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Abstract
This paper describes the creation and development of an implementation of the Neu-

roEvolution of Augmenting Topologies (NEAT) architecture to train an agent to play Super
Mario Brothers. Building off of a basic implementation of NEAT, this thesis project shows
the process of refining the fitness calculation that ranks the networks in the population and
also defines the creation and application of a dataset to train the agent. The use of a dataset
to train an agent is a novel idea in the world of reinforcement learning because, generally,
reinforcement learning trains an agent to complete a singular task like the pole balancing
problem. Training an agent to play something as complex as a video game, however, re-
quires that an agent is exposed to as many different situations that occur within the game
as possible. The goal of this thesis project is to create an agent that has a robust gen-
eral understanding of how to play the game, such that it is able to react to new situations
that were not seen in training. The results of this thesis project show that this generalized
understanding is possible via neuroevolution, when given enough training time, a properly
designed fitness calculation, and a properly applied dataset of scenarios.
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Chapter 1

Introduction

Ever since I learned about the existence of evolutionary algorithms in high school, I was
fascinated by the concept that computer code could work on a problem and, over time, learn
how to solve it. This was around the time when personal computing was making the switch
to 64 bit processing, so much of the work in this area was still academic and had few concrete
applications. Fast forward to my time working as a quality assurance tester for a major game
producer, Electronic Arts (EA), which is where I began to see the power that these algorithm
could provide. EA was beginning to develop automation processes for game testing and the
department I worked in was the testing ground for these automation techniques. They were
still approaching the automation process from a traditional, declarative programming style,
where you explicitly tell a bot what actions to take; however, I realized that if you could
figure out how to train an agent to learn how to play the game, you would have a much more
powerful, adaptable system on your hands. Instead of explicitly telling a bot to check that
X and Y inputs work correctly, the process of training an agent would cover not just the
expected usages of an input but also many other unusual or irrational input combinations,
which are all necessary for proper quality assurance testing. The seeds of this thesis project
had been planted in my mind and now all I needed was the fertilizer of academia for it to
grow into a proper experiment.

This thesis project is an attempt to create an agent that learns how to effectively play a
game by selecting the correct action, or behaviour, for any given situation that may occur.
To achieve this I have selected neuroevolution techniques as the method of training an agent
because they have been shown to excel in continuous environments with sparse information
on the effects of an individual action [30, 13]. This is because neuroevolution algorithms
perform a search over the space of possible behaviours [30] an agent can make, as opposed to
traditional reinforcement learning techniques which search for optimal valuation functions
for an action [4, 31].

The basics of neuroevolution are inspired by the same evolutionary forces that have
shaped life on this planet. In the beginning, a population of simple organisms appear and
then, by a process of mutation and reproduction, evolve into more complex and optimized
organisms that are able to survive and prosper in their given environments. Neuroevolution
takes this concept and applies it to the optimization of artificial neural networks, or ANNs.
This process of optimization begins with the generation of basic neural network structures,
which are called Genomes. The concept of a genome in neuroevolution is analogous to how
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the DNA sequences, or genotype, define the final structure, or phenotype, an organism takes.
A genome, much like a DNA sequence, is made up of a collection of genes and these genes
define what nodes an ANN has, how those nodes are connected to each other, and what
weight each node connection has. In this way, the genome is very much the genotype of a
neural network because it directly defines what the structure that neural network will have.
Then, with their structures defined, a neural network is given a problem to solve and assessed
on how well its current structure performs. This assessment is done via calculating the value
of a predetermined fitness function. Genomes with a higher fitness value are considered more
adapted to the problem and are allowed to mate with other high performing genomes, with
the goal of creating child genomes that are even more adapted to the problem. Genomes
with low fitness values are removed from the population and replaced with the children
of high performing genomes. Additionally, both the high performing genomes and their
children have a random chance of being slightly mutated by having additional connections
or nodes added to their collection of genes. This process of evaluation, reproduction, and
mutation is known as a generation of evolution and as neuroevolution algorithms progress
from generation to generation, the genomes become more and more optimized at solving
the given problem. This is a simplistic overview of the neuroevolution process and will be
explained in greater detail in Chapter 4.

The game that was selected for this project is Super Mario Brothers (SMB) for the
Nintendo Entertainment System (NES) and it is one that is near and dear to my heart. I
have many fond memories of getting together with friends and family to see who could get
the farthest in the game. SMB is a rather simple game by modern standards as it only allows
the player to move forward, backwards, and jump over obstacles/enemies. The graphics are
also pretty simplistic due to the hardware limitations of the NES. Everything that is seen
on the screen is made up of repeated 16 pixel by 16 pixel tiles as seen in Figure 1.1. Despite
this relative simplicity, it fully embraces the tried and true method of ”simple to learn, hard
to master” gameplay that makes a game truly a classic. A detailed explanation of SMB, the
NES, and the software used to train and run a neural network will be done in Chapter 5.

Figure 1.1: Big Mario surveying his options.
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This paper is organized to start by introducing the basic concepts and then builds upon
them to provide an understanding of the systems and technologies used in this project.
Chapter 2 is a discussion of related works that informed and inspired this project. Chapter
3 then moves on to describe current deep learning techniques and how they are ill suited to
this class of problems. Chapter 4 gives an introduction to the history of neuroevolution
algorithms and how a novel approach to the design of these algorithms make them an effective
choice for this project. Chapter 5 explains the systems and technologies used in this project
and how the improvements I made to the neuroevolution system will facilitate the creation
of an effective game playing agent. Chapter 6 is a review of the results of my experiments
for this project and how those results shaped improvements for future training runs. Finally,
Chapter 7 details some future work that can be done to improve upon these results and
provides some conclusions based on the results of my experiments. Although the results of
this experiment did not create an agent that could beat a level of SMB, the results do show
that it is possible to create an agent that has generalized knowledge of how to play the game
and make effective progress through a level.

Chapter 2

Related Work

This chapter will highlight the previous work that has been done in this area of research.
The first of which will be about the concept of neuroevolution from which the algorithm used
in this project is built. The next related work builds off of the concept of neuroevolution
and details the goals of the creator of the algorithm this project is built off of. This section
serves to provide context to the design decisions I made when improving the algorithm. The
third, and final, related work deals with the concept of using memory locations as a means of
input into a game playing agent. The system used in this thesis project doesn’t use memory
locations in the exact same manner; however, it serves as an interesting and inspirational
look into how they can be used to provide data to a game playing agent.

2.1 Neuroevolution

In the 1990’s neuroevolution was, and still is, a very promising field of research into the
development of optimized neural networks [18]. The concept of deep neural networks had
only recently been introduced and much of the focus of machine learning research was on the
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efficacy of neuroevolution vs backpropagation for training ANN classifiers. At that time, it
seemed neuroevoution was the preferred method of training ANNs, with Heinz Muhlenbien
stating in his 1990 paper:

“We conjecture that the next generation of neural networks will be genetic neural
networks which evolve their structure.” [19]

Unfortunately for neuroevolution, the computational power increases of the coming decades
would show that backpropagated deep neural networks would become the state of the art for
training ANN classifiers. However, all was not lost for neuroevolution; there remains at least
one class of problems which backpropagation has not yet been shown to be a good application
for. This class of problems, known as Reinforcement Learning problems, deal with an agent
learning complex behaviours or constructing a decision making process in order to control
an autonomous construct or process [18]. The reinforcement learning problems that neu-
roevolution seem to be best suited for are ones that require recurrent connections and need
specialized architectures [12, 16, 3, 10]. For these tasks, architectures like NeuroEvolution
of Augmenting Topologies, or NEAT [30, 29], and HyperNEAT [11, 28] have been created
to construct these complex neural networks. This project uses the NEAT architecture as a
basis for its implementation and then builds upon it by creating a custom dataset, generat-
ing initial populations, and developing a customized fitness function. These implementation
details will be discussed in Chapter 5.

2.2 MarI/O

This project uses a library called MarI/O that constructs a population of genomes and
mutates them during training. This library was originally created by Seth Bling [5] with the
purpose of evolving an agent that is able to beat specific levels of SMB and Super Mario World
(SMW), the spiritual successor to SMB that was released in 1991 on the Super Nintendo
Entertainment System (SNES). The SNES is the next generation of console released by
Nintendo in 1991. Seth Bling is a video game speedrunner and computer scientist who, until
June 2020, held the SMW Any% speedrun record of 41.25 seconds. An Any% speedrun is a
category of speedrunning where the runner is allowed to beat a game with any percentage of
the game complete. This would be in contrast to a 100% speedrun, which requires the runner
to collect all collectible items, explore all maps, etc before beating the game. He has also
pioneered the use of arbitrary code execution to inject external code into a physical SNES.
This allowed him to recreate the game Flappy Bird in Super Mario World using assets from
the game and receiving input from the SNES controller.

The MarI/O algorithm is an implementation of a NEAT architecture pioneered by Ken-
neth O. Stanley and Risto Miikkulainen [30]. His goal was to evolve a neural network
structure that could beat a specific level, Donut Plains 1, of Super Mario World as fast as
possible. The algorithm was able to construct a genome that quickly and efficiently beat the
level after 34 generations, primarily by repeatedly spin jumping over obstacles and enemies.
However, when the genome was applied to other levels, it had become so specialized to that
level that it required an almost complete retraining to beat them. This is an example of
the classic overfitting problem in machine learning. He also was able to train a genome that
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could beat Super Mario Brothers World 1-1 after 95 generations; however, the same overfit-
ting issue could be seen when the genome was applied to other levels. This project aims to
improve on this application by training an agent that has a more general understanding of
the behaviours such that it is able to avoid the overfitting issue and beat any level in SMB.

2.3 Beating Mario With Statistics

Automating the process of playing video games is a common application for reinforcement
learning [36]. It provides a great framework showing the success or failure of the agent and
it also provides many methods to map states and actions to a particular value of the result
[26]. For a reinforcement learning system to work, some form of a fitness measure must be
assigned to the results of an action as this allows the system to denote beneficial actions
from detrimental actions. This way an agent can learn to select the actions that lead to
the desired goal. An interesting and amusing approach to the definition of fitness function
comes from Dr. Tom Murphy’s paper The First Level of Super Mario Bros. is Easy with
Lexicographic Orderings and Time Travel...after that it gets a little tricky. Although written
in a humorous tone and submitted to a conference, SIGBOVIK, known for satirical and joke
academic research, the author assures us ”This work is 100% real” and he has the source
code to prove it. This approach attempts to order the byte values of RAM locations in an
attempt to sort the most beneficial values to have Mario progress through a level. The most
beneficial values are sorted to the front of the list and then the agent attempts to sequentially
maximize those values in order to guide Mario from the start of a level to the goal flag at
the end [21].

Because the NES is a computer that uses an 8 bit, also known as a byte, processor and
has access to 2048 bytes of RAM with which the entire game must be loaded into [21], this
approach effectively uses the current state of the RAM as a representation of the state for
the reinforcement learning algorithm. Any input action by the player changes any number
of values within the RAM, like the level location (xl = byte 0x006D) and screen location (xs

= byte 0x0068) of Mario. Conveniently, Mario starts a level with a xl = 0 and xs = 0 and
the goal flag is generally located at xl = 11 and xs = 200, so if the level was a flat, straight
line, the algorithm would simply have to maximize those two values. Unfortunately, no SMB
levels are arranged like this, opting to have a more challenging assortment of obstacles and
enemies to avoid, so the algorithm must learn to maximize other values to reach the goal. To
do this, the algorithm looks at input action sequences from a human player and learns how
to sort the RAM locations based on how those input actions affect the memory state. In this
way, it is able to learn the order of byte values it needs to maximize in order to guide Mario
to the goal. While the system in this project doesn’t attempt this lexicographical ordering,
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it does build off of this concept by using RAM locations as input values to a neural network
with the goal of learning how those values inform the correct inputs an agent must select in
order to complete the current level.

Chapter 3

Deep Learning

3.1 Introduction

The training of deep neural networks, also known as deep learning, is probably the most
commonly seen form of machine learning algorithms. ChatGPT, Midjourney, and DALL-E
are prime examples of the power of deep learning at generating realistic text and images.
However, beyond these flashy, popular uses deep learning has the potential to become a
powerful and important tool for many industries. An example of this in the medical field
would be the ability to determine the probability that a patient has Parkinson’s disease due
to variations in a patients vocal features.[1] Deep neural networks have been shown to be
able to solve extremely complex problems, given they have four main resources:

• A large, robust dataset consisting of tens of thousands of instances that offer a diverse
and complete (as possible) representation of the potential individuals or outcomes of
a problem.

