12-17-2004

A System-on-Programmable-Chip Approach for MIMO Lattice Decoder

Vipul Hiralal Patel
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation
https://scholarworks.uno.edu/td/192

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UNO. It has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. The author is solely responsible for ensuring compliance with copyright. For more information, please contact scholarworks@uno.edu.
A SYSTEM-ON-PROGRAMMABLE-CHIP APPROACH FOR
MIMO LATTICE DECODER

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the
requirements for the degree of

Master of Science
in
The Department of Electrical Engineering

by

Vipul Hiralal Patel

B.S., University of Pune, 2000

December 2004
Acknowledgements

I would like to express my gratitude to my Advisor, Dr Xinming Huang, for his support and timely advice throughout my research. I appreciate and value his consistent feedback on my progress, which was always constructive and encouraging, and ultimately drove me to the right direction.

I would like to express my sincere thanks to the other committee members, Dr. Jing Ma and Dr. Dimitrios Chalarampidis for their willingness to be on my thesis committee. Their invaluable suggestions and insightful comments have made my work more presentable.

I take this opportunity to thank my parents and wife for their unconditional love and support throughout my life. Finally, I express my gratitude to my friends for their encouragement and motivation.
Table of Contents

LIST OF ILLUSTRATIONS ... v

List of Figures .. v
List of Tables .. vi
Glossary of Abbreviations .. vii

ABSTRACT .. viii

1. Introduction .. 1
 1.1 Motivation for Implementing MIMO Lattice Decoder .. 1
 1.2 Research Objectives ... 2
 1.3 Thesis Contribution ... 2
 1.4 Organization of Thesis ... 3

2. Introduction to Altera System-on-Chip ... 4
 2.1 Introduction of Nios Development Board .. 4
 2.2 General Description ... 5
 2.2.1 EP1S10 Device ... 6
 2.2.2 Flash Memory Device ... 7
 2.2.3 Serial Port Connector .. 7
 2.3 Design Tools ... 8
 2.3.1 Quartus II ... 8
 2.3.2 SOPC Builder .. 8
 2.3.3 DSP Builder ... 9
 2.4 System Components ... 10
 2.4.1 CPU Architecture ... 11
 2.4.2 Instruction Set .. 12
 2.4.3 Register File ... 12
 2.4.4 Cache Memory .. 12
 2.4.5 Exception Handling ... 13
 2.4.6 Hardware Acceleration .. 13
 2.4.7 Custom Instructions ... 14
 2.4.8 Standard CPU Options .. 15

3. Multiple Input Multiple Output Systems and Lattice Decoder .. 16
 3.1 Multiple Input Multiple Output System ... 16
 3.1.1 Transmitter .. 17
List of Illustrations

List of figures:

Figure 2.1 Nios Development Board ... 4
Figure 2.2 Nios Processor Based System .. 11
Figure 2.3 Custom Instruction Logic ... 14
Figure 3.1 MIMO Transmitter .. 16
Figure 3.2 MIMO Receiver .. 16
Figure 4.1 Flowchart of Decoding Algorithm ... 22
Figure 4.2 Flowchart of State A of Decoding Algorithm 23
Figure 4.3 Flowchart of State B of Decoding Algorithm 23
Figure 4.4 Flowchart of State C of Decoding Algorithm 24
Figure 4.5 Geometric view of the square of three digit number 26
Figure 4.6 Geometric view of the square of three digit number 26
Figure 4.7 Flow chart of Square Root Algorithm .. 30
Figure 4.8 Flow chart of Strassen Matrix Inversion Algorithm 33
Figure 4.9 Flowchart of QR Decomposition Algorithm 40
Figure 5.1 Hardware architecture of Lattice Decoder .. 42
Figure 5.2 Interface between controller and Nios Microprocessor based system 43
Figure 5.3 Interface between Controller and State A, B, C 44
List of Tables:

Table 2.1 Stratix EP1S10 Device Features

Table 2.2 Comparison of Different Nios Processor Multipliers

Table 6.1 Comparison of Nios Processor with and without divider to perform Division

Table 6.2 Comparison of “sqrt” function in C language and square root algorithm

Table 6.3 Number of cycles required to invert 4x4 and 8x8 lower triangular matrix using Starssen method

Table 6.4 Number of cycles to perform QR Decomposition of 4x4 matrix

Table 6.5 Number of cycles required to perform pre processing part of decoding

Table 6.6 Sequence of state in Matlab

Table 6.7 Sequence of state in VHDL

Table 6.8 Synthesis results of MIMO Lattice Decoder with Preprocessing Part
Glossary of Abbreviations

MIMO – Multiple Input Multiple Output
FPGA – Field Programmable Gate Arrays
DSP – Digital Signal Processing
VHDL – Very High speed integrated Description Language
CPU – Central Processing Unit
Abstract

The past decade has shown distinct advances in the theory of multiple input multi output techniques for wireless communication systems. Now, the time has come to demonstrate this progress in terms of applications. This thesis introduces implementation of Schnorr-Euchner strategy based decoding algorithm applied on Altera system-on-chip (Stratix EP1S10F780C6) with Nios embedded processor. The lattice decoder is developed on FPGA using VHDL. The preprocessing part of algorithm is targeted for Nios embedded processor using C language. A controller is also designed to interface and communicate between the Nios embedded processor and lattice decoder.
Chapter 1

Introduction

1.1 Motivation for Implementing MIMO Lattice Decoder

Wireless systems are rapidly developing to provide high speed voice, text and multimedia messaging services. To support these services, channels with large capacities are required. The most brute-force approach to increasing wireless data rate is to use more frequency channels to increase modulation rate. This "channel bonding" approach will not meet the needs of WLAN consumers, for many reasons. First, while channel bonding increases data rate, it decreases range for the same transmit power. Second, channel bonding robs channels from other systems that operate nearby. Finally, channel bonding violates government regulations in Japan and some European nations [12]

MIMO answers the question of how to achieve higher data rates with longer range, backward compatibility, global regulatory compliance, all without using more frequency spectrum. MIMO systems use multiple transmit and receive antennas. A high-rate data stream is divided into multiple lower-rate streams, each of which is modulated and transmitted through a different antenna at the same time using the same frequency channel. Because of multipath reflections, each receive antenna output is a linear combination of the multiple transmitted data streams. The data streams are separated at
the receiver using algorithms that rely on estimates of all channels between each transmitter and each receiver. In addition to multiplying throughput, range is increased because of an antenna diversity advantage, since each receive antenna has a measurement of every transmitted data stream. The MIMO algorithm and its architecture are active research area in wireless communication that motivated the research in MIMO systems.

1.2 Research Objectives

The main objectives of this thesis is to develop a system-on-chip approach for MIMO lattice decoder by using closest point search algorithm described in [1] and also to utilize parallelism offered by FPGAs to achieve high data rate.

