminaries

Philosophy is the science of
estimating values

Manly P. Hall

This chapter is devoted to introducing the concepts and results of estimation

theory. Gaussian/skew-Gaussian densities, along with their properties and some

related theoretical results used in this dissertation, are also summarized.

2.1 Some Concepts in Estimation Theory

The estimation problem deals with the determination of those quantities that cannot

be measured directly. In general, there exists a distinction between the estimation

of signals (i.e., states) and the estimation of parameters. A parameter is a time-

invariant quantity that characterises a mode. A signal, however, is often treated as

a time-variant quantity (Mendel, 1995).

The quantity of interest which is to be estimated is called estimand, and an

estimator x̂ of an estimand x is a general rule (more precisely, a function) that
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passes from every input to the output under the following relationship

zn ≜ {z1, . . . , zn}, with zi = h(xi, vi, i), vi ∼ (0, Ri)

Since zn is random, as a function of random variables, x̂ is also random. An estimator

is an optimal estimator if it is best in some sense.

The result of the estimator (estimation rule) given a set of data is called the

estimate, which is a realization of the estimator. The term “estimate” is often inter-

changeable with “estimator”.

2.2 MMSE and Bayesian Estimator

By the cost function we denote a function C(x, x̂) that assigns a cost to all pairs

(x, x̂) over the range of interest, and the Bayes risk is the expectation of the cost

function E(C(x, x̂)). In many cases of interest it is realistic to assume that the cost

depends only on the estimation error, which is defined by

x̃ ≜ x− x̂

and the Bayes risk is of the form E(C(x̃)). Accordingly, the Bayes estimator is given

by

x̂(z) ≜ argmin
x̂(z)

E[C(x̃)]

The Bayes estimation provides a unified framework to almost all important estima-

tion methods, among which, the most widely used Bayes risk is of quadratic form,

i.e.,

C(x̃) = x̃′x̃

It turns out that the MMSE estimate is the Bayesian estimation with the cost func-

tion of quadratic form, and the estimator is the conditional mean, i.e.,

x̂(z) = argmin
x̂|z

E(C1(x̃) | z) =⇒ x̂(z) = E(x|z)
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and its corresponding MMSE matrix is defined by

MSE(x̂) = E[(x− x̂)(x− x̂)′] = E(x̃x̃′)

Actually, the conditional mean is optimal for a larger class of Bayes risk functions.

The following two lemmas are the extension of the optimality of the conditional mean.

Lemma 2.1 (Van Trees (2004)). Suppose that the cost function C(x̃) is a symmetric,

convex-upward function and that the a posteriori density p(x|z) is symmetric about

its conditional mean; that is,

C(x̃) = C(−x̃)

C(λx1 + (1− λ)x2) ≤ λC(x1) + (1− λ)C(x2)

for any λ ∈ (0, 1). The Bayesian estimator that minimizes any cost function in this

class is identical to the conditional mean.

A proof of this lemma can be found in (Van Trees, 2004, p.240).

Lemma 2.2 (Van Trees (2004)). Suppose that the cost function C(x̃) is a symmetric,

non-decreasing function and that the a posteriori density p(x|z) is a symmetric (about

its conditional mean), unimodal function that satisfies the condition

lim
x→∞

C(x)p(x|z) = 0

The Bayesian estimator that minimizes any cost function in this class is identical to

the conditional mean.

A proof can be found in (Van Trees, 2004, p.378).

The significance of these two lemmas should not be undetermined. They ensure

that whenever the a posteriori densities satisfy the assumptions given above, the

estimates so obtained will be optimal for a large class of cost functions. Clearly, the

Gaussian density satisfies the above assumptions.
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2.3 LMMSE Estimation

Another main concept that will be used in this dissertation is the LMMSE estimation.

The LMMSE estimation, which propagates only the mean and covariance of the

state., plays a key role in the state update of nonlinear point estimation, and it is

still the workhorse of the nonlinear state point estimation nowadays.

The LMMSE estimator, which minimizes the mean-squared error (MSE) among

all linear estimators (Anderson and Moore, 2005) is given as

x̂k|k = x̂k|k−1 + PxzP
−1
z (zk − ẑk|k−1) (2.1)

along with the MSE of x̂k|k given by

Pk|k = Pk|k−1 − PxzP
−1
z P ′

xz (2.2)

where

x̂k|k−1 = E(xk|zk−1)

ẑk|k−1 = E(zk|zk−1)

Pk|k−1 = E[(xk − x̂k|k−1)(·)′]

Pxz = E[(xk − x̂k|k−1)(zk − ẑk|k−1)
′

Pz = E[(zk − ẑk|k−1)(·)′]

where we use (·) to represent the term right before it.

Obtaining an LMMSE update is converted to finding the corresponding moments

involved in (2.1) and (2.2), and different approximation methods to evaluate these

moments can be used (see, e.g., (Ito and Xiong, 2000; Julier and Uhlmann, 2004;

Arasaratnam and Haykin, 2009)).

2.4 Some Concepts in Exact Filtering

A state-space model in discrete time can be viewed as one for a partially observable

stochastic process {(xk, zk)} with unobservable xk ∈ Rkx and observable zk ∈ Rkz . A
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filter is exact if it determines exactly the estimator or the distribution of xn condi-

tioned on available observations zn (see (1.5) and (1.6)) without any approximation.

In general, this conditional density is infinite dimensional. However, there exist filters

which admit finite dimensional statistics even though they are rare, and we call such

a filter finite-dimensional if it only involves finite-dimensional statistics for the pos-

terior density, and a finite-dimensional filter whose dimension is unchanged with the

increasing number of observations is called fixed dimensional (Li and Jilkov, 2010).

A precise definition is given as follows by (GÜnther, 1981),

Definition 2.1. (GÜnther, 1981) Let {p(x; a) : a ∈ Rna} be a parameterized set

of densities on Rnx. A functions c : Rna × Rnz → Rna is a finite-dimensional (na-

dimensional) filter for {(xk, zk)} if for k ≥ 1,

{p(xk|zk) = p(xk; c(ak−1, zk))}

given

{p(xk−1|zk−1) = p(xk−1; ak−1) for some ak−1 ∈ Rna}

If the initial distribution of x0 is p(x0; a0), then the distribution at time k con-

ditional on the observations zk is p(xk; ak), and {ak} is called the filtering process,

defined by

ak = c(ak−1, zk)

The recursibility of a filter is usually another requirement in practice, which means

a recursive form of the filter exists (Li, 2004).

Since most practical applications requires computation and storage in each recur-

sion to be finite and thus the filter to be finite dimensional in that it only involves

some finite-dimensional statistic for the filtering density, and if the dimension does

not increase over time, the filter is called fixed finite-dimensional. In general, for

most estimation problems, the exact recursive filter is infinite dimension and rarely

admits a finite dimension (Li and Jilkov, 2010).
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2.5 Review of Gaussian Distribution

The Gaussian distribution is the most encountered distribution, and is the funda-

mental of many other important distributions, e.g., the chi-square distribution, the

Rayleigh distribution, etc. The Gaussian distribution, which has a lot of nice prop-

erties, plays a central role in linear/nonlinear state estimation.

2.5.1 Mathematically Simplicity

Although it has an “abnormal” pdf and a cdf without closed form, the Gaussian

distribution behaves “normally” in many aspects (Li, 2015):

1. It lives in the linear world:

• Jointly Gaussian vectors after any linear (affine) transformation remain

to be jointly Gaussian

• For Jointly Gaussian vectors, independence is equivalent to (almost) surely

no linear correlation.

• For two jointly Gaussian vectors, the overall optimal estimator of one

vector given the other is linear in the other vector;

• Given the first two moments, there exists one and only one Gaussian

distribution.

2. It exists in the real world:

• The principle in the exponential law of error is accepted and observed by

the public.

• The central limit theorem provides a justification to make the ubiquitous

Gaussian assumption for many real-world sources of uncertainty.

22



2.5.2 Gaussian Assumption in Nonlinear Filtering

In Gaussian filters, the Gaussian assumption can be justified as follows.

From the Viewpoint of Information

The Gaussian distribution plays a special role in the Fisher information matrix (FIM)

and Cramer-Rao lower bound (CRLB). It is the worst case in terms of FIM and

CRLB, that is, among all distributions of the same first two moments, the Gaussian

distribution (at least in the asymptotic case) gives the smallest FIM. More precisely,

estimating x using data z with the likelihood function L(x|z) being Gaussian, has

the largest CRLB among those with distributions of the same first two moments (Li,

2015).

In fact, a similar statement also holds in terms of Shannon information: The

Gaussian distribution is the one that has the maximum entropy (i.e., is most un-

certain) among all distributions with zero mean and the same covariance when the

differential entropy exists.

In all, assuming the Gaussianity is equivalent to consider the worst case, which

is a robust assumption in some sense (Roth et al., 2016).

From the Viewpoint of Projection

Even though most nonlinear estimation problems rarely permit the Gaussian distri-

bution, many nonlinear estimation methods rely on the Gaussian assumption for its

simplicity. One possible way to think is the probability-based estimation (Kulhavỳ,

1996).

Instead of using “data matching” methods, e.g., the least-squares method, a

“probability matching” method is employed to find a pdf from a given family of

densities by minimizing its distance from the true but unknown density. Usually

the Kullback-Leibler divergence is adopted. If the given family is constrained to be
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the Gaussian family, moment matching of the first two moments turns out to be

equivalent to minimizing the Kullback-Leibler divergence (Barber, 2012).

2.6 Review of Skew-Gaussian Distribution

In this section some preliminary knowledge about the skew-Gaussian distribution is

presented, and a skew-Gaussian process is introduced and analyzed.

2.6.1 Background

The skew-Gaussian distribution was studied in great detail, in the statistical com-

munity (see, e.g., (Azzalini, 2013)). Its form, given in Section 2.6.2, is closely related

to the skew-symmetric representation of distributions in Section 4.2.1; however, it is

special in many aspects among all skewness construction.

The skew-Gaussian distribution has many nice properties that resemble the Gaus-

sian distribution (see Section 2.6.2 for more details), and problems obeying the skew-

Gaussian distribution exist in many practical situations. It has a clear physical real-

ization in reality—it models problems where a linear hidden truncation mechanism

takes place (Arellano-Valle et al., 2006). One practical example is selective sam-

pling in social and economic studies. A simple scheme which retains the essential

ingredients of the skew-Gaussian distribution involves two linear models of the form

Z = x′β + ϵ1

W = w′γ + ϵ2

where x and w are vectors of explanatory variables being regarded as fixed, β and

γ are parameters of appropriate dimensions, and ϵ = (ϵ1, ϵ2)
′ is a two-dimensional

Gaussian distribution with correlation coefficient ρ. The first linear model is of

interest, but we do not observe Z and W directly. In fact, Z is observed only when

γ1 < W < γ2. Under such a linear hidden truncation scheme, the distribution of Z

is skew-Gaussian.
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From the scheme above, if the linear hidden truncation (i.e., γ1 < W < γ2)

does not exist or ρ = 0, the distribution of Z degenerates to Gaussian. As such,

the family of skew-Gaussian densities includes the Gaussian as a special case. Since

the skew-Gaussian density is grounded on practical demands and its properties are

appealing (more details of properties are discussed in Chapter 3), the research of the

state estimation based on the skew-Gaussian assumption attracts attention (Genton,

2004; He et al., 2018; Rezaie and Eidsvik, 2014).

2.6.2 Skew-Gaussian Density and Its Properties

In this subsection, the skew-Gaussian distribution is investigated in detail, and its

properties, which contribute to the mainstay of our skew-Gaussian filter, are pre-

sented in Section 3.3. The exposition of Properties 2.1 and 2.3–2.5 is relied on

(Arellano-Valle and Azzalini, 2006) and that of Properties 2.2 and 2.6 is based on

(González-Faŕıas et al., 2004).

The following definition is our generalization (in a bilaterally truncation version)

of the skew-Gaussian distribution introduced in (Arellano-Valle and Azzalini, 2006),

where only the upper limit was considered (i.e., γ1 = −∞).

Definition 2.2. Consider n,m ≥ 1, u ∈ Rn, γ1, γ2 ∈ Rm with γ1 ≤ γ2 component-

wisely. ∆ is an arbitrary n ×m matrix, and Σ and Γ are positive definite matrices

of dimensions n × n and m × m, respectively. Let Φn([a, b];u,Σ) be the integral of

Nn(x;u,Σ) over the domain a ≤ x ≤ b held componentwisely. We say x ∈ Rn is a

skew-Gaussian random variable, denoted by

x ∼ SGn,m([γ1, γ2], u,Ω)

if its pdf is given by

Nn(x;u,Σ)
Φm([γ1, γ2],∆

′Σ−1(x− u),Γ−∆′Σ−1∆)

Φm([γ1, γ2]; Γ)
(2.3)
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provided that

Ω =

[
Γ ∆′

∆ Σ

]
(2.4)

is positive definite.

Here we write Γ, ∆ and Σ in a compact form to emphasize the positive definite-

ness of Ω, which represents the covariance of some random variable (Property 2.4).

Note that u, Σ, and ∆ can be deemed location, scale, and skewness parameters, re-

spectively. In general, u and Σ are not the mean and covariance of the skew-Gaussian

distribution, although they are highly related to the first three moments.

A contour plot is shown in Figure 2.1 with γ1 = [0, 0]′, γ2 = [5, 5]′, u = [0, 0]′ and

a random realization

Ω =


7.82 −0.03 0.67 0.29
−0.03 1.79 −1.87 −0.78
0.67 −1.87 16.71 −3.22
0.29 −0.78 −3.22 1.53



Remark 2.1. The skew-Gaussian density degenerates to its symmetric part Nn(x;u,Σ)

if ∆ = 0 or [γ1 = (−∞, . . . ,−∞)′, γ2 = (∞, . . . ,∞)′].

The skew-Gaussian distribution (2.3) has many properties that resemble the

Gaussian distribution. In the following discussion, we omit the dimension indices

for simplicity.

Suppose

x =

[
x1

x2

]
∼ SG([γ1, γ2], u,Ω) (2.5)

and u and Ω in (2.4) are partitioned accordingly as

u =

[
u1

u2

]
, ∆ =

[
∆1

∆2

]
, Σ =

[
Σ1 Σ′

21

Σ21 Σ2

]
(2.6)
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Figure 2.1: Contour of skew-Gaussian in two dimensions

Property 2.1 (Closed under marginalization (Arellano-Valle et al., 2006)). The

marginal density of x1 is skew-Gaussian with density

N (x1;u1,Σ1)
Φ([γ1, γ2],∆

′
1Σ

−1
1 (x1 − u1),Γ−∆′

1Σ
−1
1 ∆1)

Φ([γ1, γ2]; Γ)

with u1 and Σ1 in (2.6), while keeping γ1, γ2, and Γ unaltered.

Remark 2.2. The marginalization of a skew-Gaussian distribution behaves the same

as the Gaussian distribution does, and it is instrumental in the well-definedness of

the skew-Gaussian process presented in Section 2.6.3.

Property 2.2 (Closed under linear transformation (Arellano-Valle et al., 2006)).

Suppose we have the following linear transformation (more precisely, affine transfor-

mation)

y = Ax+ b, x ∼ SG([γ1, γ2], u,Ωx) (2.7)

where

Ωx =

[
Γ ∆′

∆ Σ

]
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Then

y ∼ SG(y; [γ1, γ2], Au+ b,Ωy) (2.8)

where

Ωy =

[
Γ ∆′A′

A∆ AΣA′

]
provided that Ωy is positive definite.

Property 2.3 (Closed under conditioning (Arellano-Valle et al., 2006)). Given (2.5),

the density of x1 conditioned on x2 is still skew-Gaussian,

(x1 | x2) ∼ SG([γ1,1|2, γ2,1|2], u1|2,Ω1|2)

with

Ω1|2 =

[
Γ1|2 ∆′

1|2
∆1|2 Σ1|2

]
where

u1|2 = u1 + Σ′
21Σ

−1
2 (x2 − u2) Σ1|2 = Σ1 − Σ′

21Σ
−1
2 Σ21

∆1|2 = ∆1 − Σ′
21Σ

−1
2 ∆2 Γ1|2 = Γ−∆′

2Σ
−1
2 ∆2

γi,1|2 = γi −∆′
2Σ

−1
2 (x2 − u2) i = 1, 2

A proof of Property 2.3 is given in Appendix B.

Remark 2.3. The combination of Property 2.2 and Property 2.3 guarantees the

closedness of posterior skew-Gaussian density in a linear system, which is the back-

bone of our skew-Gaussian filter derived in Section 3.3.

Proposition 2.1 (Moments up to the third order). Let

µ1 =
1

Φ([γ1, γ2]; Γ)

∫
γ1≤t≤γ2

tN (t; Γ) dt (2.9)

µ2 =
1

Φ([γ1, γ2]; Γ)

∫
γ1≤t≤γ2

tt′N (t; Γ) dt (2.10)

µ3 =
1

Φ([γ1, γ2]; Γ)

∫
γ1≤t≤γ2

tvec′(tt′)N (t; Γ) dt (2.11)
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The mean, covariance and skewness (i.e., the third central moments) of the skew-

Gaussian distribution (2.3) are

m̄1 = E(x) = u+∆Γ−1µ1 (2.12)

m̄2 = cov(x) = Σ−∆Γ−1(Γ + µ1µ
′
1 − µ2)Γ

−1∆′ (2.13)

m̄3 = E[(x− E(x))[(x− E(x))′]⊗2] (2.14)

= ∆Γ−1{2µ1 vec
′(µ1µ

′
1)− [µ1 vec

′(µ2) + µ2 ⊗ µ′
1

+ µ′
1 ⊗ µ2] + µ3}(∆Γ−1 ⊗∆Γ−1)′

A proof of Proposition 2.1 is given in Appendix A.

Remark 2.4. (a) Equations (2.9)–(2.11) are the first three non-central moments

of Gaussian density N (x; 0,Γ) being doubly-truncated with the linear constraint

γ1 ≤ x ≤ γ2 holding componentwisely. The evaluation of the multivariate Gaus-

sian integral with the linear domain constraints is well studied in statistics and

machine learning. Efficient algorithms of moderate dimensional integral exist

(e.g., see (Kan and Robotti, 2017; Wilhelm and Manjunath, 2010)).

(b) By (2.12) and (2.13), the MMSE skew-Gaussian estimator follows from the SGF

shown in Section 3.3.

The physical meaning of the skew-Gaussian distribution can be found by the

following property via a hidden truncation process.

Property 2.4 (Hidden truncation representation (Arellano-Valle et al., 2006)). Sup-

pose [
x∗

x

]
∼ N

([
0
u

]
,

[
Γ ∆′

∆ Σ

])
(2.15)

Then, the density of x conditioned on γ1 ≤ x∗ ≤ γ2 is skew-Gaussian:

(
x | (γ1 ≤ x∗ ≤ γ2)

)
∼ SG([γ1, γ2], u,Ω), Ω =

[
Γ ∆′

∆ Σ

]
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where x∗ is called the latent random variable. This representation will be used in the

definition of the skew-Gaussian process in Section 2.6.3.

Another direction of generating the skew-Gaussian distribution follows the idea

of orthogonalization of random variables.

Property 2.5 (Orthogonal representation (Arellano-Valle et al., 2006)). Following

(2.15), construct two independent variables

v0 = x∗ ∼ N (0,Γ)

v1 = x− E(x̌ | x∗) = x−∆Γ−1x∗

v1 ∼ N (u,Σ−∆Γ−1∆′)

where x̌ is the zero-mean part of x. Let v
(γ1,γ2)
0 be the doubly-truncated v0 (i.e.,

v
(γ1,γ2)
0 = (v0 | γ1 ≤ v0 ≤ γ2)). Then

(v1 +∆Γ−1v
(γ1,γ2)
0 ) ∼ SG([γ1, γ2], u,Ω), Ω =

[
Γ ∆′

∆ Σ

]

Clearly, v0 and v1 are the Gram–Schmidt orthogonal decomposition components

of [(x∗)′, x′]′ in (2.15), and such a method is useful for simulation. For generating

doubly-truncated Gaussian random variables, please refer to (Botev, 2016; Chopin,

2011).

