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Abstract 

In vessel design, modifying the design of a preexisting hull is a common practice to save 

time and labor compared to designing a hull from scratch. This can be achieved either by manually 

adjusting the hull model in a 3D modeling software or by systematically adjusting certain vessel 

parameters using an algebraic method. However, these methods are time-intensive and do not fully 

utilize the capabilities of modern software. To address this issue, this paper presents a set of 

Rhinoscript and Python scripts that automate part of the hull modification process using 

Lackenby’s method with McNaull’s expansion. The developed code utilizes provided hull offsets 

(comma-separated values, CSV, file), along with user-input values, to perform the desired 

Lackenby shift. The resulting modified hull surface is displayed in Rhino alongside the original 

hull surface. The developed scripts demonstrate the potential of modern software to enhance the 

efficiency and accuracy of vessel design. 
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1. Introduction 

When designing vessels, modifying existing hull designs to meet current project 

specifications is a common tactic for saving labor time and expense. However, many firms do not 

take advantage of the capabilities of modern 3D modeling software. Rhinoceros 3D (Rhino) is a 

popular software among naval architecture firms, with its own coding language, Rhinoscript, built 

off the Python language. While Rhinoscript is admittedly still rather restricted, it can be used to 

semi-automate many design processes where a 2D or 3D object is a desired outcome. This project 

leverages Rhinoscript to create a set of scripts for modeling a derived hull from a parent hull using 

Lackenby’s method with McNaull’s expansion. 

This paper presents a breakdown of the operation of each script written, as well as the 

theory and methodology for the hull modification methods used within. The main script, written 

in Rhinoscript, performs various functions to maximize the program’s potential functionality, with 

a focus on reducing user interaction. The script can modify a monohull vessel using user input 

values and a comma-separated values (CSV) file containing station offsets, returning 3D surface 

models of both the parent and derived hull, as well as data files.  

Section 2 delves into the theory behind Lackenby’s method, McNaull’s modifications, and 

Akima interpolation – the fundamental theoretical components for this project. Section 3 provides 

an overview of each script developed to execute the Lackenby shift in Rhino, discussing their 

format and functionality. Section 4 showcases a sample vessel used to demonstrate the code’s 

functionality, while Section 5 presents and evaluates the results obtained from the sample vessel. 

Finally, Section 6 summarizes the conclusions drawn from this project, discusses future work, and 

examines potential applications. 
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2. Theory 

Over the years, many methods have been developed to help optimize the hull design 

process. One such method, commonly employed in the 1900s, used series of parent hulls as 

templates for newly developed hulls. These series documented the best combinations of geometric 

variations in length, beam, and depth that resulted in the least amount of resistance for various 

vessel forms (planing vessel, tanker, etc.) and were early attempts of systematic variation. 

Examples of standard series include: Taylor series, Series 60, Swedish tanker and cargo series, 

German HSVA series, and the British BSRA series (Taylor). Interestingly, some standard series 

(i.e. the British BSRA series) used Lackenby’s method in development. However, limitations of 

this method have become progressively more apparent as vessel designs become increasingly 

complex and optimized, particularly in military applications, where the design of vessels is critical 

for gaining an edge over potential adversaries.  

As a result, new methods (particularly lines distortion and parametric hull generation) have 

received increased attention. The dominant methods of lines distortion are Lackenby’s method 

(Lackenby) and McNaull’s modification and expansion of Lackenby’s method (McNaull). Two 

notable examples of parametric hull design methods are the “Parametric Generation of Yacht 

Hulls” (Bole) and “Parametric Design and Hydrodynamic Optimization of Ship Hull Forms” 

(Harries). Bole’s report identified factors and parameters critical in yacht design and investigated 

several parametric methods to generate a yacht hull form. The parametric methods developed use 

a combination of B-splines and defined parameters in order to complete the calculations. While 

this method offers a comparative alternative to a lines distortion approach, it is limited in 

application to yacht design (Bole).  
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Harries investigates the use of Lackenby’s method for 3D hull modeling and develops a 

comprehensive parametric design method intended for use with 3D modeling software and 

computer programs. Regarding Lackenby’s method for hull design, Harries concludes that “the 

approach is not flexible enough to control the design in detail” and that the method with which 

Lackenby’s method is executed is “too inflexible for hydrodynamic improvement in real fluid”. 

Harries’s parametric method is particularly suited for 3D software or automation due to its 

accuracy in meeting desired properties and ability to maintain fairness of a hull form (Harries). 

Theoretically, this parametric method does not have any disadvantages; however, it is not suitable 

for use in this project for several reasons: 

 This method generates a hull form from scratch rather than using a parent hull form 

 Executing this method is computationally intensive and time-consuming 

 The current scripting tools available in Rhino are limited and would not be able to 

perform the computations required to complete the parametric design method 

Therefore, despite its flaws, Lackenby’s method with McNaull’s expansion was chosen for this 

project due to its simplicity and suitable accuracy for preliminary hull design. 

2.1. Lackenby’s Method 

In Lackenby’s 1950 paper “On the Systematic Geometrical Variation of Ship Forms”, 

equations for the independent variation of three separate parameters – prismatic coefficient (𝐶𝑃), 

longitudinal center of buoyancy (LCB), and extent of the parallel midbody (𝑝 ) – by distorting the 

sectional area curves of a parent vessel were derived. Lackenby’s method was a significant 

advancement compared to traditional techniques, such as “swinging” the sectional area curve to 

shift the longitudinal center of buoyancy, which lacked control over the position of the parallel 

midbody or the positon of the maximum section. McNaull emphasized the importance of 
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Lackenby’s method, stating that it “represented a significant improvement over such traditional 

methods” (McNaull). 

The first method (“one minus prismatic” variation) presented in Lackenby’s paper splits 

the vessel into fore- and aft-bodies at midship so that both ends of the vessel are varied 

independently. The term “one minus prismatic” is drawn from the equations derived that share the 

term (1 − 𝜙), where 𝜙 is the prismatic coefficient of the half-body. Each half-body uses the same 

set of variables as shown in the table and figure below, with subscript 𝐴 denoting the aftbody and 

𝐹 indicating a parameter of the forebody. However, this linear shift method does not allow for the 

independent variation of the parallel midbody. An in-depth discussion of equations will be saved 

for Section 2.2 when discussing McNaull’s modifications. 