1.3 Thesis Contribution

The implementation of lattice decoder has two parts: 1) the preprocessing part and 2) the decoding part. To achieve high decoding rate, the decoding part can be implemented by developing customized hardware unite (IP core) in a FPGA. The preprocessing part contains operation like matrix inversion. Developing a special hardware unite to directly implement it in FPGA is complicated and not efficient. Since speed requirement for preprocessing part is not as critical, the microprocessor based system is suitable for the preprocessing part. This thesis explains how to implement preprocessing part on an embedded processor system together with the decoding part on a FPGA. The main contribution of this thesis is that it explains how to develop embedded processor based system and FPGA based lattice decoder on the same programmable chip.
1.4 Organization of Thesis

Chapter 2 describes Altera system-on-chip. It addition, it describes how to develop the whole system using SOPC builder and Quartus II software. It also describes hardware acceleration techniques. Chapter 3 gives information about MIMO system. It also describes details of closest point search algorithm. Chapter 4 describes Strassen matrix inversion method, QR decomposition using Householder matrix, finding square root, and decoding the closest point search algorithm as a part of decoder. Chapter 5 tells how to develop interface between Nios processor based system and FPGAs. It also describes parodying of closest point search algorithm. Finally, chapter 6 gives the simulation results obtained during this thesis research.
Chapter 2

Introduction to Altera System-On-Chip

This chapter gives the introduction of Altera system-on-chip (Stratix EP1S10F780C6). It also explains its programming techniques and how to develop the whole system using SOPC builder and Quartus II software with hardware acceleration techniques.

2.1 Introduction of Nios Development Board

![Figure 2.1 Nios Development Board](image-url)
The figure 1.1 [7] shows Nios development board. It has following features:

1. Programmable chip Stratix EP1S10F780C6
2. 1 Mbytes of static RAM, 16 Mbytes of SDRAM, 8 Mbytes of flash memory
3. On board logic for configuring the programmable chip from flash memory
4. Two RS-232 serial ports for serial communication
5. 50 MHz clock generator
6. Dual 7-segment LED display and LCD display
7. JTAG connector which is used to load hardware image from host computer

2.2 General Description

The Nios development board, Stratix edition, provides a hardware platform for developing embedded systems based on Altera Stratix devices. The Nios development board features a Stratix EP1S10F780C6 device with 10,570 logic elements (LEs) and 920 Kbits of on-chip memory. When power is applied to the board, the on-board configuration logic configures the Stratix FPGA using hardware configuration data stored in flash. When the device is configured, the Nios processor design in the FPGA wakes up and begins executing boot code from flash memory. User defined software and hardware configuration data can be downloaded to the board from a host computer. Download methods include a serial cable, a JTAG download cable, or an Ethernet cable. At power on, or when the Reset, Config button (SW10 in figure1.1) is pressed, the configuration controller reads user configuration data out of flash at address 0x600000. This data, and suitable control signals, are used in an attempt to configure the FGPA. FPGA Image configuration data written into this region of flash memory is conventionally called the
“User Hardware Image”. If there is no valid User Hardware Image, or if SW9 (Safe Config in figure1.1) is pressed, the configuration controller begins reading data out of flash at address 0x700000. Any FPGA configuration data stored at this location is conventionally called the “Safe Hardware Image”. The development board was factory programmed with a “Safe Hardware Image”.

2.2.1 EP1S10 Device

Device U53 in figure1.1 is a Stratix EP1S10F780C6 FPGA in a 780-pin FineLine BGA package. Table 1 lists the Stratix device features.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEs</td>
<td>10,750</td>
</tr>
<tr>
<td>Total RAM bits</td>
<td>920,448</td>
</tr>
<tr>
<td>DSP blocks</td>
<td>6</td>
</tr>
<tr>
<td>Embedded multipliers</td>
<td>48</td>
</tr>
<tr>
<td>Maximum user I/O pins</td>
<td>426</td>
</tr>
</tbody>
</table>

Table 2.1 Stratix EP1S10 Device Features

There are two methods for configuring Stratix device:

1. By using the Quartus II software running on a host computer and JTAG connector, we can download hardware image file into Stratix device.

2. Store hardware image into flash memory so that on board configure logic configure the device during the reset or when power is applied to the board.
2.2.2 Flash Memory Device

Device U5 in figure 1.1 is an 8 Mbyte AMD AM29LV065D flash memory chip connected to the Stratix device and can be used for two purposes:

1. It can be used as general-purpose readable memory and non-volatile storage.
2. It is mainly used to store hardware image created by user or default hardware image. It also used to store software program for Nios embedded processor.

2.2.3 Serial Port Connectors

J19 & J27 in figure 1.1 are the serial connectors used for communication with a host computer using a standard, 9-pin serial cable connected to the serial port of host computer. The Nios board development provides two serial connectors, one labeled Console and the other labeled Debug. Many processor systems make use of multiple UART communication channels during prototype and debug stages. When we use “printf” command in software code of Nios processor, the Nios system sends data to the host computer using debug serial connector. Both connectors connect to the Stratix FPGA in the same manner, and a Nios processor system can use either serial port for any purpose, and is not limited to the usage implied by the label. Both FPGA logic ports are able to transmit all RD-232 signals. Alternatively, the Stratix design may use only the signals it needs, such as RXD and TXD. LEDs are connected to the RXD and TXD signals, giving a visual indication when data is being transmitted or received.
2.3 Design Tools

Altera provides three design software tools to develop system on programmable chip. They are:

1. Quartus II
2. SOPC builder
3. DSP builder

2.3.1 Quartus II

Quartus II is used to integrate Nios processor based system created using SOPC builder with other hardware block. It is also used to synthesize system design and download into Stratix EP1S10F780C6 device.

2.3.2 SOPC Builder

The SOPC builder is a system integration tool included in the Quartus II software that provides designers with a powerful platform for composing memory-mapped systems from common system components. SOPC Builder library components can be either simple blocks of fixed logic, or complex, parameterized, and dynamically generated subsystems. Examples of SOPC Builder library components include:

1. Processors (Excalibur stripe & Nios embedded processor)
2. Intellectual property (IP) & peripherals (including SOPC Builder Ready IP cores)
3. Bridges (AMBA AHB-to-Avalon, Avalon-to-PCI)
4. Software (compilers, debuggers & real-time operating system (RTOS))
In addition to the integrated FPGA solution generated, SOPC Builder provides software files for developing simple to complex applications. Examples of the SOPC Builder file outputs include:

1. Header files
2. Generic C drivers
3. OS kernels
4. Software Models for hardware-software co-simulation

2.3.3 DSP builder

DSP system design in Altera programmable logic devices requires both high-level algorithm and hardware description language (HDL) development tools. The Altera DSP Builder integrates these tools by combining the algorithm development, simulation, and verification capabilities of The MathWorks MATLAB and Simulink system-level design tools with VHDL synthesis, simulation, and Altera development tools. The DSP Builder shortens DSP design cycles by helping designers create the hardware representation of a DSP design in an algorithm-friendly development environment. The existing MATLAB functions and Simulink blocks can be combined with Altera DSP Builder blocks and Altera intellectual property (IP) MegaCore functions to link system-level design and implementation with DSP algorithm development. DSP Builder allows system, algorithm, and hardware designers to share a common development platform. Designers can use the blocks in DSP Builder to create a hardware implementation of a system modeled in Simulink in sampled time.
2.4 System Components

Nios embedded processor-based systems include one or more Nios CPUs and the Avalon switch fabric. Nios processor-based systems can also contain multiple bus masters, such as multiple Nios CPUs. Designers can create and integrate these multi-master systems easily when using Altera’s SOPC builder system development tool. SOPC Builder automatically generates the interface to all of these components. The following components can be used to form a Nios processor-based embedded system:

1. Nios CPU
2. Cache memory
3. Avalon switch fabric
4. Peripherals and memory interface
5. On chip debug

Designers can use SOPC Builder to custom-build Nios processor-based systems to their own specifications. Figure 1.2 [7] shows an example of a Nios processor-based system built using SOPC Builder. This particular system contains a Nios CPU with instruction and data cache, an on-chip debugging core, a direct memory access (DMA) controller, several peripherals such as UART, parallel I/O (PIO), an Ethernet port, and memory interfaces, and a simultaneous multi-master Avalon switch fabric.
2.4.1 CPU Architecture

The Nios embedded processor CPU instruction set architecture is optimized for programmable logic and system-on-a-programmable-chip (SOPC) integration. The Nios CPU is a five-stage pipelined general-purpose RISC microprocessor that supports both 32-bit and 16-bit architectural variants. Both the 32-bit and 16-bit Nios CPUs utilize a 16-bit instruction format to reduce code footprint and instruction memory bandwidth. The instruction set is optimized for compiled embedded applications. The Nios embedded processor implements the CPU with separate data and instruction-memory bus masters, generally known as modified-Harvard memory architecture. The SOPC builder allows users to easily specify connections between both Avalos masters and slaves in a system. These slaves may be memories or peripherals.
2.4.2 Instruction Set

The Nios instruction set is tailored to support compiled C and C++ programs. It includes a standard set of arithmetic and logical operations and instruction support for bit operations, byte extraction, data movement, control flow modification, as well as a small set of conditionally executed instructions, which can be useful in eliminating short conditional branches. The instruction set contains rich addressing modes to reduce code size and increase the processor performance.