Property 2.6 (Joint distribution of independent skew-Gaussian variables (Arellano–

Valle et al., 2006; González-Faŕıas et al., 2004)). Suppose x1 ∼ SGn1,m1([γ
1
1 , γ

1
2 ], u1,Ω1)

and x2 ∼ SGn2,m2([γ
2
1 , γ

2
2 ], u2,Ω2) are independent, where

Ω1 =

[
Γ1 ∆′

1

∆1 Σ1

]
, Ω2 =

[
Γ2 ∆′

2

∆2 Σ2

]

Then

x =

[
x1

x2

]
∼ SGn1+n2,m1+m2([γ1, γ2], u,Ω) (2.16)
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where

u =

[
u1

u2

]
, γi =

[
γ1
i

γ2
i

]
, i = 1, 2

Ω =


Γ1 0 ∆′

1 0
0 Γ2 0 ∆′

2

∆1 0 Σ1 0
0 ∆2 0 Σ2


2.6.3 Skew-Gaussian Process

In this subsection we introduce a new stochastic process, i.e., the skew-Gaussian

process.

Definition 2.3. Let T be an index set. Consider functions u : T → R, ∆ : T → R,

and Σ : T × T → R. We say {xt, t ∈ T} is a skew-Gaussian process w.r.t.

the latent random variable x∗ ∈ Rm (i.e., w.r.t. the parameters γ1, γ2 ∈ Rm and a

positive definite matrix Γ ∈ Rm × Rm) if for every finite set J = {t1, · · · , tn} ⊂ T

with any n > 0, the vector x = [xt1 , · · · , xtn ]
′ is skew-Gaussian distributed:

x ∼ SG([γ1, γ2];u(J),Ω(J))

provided that

Ω(J) =

[
Γ ∆(J)′

∆(J) Σ(J, J)

]
is positive definite.

The skew-Gaussian process is constructed in terms of its finite-dimensional marginals

through the Kolmogorov extension theorem (Wong, 1985). The key requirement of

the theorem is that the finite-dimensional marginals should be consistent in the fol-

lowing sense: If Jn and Jm are two ordered finite sets from T such that Jn ⊆ Jm,

then the cdf PJn must be equal to the cdf PJm with the appropriate variable set to

+∞. For instance,

Pt1(x1) = Pt1,t2(x1,+∞)
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This is guaranteed by Property 2.1, and its uniqueness of the probability measure

also follows from the Kolmogorov extension theorem.

Remark 2.5. (a) The skew-Gaussian process defined includes the Gaussian pro-

cess as a special case when ∆ = 0 or there are no constraints over the domain

of the latent random variable x∗.

(b) If ∆ ̸= 0, the states at different times of a skew-Gaussian process are correlated,

and the skew-Gaussian process so defined cannot be independent, so it does not

include the white stochastic process whose finite marginalization is jointly skew-

Gaussian. More specifically, it precludes any white process from being truly

skew-Gaussian.
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3

Linear Skew-Gaussian Estimation

The simplest explanation is usually
the best one

Occam’s razor

3.1 Introduction

As mentioned early in Section 1.2, the filtering problem can be formulated from the

Bayesian perspective, where it computes the posterior density of the state at time k

given all observed data up to time k (Ho and Lee, 1964). This Bayesian approach

offers a unifying methodology for solving the general problems of estimation, and

provides a theoretical foundation for filtering methods in practice.

Conceptually, density filtering, which follows the Bayesian approach in state esti-

mation, provides a thorough solution to the filtering problem, but elegant theoretical

results are available only for exact density filtering (Li and Jilkov, 2010). Exact den-

sity filtering, where its computed posterior density is exact, forms a solid foundation

for further development in theory and application. For example, it offers guidance
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to approximate density filtering, which has been applied to many practical problems

and has shown exceptional value when point filtering is inadequate (Ristic et al.,

2003). However, obtaining the exact posterior density is in general intractable, if

not impossible, since it usually involves infinitely many unknowns or variables and

cannot be directly applied in most practical situations.

In reality, finite dimensionality is a prerequisite for implementing density filter-

ing, since practical applications require computation and storage to be finite. Con-

sequently, exact density filtering of a finite dimension makes itself the only possible

exact density filtering with practical value. However, exact density filtering problems

rarely permit finite-dimensional solutions.

Efficiency of density filtering is another crucial requirement for most engineering

applications, especially for real-time applications. In situations where no exact yet ef-

ficient density filtering is available, approximation methods are often employed. Due

to limited processing resources in practice, exact density filtering of finite dimension

may still be insufficient in situations where the dimension is finite but increasing

over time. Therefore, fixed dimensional exact filtering, especially with a small di-

mension, is of extreme importance and interest from both theoretical and practical

perspectives.

Despite its rare existence in applications, fixed dimensional exact filtering, which

obtains some fixed and finite dimensional sufficient statistics recursively, contributes

to density filtering. A well-known example is the state filtering for a linear Gaus-

sian system, where the celebrated Kalman filter provides a complete recursion of the

posterior Gaussian density. Another example is the system identification of linear

Gaussian system (Elliott and Krishnamurthy, 1999), where a filter-based expecta-

tion maximization algorithm was proposed for parameter estimation of the system.

However, few results are known beyond the linear Gaussian system and its limited

variants, except some procedures made by using conjugate pairs (Vidoni, 1999; Fer-
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rante and Vidoni, 1999) for linear system and some simple finite-dimensional filters

for nonlinear systems, e.g., the Beneš filters (Beneš, 1981) and Daum’s filters (Daum,

1986).

In this chapter, we study the density filtering problem in linear skew-Gaussian

systems, which is a generalization of the linear Gaussian system, and its recursive

fixed dimensional exact density filter, i.e., the skew-Gaussian filter (SGF), which

is linear (more precisely affine, it, unfortunately, is standard practice in estimation

community) in measurements. The SGF not only has an analytical recursion of a

small dimension akin to that of the Kalman filter, but also possesses an efficiency

comparable to the Kalman filter.

In retrospect, for the conventional linear Gaussian system, the assumed Gaus-

sianity and Markov property furnish a sufficient condition for the existence of a fixed

dimensional density filter. The Gaussianity admits that the posterior expectation

and covariance are sufficient statistics for the whole density. The Markov property,

similar to the recursibility of an estimator (Li, 2004), principally implies that the

state distribution at a time contains all the information needed for its later propaga-

tion. However, a linear Gaussian model cannot address satisfactorily many practical

demands since correlated non-Gaussian noise abounds in inference problems. For ex-

ample, the radar measurements may present non-Gaussian and correlated behavior

due to high sampling frequency (Wu and Chang, 1996) and tracking glint (Wu, 1993),

and the distributions of data collected in many engineering areas are non-Gaussian

in situations where impulsive interference or outliers arise (Nurminen et al., 2018;

Zoubir et al., 2012). The Kalman filter and its variants suffer from performance

degradation in the presence of non-Gaussian process/measurement noise.

The ever-growing demand of modeling beyond the linear Gaussian system mo-

tivates the exploration of non-Gaussian systems. The literature abounds with ap-

proaches to modeling flexible linear non-Gaussian systems, especially in robust filter-
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ing, where the non-Gaussianity is often characterized of a skewed and/or heavy-tailed

nature (Girón and Rojano, 1994; Wang and Balakrishnan, 2002). However, many of

these models are not justified well enough since the design of the noise distributions

lacks practical justification (e.g., the assumptions of the Wishart or normal-gamma

distribution for the noise covariance were mainly for simplicity and convenience for

which no general guarantees have been established (Agamennoni et al., 2012; Huang

et al., 2017b)). In addition, exact solutions exist only in very limited cases with

restrictive assumptions (e.g., the requirement of the same degree of freedom in the

robust t-distribution based Kalman filter), and most filters either require strong ap-

proximation (e.g., the mean field variational Bayesian method (Zhang et al., 2018;

Huang et al., 2017a)—a strong assumption on the structure of jointly hierarchical

distribution)—or resort to powerful approximation methods, such as the sequential

Monte Carlo method based on conditional independence in the model (Doucet et al.,

2001).

In this chapter, we propose a new linear model for the skew-Gaussian process.

This model is broader than the conventional linear Gaussian model and has a poten-

tial to handle problems where asymmetry in the densities of state and/or correlated

noise is not negligible. The key is the skew-Gaussian process, which aroused interests

in the study of parametric classes of probability distributions in the statistical and

machine learning communities (Azzalini, 2013; Genton, 2004; Benavoli et al., 2020).

The skew-Gaussian distribution can represent a broad class of densities with shape

flexibility other than the Gaussian while maintains mathematical tractability. On

the one hand, problems obeying a skew-Gaussian distribution exist in many prac-

tical situations, e.g., filtering of the state with quantized measurement (Sukhavasi

and Hassibi, 2009) or based on some event-based scheduling (He et al., 2018). On

the other hand, the skew-Gaussian process, which models problems where a linear

hidden truncation mechanism takes place (Arellano-Valle et al., 2006), may also have
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potential to formulate some type of skewed and correlated noise impacted by some

common latent random factors truncation in reality.

An extensive literature exists of linear system models using, e.g., the elliptical

distributions or the skew-elliptical distributions. In (Girón and Rojano, 1994), a

closed form of a Kalman-like filter was proposed under the assumption of a jointly

elliptical distribution of the initial state and two noise processes without correlation.

In (Benavoli et al., 2020; Rezaie and Eidsvik, 2014), two linear models based on the

skew-Gaussian distribution were proposed, but they suffer from problems of either

a restrictive structure on the linear system, which is rare in applications, or high

computational complexity due to a rapidly growing dimension. A recent work with

application to skew-Gaussian was (He et al., 2018), where the skew-Gaussianity is

triggered by an event-based scheduling, but it also suffers from the curse of dimen-

sionality.

Compared with the aforementioned models, our linear skew-Gaussian model

admits a fixed dimensional exact filtering algorithm, i.e., the SGF. Including the

Kalman filter as a special case, the SGF has an efficient, recursive solution for up-

dating all parameters of the posterior distribution without any approximation. Its

implementation has two parts: the Gaussian part and the skewness part, which

propagate simultaneously in both prediction and update stages and are linear in

measurements, as the Kalman filter does.

This chapter is organized as follows. Section 3.2 formulates the linear skew-

Gaussian system. A recursive fixed dimensional filter based on the linear skew-

Gaussian model is derived in Section 3.3. Simulation results and analysis are shown

in Section 3.4.
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3.2 Linear Skew-Gaussian Model

Consider the following discrete-time linear system

xk = Fk−1xk−1 +Gk−1wk−1

zk = Hkxk + vk
(3.1)

where xk ∈ Rnx is the state of the system at time k, {wk} is the process noise due

to disturbance and modeling error, zk ∈ Rnz is the measurement, and {vk} is the

measurement noise.

Instead of using the Gaussian assumption, we propose to use a more general

assumption called the skew-Gaussian assumption as follows:

1. {wk} and {vk} are skew-Gaussian processes with block diagonal Σ, that is, for

every k,

wk = [w′
k, · · · , w′

0]
′ ∼ SG([γw

1 , γ
w
2 ], 0,Ω

w,k)

vk = [v′k, · · · , v′1]′ ∼ SG([γv
1 , γ

v
2 ], 0,Ω

v,k)

where

Ωw,k =

[
Γw (∆w,k)′

∆w,k Qk

]

Ωv,k =

[
Γv (∆v,k)′

∆v,k Rk

]

Here

∆w,k = [(∆w
k )

′, . . . , (∆w
1 )

′]′, ∆v,k = [(∆v
k)

′, . . . , (∆v
1)

′]′

Qk = diag([Qk, · · · , Q0]), Rk = diag([Rk, · · · , R1])

2. The initial state is skew-Gaussian:

x0 ∼ SG([γx
1 , γ

x
2 ], u0,Ω

x
0) (3.2)
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where

Ωx
0 =

[
Γx (∆x

0)
′

∆x
0 Σ0

]

3. x0, {wk}, and {vk} are mutually independent.

The linear model (3.1) together with the skew-Gaussian assumption is the linear

skew-Gaussian assumption. It reduces to the linear Gaussian assumption if the

corresponding ∆ = 0 or [γ1 = (−∞, . . . ,−∞)′, γ2 = (∞, . . . ,∞)′].

Clearly, this model has potential to formulate more complex situations than the

linear Gaussian model does, especially if the skewed state or observation is significant.

Moreover, this modeling is exact in situations where the noises at different times

are correlated through some common random factors, which are modeled by the

latent random variables. For example, in the selective sampling scheme, the samples

are only observable when some indicator variable exceeds some threshold (Azzalini,

2013).

3.3 Recursive Finite-Dimensional Filter for Linear Skew-Gaussian Sys-
tem

In this section, we present a recursive finite-dimensional filter based on the linear

skew-Gaussian model of Section 3.2.

3.3.1 Exact Skew-Gaussian Filter (SGF)

In this subsection, we connect the idea of the skew-Gaussian assumption in Sec-

tion 3.2 with the properties of skew-Gaussian distribution in Section 2.6 to present

the main results of our chapter. The following two theorems constitute one cycle of

filtering for system (3.1).
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Theorem 3.1 (Prediction). The distribution of xk conditioned on measurements

zk−1 under the linear skew-Gaussian assumption is given as (xk|k−1 ∼ SG is a short-

hand notation for the pdf p(xk | zk−1) being skew-Gaussian)

xk|k−1 ∼ SG([γ̂1,k|k−1, γ̂2,k|k−1], ûk|k−1,Ωk|k−1)

where

Ωk|k−1 =

[
Γk|k−1 ∆′

k|k−1

∆k|k−1 Σk|k−1

]
and the corresponding parameters are updated as:

• Gaussian part (same as the prediction in the Gaussian case):

ûk|k−1 = Fk−1ûk−1|k−1

Σk|k−1 = Fk−1Σk−1|k−1F
′
k−1 +Gk−1Qk−1G

′
k−1

• Skewness part:

γ̂i,k|k−1 = γ̂i,k−1|k−1, i = 1, 2

∆k|k−1 = Fk−1∆k−1|k−1 + [0, Gk−1∆
w
k−1, 0] (3.3)

Γk|k−1 = Γk−1|k−1

The 0’s in (3.3) have dimensions nx × nγx and nx × nγv , respectively, where

nγx ≜ dim(γx
1 ) and nγv ≜ dim(γv

1).

Theorem 3.2 (Update). The distribution of xk conditioned on measurements zk

under the linear skew-Gaussian assumption is given as

xk|k ∼ SG([γ̂1,k|k, γ̂2,k|k], ûk|k,Ωk|k)

where

Ωk|k =

[
Γk|k ∆′

k|k
∆k|k Σk|k

]
and the corresponding parameters are updated as:
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∑
Kk

∑
Fk z−1 Hk

+zk + ûk|k ûk+1|k ûk|k−1

+−

Ks
k

∑
z−1

− γ̂k+1|k γ̂k|k−1

+

Figure 3.1: Flowchart of the propagation of ûk|k−1 and γ̂k|k−1

• Gaussian part (same as the update in the Gaussian case):

Sk = HkΣk|k−1H
′
k +Rk

Kk = Σk|k−1H
′
kS

−1
k

ûk|k = ûk|k−1 +Kk(zk −Hkûk|k−1)

Σk|k = Σk|k−1 −KkSkK
′
k

• Skewness part:

Ks
k = (Hk∆k|k−1 + [0,∆v

k])
′S−1

k (3.4)

γ̂i,k|k = γ̂i,k|k−1 −Ks
k(zk −Hkûk|k−1)

∆k|k = (I −KkHk)∆k|k−1 − [0, Kk∆
v
k] (3.5)

Γk|k = Γk|k−1 −Ks
kSk(K

s
k)

′

The dimensions of the 0’s in (3.4) and (3.5) are nz × (nγx +nγw) and nx × (nγx +

nγw), where nγw ≜ dim(γw
1 ). Theorems 3.1 and 3.2 together provide a recursion of

the posterior distribution. Noteworthily, the SGF is linear in measurements from

the formulas above.

Proofs of Theorems 3.1 and 3.2 are given in Appendix C, and more details are

shown in Appendix D.
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The algorithm of the SGF is summarized in Algorithm 1. The propagation struc-

tures of γ̂i,k|k−1 and ∆k|k−1 are depicted in Figures 3.1 and 3.2, respectively.

Algorithm 1: The Skew-Gaussian Filter

Initialization: û0|0 = ux
0 , Σ0|0 = Σx

0 , ∆0|0 = [∆x
0 , 0],

γ̂i,0|0 = [(γx
i )

′, (γw
i )

′, (γv
i )

′]′, Γ0|0 = diag(Γx,Γw,Γv)
for k = 1 to N

Input: ûk−1|k−1, Σk−1|k−1, ∆k−1|k−1, Γk−1|k−1, γ̂i,k−1|k−1, zk, ∆
w
k−1, ∆

v
k

Time Update: ;
ûk|k−1 = Fk−1ûk−1|k−1;
Σk|k−1 = Fk−1Σk−1|k−1F

′
k−1 +Gk−1Qk−1G

′
k−1;

γ̂i,k|k−1 = γ̂i,k−1|k−1;
∆k|k−1 = Fk−1∆k−1|k−1 + [0, Gk−1∆

w
k−1, 0];

Γk|k−1 = Γk−1|k−1

Measurement Update: ;
Sk = HkΣk|k−1H

′
k +Rk;

Kk = Σk|k−1H
′
kS

−1
k ;

ûk|k = ûk|k−1 +Kk(zk −Hkûk|k−1);
Σk|k = Σk|k−1 −KkSkK

′
k;

Ks
k = (Hk∆k|k−1 + [0,∆v

k])
′S−1

k γ̂i,k|k = γ̂i,k|k−1 −Ks
k(zk −Hkûk|k−1);

∆k|k = (I −KkHk)∆k|k−1 − [0, Kk∆
v
k];

Γk|k = Γk|k−1 −Ks
kSk(K

s
k)

′;

endfor
Output: ûk|k, Σk|k, ∆k|k, Γk|k, γ̂i,k|k

3.3.2 Discussions

We can obtain a batch form of the propagation of the skewness parameter ∆k|k−1.

For each time i, define

Kp
i = FiKi = FiΣi|i−1H

′
iS

−1
i (3.6)

F p
i = Fi −Kp

i Hi (3.7)

Φp
i,j =

{
F p
i−1 · · ·F

p
j i > j

I i = j
(3.8)

∆k|k−1 =
[
∆x

k|k−1, ∆w
k|k−1, ∆v

k|k−1

]
(3.9)
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We have

∆x
k|k−1 = Φp

k,0∆
x
0 (3.10)

∆w
k|k−1 =

k∑
i=1

Φp
k,iGi−1∆

w
i−1 (3.11)

∆v
k|k−1 = −

k∑
i=1

Φp
k,iK

p
i−1∆

v
i−1 (3.12)

The superscripts in (3.9) indicate the sources of the skewness that contribute

to the state. The Φp
i in (3.7) has an identical algebraic expression with the so-

called closed-loop state transition in the innovations model of x̂k|k−1 in the Kalman

filter (Kailath et al., 2000, p.324), and correspondingly, Kp
i in (3.6) is of the same

algebraic form as the predicted gain in the Kalman filter. Note that Kp
0∆

v
0 = 0 since

no measurement is available in (3.1) at the initial time (so no v0 is considered).

The initialization of ∆0|0 needs to be augmented to include the skewness from

the process and measurements noise, so the initial density of x0 is reformulated as:

x0 ∼ SG([γ̂1,0|0, γ̂2,0|0], û0|0,Ω0|0) (3.13)

where

γ̂i,0|0 =
[
(γx

i )
′, (γw

i )
′, (γv

i )
′]′

∆0|0 = [∆x
0|0, 0, 0]

Γ0|0 = diag(Γx,Γw,Γv)

Ω0|0 =

[
Γ0|0 ∆′

0|0
∆0|0 Σx

0

]
One can verify that the above reformulation does not alter the density of the

initial state x0 in (3.2); that is, the density formulas of (3.2) and (3.13) are the same.

For point filtering, we can immediately obtain the corresponding MMSE skew-

Gaussian filter along with the MSE matrix when applying (2.12) and (2.13) at each

time index.
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∑
Fk

∑
z−1

I −KkHk

+

[0,0,−Kk∆
v
k]

+
[0,Gk∆

w
k ,0]

+ ∆k+1|k ∆k|k−1

+

Figure 3.2: Flowchart of the propagation of ∆k|k−1

3.3.3 A Special Case—MMSE-SGF

A special case of the SGF is that the only skewness comes from the initial state,

which may have applications where the sensor data scheduling applied to the initial

state only (He et al., 2018).

By letting ∆w
k and ∆v

k equal to zero, we have a lemma for this special case.