Table 1: Half-body variables for “one-minus prismatic” variation (Lackenby). 

Symbol Definition 

�̅� The fractional distance from midship of the centroid of the half-body 

𝑝 The fractional parallel middle of the half-body 

𝑥 The fractional distance of any transverse section from midship 

𝑦 
The area of the transverse section at 𝑥 expressed as a fraction of the maximum 

ordinate 

𝛿𝜙 The required change in prismatic coefficient of the half-body 

𝛿𝑝 The consequent change in parallel middle body 

𝛿𝑥 
The necessary longitudinal shift of the section at 𝑥 to produce the required change in 

prismatic coefficient 

ℎ 
The fractional distance from midship of the centroid of the added “sliver” of area 

represented by 𝛿𝜙 
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Figure 1: “One minus prismatic” linear variation of a half-body (Lackenby). 

Since the parallel midbody shift cannot be controlled with the above method, Lackenby developed 

a second method employing a quadratic shift. This method allows for the independent variation of 

the parallel midbody (in addition to the LCB and prismatic coefficient) by considering the radius 

of gyration (𝑘) as a variable. The variables used in this diagram have the same significance as 

defined for the “one minus prismatic” variation method (Lackenby). 
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Figure 2: Quadratic variation of a half-body (Lackenby). 

Although the quadratic sectional area curve variation method Lackenby developed was a 

significant improvement over traditional methods, it has some limitations. Lackenby assumed that 

the boundary between the forebody and aftbody was located at the midship station and neglected 

any stations forward of the forward perpendicular. This assumption means that the length of the 

fore- and aft-bodies are equal, which is incredibly difficult to work with considering the 

complexity of contemporary vessels. Contemporary vessels often have complex, significant 

appendages such as bulbous bows that have non-negligible volumes. Moreover, Lackenby’s 

system of equations was solved using successive (back) substitution. This iterative method 

assumes that values will converge quickly, making it suboptimal for quick modifications or design. 

Therefore, there was a need to develop a more comprehensive lines distortion method (McNaull). 

2.2. McNaull’s Modifications 

In the 1980 paper by McNaull, a modified and extended version of Lackenby’s method is 

presented, which overcomes the limitations of the original work. McNaull introduces two sets of 
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linear simultaneous equations, where the first corrects Lackenby’s limitations and arranges the 

equations in a matrix form to make them easier and faster to solve. The second set expands 

Lackenby’s method from 10 simultaneous equations to 12 to allow for the independent variation 

of prismatic coefficient, LCB, parallel midbody, and slope of the entrance or run. The addition of 

the variables for entrance/run slope changes the equations for longitudinal station shift to cubic 

compared to the original quadratic form. McNaull presents a similar diagram to those provided by 

Lackenby, but with his addition of slope variables. 

 

Figure 3: Cubic variation of a half-body (forebody) (McNaull). 

McNaull defines his variables in the above figure with reference to the forebody. Aftbody variables 

are analogous to the following definitions using the subscript 𝐴.  

 

 

 

 



8 

 

Table 2: Half-body variables for cubic variation (McNaull). 

Symbol Definition 

𝛻𝐹 (parent) underwater volume of forebody 

𝑥𝐹 (parent) x-value of the centroid of  ∇𝐹 

𝑝𝐹 (parent) length of the parallel midbody 

𝐿𝐹 (parent) length of the forebody 

𝐴𝑀 (parent) maximum sectional area 

𝑥 (parent) x-value of a point on the forebody sectional area curve 

𝐴𝑆(𝑥) (parent) sectional area corresponding to 𝑥 

𝜃𝑃𝐹 (parent) slope of the entrance of the forebody 

𝛿𝛻𝐹  (derived) change in volume 

𝑥𝛿𝐹 (derived) x-value of the centroid of  𝛿∇𝐹 

𝛿𝑝𝐹 (derived) change in parallel midbody 

𝛿𝑥 (derived) longitudinal shift of station at 𝑥 

𝜃𝐷𝐹 (derived) slope of the entrance of the forebody 

 

McNaull’s modification of Lackenby’s original equations for a station shift results in the following 

quadratic equation for a half-body (forebody) 

𝛿𝑥 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶      Equation 1 

where A, B, and C are constants derived from four boundary conditions 

𝛿𝑥 = 𝛿𝑝𝐹 = 𝐴𝑝𝐹
2 + 𝐵𝑝𝐹 + 𝐶   at 𝑥 = 𝑝𝐹, 𝛿𝑥 = 𝛿𝑝𝐹    Equation 2 

𝛿𝑥 = 0 = 𝐴𝐿𝐹
2 + 𝐵𝐿𝐹 + 𝐶   at 𝑥 = 𝐿𝐹, 𝛿𝑥 = 0     Equation 3 

𝛿∇𝐹= 2𝐴∇𝐹𝑥𝐹 + 𝐵∇𝐹 + 𝐶𝐴𝑀   where 𝛿∇𝐹= ∫ 𝛿𝑥
𝐴𝑀

0
 𝑑𝐴𝑆    Equation 4 

𝑥𝛿𝐹𝛿∇𝐹= 3𝐴∇𝐹𝑘𝐹
2 + 2𝐵∇𝐹𝑥𝐹 + 𝐶∇𝐹   where 𝑥𝛿𝐹𝛿∇𝐹= ∫ 𝑥

𝐴𝑀

0
 𝛿𝑥 𝑑𝐴𝑠  Equation 5 

where 𝑘𝐹 is the radius of gyration about midship. With this set of equations for the forebody, there 

are five unknown values: A, B, C, 𝛿∇𝐹, and 𝑥𝛿𝐹. The aftbody uses the unknowns D, E, F, 𝛿∇𝐴, 
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and 𝑥𝛿𝐴. Therefore, combining the equations for the fore- and aft- bodies, a matrix of 10 

simultaneous equations for a parabolic longitudinal shift of a vessel’s stations is developed. 