2.4.3 Register File

The Nios CPU architecture has a large general-purpose windowed register file, several machine-control registers, a program counter, and the K register that is used for instruction prefixing. The general-purpose registers are 32 bits wide in the 32-bit Nios CPU and 16 bits wide in the 16-bit Nios CPU. The register file size is configurable and contains a total of 128, 256, or 512 registers. The software can access the registers exposed in a 32-register-long sliding window that moves with a 16-register granularity. This sliding window allows fast context switching, accelerating subroutine calls and returns.

2.4.4 Cache Memory

The configurable Nios CPU can optionally contain an instruction and data cache. In general, cache is used to improve CPU performance by providing a local memory system that can respond quickly to CPU-generated bus transactions. The Nios cache
implementation is a simple, direct-mapped, write-through architecture that is designed to maximize performance and minimize device resource consumption.

2.4.5 Exception Handling

The Nios processor allows up to 64 vectored exceptions, which can be generated from any of these three sources: external hardware interrupts, internal exceptions, or explicit software trap instructions. The Nios exception-processing model allows precise handling of all internally generated exceptions. Users can optionally disable support for TRAP instructions, hardware interrupts, and internal exceptions. This option reduces the size of the Nios system, and is intended for use only in systems where the processor is not running complex software.

2.4.6 Hardware Acceleration

The Nios instruction set can be configured to take advantage of hardware to increase system performance. Specific cycle-intensive software operations can be offloaded to hardware, increasing system performance significantly. This feature is provided through instruction set modifications. The Nios processor has two levels of instruction set modifications:

1. Custom instructions
2. Standard CPU options
2.4.7 Custom Instructions

Developers can accelerate time-critical software algorithms by adding custom instructions to the Nios processor instruction set. Developers can use custom instructions to implement complex processing tasks in single-cycle (combinatorial) and multi-cycle (sequential) operations. Additionally, user-added custom instruction logic can access memory and/or logic outside of the Nios system. Figure 1.3 shows a block diagram of the instruction logic[7].

![Figure 2.3 Custom Instruction Logic](image)

A complex sequence of operations can be reduced to a single instruction implemented in hardware. This feature empowers developers to optimize their software inner loops for digital signal processing (DSP), packet header processing, and computation-intensive applications. The Altera SOPC builder software provides a graphical user interface (GUI) that developers can use to add up to five of their own custom instructions to the Nios embedded processor.
2.4.8 Standard CPU Options

Altera provides several pre-defined instruction set extensions to increase software performance. The MUL and MSTEP instructions are implemented with additional hardware units. When you select either of these CPU options in the SOPC Builder, logic is added to the arithmetic logic unit (ALU). For example, if a user chooses to implement the MUL instruction, an integer multiply unit is added automatically to the CPU’s ALU to return a 16-bit by 16-bit multiplication operation in two clock cycles. This same operation performed using an iterative software routine would take 80 clock cycles. Table 1.2 [7] shows number of clock cycles for multiplication using hardware and software multiplier.

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>Logic Elements Used</th>
<th>Cycles 16×16</th>
<th>Cycles 32×32</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (software)</td>
<td>0</td>
<td>80</td>
<td>250</td>
</tr>
<tr>
<td>MSTEP</td>
<td>125</td>
<td>18</td>
<td>80</td>
</tr>
<tr>
<td>MUL</td>
<td>370</td>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2.2 Comparison of Different Nios processor Multipliers

Additionally, the Nios CPU includes an internal shift unit for executing logical and arithmetic shift instructions. The CPU uses fixed barrel-shifter logic that executes all shift operations in two clock cycles.
Chapter 3

Multiple Input Multiple Output Systems and Lattice Decoder

This chapter explains the concept of multiple input multi output (MIMO). It also explains the closest point search algorithm used as the channel decoder in MIMO receiver.

3.1 Multiple-input multiple output (MIMO) system

![Figure 3.1 MIMO Transmitter](image1)

![Figure 3.2 MIMO Receiver](image2)
The diagrams shown above are schematic representation of multiple input multiple output (MIMO) systems [4]. MIMO systems use multiple antennas in both transmitters and receivers.

3.1.1 Transmitter

At transmitter side, the incoming serial stream of data is first converted into M parallel streams. After de-multiplexing of serial data, M parallel data streams are processed and transmitted using M antennas.

3.1.2 Receiver

The MIMO receiver has three main parts RF-frontend, baseband processor and decoder.

(i) RF-frontend: It receives data from N parallel antennas and converts analog data into digital form.

(ii) Baseband processor: It receives samples from RF-frontend, extracts timing information and channel information (channel matrix coefficients).

(iii) Decoder: The received signal y is given by

$$y = Hx + \text{noise}$$

where H is channel matrix and x is transmitted vector. The decoder computes the vector \hat{u} using H and y such that \hat{u} is closest to x.

The reasons for use of MIMO techniques are

(i) To increase maximum data rate

(ii) To extend coverage
3.2 Closest Point Search in Lattices

In several communication systems, the received signal is given by a linear combination of the transmitted data symbols and additive noise. The input–output relation describing such channels can be put in the form of the real multiple-input multiple-output (MIMO) linear model $y = Hx + v$. In a wireless communication context, x, y, and v are the transmitted, received, and the additive white Gaussian noise vectors, whereas H contains the channel coefficients. Typically, the noise components are independent and identically distributed zero-mean Gaussian random variables with a common variance, and the information signal (x) is uniformly distributed over a discrete and finite set, representing the transmitter codebook. Under such conditions and assuming H perfectly known at the receiver the matrix H generates a lattice that we denote as $\Lambda(H)$, the maximum-likelihood (ML) estimate \hat{u} for x is obtained by minimizing the Euclidean distance of y from the valid lattice points. The closest point problem is: Given y and lattice $\Lambda(H)$ with known generator H, find the lattice vector $\hat{u} \in \Lambda(H)$ that minimizes the Euclidean distance from y to \hat{u} such that

$$\|x - \hat{u}\| \leq \|x - u\|$$

Where $\| . \|$ denotes the Euclidean norm. In channel coding, the closest point problem is referred to as decoding. In communication theory, lattices are used for both modulation and quantization. If a lattice is used as a code for the Gaussian channel, maximum-likelihood decoding in the demodulator is a closest point search. A common approach to
the general closest point problem is to identify a certain region in \mathbb{R}^m within which the optimal lattice point must lie, and then investigate all lattice points in this region, possibly reducing its size dynamically. Up to now there are two typical lattice decoding algorithms. One is the Pohst strategy based algorithm developed by Viterbo and Boutros (VB) [6], and the other is the Schnorr-Euchner strategy based algorithm applied by Agrell, Eriksson, Vardy, and Zeger (AV) [1]. The VB method tries to find lattice points inside a sphere of given radius. AV method divides the lattice into hyperplanes and starts the search for the closest point in the nearest hyperplane. Both algorithms have high complexities in most practical situations. The AV algorithm is claimed to be faster than the VB algorithm at a speedup factor varying from 2 to 8 [1]. In addition, to search the closest lattice point to the received signal within a sphere, the radius of the sphere \sqrt{C} must be specified in the VB algorithm and the choice of C is very crucial to the search speed of the algorithm. Herein, we address the closest point algorithm by using AV.