Lemma 3.3. Given system (3.1) with the linear skew-Gaussian assumption except

that

1∗) wk ∼ N (0, Qk), vk ∼ N (0, Rk), and {wk} and {vk} are Gaussian white noises

one cycle of the SGF of Theorems 3.1 and 3.2 for this special case degenerates as

follows:

• Prediction

– Gaussian part: the same formulas as the general SGF

– Skewness part: the same formulas as the general SGF except

∆k|k−1 = Fk−1∆k−1|k−1

• Update:

– Gaussian part: the same formulas as the general SGF
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– Skewness part: the same formulas as the general SGF except

Ks
k = ∆′

k|k−1H
′
kS

−1
k

∆k|k = ∆k|k−1 −KkHk∆k|k−1

= Σk|kΣ
−1
k|k−1∆k|k−1

3.3.4 Computation Complexity

In this subsection we evaluate the computational complexity and memory require-

ments of the SGF.

Let nx, nz and nw be the dimensions of the state x, measurement z, and process

noise w. Recall that nγx , nγw and nγv are the dimensions of γx
1 , γ

w
1 and γv

1 defined

in Section 3.2. Then, in each iteration,

• Computational cost: The SGF involves only matrix addition, multiplication

and inverse.

– Gaussian part: the same as the Kalman filter, which has O(n3
x + n2

xnw +

n2
xnz + nxn

2
z + n3

z) flops.

– Skewness part: the main computation lies in the matrix multiplication,

and the complexity isO((nxnz+n2
z)(nγx+nγw+nγv)+nz(nγx+nγw+nγv)2)

flops.

• Memory requirements: The SGF stores only the filtered quantities at each

time, and then they can be discarded.

– Gaussian part: the same as the Kalman filter. The storage is O(n2
x).

– Skewness part: O((nγx + nγw + nγv)2).

3.3.5 Comparison of Kalman filter and MMSE-SGF

While the Kalman filter can be viewed as an realization of the LMMSE estimation,

the MMSE-SGF can not be. Even though all the parameters in SGF are propagated
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in a linear manner with respect to the measurements, the calculation of its MMSE

estimator (more specially, the conditional mean) at each time step no longer follows a

linear form, which can be seen from (2.9) and (2.12). In addition, unlike the Kalman

filter whose recursibility is accomplished by the linear update directly from its esti-

mator at previous time step, the MMSE-SGF has a recursive linear update from its

parameters other than the MMSE estimator itself, thus, there is no contradiction to

the theoretical results of recursibility in (Li, 2004).

3.4 Simulation Study

In this section, the proposed theoretical results of the SGF is demonstrated in an ex-

ample of one-dimensional target tracking, where a target moves at a nearly constant

velocity (CV) with state dynamics

xk =

[
1 T
0 1

]
xk−1 +

[
T 2/2
T

]
wk−1 (3.14)

The state xk ≜ [pk, vk]
′, the sampling interval T = 1s, and a total motion duration

is 30s.

The measurement equation is

zk =
[
1, 0

]
xk + vk (3.15)

where only the position is observed at each time.

The initial state x0 is generated from a skew-Gaussian distribution with

u0 =

[
103m
10m/s2

]
Σ0 =

[
100m2 0

0 25m2/s4

]

Γx = σ2
x = 12510 ∆x =

[
103

250

] [
γx
1

γx
2

]
=

[
−10σx

0

]
In this CV motion, both the target and the radar experience linear hidden truncation

processes. Thus, wk and vk are both skew-Gaussian processes.
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The parameters of the process noise {wk} are uw
k = 0, Qk = 0.1m2/s2, Γw = 1.03,

∆w
k = 0.05, and [

γw
1

γw
2

]
=

[
−10σw

0

]
The parameters of the measurement noise {vk} are uv

k = 0, Rk = 102 m2, Γv =

2000, ∆v
k = 57.735, and [

γv
1

γv
2

]
=

[
−10σv

0

]
3.4.1 Density Filtering

In this simulation, the SGF and the state-of-the-art Kalman filter are compared over

200 Monte Carlo runs. Note that the Kalman filter is a Gaussian density filter, since

a Gaussian density is determined by its first two moments. Figures 3.3 and 3.4 depict

the contour plots of the posterior densities of one run by the SGF and the Kalman

filter with the same level increments at time 5s and 20s, respectively. The strong

skewness from the initial state mainly contribute to the skewness in Figure 3.3. As

time goes, the impact from the initial state dies out, and the skewness from the

process noise and measurement noise play key roles. As shown in Figure 3.4, the

contour plot from the SGF at time 25s has a different skewed tendency compared

with time 5s, and the plot is squeezed anti-diagonally, i.e., from the top-right to the

bottom-left, compared with the symmetric plot from the Kalman filter.

Figures 3.5 and 3.6 plot the Pearson’s moment coefficient of skewness of the

position and the velocity on one run, defined as

skewness =
E[x− E(x)]3

[var(x)]
3
2

These theoretical skewness plots result from (2.13) and (2.14) of the SGF and the

fact that the Kalman filter always gives zero skewness. The skewness at the early
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stages has three sources: the initial state, the process noise and the measurement

noise. As time goes, the skewness effect due to the initial state dies out.

1025 1030 1035 1040 1045 1050 1055 1060
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14

16

18
SGF

KF

Figure 3.3: Contours at time 5s

3.4.2 MMSE Point Filtering

The MMSE-SGF (by using (2.12) and (2.13)) is also compared with the Kalman filter.

Note that the Kalman filter performs sub-optimally because of the non-Gaussianity

and the colored noises. As depicted in Figures 3.7 and 3.8, the MMSE-SGF also

outperforms the Kalman filter in both position and velocity. The velocity has less

difference, perhaps because the skewed measurement noise is directly imposed on the

position, but not the velocity.

3.4.3 Computation Cost

Table 3.1 shows the relative computational costs in terms of execution time. The

SGF and the Kalman filter use about the same computation resources, whereas the
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Figure 3.4: Contours at time 25s
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Figure 3.5: Skewness of Position
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Figure 3.6: Skewness of Velocity

Table 3.1: Relative Computation Time

Methods KF SGF MMSE-SGF Integration
Relative Time 1 1.23 246.84 245.59

MMSE-SGF, as an application of our density SGF in this specific example, demands

more computation resource to calculate the state estimate and error covariance based

on (2.9) and (2.10), depending on the integration methods employed. It also shows

that the main time consumption is due to numerical integration, which takes up to

99.5% in the total computation time of MMSE-SGF.
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Figure 3.7: RMSEs of Position
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Figure 3.8: RMSEs of Velocity

51



4

Nonlinear Filtering Using Skew-Symmetric
Representation of Distributions

Nothing occurs at random, but
everything for a reason and by
necessity.

Leucippus

4.1 Introduction

As is well known, nonlinear estimation in a closed-form has been established only for

the linear Gaussian case and several special nonlinear cases (Li and Jilkov, 2010).

The general nonlinear estimation poses a challenge since it requires propagating

the probability density function (pdf) of the state, which is an infinite-dimensional

problem (see, e.g., (Jazwinski, 2007)). Therefore, many practical nonlinear filter-

ing methods in finite dimension have been developed by calling different numerical

approximations. In this chapter, nonlinear point estimation, which estimates the

quantity of interest without directly obtaining the posterior distribution of the state,
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is considered due to its simplicity and adequacy for many practical problems.

In general, non-linearity of many practical problems distorts symmetry and other

nice properties of the posterior distribution of interest (Julier, 1998). However, most

nonlinear point filtering methods, proposed under the framework of LMMSE estima-

tion, exploit only the first two moments (i.e., the mean and the covariance) (Li and

Jilkov, 2004). The most prevailing methods, which were shown in Section 1.4.2, are

either restricted to Gaussian assumptions or reliant on the LMMSE update at the

cost of neglecting potentially effective information about higher moments. So, there

is room for improvement if information about higher moments is incorporated.

In order to model more complex nonlinear problems in simple tractable forms,

especially the skewness and the kurtosis, a skew-symmetric representation of distri-

butions, which has a product form of a symmetric pdf (known as the base pdf) times

a perturbation function (known as the skewing function), is employed in this chap-

ter. Such a representation of distributions, which strictly includes its symmetric base

pdf as a special case, has additional parameters to capture the departure from the

symmetry for practical problems. Furthermore, such a class may attain a reasonable

compromise between mathematical tractability and shape flexibility of the pdf.

A skew-symmetric representation of distributions, in particular with a Gaussian

base pdf, is flexible to model data sets abounding in areas such as economics, finance,

engineering, and biomedical science. Its application to nonlinear filtering is the topic

of this chapter. We develop a nonlinear filtering method based on a first-order skew-

Gaussian representation. Contrary to the conventional nonlinear point filters, our

proposed nonlinear filter potentially has higher estimation accuracy as a result of

the additional information about the third moment involved and a nonlinear state

update rule applied accordingly.

The chapter is organized as follows. A skew-symmetric representation of distri-

butions is introduced in Section 4.2, and its application, a first-order skew-Gaussian
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nonlinear filter, is proposed in Section 4.3. Simulation results and relevant analysis

are shown in Section 4.4.

4.2 Skew-Symmetric Representation of Distributions

In this section a skew-symmetric representation of distributions is introduced first.

As shown in (Wang et al., 2004), it is noteworthy that any multivariate pdf admits

a skew-symmetric representation. Next, a flexible skew-symmetric representation of

distributions is presented, in which the skewing part is a polynomial. The main

advantage of this representation is that it can approximate a skew-symmetric repre-

sentation of distributions arbitrarily well if the polynomial in the skewing part has

a high enough degree. Last, a first-order skew-Gaussian representation and its prop-

erties are discussed in detail, which is the backbone of our skew-Gaussian nonlinear

filtering to be presented in Section 4.3.

4.2.1 Skew-Symmetric Representation

Definition 4.1. Given any pdf p: Rn → R+ that is symmetric about a location

parameter u ∈ Rn, i.e., p(u − x) = p(x − u), and any function π : Rn → [0, 1]

satisfying π(−x) = 1− π(x), a function of the following form is a legitimate pdf and

is called a skew-symmetric pdf:

2p(x− u)π(x− u) (4.1)

For different problems, the symmetric base pdf p(·) can be chosen appropriately

as the Gaussian distribution, the t-distribution, the elliptical distribution, etc. The

so-called skewing function π(·) provides a skewed way to reallocate points of the base

pdf p(x).

Remark 4.1. The skew-symmetric form (4.1) includes the symmetric pdf p(·) as a

special case if π(x) = 1
2
.
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Remark 4.2 (Wang et al. (2004)). The condition of the skewing function π(x) can

be easily satisfied if the following construction is obeyed for a skew-symmetric repre-

sentation

2p(x− u)G(γ(x− u)) (4.2)

where p(·) is a symmetric pdf about 0, G : R → [0, 1] is the cumulative distribution

function (cdf) of a continuous symmetric random variable whose pdf is symmetric

about 0, and γ : Rn → R is any odd function.

Remark 4.3 (Wang et al. (2004)). If the same base pdf p(·) is used in (4.1) and

(4.2), the two classes of distributions are equivalent. Without loss of generality, let

u = 0. Let π(·) ≜ G[γ(·)] : Rn → R. Then,

π(−x) = G[γ(−x)] = G[−γ(x)] = 1−G[γ(x)] = 1− π(·)

So, every pdf in the form of (4.2) must be in the form of (4.1). Conversely, for

every π(·) in (4.1), there exists a (actually many) cdf G(·) (whose pdf is symmetric

about 0) with the inverse function G−1(·) such that

γ(x) = G−1[π(x)] = G−1[1− π(−x)] = −γ(−x)

that is, γ(·) is odd. So,

G[γ(x)] = G[G−1[π(x)]] = π(x)

that is, every function in the form of (4.1) can be written in the form of (4.2).

Remark 4.4 (Azzalini and Capitanio (2003)). The legitimacy for (4.1) to be a pdf

can be easily validated by the equivalent form (4.2). That is, let X ∼ p and Y ∼ G

be two independent random variables. Then∫
Rn

G(γ(z − u))p(z − u)dz =

∫
Rn

G(γ(z))p(z)dz = E[P{Y ≤ γ(X) | X}]

= P{Y ≤ γ(X)} =
1

2
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The last equality above holds because Y and γ(X) are independent random variables

whose pdfs are both symmetric about 0. Thus,∫
Rn

2p(x− u)G[γ(x− u)]dx = 1

So, f(x) ≜ 2p(x− u)π(x− u) ≥ 0, ∀x and
∫
Rn f(x)dx = 1, and thus f(x) is a pdf.

Remark 4.5 (Wang et al. (2004)). Given any pdf g: Rn → R+ and x0 ∈ Rn, there

exists a unique skew-symmetric representation of g(x):

g(x) = 2pg(x− x0)πg(x− x0)

where

pg(x) =
g(x0 + x) + g(x0 − x)

2

πg(x) =
g(x0 + x)

g(x0 + x) + g(x0 − x)

4.2.2 Flexible Skew-Symmetric Distributions

Let x ∈ Rn and P2m−1(x) denote an odd polynomial of highest degree 2m−1, meaning

that the degrees
∑n

j=1 ij of all terms xi1
1 x

i2
2 · · ·xin

n in P2m−1(x) are all odd and their

maximum is 2m − 1. A flexible skew-symmetric representation is the restriction of

(4.2)), that is,

2p(x− u)G(P2m−1(x− u)) (4.3)

where p(·) is a symmetric pdf about 0, and G : R → [0, 1] is an arbitrary cdf of

a continuous symmetric random variable mentioned above. In practice, a popular

choice of G(·) is the univariate cdf corresponding to the symmetric pdf p(·).

Like the Stone-Weierstrass theorem, the following proposition proved in (Ma and

Genton, 2004) shows that a skew-symmetric representation (4.1) can be approxi-

mated arbitrarily well by a flexible skew-symmetric representation (4.3) for P2m−1(x)

of an appropriate degree.
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Proposition 4.1 (Ma and Genton (2004)). Under the condition that both (4.2) and

(4.3) have the same symmetric base pdf p(·), and p(·) and π(·) are continuous, the

class of flexible skew-symmetric distributions is dense in the class of skew-symmetric

distributions under the L∞ norm.

The above proposition encourages us to seek for a polynomial approximation in

the skewing part. Moreover, it is desirable that such an approximation gives a simple

solution to nonlinear point estimation problems.

4.2.3 First-Order Skew-Gaussian Distribution

One typical representative of a flexible skew-symmetric class of distributions is the

first-order skew-Gaussian distribution (Azzalini and Capitanio, 2003), denoted by

FOSG(x;u,Ω, α). Its pdf is

2N (x;u,Ω)Φ(α′(x− u)) (4.4)

where N (x;u,Ω) denotes the Gaussian pdf with mean u and covariance Ω, Φ(·) is the

cdf of the univariate standard Gaussian distribution, and the skewness parameter α

is a column vector of the same dimension as x.

The class of first-order skew-Gaussian distributions provides a skew extension of

the multivariate Gaussian family by adding an extra parameter α to regulate the

skewness. Note that (4.4) with α = 0 reduces to Gaussian pdf N (x;u,Ω).

Several one-dimensional first-order skew-Gaussian distributions are shown in Fig-

ure 4.1, where u = 0, Ω = 1, and α = 0, −1.5, and 1, respectively.

One major reason for choosing such a form is its mathematical tractability and

simplicity when dealing with some fundamental operations, such as linear transfor-

mation, marginalization and conditioning, and these properties lay a foundation for

the nonlinear filtering method to be proposed in Section 4.3.
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Figure 4.1: One-dimensional skew-Gaussian density with different values of the
skewness parameter

Define a parameter δ with the following relationship with the skewness parameter

α:

δ =
Ωα√

1 + α′Ωα
, α =

Ω−1δ√
1− δ′Ω−1δ

(4.5)

where, as one can clearly see, δ and α are uniquely determined by each other.

To study central moments of the density (4.4), we use its cumulant generating

function (CGF), given by

K(t) =
1

2
t′Ωt+ u′t+ log(2Φ(δ′t)) (4.6)

The first three central moments, derived from (4.6), are

E(x) = u+

√
2

π
δ, cov(x) = Ω− 2

π
δδ′

E[(x− Ex)((x− Ex)′)⊗2] =

(
4

π
− 1

)√
2

π
δ vec′(δδ′)

(4.7)
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where ⊗ denotes the kronecker product, A⊗k = A⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
k times

and the operator

vec(·) converts a matrix to a column vector by stacking column by column.

A derivation of (4.7) is presented in Appendix E.

The first-order skew-Gaussian distribution has many properties that resemble the

Gaussian distribution (Azzalini and Capitanio, 2003).

Suppose that x = [x′
1, x

′
2]

′ ∼ FOSG(x;u,Ω, α) and the vectors are partitioned as

u =

[
u1

u2

]
, Ω =

[
Ω11 Ω12

Ω′
12 Ω22

]

α =

[
α1

α2

]
, δ =

[
δ1
δ2

]
Marginal distribution

The marginal distribution of x1 is

2N (x1;u1,Ω11)Φ(ᾱ
′
1(x1 − u1))

where

ᾱ1 =
α1 + Ω−1

11 Ω12α2√
1 + α′

2Ω2|1α2

=
Ω−1

11 δ1√
1− δ′1Ω

−1
11 δ1

and

Ω2|1 = Ω22 − Ω′
12Ω

−1
11 Ω12

The corresponding CGF is

Kx1(t) =
1

2
t′Ω11t+ u′

1t+ log(2Φ(δ′1t)) (4.8)

Conditional distribution

The CGF of the conditional distribution of x1 given x2 is

Kc
1|2(t) =

1

2
t′Ω1|2t+ u′

1|2t+ log(Φ(x0 + δ′1|2t))− log Φ(x0) (4.9)
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where

u1|2 = u1 + Ω12Ω
−1
22 (x2 − u2)

Ω1|2 = Ω11 − Ω12Ω
−1
22 Ω

′
12

δ1|2 =
Ω1|2α1√

1 + α′
1Ω1|2α1

ᾱ2 =
α2 + Ω−1

22 Ω21α1√
1 + α′

1Ω1|2α1

=
Ω−1

22 δ2√
1− δ′2Ω

−1
22 δ2

x0 = ᾱ′
2(x2 − u2)

Comparing (4.8) with (4.9): these two CGFs share a similar form except that an

additional constant term is added to (4.9) and the update terms u1|2 and Ω1|2 follow

the exact update rule, as those in LMMSE update (2.1)–(2.2).

The first three conditional central moments, derived from (4.9), are

E(x1|x2) = u1|2 +
N (x0)

Φ(x0)
δ1|2

cov(x1|x2) = Ω1|2 −
[
x0

(x0)

Φ(x0)
+
( (x0)

Φ(x0)

)2]
δ1|2δ

′
1|2

M̄3(x1|x2) = E[(x1 − E(x1|x2))(x1 − E(x1 | x2))
′⊗2 | x2]

=

[
(x2

0 − 1)
(x0)

Φ(x0)
+ x0

(N (x0)

Φ(x0)

)2
+ 2
(N (x0)

Φ(x0)

)3]
δ1|2 vec

′(δ1|2δ
′
1|2)

(4.10)

where N (x0) and Φ(x0) denote the univariate standard Gaussian pdf and cdf, re-

spectively, evaluated at x0.

A derivation of (4.10) is similar to that of (4.7), which is given in the Appendix E.
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Linear transformation

Suppose that x ∼ FOSG(x;u,Ω, α) and A is a non-singular matrix such that A′ΩA

is of full rank. Then

A′x ∼ FOSG(x;Au,A′ΩA,A−1α)

4.3 Nonlinear Filtering Using Skew-Symmetric Representation

As discussed in Section 4.2.1, any pdf can be decomposed as a symmetric base pdf

times a skewing function. Furthermore, the proposition in Section 4.2.2 demonstrates

that the special skewing function of an odd-polynomial is capable to approximate any

pdf. Considering the mathematical tractability and simplicity, a nonlinear filtering

method based on a first-order skew-Gaussian distribution is proposed to incorporate

the information of the third central moment or the skewness of the state.

4.3.1 Design of First-Order Skew-Gaussian Filtering

Similar in the spirit to the Gaussian filter in the first-order skew-Gaussian filter

(FOSGF) is based on the following ideas:

1. Successively approximate the pdfs of yk|k−1 (with y = [x′, z′]′) and xk|k at each

stage through a first-order skew-Gaussian distribution by moment matching:

yk|k−1 ∼ FOSG(yk;u
y
k|k−1,Ω

y
k|k−1, α

y
k|k−1) (4.11)

xk|k ∼ FOSG(xk;u
x
k|k,Ω

x
k|k, α

x
k|k) (4.12)

2. Apply the nonlinear estimation rule (4.10), which is based on Bayes’ rule, to

the state update:

p(xk | zk) =
p(xk, zk | zk−1)∫
p(xk, zk | zk−1)dxk

Note that if [(αy
k|k−1)

′, (αx
k|k)

′] = 0, the FOSGF reduces to the conventional Gaus-

sian filter (Ito and Xiong, 2000).
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Let x̂k−1|k−1, Pk−1|k−1 and αx
k−1|k−1 denote the estimates of the state, covariance

and skewness parameter at time k−1, respectively. Given these quantities, one cycle

of the FOSGF is summarized as follows.