[
 
 
 
 
 
 
 
 
 

𝛿𝑝𝐹

0
0
0

𝛿𝑝𝐴

0
0
0
𝛿∇

(∇ + 𝛿∇)(𝑥𝐿𝐶𝐵 + 𝛿𝑥𝐿𝐶𝐵) − ∇𝑥𝐿𝐶𝐵]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

𝑝𝐹
2 𝑝𝐹 1

𝐿𝐹
2 𝐿𝐹 1

2∇𝐹𝑥𝐹 ∇𝐹 𝐴𝑀 −1

3∇𝐹𝑘𝐹
2 2∇𝐹𝑥𝐹 ∇𝐹 −1

𝑝𝐴
2 𝑝𝐴 1

𝐿𝐴
2 𝐿𝐴 1

2∇𝐴𝑥𝐴 ∇𝐴 𝐴𝑀 −1

3∇𝐴𝑘𝐴
2 2∇𝐴𝑥𝐴 ∇𝐴 −1

1 1
1 −1]

 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 

𝐴
𝐵
𝐶

𝛿∇𝐹

𝑥𝛿𝐹𝛿∇𝐹

𝐷
𝐸
𝐹

𝛿∇𝐴

𝑥𝛿𝐴𝛿∇𝐴]
 
 
 
 
 
 
 
 
 

            

Equation 6 

When considering the slope of the entrance and run of the vessel, the matrix gains two 

unknown variables, therefore increasing the equations for longitudinal shifts from quadratic to 

cubic and the resulting matrix from 10 simultaneous equations to 12. However, an analogous 

derivation process is followed. 

 𝛿𝑥 = 𝐴𝑥3 + 𝐵𝑥2 + 𝐶𝑥 + 𝐷     Equation 7 

tan 𝜃𝑃𝐹 cot 𝜃𝐷𝐹 − 1 = 3𝐴𝐿𝐹
2 + 2𝐵𝐿𝐹 + 𝐶   at 𝑥 = 𝐿𝐹, 

𝑑𝑦

𝑑𝑥
= spec. value  Equation 8 

𝛿𝑥 = 𝛿𝑝𝐹 = 𝐴𝑝𝐹
3 + 𝐵𝑝𝐹

2 + 𝐶𝑝𝐹 + 𝐷   at 𝑥 = 𝑝𝐹, 𝛿𝑥 = 𝛿𝑝𝐹   Equation 9 
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𝛿𝑥 = 0 = 𝐴𝐿𝐹
3 + 𝐵𝐿𝐹

2 + 𝐶𝐿𝐹 + 𝐷   at 𝑥 = 𝐿𝐹 , 𝛿𝑥 = 0     Equation 10 

𝛿∇𝐹= 3𝐴∇𝐹𝑘𝐹
2 + 2𝐵∇𝐹𝑥𝐹 + 𝐶∇𝐹 + 𝐷𝐴𝑀   where 𝛿∇𝐹= ∫ 𝛿𝑥

𝐴𝑀

0
 𝑑𝐴𝑆  Equation 11 

𝑥𝛿𝐹𝛿∇𝐹= 4𝐴∇𝐹𝑅𝐹
3 + 3𝐵∇𝐹𝑘𝐹

2 + 2𝐶∇𝐹𝑥𝐹 + 𝐷∇𝐹   where 𝑥𝛿𝐹𝛿∇𝐹= ∫ 𝑥
𝐴𝑀

0
 𝛿𝑥 𝑑𝐴𝑆  

 Equation 12 

where tan 𝜃𝑃𝐹  is the slope of the parent curve, cot 𝜃𝐷𝐹 is the inverse of the slope of the derived 

curve, and 𝑅𝐹 is the lever of the third moment of volume about midship. Each half-body has six 

unknowns with A, B, C, D, 𝛿∇𝐹, and 𝑥𝛿𝐹 referring to the forebody and E, F, G, H, 𝛿∇𝐴, and 𝑥𝛿𝐴 

referring to the aftbody (McNaull). 
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[
 
 
 
 
 
 
 
 
 
 
 

tan 𝜃𝑃𝐹 cot 𝜃𝐷𝐹 − 1
𝛿𝑝𝐹

0
0
0

tan 𝜃𝑃𝐴 cot 𝜃𝐷𝐴 − 1
𝛿𝑝𝐴

0
0
0
𝛿∇

(∇ + 𝛿∇)(𝑥𝐿𝐶𝐵 + 𝛿𝑥𝐿𝐶𝐵) − ∇𝑥𝐿𝐶𝐵]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

3𝐿𝐹
2 2𝐿𝐹 1

𝑝𝐹
3 𝑝𝐹

2 𝑝𝐹 1

𝐿𝐹
3 𝐿𝐹

2 𝐿𝐹 1

3∇𝐹𝑘𝐹
2 2∇𝐹𝑥𝐹 ∇𝐹 𝐴𝑀𝐹 −1

4∇𝐹𝑅𝐹
3 3∇𝐹𝑘𝐹

2 2∇𝐹𝑥𝐹 ∇𝐹 0 −1

3𝐿𝐴
2 2𝐿𝐴 1

𝑝𝐴
3 𝑝𝐴

2 𝑝𝐴 1

𝐿𝐴
3 𝐿𝐴

2 𝐿𝐴 1

3∇𝐴𝑘𝐴
2 2∇𝐴𝑥𝐴 ∇𝐴 𝐴𝑀𝐴 −1

4∇𝐴𝑅𝐴
3 3∇𝐴𝑘𝐴

2 2∇𝐴𝑥𝐴 ∇𝐴 0 −1

1 1
1 −1]

 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 

𝐴
𝐵
𝐶
𝐷

𝛿∇𝐹

𝑥𝛿𝐹𝛿∇𝐹

𝐸
𝐹
𝐺
𝐻

𝛿∇𝐴

𝑥𝛿𝐴𝛿∇𝐴]
 
 
 
 
 
 
 
 
 
 
 

 

Equation 13 

These matrices can be easily solved using a Gaussian elimination process. It was deemed 

appropriate to use the expanded matrix (Equation 13) for this project, as there is no reason not to 

use it over the quadratic matrix. 