• Enough time for the neural network to exhaustively analyze each training instance and
tune its weights to make accurate predictions.

• Copious amounts of energy and computational power with which to perform the train-
ing.

• Sufficient memory to store and load the gigantic tables of weights in order to make
predictions after a model has be properly tuned.

The first two items are a huge limiting factor for pretty much all applications of both deep
learning and also neuroevolution; however, deep learning applications have become extremely
effective at classification and other supervised learning tasks now that companies like Google
and Amazon have been able to amass titanic server facilities to host the training and ex-
ecution of these deep learning models. This chapter will cover the basics of deep neural
networks and some of the limitations of those systems, with the goal of showing how, despite
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their success in some areas of machine learning and AI development, there are other areas
and problems that different approaches, like neuroevolution, can outperform them in and
generally be better suited at solving these problems.

3.2 Principals of Deep Learning

3.2.1 Neural Network Basics

The basic function of modern neural network architectures follows that as inputs are
propagated through a network, certain neurons will activate based on the value of this
input. The factor that determines if a neuron will activate is the sum of all inputs (x) into
the neuron multiplied by the weight (Wi) of each input has plus some bias (B) amount. This
sum is then input into an activation function (ϕ), whose value, based on the input, results
in the neuron being activated or deactivated.

A = ϕ(
n∑

i=1

Wi ∗ xi +B) (3.1)

Because of this, the weight of an input determines how much it contributes to the firing
of a neuron, with a low weight making the neuron less likely to fire and a high weight making
the neuron more likely to fire on a given input. Once the inputs have propagated through the
network, there will be a chain of activated neurons leading from some of the input neurons
to some of the output neurons. These output neurons now have an activation value that can
be used to determine actions taken or what prediction can be made.

The exact use of these activation values differs greatly between applications of the neural
network. For example, a binary classification problem like determining if an image is of a
cat or a dog, the neural network will have two output neurons:

• One neuron representing the chance of a positive identification (the input is a cat).

• Another neuron representing the chance of a negative identification (the input is not
a cat).

In this case, determining the neural network’s prediction for an input image can be done by
checking which neuron has the highest activation value and selecting the class that neuron
represents, either a positive or a negative identification. What’s more, through a process
known as backpropagation, the neural network can now use the error rate between it’s two
output neurons to refine the weights of it’s neuron input connections and allow the network
to make more accurate predictions in the future.

3.2.2 Training Montage

Deep learning is the process of training large neural networks, which contain many hidden
layers and often millions of neuron connections (Figure 3.1), to be able to accomplish a task
or make predictions. This is most commonly achieved by fine tuning the weights within
the network so that the only neuron chains that will activate will be the ones that lead
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Figure 3.1: Simple deep neural network

to the correct output neuron(s). For deep learning, and also conventional neuroevolution
algroithms, this all occurs over a topologically fixed neural network. This has the major
advantage of allowing the training to focus solely on optimizing the weights between neurons
and can give the networks the ability to make extremely precise predictions for complex
problems; however, this also directly leads to an exacerbation of the requirements listed
above, most notably the space, time, and power requirements. Because these networks are
defined in an ad hoc fashion, they are not topologically optimized. Due to this, there can
be many groups of neurons that have a detrimental effect on the accuracy of the network.
In order to minimize the effects of these detrimental neurons, large chunks of training time
is needed just to prevent them from being activated.

As mentioned above, the most popular method of refining the weights of a neural net-
work is a technique known as backpropagation. First identified by Frank Rosenblatt as
”back-propagating error correction” in the book Principals of Neurodynamics [23], back
propagation is the process of working backwards through the layers of a neural network and
refining the weights as it goes. This is accomplished by calculating the error gradient for
a given neuron’s weight and then adjusting the weight such that the error gradient leads
to a reduction in the total error for the output of the network. Originally, the calculation
of the error gradient was the backpropagation algorithm; however, as it has become almost
ubiquitously used for training topologically fixed deep neural networks, backpropagation has
become an umbrella term for numerous algorithms that also use the error gradient to tune
the weights. For example, stochastic gradient descent (SGD) is a backpropagation method
that takes the error gradient calculations and then applies the Newton-Raphson method for
minimizing functions to determine the proper weight adjustment to minimize the output
error of the network.

8



3.3 Cons of Backpropagation

Even though backpropagation has shown immense power to optimise a neural network to
a particular problem, it is not without certain drawbacks. Apart from needing a long time
to converge to a particular solution, the specific implementations of it can also have issues.
SGD is the most popular implementation of backpropagation and it has a big problem where
it can fail to find the true minimum value of the error function, also known as the global
minimum, and instead become stuck in a local minimum. This happens because the nature
of gradient descent is to continually minimize a value and any time it detects an increase in
that value, it corrects itself by readjusting to a lower value. This can prevent it from moving
over a bump in the error curve and become stuck with a value that is minimized compared
to the values around it, but is not actually the minimum value that the error function can
reach (Figure 3.2).

Weight Value
10

E
rr
or
V
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ue

Local Minimum

Global Minimum

-1

Figure 3.2: Error function with one global minimum and multiple local minimums

Over the years there have been various solutions proposed that address this issue and
have been shown to alleviate the effects of this; however, this problem is still one that must be
accounted for when designing a neural network. In addition to this issue, there are two other
major problems that have to be addressed when designing a backpropagation algorithm:
vanishing and exploding gradients.

3.3.1 Vanishing Gradients

In a nutshell, a vanishing gradient is, as the error gradient is passed backwards through
the neural network, it eventually becomes so small that the weights in the shallow layers of
the network are no longer updated. As a reminder, backpropagation relies on calculating
the error gradient of the network output, which is then used to tune the weights of a neural
network. If these gradient values become so small that the backpropagation algorithm is
unable to actually update the weights, the neural network stops learning and essentially
becomes frozen.
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3.3.2 Exploding Gradients

The opposite of the previous section can also occur when training a neural network.
Instead of the gradients vanishing into nothing, as the error gradients move back through
the network they can become exponentially bigger with each step. This makes the gradient
descent algorithm adjust the weights at the maximum step size at every iteration. The
results of this lead to the error value wildly fluctuating back and forth over the minimum
value and can even cause the network to diverge into infinity and, ultimately, fail to learn
to solve a problem.

3.4 No Free Lunch

The drawbacks illustrated for the backpropagation algorithm only further prove that
continued research into different methods of optimizing neural networks is necessary. Back-
propagation is clearly an effective method of optimizing a neural network for a specific set of
problems, specifically classification based on labeled datasets; however, the No Free Lunch
theorem shows that there will always be another set of problems that it does not perform well
on. Some of these applications are neural networks that require specialized, non-differentiable
activation functions or classification tasks on unlabeled datasets which require unsupervised
learning techniques [18]. This project will focus on the creation of a neural network agent
that can solve a behavioural problem that requires a reinforcement learning algorithm. This
agent must be able to learn the complex decision process that selects the optimal behaviour
for a scenario. The details of this application will be discussed in Chapter 5.

Chapter 4

NeuroEvolution of Augmenting
Topologies

4.1 Life Will Find A Way

NeuroEvolution of Augmenting Topologies, or NEAT, is a neuroevolution system pro-
posed by Kennity O. Stanley and Risto Miikkulainen that modifies not only the connection
weights within a neural network, but also the topology, or structure, of the neural networks
themselves [30]. While NEAT itself is a novel proposition for the architecture of a neuroevo-
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lution system, the broader concept of neuroevolution to optimize a neural network is not.
There has been much research into the application of genetic algorithms to optimize neural
networks dating back to the 90s. Much of this research has fallen into two main categories:

1. Neuroevolution of the connection weights withing a fixed topology network.

2. The simultaneous neuroevolution of both the weights and topology of a network.

Much of what is considered conventional neuroevolution falls under the optimization
of fixed topology networks. These networks generally consist of a layer of input nodes, a
hidden layer of nodes, and then a layer of output nodes [30]. Each layer of nodes is fully
connected to the next layer’s nodes, meaning each input node is connected to each hidden
node and then each hidden node is connected to each output node. The number of hidden
nodes is generally determined by trail and error by the network designers. These networks
are then optimized, or evolved, by mating the high performing networks with each other
and mutating the weights of a network. [30] Before we discuss the NEAT architecture, it is
important to give some historical context to the design choices NEAT uses by first describing
the neuroevolution architecture it was born from, Topology and Weight Evolving Artificial
Neural Networks, or TWEANNs.

4.1.1 TWEANNs

Much of the early research into neuroevolution has been focused on the development
of TWEANNs. For these systems, the issue of how to encode genetic information within
the network has been a subject of much debate. The two methods of encoding genetic
information in TWEANNs are either a direct encoding or an indirect encoding. Direct
encoding methods are generally simpler to implement and are the most commonly used in
TWEANNs [30]. This method entails specifying exactly how many nodes and connections
exist for a given genome. Alternatively, an indirect encoding scheme requires the creation of
rules about how a connection or node will exist in a genome. This allows a genome’s structure
to be inferred from those rules and can result in a much more truncated representation of
a given genome; however, the creation of these rules is a complex task that requires careful
crafting in order to create viable network structures from a genome.

Direct encoding schemes often use an explicit graph structure to represent the network
that is generated from a genome [30]. This has distinct advantages over other encoding
schemes because it allows network graphs to be broken into smaller sub-graphs known as
functional units. These functional units can then be swapped between pairs of genomes
during mating; unfortunately, the efficacy of these matings cannot be guaranteed outside of
trial and error evaluation during evolution of the genomes [30].

This has lead to some TWEANN designers omitting the process of mating during the
evolution of a population of genomes. [34] and [3] have demonstrated that, although they
have removed the concept of mating from the design of their algorithms, they have still been
able to create successful TWEANNs with only topological and connection weight mutations.
Additionally, TWEANNs have three major issues that the NEAT architecture succinctly
solves. These problems are presented below and then the solutions devised by the architects
of the NEAT algorithm will be discussed in detail later in the chapter.
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4.1.2 A Genome by Any Other Name

When attempting to evolve a neural network structure that solves a particular problem,
there can be many representations of the network that achieve the intended goal. [15] and
[25] have coined this the Competing Conventions Problem, or the Permutations Problem. It
is not a problem in and of itself that multiple network/genomic structures can solve a par-
ticular challenge; however, if one wishes to use crossover to mate genomes during evolution,
these structural, or topological, differences can present unique challenges to creating viable
offspring. At worst, these topological differences can lead to unusable, broken genomes;
however, most often these topological differences will lead to the offspring losing vital infor-
mation from one or both parents genome. This can result in genomes performing worse over
time and, ultimately, failing to solve the problem they are tasked to. For example, lets take
two genomes, A and B (Figure 4.1), and create a child genome from via crossover mating.
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(a) Genome A

Input

Input
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Output

Output

B

A

(b) Genome B

Figure 4.1: Genomes to be mated via crossover

Both of these genomes ultimately calculate the same value because, from the genome’s
perspective, they both contain the same connections and nodes; however, from a topological
perspective, they are both only two of the 3! = 6 different possible permutations that this
genome can take. It is important to note that both node A and C plus their connections are
different, distinct structures that happen to exist in the same topological location. Therefore,
when these two genomes are crossed over during mating, the resulting child genomes will
lose a third of the information of the parent genomes due to either node A being placed
where node C is or vice versa. (Figure 4.2).

Over the years, TWEANN designers have proposed many solutions to counter this issue;
however, are unable to prove these solutions completely eliminate the Competing Conventions
problem. The NEAT architecture introduces a novel concept to avoid this issue entirely by
implementing a historical tracking system that remembers when during the evolution of a
genome a particular connection was created. The mechanism of this will be explained in the
NEAT Architecture section.

4.1.3 Initial Populations

The initial population of a TWEANN architecture generally starts with an assortment
of randomly generated topologies. While this ensures a diverse set of genomes within the
population, it creates some problems for the optimization of them. One problem that direct
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Figure 4.2: Information loss due to the Competing Permutations issue during crossover

encoding TWEANN’s encounter is the potential for the creation of genomes that don’t have
a path of connections from the input nodes to the output nodes. These networks must then
be weeded out during the training of the genomes which results in wasted time that could
be better spent optimizing valid genomes from the start.

Another problem with starting with random topologies is that these network structures
have been created without regard to the fitness of them. This means there is a high likeli-
hood that these genomes have suboptimal or erroneous nodes and connections within them.
Unfortunately, the process of mutations and crossover mating has very little inherent drive
to remove these extraneous structures. This leads to the TWEANN creating large, bloated
networks and, as long as the networks have a high enough fitness, they will persist through-
out training. Some TWEANNS, [35], have proposed adding a penalty for network size to the
fitness calculation; however, these fitness penalties must be carefully crafted to not influence
the evolution of genomes in unintended directions [30].