1. Prediction:

Under assumption (4.12) at time k − 1, the parameters ux
k−1|k−1 and Ωx

k−1|k−1

are, by using (4.7),

ux
k−1|k−1 = x̂k−1|k−1 −

√
2

π
δxk−1|k−1

Ωx
k−1|k−1 = Pk−1|k−1 +

2

π
δxk−1|k−1(δ

x
k−1|k−1)

′

where δxk−1|k−1 can be calculated by (4.5) as

δxk−1|k−1 =
Ωαx

k−1|k−1√
1 + (αx

k−1|k−1)
′Ωαx

k−1|k−1

(a) Calculate the predicted mean of the state

x̂k|k−1 = E[xk | zk−1]

≈
∫

(fk−1(x) + wk−1)FOSG(x;ux
k−1|k−1Ω

x
k−1|k−1, α

x
k−1|k−1) dx

=

∫
fk−1(x)Φ((α

x
k−1|k−1)

′(x− ux
k−1|k−1))N (x;ux

k−1|k−1,Ω
x
k−1|k−1) dx

(b) Calculate the predicted covariance of the state

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
′ | zk−1]

≈
∫

(xk − x̂k|k−1)(·)′FOSG(x;ux
k−1|k−1,Ω

x
k−1|k−1, α

x
k−1|k−1) dx

=

∫
(fk−1(x)− x̂k|k−1)(·)′Φ((αx

k−1|k−1)
′(x− ux

k−1|k−1))

×N (x;ux
k−1|k−1,Ω

x
k−1|k−1) dx+Qk
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(c) Calculate the predicted third central moment of the state

M̄3,x
k|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)

′⊗2 | zk−1]

≈
∫

(xk − x̂k|k−1)(·)′⊗2Φ((αx
k−1|k−1)

′(x− ux
k−1|k−1))

×N (x;ux
k−1|k−1,Ω

x
k−1|k−1)dx

With assumption (4.11) at time k − 1 and the marginalization property, we

have

xk|k−1 ∼ FOSG(xk;u
x
k|k−1,Ω

x
k|k−1, α

x
k|k−1)

where δxk|k−1 is computed directly by moment matching, which will be discussed

in Section 4.3.2, and αx
k|k−1 can be computed by (4.5) as

axk|k−1 =
(Ωx

k|k−1)
−1δxk|k−1√

1− (δxk|k−1)
′(Ωx

k|k−1)
−1δxk|k−1

and

ux
k|k−1 = x̂k|k−1 −

√
2

π
δxk|k−1

Ωx
k|k−1 = Pk|k−1 +

2

π
δxk|k−1(δ

x
k|k−1)

′

2. Update:

(a) Calculate the predicted mean of the measurement

ẑk|k−1 = E[zk | zk−1]

≈
∫

(hk(x) + vk)FOSG(x;ux
k|k−1,Ω

x
k|k−1, α

x
k|k−1) dx

=

∫
hk(x)Φ((α

x
k|k−1)

′(x− ux
k|k−1))N (x;ux

k|k−1,Ω
x
k|k−1) dx
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(b) Calculate the predicted covariance of the measurement

Pz = E[(zk − ẑk|k−1)(zk − ẑk|k−1)
′ | zk−1]

≈
∫

(hk(x)− ẑk|k−1)(·)′Φ((αx
k|k−1)

′(x− ux
k|k−1))

×N (x;ux
k|k−1,Ω

x
k|k−1) dx+Rk

(c) Calculate the predicted cross-covariance between the state and the mea-

surement

Pxz = E[(xk − x̂k|k−1)(zk − ẑk|k−1)
′ | zk−1]

≈
∫

[(x− x̂k|k−1)][hk(x)− ẑk|k−1]
′Φ((αx

k|k−1)
′(x− ux

k|k−1))

×N (x;ux
k|k−1,Ω

x
k|k−1) dx

(d) Calculate the predicted third central moment of the measurement

M̄3,z
k|k−1 = E[(zk − ẑk|k−1)(zk − ẑk|k−1)

′⊗2 | zk−1]

≈
∫

(zk − ẑk|k−1)(·)′⊗2Φ((αx
k|k−1)

′(x− ux
k|k−1))

×N (x;ux
k|k−1,Ω

x
k|k−1) dx

With assumption (4.11) at time k and the marginalization property, we have

zk|k−1 ∼ FOSG(zk;u
z
k|k−1,Ω

z
k|k−1, α

z
k|k−1)

where δzk|k−1is computed directly by moment matching, which will be discussed

in Section 4.3.2, and αz
k|k−1 can be computed by (4.5) as

azk|k−1 =
(Ωz

k|k−1)
−1δzk|k−1√

1− (δzk|k−1)
′(Ωz

k|k−1)
−1δzk|k−1
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and

uz
k|k−1 = ẑk|k−1 −

√
2

π
δzk|k−1

Ωz
k|k−1 = Pz +

2

π
δzk|k−1(δ

z
k|k−1)

′

Ωxz
k|k−1 = Pxz +

2

π
δxk|k−1(δ

z
k|k−1)

′

Stacking the above results at time k, the jointly distribution of the state and

the measurement (4.11) is

[
xk|k−1

zk|k−1

]
∼ FOSG

([
xk

zk

]
;uy

k|k−1,Ω
y
k|k−1, α

y
k|k−1

)

where

uy
k|k−1 =

[
ux
k|k−1

uz
k|k−1

]

αy
k|k−1 =

[
αx
k|k−1

αz
k|k−1

]

Ωy
k|k−1 =

[
Ωx

k|k−1 Ωxz
k|k−1

(Ωxz
k|k−1)

′ Ωz
k|k−1

]

Update the mean x̂k|k and covariance Pk|k by (4.10):

x̂k|k = E(xk | zk) = ux
k|k +

N (z̃k|k−1)

Φ(z̃k|k−1)
δk|k

Pk|k = E(xk − x̂k|k | zk)(·)′

= Ωx
k|k −

[
z̃k|k−1

N (z̃k|k−1)

Φ(z̃k|k−1)
+ (

N (z̃k|k−1)

Φ(z̃k|k−1)
)2
]
δk|k(δk|k)

′
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where

ux
k|k = ux

k|k−1 + Ωxz
k|k−1(Ω

z
k|k−1)

−1(zk|k−1 − uz
k|k−1)

Ωx
k|k = Ωx

k|k−1 − Ωxz
k|k−1(Ω

z
k|k−1)

−1(Ωxz
k|k−1)

′

z̃k|k−1 = (ᾱz
k|k−1)

′(zk|k−1 − uz
k|k−1)

ᾱz
k|k−1 =

αz
k|k−1 + (Ωz

k|k−1)
−1(Ωxz

k|k−1)
′αx

k|k−1√
1 + (αx

k|k−1)
′Ωx

k|kα
x
k|k−1

δk|k =
Ωx

k|kα
x
k|k−1√

1 + (αx
k|k−1)

′Ωx
k|kα

x
k|k−1

and the skew parameter δxk|k is updated by equating the third central moment

of the unconditional (4.7) and conditional ((4.10)) first-order skew-Gaussian

distribution: δxk|k =
3
√
cδk|k, where

c =

(z̃2k|k−1 − 1)
N (z̃k|k−1)

Φ(z̃k|k−1)
+ z̃k|k−1

(
(z̃k|k−1)

Φ(z̃k|k−1)

)2

+ 2

(
(z̃k|k−1)

Φ(z̃k|k−1)

)3

( 4
π
− 1)

√
2
π

Note that the integrals involved in FOSGF are all Gaussian-type integrals, and

traditional numerical integration methods (e.g., the Gauss-Hermite quadrature rule)

can be employed.

4.3.2 Determination of Skewness Parameter

The determination of the skewness parameter α or δ is crucial in our nonlinear

filtering method. From (4.7) or (4.10), one can see that δ is totally determined

by the third central moment. However, there exists mismatch in structure between

the analytic form and the numerical results. In other words, the following holds in

general,

E[(x− x̄)(·)′⊗2] = E[(x− x̄)vec′((x− x̄)(·)′)] ̸= aδ vec′(δδ′)
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where a = ( 4
π
− 1)

√
2
π
is the coefficient in (4.7).

Because of the relationship between the parameter δ and the skewness of the

assumed density, which is usually defined by its third central moment, we explore

some skewness measures to estimate δ by moment matching.

In this section, three unnormalized versions of the multivariate skewness measure

are employed, and the corresponding δ exists in each case, which is also summarized

in Table 4.1.

1. The marginal third central moment s1(x) = E[x3
1, · · · , x3

n]
′, and correspond-

ingly

δ1 =
3

√
s1
a

2. The skewness measure s2(x) = E(∥x∥2x) = E[(
∑n

i=1 x
2
i )x] proposed in (Móri

et al., 1994), and correspondingly

δ2 = sgn(s2)
s2

a
1
3 (s′2s2)

1
3

where sgn(x) is an odd function that extracts the sign of x.

3. The skewness measure s3(x) = E[(1nx
′)′(·)x] = E[(

∑n
i,j=1 xixj)x] presented in

(Ito and Xiong, 2000), and correspondingly

δ3 =
s3

a
1
3 (1′

ns3)
2
3

where 1n is the n-dimensional column vector of all 1’s.

Evidently, all measures provide n-dimensional skewness characteristics by elabo-

rately selecting some components from the third central moment, of which only the

third method includes all the components.
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Table 4.1: δ’s for different multivariate skewness measure

Skewness measures δ’s

s1(x) = E[x3
1, · · · , x3

n]
′ δ1 = 3

√
s1
a

s2(x) = E(∥x∥2x) = E[(
∑n

i=1 x
2
i )x] δ2 = sgn(s2)

s2

a
1
3 (s′2s2)

1
3

s3(x) = E[(1nx
′)′(·)x] = E[(

∑n
i,j=1 xixj)x] δ3 =

s3

a
1
3 (1′

ns3)
2
3

4.4 Simulation Results

In this section, the performance of the FOSGF is demonstrated over a reentry vehicle

(RV) problem, and is compared with UF and GHF.

The RV problem is to estimate accurately the position and velocity of a vehi-

cle, whose trajectory is illustrated in Figure 4.2, by a radar with range and bearing

measurements. This type of tracking problem is one of the most extensively stud-

ied applications considered by many authors (see, e.g., (Julier and Uhlmann, 2004;

Daum, 2005; Athans et al., 1968)). The nonlinearity of this problem increases as the

vehicle is approaching the earth surface.

The dynamic, after the discretization, is given as

x1(k) = x1(k − 1) + Tx3(k − 1)

x2(k) = x2(k − 1) + Tx4(k − 1)

x3(k) = x3(k − 1) + T [D(k − 1)x3(k − 1)

+G(k − 1)x1(k − 1) + v1(k − 1)]

x4(k) = x4(k − 1) + T [D(k − 1)x4(k − 1)

+G(k − 1)x2(k − 1) + v2(k − 1)]

x5(k) = x5(k − 1) + Tv3(k − 1)

(4.13)

where D(k) is a drag-related force term, G(k) is a gravity-related force term, and

v(k) = [v1(k), v2(k), v3(k)]
′ is zero-mean process Gaussian noise.
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The force terms are given by

D(k) = β0 exp(x5(k)) exp(
R0 −R(k)

H0

)V (k)

G(k) = − Gm0

R3(k)

where

R(k) =
√
x2
1(k) + x2

2(k)

V (k) =
√
x2
3(k) + x2

4(k)

The motion of the vehicle is measured by a radar located at (xr, yr) = (6374.05 km, 0 km):

rr(k) =
√

(x1(k)− xr)2 + (x2(k)− yr)2 + w1(k)

θ(k) = tan−1

(
x2(k)− yr
x1(k)− xr

)
+ w2(k)

where w(k) = [w1(k), w2(k)]
′ consists of two zero-mean independent Gaussian noises

with variances of 1 km and 0.017 rad, respectively.

In this two-dimensional scenario, β0 = −0.59783, H0 = 13.406 km, Gm0 =

3.9860 × 105 km3 / s2, and R0 = 6374 km. The sampling time T was 0.5 s with 150

total time indices. All the parameter adopted from (Julier and Uhlmann, 2004).

The true initial conditions for the vehicle were

xtrue
0 = [6500.4, 349.14,−1.8093,−6.7967, 0.6932]′

P true
0 = diag([10−4, 10−4, 10−4, 10−4, 10−6])

The initial conditions assumed by the filter were

xtrue
0 = [6500.4, 349.14,−1.8093,−6.7967, 1]′

P true
0 = diag([10−4, 10−4, 10−4, 10−4, 1])

The 3-point Gauss-Hermite quadrature rule was applied in both GHF and FOSGF,

so 9 sigma points were used in UF, and 243 quadrature points were used in both

GHF and FOSGF.
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For simplicity, the skewness parameter δ in the update (4.12) was set to 0, and

the third method of determining the skewness parameter was used in the prediction

(4.11), which was discussed in Section 4.3.2.

The results of 100 Monte Carlo runs are depicted in Figure 4.3 and Figure 4.4.

The FOSGF (solid line) outperforms both UF (dashed line) and GHF (dash-dot line)

regarding the position error, and the UF performs the worst since it used the fewest

quantization points. However, the FOSGF and GHF, which outperform the UF,

have similar performance in velocity.

Table 4.2 shows the computational costs of the three filtering methods in terms

of execution time. The FOSGF needs more computational resources, which stems

from the calculation of the third moments and the matrix inverse operation for the

skewness parameter (α, δ) at each step of filtering.
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Figure 4.2: Trajectory of the two-dimensional RV problem.
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Figure 4.4: Velocity RMSEs (km / s)
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Table 4.2: Computation Time (s) for One Run

Methods UF GHF FOSGF
Time 0.0138 0.0562 0.7880

Relative Time 1 4.0725 57.1014
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5

Optimized Gauss-Hermite Quadrature

5.1 Introduction

Many nonlinear problems involve multi-dimensional integrals that are not analyt-

ically tractable. For example, the Gaussian filter requires computing of the inte-

grals (5.9)–(5.15). There are different approaches for numerical integration, e.g., the

rectangular rule, the trapezoidal rule, and Simpson’s rule (Davis and Rabinowitz,

2007). Among them, the quadrature-based rules, which approximate the integral

by a weighted sum of the integrand values over grid points, are widely used, thus

reducing the numerical integration to determining the grid points and their associ-

ated weights. In particular, the Gauss-Hermite quadrature (GHQ) rule is of special

interest because of its close relationship with the Gaussian density.

The GHQ, in which the quadrature points and the weights are determined de-

terministically, can achieve accurate integral results in cases where the integrand is

close to a polynomial. Unfortunately, if the integrand is far from a polynomial of a

given degree, a large error may occur in numerical approximation (Kushner, 1967).

Therefore, in order to avoid large error, the integrand should be converted to one
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that fits the theory of GHQ better.

In this chapter, an improvement of the quadrature-based rule is proposed. We

convert the original integral to a new integral such that the new integrand is a

closely-approximated polynomial, and then employ the regular quadrature rule. In

this proposed approach, we give guidance to convert the integral in an optimal sense,

which reduces to finding the optimal quadrature points and weights. Furthermore, we

systematically formulate the optimal conversion as a nonlinear least-squares problem

with linear constraints.

Another main topic of this chapter is the application to nonlinear filtering. Re-

garding nonlinear filtering, great efforts have been made, and several nonlinear fil-

tering methods have been proposed under the framework of linear minimum mean

squared error (LMMSE) estimation. The most popular methods include the Gauss-

Hermite filter (GHF) (Ito and Xiong, 2000) using the GHQ rule, the unscented filter

(UF) (Julier and Uhlmann, 2004) using the unscented transformation (UT), the cu-

bature Kalman filter (CKF) (Arasaratnam and Haykin, 2009) using the cubature

rule, the sparse-grid quadrature filter (SGQF) (Jia et al., 2012) using the sparse-grid

quadrature (SGQ) rule, and the divided difference filter of the first and the second

order (DD1, DD2) (Nørgaard et al., 2000) using Stirling’s interpolation. A summary

of point estimation methods was given in Section 1.4.2.

Our second contribution is the development of a nonlinear filtering algorithm by

using the new quadrature-based rule. The proposed nonlinear filter potentially has

higher estimation accuracy since this rule has higher integration accuracy. Illustrative

examples are provided to verify the higher accuracy of our quadrature-based rule over

conventional rules and to show the effectiveness of our proposed quadrature-based

nonlinear filter.

This chapter is organized as follows. A brief introduction of the conventional

multi-dimensional Gauss-Hermite quadrature rules is presented in Section 5.2. The

74



new quadrature-based rule is proposed in Section 5.3, and its application to nonlinear

filtering is given in Section 5.4. Numerical simulation results are shown in Section 5.5.

5.2 Existing Quadrature-Based Rules

In this section two typical multi-dimensional quadrature-based rules, i.e., the GHQ

based on the tensor product method and the GHQ based on the sparse-grid quadra-

ture method, are briefly reviewed. They both use the same univariate quadrature

rule (Stoer and Bulirsch, 2002) to determine quadrature points. However, their main

difference is in the extension to form a multi-dimensional grid.

For simplicity, the quadrature method is illustrated w.r.t. the standard Gaus-

sian distribution, and a linear transformation is required for non-standard Gaussian

densities.

The GHQ is an approximation for the univariate integral of the following kind

1√
2π

∫ ∞

−∞
g(x)e−

x2

2 dx ≈ I1(g) ≜
m∑
i=1

wig(xi)

where the quadrature points {(xi, wi)} are determined by a quadrature rule, and this

approximation I1(g) becomes exact if g(x) is a polynomial of degree up to 2m− 1.

5.2.1 Tensor Product Method

The tensor product method is a direct extension for a multi-dimensional grid from

the univariate GHQ.

Let L1 denote the accuracy level of the univariate quadrature rule, indicating that

I1(g) is exact for all univariate polynomials g(x) of the form xk with 0 ≤ k ≤ 2L1−1.

ΨL1 denotes the set of the univariate quadrature points and weights with accuracy

level L1.

The multi-dimensional GHQ rule with accuracy level L1 at each dimension is
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∫
Rn

g(x)N (x;0, In) dx ≈
∑

(q1,w1)∈ΨL1

· · ·
∑

(qn,wn)∈ΨL1

w1 · · ·wng(q1, · · · , qn)

= In(g)

The multivariate integral approximation becomes exact if the integrand g(x) is a

polynomial of the form xi1
1 x

i2
2 · · · xin

n with 1 ≤ ik ≤ 2m− 1 for k = 1, 2, . . . , n.

The tensor product rule is an easy and without-thinking-twice way to the ex-

tension to multi-dimensional problem, however, the computational costs rise expo-

nentially as the dimension n increases and become prohibitive for high-dimensional

problems. This is known as the curse of dimensionality of deterministic numerical

integration.

5.2.2 Sparse-Grid Quadrature Method

The sparse-grid quadrature method, as explored in (Heiss and Winschel, 2008), ex-

tends the univariate quadrature rule to a multi-dimensional grid by the Smolyak rule

(Gerstner and Griebel, 1998).

Denote the accuracy level of n-variate quadrature rule as Ln, meaning that ILn(g)

is exact w.r.t. N (x;0, In) for all polynomials g(x) of the form xi1
1 x

i2
2 · · ·xin

n with∑n
j=1 ij ≤ 2Ln − 1. The corresponding sparse-grid quadrature is∫

Rn

g(x)N (x;0, In) dx ≈
L−1∑

q=L−n

∑
Ξ∈Nn

q

∑
(q1,w1)∈Ψi1

· · ·
∑

(qn,wn)∈Ψin

g(q1, · · · , qn)

·
[
(−1)L−q−1

(
L− q − 1

n− 1

) n∏
i=1

wi

]
= In,Ln(g)

where Ξ = (i1, · · · , in) and Ψij is the set of the univariate quadrature points and

weights with accuracy level ij (1 ≤ j ≤ n). The set of n-tuples of the polynomial

76



degrees is defined by

Nn
q =

{
{Ξ :

∑n
j=1 ij = n+ q} q ≥ 0

∅ q < 0

where q is an auxiliary parameter with the range [L− n, L− 1].