2.3. Higher Order Moment Derivations 

An alternative method is necessary to calculate the areas, moments, and volumes required 

for the cubic longitudinal shifts since Rhinoscript does not allow use of Python libraries dedicated 

to complex math, interpolation, or statistics. Dr. Lothar Birk’s paper “A Comprehensive and 
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Practical Guide to the Hess and Smith Constant Source and Dipole Panel” lays the groundwork 

for an algebraic method to calculate moments and areas with a quadrilateral panel method. The 

method used in this paper is based on Stokes theorem and can be applied to any planar polygon. 

 

Figure 4: Discretization of a ship bow into quadrilateral and triangular panels (Birk). 

This method defines four temporary panel corners for a discretized location on the surface of the 

hull and the area and centroid of the quadrilateral are found using an algebraic sum method. 

Starting with following surface integral 

∬ (
𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
)𝑑𝑥 𝑑𝑦

𝑆
= ∮ 𝑃 𝑑𝑥

𝐶
+ ∮ 𝑄 𝑑𝑦

𝐶
   Equation 14 

the functions 𝑃 ≡ 0 and 𝑄 ≡ 𝑥 will result in the following equation for area (which has been 

generalized for a planar polygon with n number of vertices). 

𝐴 = ∮ 𝑥 𝑑𝑦
𝐶

= ∑ ∫ 𝑥 𝑑𝑦
𝑦𝑖+1

𝑦𝑖

𝑛
𝑖=0     Equation 15 

Since the polygon sides are assumed to be straight, the parametric forms of x and y can be used 

𝑥 = (𝑥𝑖+1 − 𝑥𝑖)𝑡 + 𝑥𝑖 
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𝑦 = (𝑦𝑖+1 − 𝑦𝑖)𝑡 + 𝑦𝑖 

the area equation can be simplified to the following algebraic form 

𝐴 =
1

2
∑ (𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖 − 𝑥𝑖+1)

𝑛
𝑖=0     Equation 16 

Within the script, the area equation was also used to calculate volume by swapping out the 

individual points within a cross-section for the arrays of cross-sections and x-locations of the 

stations. To derive the y-moment, the power of Q is raised to 𝑄 ≡
𝑥2

2
 and P remains at zero. 

𝑀𝑦 =
1

6
∑ (𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖

2 + 𝑥𝑖𝑥𝑖+1 + 𝑥𝑖+1
2 )𝑛

𝑖=0    Equation 17 

Analogously, setting Q to zero and 𝑃 ≡ −
𝑦2

2
 will result in an equation for x-moment (Birk). 

𝑀𝑥 = −
1

6
∑ (𝑦𝑖

2 + 𝑦𝑖𝑦𝑖+1 + 𝑦𝑖+1
2 )(𝑥𝑖+1 − 𝑥𝑖)

𝑛
𝑖=0    Equation 18 

For the Lackenby shift, the second order moment of volume and third order moment of volume 

are needed, both of which can be derived in similar fashion to the y-moment. The second order 

moment of volume sets 𝑄 ≡
𝑥3

3
 with 𝑃 ≡ 0 and the third order moment of volume defines 𝑄 ≡

𝑥4

4
 

and 𝑃 ≡ 0. 

𝐼 =
1

12
∑ (𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖+1

3 + 𝑥𝑖+1
2 𝑥𝑖 + 𝑥𝑖+1𝑥𝑖

2 + 𝑥𝑖
3)𝑛

𝑖=0    Equation 19 

𝐽 =
1

20
∑ (𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖+1

4 + 𝑥𝑖+1
3 𝑥𝑖 + 𝑥𝑖+1

2 𝑥𝑖
2 + 𝑥𝑖+1𝑥𝑖

3 + 𝑥𝑖
4)𝑛

𝑖=0   Equation 20 

2.4. Akima Interpolation 

The Akima interpolation method is commonly used for various applications, including in 

Python libraries containing interpolation functions. In this project, it is utilized to discretize the 

station data points, allowing the areas to become accurate closed panel-defined objects suitable for 
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panel-method integration. Akima interpolation also fits a smooth curve to a set of data points, 

making it an appropriate interpolation method for a ship hull as it retains maximum curve 

definition when creating a panel-defined shape from the original curve offsets. Interpolated curve 

points are temporarily added to the set of station offsets to produce a panel object with higher 

fidelity. Since access to standard Python libraries was not available, the Akima interpolation 

method was implemented in an auxiliary file, akimaint.py. Additional information on Akima 

interpolation and the auxiliary script is available in the supplementary paper introduced in 

Appendix A (Akima). 
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3. Code Overview 

In Rhinoscript, the commonly available extension modules such as “numpy” or “scipy” 

(used for math, integration, interpolation, etc.) are not available. Hence, auxiliary scripts were 

written in Python that can replicate the capabilities required to complete Lackenby’s method. The 

auxiliary scripts are as follows: 

 akimaint.py: contains the functions for Akima interpolation 

 cubicmatrix.py: defines the 12 × 12 matrix 

 gauss.py: contains a simple Gaussian elimination algorithm to solve the matrix 

 offsetimport.py: defines a function to import station data from a CSV file and convert 

the data into coordinate points separated by station 

 secarea.py: script containing functions for calculating sectional area, area moments, 

second order moment of volume, and third order moment of volume 

Sections 3.1 and 3.2 discuss the theory behind cubicmatrix.py and secarea.py, respectively. Section 

3.3 discusses the structure and components of the main script, main.py. For a comprehensive 

discussion of the auxiliary scripts and the user interface (UI) developed for the main script, please 

refer to Appendix A. 

3.1. McNaull Cubic Matrix (cubicmatrix.py) 

The role of cubicmatrix.py is to define the 12 × 12 matrix derived in McNaull’s expansion 

of Lackenby’s method. However, instead of using the inverses of the slopes of the derived curve 

at fore and aft, cot 𝜃𝐷𝐹 and cot 𝜃𝐷𝐴, the script uses the inverses of the slopes of the parent curve, 

cot 𝜃𝑃𝐹 and cot 𝜃𝑃𝐴, assuming that the slopes of the parent and derived curves are equal. This 

decision was made to simplify the project, as determining the slope of the derived curve with the 
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limited libraries available would be time-consuming and unnecessary to prove the main script’s 

functionality. 