4.1.4 Protecting Innovation

When a genome is mutated to add a new node or connection, this mutation quite often
lowers the fitness of the resulting genome. This is due to the new structure starting with
a randomized weight that has not had a chance to be optimized. Without some method to
protect this new structure, it is not going to survive in the population long enough to evolve
into something beneficial (unless it happens to be immediately effective, which is extremely
unlikely). This necessitates a system that protects these new structures.

[3] proposes a system of protecting new mutations by adding them to the network without
being connected to it. This can give the new structure extra time to optimize its connec-
tions and weights without dragging the fitness of the overall network down. Eventually, a
mutation will connect this structure to the overall network, which may lead to increased
performance of it. However, this connection is not guaranteed to be created; furthermore,
when connected, this new structure may still decrease the fitness of the network. Ultimately,
this results in, at best, wasted training time that could have been better spent developing a
more performant network and, at worst, eliminating an otherwise well performing network
from the population.
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4.2 NEAT Architecture

Similar to some of the best performing TWEANNs, NEAT genomes use direct encoding
with a linear representation of connection genes that get translated into a graph structure
network, or phenotype, for training and evaluation. The linear representation of genomes
facilitates the easy incorporation of mating into its evolution because two genomes can be
lined up and checked for compatibility. Stanley and Miikkulainen also show that NEAT,
while still performing very well without mating, adding mating significantly speeds up the
convergence of the algorithm to the solution. In the same fashion as TWEANNs, NEAT
employs mutations that change the weights of connections and the topological structure of
genomes. The mechanics of these mutations will be discussed in detail in Chapter 5 [30].
The rest of this chapter is dedicated to how NEAT solves the above issues that occur in
TWEANN architectures with novel architectural improvements.

4.2.1 Historical Markings

The first issue with a TWEAN architecture deals with the Competing Conventions prob-
lem. As a reminder, this issue is where multiple similar genome structures can all solve the
same problem but ultimately be unable to produce offspring that retains all the information
learned by their parents due to subtle topological differences. This problem exists for not
only neural network evolution but also for the evolution of life on this planet. An organism’s
physical makeup is determined, in large part, by their genetic code, and this physical struc-
ture is very important to the success, or failure, of said organism. As an example, a predator
fish without fins specialized for speed and agility would be very unlikely to be able to find
food and, thus, be very unlikely to find a mate. Eventually, it would fall out of the popula-
tion in favor of fish who’s fins are optimized for hunting. The process in which an organism’s
genome becomes more complex over time is known as Gene Amplification [8, 32]. However,
this process of amplification cannot allow genes to be inserted randomly without regard to
order, otherwise the Competing Conventions problem would result in offspring missing vital
genes for survival [30]. This means the location of inserted genes must be structured in such
a way that facilitates optimal sexual reproduction.

In nature, some organisms have solved this problem with specialized proteins that line
up corresponding genetic traits during reproduction in a process called synapsis [22, 27].
For neural network reproduction, this structural analysis is not easily done. Therefore,
NEAT proposes an elegant solution by tracking the historical origin of a connection gene
by assigning it an Innovation Number when it first evolved. This way, if another genome
in the population evolves this same connection gene in the same or a future generation, it
is assigned the same Innovation Number as the original incarnation of the connection gene.
This ensures that each Innovation Number represents the exact same structure within a
population, thereby facilitating sexual reproduction without fear of Competing Conventions
causing a loss of genetic information in offspring.

During crossover mating, Innovation Numbers allow us to easily line up the connection
genes that share an Innovation Number into groups of matching genes. Any genes that are
not in both genomes are then classified as disjoint or excess genes, depending on whether
their Innovation Number lies within or without the range of Innovation Numbers that the
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genome contains. The resulting child genome inherits all the matching genes of its parents,
with the weights being randomly selected from either parent. Then the child genome inherits
all the disjoint and excess genes from the most fit parent that the gene exists in. Additionally,
if a gene is disabled in one parent but enabled in another parent, that gene will randomly
be either disabled or enabled in the child genome.
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Figure 4.3: Parent Genomes Used for Crossover Mating

Ultimately, this process of assigning Innovation Numbers to track the historical genesis
of connection genes efficiently prevents the Competing Conventions problem without having
to perform complex topological analysis of a genome. Because these connection genes can
now be lined up during crossover mating (Figure 4.4), we can ensure the child will have all
the structural information of both parents. This creates a robust pool of genomes that can
continually increase in complexity during the course of evolution toward solving a problem.

4.2.2 Speciation is the Key

The next big issue faced when training a TWEANN is how to protect newly mutated
structures from being eliminated from the population before they have a chance to optimize.
Because adding a new node or connection gene to a genome will often lower its overall
performance, the genome can die off before the newly evolved structure has a chance to
actually prove if its valuable. To solve this issue, NEAT introduces a concept called Speciation
to the evolutionary process. This concept closely mimics the biological concept of niches
and how a species of organisms will evolve to perform well within that niche. This allows
organisms to only have to compete for resources with a smaller subset of a population,
instead of the entire population. For example, take a hypothetical lake that has some fish
and seaweed in it. Because the ultimate goal of these fish is to eat enough food to procreate,
this creates two main niches for finding food, a herbivorous species of fish that eat seaweed
and carnivorous species of fish that eat other fish. Because the carnivorous fish aren’t trying
to eat the seaweed, the herbivorous fish are only competing with themselves to eat enough
seaweed to procreate. In this way, any structural changes to the mouths of the herbivorous
species of fish will only affect its survivability, or fitness, in relation to other members of its
species.
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Figure 4.4: Child Genome Resulting from Crossover Mating of Parent Genomes (Figure 4.3)

Speciation in NEAT follows a similar path to the above hypothetical, wherein the surviv-
ability of a particular genomic structure is only assessed in relation to the other members of
the species it is assigned to. This way, when a new connection gene or node is added to the
structure through mutation, it is not immediately killed off by better performing genomes
with unrelated genomic structures. The tracking of Innovation Numbers of connection genes
makes speciating a genome an extremely simple process, as a comparison of the excess and
disjoint genes provides a good measure of how related two genomes are. Genomes that have
many disjoint and excess genes have different evolutionary paths, and are therefore not very
compatible for fitness evaluation [30]. A simple linear combination of the excess (E) and
disjoint (D) genes plus the average weight of matching genes (W ) gives us a compatibility
difference (δ) value, which we can use to determine if a given genome belongs to a particular
species.

δ =
c1E

N
+

c2D

N
+ c3W (4.1)

The hyperparameters c1, c2, and c3 control the importance of each factor and N normal-
izes the excess and disjoint by the number of genes in the larger genome. For this application
of NEAT, the hyperparameters were set to c1 = 2, c2 = 2, and c3 = 0.4 and ultimately a
genome must have a δ < 1 to be considered a member of a species. When a new genome is
created via mating, it’s δ value is calculated sequentially for all the current species within
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the population. A genome is placed into the first species it qualifies for and if it doesn’t
qualify for any species, a new species is created and it is placed into that species. This way,
no genome can ever exist in multiple species.

4.2.3 Minimally Effective Structures

As stated in the above section, TWEANN’s start with a distribution of randomly gener-
ated topologies to ensure a diverse population to evolve from. This, as has been shown, can
lead to an inefficient evolution process that wastes time evolving sub-optimal genomes. One
of the main goals of NEAT is to create an efficient evolution process that limits the overall
genomic structure search space [30]. This means searching for the optimal minimal structure
during all steps of the evolution process, not just for the final genomes. The NEAT archite-
cure proposed by Stanely and Miikkulainen starts with aMinimal Structure that consists of a
network with zero hidden nodes and every input node connected to every output node. This
forces the genomes to incrementally grow from topological mutations and only allows such
mutations that improve the fitness of the genome to continue procreating. This efficiently
minimizes the time searching through sub-optimal structures and focuses the evolution pro-
cess into creating genomes with a minimally effective structure. Stanely and Miikkulainen
show that the principal of evolving minimally effective topologies has distinct performance
advantages [30]. They do this by comparing performance of the NEAT architecture against
other neuroevolution algorithms using the Pole Balancing benchmark tests.

4.3 Pole Balancing Benchmarks

The Pole Balancing benchmarks tests are a commonly used scenario to benchmark re-
inforcement learning algorithms [13, 33]. For this task, an agent must balance two poles of
different lengths on top of a cart as it moves from a starting location to a goal location.
These benchmarks generally take two primary forms, pole balancing with velocity informa-
tion and pole balancing without velocity information. These two forms show how well a
reinforcement learning algorithm performs with a Markovian and Non-Markovian task, re-
spectively. Because the task that provides velocity information can allow an algorithm to
easily map changes in the velocity of a pole to the current state of the pole, it is considered a
Markovian task due to the ability to create chain of actions that leads to a desired outcome.
When velocity information is not available, however, it is impossible to map state changes
in the pole to a specific action. Therefore, it is a Non-Markovian task because a clear chain
of actions that leads to the desired outcome cannot be easily created. Instead, the agent
must learn sets of behaviors that allow it to react appropriately, given the current state of
the poles. In general, the ability to directly map state changes to actions makes Markovian
tasks much simpler to solve than Non-Markivian tasks. Stanely and Miikkulainen [30] are
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able to show that NEAT is able to perform over 2000% better than a conventional neuroevo-
lution algorithm [24] and between 200% - 5% better than three other TWEANN algorithms
[17, 13, 33].

Chapter 5

A NEAT Approach to Agent
Evolution

5.1 Hardware and Software

Before explaining the Super Mario Evolution by the Augmentation of Topology (SMEAT),
architecture, it is important to describe the hardware and software involved with running
Super Mario Brothers and the agent learning to play the game. This section will provide a
brief explanation of how Super Mario Brothers is played, how the Nintendo Entertainment
System hardware runs the game, and how modern emulation technology allowed me to create
an agent that learns to play the game. The goal of this is to give context to the architec-
tural choices used to represent the game state and create a decision process that leads to a
successful completion of a level in the game.

5.1.1 Super Mario Brothers

For this thesis project, Super Mario Brothers (SMB) for the Nintendo Entertainment
System (NES) was selected as the environment for the agent to learn. SMB was released on
the NES in 1985 and is often ranked in the top 20 greatest games of all time [20, 14]. The
core gameplay of SMB tasks the player with navigating Mario through and over a series of
obstacles to get to the goal flag at the end of the level. SMB has a total of eight worlds
that each contain four levels. They are denoted in the format of ”world-level”, meaning
World 3-2 is the second level in World 3. The first three levels in a world are depicted as
outside levels that contain a varied mix of obstacles and enemies. The last level in each
world is colloquially known as the ”End Castle” and takes place, surprisingly, inside of a
castle environment. The castle levels generally only have fireballs and Bowser as enemies
and most of the challenges are difficult jumps over pitfalls while dodging the fireballs.

Each level begins with the player on the left most end of the level and the goal flag is
at the right most end of the level. The player’s primary means of navigation are moving
left and right, corresponding to the left and right button on the Directional Pad (D-pad),
while also having the ability to jump by pressing the A button and run by holding down
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the B button. In addition, the player is able to duck down by pressing the down button
on the D-pad and this also serves as the method of entering pipes, which generally lead to
secret areas in the game. Occasionally, the player is able to climb vines to secret areas by
pressing up on the D-pad; however, these secret area’s often only contain coins and powerups
and are not required to complete a level. The two notable exceptions to this are the secret
warp zones, which contain warp pipes that allow Mario to skip to later levels of the game.
Due to the hardware limitations of the time, the player is only able to move the screen to
the right and once something has moved past the leftmost side of the screen, the player is
unable to backtrack to it. This creates a distinctly linear gameplay that greatly simplifies
the behaviors that an agent has to learn to successfully play the game.

Also featured in levels, scattered amongst the blocks and pitfalls that Mario must avoid,
are a wide variety of enemies. A large number of these enemies can be stomped by landing
on their head, like Goombas (Figure 5.1a), Koopas (Figure 5.1b), and Cheep-Cheeps (Figure
5.1c); however, there are also quite a few enemies that Mario must avoid touching at all,
like Spinys (Figure 5.2a), fireballs (Figure 5.2b), and Bowser (Figure 5.2c). The gameplay is
often praised for having tight controls and captures the essence of an easy to learn but hard
to master type of game.

