Erratum: A comparison of the rough sphere rotational diffusion model with experimental results for liquid methyl iodide

Scott Whittenburg
University of New Orleans, swhitten@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/chem_facpubs

Part of the Chemistry Commons

Recommended Citation

J. R. Philip
CSIRO Division of Environmental Mechanics, Canberra City, A.C.T. 2601, Australia

Four corrigenda are noted:

In the abstract 0.98 should be 0.99.

In Eq. (8), $F(y) - \Psi_*$ should be $\Psi_* - F(y)$.

In Eq. (20), $\left[\frac{y''''}{1 + (x')^2} \right]^{1/2}$ should be $\left[\frac{y'''}{1 + (x')^2} \right]^{1/2}$.

On p. 5074, line 3, 10^{-6} m should be 10^{-5} m.

Dane R. Jones,a) S. L. Whittenburg, and C. H. Wang
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

The theoretical values of τ_1 and τ_2 for $\tau_w < 1.5 \times 10^{-13}$ s shown in Fig. 1 are in error. The corrected figure is given below. For $\tau_w \approx 4 \times 10^{-14}$ s, the theoretical τ_1 and τ_2 values are in agreement with the experimental infrared and Raman relaxation times. This τ_w is an order of magnitude closer to the experimental angular momentum relaxation time but is still a factor of three too small. This τ_w value also yields more physically reasonable values for the packing fraction and roughness. For a perfectly rough sphere of diameter 5.05 Å, the corresponding packing fraction is 0.68. The paper should conclude that Chandler's rough sphere rotational diffusion model gives a reasonable explanation of the motion of liquid methyl iodide.

We thank R. E. D. McClung of the University of Alberta for questioning our results.

a)Present address: Department of Chemistry, California Polytechnic State University, San Luis Obispo, California 93407.