3.2. Sectional Area Calculations (secarea.py) 

The secarea.py auxiliary script defines the equations needed to compute the sectional area 

at each station, as well as equations for both area moments and the higher-order volume moments, 

based on the derivations presented in Section 2.3. Although the panel method and Akima 

interpolation could theoretically achieve high accuracy in calculating the sectional area and 

moments, it is crucial to test the code on a small scale to ensure that the scripts are returning 

accurate results. Therefore, the defined area and area moment equations were tested within 

secarea.py using a small CSV file that contains four geometric ship-like sections. First, the test 

verified that offsetimport.py was correctly importing the station data provided in the CSV file 

offsets_areatest.csv in Appendix B. Any issues with the code written within offsetimport.py would 

also show up in this test. Then, the code truncates any points above the defined waterline, uses the 

Akima interpolation function to calculate additional points for each station to use in the sectional 

area integration, and appends a corner point to the end of each station array to close the curve in 

order to apply the integration method derived in Section 2.3. The y-value of the corner point for 

each station lies on the centerline (𝑦 = 0), and the z-value is equal to the largest z-value in the 

modified station array, which equals the defined draft, unless the station is entirely submerged. 

With the stations fully modified and suitable for panel-method integration, the area and moment 

equations defined in the script can be used to determine the sectional area, y-center, and z-center 

of each station. 



17 

 

Figure 5 and Figure 6 below present a comparison between an Excel plot of the station data 

from the CSV file and the Python generated plot of the sectional areas. The black dashed line on 

Figure 5 denotes the draft used for testing.  

 

Figure 5: Plot of CSV points used to define the four test stations. 

 

Figure 6: Python generated plot of test sectional areas. 
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Figure 6 shows that within the testing portion of the script, the stations were successfully truncated 

at the defined draft and the corner point has been appended on centerline. Additionally, the values 

within each station are accurate to those shown in Figure 5. Therefore, the first two components 

of the test script – assessing the proper functionality of offsetimport.py and akimaint.py have been 

proven. Table 3 below presents a comparison between hand-calculated sectional area values and 

centroid values for each test station and the results calculated by Python using the functions defined 

in secarea.py. The only station with any difference within five significant figures is station 3. This 

station had a trapezoidal underwater area with a sharp angle, as all other stations had a triangular 

sectional area; therefore, it is not unexpected that a slight deviation might arise when fitting a cubic 

curve to station 3. The percent differences between the hand-calculated values and script-

calculated values within five significant figures for station 3 are 0.029, 0.013, and 0.017 for the 

sectional area, y-center, and z-center, respectively. Considering the relative insignificance of these 

differences, the formulas defined within secarea.py are correct, and Akima interpolation is a viable 

interpolation method for this application. 

Table 3: Comparison of hand- and Python-calculated areas and centers. 

Station Station x-Position Calc. Area Python Area Calc. Center Python Center 

0 1.0 2.0000 2.0000 (0.6667,1.3333) (0.6667,1.3333) 

1 2.0 4.0000 4.0000 (1.3333,1.3333) (1.3333,1.3333) 

2 3.0 5.5000 5.5016 (1.5606,1.1970) (1.5608,1.1968) 

3 6.0 1.6000 1.6000 (1.0667,1.6667) (1.0667,1.6667) 
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Figure 7: Python generated sectional area curve plot. 

Figure 7 presents a sample sectional area curve created from the four sectional area data points 

calculated with the test script. The data points are connected with straight lines; Akima 

interpolation was not used to find a smooth curve fit as Akima interpolation requires at least five 

data points. 

3.3. Main Script (main.py) 

The main script (Appendix C) uses the functions defined in the auxiliary script in 

combination with Rhinoscript commands and a UI module to execute the Lackenby shift with 

minimal user interaction. The automation of the Lackenby shift and ease-of-use were heavily 

weighted when writing this script as, while a simple scripting of the main script would be 

functional, it would be incomprehensible to someone unfamiliar with programming. This script 

should be an accessible quick design tool for all naval architects and designers; therefore, making 
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the experience as easy and user-friendly as possible was a core consideration. This section 

overviews the main components of the main script and how it utilizes each auxiliary script. 

At the top of the program, a string of text outlines the program description, conditions for 

usage, credits, and directs users to read the readme.txt file (Appendix E). This file repeats the 

descriptions and conditions written in the main script and provides instructions for how to run the 

main script for users unfamiliar with code, Lackenby’s method, or the Rhino software. This script 

is intended for use with symmetrical, displacement ships, and has only been tested using a 

monohull hull form. The stations provided in the CSV file should be defined using half-breadths 

and have a station placed on midship. As no appendages are currently supported, it is assumed that 

the length between perpendiculars is equal to the length overall. Additionally, the forward 

perpendicular should have the same x-location as the first station and the aft perpendicular location 

should coincide with the last station. It is recommended that the CSV file be nondimensionalized 

with half-breadths defined as a fraction of the maximum half-breadth and elevation points defined 

as a fraction of the draft/design waterline. However, if the vessel in the CSV file is at full scale, 

the user can enter a value of 1 for the draft and 2 for the beam within the UI. Scaling the draft by 

1 will keep all heights constant, and since the half-breadth needs to remain at a scale of 1 and the 

beam is twice the width of the half-breadth, the beam will remain true to size if given a value of 2. 



21 

 

 

Figure 8: User interface window that appears when running script. 

The next section imports all the necessary libraries and modules from Rhino, Python, or 

the auxiliary scripts. “Defining User Interface” defines the classes and functions required to create 

a UI with the user interface helper classes written by Mark Meier and published to his blog for 

public use (Meier). The UI classes design a pop-up window that allows the user to enter values 

necessary to define the vessel, length between perpendiculars (LPP), beam (B), draft (T), and the 

Lackenby shift variables: change in length of the parallel midship forward of midship (dpf), 

change in length of the parallel midship aft of midship (dpa), change in prismatic coefficient as a 

percentage of prismatic coefficient (dCP), and change in LCP as a percentage of LPP (dLCB). All 

variables are written in a monospaced font as they have been defined within the main program. 

Further discussion of the UI portion of the main script can be found in Appendix A. 