(a) Goomba (b) Koopa Troopa (c) Cheep-Cheep

Figure 5.1: Stompable Enemies

(a) Spiny (b) Fireball (c) Bowser

Figure 5.2: Unstompable Enemies
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5.1.2 Nintendo Entertainment System

The Nintendo Entertainment System, or NES, was released in the USA in 1985 and
quickly became on of the best selling consoles of its time. The NES is often credited with
the revival of the USA gaming industry after the 1983 crash [6]. It used an 8 bit processor
developed by Ricoh that ran with a clock speed between 1.66 MHz and 1.76 Mhz and had
access to 2 KB of on board RAM to run any given game [2, 7]. The games were released on
individual cartridges that were loaded into the console via an access port on the front. This
design choice was meant to resemble how a video cassette was loaded into a VHS player, with
the goal of making the console feel more like an entertainment device instead of a computer,
which may have turned off less tech savvy consumers [7].

Because the NES had limited RAM available to store game visuals, developers created
sets of tiles to use as visual assets which could then be referenced and redrawn many times
while still taking up minimal space. This allowed them to create complex level structures
by arranging the tiles in a grid pattern (Figure 5.3).

Figure 5.3: Sample of how tilesets were used to create game visuals

5.1.3 BizHawk

Retro games hold a special place in the hearts of many gamers today. It hearkens back to
a simpler time before widespread internet connectivity created the dreaded day one patches,
expensive downloadable content, and lootbox bonanzas that plague many AAA game titles
today. Retro games show us that all you really need in a game is an engaging game mechanic
and tight, responsive controls to create a truly enjoyable gaming experience. Unfortunately,
hardware does not last forever and many consoles that actually run these games have been
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lost to the ravages of time. To this end, people have created a plethora of emulators that are
able to leverage the power of modern computing to mimic the functionality of these older
consoles.

Because these games have been around for a long time, people have become quite adept
at playing them. So much so in fact that it has spawned a new way to play these games
known as Speedrunning. Speedrunning tasks the players with not just beating a game, but
trying to beat the game as fast as humanly possible. For a game like SMB, it has been
refined to such a level that timing a speedrun is counted in frames, not minutes or seconds.
Human players train themselves to input button combinations at specific frames of gameplay
(known as a frame perfect trick) in order to leverage glitches and bugs that allow them to
shave off a frame or two from their total time. At this point the current world record for
SMB is basically unbeatable by a human due to this extreme optimization of gameplay.
However, the human spirit is not defeated by such simple obstacles and in recent years a
new form of speedrunning had emerged known as Tool Assisted Speedruns, or TAS. A TAS
takes the current extreme optimization of frame perfect tricks and leverages the power of
computers to allow these tricks to be fed to an emulator every single frame of the game. This
allows speedrunners to record the input sequences of frame perfect tricks and then string
them together to achieve mind blowing feats that no human player could hope to achieve.
For example, there are TAS runs of Super Mario Brothers 3 in which Mario only touches the
ground at the start of a level and then explots a series of frame perfect glitches to remain in
the air for the rest of the level.

The most popular emulator for these TAS runs of games is BizHawk. Most emulators
simply mimic the hardware for a particular console and allow a user to play a game on it.
BizHawk takes this to the next level by also incorporating an LUA interpreter into the core
of the system. This allows a developer to inject custom code that runs in unison with the
emulated game, allowing for an endless variety of customization of the games and gameplay
within them. This project leverages this functionally to run a system that constructs neural
networks and trains them to play the game without any human input at all.

5.2 Super Mario Evolution by the Augmentation of

Topology

Super Mario Evolution by the Augmentation of Topology (SMEAT) is an improvement
on the original MarI/O NEAT implementation in three distinct ways. The goal of these
improvements is to create genomes that have a more general understanding of how to play a
SMB level effectively and more easily adapt to new challenges it hasn’t seen in training. The
first of the improvements is the creation of a dataset of Save States throughout various levels
of SMB, which I have named Mario Moments. A save state is simply a snapshot of the NES
RAM state at a specific time that can be reloaded in the future. These will be discussed
in greater detail in the Mario Moments section of this chapter. The second improvement
deals with how these Mario Moments are applied during the training of a population of
genomes. The application of the Mario Moments was developed as part of the research
aspect of this project; therefore, the specifics of these application changes will be discussed
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in theResults chapter of this paper. The third and final improvement that SMEAT employs
is a refinement of the fitness calculations used in the original MarI/O implementation. The
specific details of the nature and form of the refinements were part of the research aspect
of this project and will be discussed in greater detail in the Results chapter of this paper.
However, a basic discussion of how the fitness function works is included later in this chapter.

5.2.1 Mario Moments

As stated above, the goal of this project is to create a game playing agent with a broad,
general understanding of how to effectively play a SMB level. MarI/O was able to provide a
proof of concept that a NEAT algorithm can learn to play a level of SMB; however, as stated
in the Related Works chapter, that implementation suffered from an overfitting issue that
made the knowledge gained from World 1-1 less transferrable to other SMB levels. To that
end, SMEAT uses two main tactics to sidestep the overfitting problem seen in previous
applications and create a general understanding of gameplay. The first of which was to
create a collection of random save states, called Mario Moments, in every level from World
1-1 to World 4-3. The total number of Mario Moments used in this experiment was 222.
These Mario Moments represent the myriad of different challenges Mario has to overcome
during gameplay. These challenges can range from simply jumping over a stack of blocks
to progress the level or as complex as dodging a Koopa shell that is flying at Mario after
it has bounced off an obstacle behind him. It is important to note World 2-2, which is an
underwater level whose gameplay is rather distinct from the rest of the game, has not been
included in the Mario Moments dataset. In this world the player makes forward progress
by repeatedly pressing the A button to swim slightly forward and up. This means that the
player is not required to stand on the walkable areas to make progress and can essentially
jump without ever touching the ground. Because this departure from the standard gameplay
controls would require the agent to learn a completely new set of behaviors, this level was
omitted from the set of Mario Moments.

5.2.2 Moment Shuffling

The second tactic that was developed to prevent overfitting was to randomize a list of
Mario Moments at the start of training and, eventually, for every new generation. The list of
Mario Moments is shuffled via a Fisher-Yeats shuffling algorithm [9]. This algorithm ensures
that each Mario Moment has an equal chance of being in any spot in the list of Mario
Moments for any given training run or generation. The practice of reshuffling the dataset for
every iteration is a staple of modern machine learning algorithms as it prevents the model
from overfitting to the order in which the dataset is presented and instead promotes a more
generalized understanding of the patterns in the data. It is important to note that the
concept of Moment Shuffling was not present in every training run for this project. The
exact nature and appearance of the shuffling algorithm will be discussed in the Results
chapter of this paper.
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5.2.3 Activation Function

The activation function used to determine if a given neuron is activated is a modified
sigmoid function. In Evolving Neural Networks through Augmenting Topologies [30] Stanely
and Miikkulainen propose a steepened sigmoid function of the form seen in Figure 5.4.
Because SMEAT expects a value ranging from -1 to 1 to determine neuron activates, the
sigmoid function has been modified to have a range of (-1, 1). A neuron is considered to be
active if the activation value is greater than zero and not active if the value is zero or lower.
It has the new form seen in Figure 5.5.
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Figure 5.4: φ(x) = 1
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Figure 5.5: σ(x) = 2
1+e−4.9x − 1
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5.3 Fitness Calculation

As with any reinforcement learning task, the definition of the fitness function is an ex-
tremely important step. Apart from structuring and applying the dataset of Mario Moments,
refining the fitness function was a major part of this thesis research project. Defining a fit-
ness function is an oddly philosophic undertaking as it requires you to ask the question
”What does playing a Super Mario level effectively look like?” Should you reward stomping
on enemies to promote the agent learning to beat enemies and continue making progress?
Is successfully landing on solid ground after jumping something to be rewarded in order
to better train the agent to jump over pitfalls? How valuable is maintaining a high speed
when compared to the other challenges Mario faces in successfully navigating a level? Or
are these issues immaterial to the ultimate goal of successfully reaching the goal flag and,
therefore, should the agent only be rewarded when it actually reaches it? The exact from
and the effects of the fitness functions used in each test run will be discussed in detail in the
Results chapter of this paper; however, the basic themes that are shared between them are
important to explicitly state now.

The primary means of a genome being more fit than another is how much forward progress
it makes within a Mario Moment. That is to say, how many units right from the starting
point (MStart) in a Mario Moment did the genome get before dying or reaching the goal flag
(Mend). On average a SMB level can have 3000 units between the start and finish of a level.
Since a Mario Moment can start at any point in a level, the total fitness score for a Mario
Moment can be between 1000 and 3000 units. To account for this difference, the basic fitness
function takes the form of:

Fbase = Mend −Mstart (5.1)

It is important to also note that in SMB everything that happens in a level is based on
how much time has passed while playing that level. This means that enemies and moving
obstacles begin their movements as soon as a player starts a level. This isn’t formally stated
anywhere, but is instead something learned by playing the game for a long enough period of
time. As one gains proficiency in overcoming the platforming challenges within a level, they
begin to see that getting though the level as fast as possible makes the level easier to beat.
Because game time is measured in frames, minimizing the number of frames it takes to get
to the end of a level is an important factor for the agent to learn. Since SMB runs at sixty
frames per second and a level can take minutes to complete, penalizing the total number
of frames can easily lead to negative fitness values. This means that only a fraction of the
total frames can be used as a penalty, with a determining the fractional amount of the total
frames (t). This leads to the modified form of the above fitness function:

Fmod = Fbase − (t ∗ 1

a
) (5.2)
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5.3.1 Genomic Structure

The structure of the genomic networks in SMEAT use the geometry of the level and the
locations of the enemies within the level as the input for the network. This input consists
of a 13 block by 13 block square that has Mario located in the center, giving a 169 blocks
of input plus one bias block, for a total of 170 input neurons into the network. Each block
equates to one 16 pixel by 16 pixel tile that is drawn on the screen and is assigned a value
based on the type of tile that block represents. The values are:

• 1 – Walkable Area

• 0 – Empty Space

• -1 – Enemy

Because NEAT genomes start with a minimal structure, the initial population of genomes
contain only the 170 input neurons and the six output neurons; however, once generated,
each genome in the initial population has a chance of a single node or connection mutation
being applied to it. In a traditional NEAT architecture, each input neuron is connected to
each output neuron when initally generated; however, for this application of the NEAT ar-
chitecture this step has been omitted. If a fully connected input and output was generated,
there would be many detrimental connections in the genome which would have to be re-
moved with mutations. This would create the exact issue TWEANNs have with their initial
populations and ultimately defeat the purpose of a NEAT architecture, as it was created to
avoid this issue. I believe this alteration holds inline with the Minimum Optimal Structure
doctrine that NEAT subscribes to.

Much like a traditional neural network, the input node values are then forward propagated
through any connections and hidden neurons contained within the network and eventually
reach the six output nodes. These output nodes each represent the different buttons on the
controller and, when activated, represent the agent pressing that button.

5.3.2 Genetic Population

Initially, SMEAT begins with a population size of 300 randomly generated minimal
genomes. As stated above, these genomes all contain the 170 input nodes and the six
output nodes.

At the start of every generation, each genome has a chance of acquiring a random muta-
tion to either its connection weights or its topological structure. When a genome undergoes
a connection weight mutation, each connection in the genome will have it’s weight modified
in one of two ways, Perturbation mutation or Cold Weight Reset mutation. A connection
has a 90% chance it will undergo a Perturbation mutation, where the weight value will be
increased or decreased by a random amount within a predefined step value (s). Otherwise
the weight value is set to a new value randomly selected between -2 and 2. These mutations
are expressed by the following formulae:

Wn = Wi + 2s(rand[0, 1])− s (5.3)
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Figure 5.6: Example Basic Genomes

Wn = 4(rand[0, 1])− 2 (5.4)

When a genome undergoes a topological mutation, there are four different mutation types
that can occur. The first is when a new neuron is inserted into a connection between two
neurons, thereby increasing the non-linearity of the genome. When this mutation occurs,
the original connection is disabled and two new connections are created. The new neuron
now receives input from the input node from the original connection and its output is now
sent to the output node of the original connection.
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Figure 5.7: New Node Mutation

The second topological mutation type is a when a new connection is created between two
previously unconnected neurons. When this mutation occurs, the first neuron’s output is
now also sent as input to the second neuron and this connection is then assigned a random
weight between -2 and 2.

The third topological mutation type is when a connection between two neurons is dis-
abled. This mutation type is one of the more difficult mutation types to account for when
it is applied to a genome. It very possible that a mutation that disables the wrong connec-
tion can make a whole section of the genome’s topology inaccessible and result in a broken
genome. This is best illustrated by an example. Given the genome in Figure 5.9, there are
multiple connections that can result in a broken genome.