3.2.1 Conceptual Description of Closest Point Search Algorithm

Let H be the channel coefficient matrix and y be the received vector. The basic steps of AV algorithm to find vector \tilde{u} are as follow:

1. Decompose H into $H = GQ$ where G is the lower triangular matrix and Q is the orthogonal matrix. The standard method to achieve such decomposition is the QR decomposition. The QR decomposition decomposes given matrix A into Q and R where Q is the orthogonal matrix and R is the upper triangular matrix. The G is the lower triangular matrix while R is the upper triangular matrix, $G = R^{-1}$
2. Find $G_1 = G^{-1}$ and $x_1 = yQ^T$

3. Find \tilde{u} by using G_1 and x_1, ($\tilde{u} = DECODE(x_1, G_1)$) such that the vector $\tilde{u}H$ is closest to the transmitted signal x.

In the beginning the function $DECODE(x_1, G_1)$ initialize $k = n$, $bestdistance = 8$. It finds $e_k = x_1G_1$, $u_k = round(e_{kk})$ and orthogonal distance $b = \frac{e_{kk} - u_k}{G_{1kk}}$. After finding $currentdistance$ by using b it enters into either state A, state B or state C depending on the $currentdistance$. It enters into state A if $currentdistance = bestdistance$ and $k \neq 1$. It enters into state B if $currentdistance < bestdistance$ and $k = 1$. It enters into state C if $currentdistance = bestdistance$.

In state A it finds $e_{k-1} = e_k - bG_{1k}$, orthogonal distance and moves down in layers.

In state B it stores lattice point u_k into u and makes $bestdistance = currentdistance$. It also finds $currentdistance$ and moves one step up in hierarchy of layers.

In state C if $k = n$ then it stop searching otherwise finds $currentdistance$ and moves one step up in hierarchy of layers. In order to work, all the diagonal elements of the G_i must be positive. If they are not positive, we have to make them positive explicitly.
Chapter 4

Algorithms

This chapter explains in detail different algorithms such as Strassen matrix inversion method, QR decomposition using Householder matrix, finding square root and decoding algorithm (part of closest point search algorithm) used in this thesis work.

4.1 Decoder

Algorithm Decode(H, x)

Input: an $n \times n$ lower-triangular matrix H with positive diagonal elements, and an n-dimensional vector x to decode in the lattice $\wedge (H^{-1})$.

$$
H = \begin{bmatrix}
h_{11} & 0 & 0 & 0 \\
h_{21} & h_{22} & \cdot & \cdot \\
\cdot & \cdot & \cdot & 0 \\
h_{n1} & h_{n2} & \cdot & h_{nn}
\end{bmatrix}
$$

$x = (x_1, x_2, \ldots, x_n)$

Output: an n-dimensional vector \tilde{u} such that $\tilde{u}H^{-1}$ is a lattice point that is closest to x.
Define $n = \text{size of } H$
Define $bestdist = \infty$
$bestdist$ represents current distance

Define $k = n$, $stop = 0$
k represents distance to examined layer

Define vector dist of size k, $\text{dist}_k = 0$
dist represents distance of lattice point to corresponding layer

Define matrix e of size $n \times n$
e is used to compute u_k
e{

$u_k = \left[e_{kk} \right], y = \frac{e_{kk} - u_k}{h_{kk}}, \ step_k = \text{sgn}(y)$
u_k represents examined lattice point
$step_k$ represents offset to next layer

$\text{newdist} = \text{dist}_k + y^2$

Is $\text{newdist} < bestdist$?

State A

Is $k = 1$?

State B

State C

Figure 4.1 Flow Chart of Decoding Algorithm
Figure 4.2 Flow Chart of State A of Decoding Algorithm

\[e_{k-1,i} = e_{ki} - yh_{ki} \]
for \(i = 1, \ldots, k - 1 \)

\[k = k - 1 \]

\[u_k = \left\lfloor e_{kk} \right\rfloor, \quad \text{dist}_k = \text{newdist} \]

\[y = \frac{e_{kk} - u_k}{h_{kk}}, \quad \text{step}_k = \text{sgn}* (y) \]

Figure 4.3 Flow Chart of State B of Decoding Algorithm

\[\tilde{u} = u, \quad k = k + 1 \]
\[\text{bestdist} = \text{newdist} \]

\[u_k = u_k + \text{step}_k, \quad y = \frac{e_{kk} - u_k}{h_{kk}} \]

\[\text{step}_k = - \text{step}_k + \text{sgn}^* (\text{step}_k) \]
In this algorithm, k is the dimension of the sublayer structure that is currently being investigated. In state A this algorithm performs three steps:

1. finding k – dimensional layer
2. finding distance to layer
3. after finding distance expand layer into ($k - 1$)

State B is invoked when the algorithm has successfully moved down all the way to the zero-dimensional layer (that is, a lattice point) without exceeding the lowest distance. In this state this algorithm store lattice point as output and update the lowest distance.

State C is invoked when distance to examined layer is greater than lowest distance. In this state this algorithm checks condition to stop the search. If condition to stop is not meet than it moves up one step in hierarchy of layer.

Figure 4.4 Flow Chart of State C of Decoding Algorithm

\[
\begin{align*}
 k &= k + 1 \\
 u_k &= u_k + step_k, \quad y = \frac{e_{ik} - u_k}{h_{ik}} \\
 step_k &= -step_k + \text{sgn}^* (step_k)
\end{align*}
\]
The operation $\text{sgn}^*(z)$ returns:

$$\text{sgn}^*(z) = \begin{cases}
-1 & \text{if } z = 0 \\
1 & \text{if } z > 0
\end{cases}$$

$[z] = \text{integer closest to } z \text{ i.e. } [2.4] = 2 \text{ and } [2.6] = 3$

In hardware $[z]$ can be implemented in following way.

Suppose z is amplified by p where $p = 2^s$. If $S\text{-}1$ bit of z is 0 then reset $S\text{-}1$ to 0 bits of z as zeros. If $S\text{-}1$ bit z is 1 then $p = 2^s$. If $S\text{-}1$ bit of z is 1 then reset $S\text{-}1$ to 0 bits of z as zeros and add 2^s to z.

4.2 A geometric view of the square root

There are two facts concerning the square of an integer that are useful in the inverse process of finding the square root. The first concerns the number of digits. If $0 < a < 10$ then $0 < a^2 < 100$, if $10 < a < 100$ then $100 < a^2 < 10000$, if $100 < a < 1000$ then $10000 < a^2 < 1000000$, and so on.

The point to see here is that the square of an integer has either twice as many digits as the integer itself, or one less than twice as many. So, since 9,409 has 4 digits its square root has 2 digits, and the square root of the 13 digit number 3,871,696,594,290 has 7 digits.