Next, the function (SACfunc) is defined that calculates all the variables necessary to 

describe the sectional area curve and set the coefficients in McNaull’s 12 × 12 matrix. The inputs 

for this function are called stations, T, and npts. The array of stations imported from a CSV 

file using offsetimport.py is stations, T is the user defined draft, and npts is the number of 
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points used for the Akima interpolation of the stations. SACfunc will output the variables defined 

below. 

Table 4: Definitions of the variables output from SACfunc. 

Variable 

Name 
Definition 

SAC Sectional area curve 

xsta x-position of each station 

AM Midship area 

V Volumetric displacement 

CP Prismatic coefficient 

iSAC Indices of stations with the maximum sectional area 

iparallelf Index of the forward extent of the parallel midbody 

iparallela Index of the aft extent of the parallel midbody 

xm Position of midship from the forward perpendicular 

Lf Length of the forebody 

La Length of the aftbody 

xLCB Position of the LCB with respect to midship (positive forward) 

CPf Prismatic coefficient of the forebody 

CPa Prismatic coefficient of the aftbody 

xLCBf LCB of the forebody 

xLCBa LCB of the aftbody 

kf Radius of gyration of the SAC of the forebody 

ka Radius of gyration of the SAC of the aftbody 

Rf Third order moment radius of gyration of the SAC of the forebody 

Ra Third order moment radius of gyration of the SAC of the aftbody 

thetaf Slope of the SAC at forward end 

thetaa Slope of the SAC at the aft end 

 

To calculate the above variables, first the sectional area of each station and xsta array are 

calculated using secarea.py and akimaint.py analogously to the process outlined in Section 3.2. 

The midship area is found by locating the maximum value within SAC, the volumetric 

displacement is calculated using the area function in secarea.py with the input variables of xsta 

and SAC, and the prismatic coefficient follows the formula 
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𝐶𝑃 =
𝑉

𝐿𝑃𝑃⋅𝐴𝑀
      Equation 21 

Then, the variables setting the extent of the fore- and aft-bodies are determined so that the half-

bodies can be split for further calculations. The extent of the parallel midbody is found by defining 

iSAC equal to all station indices that have the maximum cross-sectional area. The indices 

iparallelf and iparallela are set equal to the first and last indices within the range of 

iSAC, respectively. The position of midship (xm) is set equal to the average of the two indices 

iparallelf and iparallela, unless the vessel has no parallel midship, in which case 

iparallela, iparallelf, and xm are the same. With the midship position defined, the 

forebody length (Lf), aftbody length (La), and distance between LCB and midship (xLCB) can 

be calculated and ship split into half-bodies. 

The process of determining the variables of each half-body is identical for both the 

forebody and aftbody besides variable names, so it will only be discussed once. First, just as the 

entire displaced volume was calculated, the volume of the half-body is calculated using the area 

function using the x-values and the SAC values for the half-body. The prismatic coefficient is 

calculated analogously. The first order moment, second order moment, and third order moment 

are calculated using the moment functions defined in secarea.py with the same inputs used when 

calculating the half-body volume. The LCB of the half-body with respect to midship, radius of 

gyration of the SAC of the half-body, and third order moment radius of gyration are calculated 

from the first, second, and third order moments respectively. Finally, the angle of the SAC curve 

is calculated by taking the inverse tangent of the slope between two points. 

With all the necessary variables and functions defined, the code transitions over to 

execution. First, the UI is called, prompting the user input window to pop up. The values input by 

the user are then converted to variables to be used within other functions. Next, Rhinoscript 
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functions and the offsetimport.py script are used to import the ship offsets from a CSV file. These 

offsets are then unpacked and arranged into an array of stations, a keel line, and a sheer line. With 

the parent hull in place, the Lackenby shift is now executed by calling the SACfunc function. The 

absolute change in the prismatic coefficient, volume, and LCB position are calculated from the 

user input with the following equations: 

𝑑𝑥𝐶𝑃 = 𝑑𝐶𝑃 ⋅ 𝐶𝑃      Equation 22 

𝑑𝑉 = 𝑑𝐶𝑃 ⋅ 𝐴𝑀 ⋅ 𝐿𝑃𝑃     Equation 23 

𝑑𝑥𝐿𝐶𝐵 = 𝑑𝐿𝐶𝐵 ⋅ 𝐿𝑃𝑃      Equation 24 

With this, the moment volume of the parent hull required for the cubic matrix is calculated with 

𝑀𝑉𝑜𝑙 = (𝑉 + 𝑑𝑉) ⋅ (𝑥𝐿𝐶𝐵 + 𝑑𝑥𝐿𝐶𝐵)   Equation 25 

Using the Amat function from cubicmatrix.py and the gauss function from gauss.py, the 

McNaull’s cubic matrix is formed and solved. The Lackenby shift for each half-body is calculated 

using Equation 7 and the variables found from the cubic matrix are applied to the stations to get a 

new set of stations, sheer line, and keel line. With this new set of stations, the last set of calculations 

is performed: using the SACfunc one more time with the new stations as an input to determine 

the derived hull data. 

Now that both the parent hull and derived hull forms have a complete set of offsets, 

Rhinoscript commands are used to draw and display the hull forms. First, layers are created to hold 

the parent and derived hull curves and surfaces using the command AddLayer. For the parent 

hull, the “Parent Curves” layer is turned on and interpolated curves are created for each set of 

station offsets using the AddInterpCurve command. Then, the user is prompted to select the 

parent hull curves, and a network surface is created using AddNetworkSurface. Switching to 
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the “Parent Hull” layer, the user is prompted to select both the set of curves and the surface, and 

the hull form is mirrored across centerline with the XformMirror and TransformObjects 

commands. An analogous process is followed for the derived hull form using the new stations on 

the “Derived Curves” and “Derived Hull” layers.  

The last section of the code writes two data files containing information on the parent and 

derived hull forms. Much like everything else, the files are analogous to each other, only replacing 

the variables to reference either the parent or derived hull as appropriate. The unit system used 

within Rhino is pulled and displayed alongside the user input data entered in the pop-up window. 