Of all the connections available for disabling, if connection 5, 7, or 12 is disabled, the
genome will have isolated neurons and become broken. Figure 5.10 is an example of con-
nection 7 being disabled, resulting in over half the neurons and connections (highlighted in
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Figure 5.9: Complex genome to be mutated

red) of the genome becoming inaccessible. This violates the minimal structure doctrine that
a NEAT algorithm maintains because multiple applications of a poorly selected connection
deactivation mutation can result in a bloated genome that has irrelevant neurons.

In order to prevent this issue from happening, the algorithm must only select connections
that fulfil one of two criteria. The first criteria is the connection’s output neuron is a genome
output neuron, and the second criteria is the connection’s output neuron has multiple inputs
into it. If these criteria are followed, then a valid connection for disabling could be connection
13, which would result in the mutated genome in Figure 5.11

The last topological mutation that can occur is when a previously deactivated connection
between two neurons is reactivated. When a connection is reactivated by this mutation, the
connection’s output neuron uses the same connection weight from when it was last active
(Figure 5.12).
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Chapter 6

Results

This chapter will detail how the SMEAT algorithm development progressed and how the
results of each training run affected the improvements/changes that were made in subsequent
training runs. The primary development of SMEAT focused on building the Mario Moment
dataset used in training, the application of the Mario Moment dataset, and the refinement
of the fitness function. It will then go on to detail the outcomes of the training run and
describe how the aforementioned changes affected the outcome.

6.1 Training Parameters

A training run refers to the generation of a population of genomes and the subsequent
neuroevolution of those genomes, with the goal of teaching the genomes how to successfully
play SMB. In each generation of the training run, every genome in the population is given
one or more Mario Moments as the starting point and, once the genome’s run concludes, it
is scored via the particular fitness function used for that training run. A genome’s run is
generally concluded when one of three conditions is met:

• Mario dies by falling down a pitfall or hitting an enemy.

• Mario fails to make any forward progress for twenty frames plus a small bonus of 1
4
of

the frames generated in that run.

• Mario successfully touches the goal flag in a level.
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This last item doesn’t always end a run, however, because starting in training run #3,
touching the goal flag will load the next Mario Moment in a list and the genome’s run
continues. In these cases, a genome’s run is only ended when either of the first two conditions
occurs. The only other caveat for this is training run #8, where the application of Mario
Moments to the training run changes dramatically from all other training runs. This will be
explained in greater detail inTraining Run #8. Additionally, all training runs use the same
mutation rates to determine when a mutation is added to a genome between generations:

• Connection Weight Mutation: 80%

– Perturb Connection Weight Mutation: 90%

– Cold Reset Connection Weight Mutation: 10%

• Enable Connection Mutation: 60%

• Disable Connection Mutation: 80%

• Add Connection Mutation: 90%

• Add Node Mutation: 50%

After a training run was concluded, I took the top performing genome, or champion,
from each species of the population and had them attempt each level as a verification of how
effective the training process was. It is important to note that for this verification test, I
omitted World 2-2 and World 7-2, as those are both water levels and the genomes were not
trained on any water levels during neuroevolution. To measure how effective the training
sessions were, I tracked the total distance traveled in each level and if the genome was able
to reach the goal flag for that level.

6.2 Training Run #1

6.2.1 Setup

This training run was used as a proof of concept test that the implementation of Mario
Moments as the training dataset was possible. This run loaded a random Mario Moment at
the start of each generation of training and then used that Moment as the input for each
genome in the population. If a genome was able to reach the goal flag for that moment, it
was awarded a 1,000 point bonus, B, and the next genome was started. The fitness function
used was the base fitness function, with a frame penalty of 1

2
of the total frames for the run:

F = Mend −Mstart − (t ∗ 1

2
) +B (6.1)

30



6.2.2 Results

Because this run was meant for verification purposes, I only let it train for a week and
the results were, by no means, successful at teaching the genomes how to play the game.
However, it did verify that the algorithm was functioning at a base level and was ready to
be refined and improved with further training runs. Table 6.1 displays the results of the
champions of each species in the population.

Species #1 Species #2 Species #3 Species #4
Level Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
World 1-1 255 No 74 No 233 No 107 No
World 1-2 126 No 51 No 127 No 18 No
World 1-3 246 No 71 No 241 No 128 No
World 1-4 509 No 156 No 191 No 81 No
World 2-1 266 No 71 No 266 No 132 No
World 2-2 0 No 0 No 0 No 0 No
World 2-3 108 No 103 No 106 No 0 No
World 2-4 206 No 206 No 208 No 167 No
World 3-1 458 No 71 No 362 No 156 No
World 3-2 149 No 71 No 143 No 11 No
World 3-3 295 No 71 No 249 No 128 No
World 3-4 239 No 246 No 238 No 235 No
World 4-1 282 No 71 No 283 No 192 No
World 4-2 159 No 18 No 168 No 97 No
World 4-3 393 No 71 No 344 No 112 No
World 4-4 94 No 60 No 94 No 0 No
World 5-1 135 No 71 No 127 No 15 No
World 5-2 170 No 78 No 186 No 138 No
World 5-3 279 No 71 No 294 No 172 No
World 5-4 267 No 247 No 258 No 163 No
World 6-1 311 No 71 No 313 No 192 No
World 6-2 250 No 72 No 251 No 250 No
World 6-3 237 No 71 No 250 No 128 No
World 6-4 505 No 156 No 191 No 81 No
World 7-1 251 No 71 No 305 No 251 No
World 7-2 0 No 0 No 0 No 0 No
World 7-3 108 No 103 No 106 No 0 No
World 7-4 265 No 257 No 328 No 163 No
World 8-1 156 No 71 No 150 No 18 No
World 8-2 234 No 71 No 192 No 13 No
World 8-3 235 No 71 No 491 No 234 No
World 8-4 107 No 106 No 118 No 138 No

Table 6.1: Training Run #1 Results

6.3 Training Run #2

6.3.1 Improvements

This training run was used as an analysis of the effectiveness of the base application of
Mario Moments as input and the first refinement of the fitness function. Like the previous
training run, at the start of a generation, a random Mario Moment was selected to train each
genome with; however, instead of rewarding a genome for successfully reaching the goal, a
punishment, P , was applied if a genome failed to reach the goal. If a genome reached the
goal, P = 0 and if it failed, P = Lgoal − Mend, where Lgoal was the location of the goal in
the Mario Moment and Mend was the furthest progress the genome achieved. This resulted
in a fitness function with the form:
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F = Mend −Mstart − (t ∗ 1

2
)− P (6.2)

6.3.2 Results

In order to get a good sense of the efficacy of the fitness function alteration, this training
run ran for 3 weeks and generated a total of 1042 generations in that time. This training run
resulted in two distinct species dominating the population (Table 6.2) and was the start of a
pattern that began to emerge in successful training runs. As the genomes were neuroevolving
during a training run, two methods of play seemed to be the first divergence of the species
in a population:

• A species that would run forward quickly and make small jumps over obstacles and
pitfalls.

• A species that would jump as much as possible while still making small forward
progress.

Figure 6.1: Section of World 2-3

Species #2 took the first approach where it would build up speed while making small
jumps. This would sometimes result in it successfully avoiding enemies and leaping over/on
top of small obstacles. Unfortunately, this was not an overall successful approach because it
also had a tendency to stop jumping when it touched an obstacle, so apart from World 5-1
and World 8-1, it often made little progress through levels.

Species #1 took the second approach where it would try to jump a lot and often try to
get as much height as possible out of those jumps. This approach often led to more success
than Species #2, with the best example being World 2-3 (Figure 6.1). This level consists
of long, flat bridges and the only enemies fly up at Mario from the bottom of the screen.
Species #1 achieved a distance of 1039 units, which was it’s best performance, specifically
because it focused on making as much forward progress as possible. This behaviour could
have even lead to this species beating the entire level, if not for an unfortunately timed jump
before the first pitfall.

The reason for this divergence comes from the application of Mario Moments as the
dataset. Because a Mario Moment can start from almost any part of a level, this leads
to essentially two possible scenarios for any given generation of training. Either the Mario
Moment begins in a flat, open section of the level, which benefits a genome that tends to
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run forward or the Mario Moment begins near an obstacle or pitfall, which would benefit a
genome that prioritizes jumping high. Since this training run has a generation only select
a single Mario Moment to train the genomes on, some generations would favor the running
genomes and some generations would favor the jumping genomes. This had the effect of
narrowing the search performed by the algorithm along these two lines, which was actually a
beneficial effect; however, it also had the detrimental effect of not allowing those behaviours
to develop outside of their specific species. This would have to be addressed in future training
runs.

Species #1 Species #2
Level Distance Reached

Goal?
Distance Reached

Goal?
World 1-1 554 No 276 No
World 1-2 251 No 250 No
World 1-3 385 No 276 No
World 1-4 190 No 76 No
World 2-1 282 No 266 No
World 2-2 0 No 0 No
World 2-3 1039 No 138 No
World 2-4 303 No 76 No
World 3-1 331 No 383 No
World 3-2 906 No 356 No
World 3-3 251 No 379 No
World 3-4 211 No 129 No
World 4-1 282 No 282 No
World 4-2 426 No 306 No
World 4-3 367 No 353 No
World 4-4 95 No 95 No
World 5-1 409 No 652 No
World 5-2 139 No 138 No
World 5-3 375 No 274 No
World 5-4 304 No 76 No
World 6-1 411 No 304 No
World 6-2 250 No 250 No
World 6-3 341 No 239 No
World 6-4 190 No 76 No
World 7-1 394 No 251 No
World 7-2 0 No 0 No
World 7-3 752 No 138 No
World 7-4 303 No 129 No
World 8-1 302 No 506 No
World 8-2 218 No 219 No
World 8-3 393 No 235 No
World 8-4 130 No 251 No

Table 6.2: Training Run #2 Results

6.4 Training Run #3

6.4.1 Improvements

As an attempt to solve the problems that arose in the previous training run, this training
run saw an alteration in the application of the Mario Moment dataset and a slight change to
the fitness function. Instead of selecting a single Mario Moment for every generation, a list
of all Mario Moments was created and then shuffled at the start of training. Each genome in
every generation was then trained on the same list of Mario Moments. Additionally, when a
genome reached the goal for the level of that Mario Moment, the next Mario Moment was
loaded and the training of that genome continued. Training did not progress to the next
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genome until it either beat every Mario Moment, failed to make forward progress within the
timeout time, or Mario died during a run. In this way, a genomes fitness was measured by
not just how far it progressed through a single Mario Moment, but also by how many Mario
Moments it was able to progress through. Furthermore, the fitness function was also slightly
modified by removing the penalty for not completing a Mario Moment. This produced a
fitness function of the form:

F = Mend −Mstart − (t ∗ 1

2
) (6.3)

6.4.2 Results

The goal of this modification to the fitness function was to focus the training on incen-
tivising genomes to make progress through multiple Mario Moments. While this approach
was able to successfully develop genomes that could make progress through a given level, it
was ultimately flawed in it’s primary assumption. The training resulted in the creation of
only a single species throughout 309 total generations of training (Table 6.3). The relatively
small number of generations in this training run is due to only running this session for one
week.

After a week of training, each genome was able to complete 90% of the first Mario Moment
in the list and then became stuck in the exact same place. This may have been alleviated
with more training time; however, it was indicative of a pattern where the genomes would
become stuck in a local maximum and then further training time would be wasted trying
to get out of it. This is evidenced by the creation of only one dominant species within
the population. Because a genetic algorithm like NEAT uses crossover mating to allow
genomes with different structures to combine their knowledge to create better, more complex
behaviours, it is supposed to generate a variety of different structures to combine. The
focusing of the genomes into a single species that happened in this training run, effectively
negates the algorithms ability to do this. I hypothesized that the reason this training run
became so focused was due to the list of Mario Moments only being shuffled once at the start
of training. This lead to the genomes only ever seeing the same level over and over, causing
the very same overfitting issue that was seen in Seth Bling’s MarI/O experiment. Because
of this I decided to end this training run early in order to test my solution.