The second fact concerns the "geometry" of squaring a number. Consider, for example, the square of 249 so the geometric object to consider is a square with side of length 249 units. Write 249 as $200 + 40 + 9$ then the square can be seen as
The square of 249 is $200\times200 + 2(200\times40) + 40\times40 + 2(240\times9) + 9\times9 = 62001$. Now to find the square root of an integer you need first to determine the number of digits there will be. Let us find the square root of 64009. Since 64009 has 5 digits, the square root of 64009 will have 3 digits. A square of a 3 digit number is divided into 7 parts as shown in the diagram.
To find the square root of 64009 divide the number in group of “two” as 6 | 40 | 09 and start with the group of digits nearest to the left (in this case 6). This represents the square of a. We know that the largest perfect square less that 6 is 4, and that the square root of 4 is 2. Since 2 must be placed in the hundreds position, we can say a = 2*100. The area of region 1 is 200*200 = 40 000. We then subtract this area from the total area of 64 009. By looking at the diagram we realize that next we should remove the areas of the two regions whose sides are a and b (region 2 and 3). To find the length of b we must estimate the quotient of 24 009 by 400. The 400 is arrived at by recalling that two regions, each of which has a length of 200, would have an overall length of 2(200) = 400.

The quotient of 24 009 by 400 is approximately 60. However looking again at our diagram we realize that besides region2 and 3, we also must subtract an area of b x b (region 4). Since 2 x 200 x 60 = 24 000 we are left with only 9, but we need to subtract b x b which is 60 x 60 = 3 600. Thus we reduce our estimate of b to 50, and place a 5 in the tens position of the square root calculation. Two rectangles (region 2 and 3), each 200 units by 50 units, have a total area of 20 000 square units. Subtracting 20 000 from 24 009 leaves 4 009. Again, going back to the diagram we note that the area (region 4) of b x b that must be subtracted is now 50 x 50 = 2 500. Subtracting 2 500 from 4 009 leaves 1 509.
Returning to the diagram we note that next we must subtract the areas of the two regions which has a length of \(a + b = 250 \) units each. The unknown quantity \(c \) can now be estimated by the quotient of 1509 by 500. 500 is arrived by placing the two regions together to arrive at a rectangle with length \(2 \times 250 = 500 \). The quotient of 1509 by 500 is approximately 3. Place 3 in the units position of the square root calculation and subtract the sum of the areas of regions 5 and 6 , which is \(2 \times 250 \times 3 = 1500 \). Subtracting 1500 from 1509 leaves 9. From the diagram the region 7 is the only region not subtracted so far and its area is \(c \times c = 3 \times 3 = 9 \). Subtracting 9 from our previous remainder leaves us with a remainder of 0. Thus the square root of 64009 is 253.

The Square root Algorithm:

Input: a positive integer \(x \).

Output: \(\sqrt{x} \) rounded toward zero.

\[
\begin{align*}
w &= [1, 10, 100, \ldots, 1000, \ldots, 10000, \ldots] \\
w &\text{represents weight associated with number} \\
\text{Divide number } x \text{ into groups of two} \\
d &= \text{no of digits in root (no of groups)} \\
i &= d-1 \\
i &\text{is used index of } w \\
\text{Find } p \text{ such that} \\
p &= \text{first group (left most)} \\
p &\text{represents perfect square} \\
q &= \text{SQRT}(p) \\
A &\text{figure continued on next page}
\end{align*}
\]
Is $d = 1$?

- **Y**: root = q
 - **EXIT**

- **N**
 - $root = q \times w_i$
 - $n = x - root^2$

 $i = i - 1$
 - $add = root \times 2$

 $quotient = \text{round} (n - add)$
 - $quotient = \text{round}(quotient - w_i) \times w_i$

 N

 Y
 - Is quotient = 0?
 - **N**: done = 0
 - **Y**: done = 1

 N

 Y
 - Is done = 0?
 - **N**
 - $m = n - ((add \times quotient) + quotient^2)$
 - Is $m = 0$?
 - **N**: done = 1
 - $n = m$
 - root = root + quotient
 - **Y**: quotient = quotient $- w_i$
 - **Y**

 B

- figure continued on next page
In this algorithm we need to find number of digits \(d\) in square root of given number \(x\).

This can be implemented as follow:

\[
\begin{align*}
 d &= 2 \quad \text{if} \quad 0 \leq x \leq 99 \\
 d &= 3 \quad \text{if} \quad 100 \leq x \leq 9999 \\
 d &= 4 \quad \text{if} \quad 10000 \leq x \leq 999999 \\
 \quad \ldots \ldots \\
\end{align*}
\]

The function \(\text{SQRT} \ (p)\) in above algorithm returns \(q\) as follow:

\[
\begin{align*}
 q &= 9 \quad \text{if} \quad p > 80 \\
 q &= 8 \quad \text{if} \quad p > 63 \quad \text{and} \quad p \leq 80 \\
 q &= 7 \quad \text{if} \quad p > 47 \quad \text{and} \quad p \leq 63 \\
 q &= 6 \quad \text{if} \quad p > 35 \quad \text{and} \quad p \leq 47 \\
 q &= 5 \quad \text{if} \quad p > 24 \quad \text{and} \quad p \leq 35 \\
\end{align*}
\]
\[q = 4 \quad \text{if} \quad p > 15 \text{ and } p = 24 \]

\[q = 3 \quad \text{if} \quad p > 8 \text{ and } p = 15 \]

\[q = 2 \quad \text{if} \quad p > 3 \text{ and } p = 8 \]

\[q = 1 \quad \text{if} \quad p > 0 \text{ and } p = 3 \]

\[q = 0 \quad \text{if} \quad p = 0 \]

4.3 Strassen Matrix Inversion Method

Suppose matrix \(C \) is the inverse of matrix \(A \). If the size of \(A \) is \(N \times N \), the size of \(C \) is also \(N \times N \). In Strassen method the matrix \(A \) is divided into four sub matrix \(A_{11}, A_{12}, A_{21}, A_{22} \) in such way that number of rows in \(A_{11} \) equal to number of columns in \(A_{21} \).

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}
\]

Let \(A \) be:

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1M} & a_{1P} & \cdots & a_{1N} \\
 \vdots & \ddots & \vdots & \vdots & & \vdots \\
 a_{M1} & \cdots & a_{MM} & a_{MP} & \cdots & a_{MN} \\
 a_{P1} & \cdots & a_{PM} & a_{PP} & \cdots & a_{PN} \\
 \vdots & \ddots & \vdots & \vdots & & \vdots \\
 a_{N1} & \cdots & a_{NM} & a_{NP} & \cdots & a_{NN}
\end{bmatrix}
\]

\(A_{11}, A_{12}, A_{21}, A_{22} \) given by

\[
A_{11} = \begin{bmatrix} a_{11} & \cdots & a_{1M} \\ \vdots & \ddots & \vdots \\ a_{M1} & \cdots & a_{MM} \end{bmatrix} \quad A_{12} = \begin{bmatrix} a_{1P} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{MP} & \cdots & a_{MN} \end{bmatrix}
\]

\[
A_{21} = \begin{bmatrix} a_{P1} & \cdots & a_{PM} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NM} \end{bmatrix} \quad A_{22} = \begin{bmatrix} a_{PP} & \cdots & a_{PN} \\ \vdots & \ddots & \vdots \\ a_{NP} & \cdots & a_{NN} \end{bmatrix}
\]
where $M = \frac{N}{2}$ if N = even

\[M = \text{round} \left(\frac{N}{2} \right) \] if N = odd

$P = M + 1$

Strassen Matrix Inversion Algorithm:

Input: $N \times N$ matrix A

Output: $N \times N$ matrix C such that $C = A^{-1}$

Divide A into four sub matrix

\[A_{11}, A_{12}, A_{21}, A_{22} \]

\[R1 = A_{11}^{-1} \]

\[R2 = A_{21} \times R1 \]

\[R3 = R1 \times A_{12} \]

\[R4 = A_{21} \times R3 \]

\[R5 = R4 - A_{22} \]

figure continued on next page
Figure 4.8 Flow Chart of Strassen Matrix Inversion Algorithm

\[
R6 = R5^{-1}
\]

\[
C_{12} = R3 \times R6
\]

\[
C_{21} = R6 \times R2
\]

\[
R7 = R3 \times C_{21}
\]

\[
C_{11} = R1 - R7
\]

\[
C_{22} = -R6
\]
4.3.1 Reduction of Strassen Matrix Inversion algorithm for 4×4 lower triangular matrix

If matrix is lower triangular, it’s inverse is also lower triangular. Let A and C are inverses of each other.

\[
A = \begin{bmatrix}
 a_{11} & 0 & 0 & 0 \\
 a_{21} & a_{22} & 0 & 0 \\
 a_{31} & a_{32} & a_{33} & 0 \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix} \quad C = \begin{bmatrix}
 c_{11} & 0 & 0 & 0 \\
 c_{21} & c_{22} & 0 & 0 \\
 c_{31} & c_{32} & c_{33} & 0 \\
 c_{41} & c_{42} & c_{43} & c_{44}
\end{bmatrix}
\]

\[
A_{11} = \begin{bmatrix}
 a_{11} & 0 \\
 a_{21} & a_{22}
\end{bmatrix} \quad A_{12} = \begin{bmatrix}
 0 & 0 \\
 0 & 0
\end{bmatrix}
\]

\[
A_{21} = \begin{bmatrix}
 a_{31} & a_{32} \\
 a_{41} & a_{42}
\end{bmatrix} \quad A_{22} = \begin{bmatrix}
 a_{33} & 0 \\
 a_{43} & a_{44}
\end{bmatrix}
\]

1) $R1 = A_{11}^{-1}$

\[
R1 = \frac{1}{d1} \begin{bmatrix}
 a_{22} & 0 \\
 -a_{21} & a_{11}
\end{bmatrix} \quad \text{where } d1 = a_{11} \cdot a_{22}
\]

2) $R2 = A_{21} \times R1$

\[
R2 = \begin{bmatrix}
 a_{31} & a_{32} \\
 a_{41} & a_{42}
\end{bmatrix} \times \frac{1}{d1} \begin{bmatrix}
 a_{22} & 0 \\
 -a_{21} & a_{11}
\end{bmatrix}
\]

\[
R2 = \frac{1}{d1} \begin{bmatrix}
 r_{11} & r_{12} \\
 r_{21} & r_{22}
\end{bmatrix} \quad \text{where}
\]

\[
r_{11} = a_{32} \cdot a_{22} - a_{32} \cdot a_{21}
\]

\[
r_{12} = a_{32} \cdot a_{11}
\]

\[
r_{21} = a_{41} \cdot a_{22} - a_{42} \cdot a_{21}
\]

\[
r_{22} = a_{42} \cdot a_{11}
\]

3) $R3 = 0 \quad (\because a_{12} = 0)$

4) $R4 = 0 \quad (\because R3 = 0)$
5) \(R5 = - A_{22} \ (\because R4 = 0) \)

\[
= \begin{bmatrix}
-a_{33} & 0 \\
-a_{43} & -a_{44}
\end{bmatrix}
\]

6) \(R6 = R5^{-1} \)

\[
= \frac{1}{d2} \begin{bmatrix}
-a_{44} & 0 \\
a_{43} & -a_{33}
\end{bmatrix}
\] where \(d2 = a_{33} * a_{44} \)

7) \(C_{12} = 0 \ (\because R3 = 0) \)

8) \(C_{21} = R6 \times R2 \)

\[
C_{21} = \frac{1}{d2} \begin{bmatrix}
-a_{44} & 0 \\
a_{43} & -a_{33}
\end{bmatrix} \times \frac{1}{d1} \begin{bmatrix}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{bmatrix}
\]

\[
= \frac{1}{d2 * d1} \begin{bmatrix}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{bmatrix}
\]

\[
\begin{align*}
h_{11} &= -a_{44} * r_{11} \\
h_{12} &= -a_{44} * r_{12} \\
h_{21} &= a_{43} * r_{11} - a_{33} * r_{21} \\
h_{22} &= a_{43} * r_{12} - a_{33} * r_{22}
\end{align*}
\]

9) \(R7 = 0 \ (\because R3 = 0) \)

10) \(C_{11} = R1 \ (\because R7 = 0) \)

\[
C_{11} = \frac{1}{d1} \begin{bmatrix}
a_{22} & 0 \\
-a_{21} & a_{11}
\end{bmatrix}
\]

11) \(C_{22} = - R6 \)

\[
C_{22} = \frac{1}{d2} \begin{bmatrix}
-a_{44} & 0 \\
a_{43} & -a_{33}
\end{bmatrix}
\]

The inverse \(C \) of 4x4 lower triangular matrix \(A \) is given by

\[
C = \begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
\]
\[
C = \begin{bmatrix}
\frac{a_{22}}{d1} & 0 & 0 & 0 \\
\frac{-a_{21}}{d1} & \frac{a_{11}}{d1} & 0 & 0 \\
\frac{h_{11}}{d1* d2} & \frac{h_{12}}{d1* d2} & -\frac{a_{44}}{d2} & 0 \\
\frac{h_{21}}{d1* d2} & \frac{h_{22}}{d1* d2} & a_{43} & -a_{33} \\
\end{bmatrix}
\]

where \(d1 = a_{11} * a_{22} \)

\(d2 = a_{33} * a_{44} \)

\(h_{11} = -a_{44} * r_{11} \)

\(h_{12} = -a_{44} * r_{12} \)

\(h_{21} = a_{43} * r_{11} - a_{33} * r_{21} \)

\(h_{22} = a_{43} * r_{12} - a_{33} * r_{22} \)

\(r_{11} = a_{32} * a_{22} - a_{32} * a_{21} \)

\(r_{12} = a_{32} * a_{11} \)

\(r_{21} = a_{41} * a_{22} - a_{42} * a_{21} \)

\(r_{22} = a_{42} * a_{11} \)

\[4.4 \text{ QR decomposition of matrix} \]

The matrix \(A \) can be decomposed into

\[A = QR \]

Here \(R \) is upper triangular matrix, while \(Q \) is orthogonal matrix, that is, \(QQ^T = I \) where \(Q^T \) is the transpose matrix of \(Q \). The standard algorithm for the \(QR \) decomposition involves successive Householder transformations. An appropriate Householder matrix
applied to a given matrix can zero all elements in a column of the matrix situated below a chosen element. Thus we arrange for the first Householder matrix \(Q_1 \) to zero all elements in the first column of \(A \) below the first element. Similarly \(Q_2 \) zeroes all elements in the second column below the second element, and so on up to \(Q_{n-1} \) Thus

\[
R = Q_{n-1} \ldots \ldots Q_1 A
\]

\[
Q = (Q_{n-1} \ldots \ldots Q_1)^{-1} = Q_1 \ldots \ldots Q_{n-1}
\]