Next the station offsets and sectional area curve data are displayed. Finally, the forebody, aftbody, 

and other variables calculated within SACfunc are reported. 
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4. Introduction to the Sample Vessel 

A CSV file containing the offsets for an ocean kayak has been designed for the purpose of 

demonstrating this script (Appendix D). The offsets in the file are defined using stations, half-

breadths, and elevations (heights). Additionally, these offsets have been nondimensionalized by 

scaling the half-breadths as a fraction of the maximum half-breadth and the elevations as a fraction 

of the design waterline. This format ensures that the kayak can change its size and length/beam 

ratio easily with user input. The vessel’s body plan, half-breadth plan, sectional area curve, and 

user input values are shown below. The body plan is split with stations 0-10 on the left side of the 

centerline, and stations 11-20 on the right. 

 

 

Figure 9: Parent hull body plan (top) and half-breadth plan (bottom). 

The choice to use a kayak model was an error. The author mistakenly assumed that using kayak 

offsets would be ideal for testing due to the simplistic hull form of a kayak. However, this 

simplicity proved to be detrimental, as using a parent hull that does not contain a parallel midship 

restricts the ability to fully test the Lackenby shift. This error will be expanded upon when 

analyzing the derived hull. Additionally, this model is flawed as it has notable kinks in the 

waterplane near the bow and aft due to rushed development. 
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Figure 10: Parent hull sectional area curve (forebody right). 

The subpar station design of the vessel is prominent when viewing the sectional area curve of the 

parent vessel. The first four sectional areas connect in a near parabolic form before abruptly 

shallowing out to join with the gentler slope of the rest of the forebody run. There is a similar kink 

at the fouth from last sectional area; however, the change in sectional area slope is less noticeable. 

Table 5: Parent hull input values. 

Input Variable Value 

LPP 20.00 ft 

B 3.50 ft 

T 0.50 ft 

dpf 0.00 ft 

dpa 0.00 ft 

dCP 0.0121 

dLCB 0.0250 

 

Sea kayaks typically range between 10-26 feet in length, depending on whether it is a solo 

or tandem vessel. Beam varies between 20-36 inches and deck height typically maxes out around 

16 inches. While the beam of the sample vessel is half a foot larger than typical, the length and 
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height fall within the expected range. In order to produce a derived hull with obvious differences 

from the parent hull, sizable changes were made to the prismatic coefficient and LCB. However, 

the parallel midbody could not be changed for the derived hull due to variable definition issues. 

Both the body plan and sectional area curve above reflect the vessel as defined using the input data 

in Table 5. 
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5. Sample Results and Analysis 

 Using the parent and derived hull data files, the two hull forms can be compared in all 

aspects calculated. For completeness, the derived hull body plan and half-breadth plan are shown 

below; however, it is hard to see the differences in the two hull forms without reference. 

 

 

Figure 11: Derived hull lines plan. 

 

 

Figure 12: Comparison of parent and derived hull sectional area curves. 
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Placing the sectional area curve of the derived hull over top the parent hull, the effect of the 

Lackenby shift becomes visible. Since the midship, forward extent of the parallel midbody, and 

aft extent of the parallel midbody all lie on the 8ft station, a parallel midship cannot be added as 

there is only one station that would have to move to two locations. This could be fixed by updating 

the variable definitions in the code, but currently, adding a parallel midship to a vessel that does 

not originally have one is impossible. Importantly, the Lackenby shift has been executed as 

described. The forebody areas have increased and aftbody areas decreased according to the 

specified forward shift of the LCB. While it is hard to analyze visually whether the overall volume 

has increased, thus far nothing appears amiss with the data. 

 

 

Figure 13: Comparison of parent and derived hull body plans. 
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By overlapping the body plans of the parent and derived hulls we can analyze the changes 

present in the derived hull form. The top part of Figure 13 shows stations 0-10 for the parent hull 

(blue) and the derived hull (green) and the bottom part shows stations 11-20. The changes in 

volume observed in the sectional area curve are reflected in the body plan. For every station aside 

from midship, forward perpendicular, and aft perpendicular, the cross-sections of the derived hull 

stations are larger for the forebody and smaller for the aftbody compared to the parent hull. 

Comparing the variables calculated for the Lackenby shift of the parent hull with the values 

of the derived hull can also offer valuable insight.  

Table 6: Comparison of half-body variables. 

Variable Units Parent Hull Derived Hull 

Forebody Variables 

iparallel - 8 8 

L ft 12.00 12.00 

CP - 0.5454 0.6053 

xLCB ft 4.1586 4.2825 

k ft 5.0860 5.1647 

R ft 5.7766 5.8213 

theta rad. -0.1258 -0.1296 

Aftbody Variables 

iparallel - 8 8 

L ft 8.00 8.00 

CP - 0.6914 0.6186 

xLCB ft 2.9631 2.8314 

k ft 3.5062 3.3953 

R ft 3.9037 3.8128 

theta rad. 0.1906 0.1789 

Other Variables 

AM ft2 1.3614 1.3614 

V ft3 16.4395 16.6248 

CP - 0.6038 0.6106 

xLCB ft 0.8966 1.3998 
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First thing of note is that the sign of every value matches expectations, particularly the entrance 

angle of the forebody is negative and the run angle of the aftbody is positive. This matches the 

orientation of the vessel in Rhino (and the stations defined in the CSV file) with the aft 

perpendicular laying on the origin and the vessel pointing forward into the positive x-axis. Next, 

iparallel for each half-body of the parent and derived hull is equal and constant. This is 

expected as the sample vessel has no parallel midship, so the index marking the extent of the 

parallel midship for all half-bodies will be equal to the index of the midship station. The half-

bodies of both the parent and derived hulls are equal and add up to the LPP, which is accurate as 

no changes were made to add a parallel midbody. The midship area, AM, also remains identical 

between both vessels, which matches theory as midship is one of the stations unaffected by the 

Lackenby shift. Additionally, the data confirms the execution accuracy of the Lackenby shift 

observed visually prior. The prismatic coefficient and LCB of the forebody increased and, 

conversely, the same variables decreased in the aftbody. Furthermore, the overall LCB, volume, 

and prismatic coefficient of the vessel increased according to the input values. 