6.5 Training Run #4

6.5.1 Improvements

For this training run, I reviewed the basics of training image classification networks that
I learned in my machine learning classes. A very important step in the training of deep
neural network classifiers is to shuffle the dataset at every epoch. This is primarily done to
prevent the classifier from overfitting to the training dataset due to it learning the order in
which the images are input into the network. So, to alleviate the overfitting issue from the
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Species #1
Level Distance Reached

Goal?
World 1-1 396 No
World 1-2 218 No
World 1-3 243 No
World 1-4 188 No
World 2-1 284 No
World 2-2 0 No
World 2-3 140 No
World 2-4 296 No
World 3-1 459 No
World 3-2 356 No
World 3-3 256 No
World 3-4 221 No
World 4-1 282 No
World 4-2 619 No
World 4-3 351 No
World 4-4 92 No
World 5-1 143 No
World 5-2 170 No
World 5-3 359 No
World 5-4 296 No
World 6-1 410 No
World 6-2 250 No
World 6-3 346 No
World 6-4 188 No
World 7-1 377 No
World 7-2 0 No
World 7-3 750 No
World 7-4 296 No
World 8-1 506 No
World 8-2 303 No
World 8-3 235 No
World 8-4 105 No

Table 6.3: Training Run #3 Results

last training run, I created a Fischer-Yeats shuffling algorithm [9] that I applied at the start
of each generation to ensure every Mario Moment had an equal chance of appearing in any
spot in the list.

In addition, I also slightly tweaked the fitness function to be more lenient on genomes
that made slow, steady progress through a level. By reducing the frame penalty portion of
the fitness function to 1

4
of the number of frames generated on a run, I was able to prioritize

level progress higher than the speed the progress was made. This would allow, for example,
a genome that made 950 units of progress in 5 seconds a fitness of F = 875 vs a genome
that made 900 units of progress in 2 seconds a fitness of F = 870. This resulted in a fitness
function of the form:

F = Mend −Mstart − (t ∗ 1

4
) (6.4)

6.5.2 Results

The addition of Mario Moment reshuffling with every new generation completely negated
the overfitting issue and created a robust population that contained the largest number of
species, six, of any training run. Also, by reviewing the results of the champion verification
test (Table 6.4), each different species was able to develop different approaches to solving a
level. This lead to some species being more skilled at high jumps, some species more suited
to long jumps, and some species more suited to flat areas that only required small jumps. An
important example of these behavioural differences is species #2 in World 2-2. This world
has an extremely tricky section in the beginning that very few genomes are able to solve.
As seen in Figure 6.2 Mario must solve this area in one of three ways. The first is to simply
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wait for the Koopa to walk through the single tile gap in the bricks to clear the path, the
second is for Mario to have eaten a mushroom to turn into big Mario and break the blocks
in front of the gap to jump over it, or the third is for Mario to move fast enough to beat the
Koopa through the gap. This species actually learned to execute a frame perfect trick that
speedrunners use to clear this challenge. It requires exploiting a bug in the game, where
if Mario is in the falling state and he makes contact with a killable enemy in any way, the
game counts that as a stomp action and the enemy is killed. In this instance, Mario must
be in the gap and jump exactly two frames before touching the Koopa, which will result in
Mario bouncing off the above bricks, entering the falling state one frame before touching the
Koopa, and, finally, stomping the Koopa in the frame they make contact (Figure 6.3).

Figure 6.2: Challenging location in World 2-2

As stated and exemplified above, this diversity in genome behaviours is very important to
the neuroevolution process, because when a genome that specializes in high jumps is mated
with a genome that specializes in long jumps, there is a chance that the resulting child
genome will now be specialized in both high and long jumps. Over time, this combination
of specialties will result in genomes that are able to intelligently select the proper behaviour
to overcome a wide set of challenges, ultimately leading to genomes that have broad, general
understanding of how to beat an SMB level. I was so pleased with the progress of this
training run, I considered letting it train for the rest of thesis research time; however, I
wanted to experiment with some tweaks to the fitness function that may incentivize genomes
to keep Mario alive, so I ended this training run after four weeks of training and 2167 total
generations.

(a) Mario entering the gap (b) Mario jumping (c) Mario killing the Koopa

Figure 6.3: Mario executing a frame perfect trick to kill the Koopa
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Species #1 Species #2 Species #3 Species #4 Species #5 Species #6
Level Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
World 1-1 12 No 395 No 635 No 555 No 555 No 683 No
World 1-2 282 No 849 No 115 No 251 No 314 No 122 No
World 1-3 0 No 256 No 252 No 393 No 264 No 398 No
World 1-4 191 No 193 No 411 No 411 No 190 No 509 No
World 2-1 288 No 275 No 431 No 491 No 290 No 315 No
World 2-2 0 No 0 No 0 No 0 No 0 No 0 No
World 2-3 12 No 1046 No 1036 No 356 No 771 No 1297 No
World 2-4 0 No 320 No 303 No 378 No 307 No 304 No
World 3-1 13 No 327 No 460 No 364 No 459 No 567 No
World 3-2 10 No 143 No 620 No 615 No 457 No 321 No
World 3-3 29 No 278 No 288 No 268 No 292 No 278 No
World 3-4 3 No 476 No 236 No 366 No 214 No 212 No
World 4-1 284 No 282 No 1804 No 283 No 283 No 493 No
World 4-2 218 No 174 No 219 No 168 No 284 No 170 No
World 4-3 5 No 353 No 353 No 204 No 351 No 208 No
World 4-4 587 No 92 No 9 No 586 No 92 No 92 No
World 5-1 30 No 418 No 229 No 231 No 142 No 130 No
World 5-2 11 No 218 No 414 No 682 No 698 No 186 No
World 5-3 265 No 345 No 261 No 264 No 400 No 390 No
World 5-4 4 No 341 No 378 No 248 No 375 No 272 No
World 6-1 12 No 300 No 605 No 449 No 456 No 301 No
World 6-2 250 No 252 No 250 No 250 No 250 No 250 No
World 6-3 345 No 241 No 787 No 239 No 237 No 319 No
World 6-4 192 No 191 No 410 No 288 No 188 No 288 No
World 7-1 17 No 215 No 808 No 395 No 399 No 523 No
World 7-2 0 No 0 No 0 No 0 No 0 No 0 No
World 7-3 8 No 1041 No 1034 No 750 No 1038 No 1038 No
World 7-4 2 No 304 No 303 No 294 No 1241 No 260 No
World 8-1 293 No 298 No 507 No 507 No 507 No 506 No
World 8-2 11 No 161 No 300 No 168 No 299 No 266 No
World 8-3 30 No 219 No 928 No 492 No 492 No 207 No
World 8-4 124 No 101 No 8 No 107 No 126 No 131 No

Table 6.4: Training Run #4 Results

6.6 Training Run #5

6.6.1 Improvements

For this training run, because the dataset reshuffling was previously quite successful, the
only changes that I made to the algorithm was to the fitness function. My primary goal
for these changes was to prioritize the genomes that were able to keep Mario alive when
a run was ended. Because a large number of Mario Moments lead to a quick death if the
correct behaviour was not selected, I knew that if I just gave a fitness bonus for Mario being
alive, genomes would be trained to take no action. Therefore, in order to get the survival
bonus (S), a genome must have made at least 100 units of progress. My thought was that
if a genome was forced to take some amount of action before qualifying for the bonus, that
would result the genomes that learned how to make progress in a level and keep Mario alive.
As you will see in the next section, this was the result of this training, just not in the way
that I intended it to be. In addition to this, I also wanted to test how giving a small fitness
bonus for killing enemies would affect the training of genomes. The fitness function for this
training run took the form of:

F = Mend −Mstart − (t ∗ 1

4
) + S + (20 ∗Nstomp) (6.5)
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Where Nstomp is the total number of enemies killed by a genome and S = 1000 if Mario was
alive at the end of a run or S = 0 if Mario was dead. Because the flaw in my approach to
this training run became apparent once the genomes figured out how to survive the initial
challenge of a Mario Moment, it only ran for a total of two weeks and generated 610 total
generations.

6.6.2 Results

Reviewing the results of the champion verification run (Table 6.5), we can see that
species #1, #2, and #3 each had a couple of levels they were able to make decent progress
on; however, for the most part none of the species were able to make much meaningful
progress on any levels. This is because once the genomes learned that keeping Mario alive
was beneficial, they learned to make exactly enough progress to qualify for that bonus and
then stopped moving. Despite this undermining the intended goal of teaching genomes to
keep Mario alivewhilemaking progress through a level, it does highlight an important lesson
about designing a fitness function for neuroevolution and, really, reinforcement learning in
general.

It shows us that we have to pay careful attention when designing a fitness function, to
ensure that we are guiding the agent to solve the entire problem they are tasked with. We,
as the designers of these systems, can’t get too granular with our rewards/punishments or
we risk influencing our agents along unintended, detrimental paths. In this case, it is obvious
that the agent should keep Mario alive, as that is the only way to continually make progress
in a level; however, explicitly rewarding a genome solely for keeping Mario alive will often
lead to the genomes gaming the system to maximize its own fitness. Instead, we have to
capture some sort of implicit reward for keeping Mario alive, such as rewarding the genome
for making progress through a level or maintaining a high speed during a run. In this way,
we leave it up to the genome to learn the best way to make continual progress and thereby
implicitly teaching the genome that keeping Mario alive is a good thing to do.

The reward for killing enemies actually had zero effects on the training of genomes.
Because the survival bonus was so high, most genomes stopped moving to end a run before
any of them reached an enemy. This is even more evidence of how granular rewards for
specific behaviours have to be carefully crafted and, most often, should be ignored in favor
of rewards/punishments that imply the proper behaviour. There could be an argument for
having a much smaller reward for Mario surviving a run; however, there would need to be a
lot of ad hoc research to justify what exactly that value should be. Ultimately, this would
mostly be wasted effort because the goal of reinforcement learning is not to dictate exactly
what behaviours an agent should take but instead it is to show an agent how a particular
behaviour affects the overall state of the world it exits in. This way an agent learns not just
what behaviours are possible but also the context in which the behaviour exists in. In most
cases, the context of why one behaviour should be chosen over another is more important
than the behaviour itself because it allows an agent to be flexible and adapt to new situations.
It is all fine and well to tell Mario to jump when he sees an enemy, as running into it will lead
to death; however, without the entire context of the current situation this jump could still
lead to Mario’s death. For instance, if that enemy is on the edge of a pitfall, simply jumping
over the enemy will just end up with Mario falling into the pit. The agent controlling Mario
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has to be aware of the larger world in order to survive this challenge, otherwise it may miss a
floating platform that would allow Mario to avoid both the enemy and the pitfall and enable
him to continue to make progress through the level.

Species #1 Species #2 Species #3 Species #4 Species #5
Level Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
World 1-1 395 No 396 No 234 No 256 No 20 No
World 1-2 79 No 250 No 14 No 125 No 0 No
World 1-3 244 No 241 No 248 No 206 No 20 No
World 1-4 187 No 189 No 0 No 428 No 0 No
World 2-1 266 No 282 No 127 No 222 No 20 No
World 2-2 0 No 0 No 0 No 0 No 0 No
World 2-3 65 No 106 No 122 No 79 No 49 No
World 2-4 268 No 297 No 0 No 268 No 0 No
World 3-1 354 No 354 No 352 No 445 No 20 No
World 3-2 906 No 738 No 780 No 144 No 20 No
World 3-3 209 No 244 No 246 No 176 No 20 No
World 3-4 235 No 235 No 0 No 237 No 0 No
World 4-1 282 No 283 No 282 No 283 No 20 No
World 4-2 82 No 156 No 10 No 125 No 0 No
World 4-3 357 No 370 No 357 No 208 No 20 No
World 4-4 90 No 94 No 14 No 93 No 0 No
World 5-1 129 No 128 No 650 No 132 No 20 No
World 5-2 154 No 154 No 138 No 140 No 20 No
World 5-3 334 No 243 No 248 No 270 No 20 No
World 5-4 268 No 297 No 0 No 268 No 0 No
World 6-1 308 No 302 No 443 No 301 No 20 No
World 6-2 250 No 250 No 53 No 141 No 20 No
World 6-3 240 No 248 No 247 No 244 No 20 No
World 6-4 187 No 189 No 0 No 428 No 0 No
World 7-1 251 No 251 No 251 No 250 No 20 No
World 7-2 0 No 0 No 0 No 0 No 0 No
World 7-3 66 No 106 No 122 No 79 No 49 No
World 7-4 265 No 297 No 0 No 268 No 0 No
World 8-1 506 No 506 No 148 No 155 No 20 No
World 8-2 188 No 165 No 156 No 218 No 20 No
World 8-3 234 No 223 No 187 No 235 No 20 No
World 8-4 107 No 128 No 16 No 107 No 1 No

Table 6.5: Training Run #5 Results

6.7 Training Run #6

6.7.1 Improvements

This training run was a test of two changes to the fitness function. The first of these
changes was to alleviate the issue seen in the last training run where genomes would make
just enough progress to qualify for the survival bonus and then stop making progress to end
the run with Mario alive. Instead of basing the survival bonus on a fixed amount of progress,
I changed it to be based off of the speed of Mario when a genome’s run was ended; however,
since the only way a genome’s run could end was Mario dying or staying still for too long,
this bonus was completely unachievable. The second change was designed to promote more
intelligent jumping from a genome. Whenever Mario initiated a jump, if Mario was alive
at the end of the jump, the genome was awarded a 50 point fitness bonus. This created a
fitness function of the form:

F = Mend −Mstart − (t ∗ 1

4
) + S + (20 ∗Nstomp) + (50 ∗Njump) (6.6)

Where Njump is equal to the number of successful jumps during a genome’s run and S = 500
if Mario’s velocity was greater than six or S = 0 if not.
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6.7.2 Results

Unfortunately, because the goal of this project was to create an agent that could ef-
fectively play SMB, this run was a complete failure. It essentially suffered from the same
problem as the previous run, in that it focused too much on a particular behaviour an agent
can do and failed to fully account for the complete context that behaviour exists in. The
genomes produced from this training were extremely adept at jumping the maximum num-
ber of times possible; however, as the champion verification test data shows (Table 6.6), this
generally led to very poor performance, except in the few worlds where jumping really fast
is required to beat the level. This run ultimately had to be ended after a week of training
due to a bug in fitness calculation. During generation 411, a single genome repeatedly got
a zero fitness score. To the system, this meant that genome hadn’t yet been ran for that
generation, leading to an infinite loop of running that genome. This training run was very
amusing to watch; however, so I guess it wasn’t a total loss.