A detailed algorithm to generate these quadrature points can be found in (Jia

et al., 2012).

5.3 Proposed Quadrature-Based Rules

The Stone-Weierstrass theorem states that every continuous function g(x) can be

uniformly approximated by a polynomial, which means that the quadrature rule has

the potential to achieve arbitrarily high accuracy as long as there are enough quadra-

ture points. However, due to the exponential increase in the number of quadrature

points in the design of a multi-dimensional grid and computational power, usually

a univariate quadrature rule with a fixed number m of quadrature points is used.

Under these conditions, if the integrand g(x) is far from a polynomial of up to 2m−1

degrees, a large error may occur in numerical integration (Kushner, 1967). A decent

approach to circumvent this problem is, instead of the original integral, to consider

the following arrangement∫
Rn

g(x)N (x;0, In) dx =

∫
Rn

g(x)N (x;0, In)

N (x; x̄,P )
N (x; x̄,P ) dx (5.1)

The idea is to find (x̄,P ) such that

ḡ(x) =
g(x)N (x;0, In)

N (x; x̄,P )

is closest to some polynomial of up to 2m − 1 degrees. The new quadrature-based

rule uses the regular quadrature rule to approximate
∫
Rn ḡ(x)N (x; x̄,P ) dx instead

of the original integral
∫
Rn g(x)N (x;0, In) dx.
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5.3.1 One-Dimensional Case

Let g(x) : R → R and suppose the set of grid points {(xi, yi)}Ni=1 with

yi = y(xi; x̄, σ) =
g(xi)N (xi; 0, 1)

N (xi; x̄, σ2)

is given.

The problem of finding (x, σ2) in (5.1) with m predetermined quadrature points

can be formulated as a nonlinear least-squares (LS) problem with linear constraints

min
x̄,σ,B

N∑
i=1

[y(xi; x̄, σ)− P2m−1(xi,B)]2 s.t. σ > 0 (5.2)

where P2m−1(x) =
∑2m−1

i=0 βix
i, and the coefficient vector B = [β0, β1, · · · , β2m−1]

′ is

unknown.

Let Y = [y1, y2, · · · , yN ]′. Then the matrix form of (5.2) is

min
x̂,σ,B

(Y −XB)′(Y −XB) s.t. σ > 0 (5.3)

where X is an N × (2m) design matrix whose i-th row is [1, xi, x
2
i , · · · , x2m−1

i ], i =

1, 2, . . . , N .

Note that the formulation can be simplified if N ≫ 2m. The solution of problem

(5.2) for B as a function of (x, σ2) is B̂ = (X ′X)−1X ′Y . Substituting it into (5.3)

gives

min
x̂,σ

Y ′P⊥Y s.t. σ > 0 (5.4)

where P⊥ = IN −X(X ′X)−1X ′ is a projection matrix and IN is the N -dimensional

identity matrix.

The above is the so-called variable projection method (Golub and Pereyra, 2003),

which is typically used for separable nonlinear LS problems, and a routine to solve
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such a nonlinear LS problem can be used directly (e.g., the trust-region-reflective LS

algorithm).

The grid design will be discussed in Section 5.3.3.

5.3.2 Multi-Dimensional Case

The one-dimensional case can be extended to the multi-dimensional case naturally.

Let g(x) : Rn → R and suppose the set of grid points {(xi,yi)}Ni=1 with

yi = y(xi; x̄,Σ) =
g(xi)N (xi;0, In)

N (xi; x̄,Σ)

is given.

The optimization problem with m predetermined quadrature points can be for-

mulated as

min
x̄,Σ,B

(Yn −XnBn)
′(Yn −XnBn) s.t. Σ > 0 (5.5)

where Yn = [y1,y2, · · · ,yN ]
′, and the structure of the multivariate polynomial ba-

sis Xn and the coefficient vector Bn is based on the extension rule mentioned in

Section 5.2.1 or Section 5.2.2.

Let the i-th grid points be xi = [xi,1, xi,2, · · · , xi,n]
′.

(1) Tensor product method (Section 5.2.1). Each element of the i-th row of Xn

is of the form xj1
i,1x

j2
i,2 · · ·x

jn
i,n, 0 ≤ j1, j2, · · · , jn ≤ 2m − 1, and the coefficient

vector Bn is (2m)n -dimensional. For instance, if n = 2 and m = 2, the i-th

row of Xn is

(Xn)i = [1, xi,1, xi,2, x
2
i,1, xi,1xi,2, x

2
i,2, x

3
i,1, x

2
i,1xi,2, xi,1x

2
i,2, x

3
i,2, x

3
i,1xi,2, x

2
i,1x

2
i,2,

xi,1x
3
i,2, x

3
i,1x

2
i,2, x

2
i,1x

3
i,2, x

3
i,1x

3
i,2]

(2) Sparse-grid quadrature method (Section 5.2.2). Each element of the i-th row

of Xn is of the form xj1
i,1x

j2
i,2 · · ·x

jn
i,n, 0 ≤

∑n
k=1 jk ≤ 2m− 1, and the coefficient
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vector Bn is
(
n+2m−1

n

)
-dimensional. For example, if n = 2 and m = 2, the i-th

row of Xn is

(Xn)i = [1, xi,1, xi,2, xi,1xi,2, x
2
i,1, x

2
i,2, x

2
i,1xi,2, xi,1x

2
i,2, x

3
i,1, x

3
i,2] (5.6)

Problem (5.5) can be reduced if Xn has full column rank

min
x̂,Σ

Y ′
nP

⊥
n Yn s.t. Σ > 0 (5.7)

where P⊥
n = I − Xn(X

′
nXn)

−1X ′
n and I is the identity matrix of a compatible

dimension. Then (5.7) can be transformed into a nonlinear LS problem with linear

constraints as follows.

Let Σ =
√
Σ

′√
Σ. Here the Cholesky factorization is preferred, and hence

√
Σ is

an upper triangular matrix with (1+n)n
2

unknown parameters. We define a new vector

xnew = [x̄′, vec(
√
Σ)′]′, where the operator vec(·) converts matrix

√
Σ to a column

vector by a column-by-column stacking with all elements below the main diagonal

removed. Then (5.7) becomes, for any k = 1, 2, . . . , n,

min
xnew

[Yn(x
new)]′P⊥

n Yn(x
new) s.t. 1′

n+
(1+k)k

2

xnew > 0 (5.8)

where
√
Σ is n × n dimensional and k represents its column number, and vector 1i

is the n2+3n
2

-dimensional column vector with 1 at the i-th position and 0 otherwise.

Note that (5.4) is a special case of (5.8) for xnew = [x̄, σ]′. Existing nonlinear LS

methods, such as the trust-region-reflective LS algorithm, can be employed to solve

(5.8) directly.

For G(x) = [g1(x), g2(x), · · · , gm(x)]
′, (5.8) is applied at each component gi(x),

i = 1, 2, . . . ,m.

5.3.3 Grid Design

Grid design is another crucial component for the new quadrature-based rule. In

general, a good grid should have the following properties
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(1) There should be sufficiently many yet not too many points;

(2) Sample in regions with a high probability.

As a result, an adaptive grid is preferred. In this chapter a simple grid de-

sign is used—propagate the grid with the mean and covariance of the approximated

Gaussian density. Given the approximated density N (x; x̄,P ), the implementation

is to take the Cartesian product of points evenly scattered along the eigenvector

direction of the covariance P and centered at the mean x̄. The location of the

grid points at each principal axis is controlled by two parameters p and κ, where

p = Pr{(x− x̄)′P−1(x− x̄) ≤ d2} for some d > 0 and κ is the number of grid points

allotted to each principal axis. With known d and κ, the locations of each grid point

can be easily calculated.

The grid design problem is also extensively studied in point-mass nonlinear fil-

tering, and a comprehensive summary of grid-based design and implementation is

provided in (Šimandl et al., 2006).

5.4 Nonlinear Filtering Using Optimized Quadrature Rules

A representative of nonlinear filtering is the Gaussian type filter, e.g., Gaussian

filter, whose main task is to approximate the estimated quantities in the form of the

Gaussian integral. The optimized quadrature rules in Section 5.3 can be applied in

such nonlinear filtering.

For simplicity, consider the nonlinear filtering problem for a discrete-time system

(1.3) and (1.4) with additive noises,

xk+1 = f(xk, k) +wk (1.3)

zk = h(xk, k) + vk (1.4)

where wk ∼ (0,Qk) and vk ∼ (0,Rk) are white noises. We assume the initial state

x0 ∼ N (x̂0,P0) and x0, wk, and vk are mutually independent.

81



5.4.1 Gaussian Type Filtering

The Gaussian filter rests on two assumptions: i) the conditional state probability

density p(xk|zk−1) at each step k is assumed to be Gaussian; ii) the conditional

state and measurement probability density p(xk, zk|zk−1) at each step k is also jointly

Gaussian.

Let p(xk|zk−1) and p(xk|zk) denote the state densities of the prediction and the

update, respectively. A generic Gaussian filter based on the Bayesian framework is

given as follows, (Ito and Xiong, 2000),

• Prediction.

p(xk|zk−1) =

∫
Rn

1

[(2π)n detQk−1]1/2
exp

[
− 1

2
(xk − f(xk−1, k − 1))′Q−1

k−1

× (xk − f(xk−1, k − 1))
]
p(xk−1|zk−1) dxk−1

≈ N (x̂k|k−1,Pk|k−1)

where, by Fubini’s theorem, the mean and covariance are given by

x̂k|k−1 =

∫
Rn

xkp(xk|zk−1) dxk

=

∫
Rn

(∫
Rn

xk

[(2π)n detQk−1]1/2
exp

[
− 1

2
(xk − f(xk−1, k − 1))′Q−1

k−1

× (xk − f(xk−1, k − 1))
]
dxk

)
p(xk−1|zk−1) dxk−1

=

∫
Rn

f(xk−1, k − 1)p(xk−1|zk−1) dxk−1

≈
∫
Rn

f(xk−1, k − 1)N (x̂k|k−1,Pk|k−1) dxk−1 (5.9)
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and

Pk|k−1 =

∫
Rn

(xk − x̂k|k−1)(xk − x̂k|k−1)
′p(xk|zk−1) dxk

=

∫
Rn

(∫
Rn

(xk − x̂k|k−1)(xk − x̂k|k−1)
′

[(2π)n detQk−1]1/2
exp

[
− 1

2
(xk − f(xk−1, k − 1)′Q−1

k−1

× (xk − f(xk−1, k − 1))
]
dxk

)
p(xk|zk−1) dxk−1

=

∫
Rn

(f(xk−1, k − 1)− x̂k|k−1)(f(xk−1, k − 1)− x̂k|k−1)
′

× p(xk|zk−1) dxk−1 +Qk

≈
∫
Rn

(f(xk−1, k − 1)− x̂k|k−1)(f(xk−1, k − 1)− x̂k|k−1)
′

×N (x̂k|k−1,Pk|k−1) dxk−1 +Qk (5.10)

• Update

p(xk|zk) = c exp
[
− 1

2
(zk − h(xk, k))

′R−1
k (zk − h(xk, k))

]
p(xk|zk−1)

≈ N (x̂k|k,Pk|k)

with c being the normalization factor. Since

[
xk

zk

] ∣∣∣∣zk−1 ∼ N
([

x̂k|k−1

ẑk|k−1

]
,

[
Pk|k−1 Ck|k−1

C ′
k|k−1 Sk|k−1

])

The update formula of the mean and the covariance are

x̂k|k = x̂k|k−1 +Ck|k−1S
−1
k|k−1(xk − x̂k|k−1) (5.11)

Pk|k = Pk|k−1 −Ck|k−1P
−1
k|k−1C

′
k|k−1 (5.12)
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where, accordingly,

ẑk|k−1 =

∫
Rn

h(xk, k)N (x̂k|k−1,Pk|k−1) dxk (5.13)

Ck|k−1 =

∫
Rn

(xk − x̂k|k−1)(h(xk, k)− ẑk|k−1)
′N (x̂k|k−1,Pk|k−1) dxk (5.14)

Sk|k−1 =

∫
Rn

(h(xk, k)− ẑk|k−1)(h(xk, k)− ẑk|k−1)
′N (x̂k|k−1,Pk|k−1) dxk +Rk

(5.15)

Note that the LMMSE estimation is applied at the update stage (5.11)–(5.12),

and the moments involved can be approximated by employing numerical integration,

e.g., the quadrature-based rules.

5.4.2 Proposed Optimized Quadrature-Based Filter

The traditional quadrature-based filters, e.g., the Gauss-Hermite filter (GHF) (see,

e.g., (Ito and Xiong, 2000; Arasaratnam and Haykin, 2009)) and sparse-grid quadra-

ture filter (SGQF) (see, e.g., (Jia et al., 2012)), employ the multi-dimensional quadra-

ture rules, discussed in Section 5.2.1 and Section 5.2.2, to approximate the quantities

in (5.11)–(5.12) and (5.13)–(5.15) at each time. The optimized quadrature-based fil-

ter uses the optimized quadrature rules, discussed in Section 5.3.1 and Section 5.3.2,

for nonlinear filtering.

Denote the dynamic function and measurement function in (1.3) and (1.4) as

f(x) = [f1(x), f2(x), · · · , fnx(x)]
′

h(x) = [h1(x), h2(x), · · · , hnz(x)]
′

where the time index k is omitted for simplicity.

Let x̂k−1|k−1 and Pk−1|k−1 denote the estimate of the state and the corresponding

covariance at time k − 1, respectively.
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Let [ai] and [ai,j] denote a vector and a matrix whose component at i and (i, j)

is ai and ai,j, respectively. One cycle of the new quadrature-based nonlinear filter is

summarized as follows,

(1) Prediction.

Given the set of sample points {xp}Np=1 w.r.t. N (x; x̂k−1|k−1,Pk−1|k−1), Xn in

(5.6) is known.

(a) Calculate the predicted mean in (5.9):

for i = 1 to nx

Determine each element yp of Yn in (5.8) with

yp =
fi(xp)N (xp; x̂k−1|k−1,Pk−1|k−1)

N (xp;x,P )

Apply the optimization method in (5.8) with Yn and Xn to find the

optimal (x̄,P );

Use the regular quadrature rule w.r.t. N (x; x̄,P ) to find x̂i
k|k−1.

end

x̂k|k−1 = [x̂i
k|k−1]

(b) Calculate the predicted covariance in (5.12):

for i = 1 to nx and j = 1 to nx

Determine each element yp of Yn in (5.8)) with

yp =
fi(xp)fj(xp)N (xp; x̂k−1|k−1,Pk−1|k−1)

N (xp; x̄,P )

Apply the optimization method in (5.8) with Yn and Xn to find the

optimal (x̄,P );
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Use the regular quadrature rule w.r.t. N (x; x̄,P ) to find P i,j
k|k−1.

end

Pk|k−1 = [P i,j
k|k−1]− x̂k|k−1x̂

′
k|k−1 +Qk

(2) Update.

Update the new set of sample points {xp}Np=1 w.r.t. N (x; x̂k|k−1,Pk|k−1), and

then the new Xn in (5.8) is known.

(a) Calculate the predicted measurement in (5.13)

for i = 1 to nz

Determine each element yp of Yn in (5.8) with

yp =
hi(xp)N (xp; x̂k|k−1,Pk|k−1)

N (xp; x̄,P )

Apply the optimization method in (5.8) with Yn and Xn to find the

optimal (x̄,P );

Use the regular quadrature rule w.r.t. N (x; x̄,P ) to find ẑi
k|k−1.

end

ẑk|k−1 = [ẑi
k|k−1]

(b) Calculate the covariance of the predicted measurement in (5.15):

for i = 1 to nz and j = 1 to nz

Determine each element yp of Yn in (5.8) with

yp =
hi(xp)hj(xp)N (xp; x̂k|k−1,Pk|k−1)

N (xp; x̄,P )
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Apply the optimization method in (5.8) with Yn and Xn to find the

optimal x̄,P );

Use the regular quadrature rule w.r.t. N (x; x̄,P ) to find Ci,j
z .

end

Cz = [Ci,j
z ]− ẑk|k−1ẑ

′
k|k−1 +Rk

(c) Calculate the covariance of the predicted measurement in (5.14):

for i = 1 to nx and j = 1 to nz

Determine each element yp of Yn in (5.8) with

yp =
xi
phj(xp)N (xp; x̂k|k−1,Pk|k−1)

N (xp; x̄,P )

where xi
p is the i-th component of xp.

Apply the optimization method in (5.8) with Yn and Xn to find the

optimal (x̄,P );

Use the regular quadrature rule w.r.t. N (x; x̄,P ) to find Ci,j
xz.

end

Cxz = [Ci,j
xz]− x̂k|k−1ẑ

′
k|k−1

(d) Update the mean and the covariance by (5.11) and (5.12).

The Gaussian filtering algorithm can be extended easily to the Gaussian-sum

filtering framework, so we omit the details.

5.5 Simulation

In this section we demonstrate the feasibility of our proposed filter using four test

examples. We compare in performance our filter with other well-known filters—EKF,

UF, GHF, and SGQF.
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5.5.1 Static One-Dimensional Case

We consider the following integral∫ ∞

−∞
cos2(x)N (x; x̄, σ2) dx =

1

2
Re(e2ix̄−2σ2

) +
1

2

with x̄ = 0, σ = 1, and 100 grid points evenly scattered over the 3σ interval.

Table 5.1: Univariate integral L1 = 3

Methods Result Absolute Error Error Percentage
True value 0.567668

GHQ 0.675259 0.107592 18.95%
Proposed 0.607035 0.033936 5.98%

Table 5.2: Univariate integral L1 = 4

Methods Result Absolute Error Error Percentage
True value 0.567668

GHQ 0.537401 0.030265 5.33%
Proposed 0.569969 0.002301 0.41%

The numerical results of using different approximations with accuracy levels L1 =

3 and 4 are shown in Table 5.1 and Table 5.2, respectively. Both quadrature methods

have higher accuracy as L1 increases. Our quadrature-based method reduces the error

of GHF from 18.95% to 5.98% and from 5.33% to 0.41%.

5.5.2 Static Multi-Dimensional Case

Next, we consider a more complex integral with two random variables,∫∫
R2

cos2(x1) cos
2(x2)N (x; x̄,Σ) dx =

1

4
(ab+ a+ b+ 1)

where

a = Re(ei[2,0]x̄−
1
2
[2,0]Σ[2,0]′)

b = Re(ei[0,2]x̄−
1
2
[0,2]Σ[0,2]′)
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Here we choose x̄ = [x1, x2]
′ = [1,−2]′, Σ =

[
1 0.5
0.5 2

]
, p = 0.9 and κ = 15.

Table 5.3: Multivariate integral L2 = 3

Methods Result Absolute Error Error Percentage
True value 0.233095

GHQ 0.170293 0.062802 26.94%
Proposed GHQ 0.207429 0.025666 11.01%

SGQ -0.051951 0.285047 122.29%
Proposed SGQ 0.081892 0.151203 64.86%

Table 5.4: Multivariate integral L2 = 4

Methods Result Absolute Error Error Percentage
True value 0.233095

GHQ 0.242499 0.009403 4.03%
Proposed GHQ 0.236071 0.002975 1.27%

SGQ 0.497539 0.264443 113.44%
Proposed SGQ 0.227325 0.005770 2.47%

Table 5.3 and Table 5.4 show the results with L2 = 3 and 4, respectively. Our

methods have better performance compared with the conventional quadrature meth-

ods. The relative error is reduced from 26.94% to 11.01% w.r.t. GHQ and from

122.29% to 64.86% w.r.t. SGQ for L2 = 3. Note that the error of the SGQ is due

to possible non-positiveness of the weights. Similarly our quadrature-based method

lowers the error from 4.03% to 1.27% w.r.t. GHQ and from 113.44% to 2.47% w.r.t.

SGQ for L2 = 4.

5.5.3 Dynamic One-Dimensional Case

A target (see Figure 5.1) is assumed to be moving along the x-axis, and the system

model is

xk+1 = xk + 1 + wk
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The platform, starting from [0, 20], is moving horizontally at yp,k = 20m with velocity

ẋp,k = 4m / s. The measurement is the distance between the target and the platform,

zk =
√

(xk − xp,k)2 + y2p,k + vk

Here the total time is 15 s, the initial target state is x0 ∼ N (30, 50), wk ∼

N (0, 0.01), vk ∼ N (0, 0.25), p = 0.9, and κ = 100.