4.4.1 Householder Matrix

The Householder transformation is often described in terms of multiplication by a matrix known as Householder matrix. A Householder matrix has the form

\[
H = I - 2WW^T
\]

where \(W \) is a column vector. The formation of the Householder matrix to reduce to zero a vector \(X \) from position \(k \) to position \(n \) is summarized in the following algorithm:

Given an \(n \)-dimensional vector \(X \) and an index \(k \) such that \(1 \leq k \leq n - 1 \) find a vector \(W \) so that the matrix \(H = I - 2WW^T \) reduces positions \(k+1, \ldots, n \) of vector \(X \) to zero, so the vector \(HX \) has the form \([Z_1, Z_2, \ldots, Z_{K}, 0, 0, \ldots, 0]^T\)

1. Set \(W_i = 0 \) for \(i = 1, \ldots, k-1 \).
2. Find \(g = \sqrt{X_k^2 + \ldots + X_n^2} \)
3. Find \(s = \sqrt{2g(g + |X_k|)} \)
4. Set \(W_k = \frac{(X_k + \text{sgn}(X_k)g)}{s} \)
5. Set $W_i = \frac{X_i}{s}$ for $i = k+1, \ldots, n$

QR Decomposition Algorithm:

Input: an $n \times n$ matrix A

Output: $n \times n$ upper triangular matrix R and $n \times n$ orthogonal matrix Q.

1. $k = 1$, $B = A$, $R = 0$

2. $mx = \text{MAX}(A_{kk}, A_{(k+1)k}, \ldots, A_{nk})$

3. $A_{kk}, A_{(k+1)k}, \ldots, A_{nk}$

4. $\text{Sum} = A_{kk}^2 + A_{(k+1)k}^2 + \ldots + A_{nk}^2$

5. $S = \text{SIGN}(\sqrt{\text{Sum}}, A_{kk})$

6. $A_{kk} = S + A_{kk}$

7. $C_k = S \times A_{kk}$

8. $d_k = -mx \times S$

figure continued on next page
\[j = k + 1 \]

\[S1 = A_{kk}A_{kj} + A_{(k+1)k}A_{(k+1)j} + \ldots A_{nk}A_{nj} \]

\[T = \frac{S1}{C_k} \]

\[A_{pk} = A_{pj} - T \times A_{pk} \]

\(p \) varies from \(k \) to \(n \)

\[j = j - 1 \]

Is \(j = n \)?

Y

N

\[k = k - 1 \]

Is \(k < n \)?

Y

N

figure continued on next page
In the above algorithm operation $\text{MAX}(p_1, p_2, \ldots, p_n)$ finds absolute value of p_1, p_2, \ldots, p_n and then return maximum absolute value e.g. $\text{MAX}(-2.1, 1.0)$ returns 2.1.

The operation $\text{SIGN}(M, N)$ returns y as follow:

\[
y = M \text{ if } N > 0
\]

\[
y = -M \text{ if } N < 0
\]
Chapter 5

Prototyping of Closest Point Search Algorithm

This chapter explains how to prototype the closest point search algorithm on the Altera system-on-chip (Stratix EP1S10F780C6).

5.1 Why system-on-chip

The MIMO prototyping is challenging because of the complexity of the system. The large complexity of AV algorithms needs to be partition over DSP and FPGAs. It also requires the presence of interface drivers to support intercommunication between DSP, FPGAs. By using system-on-chip we can develop microprocessor based system, hardware logic and driver to communicate between microprocessor based system and hardware logic on the same chip. The main goal is to develop a platform for parallel execution of the preprocessing unit and the lattice decoder, therefore improving the overall performance and decoding rate (Mbps) of the MIMO channel decoder.

5.2 Prototyping Closest Point Search Algorithm

We can divide the closest point search algorithm into two parts 1) preprocessing and 2) decoding. Preprocessing contains QR decomposition of channel matrix and matrix inversion while decoding contains search of vector in matrix.
QR involves operations like finding square-root, floating point multiplication, division. FPGAs are not suitable for QR decomposition and matrix inversion. These operations are performed by using NIOS embedded processor in the FPGA.

If we analysis AV algorithm in details, it is found that there are three different states A, B, C. For given k (layer index) state A performs calculations for $k-1$ layer, while states B, C perform calculations for layer k. It means that data for state B and C are not depended on data from state A. Because search procedure can jump to either state B or C after performing state A and no data dependency of state B, C on state A, we can start state B and C in parallel with state A. We can accept or reject the output from state B or C depending on result of state A. If current state is C, we can start another state C in parallel with first state C. Depending on the result of first C; we can accept or reject the output of second state C.

Such parallelism cannot be achieved by using microprocessor so we use FPGAs to model decoder. The following diagram shows architecture of closest point search algorithm.

![Figure 5.1 Hardware architecture of lattice decoder](image-url)
Controller is the most important part of the lattice decoder. It is used to control data between State A, B, C and NIOS microprocessor based system.

5.2.1 Interface between Nios microprocessor based system and Controller

![Diagram of Interface between Controller and NIOS Microprocessor Based System](image)

C code for NIOS System

```
......
......
Loop:
  “Put data on bus”
  “Activate ready signal”
  “Wait for send signal”
  “Go to loop”
End Loop;
```

VHDL code for Controller

```
......
......
process(ready)
......
  “read data”
  “activate send signal”
  ......
end process;
```
NIOS microprocessor based system computes QR and R inversion and transfer Q and R matrix to the controller. NIOS microprocessor based system transfer one row of Q and R matrix at a time. When it is ready to transfer the data, it activates the ready signal. This ready signal is in sensitivity list of process of controller so it triggers the process. The process in controller read the data and activate send signal. The send signal is used to interrupt the NIOS microprocessor based system so that it can send next data.

5.2.2 Interface between State A, B, C and Controller

Figure 5.3 Interface between Controller and State A, B, C

![Figure 5.3 Interface between Controller and State A, B, C](image)
5.2.3 VHDL Code Structure of Controller for Interface with State A, B, C:

architecture of controller is

\[k := n \]

CURRENT_STATE \(\leftarrow \) A

STATE_CHANGE \(\leftarrow \) ‘0’

begin

begin

P1: process (CURRENT_STATE)

begin

If (CURRENT_STATE = A) then

“put data on bus for state A, B, C1 and start them”

“wait for result from state A”

“store data from state A “

“from result of state A check what is next state after A”

“store or discard result form B, C1 depending on state A”

end if

If (CURRENT_STATE = C) then

“put data on bus for state C1, C2 and start them”

“wait for result from state C1”

“store data from state C1 “

“from result of state C1 check what is next state after C1”

“store or discard result form C2 depending on state C1”
end if

STATE_CHANGE <= '1'

end process P1

P2: process (STATE_CHANGE)

begin

if (new distance < best distance) then

CURRENT_STATE <= A

else

CURRENT_STATE <= C

end if

end process P2

end architecture
Chapter 6

Results

This chapter gives the experimental results obtained for both the preprocessing and decoding part of the MIMO decoder.

6.1 Results of Pre-processing Part

The pre-processing part is executed on Nios microprocessor based system which runs at frequency of 50MHz on the Stratix EP1S10F780C6 device. Using the Division custom instruction, the maximum frequency is 50MHz.