Species #1 Species #2 Species #3 Species #4
Level Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
World 1-1 395 No 0 No 254 No 368 No
World 1-2 442 No 0 No 250 No 192 No
World 1-3 178 No 0 No 249 No 223 No
World 1-4 38 No 49 No 187 No 188 No
World 2-1 291 No 241 No 285 No 266 No
World 2-2 0 No 0 No 0 No 0 No
World 2-3 75 No 0 No 31 No 78 No
World 2-4 38 No 49 No 0 No 269 No
World 3-1 195 No 162 No 459 No 167 No
World 3-2 906 No 27 No 458 No 28 No
World 3-3 176 No 145 No 245 No 236 No
World 3-4 38 No 49 No 0 No 238 No
World 4-1 283 No 282 No 282 No 256 No
World 4-2 97 No 0 No 155 No 139 No
World 4-3 161 No 0 No 353 No 207 No
World 4-4 17 No 16 No 0 No 95 No
World 5-1 399 No 229 No 223 No 572 No
World 5-2 218 No 138 No 219 No 112 No
World 5-3 189 No 36 No 245 No 43 No
World 5-4 38 No 49 No 261 No 269 No
World 6-1 303 No 208 No 315 No 282 No
World 6-2 145 No 144 No 250 No 224 No
World 6-3 177 No 144 No 245 No 224 No
World 6-4 38 No 49 No 187 No 188 No
World 7-1 251 No 97 No 346 No 100 No
World 7-2 0 No 0 No 0 No 0 No
World 7-3 75 No 0 No 356 No 78 No
World 7-4 38 No 49 No 261 No 269 No
World 8-1 506 No 29 No 147 No 29 No
World 8-2 149 No 25 No 151 No 30 No
World 8-3 94 No 0 No 214 No 83 No
World 8-4 17 No 17 No 116 No 102 No

Table 6.6: Training Run #6 Results
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6.8 Training Run #7

6.8.1 Improvements

Because of the failures of the previous two runs, this training run was more of a ”back
to basics” change to the fitness calculations. I removed the bonuses for killing enemies,
jumping, and staying alive at the end of the run. In addition, I reintroduced the bonus for
reaching the goal flag and I also introduced a system to reward Mario for maintaining a high
speed during the run. For every unit of progress a genome made, if Mario’s speed value was
higher than 24, which is the max walking speed, that unit of progress counted as two units
of progress. This created a fitness function of the form:

F = Mend −Mstart − (t ∗ 1

4
) + S +Bgoal (6.7)

Where S equals the number of progress units where Mario’s speed was greater than 24 and
Bgoal = 1000 if Mario reached the goal flag for that level or Bgoal = 0 if not.

6.8.2 Results

This training run was a confirmation that rewarding/punishing behaviours that imply the
intended goal are much more effective than rewarding/punishing specific behaviours directly.
It produced a diverse population similar to training run #4 and champion verification test
results (Table 6.7) that were also similar to that training run. Because of this similarity in
training outcomes, I knew that I was back on the right track with my fitness function.

6.9 Training Run #8

6.9.1 Improvements

For my final training run, I knew that my fitness function was in good shape and so I
decided to reassess my application of the Mario Moment dataset. For the last four training
runs, each generation would shuffle the list of Mario Moments and then every genome in
the population would attempt to get as far through that list as possible. Because of the
results of training runs #4 and #7, I knew this was an effective baseline strategy; however,
I knew there was still room for improvement. Because a genome’s training run was cut off
when Mario died or stopped making progress, there were many generations where genomes
had short training runs. This would occur where the first Mario Moment in the list was a
particularly difficult point in a level; therefore, many times every genome in a generation was
only able to make small amounts of progress before their run ended. This created a situation
where genomes that were ill suited to that particular Mario Moment but well suited to other
Mario Moments could get a low fitness score and be killed off. This would result in the
overall population losing important knowledge and potentially hampering the development
of generalized knowledge about how to play SMB. Because the goal of this project was to
create an agent that had that generalized knowledge, I realized this was an issue that needed
to be fixed.
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Species #1 Species #2 Species #3 Species #4 Species #5 Species #6
Level Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
World 1-1 554 No 395 No 276 No 395 No 255 No 275 No
World 1-2 348 No 283 No 219 No 133 No 17 No 250 No
World 1-3 276 No 404 No 370 No 279 No 277 No 280 No
World 1-4 193 No 416 No 410 No 132 No 190 No 10 No
World 2-1 304 No 285 No 280 No 284 No 267 No 301 No
World 2-2 0 No 0 No 0 No 0 No 0 No 0 No
World 2-3 1037 No 79 No 78 No 1042 No 108 No 123 No
World 2-4 255 No 294 No 335 No 75 No 333 No 10 No
World 3-1 385 No 458 No 322 No 460 No 363 No 329 No
World 3-2 617 No 146 No 159 No 457 No 115 No 461 No
World 3-3 277 No 279 No 275 No 252 No 271 No 280 No
World 3-4 216 No 214 No 310 No 75 No 206 No 11 No
World 4-1 283 No 283 No 282 No 398 No 284 No 282 No
World 4-2 285 No 222 No 159 No 184 No 158 No 159 No
World 4-3 356 No 378 No 373 No 377 No 355 No 356 No
World 4-4 382 No 93 No 18 No 159 No 94 No 95 No
World 5-1 650 No 227 No 141 No 143 No 121 No 233 No
World 5-2 219 No 218 No 154 No 156 No 158 No 219 No
World 5-3 276 No 264 No 370 No 266 No 277 No 374 No
World 5-4 255 No 294 No 387 No 75 No 395 No 10 No
World 6-1 302 No 467 No 302 No 300 No 301 No 304 No
World 6-2 251 No 250 No 250 No 251 No 251 No 252 No
World 6-3 241 No 237 No 356 No 239 No 272 No 338 No
World 6-4 193 No 418 No 410 No 132 No 190 No 11 No
World 7-1 339 No 396 No 318 No 253 No 252 No 394 No
World 7-2 0 No 0 No 0 No 0 No 0 No 0 No
World 7-3 78 No 79 No 78 No 1041 No 108 No 125 No
World 7-4 288 No 294 No 321 No 76 No 382 No 10 No
World 8-1 508 No 507 No 169 No 507 No 125 No 447 No
World 8-2 332 No 302 No 544 No 171 No 219 No 301 No
World 8-3 457 No 490 No 235 No 226 No 235 No 234 No
World 8-4 126 No 938 No 125 No 98 No 107 No 104 No

Table 6.7: Training Run #7 Results

My solution to this was to run every genome in the population through all of the Mario
Moments before moving to the next generation. This way, genomes that performed well
in certain levels but poorly in others wouldn’t get eliminated due to bad luck, but instead
would be able to optimize their performance in the levels they did do well and potentially
learn to do better in levels they didn’t. It would only be when a genome failed to improve
in both aspects that it would get eliminated from the population, in favor of genomes that
were improving in both aspects.

This change in dataset application did necessitate a change in the fitness function. The
principal idea behind the fitness function didn’t change; however, just the calculation of a
genomes progress through each of the Mario Moments was altered. Instead of adding up
all the progress in each Mario Moment into a big number, the progress through each Mario
Moment plus any bonuses was then averaged by the total number of Mario Moments. This
way, genomes that continued to improve their average progress were allowed to survive and
genomes who’s average progress went down were killed off. This produced a fitness function
of the form:

F =
1

N

N∑
i=1

M end
i −M start

i − (ti ∗
1

4
) + Si +Bgoal

i (6.8)
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Where N equals the total number of Mario Moments and M end
i , M start

i , ti, Si, & Bgoal
i is the

total progress, starting progress, total frames, speed bonus, and goal bonus, respectively, of
the ith Mario Moment.

6.9.2 Results

This training run was unique in that it was the longest of any of the training runs with
a training time of two months and it also produced the fewest generations with a total of
169 generations. This is primarily the result of each individual genome training run taking
much longer to complete and, therefore, each generation also took much longer to complete.
In general, each generation in previous training runs took between five to ten minutes to
complete, compared to over an hour and half for each generation for this training run. This
actually highlights one of the biggest issues facing neuroevolution techniques in machine
learning, having to run hundreds of members of a population over a dataset that can contain
tens of thousands of individual instances. A solution to this problem has been proposed in
a paper by Morse and Stanley [18], and I will discuss how it can be applied to this project
in the Future Works section of Chapter 7.

The improvement in dataset application really complemented the fitness function im-
provements from previous training runs. While this training run may have created a less
diverse population of species than training runs #4 and #7, each species in this training
run performed much better over a larger number of levels. Looking at the results of the
champion verification test in Table 6.8, it can be seen that there were multiple levels that
each species was able to achieve over 1000 units of progress, including multiple instances
that were on levels outside of the training dataset. This shows that species were able to gain
some level of generalized knowledge about how to play an SMB level, which was the entire
goal of the project.

It was disappointing to see that none of the species were able to beat even a single level;
however, I am quite confident that is achievable with more training time. Considering that a
SMB level is generally about 3000 units long, species #3 was very close to beating World 3-2
as it was able to make 2650 units of progress on that level. Whats more, because other species
were unable to make close to that progress, it also shows that each species was developing
distinct styles of play. This is also evidenced by multiple other instances of this occurring,
such as species #2 with World 2-4 and species # 3 with World 5-1. As noted before, this
is a crucial component to successful neuroevolution and it was only a matter of time before
the knowledge of those different styles was disseminated to the rest of the population.
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Species #1 Species #2 Species #3 Species #4
Level Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
Distance Reached

Goal?
World 1-1 556 No 394 No 395 No 394 No
World 1-2 218 No 220 No 640 No 251 No
World 1-3 384 No 386 No 724 No 386 No
World 1-4 1208 No 1163 No 188 No 412 No
World 2-1 266 No 975 No 432 No 867 No
World 2-2 0 No 0 No 0 No 0 No
World 2-3 1985 No 1038 No 1037 No 1038 No
World 2-4 303 No 1227 No 306 No 309 No
World 3-1 458 No 571 No 890 No 870 No
World 3-2 731 No 340 No 2650 No 340 No
World 3-3 417 No 425 No 520 No 413 No
World 3-4 315 No 812 No 226 No 234 No
World 4-1 1803 No 1594 No 1282 No 1815 No
World 4-2 304 No 160 No 225 No 308 No
World 4-3 369 No 353 No 355 No 353 No
World 4-4 95 No 94 No 586 No 95 No
World 5-1 664 No 662 No 1371 No 662 No
World 5-2 188 No 346 No 346 No 347 No
World 5-3 279 No 391 No 391 No 393 No
World 5-4 303 No 271 No 306 No 309 No
World 6-1 410 No 507 No 507 No 478 No
World 6-2 277 No 336 No 253 No 394 No
World 6-3 648 No 640 No 336 No 651 No
World 6-4 299 No 315 No 188 No 413 No
World 7-1 682 No 345 No 396 No 346 No
World 7-2 0 No 0 No 0 No 0 No
World 7-3 595 No 751 No 546 No 515 No
World 7-4 384 No 271 No 306 No 304 No
World 8-1 532 No 783 No 532 No 781 No
World 8-2 331 No 302 No 299 No 291 No
World 8-3 491 No 1860 No 1855 No 1182 No
World 8-4 132 No 1157 No 125 No 139 No

Table 6.8: Training Run #8 Results

Chapter 7

Conclusion

7.1 Future Work

The results from these training runs show that more research into the application of
neuroevolution as a way to create neural networks that learn behaviours is definitely needed.
For my future work into this project, there are two main areas that I would like to improve
upon in order to get even better results. These areas are expanding the Mario Moments
dataset and altering the application of the Mario Moments dataset.
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7.1.1 Expanding Mario Moments

As stated in the Chapter 5, the current dataset of Mario Moments consists of 222
randomly selected points between World 1-1 and World 4-3. This random sampling of
different points across these fifteen levels is a good place to start; however, I believe there
is still room for improvement. Because these points were essentially created by playing the
game and creating a Save State while randomly playing, some levels could end up having
more Mario Moments in them than other levels. This could result in a bias forming that
favors genomes learning some levels better than others. For my next attempt at this project,
I would like to expand the total number of Mario Moments to 450 instances and also ensure
that each level has exactly 30 Mario Moments in it. The benefits of this would be two fold,
with one being that more instances would lead to the genomes seeing more similar looking
challenges and therefore able to become more adept at solving them and, two, it would
ensure that genomes wouldn’t be biased by a particular level having more instances than
others.