Figure 5.1: Platform and Target

Table 5.5: Relative Computation Time for One Run of Each Method (1D)

Methods L2 = 2 L2 = 3
EKF 1 1
UF 1.47 1.47
GHQ 1.54 1.60

Proposed GHQ 688.92 774.27

The root-mean-square errors (RMSEs) from 100 Monte Carlo runs of the EKF,

UF, GHF, and our quadrature-based nonlinear filter based on GHQ (NQF-GH) are

shown in Figure 5.2 and Figure 5.3. It can be seen that in both cases our NQF-

GH (line with squares) outperforms the other three filters in terms of estimation

accuracy, and this enhancement is more significant at accuracy level L1 = 2.
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Figure 5.2: RMSEs (accuracy level L1 = 2)

The computational loads of the four filtering methods are listed in Table 5.5

in terms of execution time relative to the EKF. The NQF-GH needs much more

computation than the others since it involves optimization.

5.5.4 Dynamic Multi-Dimensional Case

The scenario we used to test the performance of the filtering is the same as the one

in (Bellaire et al., 1995). It is a pendulum without external forces, and the equation

of motion is θ̈(t) = − g
L
sin θ(t) according to Newton’s second law. Here θ is the angle

subtended by a rod with length L, and g is the gravitational constant. The state is

xk = [θk, θ̇k]
′, and the model of motion and observation is

xk+1 =

[
xk,1 + τsxk,2 − gτs

2L
τs sinxk,1

xk,2 − gτs
2L

sinxk,1 − gτs
2L

sin(xk,1 + τsxk,2)

]
+

[
τ2s
2

τs

]
wk

zk =
[
1 0

]
xk + vk
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Figure 5.3: RMSEs (accuracy level L1 = 3)

It is assumed that x0 ∼ N
(
[1.47, 0]′,

[
5
3

0
0 0.01

] )
and g

L
= 55. Then the period of

the pendulum is T = 4
√

L
2G

∫ θ0
0

1√
cos θ−cos θ0

dθ ≈ 0.9782, and the sampling period is

τs =
1
30
T . wk ∼ N (0, 0.01) and vk ∼ N (0, 0.01), p = 0.9, and κ = 15. One swing is

considered in this scenario.

In the scenario, six filters are compared: the EKF, UF, GHF, SGQF, our quadrature-

based nonlinear filter based on GHQ (NQF-GH), and our quadrature-based nonlinear

filter based on SGQ (NQF-SGQ).

This example permits the one-step predicted mean and covariance to be calcu-

lated analytically if no process noise exists.

x̂true
1|0 =

[
1.419
−1.551

]
, P true

1|0 =

[
1.654 −0.122
−0.122 4.262

]
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The mean and covariance predicted by EKF and UK are

x̂EKF
1|0 =

[
1.354
−3.569

]
, P EKF

1|0 =

[
1.629 0.104
0.104 0.0169

]

x̂UF
1|0 =

[
1.416
−1.645

]
, P UF

1|0 =

[
1.661 0.0312
0.031 4.276

]

Our quadrature-based nonlinear filters are listed below compared with GHF and

SGQF for accuracy level L2 = 3,

1) GHF vs. NQF-GH

x̂GHF
1|0 =

[
1.416
−1.645

]
, PGHF

1|0 =

[
1.661 0.031
0.031 7.438

]

x̂NQF-GH
1|0 =

[
1.419
−1.553

]
, P NQF-GH

1|0 =

[
1.651 −0.179
−0.179 4.399

]

2) SGQF vs. NQF-SGQ

x̂SGQF
1|0 =

[
1.416
−1.645

]
, P SGQF

1|0 =

[
1.661 0.031
0.031 7.439

]

x̂NQF-SGQ
1|0 =

[
1.419
−1.554

]
, P NQF-SGQ

1|0 =

[
1.651 −0.169
−0.169 4.405

]

Our quadrature-based nonlinear filter has higher estimation accuracy in mean

and covariance at the one-step prediction, especially of the (1, 2)-th element,

(2, 1)-th element, and (2, 2)-th element of the covariance.

The results of 100 Monte Carlo runs are depicted in Figure 5.4 and Figure 5.5.

For L2 = 3, 5 sigma points were used in the UF, and 9 and 13 quadrature points

were used in the GHF and SGQF, respectively. There are three groups in L2 = 3.

The NQF-GH (dashed line with circles) and the NQF-SGQ (solid line with squares),

which both belong to the group at the lowest position, perform better than the second

group, which includes the GHF, SGQF, and UF. They are all much better than the
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Figure 5.4: RMSEs (accuracy level L2 = 3)

EKF. For L2 = 4, 16 and 29 quadrature points were used in the GHF and SGQF,

respectively. The GHF (solid line with triangles) and SGQF (solid line) outperform

the UF (solid line of diamonds) at both the initial stage and the final stage, but

they are still worse than our NQF-GH and NQF-SGQ. The improvements are more

significant when the accuracy level L2 is smaller.

Table 5.6 shows the computational costs of the six filtering methods in terms

of execution time relative to the EKF. The EKF, UF, GHF, and SGQF require

Table 5.6: Relative Computation Time for One Run of Each Method (2D)

Methods L2 = 3 L2 = 4
EKF 1 1
UF 1.02 1.04
GHQ 1.13 1.18

Proposed GHQ 233.03 239.62
SGQ 1.11 1.14

Proposed SGQ 231.32 239.03
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Figure 5.5: RMSEs (accuracy level L2 = 4)

roughly the same execution time due to the low dimensionality of this scenario.

Compared with the GHF and SGQF, the NQF-GH and NQF-SGQ need much more

computational time since they both require optimization at each step of filtering.
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6

Conclusions and Future Work

The first rule of discovery is to have
brains and good luck. The second
rule of discovery is to sit tight and
wait till you get a good idea.

George Pólya

In this dissertation, we considered state estimation with a symmetric Gaussian

assumption or an asymmetric skew-Gaussian assumption under linear/nonlinear sys-

tems, and developed three methods: the skew-Gaussian filter in linear systems, the

first-order skew-Gaussian filter based on skew-symmetric representation of distribu-

tions, and the optimized Gaussian-Hermite quadrature rule. These three results,

presented in order of importance from our perspectives, have demonstrated their

power in theory and application, and their performance in state estimation has been

analyzed. We highlight the main results obtained in Chapters 3–5.

For linear systems with the skew-Gaussian assumption, the linear skew-Gaussian

system and its filtering result have been proposed in Chapter 3. The linear skew-

Gaussian estimation provides a complete solution in an analytical form to the filtering
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problem where linear hidden truncation is involved in linear systems, and its filtering

result (i.e., the SGF), derived from the Bayesian perspective, has an exact recursive

finite-dimensional form in discrete time, which can be readily implemented by digital

devices without any approximation. Besides the practical value mentioned above, the

linear skew-Gaussian estimation also provides theoretical value for state estimation

theory. First, it expands the theory of linear Gaussian estimation by considering the

effect of skewness from the initial state and the two noises, and it degenerates to the

well-known linear Gaussian estimation if no skewness exists. Second, it is one of few

explicit exact density filters now available in discrete time, which is efficient and is

comparable to the Kalman filter. Third, by propagating the symmetric part (i.e, the

Gaussian part, exactly same as in the Kalman filter) and the skewness part (with the

calculation of the cumulative skewness from the state and the two noises) simulta-

neously but separately, it provides a theoretical framework for nonlinear estimation

where information of the third moment benefits filtering, and may inspire more re-

search on nonlinear point estimation with the third moments involved, compared

with the traditional LMMSE framework.

As for nonlinear systems where information of higher moments of the state, es-

pecially the skewness, is not negligible, the skew-symmetric representation of dis-

tributions has been adopted to approximately solve such estimation problems. The

existence of such a representation for every pdf and its simple form (i.e., the product

of a symmetric base pdf and a skewing function), make it possible to handle com-

plex modeling problems well. Moreover, the flexible skew-symmetric form guarantees

to approximate every pdf with arbitrary accuracy, which provides theoretical sup-

port for its application in nonlinear state estimation. Following this direction, the

first-order skew-Gaussian representation is employed in nonlinear estimation prob-

lems. Even though the construction of the first-order skew-Gaussian distribution

follows from the skew-symmetric representation of distributions, the first-order skew-
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Gaussian distribution has a close relationship with the skew-Gaussian density studied

in Chapter 3. More specifically, the first-order skew-Gaussian density is a special case

of the skew-Gaussian density with one-dimensional linear hidden truncation of form

x∗ ≥ 0 in (2.15). The corresponding FOSGF, based on the first-order skew-Gaussian

distribution, has been proposed in Chapter 4. The FOSGF, in which the first three

moments involved in nonlinear state estimation, can achieve better estimation ac-

curacy if higher moments carry useful information for state estimation. Simulation

results have demonstrated the effectiveness of the proposed FOSGF, and its computa-

tion consumption increased by the extra computation of the third moment compared

with the LMMSE estimation. Further work may include exploring more effective and

efficient ways to determine the skewness parameter and exploiting higher-order skew-

Gaussian nonlinear filtering methods. Moreover, nonlinear filtering based on other

symmetric base pdfs, such as student’s t-distributions and elliptical distributions, is

also noteworthy to research.

For nonlinear state estimation problems where the Gaussian filter is employed,

the optimized Gaussian-Hermite quadrature rule can be applied to achieve results of

Gaussian filters with better accuracy. It is worth noting that the optimized Gaussian-

Hermite quadrature rule was proposed to improve the approximation accuracy of

Gaussian integrals by using quadrature methods, so it has a wide applications be-

sides the application to Gaussian filtering. By converting the original Gaussian type

integral into a form that would result in higher approximation accuracy, the op-

timized GHQ involves an optimization problem of finding the optimal quadrature

points and weights. We formulated this problem as a nonlinear least-squares prob-

lem with linearly inequality constraints, so any existing standard routine, such as the

trust-region-reflective least-squares algorithm, can be directly used. With applica-

tion to nonlinear filtering problems, four simulation experiments have been presented

comparing our quadrature rule with other prevailing ones. The performance is better
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than the others, and the improvement is significant especially for cases of low degree.

The main computation consumption results from the adaptive sampling and opti-

mization with constraint at each step. Further work may includes exploring efficient

grid design and reformulating the problem to nonlinear least-squares problems with

applicable constraints such that efficient methods, e.g., the Levenberg-Marquadrt

algorithm, can be used.

Even though, by employing linearization methods, the SGF in linear systems can

be directly applied to nonlinear estimation problems with skewness being consid-

ered, it still has differences with the FOSGF with respect to application domain,

computation load and performance. First, being a special form of the skew-Gaussian

density (2.15), the first-order skew-Gaussian density (4.4) has fewer parameters to

be estimated, so the FOSGF requires less computation than the SGF employed in

linearized nonlinear systems. Second, the application of the SGF in nonlinear filter-

ing problems requires the information of skewness from the initial state, the process

noise and measurement noise, and if such information is not available or hard to

obtain, the SGF may fail to work appropriately. Third, the SGF is suitable in situa-

tions where the skewness comes from the two noises, in other words, if the skewness

of state estimation mainly comes from the nonlinear system transformation, e.g.,

systems with high nonlinearity in Gaussian noises, the FOSGF may be a better

choice. Fourth, for well-studied nonlinear systems corrupted by skewed noises, the

SGF adopted in linearized nonlinear systems, is much more capable of capture the

skewness of the state density sought after. Beside the statements made above, fur-

ther research is needed to give more detail on the performance of these two methods

based on different nonlinear scenarios.

As for the optimized GHQ rule in Chapter 5, its structure is thoroughly different

from that of the SGF and the FOSGF. Not limit to the Gaussian filtering, the

optimized GHQ rule is designed to improve all Gaussian type integrals, so it has a
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promising application in other areas, such as computer science and statistics where

the calculation of Gaussian integrals are needed. By converting the optimized GHQ

problem into a nonlinear least squares optimization, many efficient existing algorithm

can be adopted directly to obtain the optimized GHQ, which helps the optimized

GHQ rule to be developed into a standard integration method in software. One

connection between the optimized GHQ and the other two methods above is that it

can be applied to moment matching to help reduce estimation error.
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Appendix A

Proof of Proposition 2.1

Before presenting our proof, we refer to the following lemma, which plays an indis-

pensable role in our proof of Proposition 2.1.

Lemma A.1 (He et al. (2018)). Consider ux ∈ Rn, x ∈ Rn, y ∈ Rm and symmetric

positive definite matrices Σx ∈ Rn×n, Σy ∈ Rm×m. Then

N (x;ux,Σx)N (y;Ax+ b,Σy) = N (x;u∗
x,Σ

∗
x)N (y;u∗

y,Σ
∗
y)

where

u∗
x = ux + ΣxA

′(AΣxA
′ + Σy)

−1(y − Aux − b)

Σ∗
x = (Σ−1

x + A′Σ−1
y A)−1

u∗
y = Aux + b, Σ∗

y = AΣxA
′ + Σy

For brevity, in the sequel we write λ = Φ([γ1, γ2]; Γ), and (·) (or [·]) to represent

the term with parentheses (or brackets) right before it.
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Proof of Proposition 2.1.

m̄1 =

∫
Rn

xSG(x; [γ1, γ2], u,Ω) dx

=
1

λ

∫
Rn

∫ γ2

γ1

xN (x;u,Σ)N (y; ∆′Σ−1(x− u),Γ−∆′Σ−1∆) dy dx

=
1

λ

∫ γ2

γ1

∫
Rn

xN (x;u+∆Γ−1y,Σ−∆Γ−1∆′) · N (y; Γ) dy dx

=
1

λ

∫ γ2

γ1

(u+∆Γ−1y)N (y; Γ) dy

The third equality employs Lemma A.1 as well as the commutative law of multiple

integral. By removing the parentheses we get (2.12) from the fourth equality.

m̄2 =

∫
Rn

[x− E(x)][·]′SG(x; [γ1, γ2], u,Ω) dx

=
1

λ

∫
Rn

∫ γ2

γ1

[x− E(x)][·]′N (y; Γ)N (x;u+∆Γ−1y,Σ−∆Γ−1∆′) dy dx

=
1

λ

∫ γ2

γ1

∫
Rn

[
(x− u−∆Γ−1y) + ∆Γ−1(y − µ1)

]
[·]′

· N (x;u+∆Γ−1y,Σ−∆Γ−1∆′)N (y; Γ) dx dy

= Σ−∆Γ−1∆′ +
1

λ

∫ γ2

γ1

[∆Γ−1(y − µ1)][·]′N (y; Γ) dy

The last equality is obtained by integrating w.r.t. x first and observing that the

integral of the cross-term is zero. The final result (2.13) follows from expanding the

terms in the parenthesis.

102



Proof of the skewness (2.14) is more tedious.

m̄3 =

∫
Rn

[x− E(x)][·]′ ⊗ (·)′SG(x; [γ1, γ2], u,Ω) dx

=
1

λ

∫
Rn

∫ γ2

γ1

[x− E(x)][·]′ ⊗ [·]′N (y; Γ)N (x;u+∆Γ−1y,Σ−∆Γ−1∆′) dy dx

=
1

λ

∫
Rn

∫ γ2

γ1

{(x− u−∆Γ−1y) + [u+∆Γ−1y − E(x)]}{·}′ ⊗ {·}′

· N (x;u+∆Γ−1y,Σ−∆Γ−1∆′)N (y; Γ) dy dx

The above double integral can be simplified as

1

λ

∫ γ2

γ1

(∆Γ−1y −∆Γ−1µ1) vec
′[(·)(·)′]N (y; Γ) dy

=
1

λ
∆Γ−1

∫ γ2

γ1

(y − µ1) vec
′[(y − µ1)(y − µ1)

′](∆Γ−1 ⊗∆Γ−1)′N (y; Γ) dy

The equality is from the following relation

vec(ABC) = (C ′ ⊗ A) vec(B)

for any matrices A,B and C of compatible dimensions (Kollo, 2005, Proposition

1.3.14, p.89). Further, after removing the parentheses, the result (2.14) follows im-

mediately.

An alternative proof can be observed by using Property 2.5 and applying the

properties of moments of sum of independent random variables. We also verified

(2.12)–(2.14) by computer simulations with many examples.

Another way of proving Proposition 2.1 is given below, and it can be easily

extended to derive the higher moments.

Proof. By Property 2.5, x can be decomposed into two independent variables, i.e.,

x = v1 +∆Γ−1v
(γ1,γ2)
0
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where

v0 ∼ N (0,Γ) v1 ∼ N (u,Σ−∆Γ−1∆′)

Then

E(x) = E(v1 +∆Γ−1v
(γ1,γ2)
0 ) = u+∆Γ−1E(v

(γ1,γ2)
0 ) = u+∆Γ−1µ1

where µ1 is the mean of v
(γ1,γ2)
0 shown in (2.9).

cov(x) = cov(v1 +∆Γ−1vγ1,γ20 )

= cov(v1) + cov(∆Γ−1vγ1,γ20 )

= Σ−∆Γ−1∆′ +∆Γ−1 cov(v
(γ1,γ2)
0 )Γ−1∆′

= Σ−∆Γ−1(Γ + µ1µ
′
1 − µ2)Γ

−1∆′

where µ2 is the the second (non-central) moment of v
(γ1,γ2)
0 shown in (2.10).

E[(x− E(x))[(x− E(x))′]⊗2] = E[(v̌1 +∆Γ−1v̌
(γ1,γ2)
0 )[(·)′]⊗2]

= E(∆Γ−1y̌[(∆Γ−1y̌)′]⊗2)

where (̌·) is the zero-mean part and y̌ = v̌
(γ1,γ2)
0 . Note that the last equation above

is of the exact form of the last integral on the right column of page 10. Since

(A⊗B)(C ⊗D) = (AC)⊗ (BD) for conforming matrices

we have

E(∆Γ−1y̌[(∆Γ−1y̌)′]⊗2) = ∆Γ−1E[y̌(y̌′)⊗2](∆Γ−1 ⊗∆Γ−1)′

Expanding the terms in expectation, and use

(A⊗B)′ = A′ ⊗B′ a′ ⊗ b = ba′ = b⊗ a′ if a, b are vectors
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we have

E[y̌(y̌′)⊗2] = E[(y − µ1)(y
′ ⊗ y′ − µ′

1 ⊗ y′ − y′ ⊗ µ′
1 + µ′

1 ⊗ µ′
1)]

= E(yy′ ⊗ y′ − yµ′
1 ⊗ y′ − yy′ ⊗ µ′

1 + yµ′
1 ⊗ µ′

1 − µ1y
′ ⊗ y′

+ µ1µ
′
1 ⊗ y′ + µ1y

′ ⊗ µ′
1 − µ1µ

′
1 ⊗ µ′

1)

= E(yµ′
1 ⊗ µ′

1 + µ1µ
′
1 ⊗ y′ − µ1µ

′
1 ⊗ µ′

1)− E(yµ′
1 ⊗ y′ + yy′ ⊗ µ′

1 + µ1y
′ ⊗ y′)

+ E(yy′ ⊗ y′)

= 2µ1 vec
′(µ1µ

′
1)− [µ1 vec

′(µ2) + µ2 ⊗ µ′
1 + µ′

1 ⊗ µ2] + µ3

where µ3 is the the third (non-central) moment of v
(γ1,γ2)
0 shown in (2.11).
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Appendix B

Proofs of Property 2.3

By Properties 2.1 and 2.4, the jointly skew-Gaussian density pX1,X2(x1, x2) and its

marginal density pX2(x2) are of the forms

pυ1,υ2|γ1≤υ∗≤γ2(x1, x2), pυ2|γ1≤υ∗≤γ2(x2)

where υ∗

υ1
υ2

 ∼ N

( 0
u1

u2

 ,

 Γ ∆′
1 ∆′

2

∆1 Σ1 Σ′
21

∆2 Σ21 Σ2

) (B.1)

on the condition γ1 ≤ υ∗ ≤ γ2. By Bayes’ rule, the density of x1 conditioned on x2

is

pυ1|υ2,γ1≤υ∗≤γ2(x1 | x2) =
pυ1,υ2|γ1≤υ∗≤γ2(x1, x2)

pυ2|γ1≤υ∗≤γ2(x2)

From (B.1),

([
υ∗

υ1

] ∣∣∣∣ υ2) ∼ N
([

∆′
2Σ

−1
2 (υ2 − u2)
u1|2

]
,

[
Γ1|2 ∆′

1|2
∆1|2 Σ1|2

])
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with u1|2, Σ1|2, ∆1|2 and Γ1|2 given in Property 2.3. Apply Property 2.4 on the

following transformed form

([
υ∗∗

υ1

] ∣∣∣∣ υ2) ∼ N
([

0
u1|2

]
,

[
Γ1|2 ∆′

1|2
∆1|2 Σ1|2

])
(B.2)

with γ1 − ∆′
2Σ

−1
2 (υ2 − u2) ≤ υ∗∗ ≤ γ2 − ∆′

2Σ
−1
2 (υ2 − u2). Property 2.3 is easily

obtained by letting υ1 = x1, υ2 = x2 and applying Property 2.4 to (B.2).
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Appendix C

Proofs of Theorems 3.1 and 3.2

In the sequel we present a proof of Theorem 3.2 first, and then a proof of Theorem 3.1.