6.1.1 Results of Division

The table 6.1 compares number of clock cycles required to perform division using Nios microprocessor without hardware divider and with hardware divider. Nios microprocessor with divider uses divider as custom instruction attached to Nios CPU.
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$c = a \div b$</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>With divider</td>
<td>31,111</td>
<td>1,000</td>
<td>31</td>
<td>38</td>
</tr>
<tr>
<td>With divider</td>
<td>-31,111</td>
<td>1,000</td>
<td>-31</td>
<td>40</td>
</tr>
<tr>
<td>Without divider</td>
<td>31,111</td>
<td>1,000</td>
<td>31</td>
<td>65</td>
</tr>
<tr>
<td>Without divider</td>
<td>-31,111</td>
<td>1,000</td>
<td>-31</td>
<td>69</td>
</tr>
</tbody>
</table>

Table 6.1 Comparison of Nios Processor with & without divider to perform division

Table 6.1 clearly shows division is 1.6 times faster on Nios microprocessor with divider than on Nios microprocessor with divider.

6.1.2 Results of Square root

The table 6.2 compares number of clock cycles required to find square root of integer (rounded toward zero) using square root algorithm explained in 3.2 and C language “sqrt” function.

<table>
<thead>
<tr>
<th>A</th>
<th>$\text{Round}(\sqrt{a})$</th>
<th>Number of cycles using C language “sqrt” function</th>
<th>Number of cycles using square root algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>9</td>
<td>6,192</td>
<td>51</td>
</tr>
<tr>
<td>999</td>
<td>31</td>
<td>5,870</td>
<td>521</td>
</tr>
<tr>
<td>6,420</td>
<td>80</td>
<td>6,015</td>
<td>396</td>
</tr>
<tr>
<td>6,40,094</td>
<td>800</td>
<td>5,759</td>
<td>550</td>
</tr>
</tbody>
</table>

Table 6.2 Comparison of “sqrt” function in C language and square root algorithm
The table 6.2 shows that square root algorithm explained 4.2 in is faster than “sqrt” C language function. The reason is that “sqrt” function uses floating point operation (execution of floating point operation on Nios fixed point processor takes more cycles) and square root algorithm explained in 4.2 uses hardware multiplier and divider.

6.1.3 Results of Strassen Matrix Inversion Method

The table 6.3 shows number of cycles required to invert 4×4 and 8×8 lower triangular matrix using Strassen method. It clearly shows that matrix inversion using divider is almost 3.5 times faster than inversion without divider.

<table>
<thead>
<tr>
<th>Matrix size</th>
<th>Number of cycles using hardware divider</th>
<th>Number of cycles without divider</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×4</td>
<td>873</td>
<td>2,973</td>
</tr>
<tr>
<td>8×8</td>
<td>5,755</td>
<td>17,820</td>
</tr>
</tbody>
</table>

Table 6.3 Number of cycles required to invert 4×4 and 8×8 lower triangular matrix using Strassen method

6.1.4 Results of QR Decomposition of matrix

The table 6.4 shows number of cycles required to perform QR decomposition of 4×4 matrix. It shows that use of divider, square root algorithm speed up QR decomposition of matrix.
<table>
<thead>
<tr>
<th>Matrix size</th>
<th>Number of cycles with multiplier only</th>
<th>Number of cycles with multiplier and divider</th>
<th>Number of cycles with multiplier, divider and square root algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×4</td>
<td>26,508</td>
<td>19,307</td>
<td>6,929</td>
</tr>
</tbody>
</table>

Table 6.4 Number of cycles required to perform QR decomposition of 4×4 matrix

6.1.5 Results of preprocessing part

The table 6.5 shows number cycles required to perform pre processing part of decoding

<table>
<thead>
<tr>
<th>Matrix size</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×4</td>
<td>9,736</td>
</tr>
<tr>
<td>8×8</td>
<td>36,587</td>
</tr>
</tbody>
</table>

Table 6.5 Number of cycles required to perform pre processing part of decoding

6.2 Results of Decoding Part

State A, B, C of decoder and controller to controller parallelism of A, B, C are developed using VHDL and simulated using Aldec simulator. 18 clock cycles are required to complete state A and 9 clocks cycles are required to complete both state B and C. The matlab and C version of decoder are also developed. The result from matlab and VHDL are matched.
In order to test decoder we assumed received signal is \([-1, -3, 1, 1]\) and channel matrix \(H\) some random number

\[
H = \begin{bmatrix}
0.9794 & -1.3807 & 0.9800 & -0.8727 \\
-0.2656 & -0.7284 & -1.1918 & 0.0893 \\
-0.5484 & 1.8866 & -0.4380 & 0.7477 \\
-0.0963 & -2.9414 & 1.3665 & 0.4070
\end{bmatrix}
\]

Given an example, we set up the SNR as 20db. In this case, the number of iterations to perform search operation in Matlab is 9 and search procedure goes through following sequence of states.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Table 6.6 Sequence of state in matlab

<table>
<thead>
<tr>
<th>Iteration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Parallel state</td>
<td></td>
<td>B</td>
<td>C</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.7 Sequence of state in VHDL

In VHDL we can start two states at the same time so in iteration 3 states A and B are executed at the same time, similarly in iteration 4 state A and C, in iteration 5 states A and C. In iteration 6 state C takes 2 cycles instead of 9 because at that time \(k = M\).
If we consider that all state executes in sequence instead of parallel like matlab, than total number of cycles required to complete search operation for this case are as follow:

18 × 4 (number of times A come) + 9 × 1 (number of times B come) + 9×3 (number of times C come – 1) + 2 (number of cycles for last C) = 110 cycles

Total number of cycles to complete search operation if states are executed in parallel is as follow:

\[18 \times 4 + 9 \times 3 + 2 = 83 \text{ cycles} \]

Because of parallelism we can save \(110 - 83 = 27 \) cycles for this case.

The bit rate of decoder is:

\[
(frequency \times \text{bits_per_dimension} \times N) \div (\text{total number of cycles})
\]

\(N = 4 \) for 4 - antenna system

\(\text{bits_per_dimension} = 2 \)

Total number of cycles in case of parallel architecture is 83 and maximum frequency is 54 Mhz so bit rate in case of 4.85 Mbits/seconds. The sequential decoder takes 3571 cycles on Nios microprocessor based system which runs at 50 Mhz so in this case data rate is 0.11 bits/seconds.
6.3 Synthesis Result

<table>
<thead>
<tr>
<th></th>
<th>Altera Stratix EP1S10F780C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target FPGA</td>
<td></td>
</tr>
<tr>
<td>Total logic elements</td>
<td>5,671/10,570</td>
</tr>
<tr>
<td>Total pins</td>
<td>203/426</td>
</tr>
<tr>
<td>Total memory bits</td>
<td>669,696/970,448</td>
</tr>
<tr>
<td>Total DSP blocks</td>
<td>24/48</td>
</tr>
<tr>
<td>Total PLL</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Table 6.8 Synthesis results of MIMO Lattice Decoder with Preprocessing Part

6.3 Conclusion

In this thesis work, the parallel architecture of lattice decoder is presented. The preprocessing part of decoder has been implemented on Nios microprocessor based system. The parallel architecture of decoder has been simulated and synthesized on FPGA and its performance is verified with software simulation. For the case we considered in section 6.2, parallel architecture of decoder is 1.25 times faster than sequential architecture and it is about 43 times faster its implementation on Nios microprocessor based system which runs at 50 Mhz, The data rate of parallel architecture (for the case in 6.2) is 5.2 Mbits/second which higher than data rate 0.11 Mbits/second.
Reference:

Vita

Vipul Patel was born in 1976 in Gujarat, India, received his Bachelors Degree from Pune University, India, in December 1999. He completed his Master’s requirements in Electrical Engineering at University of New Orleans, New Orleans, Louisiana. He defended his Master’s thesis in December 2004. His research interests are mainly Embedded System Programming and Hardware Design.