 However, despite the simplification that set the parent and derived half-body slopes equal, 

the calculated slope has changed slightly for both half-bodies. This is due to the method used to 

calculate the slopes. The extent of the slope was defined and calculated using the two consecutive 

points at the vessel extremities; however, when the station locations are shifted, the x-values used 

when calculating the slope of the curve are now different.   
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6. Conclusions 

 In conclusion, this project successfully demonstrated the feasibility of automating a 

Lackenby shift with McNaull’s expansion using Rhino’s scripting tools. Given the limitations of 

the testing vessel, the auxiliary scripts and the user interface worked as expected and the main 

script easily allows a user to create a model of a derived hull form in Rhino with minimal 

interaction. The current version of this code is restricted in its practical applications; however, 

there is ample room for improvement and expansion.  

The script currently requires a CSV file input and can only perform a shift on a symmetrical 

hull form free of appendages. In order to further improve the ease-of-use of this script, 

offsetimport.py needs to be generalized to allow for point cloud or station imports from Rhino, 

General Hydrostatics (GHS), or other formats. This would encourage engineers to use the program 

as they could more easily modify a working hull model for use with the script. The cubicmatrix.py 

auxiliary script should be further developed to allow the bow and stern angles of the derived hull 

to be defined or calculated separate from the parent hull.  

Additionally, appendage compatibility could be added to broaden the applicability of the 

script. For example, a Lackenby shift of a bulbous bow could be applied fairly easily. Everything 

forward of the forward perpendicular (FP) could be considered part of the bulbous bow, the cross-

sectional area of the hull at the FP would be the cross section of the bulb, and the FP itself would 

be the “midship” of the bulb. If overall size changes were desired, the bulb could be stretched 

horizontally or vertically by modifying the station spacing or design draft defined by the user. The 

user could specify these modification ratios along with the bulb length and centroid of the parent 

hull. With this information, a Lackenby shift of a bulbous bow could be performed.  
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However, before considering additional features and capabilities, the current iteration of 

the code should be tested with simple hull form containing a parallel midship to prove that the 

Lackenby shift is being executed properly. To achieve this, definitions used to calculate the data 

of the derived hull form should be modified to properly execute a Lackenby shift regardless if the 

vessel has or is modifying a pre-existing parallel midship. With the above modifications and 

expansions, the script has potential to become a very comprehensive modeling tool. In concert 

with other Rhino tools such as Orca and Grasshopper, this script could even be used for rapid 

preliminary hull design testing. A number of potential hull models could be developed from a 

single parent hull and optimized for resistance and propulsion or a number of other design 

objectives. 
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Appendix A 

Details: 

This report, intended for readers more familiar with programming, details how the auxiliary scripts 

and user interface were developed and structured. 

 

Filename: 

NAME 6093 Report - Details on the Auxiliary Scripts and User Interface.pdf 
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Appendix B 

Details: 

Comma-separated values (CSV) file containing offsets for four geometric ship-like sections used 

within the auxiliary file secarea.py to test the functions of offsetimport.py, secarea.py, and 

akimaint.py. 

 

Filename: 

offsets_areatest.csv 
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Appendix C 

Details: 

Rhinoscript file that uses the auxiliary files to complete the Lackenby shift of the underwater body 

of a hull using station offsets provided in CSV file format. The file is executed within Rhino’s 

script editing window. 

 

Filename: 

main.py 
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Appendix D 

Details: 

CSV file containing offset values for a generic kayak, used to demonstrate the functionality of 

main.py. The offsets are defined with stations, half-breadths, and elevation values with the forward 

perpendicular (station 0) at the origin. Half-breadth values are defined as a fraction of the 

maximum half-breadth and elevation values are defined as a fraction of the design waterline. 

 

Filename: 

offsets_kayak.csv 
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Appendix E 

Details: 

Text file containing the program description, conditions, instructions usage guide, and credits for 

main.py and all accompanying auxiliary files. 

 

Filename: 

readme.txt 
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Appendix F 

Details: 

Python script written by Dr. Lothar Birk, University of New Orleans. Defines a function that takes 

a series of coordinate points split into two arrays and performs Akima interpolation on them. Also 

contains a test portion that demonstrates the functionality of the script. 

 

Filename: 

akimaint.py 
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Appendix G 

Details: 

Python script that defines the cubic matrix used for McNaull’s expansion of the Lackenby method. 

 

Filename: 

cubicmatrix.py 
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Appendix H 

Details: 

Python script written by Dr. Lothar Birk, University of New Orleans. Defines a function containing 

a simple Gaussian elimination algorithm. Also contains a small test script used to demonstrate 

usage of the function. 

 

Filename: 

gauss.py 
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Appendix I 

Details: 

Python script written by Dr. Lothar Birk, University of New Orleans. Defines a function to import 

station data from a CSV file and convert the data into coordinate points separated by station into a 

series of arrays. 

 

Filename: 

offsetimport.py 
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Appendix J 

Details: 

Python script containing functions for calculating sectional area, area moments, second order 

moment of volume, and third order moment of volume. Also contains section used to test the 

functionality of akimaint.py, offsetimport.py, and the functions defined within secarea.py. 

 

Filename: 

secarea.py 
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Appendix K 

Details: 

Contains the station offsets, SAC, and Lackenby shift data for the sample parent hull used 

introduced in Section 4. 

 

Filename: 

LackenbyShift_ParentHull.dat 
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Appendix L 

Details: 

Contains the station offsets, SAC, and Lackenby shift data for the derived hull form discussed in 

Section 5, found from the sample vessel introduced in Section 4. 

 

Filename: 

LackenbyShift_DerivedHull.dat  



48 

 

Vita 

The author was born in Seattle, Washington. She obtained her Bachelor’s degree in naval 

architecture and marine engineering from the University of New Orleans in 2021. She continued 

to pursue a Master’s degree in naval architecture and marine engineering from the University of 

New Orleans, working with Dr. Lothar Birk on the automation of hull design using programming. 


	Automating Lackenby's Method: The Design of a Set of Scripts to Execute Lackenby's Method with McNaull's Expansion in Rhinoceros 3D
	Recommended Citation

	tmp.1682970210.pdf.fHYa_