Proof of Theorem 3.2. The proof is by induction. It is easy to check the base case

that (3.13) is true.

For time k ≥ 1, given the system (3.1),

xk = Φk,0x0 +
k∑

i=1

Φk,iGi−1wi−1 ≜ Φk,0x0 + wk,0

zk =

HkΦk,0
...

H1Φ1,0

x0 +

Hkwk,0 + vk
...

H1w1,0 + v1


≜ Okx0 + ζk

where Φi,j is the state transition matrix from xj to xi:

Φi,j =

{
Fi−1 · · ·Fj i > j

I i = j

and Ok is termed the observability map.
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By Properties 2.2 and 2.6,

[
xk

zk

]
∼ SG

(γx
1 , γ

x
2

γw
1 , γ

w
2

γv
1 , γ

v
2

 ,

[
Φk,0u0

Oku0

]
,Ω∗

)

where

Ω∗ =

 Γ ∆′
xk

∆′
zk

∆xk
Σxk

Σxkzk

∆zk (Σxkzk)
′ Σzk

 (C.1)

and

Γ = diag(Γx,Γw,Γv)

[
∆xk

∆zk

]
=


Φk,0∆

x
0

∑k
i=1Φk,iGi−1∆

w
i−1 0

HkΦk,0∆
x
0 Hk

∑k
i=1Φk,iGi−1∆

w
i−1 ∆v

k
...

...
...

H1Φ1,0∆
x
0 H1Φ1,1G0∆

w
0 ∆v

1


≜

[
Φk,0∆

x
0

∑k
i=1Φk,iGi−1∆

w
i−1 0

∆x
zk

∆w
zk

∆v
zk

]

From Property 2.4, Ω∗ in (C.1) is the genuine covariance of

[
(x∗

0)
′, (w∗)′, (v∗)′, (xk)

′, (zk)′
]′

Note that the lower right block of (C.1) has the identical covariance structure with

the covariance between the state xk and zk in the Kalman filter. Therefore, the same

triangular factorization of covariance can be applied algebraically (see, e.g., (Kailath

et al., 2000, p.323-325)). Thus,[
Σxk

Σxkzk

(Σxkzk)
′ Σzk

]
=

[
Φk,0Σ0Φ

′
k,0 + Σwk,0

Σxkek(U
k)′

Uk(Σxkek)
′ UkSk(Uk)′

]
(C.2)
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where

Σwk,0
=

k∑
i=1

Φk,iGi−1Qi−1G
′
i−1Φ

′
k,i

Σxkek =
[
Φk,kKkSk, · · · ,Φk,1K1S1

]
=
[
Φk,kKkSk,Σxkek−1

]
(C.3)

Sk = diag(Sk, · · · , S1)

Uk =


I HkΦk,kK

p
k−1 · · · HkΦk,2K

p
1

I · · · Hk−1Φk−1,2K
p
1

. . .
...
I


Also the inverse of Uk exists and is

(Uk)−1 =


I −HkΦ

p
k,kK

p
k−1 · · · −HkΦ

p
k,2K

p
1

I · · · −Hk−1Φ
p
k−1,2K

p
1

. . .
...
I


where Φp

m,n is defined by (3.8). Further, Φp
m,n and Φm,n are related as follows: For

m > n,

Φp
m,n = Φm,n −

m−n∑
i=1

Φm,n+iK
p
n+i−1Hn+i−1Φ

p
n+i−1,n

= Φm,n −
m−n∑
i=1

Φp
m,n+iK

p
n+i−1Hn+i−1Φn+i−1,n

(C.4)

and

Φp
n,n = Φn,n = I, ∀n ∈ N

The factorization in (C.2) allows us to write the following global expression which

relates ûi|i−1 to zi,

(Uk)−1(zk −Oku0) = [zi −Hiûi|i−1]
k
i=1 (C.5)
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where [·]ki=1 stands for a k-vector of which the ith element has the form in the bracket.

Thus, the Gaussian part follows from Property 2.3 that

ûk|k = Φk,0u0 + Σxkek(U
k)′(UkSk(Uk)′)−1(zk −Oku0)

= Φk,0u0 +
[
Kk, Fk−1Σxk−1ek−1(Sk−1)−1

]
(Uk)−1(zk −Oku0)

= Φk,0u0 + Fk−1Σxk−1ek−1(Sk−1)−1(Uk−1)−1(zk−1 −Ok−1u0) +Kk(zk −Hkûk|k−1)

= ûk|k−1 +Kk(zk −Hkûk|k−1)

Σk|k = Σxk
− ΣxkzkΣzkΣ

′
xkzk

= Fk−1Σxk−1
F ′
k−1 +Gk−1Qk−1G

′
k−1 −

[
KkSk Fk−1Σxk−1ek−1Sk−1

]
(Sk)−1[·]′

= Fk−1Σxk−1
F ′
k−1 +Gk−1Qk−1G

′
k−1 −KkSkK

′
k − Fk−1Σxk−1ek−1(Sk−1)−1(Σxk−1ek−1)′F ′

k−1

= Fk−1Σk−1|k−1F
′
k−1 +Gk−1Qk−1G

′
k−1 −KkSkK

′
k

= Σk|k−1 −KkSkK
′
k

For the skewness part, first observe that

(Uk)−1∆zk = (Uk)−1
[
∆x

zk
,∆w

zk
,∆v

zk

]
(C.6)

where the terms in (C.6) follow from (C.4) as

(Uk)−1∆x
zk = [HiΦ

p
i,0∆

x
0 ]

k
i=1 (C.7)

(Uk)−1∆w
zk = [Hi

i∑
j=1

Φp
i,jGj−1∆

w
j−1]

k
i=1 (C.8)

(Uk)−1∆v
zk = [∆v

i −Hi

i∑
j=1

Φp
i,jK

p
j−1∆

v
j−1]

k
i=1 (C.9)

Here (C.7) and (C.8) are obtained by applying the second equality in (C.4), and

(C.9) follows directly from matrix multiplication. Also, Kp
0 = 0 and ∆v

0 = 0 are used

to deal with the initial terms.

Let

∆k|k−1 ≜
[
∆x

k|k−1,∆
w
k|k−1,∆

v
k|k−1

]
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From (C.4), (C.7)–(C.9), and

Σxkek−1 = Fk−1Σxk−1ek−1 =
[
Φk,k−1Kk−1Sk−1, · · · ,Φk,1K1S1

]
=
[
Φk,kK

p
k−1Sk−1, · · · ,Φk,2K

p
1S1

]
it admits that, by applying Property 2.3 to (C.2),

∆x
k|k−1 = Φk,0∆

x
0 − Σxkek−1(Sk−1)−1(Uk−1)−1∆x

zk−1

= Φk,0∆
x
0 −

k∑
i=2

Φk,iK
p
i−1Hi−1Φ

p
i−1,0∆

x
0

= Φp
k,0∆

x
0

∆w
k|k−1 =

k∑
i=1

Φk,iGi−1∆
w
i−1 − Σxkek−1(Sk−1)−1(Uk−1)−1∆w

zk−1

=
k∑

i=1

Φk,iGi−1∆
w
i−1 −

k∑
i=2

Φk,iK
p
i−1Hi−1

i−1∑
j=1

Φp
i−1,jGj−1∆

w
j−1

=
k∑

i=1

Φp
k,iGi−1∆

w
i−1

∆v
k|k−1 = 0− Σxkek−1(Sk−1)−1(Uk−1)−1∆v

zk−1

= −
k∑

i=2

Φk,iK
p
i−1∆

v
i−1 +

k∑
i=2

Φk,iK
p
i−1Hi−1

i−1∑
j=1

Φp
i−1,jK

p
j−1∆

v
j−1

= −
k∑

i=1

Φp
k,iK

p
i−1∆

v
i−1

(C.10)

where the final results of ∆x
k|k−1, ∆

w
k|k−1 and ∆v

k|k−1 are obtained by employing the

first equality in (C.4) and use the fact that Kp
0 = 0, ∆w

0 = 0 and ∆v
0 = 0.

Let

∆k|k ≜
[
∆x

k|k,∆
w
k|k,∆

v
k|k
]

(C.11)
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where the terms in (C.11) follows from (C.3), (C.7)–(C.9) and (C.10) as

∆x
k|k = Φk,0∆

x
0 − Σxkek(S

k)−1(Uk)−1∆x
zk

= ∆x
k|k−1 −KkHkΦ

p
k,0∆

x
0

= (I −KkHk)∆
x
k|k−1

∆w
k|k =

k∑
i=1

Φk,iGi−1∆
w
i−1 − Σxkek(S

k)−1(Uk)−1∆w
zk

= ∆w
k|k−1 −KkHk

k∑
i=1

Φp
k,iGi−1∆

w
i−1

= (I −KkHk)∆
w
k|k−1

∆v
k|k = 0− Σxkek(S

k)−1(Uk)−1∆v
zk

= ∆v
k|k−1 −Kk(∆

v
k −Hk

k∑
i=1

Φp
k,iK

p
i−1∆

v
i−1)

= (I −KkHk)∆
v
k|k−1 −Kk∆

v
k

By (C.5) and (C.7)–(C.9), it turns out that, for i = 1, 2,

γ̂i,k|k = γi −∆′
zk(U

kSk(Uk)′)−1(zk −Oku0)

= γi − ((Uk−1)−1∆zk−1)′(Sk−1)−1(Uk−1)−1(zk−1 −Ok−1u0)

−

 (Hk∆
x
k|k−1)

′

(Hk∆
w
k|k−1)

′

(∆v
k +Hk∆

v
k|k−1)

′

S−1
k (zk −Hkûk|k−1)

= γ̂i,k|k−1 −Ks
k(zk −Hkûk|k−1)

113



where γi =
[
(γx

i )
′, (γw

i )
′, (γv

i )
′]′ and

Γk|k = Γ−∆′
zk(U

kSk(Uk)′)−1∆zk

= Γ− ((Uk)−1∆zk)
′(Sk)−1(Uk)−1∆zk

= Γ− ((Uk−1)−1∆zk−1)′(Sk−1)−1(Uk−1)−1∆zk−1

−

 (Hk∆
x
k|k−1)

′

(Hk∆
w
k|k−1)

′

(∆v
k +Hk∆

v
k|k−1)

′

S−1
k

 (Hk∆
x
k|k−1)

′

(Hk∆
w
k|k−1)

′

(∆v
k +Hk∆

v
k|k−1)

′

′

= Γk|k−1 −Ks
kSk(K

s
k)

′

Proof of Theorem 3.1. Following the same procedure as shown in the proof of The-

orem 3.2, by Σxkek−1 = Fk−1Σxk−1ek−1 , we have for the Gaussian part,

ûk|k−1 = Φk,0u0 + Σxkek−1(Sk−1)−1(Uk−1)−1(zk−1 −Ok−1u0)

= Fk−1ûk−1|k−1

Σk|k−1 = Σxk
− Σxkzk−1Σzk−1Σ′

xkzk−1

= Fk−1Σxk−1
F ′
k−1 +Gk−1Qk−1G

′
k−1 − Σxkek−1(Sk−1)−1Sk−1(Σxkek−1(Sk−1)−1)′

= Fk−1Σk−1|k−1F
′
k−1 +Gk−1Qk−1G

′
k−1
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and for the skewness part

∆x
k|k−1 = Φk,0∆

x
0 − Σxkek−1(Sk−1)−1(Uk−1)−1∆x

zk−1

= Fk−1∆
x
k−1|k−1

∆w
k|k−1 =

k∑
i=1

Φk,iGi−1∆
w
i−1 − Σxkek−1(Sk−1)−1(Uk−1)−1∆w

zk

= Fk−1

k−1∑
i=1

Φk−1,iGi−1∆
w
i−1 +Gk−1∆

w
k−1 − Fk−1Σxk−1ek−1(Sk−1)−1(Uk−1)−1∆w

zk

= Fk−1∆
w
k−1|k−1 +Gk−1∆

w
k−1

∆v
k|k−1 = 0− Σxkek−1(Sk−1)−1(Uk−1)−1∆v

zk−1

= 0− Fk−1Σxk−1ek−1(Sk−1)−1(Uk−1)−1∆v
zk−1

= Fk−1∆
v
k−1|k−1

Γk|k−1 = Γ− ((Uk−1)−1∆zk−1)′(Sk−1)−1(Uk−1)−1∆zk−1

= Γk−1|k−1

and, for i = 1, 2,

γ̂i,k|k−1 = γi − ((Uk−1)−1∆zk−1)′(Sk−1)−1(Uk−1)−1(zk−1 −Ok−1u0)

= γ̂i,k−1|k−1
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Appendix D

More Details of Theorems 3.1 and 3.2

Proof of Theorems 3.1 and 3.2. The proof is by induction. It is easy to check that

the base case (3.13) is true.

For time k ≥ 1, given the system (3.1),

xk = Φk,0x0 +
k∑

i=1

Φk,iGi−1wi−1 ≜ Φk,0x0 + wk,0

zk =

HkΦk,0
...

H1Φ1,0

x0 +

 Hkwk,0 + vk
...

H1G0w0 + v1


≜ Okx0 + ζk

where Φi,j is the state transition matrix from xj to xi:

Φi,j =

{
Fi−1 · · ·Fj i > j

I i = j

and Ok is termed the observability map. Then,

[
xk

zk

]
= Fk

 x0

wk−1

vk

 (D.1)
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where

wk−1 =
[
(wk−1)

′, · · · , (w0)
′]′

vk =
[
(vk)

′, · · · , (v1)′
]′

and

Fk =


Φk,0 Φk,kGk−1 Φk,k−1Gk−2 · · · Φk,1G0 0 0 · · · 0

HkΦk,0 HkΦk,kGk−1 HkΦk,k−1Gk−2 · · · HkΦk,1G0 I 0 · · · 0
Hk−1Φk−1,0 0 Hk−1Φk−1,k−1Gk−2 · · · Hk−1Φk−1,1G0 0 I · · · 0

...
...

... · · · ...
...

...
. . .

...
H1Φ1,0 0 0 · · · H1Φ1,1G0 0 0 · · · I


From Property 2.6,  x0

wk−1

vk

 ∼ SG(

 γx
1

γw
1

γv
1

,
γx
2

γw
2

γv
2

 ,

u0

0
0

 ,Ω)

where

Ω =


Γx (∆x

0)
′

Γw (∆w,k−1)′

Γv (∆v,k)′

∆x
0 Σx

0

∆w,k−1 Qk−1

∆v,k Rk


and

∆w,k−1 =
[
(∆w

k−1)
′, (∆w

k−2)
′, · · · , (∆w

0 )
′]′

∆v,k =
[
(∆v

k)
′, (∆v

k−1)
′, · · · , (∆v

1)
′]′

Qk−1 = diag([Qk−1, · · · , Q0])

Rk = diag([Rk, · · · , R1])

Since (D.1) is linear, the following is from Property 2.2

[
xk

zk

]
∼ SG(

 γx
1

γw
1

γv
1

,
γx
2

γw
2

γv
2

 ,

[
Φk,0u0

Oku0

]
,Ω∗) (D.2)
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where

Ω∗ =

 Γ ∆′
xk

∆′
zk

∆xk
Σxk

Σxkzk

∆zk (Σxkzk)
′ Σzk


and

Γ = diag(Γx,Γw,Γv)

[
∆xk

∆zk

]
=


Φk,0∆

x
0

∑k
i=1Φk,iGi−1∆

w
i−1 0

HkΦk,0∆
x
0 Hk

∑k
i=1Φk,iGi−1∆

w
i−1 ∆v

k
...

...
...

H1Φ1,0∆
x
0 H1Φ1,1G0∆

w
0 ∆v

1


≜

[
Φk,0∆

x
0

∑k
i=1Φk,iGi−1∆

w
i−1 0

∆x
zk

∆w
zk

∆v
zk

]

Note that the lower right block of Ω∗ has the identical covariance structure with the

covariance between the state xk and zk in the Kalman filter. Therefore, the same

triangular factorization of covariance can be applied algebraically (see, e.g., (Kailath

et al., 2000, p.323-325)). Thus,[
Σxk

Σxkzk

(Σxkzk)
′ Σzk

]
=

[
Φk,0Σ0Φ

′
k,0 + Σwk,0

Σxkek(U
k)′

Uk(Σxkek)
′ UkSk(Uk)′

]

where

Σwk,0
=

k∑
i=1

Φk,iGi−1Qi−1G
′
i−1Φ

′
k,i

Σxkek =
[
Φk,kKkSk, · · · ,Φk,1K1S1

]
=
[
Φk,kKkSk,Σxkek−1

]
Sk = diag(Sk, · · · , S1)

Uk =


I HkΦk,kK

p
k−1 HkΦk,k−1K

p
k−2 · · · HkΦk,2K

p
1

I Hk−1Φk−1,k−1K
p
k−2 · · · Hk−1Φk−1,2K

p
1

. . .
...
I


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The inverse of Uk exists and is

(Uk)−1 =


I −HkΦ

p
k,kK

p
k−1 −HkΦ

p
k,k−1K

p
k−2 · · · −HkΦ

p
k,2K

p
1

I −Hk−1Φ
p
k−1,k−1K

p
k−2 · · · −Hk−1Φ

p
k−1,2K

p
1

. . .
...
I


Later we will use (Uk)−1 and the following relation to derive our main results.

Lemma D.1. For m > n, we have

Φp
m,n = Φm,n −

m−n∑
i=1

Φm,n+iK
p
n+i−1Hn+i−1Φ

p
n+i−1,n

= Φm,n −
m−n∑
i=1

Φp
m,n+iK

p
n+i−1Hn+i−1Φn+i−1,n

and

Φp
n,n = Φn,n = I, ∀n ∈ N

Proof of Lemma D.1. For the first equality, by expanding the summation in increas-

ing order w.r.t. i,

RHS = Φm,n − Φm,n+1K
p
nHnΦ

p
n,n − · · ·

= Φm,n+1(Fn −Kp
nHn)− · · ·

= Φm,n+1Φ
p
n+1,n − Φm,n+2K

p
n+1Hn+1Φ

p
n+1,n − · · ·

= Φm,n+2(Fn+1 −Kp
n+1Hn+1)Φ

p
n+1,n − · · ·

= Φm,n+2Φ
p
n+2,n − Φm,n+3K

p
n+2Hn+2Φ

p
n+2,n − · · ·

...

= Φm,m−1Φ
p
m−1,n − Φm,mK

p
m−1Hm−1Φ

p
m−1,n

= Φm,mΦ
p
m,n

= LHS
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The second equality follows from F p
k = Fk − Kp

kHk and Φp
k,k = I for ∀k ∈ N, the

third equality is from Φp
n+1,n = F p

n . By continuing in the same manner, we get the

result.

For the second equality, analogous procedure applied by expanding the summa-

tion in decreasing order w.r.t. i.

RHS = Φm,n − Φp
m,mK

p
m−1Hm−1Φm−1,n − · · ·

= (Fm−1 −Kp
m−1Hm−1)Φm−1,n − · · ·

= Φp
m,m−1Φm−1,n − Φp

m,m−1K
p
m−2Hm−2Φm−2,n − · · ·

= Φp
m,m−1(Fm−2 −Kp

m−2Hm−2)Φm−2,n − · · ·

= Φp
m,m−2Φm−2,n − Φp

m,m−2K
p
m−3Hm−3Φm−3,n − · · ·

...

= Φp
m,n+1Φn+1,n − Φp

m,n+1K
p
nHnΦn,n

= Φp
m,nΦm,m

= LHS

The second relation is from the definition of Φp
n,n and Φn,n.

The factorization in (C.2) allows us to write the following global expression which

relates ûi|i−1 to zi,

(Uk)−1(zk −Oku0) = [zi −Hiûi|i−1]
k
i=1 (C.5)

where [·]ki=1 stands for a k-vector of which the ith element has the form in the bracket.

Proof of (C.5). The proof is by induction.