7.1.2 Application of Mario Moments

I mentioned in the results of training run #8 that one of the major challenges to neu-
roevolution is the need to apply a large number of training instances to every member of
a population, at least according to the conventional wisdom. My above alterations would
mean that a population of 300 genomes would each have to run through 450 training in-
stances, leading to 300 ∗ 450 = 135, 000 iterations every single generation. If each iteration
takes thirty seconds to complete, that would mean each generation would take 47 days to
complete. Luckily, in their paper Simple Evolutionary Optimization Can Rival Stochastic
Gradient Descent in Neural Networks [18] Morse and Stanley propose a system that can
dramatically reduce the training time for a generation.

The concept leverages a similar idea in ”mini-batch” SGD, where the error gradient
calculation used in backpropagation is calculated using a small set of training examples. This
allows the training algorithm to make better use of parallelization techniques to speed up the
training of a neural network model. Morse and Stanley propose a genetic algorithm that can
also perform neuroevolution on a smaller batch of training examples, granting the algorithm
both a sizable reduction in training time per generation while still maintaining the genetic
stability of the population. Morse and Stanley are both keenly aware of the risks associated
with selecting a random subset of a dataset for neuroevolution. Sometimes, genomes that
perform well on the dataset overall may run into a situation where only training instances
that they perform poorly on are selected for a generations training set. This is the very issue
I experienced with training runs #4 and #7, where well performing genomes could encounter
an unlucky string of training instances and suddenly find themselves eliminated from the
population. Now the population has lost important knowledge that must be relearned.

In order to apply this same concept to my project and prevent this devastating loss of
knowledge, the fitness calculation for genomes will have to be altered to include a factor
Morse and Stanley called Fitness Inheritance [18]. Fitness inheritance is a system where a
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genomes fitness is calculated by measuring it’s fitness in the current generation and then is
adjusted by the average fitness of it’s parents. For this project, this would produce a fitness
function of the form:

F =
1

N

N∑
i=1

M end
i −M start

i − (ti ∗
1

4
) + Si +Bgoal

i (7.1)

F
′
=

Fp1 + Fp2

2
(1− d) + F (7.2)

Where F
′
is the adjusted fitness value for a genome for the current generation, Fpn is the

parent genome’s fitness, F is base fitness of the genome for the current generation, and d
is a decay hyperparameter that controls the weight of the fitness inheritance on the current
generation.

By incorporating the fitness function modifications above and selecting batches of training
instances such that at least one Mario Moment from each level are included, I will be able
to increase my dataset size, ensure genetic diversity, and speed up the training process.

7.2 Conclusions

The results of training runs #4, #7, and #8 all show that the creation of an agent
with a general understanding of how to effectively play SMB is entirely possible. As with
most problems to be solved with machine learning, training time is one of the biggest limiting
factors in the success or failure of an agent/model. However, taking time out of the equation,
there are still other important factors to consider when developing a neuroevolution algorithm
to train an agent, namely the fitness function that ranks the genomes and the dataset used
in training. This is exemplified in the training runs with less than promising results because
the misapplication of either one of these features directly resulted in the failure of those
training runs. Training run #2 shows how exposing the genomes to only a single Mario
Moment every generation had the effect of enforcing a divergence of behaviours so strongly
that only two species were able to survive in the population. Training run #3 shows how
the simple addition of a randomized list at the start of training is insufficient to properly
train genomes. Training runs #5 and #6 exemplify rather succinctly how important it
is to carefully craft the fitness function and avoid the temptation of focusing on specific
behaviours when rewarding/punishing a genome. It is important that the fitness function
guide the genomes to the proper behaviours by incentivising global goals like forward progress
in a level or maintaining a high speed; otherwise, the genomes may unintentionally evolve
to maximize a particular behaviour in a way that becomes ultimately detrimental to the
success of the genome. Even though training runs #4 and #7 were successful in showing
that genomes were able to create an amount of generalized gameplay knowledge, the way
the Mario Moments dataset was used in those runs still needed to be altered to increase
the efficacy of the training time. Reviewing Table 7.1, we can see that Training run #8
produced better results in only 169 generations by achieving the most progress in 50% of all
levels tested vs 37% for training run #4 and 13% for training run #7. When compared to
an average of 2150 generations in training run #4 and #7, this results in a 92% reduction
in the number of generations.
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Training Run 4 Training Run 7 Training Run 8 Best Score
World 1-1 683 554 556 683
World 1-2 849 348 640 849
World 1-3 398 404 724 724
World 1-4 509 416 1163 1163
World 2-1 491 304 975 975
World 2-2 0 0 0 0
World 2-3 1297 1042 1038 1297
World 2-4 378 335 1227 1227
World 3-1 567 460 890 890
World 3-2 620 617 2650 2650
World 3-3 292 280 520 520
World 3-4 476 310 812 812
World 4-1 1804 398 1815 1815
World 4-2 284 285 308 308
World 4-3 353 378 369 378
World 4-4 587 382 586 587
World 5-1 418 650 1371 1371
World 5-2 698 219 347 698
World 5-3 400 374 393 400
World 5-4 378 395 309 395
World 6-1 605 467 507 605
World 6-2 252 252 394 394
World 6-3 787 356 651 787
World 6-4 410 418 413 418
World 7-1 808 396 682 808
World 7-2 0 0 0 0
World 7-3 1041 1041 751 1041
World 7-4 1241 382 384 1241
World 8-1 507 508 783 783
World 8-2 300 544 331 544
World 8-3 928 490 1860 1860
World 8-4 131 938 1157 1157
Total Best 11 4 15

Table 7.1: Best progress score for Training Runs #4, #7, & #8

References

[1] Raya Alshammri, Ghaida Alharbi, Ebtisam Alharbi, and Ibrahim Almubark. Machine
learning approaches to identify parkinson’s disease using voice signal features. Frontiers
in Artificial Intelligence, 6:1084001, March 2023.

[2] N. Altice. I Am Error: The Nintendo Family Computer / Entertainment System Plat-
form. Platform Studies. MIT Press, 2015.

[3] P.J. Angeline, G.M. Saunders, and J.B. Pollack. An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1):54–65,
1994.

47



[4] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adap-
tive elements that can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13(5):834–846, 1983.

[5] Seth Bling. Mari/o - machine learning for video games, June 2015.

[6] Mia Consalvo. Console video games and global corporations: Creating a hybrid culture.
New Media & Society, 8(1):117–137, 2006.

[7] Andrew Cunningham. The nes: How it began, worked, and saved an industry, December
2021.

[8] J. E. Darnell and W. F. Doolittle. Speculations on the early course of evolution.
Proceedings of the National Academy of Sciences of the United States of America,
83(5):1271–1275, March 1986.

[9] Manuel Eberl. Fisher–yates shuffle. Archive of Formal Proofs, September 2016.

[10] David Fogel. Blondie24: Playing at the Edge of AI. Morgan Kaufmann, 1 edition, 01
2002.

[11] Jason Gauci and Kenneth O. Stanley. Autonomous Evolution of Topographic Regular-
ities in Artificial Neural Networks. Neural Computation, 22(7):1860–1898, 07 2010.

[12] Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex general
behavior. Adaptive Behavior, 5(3–4):317–342, January 1997.

[13] Faustino J Gomez and Risto Miikkulainen. Solving non-markovian control tasks with
neuroevolution. Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, page 356–1361, 1999.

[14] IGN. Ign’s topp 100 games. https://web.archive.org/web/20100301132404/http://top100.ign.com/2005/001-
010.html, 2006.

[15] David J. Montana and Lawrence Davis. Training feedforward neural networks using
genetic algorithms. In Proceedings of the 11th International Joint Conference on Arti-
ficial Intelligence - Volume 1, IJCAI’89, page 762–767, San Francisco, CA, USA, 1989.
Morgan Kaufmann Publishers Inc.

[16] David E. Moriarty and Risto Miikkulainen. Forming Neural Networks Through Efficient
and Adaptive Coevolution. Evolutionary Computation, 5(4):373–399, 12 1997.

[17] David E. Moriarty and Risto Mikkulainen. Efficient reinforcement learning through
symbiotic evolution. Machine Learning, 22(1):11–32, January 1996.

[18] Gregory Morse and Kenneth O. Stanley. Simple evolutionary optimization can rival
stochastic gradient descent in neural networks. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, page 477–484, Denver Colorado USA, July 2016.
ACM.

48



[19] H Mühlenbein. Limitations of multi-layer perceptron networks - steps towards genetic
neural networks. Parallel Computing, 14(3):249–260, 1990.

[20] News and Features Team. The top 25 videogame franchises.
https://web.archive.org/web/20080228062503/http://ps3.ign.com/articles/749/749069p5.html,
2006.

[21] Dr. TomMurphy VII Ph.D. The first level of super mario bros. is easy with lexicographic
orderings and time travel ...after that it gets a little tricky.

[22] C. M. Radding. Homologous pairing and strand exchange in genetic recombination.
Annual Review of Genetics, 16:405–437, 1982.

[23] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mech-
anisms. Cornell Aeronautical Laboratory. Report no. VG-1196-G-8. Spartan Books,
1962.

[24] N. Saravanan and D.B. Fogel. Evolving neural control systems. IEEE Expert, 10(3):23–
27, 1995.

[25] J.D. Schaffer, D. Whitley, and L.J. Eshelman. Combinations of genetic algorithms
and neural networks: a survey of the state of the art. In [Proceedings] COGANN-92:
International Workshop on Combinations of Genetic Algorithms and Neural Networks,
pages 1–37, 1992.

[26] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of
deep reinforcement learning in video games. CoRR, abs/1912.10944(arXiv:1912.10944),
December 2019. arXiv:1912.10944 [cs].

[27] N. Sigal and B. Alberts. Genetic recombination: the nature of a crossed strand-exchange
between two homologous dna molecules. Journal of Molecular Biology, 71(3):789–793,
November 1972.

[28] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A Hypercube-Based
Encoding for Evolving Large-Scale Neural Networks. Artificial Life, 15(2):185–212, 04
2009.

[29] Kenneth O. Stanley and Risto Miikkulainen. Efficient reinforcement learning through
evolving neural network topologies. In In Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann, 2002.

[30] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10(2):99–127, June 2002.

[31] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

[32] J.D. Watson and Tina A. Baker. Molecular Biology of the Gene Fourth Edition. Addison-
Wesley, 4 edition, 1987.

49



[33] A.P. Wieland. Evolving neural network controllers for unstable systems. In IJCNN-91-
Seattle International Joint Conference on Neural Networks, volume ii, pages 667–673
vol.2, 1991.

[34] Xin Yao and Yong Liu. Towards designing artificial neural networks by evolution.
Applied Mathematics and Computation, 91(1):83–90, 1998.

[35] Byoung-Tak Zhang, Heinz Muhlenbein, et al. Evolving optimal neural networks using
genetic algorithms with occam’s razor. Complex systems, 7(3):199–220, 1993.

[36] Corentin Zone, Robin Van Oirbeek, and Andrea Pennisi. Deep reinforcement learning:
An introduction through video games. Université catholique de Louvain, 2020.
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