For n = 1, we have

z1 −H1F0u0 = z1 −H1û1|0

holds since û1|0 = F0u0.
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Suppose that for n ≤ k − 1, the relation, i.e.,

(Uk−1)−1(zk−1 −Ok−1u0) = [zi −Hiûi|i−1]
k−1
i=1

holds. Then for n = k,

LHS = (zk −HkΦk,0u0)−Hk

[
Φp

k,kK
p
k−1,Φ

p
k,k−1K

p
k−2, · · · ,Φ

p
k,2K

p
1

]
(zk−1 −Ok−1u0)

Note that

[
Φp

k,kK
p
k−1,Φ

p
k,k−1K

p
k−2, · · · ,Φ

p
k,2K

p
1

]
=
[
Φk,kK

p
k−1, · · · ,Φk,2K

p
1

]
(Uk−1)−1 (D.3)

by applying the first equality in Lemma D.1 to the RHS of the above. Then,

LHS = zk −Hk

(
Φk,0u0 +

[
Φk,kK

p
k−1, · · · ,Φk,2K

p
1

]
[zi −Hiûi|i−1]

k−1
i=1

)
by substituting (D.3) above and using the assumption that it holds for n ≤ k − 1.

Also by the recursion between ûi|i−1 and ûi−1|i−2,

ûk|k−1 = Fk−1ûk−1|k−2 +Kp
k−1(zk−1 −Hk−1ûk−1|k−2)

= Fk−1Fk−2ûk−2|k−3 + Fk−1K
p
k−2(zk−2 −Hk−2ûk−2|k−3)

+Kp
k−1(zk−1 −Hk−1ûk−1|k−2)

...

= Φk,0u0 +
[
Φk,kK

p
k−1, · · · ,Φk,2K

p
1

]
[zi −Hiûi|i−1]

k−1
i=1 (D.4)

Thus, substituting (D.4),

LHS = zk −Hkûk|k−1 = RHS

• The Gaussian part

The derivation of ûk|k follows from, in Property 2.3,

u1|2 = u1 + Σ12Σ
−1
2 (x2 − u2)
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applying Property 2.3 to (D.2) and note that the triangular factorization in

(C.2),

ûk|k = Φk,0u0 + Σxkzk(Σzk)
−1(zk −Oku0)

= Φk,0u0 + Σxkek(U
k)′(UkSk(Uk)′)−1(zk −Oku0)

= Φk,0u0 + Σxkek(S
k)−1(Uk)−1(zk −Oku0)

= Φk,0u0 +
[
Φk,kKk, · · · ,Φk,1K1

]
[zi −Hiûi|i−1]

k
i=1

= Φk,0u0 +
[
Φk,kK

p
k−1, · · · ,Φk,2K

p
1

]
[zi −Hiûi|i−1]

k−1
i=1 +Kk(zk −Hkûk|k−1)

= ûk|k−1 +Kk(zk −Hkûk|k−1)

The second and third equalities hold because of the triangular factorization in

(C.2) and (C.3). The second last equality holds because of (D.4).

The derivation of Σk|k also follows from, in Property 2.3,

Σ1|2 = Σ1 − Σ12Σ
−1
2 Σ21

as

Σk|k = Σxk
− ΣxkzkΣzkΣ

′
xkzk

= Fk−1Σxk−1
F ′
k−1 +Gk−1Qk−1G

′
k−1 − Σxkek(U

k)′(UkSk(Uk)′)−1Uk(Σxkek)
′

= Fk−1Σxk−1
F ′
k−1 +Gk−1Qk−1G

′
k−1 − Σxkek(S

k)−1(Σxkek)
′

= Fk−1Σxk−1
F ′
k−1 +Gk−1Qk−1G

′
k−1 −

[
KkSk, Fk−1Σxk−1ek−1Sk−1

]
(Sk)−1[·]′

= Fk−1(Σxk−1
− Σxk−1ek−1(Sk−1)−1Σ′

xk−1ek−1)F
′
k−1

+Gk−1Qk−1G
′
k−1 −KkSkK

′
k

= Fk−1Σk−1|k−1F
′
k−1 +Gk−1Qk−1G

′
k−1 −KkSkK

′
k

= Σk|k−1 −KkSkK
′
k

The fourth equality holds due to (D.4), and the second last equality holds by

observing the structure of Σk−1|k−1.
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• The skewness part

First we prove that

(Uk)−1∆zk = (Uk)−1
[
∆x

zk
,∆w

zk
,∆v

zk

]
=
[
HiΦ

p
i,0∆

x
0 , Hi

∑i
j=1Φ

p
i,jGj−1∆

w
j−1, ∆v

i −Hi

∑i
j=1Φ

p
i,jK

p
j−1∆

v
j−1

]k
i=1

Here is a derivation for:

– First term

(Uk)−1∆x
zk = (Uk)−1[HiΦi,0∆

x
0 ]

k
i=1

=


I −HkΦ

p
k,kK

p
k−1 · · · −HkΦ

p
k,2K

p
1

I · · · −Hk−1Φ
p
k−1,2K

p
1

. . .
...
I




HkΦk,0∆
x
0

Hk−1Φk−1,0∆
x
0

...
H1Φ1,0∆

x
0


= [HiΦi,0∆

x
0 −Hi

i∑
j=2

Φp
i,jK

p
j−1Hj−1Φj−1,0∆

x
0 ]

k
i=1

= [HiΦi,0∆
x
0 −Hi

i∑
j=2

Φp
i,jK

p
j−1Hj−1Φj−1,0∆

x
0 −HiΦ

p
i,1 Kp

0︸︷︷︸
0

H0Φ0,0∆
x
0 ]

k
i=1

= [HiΦi,0∆
x
0 −Hi

i∑
j=1

Φp
i,jK

p
j−1Hj−1Φj−1,0∆

x
0 ]

k
i=1

= [HiΦ
p
i,0∆

x
0 ]

k
i=1

In each row × column operation in the second line, the second equality in

(C.4) (Lemma A.1) is applied, and note that Kp
0 = 0 (since no prediction

happens from x−1 to x0), so we can add one more term in each row of the

fourth line.
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– Second term

(Uk)−1∆w
zk = (Uk)−1[Hi

i∑
j=1

Φi,jGj−1∆
w
j−1]

k
i=1

= (Uk)−1


HkΦk,k HkΦk,k−1 · · · HkΦk,1

0 Hk−1Φk−1,k−1 · · · Hk−1Φk−1,1
...

...
. . .

...
0 0 0 H1Φ1,1



Gk−1∆

w
k−1

Gk−2∆
w
k−2

...
G0∆

w
0



=


HkΦ

p
k,k HkΦ

p
k,k−1 · · · HkΦ

p
k,1

0 Hk−1Φ
p
k−1,k−1 · · · Hk−1Φ

p
k−1,1

...
... · · · ...

0 0 · · · H1Φ
p
1,1



Gk−1∆

w
k−1

Gk−2∆
w
k−2

...
G0∆

w
0


= [Hi

i∑
j=1

Φp
i,jGj−1∆

w
j−1]

k
i=1

The second equality of (C.4) is applied again to get the matrix at the

third line.

– Third term

(Uk)−1∆v
zk =


I −HkΦ

p
k,kK

p
k−1 · · · −HkΦ

p
k,2K

p
1

I · · · −Hk−1Φ
p
k−1,2K

p
1

. . .
...
I




∆v
k

∆v
k−1
...
∆v

1


= [∆v

i −Hi

i∑
j=2

Φp
i,jK

p
j−1∆

v
j−1]

k
i=1

= [∆v
i −Hi

i∑
j=2

Φp
i,jK

p
j−1∆

v
j−1 −HiΦ

p
i,1K

p
0∆

v
0︸ ︷︷ ︸

0

]ki=1

= [∆v
i −Hi

i∑
j=1

Φp
i,jK

p
j−1∆

v
j−1]

k
i=1
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Kp
0∆

v
0 = 0 because bothKp

0 and ∆v
0 are equal to 0, since neither prediction

nor measure is available at the initial time.

Proof of the batch form (3.10), (3.11), and (3.12). Now we prove the batch form

∆k|k−1.

By Property 2.3,

∆k|k−1 = Φk,0∆xk
− Σxkzk−1(Σzk−1)−1∆zk−1

= Φk,0∆xk
− Σxkek−1(Sk−1)−1(Uk−1)−1∆zk−1

For brevity,

∆k|k−1 ≜
[
∆x

k|k−1,∆
w
k|k−1,∆

v
k|k−1

]
Note that

Σxkek−1 =
[
Φk,kK

p
k−1Sk−1, · · · ,Φk,2K

p
1S1

]
By (C.4), (C.7) and Kp

0 = 0,

∆x
k|k−1 = Φk,0∆

x
0 − Σxkek−1(Sk−1)−1(Uk−1)−1∆x

zk−1

= Φk,0∆
x
0 − Σxkek−1(Sk−1)−1[HiΦ

p
i,0∆

x
0 ]

k−1
i=1

= Φk,0∆
x
0 −

k∑
i=2

Φk,iK
p
i−1Hi−1Φ

p
i−1,0∆

x
0

= Φk,0∆
x
0 −

k∑
i=2

Φk,iK
p
i−1Hi−1Φ

p
i−1,0∆

x
0 − Φk,1 Kp

0︸︷︷︸
0

H0Φ
p
0,0∆

x
0

= Φk,0∆
x
0 −

k∑
i=1

Φk,iK
p
i−1Hi−1Φ

p
i−1,0∆

x
0

= Φp
k,0∆

x
0
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By (C.4) and (C.8), and Φk,k = Φp
k,k = I,

∆w
k|k−1 =

k∑
i=1

Φk,iGi−1∆
w
i−1 − Σxkek−1(Sk−1)−1(Uk−1)−1∆w

zk−1

=
k∑

i=1

Φk,iGi−1∆
w
i−1 −

k∑
i=2

Φk,iK
p
i−1Hi−1

i−1∑
j=1

Φp
i−1,jGj−1∆

w
j−1

=
k∑

i=1

Φk,iGi−1∆
w
i−1 −

[
Φk,kK

p
k−1Hk−1 Φk,k−1K

p
k−2Hk−2 · · · Φk,2K

p
1H1

]

·


Φp

k−1,k−1 Φp
k−1,k−2 · · · Φp

k−1,1

Φp
k−2,k−2 · · · Φp

k−2,1
. . .

...
Φp

1,1



Gk−2∆

w
k−2

Gk−3∆
w
k−3

...
G0∆

w
0


= Φk,kGk−1∆

w
k−1 +

k−2∑
i=0

Φk,i+1Gi∆
w
i

−
[
Φk,kK

p
k−1Hk−1Φ

p
k−1,k−1 · · ·

∑k−1
i=1 Φk,k−i+1K

p
k−iHk−iΦ

p
k−i,1

]Gk−2∆
w
k−2

...
G0∆

w
0


= Φk,kGk−1∆

w
k−1 +

k−2∑
i=0

(Φk,i+1 −
k−i−1∑
j=1

Φk,i+j+1K
p
i+jHi+jΦ

p
i+j,i+1)Gi∆

w
i

= Φp
k,kGk−1∆

w
k−1 +

k−1∑
i=1

Φp
k,iGi−1∆

w
i−1

=
k∑

i=1

Φp
k,iGi−1∆

w
i−1

The sixth equality holds by using (C.4) again in the parentheses.
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By (C.4), (C.9) and Φk,k = Φp
k,k = I,

∆v
k|k−1 = 0− Σxkek−1(Sk−1)−1(Uk−1)−1∆v

zk−1

= −
[
Φk,kK

p
k−1 · · · Φk,2K

p
1

]
[∆v

i −Hi

i∑
j=1

Φp
i,jK

p
j−1∆

v
j−1]

k−1
i=1

= −
k∑

i=2

Φk,iK
p
i−1∆

v
i−1 +

k∑
i=2

Φk,iK
p
i−1Hi−1

i−1∑
j=1

Φp
i−1,jK

p
j−1∆

v
j−1

= −Φk,kK
p
k−1∆

v
k−1 −

k−1∑
i=1

(Φk,i −
k−i∑
j=1

Φk,i+jK
p
i+j−1Hi+j−1Φ

p
i+j−1,i)K

p
i−1∆

v
i−1

= −
k∑

i=1

Φp
k,iK

p
i−1∆

v
i−1

The fourth equality is obtained in an exact way as for the third equality in

∆w
k|k−1.

Based on the above we can get the exact form of

∆k|k ≜
[
∆x

k|k,∆
w
k|k,∆

v
k|k
]

where, by (C.3) and the derivation of ∆x
k|k−1,

∆x
k|k = Φk,0∆

x
0 − Σxkek(S

k)−1(Uk)−1∆x
zk

= Φk,0∆
x
0 −

[
Φk,kKk Σxkek−1(Sk−1)−1

]
[HiΦ

p
i,0∆

x
0 ]

k
i=1

= Φk,0∆
x
0 − Σxkek−1(Sk−1)−1[HiΦ

p
i,0∆

x
0 ]

k−1
i=1 −KkHkΦ

p
k,0∆

x
0

= ∆x
k|k−1 −KkHkΦ

p
k,0∆

x
0

= (I −KkHk)∆
x
k|k−1
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and by (C.3) and the derivation of ∆w
k|k−1,

∆w
k|k =

k∑
i=1

Φk,iGi−1∆
w
i−1 − Σxkek(S

k)−1(Uk)−1∆w
zk

=
k∑

i=1

Φk,iGi−1∆
w
i−1 −

[
Φk,kKk Σxkek−1(Sk−1)−1

]
[Hi

i∑
j=1

Φp
i,jGj−1∆

w
j−1]

k
i=1

= ∆w
k|k−1 − Σxkek−1(Sk−1)−1[Hi

i∑
j=1

Φp
i,jGj−1∆

w
j−1]

k−1
i=1 − Φk,kKkHk

k∑
i=1

Φp
k,iGi−1∆

w
i−1

= ∆w
k|k−1 − Φk,kKkHk

k∑
i=1

Φp
k,iGi−1∆

w
i−1

= ∆w
k|k−1 −KkHk∆

w
k|k−1

= (I −KkHk)∆
w
k|k−1

The second last equality holds because we derived ∆w
k|k−1 =

∑k
i=1 Φ

p
k,iGi−1∆

w
i−1

above.

Similarly,

∆v
k|k = 0− Σxkek(S

k)−1(Uk)−1∆v
zk

= −
[
Φk,kKk Σxkek−1(Sk−1)−1

]
[∆v

i −Hi

i∑
j=1

Φp
i,jK

p
j−1∆

v
j−1]

k
i=1

= ∆v
k|k−1 −Kk(∆

v
k −Hk

k∑
i=1

Φp
k,iK

p
i−1∆

v
i−1)

= (I −KkHk)∆
v
k|k−1 −Kk∆

v
k

The second last equality holds because we derived ∆v
k|k−1 =

∑k
i=1Φ

p
k,iK

p
i−1∆

v
i−1

above.
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By (C.5) and (C.7)–(C.9), it turns out that, for i = 1, 2,

γ̂i,k|k = γi −∆′
zkΣ

−1
zk
(zk −Oku0)

= γi −∆′
zk(U

kSk(Uk)′)−1(zk −Oku0)

= γi − ((Uk−1)−1∆zk−1)′(Sk−1)−1(Uk−1)−1

· (zk−1 −Ok−1u0)−

 (Hk∆
x
k|k−1)

′

(Hk∆
w
k|k−1)

′

(∆v
k +Hk∆

v
k|k−1)

′


· S−1

k (zk −Hkûk|k−1)

= γ̂i,k|k−1 −Ks
k(zk −Hkûk|k−1)

where γi =
[
(γx

i )
′, (γw

i )
′, (γv

i )
′]′ and the third equality holds by substituting the

batch form of (Uk−1)−1∆zk−1 and (Uk−1)−1(zk−1 −Ok−1u0) in (C.6) and (C.6),

respectively.

Γk|k = Γ−∆′
zkΣ

−1
zk
∆zk

= Γ−∆′
zk(U

kSk(Uk)′)−1∆zk

= Γ− ((Uk)−1∆zk)
′(Sk)−1(Uk)−1∆zk

= Γ− ((Uk−1)−1∆zk−1)′(Sk−1)−1(Uk−1)−1∆zk−1

−

 (Hk∆
x
k|k−1)

′

(Hk∆
w
k|k−1)

′

(∆v
k +Hk∆

v
k|k−1)

′

S−1
k [·]′

= Γk|k−1 −Ks
kSk(K

s
k)

′
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Appendix E

The derivation of Equation (4.7)

To derive the unconditional cumulant generation function (4.6) of the first-order

skew-Gaussian pdf (4.4), the following lemma is used.

Lemma E.1. If X ∼ Nn(0,Σn), then, for any m× n matrix G and m× 1 vector a,

m ≤ n,

E{Φm(a+GX)} = Φm

{[
(Im +GΣnG

′)
1
2

]−1
a
}

where Nn(0,Σn) denotes the n-dimensional Gaussian pdf with mean 0 and covariance

Σn, Φm denotes the cdf of the m-dimensional Gaussian Nn(0, Im), and (·) 1
2 denotes

the positive definite square root of a positive definite matrix.

Proof. Let Y ∼ Nm(0, Im), and X and Y be independent. Since

Φm(a+GX) = P{Y ≤ a+GX | X}
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we have

E{Φm(a+GX)} = E[P{Y ≤ a+GX | X}]

= P{Y ≤ a+GX}

= Φm

{[
(Im +GΣnG

′)
1
2

]−1
a

}

where the second equality follows from the total expectation theorem and the last

equality holds because Y −GX ∼ Nm(0, Im +GΣnG
′).

All inequalities here are component-wise.

Using Lemma E.1, the cumulant generating function of (4.4) is easily derived

from its definition, as

K(t) = log

∫
Rn

et
′x2N(x;u,Ω)Φ(α′(x− u))dx

= log
2√
|2πΩ|

∫
Rn

exp(−1

2
(x− Ωt− u)′Ω−1(x− Ωt− u) +

1

2
t′Ωt+ u′t)

× Φ(α′(x− u))dx

= log 2 exp(
1

2
t′Ωt+ u′t)

∫
Rn

Φ(α′(x− u))N (x; Ωt− u,Ω)dx

= log 2 exp(
1

2
t′Ωt+ u′t)Φ(

α′Ω√
1 + α′Ωα

t)

=
1

2
t′Ω11t+ u′

1t+ log(2Φ(δ′1t))

where the second equality follows from completing the square, and the fourth equality

holds because of Lemma E.1.

Let x and y be two column vectors. Define the k-th derivative of y w.r.t. x as

1. dy
dx

= d
dx
y′ = y′ ⊗ d

dx

2. dky
dxk = d

dx

(
dk−1y
dxk−1

)
= d

dx
y′ ⊗ d

dx′ ⊗ · · · ⊗ d
dx′ (k times)
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The next theorem provides a straightforward connection between central mo-

ments and cumulants of low order.

Theorem E.2 (Kollo (2005)). Let x be a random p-dimensional vector, ci(x) be the

i-th cumulant, mi(x) and m̄i(x) be the i-th moment and central moment, respectively.

Then,

1. c1(x) = m1(x) = E(x);

2. c2(x) = m̄2(x) = cov(x);

3. c3(x) = m̄3(x) = E[(x− E(x))(x− E(x))′⊗2].

Proposition E.1. The first three central moments of the pdf (4.4) are given as

m1(x) =
dK(t)

dt

∣∣∣∣
t=0

= Ωt+ u+
N (δ′t)

Φ(δ′t)

∣∣∣∣
t=0

= u+

√
2

π
δ

m̄2(x) =
d

dt
K(t)⊗ d

dt′

∣∣∣∣
t=0

= Ω−
[
N (1)(δ′t)

Φ(δ′t)
+
(N (δ′t)

Φ(δ′t)

)2]
δδ′
∣∣∣∣
t=0

= Ω− 2

π
δδ′

m̄3(x) =
d

dt
K(t)⊗ d

dt′
⊗ d

dt′

∣∣∣∣
t=0

=

[
2
(N (δ′t)

Φ(δ′t)

)3
− 3

N (δ′t)N (1)(δ′t)

(Φ(δ′t))2
+

N (2)(δ′t)

Φ(δ′t)

]
δvec′(δδ′)

∣∣∣∣
t=0

=

(
4

π
− 1

)√
2

π
δvec′(δδ′)

where N (i)(δ′t) denotes the i-th derivative of the univariate Gaussian pdf evaluated

at δ′t.

We omit our derivation of Proposition E.1 here because a proof of its generaliza-

tion is given in Appendix A.
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Remark E.1. The central moments of the conditional first-order skew-Gaussian pdf

can be derived similarly as in Proposition E.1 by simply replacing δ′t with x0 + δ′1|2t.
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